10.25394/PGS.8982722.v1 Ahmedullah Aziz Ahmedullah Aziz Device-Circuit Co-Design Employing Phase Transition Materials for Low Power Electronics Purdue University Graduate School 2019 Magnetic Tunnel Junction Correlated Materials Insulator-Metal Transition Hyper-FET Phase-FET Sense Amplifier Non-Volatile Memory Ring Oscillator Steep Switching Rectifier Threshold Switching Spintronics MRAM Cross-Point Array X-Point Selector Memory Arrays Boltzmann limit Hysteresis STT MRAM Spin Transfer Torque Monte Carlo Simulation Variation Analysis Emerging Devices Post-CMOS VLSI Circuits and Systems Microelectronics and Integrated Circuits Nanoelectronics Nanomaterials 2019-08-12 18:47:48 Thesis https://hammer.purdue.edu/articles/thesis/Device-Circuit_Co-Design_Employing_Phase_Transition_Materials_for_Low_Power_Electronics/8982722 <div> <div> <p>Phase transition materials (PTM) have garnered immense interest in concurrent post-CMOS electronics, due to their unique properties such as - electrically driven abrupt resistance switching, hysteresis, and high selectivity. The phase transitions can be attributed to diverse material-specific phenomena, including- correlated electrons, filamentary ion diffusion, and dimerization. In this research, we explore the application space for these materials through extensive device-circuit co-design and propose new ideas harnessing their unique electrical properties. The abrupt transitions and high selectivity of PTMs enable steep (< 60 mV/decade) switching characteristics in Hyper-FET, a promising post-CMOS transistor. We explore device-circuit co-design methodology for Hyper-FET and identify the criterion for material down-selection. We evaluate the achievable voltage swing, energy-delay trade-off, and noise response for this novel device. In addition to the application in low power logic device, PTMs can actively facilitate non-volatile memory design. We propose a PTM augmented Spin Transfer Torque (STT) MRAM that utilizes selective phase transitions to boost the sense margin and stability of stored data, simultaneously. We show that such selective transitions can also be used to improve other MRAM designs with separate read/write paths, avoiding the possibility of read-write conflicts. Further, we analyze the application of PTMs as selectors in cross-point memories. We establish a general simulation framework for cross-point memory array with PTM based <i>selector</i>. We explore the biasing constraints, develop detailed design methodology, and deduce figures of merit for PTM selectors. We also develop a computationally efficient compact model to estimate the leakage through the sneak paths in a cross-point array. Subsequently, we present a new sense amplifier design utilizing PTM, which offers built-in tunable reference with low power and area demand. Finally, we show that the hysteretic characteristics of unipolar PTMs can be utilized to achieve highly efficient rectification. We validate the idea by demonstrating significant design improvements in a <i>Cockcroft-Walton Multiplier, </i>implemented with TS based rectifiers. We emphasize the need to explore other PTMs with high endurance, thermal stability, and faster switching to enable many more innovative applications in the future.</p></div></div>