Development of Non-Amorphous Solid Dispersions for Poorly-Soluble Drugs Using a Novel Excipient and Hot Melt Extrusion

2020-01-16T19:47:54Z (GMT) by Hwee Jing Ong
Drug solubility is a persistent challenge in pharmaceutical product development. The objective of this research is to develop a formulation/processing strategy by means of a biodendrimeric solid dispersion (BDSD) platform, for increasing the solubility and dissolution rate of poorly water-soluble drugs. The BSDS platform combines a novel type of excipient, referred to as DLB, with a new application of the hot melt extrusion (HME) process.

Four model compounds – phenytoin (PHT), griseofulvin (GSF), ibuprofen (IBU), and loratadine (LOR) – were used to evaluate the solubilization effect of an octenylsuccinate-modified dendrimer-like biopolymer (OS-DLB). Shake-flask solubility measurements show that OS-DLB exerts significant solubilizing effect when present at less than 0.2% in water. The presence of hydrophobic C8 chains on OS-DLB creates the type of favorable nonpolar microenvironment necessary for producing a parallel liquid phase equilibrium responsible for the increase in the total amount of drug dissolved in aqueous media. The higher the hydrophobicity of the drug, the higher the observed solubilization effect. Isothermal titration calorimetry studies show that drug solubilization by OS-DLB occurs by means of entropy-driven interactions. These studies also show that the intermolecular interaction between IBU and OS-DLB in solution exhibits very small energy change upon mixing but a stronger effect on entropy. In comparison, the intermolecular interaction between the less hydrophobic GSF and OS-DLB have significant effects on both enthalpy and entropy. Consequently, in terms of solubilization enhancement, it was found that the interaction between IBU and OS-DLB is entropy-driven (more favorable), while in the case of GSF, the interacting molecules are arranged to maximize enthalpic interaction.

Based on the solubility studies, a formulation/processing approach for enhancing the dissolution rate of the model drugs was developed. The biopolymer serving as both carrier and solubilizing agent, was coprocessed with poloxamer, functioning as a processing aid, using hot melt extrusion (HME) as an enabling technology. The result is a non-amorphous solid dispersion, exhibiting high and long-lasting supersaturation upon dissolution. A 3-factor, 3-level Box-Behnken design was implemented to define the optimal design space for the formulation/extrusion process. The results obtained from multivariate data analysis (partial least squares and principal components analysis) and response surface modeling suggest that drug release performance of IBU BDSDs is strongly influenced by the processing variables, while maximum release of GSF from the BDSDs can be attained through selective combination of functional excipients.