MASS SPECTROMETRY IONIZATION STUDIES AND METHOD DEVELOPMENT FOR THE ANALYSIS OF COMPLEX MIXTURES OF SATURATED HYDROCARBONS AND CRUDE OIL Jeremy M Manheim 10.25394/PGS.12127431.v1 https://hammer.purdue.edu/articles/thesis/MASS_SPECTROMETRY_IONIZATION_STUDIES_AND_METHOD_DEVELOPMENT_FOR_THE_ANALYSIS_OF_COMPLEX_MIXTURES_OF_SATURATED_HYDROCARBONS_AND_CRUDE_OIL/12127431 <p>Crude oil is a mixture of hydrocarbons so complex that it is predicted to comprise as many compounds as there are genes in the human genome. Developing methods to not only recover crude oil from the ground but also to convert crude oil into desirable products is challenging due to its complex nature. Thus, the petroleum industry relies heavily on analytical techniques to characterize the oil in reservoirs prior to enhanced oil recovery efforts and to evaluate the chemical compositions of their crude oil based products. Mass spectrometry (MS) is the only analytical technique that has the potential to provide elemental composition as well as structural information for the individual compounds that comprise petroleum samples. The continuous development of ionization techniques and mass analyzers, and other instrumentation advances, have primed mass spectrometry as the go-to analytical technique for providing solutions to problems faced by the petroleum industry. The research discussed in this dissertation can be divided into three parts: developing novel mass spectrometry-based methods to characterize mixtures of saturated hydrocarbons in petroleum products (Chapters 3 and 5), exploring the cause of fragmentation of saturated hydrocarbons upon atmospheric pressure chemical ionization to improve the analysis of samples containing these compounds (Chapter 4), and developing a better understanding of the chemical composition of crude oil that tightly binds to reservoir surfaces to improve chemically enhanced oil recovery (Chapter 6). </p> 2020-04-17 02:29:22 Saturated hydrocarbons Mass Spectrometry Atmospheric Pressure Chemical Ionization Ion-Molecule Reactions GCxGC-TOFMS Linear quadrupole ion trap Crude Oil Base Oils Enhanced oil recovery Analytical Chemistry not elsewhere classified