%0 Thesis %A Biechele-Speziale, John A %D 2019 %T THE EFFECT OF WATER MOLECULES ON HEADGROUP ORIENTATION AND SELF-ASSEMBLY PROPERTIES OF NON-COVALENTLY TEMPLATED PHOSPHOLIPIDS. %U https://hammer.purdue.edu/articles/thesis/THE_EFFECT_OF_WATER_MOLECULES_ON_HEADGROUP_ORIENTATION_AND_SELF-ASSEMBLY_PROPERTIES_OF_NON-COVALENTLY_TEMPLATED_PHOSPHOLIPIDS_/8011553 %R 10.25394/PGS.8011553.v1 %2 https://hammer.purdue.edu/ndownloader/files/14929571 %K soft materials %K crystallization %K renewable energy %K simulation %K Predictive Modelling %K Computational Chemistry %K Biologically Active Molecules %K Theoretical and Computational Chemistry not elsewhere classified %X Simulations of various hydration levels of lamellar phase 23:2 Diyne PC were performed, and subsequent, serial docking simulations of a tyrosine monomer were replicated for each system in both hydrated and dehydrated states.
The goal was to evaluate how hydration impacts self-assembly and crystallization on the surface, and
whether or not these simulations, when run sequentially, could determine the answer. It was discovered that hydrated and dehydrated surfaces behave differently, and that
headgroup orientation plays a role in the initial docking and self-assembly process of the tyrosine monomer. It was also determined that potential energy as a sole metric
for determining whether or not a specific conformation of intermolecular orientation is not entirely useful, and docking scores are likely useful metrics in discriminating between conformations with identical potential energy values.
%I Purdue University Graduate School