Statistical Guarantee for Non-Convex Optimization HaoBotao 2019 The aim of this thesis is to systematically study the statistical guarantee for two representative non-convex optimization problems arsing in the statistics community. The first one is the high-dimensional Gaussian mixture model, which is motivated by the estimation of multiple graphical models arising from heterogeneous observations. The second one is the low-rank tensor estimation model, which is motivated by high-dimensional interaction model. Both optimal statistical rates and numerical comparisons are studied in depth. In the first part of my thesis, we consider joint estimation of multiple graphical models arising from heterogeneous and high-dimensional observations. Unlike most previous approaches which assume that the cluster structure is given in advance, an appealing feature of our method is to learn cluster structure while estimating heterogeneous graphical models. This is achieved via a high dimensional version of Expectation Conditional Maximization (ECM) algorithm. A joint graphical lasso penalty is imposed on the conditional maximization step to extract both homogeneity and heterogeneity components across all clusters. Our algorithm is computationally efficient due to fast sparse learning routines and can be implemented without unsupervised learning knowledge. The superior performance of our method is demonstrated by extensive experiments and its application to a Glioblastoma cancer dataset reveals some new insights in understanding the Glioblastoma cancer. In theory, a non-asymptotic error bound is established for the output directly from our high dimensional ECM algorithm, and it consists of two quantities: statistical error (statistical accuracy) and optimization error (computational complexity). Such a result gives a theoretical guideline in terminating our ECM iterations. In the second part of my thesis, we propose a general framework for sparse and low-rank tensor estimation from cubic sketchings. A two-stage non-convex implementation is developed based on sparse tensor decomposition and thresholded gradient descent, which ensures exact recovery in the noiseless case and stable recovery in the noisy case with high probability. The non-asymptotic analysis sheds light on an interplay between optimization error and statistical error. The proposed procedure is shown to be rate-optimal under certain conditions. As a technical by-product, novel high-order concentration inequalities are derived for studying high-moment sub-Gaussian tensors. An interesting tensor formulation illustrates the potential application to high-order interaction pursuit in high-dimensional linear regression