Parami_Dissertation_Final_edited.pdf (9.89 MB)

Neuro-inspired computing enhanced by scalable algorithms and physics of emerging nanoscale resistive devices

Download (9.89 MB)
posted on 16.08.2019 by Parami Wijesinghe

Deep ‘Analog Artificial Neural Networks’ (AANNs) perform complex classification problems with high accuracy. However, they rely on humongous amount of power to perform the calculations, veiling the accuracy benefits. The biological brain on the other hand is significantly more powerful than such networks and consumes orders of magnitude less power, indicating some conceptual mismatch. Given that the biological neurons are locally connected, communicate using energy efficient trains of spikes, and the behavior is non-deterministic, incorporating these effects in Artificial Neural Networks (ANNs) may drive us few steps towards a more realistic neural networks.

Emerging devices can offer a plethora of benefits including power efficiency, faster operation, low area in a vast array of applications. For example, memristors and Magnetic Tunnel Junctions (MTJs) are suitable for high density, non-volatile Random Access Memories when compared with CMOS implementations. In this work, we analyze the possibility of harnessing the characteristics of such emerging devices, to achieve neuro-inspired solutions to intricate problems.

We propose how the inherent stochasticity of nano-scale resistive devices can be utilized to realize the functionality of spiking neurons and synapses that can be incorporated in deep stochastic Spiking Neural Networks (SNN) for image classification problems. While ANNs mainly dwell in the aforementioned classification problem solving domain, they can be adapted for a variety of other applications. One such neuro-inspired solution is the Cellular Neural Network (CNN) based Boolean satisfiability solver. Boolean satisfiability (k-SAT) is an NP-complete (k≥3) problem that constitute one of the hardest classes of constraint satisfaction problems. We provide a proof of concept hardware based analog k-SAT solver that is built using MTJs. The inherent physics of MTJs, enhanced by device level modifications, is harnessed here to emulate the intricate dynamics of an analog, CNN based, satisfiability (SAT) solver.

Furthermore, in the effort of reaching human level performance in terms of accuracy, increasing the complexity and size of ANNs is crucial. Efficient algorithms for evaluating neural network performance is of significant importance to improve the scalability of networks, in addition to designing hardware accelerators. We propose a scalable approach for evaluating Liquid State Machines: a bio-inspired computing model where the inputs are sparsely connected to a randomly interlinked reservoir (or liquid). It has been shown that biological neurons are more likely to be connected to other neurons in the close proximity, and tend to be disconnected as the neurons are spatially far apart. Inspired by this, we propose a group of locally connected neuron reservoirs, or an ensemble of liquids approach, for LSMs. We analyze how the segmentation of a single large liquid to create an ensemble of multiple smaller liquids affects the latency and accuracy of an LSM. In our analysis, we quantify the ability of the proposed ensemble approach to provide an improved representation of the input using the Separation Property (SP) and Approximation Property (AP). Our results illustrate that the ensemble approach enhances class discrimination (quantified as the ratio between the SP and AP), leading to improved accuracy in speech and image recognition tasks, when compared to a single large liquid. Furthermore, we obtain performance benefits in terms of improved inference time and reduced memory requirements, due to lower number of connections and the freedom to parallelize the liquid evaluation process.


Center for Brain Inspired Computing (C-BRIC)

National Science Foundation

Vannevar Bush Fellowship

Semiconductor Research Corporation

Intel Corporation

DoD Vannevar Bush Fellowship

U.S. Army Research Laboratory and the U.K. Ministry of Defense


Degree Type

Doctor of Philosophy


Electrical and Computer Engineering

Campus location

West Lafayette

Advisor/Supervisor/Committee Chair

Professor Kaushik Roy

Additional Committee Member 2

Professor Anand Raghunathan

Additional Committee Member 3

Professor Saeed Mohammadi

Additional Committee Member 4

Professor Vijay Raghunathan