Purdue University Graduate School
Browse
Ameya Patil _MS Thesis Report.pdf (1.14 MB)

ANALYSIS OF PROCESS INDUCED SHAPE DEFORMATIONS AND RESIDUAL STRESSES IN COMPOSITE PARTS DURING CURE

Download (1.14 MB)
thesis
posted on 2019-06-11, 14:41 authored by Ameya Sanjay PatilAmeya Sanjay Patil
Process induced dimensional changes in composite parts has been the topic of interest for many researchers. The residual stresses that are induced in composite laminates during curing process while the laminate is in contact with the process tool often lead to dimensional variations such as spring-in of angles and warpage of flat panels. The traditional trial-and-error approach can work for simple geometries, but composite parts with complex shapes require more sophisticated models. When composite laminates are subjected to thermal stresses, such as the heating and cooling processes during curing, they can become distorted as the in-plane and the throughthickness
coffcients of thermal expansion are different, as well as chemical shrinkage of the resin, usually cause spring-in. Deformed components can cause problems during
assembly, which signi ficantly increases production costs and affects performance. This thesis focuses on predicting these shape deformations using software simulation of composite manufacturing and curing. Various factors such as resin shrinkage, degrees of cure, difference between through thickness coefficient of thermal expansion of the composite laminate are taken into the consideration. A cure kinetic model is presented which illustrates the matrix behavior during cure. The results obtained using the software then were compared with the experimental values of spring-in from the available literature. The accuracy of ACCS package was validated in this study. Analyzing the effects of various parameters of it was estimated that 3D part simulation is an effective and cost and time saving method to predict fi nal shape of the composite part.

History

Degree Type

  • Master of Science in Mechanical Engineering

Department

  • Mechanical Engineering

Campus location

  • Indianapolis

Advisor/Supervisor/Committee Chair

Dr. Hamid Dalir

Additional Committee Member 2

Dr. Hazim El-Mounayri

Additional Committee Member 3

Dr. Jing Zhang

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC