Purdue University Graduate School
Browse
McArthurPhDv1.pdf (15.37 MB)

Design of an Autonomous Unmanned Aerial Vehicle for Physical Interaction with the Environment

Download (15.37 MB)
thesis
posted on 2019-08-15, 12:48 authored by Daniel R McArthurDaniel R McArthur
Unmanned aerial vehicles (UAVs), when paired with an onboard camera, have proven to be useful tools in many applications, including aerial photography, precision agriculture, and search and rescue operations. Likewise, UAVs capable of physically interacting with the environment have shown great potential to help people perform dangerous, or time-consuming tasks more safely and efficiently than they could on their own. However, due to onboard computation and battery life limitations and complex flight dynamics, using UAVs to physically interact with the environment is still a developing area of research. Considering these limitations, the primary goals of this work are to (1) develop a new UAV platform for aerial manipulation, (2) develop modular hardware and software for the platform to enable specific tasks to be performed autonomously, and (3) develop a visual target tracking method to enable robust performance of autonomous aerial manipulation tasks in unstructured, real-world environments. To that end, the design of the Interacting-BoomCopter UAV (I-BC) is presented here as a new platform for aerial manipulation. With a simple tricopter frame, a single additional actuator for generating horizontal forces, and lightweight, modular end-effectors, the I-BC aims to balance efficiency and functionality in performing aerial manipulation tasks, and is able to perform various tasks such as mounting sensors in hard-to-reach places, and opening small doors or panels. An onboard camera, force and distance sensors, and a powerful single board computer (SBC) enable the I-BC to operate autonomously in unstructured environments, with potential applications in areas such as large-scale infrastructure inspection, industrial inspection and maintenance, and nuclear decontamination efforts.

History

Degree Type

  • Doctor of Philosophy

Department

  • Mechanical Engineering

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Dr. David J. Cappelleri

Additional Committee Member 2

Dr. George T. Chiu

Additional Committee Member 3

Dr. Xinyan Deng

Additional Committee Member 4

Dr. Richard M. Voyles