Electrochromism and Solution-Processed Polymer Electrochromic Devices HeJiazhi 2019 <p>There are still technique hurdles that needed to be overcome in the commercialization of electrochromic devices (ECDs) for energy-saving smart windows. Among them, the long-term stability of ECDs and the high fabrication cost are <a>the critical issues</a>. The pricey ECDs can only be paid off through saving the energy for years, and their price will be dramatically lower if they can be solution-processed. Here, we studied the ions behaviors in the open-circuit state of electrochromic conjugated polymers (ECPs) which is important to the stability of ECDs during the operation. Moreover, we investigated the solution-processable ion storage layers and paired them with p-type ECPs and demonstrated the possibility of using them in the highly efficient roll-to-roll fabrication of ECD.</p> <p>The crosslinkable non-color changing nitroxy radical-based polymer was investigated as the ion storage layer. With the applied of crosslinking strategy, the dissolution problems of radical polymers-based counter electrode in the electrolyte was suppressed, resulting in the enhancement of both performance and cycling stability of ECDs. Although p-type ion storage materials are widely studied as the ion storage layers for ECPs, they need to go through complicated pretreatment processes, including pre-oxidation, washing, and drying, before they can be paired with ECPs in an ECD. This complicated process greatly increases the fabrication cost. </p> <p>In our last work, we applied the UV ozone (UVO) pretreatment to the solution-processed n-type niobium oxide and evaluated its potentials to be used as the ion storage layer for p-type ECPs. The UVO pretreatment generates strong oxidants like ozone or atomic oxygen which induce the photolysis of organic residues of ligands and organic solvent trapped in the solution-processed metal oxide layer led to the formation of free radical species. These highly reactive species promoted the formation of the amorphous metal−oxygen network. Following by low-temperature annealing (< 150 <sup>o</sup>C), the ion-storage properties of niobium oxide is comparable with the high temperature annealed (300 <sup>o</sup>C) niobium oxide. The method is successfully applied to fabricate niobium oxide on a flexible conductive substrate and demonstrate the capability to pair with p-type ECPs and fabricate high-performance ECDs without the need of any pretreatments. The low-temperature solution processing of both layers will significantly reduce the fabrication cost of ECDs. </p>