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ABSTRACT 

E-commerce and retail companies are seeking ways to cut delivery time and cost by exploring 

opportunities to use drones for making last-mile deliveries. In recent years, drone routing and 

scheduling have become a highly active area of research. This research addresses the concept of a 

truck-drone combined delivery by allowing autonomous drones to fly from delivery trucks, make 

deliveries, and fly to delivery trucks nearby. The first part of the research considers the 

synchronized truck drone routing model by allowing multiple drones to fly from any truck, serve 

customers and immediately return to any available truck or depot in the system. The goal is to find 

the optimal routes of both trucks and drones which minimize the arrival time of both trucks and 

drones at the depot after completing the deliveries. The problem can be solved by the formulated 

Mixed Integer Programming (MIP) for the small-size problems and our proposed heuristic called 

Adaptive Insertion Heuristics (ADI) which is based on the insertion technique for the 

medium/large-size problems. The second part of the research extends the first studied problem by 

allowing drones to serve multiple customers before merging with trucks as well as considering the 

capacity requirement for both vehicles. The problem is mathematically formulated and two 

efficient heuristic algorithms are designed to solve the large-size problems: Drone Truck Route 

Construction (DTRC) and Large Neighborhood Search (LNS). In the third study, the goal is to 

study the potential benefits of combining different types of fleet vehicles to deliver packages to 

the customers. Three types of vehicles are considered in this study including large drones, 

traditional trucks and hybrid trucks. The problem can be optimally solved by a mathematical 

formulation on a small scale. Two efficient metaheuristics based on Variable Neighborhood Search 

(VNS) and Large Neighborhood Search (LNS) are proposed to solve for approximate solutions of 

the large-size problems. A case study and numerical analysis demonstrate the better delivery time 

of the proposed model when compared with the delivery time of other delivery models with a 

single fleet type.  
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CHAPTER 1. INTRODUCTION 

 Drone Delivery from a System Engineering Perspective 

1.1.1 The Rise of E-commerce  

E-commerce, or electronic commerce, is the buying or selling of goods and services over an 

electronic network, primarily the internet. E-commerce generates the transactions of the retail 

products (e.g., clothing/apparel, consumer electronics/technology, and beauty products) between 

businesses to businesses (B2B), businesses to consumers (B2C) and from consumers to consumers 

(C2C). These transactions are growing at a very significant rate which has led to reduced in-store 

sales, and the displacement of brick-and-mortar stores. In most cases, retailers use online and 

brick-and-mortar stores interchangeably, as they provide multiple options for customers to shop, 

compare and purchase (omnichannel) (Adams, 2017; Balcik, Beamon, & Smilowitz, 2008). 

 

It is expected that e-commerce will be growing at a significant rate all over the world with the 

prediction that the global e-commerce sales are likely to reach $4.5 trillion by 2021 from 1.3 trillion 

in 2014, registering a growth of 246.15 percent ("Global retail e-commerce market size 2014-

2021"). Business-to-business sales have represented a larger share of e-commerce but that share is 

expected to decline by 50% — $1.1 trillion — by 2020 as retail business-to-consumer e-commerce 

grows. Figure 1.1 represents the prediction of the global e-commerce sales in U.S. dollars (Lee, 

Chen, Gillai, & Rammohan, 2016).  

 

Because of the increase in the demand for products at e-commerce retailers, logistics and shipping 

companies have transformed the ways products are delivered to the customers in this highly 

competitive market. Back then, customers expect to receive a package within 4-6 weeks after 

purchase, now they expect faster and more flexible delivery options which could come within a 

week, within one day and even within a same-day delivery. The delivery networks are becoming 

more localized, shifting the supply chain strategy to focus on regional fulfillment. The goal of this 

localized approach is to shorten the last mile and remove barriers that stand in the way of making 

fast deliveries that can be customized to specific times and locations (Hewitt, 2019). 
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Figure 1.1 Worldwide retail e-commerce sales from year 2014-2021 (Lee, Chen, Gillai, & 

Rammohan, 2016) 

Last-mile delivery is typically the most difficult part of a supply chain and is estimated to account 

for up to 50% of the total distribution cost. Delivering products in the last-mile stage of the supply 

chain has been a challenge for e-commerce companies since its inception. To operate the shipping 

cost-effectively, the logistics carriers have to rely on the two fundamental economics principles: 

1) route density — how many packages can be delivered on a given delivery run; and, 2) 

concentrated package volume — how many packages or items are delivered at each stop. Carriers 

gain more efficiencies if they can deliver a large number of deliveries per stop and/or per mile, 

package (Hewitt, 2019). 

 

Major three national carriers (UPS, FedEx, and the USPS) have recently expanded their hubs, 

delivery networks, extensive fleets to account for 85% of the last-mile market in the U.S. Most 

deliveries are done by a larger fleet of USPS, UPS and FedEx light and medium trucks with 

expanded hours of operation to homes and businesses as well as to neighborhood mailbox facilities.  

The traditional way of making last-mile deliveries requires a delivery person to pick up the 

packages at a consolidation point and delivers them directly to the recipients. While many of these 

strategies have increased the productivity of carriers, it comes with a high expense in terms of the 
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labor cost and causes a shortage of truck drivers for all of these deliveries. This has led many tech 

and e-commerce companies to explore various technologies that will change the way we deliver 

to meet the needs of the last mile in the future including the use of autonomous vehicles, robots, 

and even drones.  ("E-Commerce and Emerging Logistics Technology Research Report", 2009). 

1.1.2 The Future of Last-Mile Delivery 

As mentioned in the previous section, technological innovations in the last-mile delivery of 

products can determine the profitability of companies, both traditional players and new entrants in 

this growing market. There has been some recent attention on the use of drones, small robots 

(droids), bike couriers and autonomous ground vehicles (AGVs) with lockers to deliver items to 

households to optimize the efficiency of the last-mile delivery. (Patil, 2016; Rao et al., 2016). 

 

Autonomous ground vehicles (AGVs) with lockers: AGVs deliver packages without human 

intervention and customers will be notified for the exact arrival time of the vehicle. The customers 

are directed to pick up items from the specified locker mounted to the vehicle. AGVs will likely 

to be used for same-day delivery which requires a fast fulfillment process. The vehicle is expected 

to save at least 40 percent or more in the cost of operation and can operate 24 hours/day. It can 

offer overnight pickup and Sunday delivery which offers higher flexibility for the customers to 

pick up their packages than the current delivery (Joerss et al., 2016). 

 

Small robot (droids): A droid is a small autonomous vehicle that can deliver packages to the 

doorstep by traveling only on sidewalks and crosswalks at the speed lower than 10 km/h. They 

must be supervised by humans at the remote distance. They can carry loads as heavy as 50 pounds 

for as far as 30 miles (Hawkins, 2019). 

 

Bike couriers: Bike couriers are used for instant delivery in urban areas. They are often seen in 

point-to-point delivery, especially for B2B documents and prepared food. It is considered as the 

most-cost competitive choice for last-mile delivery. If droids are expensive, bike couriers are likely 

to be the best instant delivery from point to point (Joerss et al., 2016). 
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Drones: Drones are autonomous aircraft, e.g., copters or vertically starting planes that can carry 

small packages (up to 15 kg) to their destination using the most direct route at a relatively high 

average speed (50-70 mph). They are used in the specific environments, in rural areas, for the 

specified time window or the same day delivery. At the cost of $1 per shipment, drones are 

expected to be used by e-commerce companies to expedite B2C delivery which leads to higher 

revenue and improves customer satisfaction (Desjardins, 2018).  

 

Nevertheless, a traditional B2B delivery still uses a large truck fleet due to a large volume per 

delivery in one stop. This factor plays an important role in delivery cost as each delivery incurs a 

huge setup cost and handling cost per stop. Besides, large business customers often require value-

adding services, e.g. sorting items into small storerooms which AGVs or drones cannot handle. 

Thus, shipping couriers will likely to use traditional trucks for large volume B2B shipments with 

value-adding services and use drones or droids for small package deliveries for B2C (Joerss et al., 

2016). Figure 1.2 shows the different types of last-mile delivery in the future. 

 
Figure 1.2 Different options for the futuristic last-mile delivery (Joerss et al., 2016) 
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1.1.3 Drone for Last-Mile Delivery 

Given the current growing size of the parcel delivery market, customers are likely to buy products 

from a company with fast, flexible, and economical parcel delivery. More than three-quarters of 

online customers would like their orders shipped and delivered the same day (Lindner, Enright, & 

Bloomberg News, 2017). To fulfill this demand, consumer research has shown that online 

shoppers are willing to have their purchases delivered by a drone if the drones can deliver faster, 

more flexible, and cheaper than other vehicles. Major corporations are taking notice and finding 

new and innovative ways to incorporate drone delivery into their business models. Therefore, the 

use of delivery drones is on the horizon and their benefits will completely revamp the e-commerce 

industry (“Drone Delivery: The Future of e-commerce”, 2019).  

 

In the past, drones were mostly used for military, surveillance purposes, and a hobbyist’s tool for 

capturing images of foliage, sporting events, and cityscapes. Now, drones are used in commercial 

applications and just recently grab the market’s attention on its delivery application. In the 

humanitarian sector, drones can be used to transport medicines and relief supplies to affected areas 

where the road and rail network are severely damaged by the natural disasters. These drones will 

alleviate congestion on our daily commutes, promote instantaneous shopping and deliver life-

saving medical supplies all over the world (Cohn et al., 2016). 

 

ARK Invest illustrates that using drones for last-mile delivery could boost e-commerce’s share of 

retail sales from 13% today to 75% by 2030 as shown in Figure 1.3 (Keeney, 2019). Without 

drones, e-commerce could account for just over 50% of retail. The company predicts that the 

revenue from parcel drone delivery could total $400-500 billion by 2030 at a low cost of $1 per 

shipment. At the moment, parcel delivery revenues are roughly $280 billion today, at roughly $4 

per package. As drone deliveries decrease shipping costs, the e-commerce companies can deliver 

more volumes and generate higher sales due to consumer's preference for quick, inexpensive 

shipping (Keeney, 2019).  
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Figure 1.3 Global e-commerce sales with and without drone (Keeney, 2019). 

 

Drone delivery offers potential benefits that revolutionize the last-mile delivery as follows: 

 

1. Speed: Drones can travel “as the crow flies” at the high speed without being stuck in the traffic. 

Unlike delivery trucks and bike couriers, they can fly in a straight line to their destination.  

 

2. Accessibility:  Drones are a great fit for delivering products to the remote area where roads or 

infrastructure get damaged. They can fly across the water, railroad or even mountains. 

 

3. Cost: Drones are relatively cheaper than other delivery vehicles. They can significantly reduce 

the human labor costs for delivering packages. 

 

4. Tracking: Drones allow real-time communication and tracking which helps the operators and 

customers to track where the packages are.  

 

5. Environmental friendliness: Drones use electric batteries as a power source that does not 

generate massive greenhouse gas like delivery trucks do. They have minimal environmental 

impact compared with traditional deliveries by trucks or trains.  
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Amazon, the world’s largest e-commerce company, initially brought the concept of drone delivery 

into public attention in 2013 by announcing the idea of using drones to fulfill the orders by offering 

the drone delivery services which could deliver customers' orders within 30 minutes through its 

Prime Air delivery program (Meola, 2017). Following the announcement, many technology 

companies such as Google, Alibaba and JD as well as traditional logistics providers such as UPS, 

DHL and FedEx have been experimenting and adopting their drone delivery services, intending to 

reduce costs and provide cheaper, yet faster and more efficient service (Ungerleider, 2016). 

Companies across the world are focusing on drone delivery, On July 2015, a drone delivery 

company called Flirtey successfully completed the first fully autonomous delivery with a package 

that included bottled water, emergency food and a first aid kit (Nichols, 2016). Similarly, DHL 

also has launched a drone delivery service to ship items, such as medication and other urgently 

needed goods to people located on an island in Germany’s North Sea where most traditional 

delivery options are not available (Hern, 2014). Drones have also been successfully used to deliver 

food like pizza by Flirtey and Chipotle by Alphabet X, Google (Volkman, 2018). While Amazon 

made the first public demo of its drone delivery system in the US in March 2017, JD.com, a giant 

e-commerce company in China, has been aggressively developing its drone delivery service 

(Vincent, 2017). The company currently has at least seven different types of delivery drones in 

testing or operation across four provinces in China (Beijing, Sichuan, Shaanxi, and Jiangsu). The 

drones are capable of delivering packages weighing between 5 and 30 kg (11 to 66 lbs) while 

flying up to 100 km/hr (62 mph). (see Figure 1.4 for examples of delivery drones). 

  

 

     

  

 

             a.)                     b.)   

Figure 1.4 Examples of delivery drones from JD and Amazon. a.) Different types of JD 
drones (Vincent, 2017), b.) Amazon’s Prime Air drone (Meola, 2017). 
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 Regulation 

Although using drones for package delivery has recently been tested by many companies in the 

U.S., the government still prohibits the actual use of drones in the commercial purpose due to its 

emerging regulation. Modern regulation of commercial drone deliveries is still evolving, and 

companies cannot experiment with their drone deliveries in the U.S. unless permitted by the FAA 

(Dorr & Duquette, 2016) .The FAA's regulatory compliance requires the drone operators to 

conduct the flight within a line-of-sight, keep the drones under 400 feet, register each drone, and 

not operate the drones within the restricted population-based location or near the airport (Romm, 

2017). Due to this, e-commerce and logistics companies have been testing their drone delivery 

programs in Canada, the U.K., and the Netherlands, which have fewer restrictions than in the U.S. 

(Bonnington, 2017). The drone itself also has some restrictions on payload and the design to 

comply e.g. maintaining the payload less than 55 pounds. On the other hand, the Civil Aviation 

Administration of China (CAAC) permitted JD.com and SF Holding Co., the country's biggest 

express-delivery company, to start sending packages by drone in certain rural areas. Governments 

in other countries including U.S. are also developing the regulation on commercial drones to 

address the low-level air-traffic system to prevent drones from hitting each other or traditional 

aircraft ("China Is on the Fast Track to Drone Deliveries", 2018). 

 

Regarding air transportation management, the FAA has recently partnered with NASA to form an 

Unmanned Aircraft Systems (UAS) traffic management platform, essentially an air traffic control 

system for drones. To manage safety, drone manufacturers and software providers are quickly 

developing technologies like geo-fencing and collision avoidance to ensure safety when drones fly 

autonomously. The increase in drone technology development is pushing governments to create 

new regulations that balance safety and innovation (Meola, 2016).  In the most recent update, the 

White House announced the launch of a three-year pilot program to create “innovation zones” to 

evaluate commercial drone operations flying at night, flying over people, and flying outside a 

pilot’s line of sight (McFarland, 201). This program allows logistics companies to test their drone 

delivery service without any restrictions. With support from different public sectors to finalize the 

regulation and air transportation platform, commercial drone delivery in the U.S. should be ready 

to be implemented soon.  
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 Research Motivation 

Compared to traditional delivery modes, drones seem to be a potential fit for the last-mile delivery 

due to their high travel speed and ability to access areas where no other mode of transportation is 

available or in areas of high delivery density to augment the capability of the driver. Most drones 

developed by Google, Amazon, DHL, and JD fly at a speed of 30–62 miles (48-100 kilometers) 

per hour with a flight range of 10–62 miles (16-100 kilometers) (Heath, 2015). Since drones are 

not restricted by road infrastructure, they can deliver packages faster than a truck from the same 

location. While trucks must travel on streets and avenues using rectilinear distance, drones can 

travel through areas like mountains, jungles, and rivers with relative ease, and take shorter routes 

(Bamburry, 2015; Berg, 1991; Goel & Kok, 2012). However, drones’ disadvantages are mainly 

their small shipping capacity and their battery run time; e.g., the Amazon Prime drone can carry 

approximately 5 pounds and their batteries must be swapped or recharged after 30 minutes (Brar 

et al., 2015). Please note that the recent development in drones makes it possible for drones to 

carry the package weighing between 5 to 30 kg (11 to 66 lbs) while flying up to 100 km/hr (62 

mph) (R., 2017). 

To utilize the truck's capacity and drone's delivery speed, Murray and Chu (2015) proposed the 

new routing model in which a truck and a drone works together as a synchronized working unit to 

make a delivery. A single drone is attached to a truck where the drone is launched from the truck, 

serves the customer, and returns to the truck at another location, where the drone gets its battery 

serviced at the truck. The authors name the model "Flying Side Kick Traveling Salesman Problem" 

(FSTSP), which aims to minimize the total time of the tour by combing truck and drone for making 

deliveries. This problem is one of the first representative problems and integrates drones into the 

classical Traveling Salesman Problem (TSP). Figure 1.5 represents the feasible tour constructed 

by truck alone and a synchronized truck and drone vehicle. 
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Figure 1.5 The solution tour of truck alone delivery and synchronized truck-drone delivery 
 

Although the model shows promise to reduce costs and delivery times compared to the traditional 

delivery, it only covers the routing operation which includes simply one truck and one drone in 

the setting. Inspired by Murray and Chu’s proposed model, we want to examine this problem more 

in detail to further develop the variations of synchronized truck-drone routing models. These 

models could potentially include multiple fleets of both vehicles with capacities and other side 

constraints which represent a more realistic scenario of the distribution. This study aims to explore 

ways to improve the cost and time efficiency of truck-drone hybrid delivery systems. We believe 

that the application of the proposed models will increase the efficiency and effectiveness of using 

truck and drone combing operation in last-mile delivery operations.  
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 Organization of the Dissertation 

The remainder of the dissertation is organized as follows. Chapter 2 reviews related literature in 

(1) Drone Routing Problem; (2) Multiple Traveling Salesman Problem; (3) Vehicle Routing 

Problem, and (4) Two Echelon Vehicle Routing Problem. Chapter 3 presents the Multiple 

Traveling Salesman Problem with Drones with mathematical formulation, Adaptive Insertion 

Heuristics and experimental results. Chapter 4 presents the Two Echelon Vehicle Routing Problem 

with Drones followed by the mathematical formulation; two heuristics approaches: Drone Truck 

Route Construction and Large Neighborhood Search; and computational results. The Integrated 

Vehicle Routing Problem with Drones is presented in Chapter 5 with the mathematical formulation 

and computational results on benchmark problems and a case study. Lastly, Chapter 6 concludes 

the dissertation and presents directions for future research.  
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW  

 Drone Routing Problem 

This section reviews related literature on the well-studied drone routing problem. Due to the 

rapidly growing popularity, many works related to the drone routing optimization problems are 

found in the literature. This section presents the most relevant papers in this area, which can be 

categorized into two variants of the classical routing models:  the Traveling Salesman Problem 

(TSP), in which only one truck is employed, and the Vehicle Routing Problem (VRP), in which 

multiple trucks are employed. A summary of the papers is given in Table 1.1. 

2.1.1 Drone Routing as an Extension of TSP 

We are aware of many related works in drone routing problems. In 2015, Murray and Chu (2015) 

introduced a new type of TSP problem called the "Flying Sidekick Traveling Salesman Problem" 

(FSTSP). The authors proposed the idea of having a drone attached to the top of a truck that can 

make a delivery while the truck is making another delivery simultaneously. Once the drone finishes 

making a delivery, it needs to fly back to the truck at the current delivery location or along its route 

to the next delivery location. FSTSP considers only one truck and one drone. The model is inspired 

by the Vehicle Routing Problem (VRP) with synchronization constraints (Drexl, 2012). The same 

authors also proposed another model called the “Parallel Drone Scheduling Traveling Salesman 

Problem” (PDSTSP) in which trucks and drones work independently to serve all customers. 

  

Besides FSTSP, there are well studied drone-truck routing problems in the past literature with 

similar features but can be solved by different efficient approaches. Agatz et al. (2018) studied a 

similar problem called the “Traveling Salesman Problem with Drone” (TSP-D), in which a truck 

and a drone are making deliveries in parallel. The authors presented the new MIP model and 

provided efficient heuristics based on local search and dynamic programming. Bouman et al. (2018) 

recently developed an exact solution for the TSP-D based on dynamic programming. Their 

approach can successfully solve larger problems than with the mathematical programming 

approaches by Agatz et al (2018). The authors highlighted that their solutions can be improved by 

adding the additional constraint that restricts the number of drone sorties. Ponza (2015) examined 
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the FSTSP in detail and applied the simulated annealing technique to search for good solutions. 

Ha et al. (2018) proposed the min-cost TSP-D with the objective to minimize the total 

transportation cost. This work included the model and the two algorithms: TSP-LS based on local 

search and a Greedy Randomized Adaptive Search Procedure (GRASP) to solve a new TSP-D 

problem. Yurek and Ozmutlu (2018) provided an iterative optimization algorithm for the TSP-D 

based on the decomposition of the problem into two components: (1) finding a truck route and (2) 

finding the optimal drone routes within the truck route by solving a Mixed-Integer Linear 

Programming. Their approaches were tested and showed an improvement from the results from 

Murray and Chu (2015), and Agatz et al. (2018). Marinelli et al. (2017) extended the TSP-D by 

allowing a drone to be launched and merge with a truck at any location along a route arc (en-route). 

The authors proposed a novel heuristic based on a greedy randomized adaptive search procedure 

(GRASP) to solve benchmark instances. Jeong et al. (2019) modified the FSTSP to consider the 

effect of the payload on the UAV energy consumption and restricted flying areas.  

In a similar theme, Ferrandez et al. (2016) proposed an optimization model of a truck-drone system 

in tandem delivery networks by using the K-means algorithms to find the most efficient launch 

locations as well as using a genetic algorithm to assign the truck route between those launch 

locations. Mathew et al. (2015) proposed a new drone and truck problem called the 

“Heterogeneous Delivery Problem” (HDP), which shares similar features with TSP-D and FSTSP. 

The goal is to seek an optimal delivery route in an urban location with the objective to minimize 

the total cost of deliveries, which consists of the cost of truck travels, the cost of drone travels, and 

the cost of simultaneous trucks and drones travels. The authors obtained solutions by converting 

HDP to "Generalized Traveling Salesman Problem" (GTSP). They also proposed another model 

"Multiple Warehouse Delivery Problem” (MWDP), a variant to the HDP which drones serve 

customers from multiple warehouses. Kim and Moon (2019) developed the “TSP with a drone 

station” (TSP-DS), which has similar features to the PDSTSP but includes a drone station as the 

facility where drones and charging devices are stored. Tu et al. (2018) proposed the new problem 

as an extension of the TSP-D problem in which a truck travels with multiple drones called “TSP-

mD.” 
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Moshref-Javadi and Lee (2017) proposed the Traveling Repairman Problem with Drones (TRPD) 

with two objectives: 1.) to minimize the sum of latencies at customers and 2.) to minimize the 

largest latency (the waiting time of the last visited customer). At each stop point, the trucks must 

wait for drones after they are launched to make deliveries. The Mixed-Integer Programming 

formulation was presented together with a worst-case analysis of the problem. Kitjacharoenchai et 

al. (2019) proposed the "multiple Traveling Salesman Problem with Drones" (mTSPD), which has 

the same operation as FSTSP but utilizes multiple trucks and drones and allows a drone to be 

retrieved by any truck that is nearby and not necessarily the same truck that it is launched from. 

Murray and Raj (2019) introduced the "Multiple Flying Sidekicks Traveling Salesman Problem" 

(mFSTSP), which is an extension of their previous work (FSTSP) with the consideration of an 

arbitrary number of heterogeneous UAVs that may be deployed from the depot or the delivery 

truck. The authors provided the Mixed Integer Linear Programming (MILP) formulation along 

with the three-phased heuristic solution approach. 

2.1.2 Drone Routing as an Extension of VRP 

In a recent work, Campbell et al. (2017) proposed continuous approximation (CA) models to 

obtain the optimal number of truck and drone deliveries per route, the optimal number of drones 

per truck and the total cost of operation in the hybrid truck-drone delivery problem. Similarly, 

Carlsson and Song (2018) implemented a CA technique to determine the best set of parameters 

that results in the minimum completion of all truck-drone deliveries in the Euclidean plane. The 

proposed method was tested on the generated instances (with up to 500 vertices) and practical data 

(with up to 100 vertices) to support their hypothesis. In this problem, the customers are located 

within the drone’ flight range near the depot. Drones serve customers close to the depot while 

trucks serve the rest of the customers that might be located far away from the depot. Trucks and 

drones work independently to serve all customers.  

 

Dorling et al. (2017) in another perspective, proposed the VRP based models: One on the total 

delivery costs subject to a delivery time limit and another on the overall delivery time subject to a 

budget constraint. The author also provided the mathematical model for a cost function that 

considers energy consumption and drone reuse. Wang et al. (2016) provided worst-case analyses 

for the “Vehicle Routing Problem with Drones” (VRPD) problem by studying how the two 
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parameters—the number of drones per truck and the speed of the drones—can affect the maximum 

savings from using drones. Poikonen et al. (2017) considered the same work by finding upper 

bounds on the amount of time saved from drone operations with an integration of the drone’s 

battery life, cost metrics, and fixed cost of deploying drones. The same authors further continued 

their work of VRPD by expanding their previous results to fit with the wide variety of circumstance 

and establish the bounds that relate to the Vehicle Routing Problem (VRP) and the “min-max Close 

Enough Traveling Salesman Problem” (CETSP) (Poikonen, Wang, & Golden, 2017). Schermer et 

al. (2018) formulated a Mixed-Integer Linear Program for VRPD, which is considered as a variant 

of VRP. The MILP can be solved via any commercial solver in the small-size problem. The authors 

proposed an algorithm based on the well-known Variable Neighborhood Search (VNS) approach.   

 

Pugliese and Guerriero (2017) introduced the “Vehicle Routing Problem with Drones and Time 

Windows” (VRPDTW). The authors provided a mathematical model for the VRPDTW which can 

be used on the commercial solver for 5-10 nodes problem size. Ulmer and Thomas (2017) proposed 

the “Same-day Delivery Routing Problems with Heterogeneous Fleets” (SDDPHF) and modeled 

it as a Markov decision process. The model is considered as a relaxed version of the PDSTSP of 

Murray and Chu (2015) in which all customers are known in advance. Cheng et al. (2018) proposed 

a “Multi-Trip Drone Routing Problem” (MTDRP) in the drone-only system in which the drone 

can visit multiple customers per trip. The authors considered the influence of payload and distance 

on flight duration. They provided two formulations and the exact algorithms for the model. 

Dayarian et al. (2020) presented a “Vehicle Routing Problem with Drone Resupply” (VRPDR) in 

which a fleet of drones and a fleet of vehicles collaboratively perform home deliveries of online 

orders from a fulfillment center. Two heuristic approaches were developed for the special case in 

which the system consists of a single drone and a single delivery vehicle. Ham (2018) extended 

the PDSTSP by considering two different types of drone tasks: drop and pickup. A constraint 

programming method was proposed for different numbers of trucks, drones and depots. Hong et 

al. (2017) developed a heuristic model to obtain the optimal location of drone recharging stations 

by connecting the stations and delivery locations based on a continuous space shortest path.  
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Luo et al. (2017) proposed a two-echelon cooperated routing problem for the ground vehicle (GV) 

and its carried unmanned aerial vehicle (UAV) (2E-GU-RP). The problem is very similar to VRPD 

proposed by Schermer et al. (2018) but allows drones to make multiple deliveries in one trip. Karak 

and Abdelghany (2019) presented the “Hybrid Vehicle-Drone Routing Problem” (HVDRP) for 

pick-up and delivery services in which multiple drones can be dispatched from a mothership to 

perform dozens of pick-ups and deliveries simultaneously. Wang and Sheu (2019) presented the 

“Vehicle Routing Problem with Drones” (VRPD) with a distinctive feature that allows drones to 

make multiple deliveries per trip and return to any available truck in the fleet. The authors proposed 

a Mixed-Integer Programming model and developed a branch-and-price algorithm to solve VRPD 

for the exact solution. Poikonen and Golden (2020) recently developed the “k-Multi-visit Drone 

Routing Problem” (k-MVDRP), which considers a tandem between a truck and k drones allowing 

a drone to deliver one or more packages to customers. Lastly, Kitjacharoenchai et al. (2020) 

proposed a "Two echelon vehicle routing problem with drones in last-mile delivery" that addresses 

two levels (echelons) of delivery: primary truck routing from the main depot to serve assigned 

customers and secondary drone routing from the truck to serve other sets of customers.  
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Table 1.1 Summary of papers on drone routing problems 

 

 

Truck-
Drone 

Synchroniz

# Truck
# 

Drone Truck Drone
# Multiple 
deliveries 

per trip

Return 
to 

different 

FSTSP Murray and 
Chu (2015)

X Single Single - - - - -

TSP-D Agatz et al. 
(2018)

X Single Single - - - - -

mFSTSP
Murrary and 
Raj (2019)

X Single Multiple - - - - X

TSP-mD Tu et al. (2018) X Single Multiple - - - - -

Min-Cost 
TSPD 

Ha et al. (2018) X Single Single - - - - -

HDP Mathew and 
Smith (2015)

X Single Single - - - - -

TSP-D 
/FSTSP

Campbell et al. 
(2017)

X Single Multiple - X - - -

TSP-D Ferrandez et 
al. (2016)

X Single Multiple - - - - -

MC-DDP Dorling et al 
(2017)

- N/A Multiple - X X - -

TRPD Moshref-Javadi 
and Lee (2017)

X Single Multiple - - - - -

TSP-DS Kim and Moon 
(2019)

X Single Multiple - - - - -

2E-GU-
RP

Luo (2017) X Single Single - - X - -

VDRPTW
Pugliese and 

Guerriero 
(2017)

X Multiple Multiple - - - - -

mTSPD* Kitjacharoench
ai et al (2019)

X Multiple Multiple - - - X -

SDDPHF Ulmer and 
Thomas (2017)

- Multiple Multiple - - - - -

VRPDR Dayarian et al. 
(2017)

X Single Single - X X - -

MTDRP Cheng et al. 
(2018)

- N/A Multiple - X X - -

VRPD Schermer et al. 
(2018)

X Multiple Multiple - - - - -

VRPD
Wang et al. 

(2017), 
Poikonen et al. 

X Multiple Multiple X - - - -

PDSTSP Ham (2018) - Multiple Multiple - - X - -

2EVRPD*
*

Kitjaharoenchai 
et al (2020)

X Multiple Multiple X X X - -

HVDRP
Karak and 

Abdelghany 
(2019)

X Multiple Multiple - X X X -

VRPD
Wang and 

Sheu (2019)
X Multiple Multiple X X X X -

k-MVDRP
Poikonen and 
Golden (2020) 

X Single Multiple - - X - -

I-VRPD*** Kitjaharoenchai 
et al  (Working)

X Multiple Multiple X X X - X

Model Reference

Routing characteristics

Vehicle Capacity Drone trip Combining 
different/hete

rogenrous 
vehicle fleets
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 Multiple Traveling Salesman Problem 

In this section, we provide the background on the multiple Traveling Salesman Problem (mTSP) 

which is closely related to our multiple Traveling Salesman Problem with drones (mTSPD) in 

Chapter 3. The mTSP is a generalization of the well-known TSP. The Travelling Salesman 

Problem (TSP) aims to determine a set of routes for a salesman TSP to visit n cities given that a 

salesman must visit each and every city exactly once and finally comes to the initial position with 

the objective to minimize the total cost of visiting all nodes (Dantzig et al. ,1954). In mTSP, routes 

are determined for m salesmen instead of one. Since the TSP is a special case of the mTSP, all the 

formulations and algorithms developed in the literature for the TSP are valid for the mTSP and 

vice versa. The mTSP is considered as an NP-Hard like TSP and VRP and requires an efficient 

heuristic approach to obtain the solutions once the problem size gets big. Several modern heuristics 

have been proposed to solve the mTSP including but not limited to an artificial neural network 

(NN), genetic algorithms (GA) and simulated annealing (SA) (Bektas, 2006). 

 

The mTSP can be considered as a relaxation of the famous Vehicle Routing Problem with the 

capacity constraints and demand associated with each customer removed. Because of this, all the 

formulations and algorithms proposed for the VRP are also valid and applicable to the mTSP, by 

assigning sufficiently large capacities to the salesmen (vehicles) (Bektas,2006). The mTSP can be 

used in a various planning/scheduling applications, ranging from machine scheduling of prints to 

routing in transportation. Figure 2.1 represents the illustration of TSP, mTSP and VRP solution. 

 Vehicle Routing Problem 

The Vehicle Routing Problem (VRP) is one of the most well-known hard combinatorial problems 

which aims to design an optimal route for a fleet of vehicles to service a set of customers, subject 

to different sets of constraints. It considers the problem of routing vehicles from a central depot to 

serve customers with known demands with the goal to minimize the total travel cost. The VRP is 

a generalization of the multiple Traveling Salesman Problem (mTSP) that has many practical 

applications (Kuma, 2012). The vehicle routing problem (VRP) has been very extensively studied 

in the optimization literature. It was first introduced in 1959 by Dantzig and Ramser (1959) as a 

generalization of the TSP and mTSP. The VRP is an NP-hard problem that can be exactly solved 
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only for small-size instances. Recent research in VRP primarily focuses on the development of 

heuristic and metaheuristic approaches to obtain good quality solutions in the limited time for the 

real-world problems that are characterized by large vehicle fleets and the number of customers 

(Kuma, 2012; Laporte, 2009). The VRP can be categorized into 1.) deterministic version which 

corresponds to the case where the number of nodes, the number of vehicles, the demand of each 

node, and the travel time between each node, etc. are known in advance; and 2.) stochastic version 

which includes probability and uncertainty on the input data (Yalcindag et al., 2011). 

 

 

Figure 2.1 Illustration of the a.) Traveling Salesman Problem (TSP) and b.) Multiple Traveling 
Salesman Problem (mTSP) / Vehicle Route Problem (VRP) route solutions. 

 

The most common variants of the VRP include: 

1. Capacitated VRP (CVRP): The problem takes into account vehicle capacity and nodes are 

assigned with specific demands.  

2. VRP with Multiple Depots (MDVRP): The problem requires the assignment of customers to 

depots. A fleet of vehicles is based at each depot. Each vehicle departs from the specific depot, 

serves all customers assigned to that depot, and returns to the same depot. The VRP with a 

single depot is considered as CVRP which all vehicles start and end their routes at a single depot 

in a single depot VRP. 

Single route Route 1 

Route 2 
  Depot 

Customer node 
a.)  b.)  
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3. Open VRP (OVRP): The CVRP with the term that a vehicle does not have to return to the depot 

it departs from. 

4. VRP with Distance Constraints (DCVRP): The capacity constraint is replaced by a maximum 

length (time) constraint of the route. 

5. VRP with Backhauls (VRPB): The vehicle must first serve the set of customers with a certain 

amount of products from the depot. After completing the delivery phase for all customers in the 

first set, the vehicle must pick up the collection of a certain amount of products from the 

customers in the second set and return to the depot. 

6. VRP with Picks and Deliveries (VRPPD): A number of goods need to be transported from 

certain pickup locations to other delivery locations. 

7. VRP with Time Windows (VRPTW): Each customer must be served within a certain time 

window interval. 

There are many more variants of the VRP with a variety of constraints. For more detail on different 

versions of the VRP, please refer to the book of Toth and Vigo (2002). Figure 2.2 represents the 

between TSP, mTSP, VRP, and their variants (Yalcindag et al., 2011) 
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Figure 2.2 Relationship diagram between different routing problems (Yalcindag et al., 2011). 

 

The VRP can be solved by the exact algorithms which consist of  

 

1.) Branch-and-Bound  

2.) Dynamic Programming  

3.) Vehicle Flow Formulations  

4.) Commodity Flow Formulations  

5.) Set Partitioning Formulations (Laporte, 2009).  

 

Between 1964 and the early 1990s, many classical heuristics were developed to solve VRP which 

include 1.) Savings Algorithm, 2.) Set Partitioning Heuristics, 3.) Cluster-First, Route-Second 

Heuristics, and 4.) Improvement Heuristics (Toth and Vigo, 2002). In recent years, metaheuristics 

have primarily been used to obtain a sufficiently good solution. These well-known metaheuristics 

include 1.) Local Search such as tabu search, variable neighborhood search, and adaptive large 

neighborhood search; 2.) Population Search such as genetic algorithm (GA) and Ant colony 

optimization; and 3.) Neural networks (Toth and Vigo, 2002; Laporte, 2009). 
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 Two Echelon Vehicle Routing Problem 

Two Echelon Vehicle Routing Problem was introduced by Crainic et al. (2007) as a new problem 

class to solve the routing operation for the city logistics system. It is considered as a variant of the 

VRP, which considers two distribution levels: trucks operate on the first level between a central 

depot and selected intermediate depot, called satellites. The second level considers the distribution 

between the satellites and the end customers (Breunig et al, 2015). Cuda et al. (2015) defines the 

Two-Echelon Vehicle Routing Problems (2EVRP) as the problem which involves only tactical 

planning decisions, and the routing is present at both echelons. This is a two-stage routing problem 

that we solve for the routes from depot to satellites and develop n routings for n satellites. 

 

The objective of 2EVRP is to serve customers by minimizing the total travel cost and satisfying 

the capacity constraints of vehicles. There is a single depot and a fixed number of capacitated 

satellites. All customer demands are fixed and known in advance (Feliu et al., 2008). The 2EVRP 

is a generalization of the classical VRP and is considered as an NP-hard. It integrates two levels 

of VRP in which both levels have to be synchronized. The first level of the 2EVRP reduces to a 

CVRP with split deliveries whereas the structure of the second level is a multi-depot Vehicle 

Routing Problem (MDVRP) (Breunig et al., 2015). Figure 2.3 illustrates the solution of the 2EVRP 

routing problem.  

 

The 2EVRP has received a lot of attention in the recent decade as researchers are looking for the 

solution approaches to solve this problem effectively. Crainic et al. (2008) developed two 

heuristics for 2EVRP based on a two-phase approach where the first and the second echelon 

routing problems are separated and solved sequentially. The same authors later proposed a multi-

start heuristic to solve 2EVRP by first assigning customers to satellites heuristically and solving 

the VRP with the exact method (Crainic et al., 2011). Jepsen et al. (2012) presented a branch-and-

cut method to obtain an optimal solution for some of the 2EVRP instances.  Santos et al. (2014) 

presented a branch-and-cut algorithm and reported the optimal solutions up to 50 customers. The 

current state-of-the-art heuristic for the 2EVRP is the ALNS algorithm introduced by 

Hemmelmayr et al. (2012), which implements the destroy and repair operators iteratively. Lastly, 

Breunig et al. (2016) proposed a large neighborhood-based heuristic for 2EVRP which combines 

enumerative local searches with destroy-and-repair principles.   
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Figure 2.3 Illustration of Two Echelon Vehicle Routing Problem (2EVRP) route solution  
(Cuda et al., 2015). 
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CHAPTER 3. MULTIPLE TRAVELING SALESMAN PROBLEM 
WITH DRONES  

 Problem Description 

The multiple Traveling Salesman Problem with Drones (mTSPD) is an extension of the multiple 

Traveling Salesman Problem (mTSP) with the implementation of drones in the operations. The 

mTSPD model formulation is derived from the FSTSP model in Murray and Chu (2015) with some 

additional constraints from the mTSP. In the mTSP, the m salesmen must visit n nodes, forming 

totally m tours, one per salesperson. There are two main sets of constraints in the mTSP problem. 

The first set of constraints requires that all salesmen must depart and return to the starting node 

(depot) at the end of the trip, no matter which tour they choose. The second set of constraints states 

that every salesman must travel to a specific set of customers between the first and the last node 

given that each node can only be visited once by the assigned salesman except the starting node 

(depot) (Bektas, 2006). The typical objective of the mTSP is to find the total shortest tour that each 

salesman must travel from the depot to visit the assigned set of cities and back to the depot. In the 

mTSPD, the objective is to minimize the time that the last delivery is completed similar to min-

max mTSP, which aims to minimize the maximum tour length (time) of each salesman with the 

purpose to divide the cost (time) of tours among each salesman equally (Bertazzi, Golden, & Wang, 

2015; Kivelevitch, Cohen, & Kumar, 2013). The solution of mTSPD requires exactly m tours, 

which is equal to the number of salesmen. 

 

In this problem, a truck is treated as a salesman because we do not consider the capacity of trucks 

and demand quantity of customers. We assume that each truck has a sufficiently large capacity to 

carry both packages and drones through the entire operation. At the depot, the departure times of 

all trucks are zero. All trucks must initially depart from the depot, serve all customers, and return 

to the depot. The model will determine the set of customers specifically visited by trucks and the 

set of customers visited by drones. It is required that each customer must be visited exactly once 

by either a truck or a drone. 
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c.) mTSPD solution (I): Drones 
return to the same truck 

d.) mTSPD solution 
(II): Drones return to 
the different trucks 

e.) mTSPD solution (III): Drones 
depart from depot and fly to truck  

f.) mTSPD solution (IV): 
Drones depart and return 
to depot directly  

    a.) TSP solution 

 

b.) mTSP solution                                               
D D D

D D

The mTSPD model represents the actual operation similar to the truck-drone delivery test 

conducted by UPS in February 2017 (Hughes, 2017; Zito & Radocaj, 2016), which showed the 

case when a drone launched from atop one of the UPS delivery trucks autonomously delivers a 

package and then returns to the vehicle. This happens simultaneously while a driver continues to 

drive along a route, delivering packages. In addition, we assume the drone can be retrieved by any 

truck that is nearby and not necessarily the same truck that it is launched from. Figure 3.1 

represents an illustrative problem and different types of solutions from mTSPD comparing to the 

mTSP and TSP on the same problem. The solid line in all Figures 3.1a.) to 3.1f.) refer to the truck 

tour and the dotted line refers to the drone tour. 
 

   

 

   

 

 

 

 

 

 

Figure 3.1 Illustration of the feasible solutions from TSP, mTSP and mTSPD. 
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 Assumptions and Contributions 

3.2.1 Assumptions 

Turning from the described operations to the routing problem, several assumptions must be made: 

• We disregard the capacity of each truck and assume each truck has a sufficiently large 

capacity to carry both packages and drones through the entire operation. This is to 

reduce the complexity of the problem and to ensure that a truck can operate without 

exceeding its capacity.  

• Drones are assumed to be homogeneous with the same configuration and can carry one 

package with a small payload up to 5 pounds (2.3 kg) at a time (Glaser, 2017). Once 

the drone finishes the delivery to a customer, it must immediately fly to any customer 

node that has not been visited yet, or it can fly back to the depot directly. Due to these 

characteristics, drones can be launched from a truck and return to another truck in the 

fleet. There are no specific assignments of drones to trucks once they leave the depot.  

• In our model, we disregard the set-up and recovery times when the drone is launched 

or retrieved at a particular node. This set-up and recovery time can be negligible since 

their values are small compared to the truck and drone travel time and will not affect 

how the solution route is determined in the model. We also assume that the drone can 

complete its delivery and return to the truck before it runs out of battery, or it can land 

on a recharging stations to extend its flying range (Hong, Kuby, & Murray, 2017; 

Gentry, Hsieh & Nguyen, 2016). 

• Drones can only merge with a truck at a customer node and are not allowed to merge 

with a truck in any intermediate location. From a practical view, it would be difficult 

for a drone to land on a moving truck, as both of their speeds have to match 

(Buchmueller, Green, Kalyan, & Kimchi, 2016). Merging a drone with a movable truck 

requires the drone to reduce its speed and the truck to increase its speed, which violates 

the constant speed assumption of the drone and the truck and would decrease a drone’s 

performance from flying at full speed. Also, trucks and drones must wait for each other 

whenever one arrives at the customer node before the other. This assumption is to 

ensure that the drone is serviced prior to departure and right after merging with the 
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truck. Once the drone arrives at the truck, it is serviced for the functional check and 

battery charge at the truck.  

• Multiple drones can fly simultaneously; however, only one drone can be launched or 

retrieved at each particular node at the same time. In other words, the truck cannot 

launch or retrieve more than one drone in any customer node. Allowing multiple 

launches and retrievals requires that the delivery truck must reserve a certain amount 

of space for keeping drones. Currently, our model does not include the capacity 

constraint of the drone’s space which refers to the truck’s capacity to carry some finite 

number of drones. Without limiting the number of retrievals, one of the feasible 

solutions is to launch as many drones as possible from a single node. For operational 

simplicity and to reduce model complexity, it would be safe to limit the number of 

launches and retrievals to just one.  

• We assume that the FAA regulations about the visual line-of-sight (VLOS) can be 

relaxed by allowing a first-person-view piloting. In this system, the drone pilot controls 

the drone, as he can see what the drone sees as it flies (Browne, 2017). 

 

Figure 3.2 represents the result of two generated case studies we have conducted using the mTSPD 

model to generate the solution routes. The blue solid lines indicate the truck’s path and that dashed 

lines indicate the flight path of the drone. Figure 3.2a.) shows the paths of both trucks and drones. 

These case studies illustrate the advantages of drones compared with the trucks in delivery 

operations. The trucks can make deliveries to multiple customers on the tour while the drone can 

deliver the package to a specific customer at a faster speed. It also shows the substantial advantage 

of the drone, as it does not get stuck in traffic and can travel across the river quite easily. Figure 

3.2b.), on the right, similarly shows that the drone can fly across areas where the road has no access 

to make a delivery. In both cases, the drone gains the advantage of flying in a Euclidean travel 

space while the truck has to follow the road distance.  
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     a.)                                  b.)  

Figure 3.2 Examples of mTSPD solution routes from case studies. a.) The solution routes in 
downtown Philadelphia, b.) The solution routes in Brookston, Indiana. 

3.2.2 Contributions 

In this chapter, we propose a new MIP model and a heuristic algorithm to solve a new problem, 

the multiple Traveling Salesman with Drones (mTSPD) problem. The main contributions of this 

work are the following:  

1. We introduce a new variant of the Traveling Salesman Problem with Drones in which 

multiple trucks and drones are deployed to make deliveries. We call the problem "multiple 

Traveling Salesman with Drones" (mTSPD). The model is based on the Multiple 

Traveling Salesman Problem (Bektas, 2006) with the mathematical formulation adapted 

from the FSTSP model (Murray & Chu, 2015). 

2. We develop a new heuristic called “Adaptive Insertion Heuristic” (ADI) to solve mTSPD. 

The heuristic builds truck-drone tours from the original constructed mTSP solution, which 

consists of only m truck tours. We propose three mTSP heuristics to be used for ADI and 

compare the performance among them. 

3. We use the ADI heuristic to solve some generated small-scale (less than 10 nodes) test 

instances and compare the solution performance with mTSPD and other existing 

TSP/FSTSP models MIP formulation solved by CPLEX. The results give us an insight on 

the savings achieved by implementing the multiple trucks and multiple drones delivery 

system 

 

Depot	
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4. We implement the ADI heuristic on several TSP/mTSP benchmark problems and compare 

its performance with the modified FSTSP heuristic, which is based on the heuristic 

developed to solve the FSTSP (Murray & Chu, 2015). The solutions of both heuristics are 

compared with the best known optimal TSP/mTSP solutions in each benchmark. The 

analysis of the results will show how much the logistics operator would benefit from 

implementing drones along with trucks to make the last-mile deliveries.  

 Mathematical Formulation 

The mTSPD is defined on a directed graph G = (V, E), where V is the set of n nodes representing 

customers with one depot and E is the set of arcs. Let 	%&,() 	be a truck travel time associated with E, 

*, + ∈ - and 	%&,(. 	be a drone travel time associated with E, *, + ∈ -. Differentiating the travel 

times for the truck and drone accounts for each vehicle’s unique travel speed. The mTSPD is said 

to be symmetric if 	%&,() = 	 	%(,&
)  and 	%&,(. = 	 	%(,&

.  and asymmetric otherwise. Let 0	be the number of 

trucks that depart and return to the depot. Next, denote the set of customer nodes by 1 =

1, 	2, 	3, 	4, 	5, 	6, … , 9 . Although only one physical depot location exists, we assign it to two 

unique node numbers at 0 ; , the starting depot, and 0 < , the ending depot.  Set 1= = 1 ∪ 0 ;  

as the set of customer nodes including the starting depot and set 1? = 1 ∪ {0 < } as the set of 

customer nodes including the ending depot.  

Following the formulation in Murray and Chu (2015), we define F = {(i, j, k)} as all possible three-

node sorties of the drone path. An element (i, j, k) ∈ F if the following conditions hold: 1) The 

launch node i must not be the ending depot node (i.e., i ∈ 1=). 2) The delivery node j must be in 

the customer set and must not be the same as the launch point (i.e., j ∈ 1 such that i≠j). 3) The 

merging point k can be either a customer node or the ending depot and cannot equal i or j (k	∈

	1?	such	that I ≠ *	J9K	I ≠ +). 

We define the following decision variables: Let L&,(	equal to 1 if arc (i, j) ∈ E is used on a truck 

path and 0 otherwise. This refers to the situation when the truck travels from node i ∈ 1= to j ∈ 1? 

where i≠j. Let 	M&,(,N equal to 1 if arc (i, j) and (j, k) ∈ E is used on the path and 0 otherwise. This 

refers to the situation when a drone is launched from node i ∈ 1= to node j ∈ 1 (visiting customer 



 
 

44 
 

node) and merges with a truck or the ending depot at node k	∈ 	 1? such that (i, j, k) ∈ O. We denote 

	PQ( as the truck arrival time at node j ∈ 1? and DlT as the drone arrival time at node j ∈ 1?. 	PQ( 

and	VQ( are the arrival times of the truck and drones at node j respectively. Lastly, the auxiliary 

decision variable W& is used in the TSP sub tour elimination constraints (Desrochers & Laporte, 

1991). All the mentioned notations can be summarized as follows.  

 

Indices  

 

*, +, I Represent customers, and depot 

 

Sets  

1 Set of customers, 1, 	2, 	3, 	4, 	5, 	6, … , 9  

1= Set of customer nodes including the starting depot, 1 ∪ 0 ;  

1? Set of customer nodes including the ending depot, 1 ∪ 0 <  

 

Parameters 

	%&,(
)  Truck travel time between nodes i and j 

	%&,(
.  Drone travel time between nodes i and j 

0 Number of trucks in the entire fleet 

9 Number of total customers to be served 

Variables 

L&,( 1 if a truck traverses arc (i, j) from customer i to customer j; otherwise, 0 

M&,(,N 1 if a drone traverses arc (i, j) and (j, k) from customer i to customer j and  

from customer j to customer k; otherwise, 0 

	PQ( Truck arrival time at node j 

	VQ( 	 Drone arrival time at node j 

W& XWL*Q*J<M	YJ<*JZQ[;	\]<	;WZ^]W<	[Q*0*9J^*]9	 
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The proposed MIP formulation of mTSPD is presented as follows. 

Objective 

minimizeVQ= d                (1) 

 

Subject to 

 

L&,(
&∈gh
&	i(	

+ 	 M&,(,N
N	∈	gk
&,(,N ∈l	

	
&	∈	gh
&i(	

	= 		1				∀+	 ∈ 1 (2) 

L=(n),(
(∈gk

	= 		0 (3) 

L&,=(d)
&∈gh

	= 		0 (4) 

W& − W( + 9L&,( + 9 − 2 L(,&	 ≤ 9 − 1				∀*, +		 ∈ 		1, *	 ≠ + (5) 

1 + 9 − 2 L&,=(n) + L(,&
(∈g
&	i(

≤ W& ≤ 	9 − 9 − 2 L= n ,& − L&,(
(∈g
&	i(

			∀*		 ∈ 		1 (6) 

L&,(
&∈gh
&	i(

	= 		 L(,N
N∈gk
N	i(

			∀+		 ∈ 		1 (7) 

M&,(,N
N	∈	gk
&,(,N ∈l	

		
(	∈	g
&i(	

≤ 	1			∀*	 ∈ 		1= (8) 
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M&,(,N
(	∈	g
&,(,N ∈l	

		
&	∈	gh
&iN	

≤ 	1			∀I	 ∈ 		1? (9) 

2M&,(,N 	≤ Lt,&
t∈gh
ti&

	+ 	 Lu,N
u∈g
uiN

				∀*, +		 ∈ 		1, ∀I	 ∈ 		1? 10  

M= n ,(,N 	≤ Lt,N
t∈gh
tiN

			∀+		 ∈ 		1, ∀I	 ∈ 		1? 11  

M&,(,N
N	∈	gk
&,(,N ∈l	

		
&	∈	gh
&i(	

≤ 	1 −	 M(,v,w
w	∈	gk
(,v,w ∈l	

			∀+	 ∈ 		1 		
v	∈	g
vi(	

 (12) 

M&,(,N
N	∈	gk
&,(,N ∈l	

		
&	∈	gh
&i(	

≤ 	1 −	 Mv,w,(
w	∈	g
v,w,( ∈l	

			∀+	 ∈ 		1 		
v	∈	gh
vi(	

 (13) 

VQ & ≥ PQ & − y(1 − M&,(,N
N	∈	gk
&,(,N ∈l	

)			
(	∈	g
&i(	

∀*	 ∈ 		1  (14) 

VQ(&) ≤ PQ & + y(1 − M&,(,N
N	∈	gk
&,(,N ∈l	

)			
(	∈	g
&i(	

∀*	 ∈ 		1  (15) 

VQ(N) ≥ PQ N − y(1 − M&,(,N
(	∈	g
&,(,N ∈l	

)			
(	∈	gh
(iN	

∀I	 ∈ 		1? (16) 

VQ(N) ≤ PQ N + y(1 − M&,(,N
(	∈	g
&,(,N ∈l	

)			
(	∈	gh
(iN	

∀I	 ∈ 		1? (17) 

PQ N ≥ PQ t + 	% t,N
) − 		y 1 − Lt,N 			∀ℎ ∈ 1=, ∀I	 ∈ 1? (18) 

VQ N ≥ VQ & + 	% &,(
. + % (,N

. 	– 	y 1 − M &,(,N 					∀* ∈ 1=, ∀+ ∈ 1, ∀I	 ∈ 1? (19)   
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VQ=(n) = 0		 (20) 

PQ=(n) = 0 (21) 

L&,( 	 ∈ 	 0,1 				∀*, j	 ∈ 1 ∪ 1= ∪ 1? (22) 

M&,(,N ∈ 0,1 				∀*, j, k	 ∈ 1 ∪ 1= ∪ 1? (23) 

VQ& ≥ 0			∀* ∈ 1 ∪ 1= ∪ 1? (24) 

PQ& ≥ 0			∀* ∈ 1 ∪ 1= ∪ 1? (25) 

 

The objective function	(1) minimizes the arrival time of drones and trucks at the depot. The 

objective function is equivalent to 0*9 0JL PQ= d , VQ= d  since both drone and truck have to 

wait for each other and the arrival time of trucks and drones at the depot will be adjusted to be the 

same by constraints (14) – (17). Constraints (2) ensure that each customer will receive the package 

either by a drone or truck. Constraint (3) and constraint (4) ensure that the trucks depart from and 

arrive to the depot. Constraints (5) and (6) are sets of the Desrochers and Laporte (DL) sub tour 

elimination constraint which ensures that there is no sub tour in all tours of the trucks (Desrochers 

& Laporte, 1991). Constraints (7) guarantee that whenever the truck arrives at a node, it must 

depart from the node as well. Constraints (8) represent that at most one drone can depart at each 

stop of the truck. Similarly, constraints (9) define that at most one drone can arrive to a truck if it 

visits a node. Without these constraints, there is no restriction on how many drones can be launched 

from and land on a certain node, which would violate assumption 5 in Section 3.2.1. Constraints 

(10) state that a truck must visit node i and node k if the drone is launched from node i and is 

retrieved at node k. Similarly, constraints (11) ensure that when the drone flies from the depot to 

node j and k respectively, a truck must correspondingly depart from the depot and eventually arrive 

at node k. Constraints (12) describe the cases that if the drone flies from node i to node j to node 

k, there are no other drones that make such a delivery simultaneously from node j to node a to 

node b. Constraints (13) enforce that if a drone departs from node i to visit node j and merges with 

the truck at node k, no other drones can arrive at the delivery node j. Constraints (12) and (13) will 

ensure the flow conservation for the delivery node. Constraints (14) and (15) state that the 
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departure time of drone and truck must be the same. Also, once the drone and truck are in the same 

node, they must wait for each other before each of them can leave the node. For an example, let 

assume that both truck and drone are at node i. If in the next move, the drone travels from node i 

to j to k, then constraints (14) and (15) will be binding, resulting in the same departure time for 

both truck and drone. Similarly, constraints (16) and (17) ensure that the arrival time of both truck 

and drone will be the same when they merge at the same node. These sets of constraints are based 

on the assumption that if either the drone or truck arrives earlier than the other, the earlier one has 

to wait until the later one arrives (both constraints are binding, resulting in the same arrival time 

of both truck and drone). Constraints (18) keep track of the arrival time of the truck at every node. 

It adds the truck travel time to the previous customer node when the truck travels from one 

customer node to another customer node. Similarly, constraints (19) keep track of the arrival time 

of the drone at the node to which the drone returns after making a delivery. This constraint 

considers the drone’s travel time from the previous departure node to the delivery node to the 

arrival node. Constraints (20) and (21) set the initial departure time of drones and trucks at the 

depot to be zero. Constraints (22–25) specify the types and ranges of the variables. Note that the 

M value must be large enough. Thus, we can use the minimum total travel time of a single truck 

to visit all customers in one single tour, i.e., solve a regular TSP.  

 

We have tested the MIP formulation of the mTSPD using the CPLEX solver on small and medium-

size (5-50 nodes) problems, which we generated based on the method in Section 3.4. Although we 

are able to obtain the optimal solutions within one hour on 10-node problems, the computational 

time becomes prohibitive (more than 8 hours) on larger-scale problems (more than 10 customer 

nodes). Since mTSPD is an extension of the well known TSP/mTSP which is an NP-hard problem, 

the problem itself is also an NP-hard as well. As a result, we have developed an Adaptive Insertion 

algorithm (ADI) to solve the mTSPD problem. We propose a modified version of the FSTSP 

heuristic, so-called “Adapted FSTSP heuristic” so that it can be used to solve the mTSPD problem. 

In the experiment section, we will compare the performance of our proposed heuristic with the 

FSTSP heuristic proposed by Murray and Chu (2015). The numerical results and related statistics 

will be provided in Section 3.5.  
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 The Proposed Algorithm 

3.4.1 Overview 

The Adaptive Insertion algorithm, “ADI” was developed to efficiently solve the mTSPD. This 

heuristic is based on the greedy node(s)-insertion strategy (Gendreau, Hertz, & Laporte, 1992; Lu 

& Dessouky, 2006). Prior to developing the heuristic, we used the MIP model to solve the mTSPD, 

and we were able to solve and return the optimal solutions of the problems with up to 10 customer 

nodes within an hour. However, larger problem sizes could not be optimally solved even within 8 

hours. Therefore, heuristic solution approaches are required to find optimal or near-optimal 

solutions once the problem size becomes larger than 10 nodes.  

 

There are two phases in our proposed our heuristic. In the first phase, an initial mTSP solution 

which consists only truck tours is generated through a construction heuristic algorithm. In the 

second phase, we build a mTSPD solution from a mTSP solution using different types of removal 

and insertion operators. The mTSPD solution consists of the improved truck tours together with 

the drone tours constructed in the second phase. The algorithm is detailed in the following section. 

3.4.2 Initial mTSP Solution   

Since a mTSPD solution is based on the constructed tours of the mTSP solution in the first phase, 

different initial mTSP solutions can affect the solution quality of the mTSPD in the second phase. 

Therefore, we use three heuristics to generate the mTSP routes as follows: 

 

Genetic Algorithm (GA)  

The GA is based on the principles of natural selection and genetics to generate a better solution 

over the solution from the previous generation. It starts with a group of initial solutions. A fitness 

function is used to evaluate the performance of the solutions. Then, the two solutions called parent 

solutions are selected based on a certain probability to perform a crossover/mutation operation to 

produce two new solutions of the next generation. If the new solutions have better fitness values, 

they will replace the old solutions. The selection, crossover, and mutation operations are repeated 

for the rest of the population until the population size of the new generation is the same as the size 

of the previous generation. This completes one iteration (generation). The procedure continues 
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until the number of certain generations is reached or the solution quality cannot be improved 

(Carter & Ragsdale, 2006; Li, Sun, Zhou, & Dai, 2013). 

 

To implement GA in our problem, we have to modify the fitness function so that it can be used 

with the min-max mTSP. We use one order crossover and two mutation operators proposed by 

Sedighpour et al. (2011) in the GA. We also conduct some experiments with different sets of 

parameters, including selection probability, cross-over probability, mutation probability and the 

number of generations to ensure obtaining the high-quality solutions by the algorithm.  

Control parameters 

NumGen: Number of Generations 

PopSize : PopulationSize (Number of chromosomes) 

S: Current solution of the mTSP 

f: The fitness value (objective value) of S 

!∗: The best solution of the mTSP 

\∗: The best fitness value of !∗ 

�g: Crossover probability 

�Ä: Mutation probability 

�nÅuÅÇÉ: Selection probability 

 

Proposed GA for mTSP 

Load Input parameters 

Create initial populations of the mTSP          //Each chromosome represents a route solution// 

Find the best S. Record the best solution as !∗ with the fitness value of \∗ 

For the total NumGen  

     For all PopSize 

          Determine f for each solution route (chromosome) 

     End For 

     Keep the best 2 solutions without going to crossover 

     Select parents to perform crossover with �nÅuÅÇÉ (Roulette Wheel Selection) 

     Perform Order crossover with �g	for all pairs of chromosomes 

     Perform Two mutation operators with �Ä for all chromosomes 
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     Find the best S among the current populations. 

     If f (Best S) ≤ \∗ 

          \∗= f (Best S) 

     End If 

End For 

 

Combined K-means / Nearest Neighbor  

 

This heuristic combines the K-means clustering algorithm with the well known nearest neighbor 

algorithm. K-means technique is quite popular among various clustering techniques because of its 

ability and efficiency among clustering data. Among the set of customer nodes (C), we partition 

them into k clusters. Please note that the notation k in this K-means algorithm is different from the 

notation k in Section 3.3 which is previously defined as an index for the customer node (i,j,k). 

Each cluster represents a tour of one truck. Initially, we randomly assign k cluster centroids into 

the map. Based on the distance from the centroid, each customer node is assigned to the nearest 

centroid. Each cluster centroid is updated based on the nodes assigned to the cluster. The process 

will be repeated until the centroids remain the same or no point changes clusters (Jain, 2010). Let 

X = {L&}, * = 1,… , 9 be the set of 9 customer nodes to be clustered into a set K cluster with the 

cluster mean, C = {ÑN, I = 1,… , Ö}. The goal of k-means is to minimize the sum of the squared 

error over all k clusters, 

 

Ü 1 = 	 ∥ L& − àN ∥â

äãågç

é

Nèê

																		(26) 

The K-means algorithm to generate K clusters is composed of the following steps: 
 

Step 1: Randomly generate K points into the map represented by the customer nodes that are      

being clustered. These K points represent initial cluster centroids. 

Step 2: Assign each node to the cluster that has the closest centroid. 

Step 3: Once all nodes have been assigned to the clusters, recalculate the locations of the K   

            centroids. 
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Step 4: Repeat steps 2 and 3 until the centroids no longer move. This procedure assigns the    

            customer nodes into clusters which corresponds to minimize the equation (26). 

 

After partitioning all customer nodes into k clusters, we then use the Nearest Neighbor (NN) to 

solve for the TSP tour in each cluster (Arora, Agarwal, & Tanwar, 2016). It is required that the 

starting node of each TSP tour must be a depot node and the ending node of each TSP tour must 

be a depot node. In NN, the truck starts at the depot, repeatedly visits the nearest customer node 

until all customers in the cluster are visited and returns back to the depot.  

 

The Nearest Neighbor algorithm for the TSP solution is composed of the following steps: 

 

Step 1: Set the depot as the current visited vertex. The rest of the customer nodes are listed in    

            unvisited vertex set. 

Step 2: Select the node V with the lowest travel cost and set it as a current vertex.  

Step 3: Mark V as visited and update unvisited vertex set. 

Step 4: If all the vertices in domain are visited, then terminate. The final visited vertex must be   

        a depot. 

Step 5: Repeat step 2- 4. 

 

Random Cluster / Tour 

 

In this heuristic, random k clusters are generated using a uniform distribution. Each customer node 

is uniquely assigned to one cluster. Each cluster must have at least one customer node and there is 

no restricted number of how many customer nodes can be assigned in a cluster. In each cluster, a 

truck starts at the depot, randomly visits all customer nodes in the cluster and returns back to the 

depot. The algorithm is composed of the following steps: 

Step 1: Randomly generate K points into the map based on the number of trucks (m). 

Step 2: Assign each customer node to the cluster. Each node can only be assigned to one cluster.  

       Each cluster must be assigned at least one node. 

Step 3: For each cluster, generate the random tour starting from the depot, visit each node   

        exactly once and return to the original depot. 
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3.4.3 Construction of mTSPD Solution   

Once obtaining the initial mTSP solution, we can construct the mTSPD solution by gradually 

replacing some of the truck customer nodes with drone customer nodes. The ADI algorithm 

gradually builds up a solution by switching the position of the nodes, reevaluating the objective 

value, and terminating once the termination condition is met. The heuristic seeks for the best way 

to remove the truck node from the tour and insert the node back to the tour as a drone customer 

node. We can perform the truck/drone tour construction by executing two main types of operators: 

the removal operator and the insertion operator. The removal operator takes one node out of the 

existing tours. This particular node will be sequentially added back to one of the tours via three 

types of insertion operators. The algorithm aims to maximize the Saving or the difference between 

“Time Decrease from removing node” (ëPí) and “Time Increase from adding node” (ëPì) in each 

iteration until the termination condition is met. We also define “#NCS” to keep track of the number 

of customers who are served by any drone.  

 

As previously mentioned, the algorithm begins by generating the mTSP initial solution through 

the described heuristics in section 3.4.2. Denote the set Tour = {1,2,3,…m} and assign an index 

select to track all the tours from select = 1,2,3,…m. Next, we define the set of CandList = 

{1,2,3,…,n}. The members of the CandList are all the customers (C) with the size n on the map.  

The removal and insertion procedures are applied on each element of the CandList. Once all 

members in CandList complete these two consequential procedures, all the feasible solutions will 

be evaluated through the fitness function max {(ëP(. − ëP(ì)}; 	∀ j ∈  CandList (Line 28 of 

Algorithm ADI). Then, node j with the best fitness value is selected and removed from the 

CandList set (Line 29 of Algorithm ADI). We also need to update the solution as well as other 

global variables including: Saving, #NCS, all Truck Route (T_R), Drone Path (D_P), and the  
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Algorithm: ADI 

1.Initialize 

2.Parameters: m, n, 	%) , 	%.  

3.Generate the initial mTSP solution with  m  truck tours  

4.Compute time (	^&nÅuÅÇÉ) associated with each node i in tour select 

5.Max #NCS = ⌊
(#ÇónÉòÄÅdn	&ô	Éòód	&	öâ)

â
⌋Ä

&  

6.Create T_R= {Tours, 	^&nÅuÅÇÉ,  Lch_N,  La_N} 

7.Set Saving = 1, CandList = {All  C}, Lch_N=[], La_N =[], D_P = [], ëPú  = [], #D = 0 

8.While Saving > 0 

9.       For j ∈ CandList 

10.          Find a tour where node j belongs to; called SelectTour 

11.            If #C in SelectRoute < 2  

12.             ëPú  = -inf 

13.            Else 

14.                   Call Node_Removal(T_R, D_P,  j, 	%) , 	%. )  

15.                   If #NCS  < Max #NCS  

16.                         Call DroneAddedSameRoute (T_R, D_P,  j, 	%) , 	%. ) 

17.                         Call DroneAddedDiffRoute (T_R, D_P,  j, 	%) , 	%. ) 

18.             Else 

19.                     ëP1(ì = inf 

20.       ëP2(ì = inf 

21.                   End If 

22.                   Call TruckInsertion(T_R, D_P,  j, 	%) , 	%. ) 

23.            End If 

24.            ëP(ì= min(ëP1(ì, ëP2(ì, ëP3(ì)  

25.            Select T_R, D_P associated with the node j in ΔTTû 

26.            ëP(ú = 	ëP(. – ëP(ì  
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arrival time associated with each customer node (	 (̂nÅuÅÇÉ) (Line 30-31 of Algorithm ADI). For any 

truck path (i, j, k), we denote 	^NnÅuÅÇÉ∗ as the arrival time at node k prior to removing node j from 

tour select and 	^NnÅuÅÇÉ∗∗as the arrival time at node k after removing node j from tour select. We 

also keep track of the set of nodes where the drones are launched from using the notation Lch_N 

and the set of nodes where the drones land to using the notation La_N. The algorithm will repeat 

iteratively and terminate once ëP(ú	= ëP(. − ëP(ì ≤ 0 or CandList ∈ 	∅. Please note that if #NCS 

≥ Max(#NCS) (Line 15-16 of Algorithm ADI), we can only insert node j between nodes that are 

currently served by the truck. This constraint is used to prevent the algorithm from generating an 

excessive number of drone delivery paths with many infeasible solutions. 

3.4.4 Removal Operator 

Given the chosen node j from the main algorithm, the Node_Removal operator would determine 

how much objective value decreases when removing node j from the particular tour select. There 

are three main steps in the procedure. The first step is to remove node j from tour select and re-

compute the arrival time to the depot at each truck. The next step is to find the arrival time to the 

depot of the last truck (latest arrival time at the depot) stored in the variable called Latest Time the 

Truck Returns to the Depot After removing node j (LTRDA). The last step is to find the difference 

between LTRDA and the Latest Time the Truck Return to the Depot Before removing node j 

(LTRDB). The value difference is stored in variable ëP(.. An example of the Removal operator is 

shown in Figure 3.3. 

27.       End For   

28.       Find Saving = 0JL(	∈	gvô†°&nÉ (ëP(ú	) 

29.       Remove node j from CandList  

30.       Update:  T_R  and  D_P  associated with Saving 

31.       Update: #NCS  and CandList 

32. End While 
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Figure 3.3 Illustration of Removal operator 

In the above example, the subfigure on the left represents the original routing solution for three 

trucks and the updated routing solution once applying the Removal operator. It takes 20 minutes, 

15 minutes and 30 minutes for truck 1, truck 2 and truck 3 to complete the deliveries accordingly. 

We assign node 8 as the node to be removed from the existing solution. The Latest Time the Truck 

Return to the Depot Before (LTRDB) removing node 8 is 30 minutes which is the duration truck 

3 completes its job. Once removing node 8 from the solution, the truck 3’s delivery time is updated 

to 20 minutes. The new objective for the solution, the Latest Time the Truck Returns to the Depot 

After (LTRDA) removing node 8, is updated to 20 minutes. Hence, the difference between the 

objective value of the original and the updated solution is 10 minutes, which is stored in the 

variable ëP¢.. 

3.4.5 Insertion Operator 

Once node j is removed from tour select, we need to find the location to insert node j. Three types 

of insertion algorithms are used for the search process: DroneAddedSameRoute, DroneAdded- 

DiffRoute, and TruckInsertion. In DroneAddedSameRoute, we assign node j as a drone delivery 

node and insert it into one of the m tours. The path (i, j, k) is constructed such that the drone departs 

from node i, serves the customer at node j, and merges with the truck at node k (the same truck 

that the drone is launched from). To explain briefly how this operator works, for each tour from 

all the truck tours, Tourê, Tourâ, Tour£,…, TourÄ, we select a pair of (i,k) nodes where node i must 

ëP(
. = LTRDB – LTRDA = 10 
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precede node k to insert node j into. After inserting node j between node i and node k, we 

recalculate the arrival time when the truck returns on the selected tour, where node j is added. 

Finally, we update the latest arrival time at the depot for the whole route and calculate the 

difference between the Latest Time the Truck Return to the Depot After adding node j (LTRDAI) 

and the Latest Time the Truck Return to the Depot Before adding node j (LTRDBI). This difference 

is stored in variable ëP1(
ì,§ ,where p is the index of all possible combinations of this type of 

insertion. The minimum of ëP1(
ì,§ is chosen among all possible combinations. Slightly different 

from DroneAddedSameRoute, the operator DroneAddedDiffRoute restricts that the drone path (i, 

j, k) must be constructed such that node i and node k are selected from different tours. Hence the 

drone would merge with a different truck at node k, not the one it was launched from, after visiting 

node j. The best difference in objective value before and after inserting node j into the route is 

stored in variable ëP2(ì. Lastly, TruckInsertion deals with the case in which node j is assigned as 

a truck delivery node. Node j must be inserted between node i and node k. Both node i and node k 

must be located in the same tour, where node i must precede node k and the nodes must be adjacent 

to each other. These three operators provide different ways of searching and sorting methods. The 

basic idea of ADI is to look for the lower ëPì which tends to give the maximum possible Saving. 

We then select min(ëP1(ì, ëP2(ì, ëP3(ì) (Line 24 of Algorithm ADI) after completing the searches. 

Figure 3.4 illustrates all three types of Insertion operators. 
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a.) Illustration of DroneAddedSameRoute: ΔT1(ì  = LTRDAI – LTRDBI = 6 

 

b.) Illustration of DroneAddedDiffRoute: ΔT2(ì  = LTRDAII – LTRDBII = 5 

 
c.) Illustration of TruckInsertion: ΔT3(ì  = LTRDAIII – LTRDBIII = 7 

Figure 3.4 Illustration of all types of Insertion operators 
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In the above example, all three subfigures represent the routing solution before and after applying 

three different types of operators. For the purpose of simplicity, we select node 8 as the node to be 

inserted into the original solution. In Figure 3.4a.), the original objective value is 20 minutes, which 

is the Latest Time the Truck Return to the Depot Before (LTRDBI) adding node 8 into the solution. 

The node 8 is inserted between the depot and node 7 as a drone delivery node of the truck 3’s tour. 

The new delivery time of the truck 3 in Figure 3.4a.) becomes 26 minutes which is equivalent to 

the new objective value or the Latest Time the Truck Return to the Depot After adding node 8. 

Consequently, the difference between the objective value of the original and the updated solution 

is 6 minutes recorded in the variable ëP1¢ì . In Figure 3.4b.), the node 8 is inserted as a drone 

delivery node between the customer node 6 of truck 2 and the customer node 7 of truck 3, resulting 

in the new objective value of 25 minutes. The difference between the objective value of the original 

and the updated solution is 5 minutes recorded in the variable ëP2¢ì . Lastly, the node 8 is inserted 

as a truck delivery node between the customer node 6 and the depot of the truck 2’s tour, resulting 

in the new objective value of 27 minutes (Figure 3.4c.). The difference between the objective value 

of the original and the updated solution is 7 minutes recorded in the variable ëP3¢ì . Among the 

three types of insertions, ëP2¢ì  returns the lowest cost of insertion and the following new solution 

from the second type of insertion is accepted.  

 Computational Examples and Results 

Three experiments were conducted to evaluate the MIP formulation and the performance of the 

proposed algorithm. In the first experiment, we solved some generated random instances with a 

size of 25 and 50 customer nodes using Adaptive Insertion algorithm with three types of initial 

mTSP heuristics described in Section 3.4. The solutions of the ADI heuristic are compared with 

the solutions from CPLEX solver. The details of the instance generation will be explained in 

Section 3.5.1.  

 

In the second experiment, we solved the small test instance (9 nodes) on different types of 

generated instances which were generated the same way as in the first experiment and compared 

the performance of our proposed algorithm with the optimal solution obtained by MIP. Using the 

same set of instances, we also use three different MIP formulations by CPLEX to solve them 
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optimally and compare their solutions. These MIP models are: TSP (one truck), FSTSP (one truck 

and one drone) and mTSPD (multiple trucks and multiple drones).  

 

In the last experiments, we demonstrate the performance of our algorithm on the well-known 

TSP/mTSP benchmark problems (Reinelt, 1991), which are relatively large and cannot be solved 

by CPLEX within a reasonable time. The solutions from the ADI are compared with the optimal 

solutions from the min-max TSP/mTSP problem, as well as the solutions from the Adapted FSTSP 

heuristic. Note that the Adapted FSTSP heuristic is modified from Murray and Chu’s heuristic 

(Murray & Chu, 2015) to solve the mTSPD problem by implementing the FSTSP heuristic for 

each tour of the trucks and selecting the tour with the longest arrival time back to the depot.  

 

Regarding parameter setting, we set the truck travel time to be 1.5 time units longer than the drone 

travel time (	%(,&)  = 1.5	%&,(. ) since the drone speed is roughly about 1.5 times faster than the truck 

speed (Brar et al., 2015). We assume that both trucks and drones travel in Euclidean travel paths. 

All the algorithms were executed in Matlab on a computer with 2.7GHz Intel Core i5 with 8GB 

RAM running Windows 7 64-bit mode. All the Mixed-Integer Linear Programming models were 

solved using GAMS 23.51 with CPLEX solver. 

3.5.1 Instance Generation 

To evaluate the performance of the MIP model and ADI heuristic on the mTSPD, we generated 

150 medium-size test instances (25, 50 nodes), and 35 small-size test instances (9 nodes). A set of 

customer nodes are created within the area of 1000*1000 W9*^â. There are mainly five types of 

problems based on how the nodes are distributed on the map, as shown in Figure 3.5. In the type 

1 problem, the depot is located at the center, at coordinate (500, 500) and surrounded by different 

customer nodes, which are uniformly distributed on the 1000 x 1000 square. The type 2 problem 

is similar to the Type 1 problem, except that the depot is now located at the bottom of the map at 

coordinate (500,0). In the type 3 problem, the customer nodes are uniformly generated on the circle 

area with a radius of 500. The depot is located at coordinate (500,500). On types I, II and III 

problems, we would like to see how the tour can be constructed when the customer nodes are 

located both close and far from the depot, and whether the location of the depot has any significant 

effect on the solution quality. In the type 4 problem, we assign the customer nodes to be far from 
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a.) Type 1: Center Depot 
surrounded by random nodes 

b.) Type 2: Bottom Depot with 
nodes on top 

c.) Type 3: Center Depot 
surrounded by customers 
in the circular pattern 

e.) Type 5: Center Depot Cluster nodes d.) Type 4: Center Depot surrounded 
by customers in the ring pattern 

the depot at coordinate (500,500) and distribute them in the ring pattern uniformly. To generate 

the customers in the ring area, we first create two circles: one with a radius of 500 and one with a 

radius of 300. The customer nodes are randomly generated in the area outside the small circle but 

within the big circle. Lastly, we created a cluster problem where the customer nodes are grouped 

as clusters. Each cluster has a circle shape with a radius of 125 and none of the clusters are 

overlapping. The last two problems are designed in the way that we can evaluate the solution of 

the routes when the customer nodes are located far away from the depot. In all problem types, we 

restrict that each node must be 20 units apart to prevent a situation in which two nodes locate too 

close or fall into the same location.  

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

Figure 3.5 Different problem types based on the locations of depot and customer nodes. 
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3.5.2 Performance of ADI on Different mTSP Construction Heuristics in the mTSPD 

Since the mTSPD problem is a newly-defined problem, there is no solution approach with which 

we can evaluate the performance of our heuristic framework. One of the ways to evaluate the 

performance of our heuristic is to compare its solution with the solutions obtained by solving the 

mTSPD using MIP which is an exact method. In this section, we evaluate the performance of ADI 

under three proposed mTSP construction heuristics: Genetic Algorithm, Combined K-means / 

Nearest Neighbor and Random Cluster / Tour, simply referred as GA-ADI, K-means ADI, and 

Random ADI accordingly. The experiment was conducted using different sets of instances 

generated from the previous section to evaluate the performance of the ADI and compare its 

solutions with the best solutions from the CPLEX. Let T1, T2, T3, T4 and T5 represent the 

instances of the problem type 1-5 accordingly. For each instance, we set different numbers of 

trucks from one to five. We ran this experiment on 25 customer nodes and 50 customer nodes 

(medium-size problem)0F1. Each combination of instance was run 20 times. With 5 instances, 5 

number of trucks, 3 heuristics and 2 size problem set, we generated 150 tests.  Since the formulated 

mTSPD is NP-hard, CPLEX is not able to obtain the optimal solutions within a reasonable amount 

of time for the medium-size problems. Therefore, we ran CPLEX for one hour (3600 seconds) for 

each instance and compare the results with the results from the proposed heuristic. We report the 

average objective value of each instance for all three heuristics and report the objective value found 

by CPLEX after running for an hour. The results are listed in Tables 3.1 and 3.2. 

 

The results show that both GA-ADI and K-means ADI heuristics can obtain a much better solution 

results in significantly less time compared to CPLEX in both 25 and 50 nodes problem. On average, 

the GAP between these two heuristics and CPLEX is around 32%-34% for 25 nodes problem and 

around 73%-76% for 50 nodes problem. The results from the Random ADI are worse than CPLEX 

in terms of solution quality. It can be seen that both GA-ADI and K-means ADI outperform 

Random ADI which indicates that the use of good mTSP heuristics can improve the quality of 

ADI. Comparing between GA and K-means, the former slightly performs better than the latter by 

providing the lower (better) objective values in most of the instances. We also think that the 

solutions from GA can be improved with the right parameters in various settings. From this 

                                                
1 The generated instances can be accessed via https://github.com/pkitjach/Drone-Problem-Sets under “Medium Size 
Problem” folder 
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experiment, we decide to use GA to create the initial mTSP solution to construct the mTSPD 

solution in other experiments. 

 

Table 3.1 Comparison the results between CPLEX and the ADI performance on different mTSP 
construction heuristics in 25 nodes mTSPD problem 

 

 

Instance 
# 

Trucks 
(m) 

MIP   GA-ADI   K-means ADI   Random ADI 

Obj Time 
(sec)   Min 

Obj 
Avg 
Obj 

Avg GAP 
from MIP  

Avg 
Time 
(sec) 

  Min 
Obj 

Avg 
Obj 

Avg GAP 
from MIP  

Avg 
Time 
(sec) 

  Min 
Obj 

Avg 
Obj 

Avg GAP 
from MIP  

Avg 
Time 
(sec) 

T1 

1 3868 3600  2788 2962.60 -23.41 43.11  2909 3047.55 -21.21 32.52  4693 5277.60 78.14 30.75 

2 2524 3600  1725 1816.05 -28.05 52.25  1646 1795.65 -28.86 40.73  2977 3410.55 87.80 48.90 

3 2135 3600  1350 1451.80 -32.00 65.46  1249 1453.35 -31.93 48.43  2106 2668.30 83.79 61.45 

4 1527 3600  1172 1243.55 -18.56 72.91  1273 1296.35 -15.10 56.17  1810 2262.85 81.97 67.43 

5 1338 3600  1133 1187.80 -11.23 77.93  1136 1199.85 -10.33 62.67  1490 1985.40 67.15 75.50 

T2 

1 5147 3600  2918 3076.10 -40.24 43.67  3170 3258.75 -36.69 29.35  4663 5594.55 81.87 29.37 

2 3916 3600  1887 2084.20 -46.78 53.45  2503 2580.30 -34.11 41.94  2859 3743.45 79.61 48.03 

3 2772 3600  1813 1970.80 -28.90 67.01  1834 2085.20 -24.78 47.76  2574 3101.80 57.39 56.36 

4 2573 3600  1757 1915.30 -25.56 76.78  1831 1957.95 -23.90 64.21  2295 2703.05 41.13 66.26 

5 2555 3600  1768 1842.95 -27.87 80.92  1869 1930.50 -24.44 66.68  2172 2481.70 34.66 70.82 

T3 

1 4130 3600  2349 2518.65 -39.02 40.26  2450 2561.80 -37.97 31.34  4329 4929.00 95.70 32.97 

2 2825 3600  1580 1655.50 -41.40 50.52  1695 1790.20 -36.63 41.07  2514 3059.55 84.81 51.31 

3 1741 3600  1282 1320.50 -24.15 55.14  1177 1270.5 -27.02 47.54  1935 2444.15 85.09 62.97 

4 1974 3600  1111 1155.55 -41.46 61.53  1072 1105.65 -43.99 55.90  1767 2005.40 73.55 71.85 

5 1768 3600  1045 1096.80 -37.96 64.13  1010 1037.65 -41.31 60.78  1376 1804.70 64.54 77.83 

T4 

1 6079 3600  2711 2825.85 -53.51 42.11  2757 2868.80 -52.81 31.92  3884 5592.90 97.92 32.95 

2 3014 3600  1721 1770.00 -41.27 52.12  1732 1765.70 -41.42 39.34  2786 3407.45 92.51 49.46 

3 2178 3600  1376 1441.85 -33.80 66.16  1345 1397.70 -35.83 46.81  2333 2933.80 103.47 58.98 

4 1966 3600  1210 1293.00 -34.23 71.84  1185 1215.95 -38.15 53.88  2082 2553.90 97.52 70.29 

5 1949 3600  1098 1198.95 -38.48 73.53  1167 1169.70 -39.98 54.39  1816 2224.30 85.52 77.77 

T5 

1 3053 3600  2021 2293.10 -24.89 45.09  2080 2329.00 -23.71 29.89  3407 4138.15 80.46 30.84 

2 2379 3600  1287 1317.60 -44.62 54.58  1287 1322.90 -44.39 39.10  2210 2689.75 104.14 46.72 

3 1828 3600  1087 1081.45 -40.84 60.50  1078 1104.35 -39.59 45.67  1792 2149.55 98.77 56.81 

4 1498 3600  957 982.30 -34.43 65.63  907 965.55 -35.54 49.04  1554 1945.10 98.01 68.02 

5 1436 3600   820 846.95 -41.02 71.14   1067 1126.45 -21.56 58.35   1467 1656.15 95.54 58.35 

Mean 
    

   3600 
      

-34.15 60.31 
      

-32.45   47.02 
      

 82.04   56.08 
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Table 3.2 Comparison the results between CPLEX and the ADI performance on different mTSP 
construction heuristics in 50 nodes mTSPD problem    

 

 

3.5.3 Comparison of Different MIP Models and ADI Heuristic on Small-Size Problems 

In this experiment, we want to evaluate the performance of the ADI heuristic when comparing 

with the exact solution from the MIP solver, which is only applicable to small-scale problem 

instances. We test the performance of the mTSP-ADI algorithm on different types of generated 

problems to examine the quality of the solutions. Beside comparing the solutions of the ADI 

heuristic with the optimal mTSPD solutions obtained from the MIP solver, we also compare the 

mTSPD solutions with solutions from the TSP and FSTSP models to evaluate the potential gain 

of implementing mTSPD model over the related last-mile delivery models. We solved all MIP 

formulations using CPLEX to obtain the optimal solution.  

 

Instance Trucks 
(m) 

MIP   GA-ADI   K-means ADI   Random ADI 

   Obj 
  

Time      
(sec) 

  Min 
Obj 

Avg 
Obj 

Avg GAP 
from MIP  

Avg 
Time 
(sec) 

  Min 
Obj 

Avg 
Obj 

Avg GAP 
from MIP  

Avg 
Time 
(sec) 

  Min 
Obj 

Avg Obj 

Avg 
GAP 
from 
MIP  

Avg 
Time 
(sec) 

T1 

1 21766 3600  3712 4049.45 -81.40 92.99  3564 4017.10 -81.54 89.11  9957 10893.3 169.01 86.38 

2 12383 3600  2340 2500.95 -79.80 91.10  2472 2604.15 -78.97 92.21  6101 7177.30 186.98 110.75 

3 10721 3600  1801 2031.30 -81.05 103.69  1779 1971.05 -81.62 101.65  4503 5582.60 174.83 118.90 

4 6421 3600  1580 1778.90 -72.30 117.23  1532 1899.05 -70.42 107.18  3708 4641.90 160.94 128.63 

5 5296 3600  1410 1500.65 -71.66 128.08  1433 1495.95 -71.75 118.45  3221 4093.95 172.81 135.52 

T2 

1 25330 3600  3761 4297.75 -83.03 91.13  4175 4508.50 -82.20 88.45  10746 12091.2 181.34 87.22 

2 12942 3600  2537 2810.35 -78.29 98.80  2693 3041.35 -76.50 86.68  6091 7330.25 160.83 110.04 

3 9293 3600  2287 2428.00 -73.87 104.79  2336 2548.10 -72.58 99.46  5020 5819.15 139.67 121.06 

4 6622 3600  2134 2237.10 -66.22 106.60  2218 2349.40 -64.52 105.59  4194 5204.40 132.64 130.41 

5 5692 3600  2056 2168.50 -61.90 116.79  1970 2104.60 -63.03 111.39  3434 4686.30 116.11 137.83 

T3 

1 24094 3600  3526 3883.65 -83.88 91.17  3751 4027.25 -83.29 102.97  8301 10016.1 157.91 88.25 

2 11826 3600  2078 2310.60 -80.46 90.66  2259 2448.25 -79.30 103.43  4961 6128.70 165.24 113.16 

3 8342 3600  1595 1797.80 -78.45 98.90  1468 1794.18 -78.49 111.54  4127 4910.10 173.12 118.57 

4 6999 3600  1481 1571.40 -77.55 111.05  1406 1576.95 -77.47 111.58  3206 4098.70 160.83 130.23 

5 5469 3600  1250 1406.15 -74.29 124.85  1272 1447.85 -73.53 126.81  2935 3539.30 151.70 142.68 

T4 

1 23201 3600  3344 3541.25 -84.74 94.44  3343 3570.40 -84.61 87.41  9327 11526.7 225.50 86.85 

2 11381 3600  2110 2225.75 -80.44 92.99  2164 2315.15 -79.66 91.75  6135 7063.35 217.35 108.37 

3 8587 3600  1664 1876.40 -78.15 100.64  1791 1858.10 -78.36 96.87  4542 5355.85 185.43 115.76 

4 7306 3600  1537 1591.25 -78.22 111.35  1498 1545.50 -78.85 105.97  3583 4663.45 193.07 131.45 

5 6423 3600  1369 1403.40 -78.15 126.30  1335 1394.25 -78.29 116.59  3053 4046.60 188.34 139.74 

T5 

1 10945 3600  2768 2970.35 -72.86 94.87  3254 3378.75 -69.13 86.03  7635 9032.55 204.09 89.47 

2 6566 3600  1707 1882.65 -71.33 98.76  2964 3155.55 -51.94 109.67  4486 5763.65 206.15 108.32 

3 5281 3600  1442 1511.10 -71.39 105.24  1410 1687.95 -68.04 95.12  3498 4395.40 190.87 117.51 

4 4166 3600  1239 1336.70 -67.91 110.12  1409 1456.40 -65.04 116.29  2975 4106.65 207.22 123.59 

5 3752 3600   1045 1215.30 -67.61 125.02   1394 1447.45 -61.42 117.22   2606 3478.35 186.21 145.15 

Mean 
    

  3600 
      

-75.80 105.1 
      

  -74.02 103.18 
      

176.33 117.03                     
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A collection of 35 test instances2 was generated (7 instances for each problem type, i.e. T1A, 

T1B,…,T1G for Type1 problem). Each instance contains 8 customer nodes and one depot node 

distributed in the area based on the problem type described in the previous Section 3.5.1. For 

mTSPD, we only use one truck in the operation but allow multiple drones in the setting. For FSTSP, 

only one truck and one drone can be used in the operation. Finally, only a truck can be used in TSP 

model. We ran ADI heuristic 20 times for each instance and report the Best Objective, Average 

Objective and Average Time (seconds) of these 20 runs. We also report the Best GAP (%) and 

Average GAP (%) which is the difference between the Best ADI objective and the Optimal 

Objective and the difference between the Average ADI objective and the Optimal Objective, both 

in term of percentage accordingly. We are able to find the optimal objective values for TSP-MIP 

and mTSPD-MIP after a short period of time and report the objective value of the FSTSP-MIP 

solution after running the solver for 3,600 seconds.  

 

The column Best GAP (%) reported in Table 3.4 shows that ADI can find all optimal solutions 

(except in T5D-T5G) while consuming significantly less computational time than the mTSPD MIP 

formulation. The Average GAP is about less than 1% on most instances indicating that the 

algorithm performs quite well in all small-size problems. The results of the comparison among 

different MIP models show that mTSPD outperforms the TSP and FSTSP with a gap value of                

-39.82% and -18.80% on average accordingly. These values indicate that on average the total time 

to complete the delivery by using one truck and multiple drones is 39% faster than the total delivery 

time using the truck alone and around 18.80% faster than the total delivery time using one truck 

and one drone. The gap is calculated by GAP = 100 •¶ß®	©™´¨í	≠ÆTö•¶ß®	™´¨/∞´™´¨	≠ÆT

•¶ß®	™´¨/∞´™´¨	≠ÆT
which is 

shown in the last two rows of Table 3.4.  

3.5.4 Robustness of Proposed Algorithm 

In this section, we want to verify the robustness of the proposed algorithm in various settings. 

Using the same problem instances presented in Section 3.5.3, we ran the ADI on three initial mTSP 

construction heuristics and measure the optimality gap among the three of them. We report the 

GAP for each problem type (T1-T5) on each of the three mTSP heuristics: GA, K-mean/NN and 

                                                
2 The generated instances can be accessed via https://github.com/pkitjach/Drone-Problem-Sets under “Small Size 
Problem” folder 
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Random. Additionally, we ran the algorithm 20 times on each problem, and record the standard 

deviation (STD) of each problem. The results are demonstrated in Figure 3.6 and Table 3.3 below:  

 

 
Figure 3.6 Optimal GAP (%) of ADI on different mTSP construction heuristics 

 

Table 3.3 Relative standard deviation of each problem type among 

Problem 

Type 

 Relative STD (%) 

 GA  
Kmean-

NN 
 Random 

T1  0.51  2.37  7.58 

T2  0.37  0.59  5.69 

T3  1.04  1.74  8.45 

T4  1.79  3.32  6.43 

T5   0.53  0.91  3.36 
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The chart in Figure 3.6 demonstrates that the percentage gap for ADI-GA is zero for all types of 

problems which indicates that the algorithm is able to find the optimal solution in the small-size 

problems. On the contrary, ADI with Kmean-NN performs quite poorly with the optimal gap 

ranging from 0% to 13% depending on the problem type. It is possible that the search starting with 

mTSP solution from Kmean-NN often gets stuck with the local optimal solution and can only 

reach the global optimal solution in only certain types of problems. Lastly, the ADI is actually 

performing quite well when starting with random mTSP solutions in the small-size problem partly 

because of the small search space based on the problem size. From the relative standard deviation 

table, the standard deviation (STD) is relatively small (<2%) compared to the average value for all 

problem types. These STD values are higher for ADI with Kmean-NN and Random heuristics 

accordingly. Therefore, this experiment shows that the ADI-GA algorithm is robust against 

different problem types from the consistent zero optimality gap and small standard deviation. 
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Table 3.4 Comparison of the results obtained from ADI heuristic and different MIP models 
on small-size problems 

 

 

Instance 

  
TSP-MIP 

  
FSTSP-MIP 

  mTSPD 
   MIP  ADI  

  Opt Objective    Objective Time 
(sec)   Objective Time 

(sec)   Best 
Objective 

Best GAP 
(%) Average Average 

GAP (%) 

Average 
Time 
(Sec) 

T1A  2594  1702 3600  1442 111.30  1442 0 1458.35 1.13 4.01 

T1B  2947  1930 3600  1422 60.40  1422 0 1423.65 0.12 4.25 

T1C  2488  1764 3600  1350 62.42  1350 0 1350.00 0.00 4.61 

T1D  2800  1929 3600  1469 63.63  1469 0 1469.00 0.00 7.84 

T1E  2655  1673 3600  1193 112.22  1193 0 1198.30 0.44 5.63 

T1F  1773  1325 3600  1105 83.45  1105 0 1105.00 0.00 5.44 

T1G  2255  1541 3600  1186 67.49  1186 0 1186.00 0.00 7.53 

T2A   2578  2050 3600  1932 85.33  1932 0 1937.90 0.31 5.26 

T2B  3036  2130 3600  1662 92.45  1662 0 1662.00 0.00 5.38 

T2C  2498  2143 3600  1725 87.40  1725 0 1733.95 0.52 5.06 

T2D  2702  2315 3600  1721 76.58  1721 0 1721.00 0.00 5.76 

T2E  2703  2206 3600  1509 67.54  1509 0 1509.00 0.00 4.83 

T2F  2989  2205 3600  1880 73.44  1880 0 1882.85 0.15 5.82 

T2G   2633  2221 3600  1925 74.63  1925 0 1925.00 0.00 8.08 

T3A  2849  1668 3600  1181 86.20  1181 0 1181.00 0.00 5.07 

T3B  2556  2027 3600  1481 73.68  1481 0 1498.85 1.21 5.57 

T3C  1832  989 3600  647 80.30  647 0 647.35 0.05 5.44 

T3D  2383  1650 3600  1261 71.69  1261 0 1272.75 0.93 4.46 

T3E  2324  1589 3600  1148 118.45  1148 0 1148.00 0.00 5.29 

T3F  2615  1642 3600  1426 73.44  1426 0 1426.00 0.00 5.74 

T3G  2576  1710 3600  1509 76.01  1509 0 1512.90 0.26 6.41 

T4A   2479  1880 3600  1613 77.60  1613 0 1636.45 1.45 3.97 

T4B  2625  2054 3600  1563 71.27  1563 0 1575.45 0.80 4.32 

T4C  2005  1543 3600  1481 79.88  1481 0 1498.85 1.21 5.57 

T4D  2428  1726 3600  1548 78.27  1548 0 1552.50 0.29 4.46 

T4E  2348  1848 3600  1589 97.25  1589 0 1613.60 1.55 6.27 

T4F  2699  2123 3600  1426 74.13  1426 0 1426.00 0.00 5.74 

T4G   1942  1667 3600  1358 74.47  1358 0 1360.25 0.17 7.02 

T5A  1405  1136 3600  1066 93.22  1066 0 1066.00 0.00 5.70 

T5B  1322  1059 3600  944 135.60  944 0 944.00 0.00 4.54 

T5C  1322  1015 3600  878 131.76  878 0 878.00 0.00 4.67 

T5D  1348  1190 3600  1133 123.22  1138 0.44 1138.50 0.49 4.68 

T5E  1351  1056 3600  1008 77.90  1014 0.60 1018.55 1.05 4.31 

T5F  1579  1315 3600  1270 95.32  1283 1.02 1287.80 1.40 4.38 

T5G   1518   1383 3600   1188 140.21   1202 1.18 1215.80 2.34 3.75 

      Mean 2290   1697     1378     1379   1385     

GAP(%) 
from TSP   -   -25.89     -39.82 		 		 		 		 		 		 		
GAP(%) 

from FSTSP   34.94   -     -18.80 		 		 		 		 		 		 		



 
 

69 
 

3.5.5 Performance of the Larger Instances on Benchmark Problem 

In this experiment, we evaluate the performance of the ADI heuristic on the well-known 

TSP/mTSP benchmark problems from TSPLIB (Reinelt, 1991) with the min-max objective 

function. Each instance was solved with mTSPD-ADI with the change of the number of trucks {1, 

2, 3 and 5}. We ran 20 replications for each instance with different numbers of trucks. We compare 

the average objective value obtained from the proposed ADI algorithm with the optimal objective 

of min-max TSP/mTSP for each instance. Since the TSP/mTSP does not allow the drone in the 

operation, the purpose of this experiment is to show how much operational time we could save by 

implementing multiple drones along with multiple trucks delivery strategy. We also tested the 

same set of instances with the Adjusted FSTSP heuristic and compared the performance of the 

algorithm with ADI. 

 

The results are shown in Table 3.5. Overall, both the mTSP-ADI and Adjusted FSTSP heuristics 

return lower objectives value than the mTSP optimal values, as indicated by the negative values 

of GAP (%) from Optimal mTSP column. On average, the ADI heuristic returns the average gap 

lower than the min-max TSP/mTSP optimal solution by 20.95%. The gap is calculated by GAP = 

100(
±≤≥	¥w(ö¥§É&Ävu	¥w(	òµ	)ú∂/Ä)ú∂

¥§É&Ävu	¥w(	òµ	)ú∂/Ä)ú∂
). The negative sign on GAP (%) indicates a better objective 

value from the optimal objective of TSP/mTSP on both ADI and Adapted FSTSP Heuristic. 

Similarly, the Adjusted FSTSP heuristic returns the solutions better than the min-max TSP/mTSP 

optimal solutions by 8.14%. This finding demonstrates that assigning drones along with trucks to 

make deliveries is more effective than purely using trucks to make deliveries. Although the 

heuristic might not return the optimal solution, the high average gap still shows that it is more 

beneficial to implement multiple drones in the operation. It can be seen that the effect of drones 

become less significant once the number of trucks increase indicated by the GAP closer to zero. 

In addition, the ADI heuristic obtains a lower gap value than the Adjusted FSTSP heuristic’s gap 

(about 13.84% on average), which can be noticed in the last column of Table 3.5. This value 

indicates that allowing multiple drones in delivery operations can significantly accelerate 

deliveries. In terms of computational time, Figure 3.7a.) shows that the runtime of the ADI 

heuristic rises quickly as the number of nodes increases. Similarly, Figure 3.7b.) demonstrates the 

increase in the runtime once the number of trucks increase on different instances
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      b.) 

Figure 3.7 Run time based on a.) the Runtime v.s. Number of nodes and, b.) The Runtime vs. 
Trucks plot. 
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Table 3.5 Results of the ADI and Adapted FSTSP heuristics solutions on the benchmark problems 

71  

  
 

 

Instance # Trucks 
(m) 

Optimal 
Objective for 
TSP/mTSP 

  

ADI   Adapted FSTSP Heuristic   
GAP (%) 
between  

heuristics 

Avg Obj   GAP (%) from 
Optimal mTSP 

Avg Customers 
served by Drones 

Avg Time (s)   Avg Obj   GAP (%) from 
Optimal mTSP 

Avg Customers 
served by Drones 

Avg Time (s)    

p01 1.00 284.38  203.92 -28.29 5.00 15.03  246.17 -13.43 2.75 7.42  17.16 

gr17 1.00 2085.00  1494.63 -28.31 5.45 18.85  1833.85 -12.05 1.80 7.71  18.50 

fri26 1.00 937.00  732.55 -21.82 8.65 44.35  857.15 -8.52 2.55 9.05  14.54 

dantzig42 1.00 699.00  475.07 -32.04 14.00 80.38  632.61 -9.50 3.70 13.72  24.90 

att48 1.00 33524.00  22485.09 -32.93 16.00 82.87  30291.50 -9.64 3.55 15.92  25.77 

st70  1.00 675.00  475.01 -29.63 23.00 178.57  633.21 -6.19 4.10 43.69  24.98 

eil51 

1.00 426.00  292.35 -31.37 17.00 88.90  380.6 -10.66 3.80 14.27  23.19 

2.00 222.73  173.44 -22.13 16.55 99.93  198.80 -10.74 5.10 15.79  12.76 

3.00 159.57  137.37 -13.91 15.15 132.45  140.10 -12.20 6.60 16.48  1.95 

5.00 123.96  108.64 -12.36 14.25 168.08  109.90 -11.34 8.10 16.57  1.15 

berlin52 

1.00 7542.00  4818.15 -36.12 17.00 97.82  6882.37 -8.75 3.65 24.23  29.99 

2.00 4110.21  3003.30 -26.93 16.40 104.96  3612.04 -12.12 4.75 20.71  16.85 

3.00 3244.37  2508.66 -22.68 15.30 133.25  2704.92 -16.63 6.55 21.60  7.26 

5.00 2440.92  2069.87 -15.20 13.90 198.67  1975.74 -19.06 8.05 21.11  -4.76 

eil76 

1.00 538.00  374.23 -30.44 25.00 197.97  513.59 -4.54 3.80 40.34  27.13 

2.00 280.85  230.83 -17.81 24.55 209.10  278.31 -0.90 5.30 48.27  17.06 

3.00 197.34  185.70 -5.90 23.40 242.00  196.90 -0.22 7.00 57.77  5.69 

5.00 150.30  148.05 -1.50 21.10 326.84  144.48 -3.87 10.40 75.42  -2.47 

rat99 

1.00 1211.00  946.36 -21.85 33.00 437.30  1225.08 1.16 4.25 94.25  22.75 

2.00 728.71  643.71 -11.66 31.70 457.58  736.68 1.09 5.80 157.56  12.62 

3.00 597.55  546.93 -8.47 30.00 507.87  581.67 -2.66 8.05 96.68  5.97 

5.00 531.87   480.72 -9.62 27.35 609.80   487.56 -8.33 11.15 97.29   1.40 

Mean 
  

-20.95 
    

       -8.14 
   

13.84 
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 Conclusion 

In this chapter, we propose a new routing model, the multiple Traveling Salesman Problem with 

Drones (mTSPD), which implements both trucks and drones in the last-mile delivery. The model 

is a variation of the classic TSP problem and the extension of the previous FSTSP model. We 

generalize the FSTSP to the mTSPD in which we allow multiple drones and multiple trucks to 

perform deliveries. The MIP formulation is mathematically constructed to model the mTSPD 

based on the delivery scenario described in Section 3.2. To solve the large-scale instances, we 

develop an Adaptive Insertion algorithm (ADI) which builds up the tours from the initial mTSP 

solution. The algorithm relies on removing an existing node from the route and adds it back to the 

route using three types of insertions. Three types of experiments are conducted to test the solution 

quality of the MIP model as well as the performance of the proposed algorithm. We conduct the 

first experiment by comparing the solutions of the ADI generated from different mTSP heuristics 

in the medium-size generated problems. The result in Section 3.5.2 has shown that the GA and K-

means return the much better objective value than the solutions from CPLEX in terms of both 

solution quality and running time. This experiment leads us to conclude that a good mTSP heuristic 

leads to a better mTSPD solution. In the second experiment, we evaluate the performance of our 

heuristic by comparing its solution with the solutions obtained by solving the mTSPD via MIP 

solver in the small-size generated problems. The result in Section 3.5.3 shows that the mTSPD-

ADI algorithm is able to return the solutions with the best gap equal to zero in all of the problem 

types. By comparing the results of the mTSPD with other existing last-mile delivery models 

(TSP/FSTSP), we can see that the delivery time can be significantly improved by using multiple 

drones in the route planning. Lastly, we conduct a new experiment in which we use our proposed 

heuristic to solve some of the benchmark min-max TSP/mTSP instances from TSPLIB. The 

obtained solutions are compared with the optimal solution of these benchmark problems. We find 

that the algorithm returns solutions with a lower average objective when compared with the 

optimal objective of the truck-only operation on the benchmark instances. In addition, the mTSPD-

ADI returns better solutions than the ones solved by an Adapted FSTSP heuristic. The 

experimental results show that using multiple drones and trucks provides shorter delivery 

completion time than simply using trucks alone, multiple trucks, and a single truck-drone in the 

operation.   
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CHAPTER 4. TWO ECHELON VEHICLE ROUTING PROBLEM 
WITH DRONES  

 Problem Description 

The Two Echelon Vehicle Routing Problem with Drones (2EVRPD) is a variant of a Vehicle 

Routing Problem with the implementation of drones in the operations. The problem aims to find 

the optimal set of routes for a fleet of vehicles to deliver packages to a given set of customers. We 

name this problem 2EVRPD since the problem utilizes the advantages of small (drone) and large 

(truck) vehicles in a delivery system. In the classical 2EVRP, the delivery is divided into two levels: 

where the trucks operate on the first level between a central depot and selected intermediate 

distribution facilities, called satellites and where the secondary vehicles at satellites serve all 

customers at the second level (Cuda et al., 2015). In the first echelon, a fleet of trucks must leave 

a depot, visit customers along the route and return to the same depot. The route constructed by 

each truck is referred to as a truck route. In 2EVRPD, trucks behave like intermediate depots where 

they can launch and retrieve drones at one of the delivery locations. Each truck is equipped with 

drones, which belong to a certain truck specifically. The drone can be launched from the truck and 

make multiple deliveries before returning to the truck. Once launching the drone, the truck can 

simultaneously make other deliveries along the route. Unlike the typical truck-drone delivery 

(FSTSP/TSP-D) where a drone can only make a single delivery and has to return to trucks 

immediately, a drone can make multiple deliveries per trip before returning to the truck which 

creates a drone sub route in each drone trip. All drone sub-routes are categorized as a second 

echelon delivery level. Please note that the termed “multiple drops”, allows drones to make 

multiple deliveries at different customers before merging with trucks. To the best of our knowledge, 

we only see this feature available in drone-only routing problems or truck-only delivery but not in 

the truck-drone synchronized routing problem. This makes the problem much more complex and 

challenging as it integrates two VRPs into one truck-drone delivery routing problem with the 

consideration of the capacities of both trucks and drones as well as the order of launching and 

landing operations. Successful practical application of this feature in the industry could potentially 

bring about cost efficiency and reduce the total delivery time of the last-mile delivery.  
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The 2EVRPD aims at finding a set of both drone and truck routes such that the demand of all 

customers is satisfied and the constraints such as the truck’s capacity, drones load capacity and 

drones battery capacity are not violated, while the total distribution time is minimized. The total 

distribution time is given by the total truck delivery time for all routes. In the 2EVRPD, both 

drones and trucks are capacitated, homogeneous within the same echelon. The fleets of vehicles 

are assumed to be unlimited; however, each truck has limited space to carry only a specific number 

of drones in it. A drone has its own capacity and so does a truck. A drone has a limited amount of 

battery capacity which determines how long it can travel before having to return to trucks for a 

battery swap or a recharge. Each customer has to be served by exactly once either by a truck or a 

drone (i.e., customer demand cannot be split). In addition, the time of both truck and drone at the 

customer locations must be adjusted to be the same. And finally, the drone must be back to the 

truck where it is launched from and it is important to keep track of when the drones are available 

for the launch. There is no limit on how many times drones can be launched but one must complete 

its sub route before initiating a new sub route. Figure 4.1 shows an example of a feasible solution 

for a 2EVRPD. The blue circle represents the depots while the red circles are the customers. The 

routes belonging to the truck’s delivery are represented as solid lines, whereas the routes belonging 

to the drone’s delivery are depicted as dotted lines.  

 Assumptions and Contributions 

4.2.1 Assumptions 

The following assumptions were considered for this problem: 

• Customer coordinates or locations and customer demands are predetermined in 

advance; 

• Drones can only merge with a truck at a customer node and are not allowed to merge  

with a truck in any intermediate location; 

• Trucks and drones must wait for each other whenever one arrives at the customer node  

before the other; 

• Multiple drones can fly simultaneously; however, only one drone can be launched or 

retrieved at each particular node at the same time; 
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• The set-up and recovery times when the drone is launched or retrieved at a particular 

node  can be negligible since their values are small compared to the truck and drone 

travel time; 

• Each truck is allocated to one depot and vehicle capacity limits the number of 

customers       to be served by the depot. Similarly, each drone is specifically assigned 

to a particular truck    and can not be merged with different trucks; 

• The truck and drone do not necessarily follow the same distance metric. 

• All trucks/drones are homogenous and travel at the same speed; and 

• FAA regulations about the visual line-of-sight (VLOS) can be relaxed by allowing a 

first-person-view piloting. 

  

 

 

 

 

 

 

 

   

 

 

 

Figure 4.1 Illustration of the Two Echelon Vehicle Routing Problems with Drones (2EVRPD) 
 

Finding good combined decisions for routing of both trucks and drones while satisfying all the 

constraints is significantly more difficult than the classical capacitated vehicle routing problem 

(CVRP) and other existing routing problems which involve drones. The problem 2EVRPD is 

Depot	
Customer	
Truck	Route	1	
Truck	Route	2	
1st	Drone	Route	1	
2nd	Drone	Route	1	
1st	Drone	Route	2	
2nd	Drone	Route	2	
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considered as a variant of CVRP with a secondary level of delivery and is considered as the 

generalization of the FSTSP and our previous work mTSPD with capacity constraints and multiple 

drops. The 2EVRPD is a generalization of the classical VRP/TSP and is thus by nature an NP-

hard. Mixed-Integer Programming formulation was developed to obtain an optimal solution that 

does work for the small-size problems. Because of the NP-hardness of the 2EVRPD, a heuristic 

approach is implemented to find solutions quickly for the larger-size problems. This study 

proposes two heuristic approaches: 1.) one based on a simple greedy approach called Drone Truck 

Route Construction (DTRC) and 2.) another one based on Large Neighborhood Search (LNS). 

Both were tested with the medium and large-size benchmark instances with the results provided 

in Section 4.5. 

4.2.2 Main Contributions 

In this chapter, we propose a new MIP model and heuristic algorithms to solve a new problem, the 

Two Echelon Vehicle Routing Problems with Drones (2EVRPD). The main contributions of this 

paper are the following:  

1. We introduce a Mixed-Integer Program (MIP) formulation for the 2EVRPD. The model 

might be solved by any standard MILP solver, e.g., GAM and IBM CPLEX. They can 

handle small-size problems. 

2. We propose two heuristics to solve 2EVRPD: 1.) Drone Route Construction (DTRC) and 

2.) metaheuristic based on Large Neighborhood Search. In particular, DTRC generates an 

initial 2EVRPD solution from the VRP solution. The LNS will repeatedly search for a 

better solution using three destroy operators and three repair operators.  

3. We conduct the numerical experiments and sensitivity analysis on different types of 

problems using both MIP and heuristics approaches. The small-size problems can be solved 

directly by the MIP solver and the large-size problems can be solved by DTRC and LNS. 

The results are compared with the classical VRP optimal solutions and other TSP/VRP 

with drones routing models on the CVRP benchmark problems.   

 

Through our numerical study, the results show that the application of drones combined with trucks 

can significantly reduce the total travel time which makes them a valuable prospect for future last-

mile delivery applications. 
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 Mathematical Formulation 

The 2EVRPD is defined on a directed graph G = (V, E), where V is the set of n nodes representing 

customers with one depot and E is the set of arcs. Unlike the typical 2EVRP where the set of edges 

E is divided into two subsets, representing the first and the second echelon respectively, both 

echelon levels use only one set of edges E. Let 	"#,%& 	be a truck travel time associated with E, ', ( ∈

* and 	"#,%+ 	be a drone travel time associated with E, ', ( ∈ *. Differentiating the travel times for 

the truck and drone accounts for each vehicle’s unique travel speed. The 2EVRPD is said to be 

symmetric if 	"#,%& = 	 	"%,#&  and 	"#,%+ = 	 	"%,#+  and asymmetric otherwise. The travel times for truck and 

drone matrix satisfies the triangle inequality 	"#,-& +	"-,%&  ≥		"#,%& .  

A fleet of K homogeneous trucks, defined as a set of K = {1, 2, 3, 4,..k}, with capacity Q is located 

at the depot. The maximum number of KD homogeneous drones, defined as a set of KD = {1, 2, 

3, 4,..kd}, with the capacity Qd is attached along with each truck. The total length of a drone route 

in each launch does not exceed a preset limit B (Battery life). In our model, the fleet size of trucks 

and the number of drones in each truck are given a priori. Denote the set of customer nodes by 

. = 1, 	2, 	3, 	4, 	5, 	6, … , 6 . As for the depot, we assign it to two unique node numbers at 0 8 , 

the starting depot, and 0 9 , the ending depot.  Set .: = . ∪ 0 8  as the set of customer nodes 

including the starting depot and set .< = . ∪ {0 9 } as the set of customer nodes including the 

ending depot. Each customer i (i = 1, . . . , n) is associated with a known nonnegative demand, ?# , 

to be delivered, and the depot has a fictitious demand ?@ = 0. The customer demand can be satisfied 

by either truck or drone delivery.  

We define the following decision variables: Let A#,%- 	equal to 1 if a truck k travels along the arc (i, 

j) ∈ E and 0 otherwise. This refers to the situation when the truck travels from node i ∈ .: to j ∈

.< where i≠j. Let 	C#,%
-D,- equal to 1 if a drone kd of truck k travels along the arc (i, j) ∈ E and 0 

otherwise. This refers to the situation when a drone is launched from node i ∈ . to node j ∈ . 

(making a delivery at a customer node) or when a drone is launched from node i ∈ . to merge with 

a truck at node j ∈ . (recharging/swapping a battery at the truck). Let EF#- equal to 1 a truck k 

serves customer node i and 0 otherwise. Similarly, let E?#
-D,- equal to 1 if a drone kd of truck k 

serves customer node i and 0 otherwise. 
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We denote the variable GF%- as the truck k arrival time at node j ∈ .< and HF%
-D,-as the drone kd of 

truck k arrival time at node j ∈ .<. GF%- and	HF%
-D,-are the arrival times of the truck and drones at 

node j respectively. We also define variable JKF#
-D,-to keep track of the battery consumption of a 

drone kd of truck k at node i. JKF#
-D,-will be reset to zero whenever a drone returns to a truck. 

Similarly, a variable LMK?#
-D,-is defined to specify the total load (including that at node i) serviced 

by drone kd of truck k by the time it reaches customer node i. Lastly, we define other the 

auxiliary decision variables including 1.) N#-  which is used in the VRP sub tour elimination 

constraints (Desrochers & Laporte, 1991), 2.) OK#
-D,-which is used to indicate status whether a 

drone kd of truck k can be launched from node i or not, and 3.) P?Q&P?R which is used to indicate 

whether there is any drone arc coming out from node i and entering node i accordingly. All the 

mentioned notations can be summarized as follows.  

Indices  

 

', ( Represent customers, and depot index 

S Represent truck index 

S? Represent drone index 

 

Sets  

 

. Set of customers, 1, 	2, 	3, 	4, 	5, 	6, … , 6  

.: Set of customer nodes including the starting depot, . ∪ 0 8  

.< Set of customer nodes including the ending depot, . ∪ 0 9  

H Set of demands for all customers, {?Q,	?R, ?T,…,	?U} 

V Set of trucks, {1,2,3,…,k} 

VH Set of drones, {1,2,3,…,kd} 

 

 

 



 
 

79 
 

Parameters 

"#,%&  Truck travel time between nodes i and j 

"#,%+  Drone travel time between nodes i and j 

6 Number of total customers to be served 

W Truck capacity (Same for all trucks) 

W? Drone capacity (Same for all drones) 

J Battery limit (Drone’s battery life) 

?# Customer demand at each node i 

  

Variables 

z The sum of all trucks arrival times at the depot 

A#,%-  1 if a truck k traverses arc (i, j) from customer i to customer j; otherwise, 0 

C#,%
-D,-  1 if a drone kd of truck k traverses arc (i, j) from customer i to customer j; 

otherwise, 0 

EF#- 

E?#
-D,- 

1 if a truck k serves customer node i ; otherwise, 0 

1 if a drone kd of truck k serves customer node i ; otherwise, 0 

GF%- Truck k arrival time at node j 

HF%
-D,-	 Drone kd of truck k arrival time at node j 

JKF#
-D,- The battery consumption of a drone kd of truck k at node i 

LMK?#
-D,- The amount of load that a drone kd of truck k carries 

OK#
-D,- The state of node i which can launch a drone kd of truck k 	

(0 if launchable state, 1 unlaunchable state) 

X?1# 1 if there is a drone arc coming out from node i; otherwise, 0 

X?2# 1 if there is a drone arc entering node i; otherwise, 0 

N#- Auxiliary variable for VRP subtour elimination constraints 
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The proposed MIP formulation of 2EVRPD is presented as follows. 

Objective 

 

minimize X (1) 

The objective function	(1) minimizes the total truck arrival time of trucks at the depot. 

 

Subject to 

 

X = GF:(`)-

-∈a

 (2) 

Constraint (2) straightforwardly represents the sum of each truck arrival time at the depot. 

 

 

E?#
-D,-

-D∈a+

+ 	 EF#-
-∈a-∈a

= 1; 	∀' ∈ .	 (3) 

Constraints (3) ensure that each customer will receive the package either by a drone or 

truck. It restricts each customer to be visited exactly once by exactly one vehicle. 

 

A:(e),#-

#∈fg

= 1; 	∀S ∈ V	

	

	

	

(4) 

A#,:(`)-

#∈fh

= 1; 	∀S ∈ V (5) 

Constraints (4) and constraints (5) impose that each truck must depart from and arrive at 

the depot. 

 

 

A#,%- = A%,#-
%∈fh

= EF#-; 	∀' ∈ .,			∀S ∈ V
%∈fg

 (6) 
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Constraints (6) ensure the flow conservation of the truck route at each node i, which 

guarantees that whenever the truck k arrives at a node, it must depart from the node as 

well. 

E?%
-D,- C%,#

-D,-

#∈f

− 1 = 0; ∀( ∈ ., 	∀S ∈ V, ∀S? ∈ VH 
 
(7) 

E?%
-D,- C#,%

-D,-

#∈f

− 1 = 0; ∀( ∈ ., ∀S ∈ V, ∀S? ∈ VH 

Constraints (7) and constraints (8) define that if a drone kd of truck k makes a delivery at 

node j, there must be exactly one arc from this assigned drone entering node j and exactly 

one arc from this drone departing node j. These sets of constraints ensure the flow 

conservation of a drone arc at the customer node j. 

 

 
(8) 

C#,%
-D,-

%∈f-∈a

≤ 1; 	∀' ∈ .
-D∈a+

 (9) 

C%,#
-D,-

%∈f-∈a

≤ 1; 	∀' ∈ .
-D∈a+

 10  

Constraints (9) and (10) ensure that only a single drone is allowed to travel from and to 

node i. Without these sets of constraints, it can occur the scenario where two drones travel 

from and to the node i. 

 

 

C#,%
-D,-

%∈f

X?1# − 1
-∈a

= 0; 	∀' ∈ .
-D∈a+

 11  

C%,#
-D,-

%∈f

X?2# − 1
-∈a

= 0; 	∀' ∈ .
-D∈a+

 

 

 

(12) 
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Constraints (11) impose that if a drone departs from node i, the auxiliary variable X?1# 

must equal to 1. Similarly, constraints (12) impose that if a drone enters node i, the 

auxiliary variable X?2# must equal to 1 as well. 

 

C#,%
-D,-

-D∈a+%∈f

≥ 1 −o 2 − EF#- − X?1# ; 	∀' ∈ ., ∀S ∈ V (13) 

C%,#
-D,-

-D∈a+%∈f

≥ 1 −o 2 − EF#- − X?2# ; 	∀' ∈ ., ∀S ∈ V (14) 

Continuing from constraints (11) and (12), constraints (13) impose that if the customer 

is served by truck at node i, and there is a drone arc leaving node i, node i is categorized 

as a launching node, where a drone is launched from. Constraints (14) impose that if the 

customer is served by truck at node i, and there is a drone arc entering node i, node i is 

categorized as a landing node, where a drone lands at. While constraints (7) and (8) 

preserve the flow conservation of customer node i that is served by a drone, constraints 

(11) to (14) ensure that a drone can land and be launched from a truck which represents 

the scenario which a drone merges with a truck to retrieve the new load and get a battery 

swapped.   

 

 

C#,%
-D,-	≤ 2 − EF#- + EF%- ; 	∀', ( ∈ ., 		∀S ∈ V, 		∀S? ∈ VH	

Constraints (15) ensure that a drone can not to travel directly from node i to node j where  

node i and node j are already served by truck. 

  

The sets of constraints (16) to (23) guarantee the correct order of launching and landing 

operations. A drone can only be launched if it has never be launched before or was 

previously launched and already returned to receive a service at the truck. The constraints 

ensure that the same drone can not be launched from the same truck if it was previously 

launched and have not returned yet. 

(15) 
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OK#
-D,- C%,#

-D,-

%∈f

= 0; ∀' ∈ p, ∀S ∈ V, ∀S? ∈ VH	
 
(16) 

OK#
-D,- C#,%

-D,-

%∈f

= 0; ∀' ∈ p, 	∀S ∈ V, ∀S? ∈ VH 

Constraints (16) and (17) impose that a drone is not allowed to be launched or land at the 

node i once the auxiliary variable OK#
-D,- is equal to 1 and vice versa. 

	
(17) 

OK%
-D,- ≥ 1 − o 2 − A#,%- − C#,q

-D,-

q∈f
qr%

+ OK#
-D,- + Ce,%

-D,-

e∈f
er#

; ∀', ∀( ∈ ., 	∀S ∈ V, ∀S?	 ∈ VH 

 
 
(18) 

OK%
-D,- ≤ 1 + o 2 − A#,%- − C#,q

-D,-

q∈f
qr%

+ OK#
-D,- + Ce,%

-D,-

e∈f
er#

; ∀', ∀( ∈ ., 	∀S ∈ V, ∀S?	 ∈ VH 

 
	
(19) 

OK%
-D,- ≥ 1 −o 2 − A#,%- − OK#

-D,- + Ce,%
-D,-

e∈f
er#

; 	; ∀', ∀( ∈ ., 	∀S ∈ V, ∀S? ∈ VH 
	
(20) 

OK%
-D,- ≤ 1 +o 2 − A#,%- − OK#

-D,- + Ce,%
-D,-

e∈f
er#

; 	; ∀', ∀( ∈ ., 	∀S ∈ V, ∀S? ∈ VH 

Constraints (18) to (21) ensure that if the drone is launched from node i and has not 

returned at node j, then the auxiliary variable OK%
-D,-must be equal to 1, the state which 

no arc drone leaves or enters node j. Constraints (18) and (19) deal with the case that the 

drone is launched from node i, and the truck travels from node i to node j at which the 

drone has not yet returned. Constraints (20) and (21) deal with the case when the drone 

was previously launched (not able to be launched at node i again) and has not returned 

to the node j where the truck is making a delivery at yet.  

	
(21) 
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OK%
-D,- ≥ −o 2 − A#,%- − Ce,%

-D,-

e∈f
er#

; 	∀', ∀( ∈ ., 	∀S ∈ V, ∀S? ∈ VH 

 
(22) 

OK%
-D,- ≤ +o 2 − A#,%- − Ce,%

-D,-

e∈f
er#

; 	∀', ∀( ∈ ., 	∀S ∈ V, ∀S? ∈ VH 

Constraints (22) to (23) ensure that if the drone returns to node j where a truck k serves 

its customer, then the auxiliary variable OK%
-D,-must be equal to 0, the state which an arc 

drone can leave or enter the node j. 

 

	
(23) 

LMK?%
-D,- ≥ LMK?#

-D,- + H% − o 1 − C#,%
-D,- + EF%- ; 	∀', ∀( ∈ ., 	∀S ∈ V, ∀S? ∈ VH	 (24) 

LMK?%
-D,- ≤ LMK?#

-D,- + H% + o 1 − C#,%
-D,- + EF%- ; 	∀', ∀( ∈ ., 	∀S ∈ V, ∀S? ∈ VH (25)	

LMK?#
-D,- ≤ W?;	∀' ∈ p, 	∀S ∈ V, ∀S? ∈ VH	

The sets of constraints (24) to (25) deal with the load of each drone to ensure that the 

amount of drone’s load is updated whenever a drone makes a delivery at a customer node 

j. The load will be reset to zero when a drone flies back to receive service or a battery 

swap at any truck customer node. Constraints (26) require that the load must be less than 

the drone’s capacity (Qd). We initialize the load for each drone at each truck to be equal 

to zero at the depot. 

(26) 

 

JKF%
-D,- ≥ JKF#

-D,- + "#,%+ − o 2 − C#,%
-D,- − E?#

-D,- ; 	∀', ∀( ∈ ., ∀S ∈ V, ∀S? ∈ VH 

 
 
(27) 

JKF%
-D,- ≤ JKF#

-D,- + "#,%+ + o 2 − C#,%
-D,- − E?#

-D,- ; 	∀', ∀( ∈ ., ∀S ∈ V, ∀S? ∈ VH 

Constraints (27) and (28) update the drone’s battery consumption whenever a drone 

travels from a drone customer node i and make a delivery at a customer node j. 

 

(28) 
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JKF%
-D,- ≥ "#,%+ − o 2 − C#,%

-D,- − EF#- ; 	∀', ∀( ∈ ., ∀S ∈ V, ∀S? ∈ VH (29) 

JKF%
-D,- ≤ "#,%+ + o 2 − C#,%

-D,- − EF#- ; 	∀', ∀( ∈ ., ∀S ∈ V, ∀S? ∈ VH 

Similarly, constraints (29) and (30) keep track of the drone’s battery consumption in the 

case when the drone is initially launched from the truck. 

(30) 

 

JKF#
-D,- ≤ J; ∀' ∈ p, 	∀S ∈ V, ∀S? ∈ VH 

Constraints (31) ensure that the amount of battery consumption of each drone must be 

less than its drone’s battery limit at any point in time. 

 

 
 
(31) 

H#
#∈f

EF#- + H#(E?#
-D,-) ≤ W; ∀S ∈ V 

-D∈a+#∈f

 

Constraints (32) enforce that the total delivery loads of both truck and drone combined 

must be less than the truck capacity at each truck route k. 

 

(32) 

C#,%
-D,-

%∈f

GF#- − HF#
-D,- = 0; 	∀' ∈ .:, ∀S ∈ V, ∀S? ∈ VH (33) 

C%,#
-D,-

%∈f

GF#- − HF#
-D,- = 0; 	∀' ∈ ., ∀S ∈ V, ∀S? ∈ VH 

Constraints (33) state that the departure time of drones and trucks must be the same. Also, 

once the drone and truck are in the same node, they must wait for each other before each 

of them can leave the node (Murray and Chu, 2015). Similarly, constraints (34) ensure 

that the arrival time of both truck and drone will be the same when they merge at the 

same node. These sets of constraints are based on the assumption that if either the drone 

or truck arrives earlier than the other, the earlier one has to wait until the later one arrives 

(both constraints are binding, resulting in the same arrival time of both truck and drone). 

(34) 
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GF%- ≥ GF#- + "#,%& − o 1 − A#,%- ; 	∀' ∈ .:, ∀( ∈ .<, ∀S ∈ V (35) 

HF%
-D,- ≥ HF#

-D,- + "#,%+ − o 1 − C#,%
-D,- ; ∀', ∀( ∈ ., ∀S ∈ V, ∀S? ∈ VH 

Constraints (35) keep track of the arrival time of the truck at every node. It adds the truck 

travel time to the previous customer node when the truck travels from one customer node 

to another customer node. Similarly, constraints (36) keep track of the arrival time of the 

drone at the node to which the drone returns after making a delivery. 

(36) 

 

N#- −	N%- + W(A#,%- ) ≤ Q − H%; 	∀', ∀( ∈ . ∪ .: ∪ .<, ∀S ∈ V 

 

(37) 

H# ≤ N#- ≤ Q	; 	∀', ∀( ∈ . ∪ .: ∪ .<, ∀S ∈ V 

Constraints (37) and (38) are sets of the Desrochers and Laporte (DL) sub tour 

elimination constraint which ensures that there is no sub tour in all tours of the trucks 

(Desrochers & Laporte, 1991). 

(38) 

 

At Initial State (Time = 0) 

 

JKF#
-D,- = 0, LMK?#

-D,- = 0, GF#- = 0, 	HF%
-D,- = 0 ∀' ∈ p, ∀( ∈ p, ∀S ∈ V, ∀S? ∈ VH 

The set of constraints (39) set the initial departure time of drones and trucks as well as 

the battery consumption and load at time zero to be zero for all nodes i, all drones kd 

and all trucks k. 

 

 

 

(39) 

A#,%- 	 ∈ 	 0,1 				∀', j	 ∈ . ∪ .: ∪ .< (40) 

C#,%
-D,- ∈ 0,1 				∀', j, k	 ∈ . (41) 

EF#- ∈ 0,1 	, E?#
-D,- ∈ 0,1  ∀' ∈ ., ∀S ∈ V, ∀S? ∈ VH (42) 

GF%- ≥ 0, HF%
-D,- ≥ 0, JKF#

-D,- ≥ 0, LMK?#
-D,- ≥ 0			∀' ∈ . ∪ .: ∪ .<, ∀S ∈ V, ∀S? ∈ VH (43) 

OK#
-D,- ∈ 0,1 ,  X?1# ∈ 0,1 , X?2# ∈ 0,1  	∀' ∈ ., ∀S ∈ V, ∀S? ∈ VH (44) 
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Constraints (40–44) specify the types and ranges of the variables. Note that the M value 

must be large enough. Thus, we can use the total time of all the delivery routes made by 

trucks alone. i.e., solve a regular CVRP. 

 Solution Methods 

Mixed Integer Programming (MIP) formulations (1) through (44) for 2EVRPD have been 

developed and presented in the previous sections. Although we are able to obtain the exact optimal 

solutions to small-size problems (less than 10 nodes) with the CPLEX solver, solving the larger- 

size problems could take too much time to obtain the exact solution. In this section, we describe 

how to solve the defined problem within the practical time frame using two proposed heuristics: 

Large Neighborhood Search (LNS) and Drone Truck Route Construction (DTRC). 

4.4.1 Drone Truck Route Construction Heuristic 

Drone Truck Route Construction is considered as a constructive heuristic which gradually builds 

a feasible solution while keeping an eye on solution cost. The structure of an algorithm composes 

of two phases. The first phase includes the process of building a solution for the Capacitated VRP 

using fast and efficient classical heuristics. The second phase is to construct a feasible drone sub 

route within the truck main route while maintaining the feasibility constraints such as battery life, 

capacity and the order of launching and landing operation. We intend to implement Drone Truck 

Route Construction (DTRC) to obtain the solution for 2EVRPD using short computational time. 

Algorithm DTRC shows the basic structure of the proposed method. 

  



 
 

88 
 

Input parameters 
 
Trucks, Drones, All Nodes, Demand, Travel Time, Capacity, Battery 
 
 
Variables 
 
u	vwxy: Solution of Capacitated Vehicle Routing Problem 
 
u	Rz{|}+: Solution of Two Echelon Vehicle Routing with Drones 
 
Route: The truck delivery path as well as drone delivery path 
 
RemainN: This variable keeps track of the unvisited nodes 
 
LandingN: This variable keeps track of the landing nodes 
 
Available Drones: The set of available drones that can be selected for launching 
 
Drone: The selected drone from Available Drones 
 
Next Drone Delivery Node: The selected customer node to be served by drone 
 
Next Truck Delivery Node: The selected customer node to be served by truck 
 
Drone Bat: The cumulative amount of battery that a drone consumes 
 
Drone Load: The cumulative amount of load that a drone carries 
 
		~: Ratio of 

�
Ä

 ; where � is the distance between the current drone node and an unvisited node 
 										Ä is the current drone load plus the demand of an unvisited node          

4.4.1.1 CVRP Solution 

The Capacitated Vehicle Routing Problem (CVRP) is a Vehicle Routing Problem with additional 

constraints on the capacities of the vehicles. In a CVRP, each location has a demand, such as 

weight or volume, corresponding to the item to be picked up or delivered there. In addition, each 

vehicle has a maximum capacity for the total quantity it can carry. To quickly obtain the CVRP 

solution, we adopt the Clarke and Wright Saving Algorithm (Clarke and Wright, 1964), which is 

by far the best-known approach and yet conceptually simple yields reasonably good solutions to 

the CVRP problem (Laporte, 2009).  
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Algorithm: DTRC. 

Input: Trucks, Drones, All Nodes, Demand, Travel Time, Capacity, Battery 

Output: u	Rz{|}+ 

1. Generate u	vwxy using Savings (Truck, Nodes, Demand, Travel Time) 

2. For Route ∈ u	vwxy 

3.        Set RemainN = {All nodes in Route} 

4.        Initialize 1st Launch Node = 1st Truck Node in Route, LandingN = []; 

5.        While RemainN ∉ ∅ 

6.                   Select Drone from Available Drones = {1,2,…kd}  

7.                   If Available Drones == ∅, proceed to line (17), else 

8.                         Update Available Drones = Available Drones ∖	Drone  

9.                         Repeat 

10.                               Choose Next Drone Delivery Node ←	min 	~ 

11.                               Update Drone Bat, Drone Load, Route 

12.    Update RemainN = RemainN – {Next Drone Delivery Node} 

13.                       Until  Drone Load ≥ Drone Capacity || Drone Bat ≥ Battery 

14.                               Update LandingN =  LandingN ∪ Last Drone Delivery Node 

15.                       End Repeat 

16. End If 

17.                 Choose Next Truck Delivery Node ← min� from RemainN ∪ LandingN 

18.                 Update Route, RemainN = RemainN - Next Truck Delivery Node 

19.                              If Next Truck Delivery Node == LandingN 

20.                                  Reset H9M6Ö	LMK?+`@UÜ, H9M6Ö	JKF+`@UÜ = 0 

21.                                  Available Drones = Available Drones ∪ Drone 

22.     End If  

23.        End while 

24.        Return u	Rz{|}+ for each Route 

25.  End For 

26.  Return u	Rz{|}+ 
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The Saving algorithm uses the following steps: 

1. Create n truck routes (0,	' ,0) for ' = 1,…,	6  

2. Compute the savings 8#,%= á#,: + á:,% − á#,%	for ', ( = 1,…,	6.  

3. List the savings in the descending order 

4. Starting from the top of the savings list, merge two routes associated with the largest 

savings, given that: 

    Two delivery nodes are not in the same route 

    The two nodes must directly connect to the depot, e.g. (0, () and (', 0) 

    The total demand of the merged route must not exceed the truck capacity 

5. Repeat step (4) until no savings can be used. 

After obtaining the CVRP solution from the Saving Algorithm, we apply some well-known local 

search such as, 2 opt, simple relocate and swap move (Gendreau, 2008), to improve the solution 

quality. This completes the first phase of the algorithm (Line 1.) 

4.4.1.2 Drone Route Construction 

Using the CVRP solution obtained from the Saving Algorithm, we gradually build up the new 

truck routes and drone sub-routes to generate a feasible 2EVRPD solution. The heuristic would 

eliminate a non-feasible solution while constructing the route during this phase. For each truck 

route, we implement a famous modified Nearest Neighbor (NN) Algorithm to build a complete 

drone route. The algorithm constructs multiple sub drone routes within each of the truck route until 

no more drone route can be constructed. The Drone Route Construction steps can be provided in 

details as follows: 

 
Step 1: For each truck route obtained from the CVRP solution, select the initial truck node 

where the drone can be launched. The initial node is usually the node that is located 

closest to the depot (Line 2-4). 

 

Step 2: Select one of the available drones to be launched and then select one of the truck nodes 

as a drone delivery node. Unlike the traditional NN which selects the next visited node 

based on the ranking of the distance between the current node and an unvisited node, 
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we rank the next unvisited node using the ratio ~ = 	 �
Ä

 where �  is the distance 

between the current drone node 

� =	∥ pM?Öâä``ÜUã − pM?Ö# ∥ ; ∀' ∈ å6ç'8FÖ?	Nodes 
 

and an unvisited node, and Ä is the current drone load plus the demand of an unvisited node. 
 

Ä = LMK?âä``ÜUã + ?# ; ∀' ∈ å6ç'8FÖ?	Nodes 
 
The node with the lowest ~ (highest rank) will be selected as the drone delivery node. We 

use this ratio because it is intuitively more efficient for a drone to drop a heavy package at a 

closer distance to preserve more energy, which should be prioritized first (Line 10). 

 

Step 3: Remove the selected drone delivery node from the truck route and add it to the drone 

route. Update the drone’s battery consumption and load (Line 11,12). 

 

Step 4: Repeat steps 2 & 3 for the same drone until no other nodes can be selected due to 

either 1.) the drone’s load exceeds its capacity or 2.) drone’s energy consumption 

exceeds its capacity. The last customer node in a drone route is called “landing node”. 

 

Step 5: At the current truck node, select the next available customer node for a next truck 

delivery from 1.) the remaining nodes that have not been previously selected to be in 

the drone route yet or 2.) the landing node from any drone route. If the latter is 

selected, we obtain a complete drone route and this drone will be available for the 

new selection in the next iteration (Line 19-21). Otherwise, we can select the next 

customer node to be served by a truck and can consider choosing one of the 

remaining drones to create another drone route. Please note that we simply select the 

node which has the closest distance to the current truck node (min �).   

 

Step 6: Repeat steps 2 – 5 until no drone can be selected and we have a complete truck route 

returning back to the depot. Complete the same steps for all the routes in the CVRP 

solution. 

 



 
 

92 
 

Figure 4.2a.) to 4.2d.) represent the graphical examples of steps 1-6 on phase 2 of DTRC heuristic. 

 

a.)  

 
 

b.) 

  

Figure 4.2 Example of the phase 2 of DTRC algorithm. a.) Illustration of Initial CVRP solution, 
b.) Illustration of 4th iteration in phase 2 of DTRC, c.) Illustration of 8th iteration in phase 2 of 

DTRC d.) Illustration of 10th iteration in phase 2 of DTRC
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Figure 4.2 continued 

c.)  

 
 

 
 

d.)  
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4.4.2 Large Neighborhood Search 

The proposed metaheuristic follows the basic structure of the Large Neighborhood Search 

proposed by Paul Shaw in 1998 (Shaw, 1998). LNS is based on a process of continual relaxation 

and re-optimization. An initial feasible solution of the problem is destroyed and repaired 

iteratively to gradually improve the solution quality. For the typical VRP, the solution is relaxed 

when nodes are removed from the solution routes and the solution is re-optimized by reinserting 

the nodes back into the routing solution. The framework of LNS has recently been used to 

successfully solve multiple variants of Vehicle Routing Problems (Pisinger and Ropke, 2010). In 

a complex problem like VRP, the classical algorithm makes it quite difficult to walk away from 

the local optimal solution and provides a limited search space. LNS offers a large move that could 

expand the solution search space by disintegrating a large part of the previous solution and give 

the freedom to create a new one (Schrimpf et al., 2000). Since our proposed model has many side 

constraints such as, order of launching and landing operation as well as time adjustment for both 

truck and drone, it would be more applicable to implement LNS to our problem rather than using 

standard local search move operators. Algorithm LNS-2EVRPD shows the basic structure of the 

proposed LNS for 2EVRPD. 

 

Algorithm: LNS-2EVRPD 

Input: Trucks, Drones, All Nodes, Demand, Travel Time, Capacity, Battery 

Output: uéÜeã  

1. Generate	uéÜeã ← ufä``ÜUã ←	DTRC (Truck, Drones, Nodes, Demand, Travel Time) 

2. Initialize F'èÖ = 0, ' = 0 

3. Repeat 

4.     While ' ≤ 	 'êëí 

5.  Enter Destroy Phase 

6.               u&Üêì+Q ←	Call Drone node removal (ufä``ÜUã) 

7.               u&Üêì+R ←	Call Truck node removal (u&Üêì+Q) 

8.               u&Üêì+T ←	Call Sub-drone route removal (u&Üêì+R) 

9.          Enter Repair Phase 

10.             u&Üêì|Q ←	Call Drone node insertion (u&Üêì+T) 

11.             u&Üêì|R ←	Call Truck node insertion (u&Üêì+T) 
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12.             u&Üêì|T ←	Call Drone route creation (u&Üêì+T) 

13.        Select u&Üêì = min (u&Üêì|Q, 	u&Üêì|R, 	u&Üêì|T) 

14.        If Cost (u&Üêì) < Cost (ufä``ÜUã) 

15.             ufä``ÜUã 	← u&Üêì 

16.             ' = 0 

17.        Else 

18.            	' = ' + 1  

19.        End If 

20.    End While 

21.    If Cost (ufä``ÜUã) < Cost (uéÜeã) 

22.        uéÜeã 	← ufä``ÜUã  

23.        ' = 0 

24.    Else  

22.        ufä``ÜUã ←	DTRC (Truck, Drones, Nodes, Demand, Travel Time)  

23.        ' = 0 

24.    End If 

26. Until F'èÖ ≥ F'èÖêëí 

26. Return uéÜeã 

 

The proposed algorithm starts by generating an initial solution from all inputs previously 

mentioned in the earlier section. This initial solution will be stored as a current solution as well as 

the global best solution (Line 1). At each iteration, a partial solution destruction is performed 

sequentially using three destroy operators on the current solution routes, then the destroyed 

solution is repaired by the repair operators (Line 6 – Line 12). The best repair solution will be 

selected and recorded as the temporary solution (Line 13). If the objective of a temporary solution 

is lower than the one from the current solution, we accept the new current solution and the index i 

is reset to 0 (Line 14-16). Otherwise, we still keep the old current solution and perform another 

round of destroy-repair operation to the temporary solution. We keep improving the current 

solution until the index i reaches 'êëí . Then, we compare the objective between the current 

solution and the global best solution. If the current solution provides a lower objective value, we 

accept and update the new global best solution (Line 21-23). If there is no objective improvement 

after a large number of iterations, then the algorithm will restart from a new initial solution (Line 
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22). We repeat the same steps until the F'èÖ ≥ F'èÖêëí and return the best solution. All different 

types of destroy operators and repair operators will be described in the next section.  

4.4.2.1 Initial Solution 

Since the 2EVRPD is a new derived problem, which has the solution structure different from other 

VRP or 2EVRP solution, we can not find any specific algorithm that could apply to generate a 

solution for our problem directly. As of now, we generate the initial solution using our Drone 

Truck Route Construction Heuristic (DTRC) described in the previous section. Due to some 

randomness in DTRC, the initial solution we generate in each run could increase the area of search 

space in LNS. 

4.4.2.2 Destroy Operators 

Our algorithm relies on three different destroy operators which are all invoked at each iteration in 

sequential order. They are applied to both drone delivery nodes and truck delivery nodes. All of 

them select different types of nodes from the current solution. When applicable, all random 

samples are uniformly distributed within their given interval. The operators are presented in the 

sequential order of execution as follows.  

Drone node removal: This operator removes customer nodes who are currently served by drones 

in the route and add them to the re-insert list. We assign a parameter ïQ , which denotes the 

percentage of drone nodes to be removed. In each iteration, we allow ïQ ∙ .óUòô	+`@UÜ	  nodes to 

be removed, with .óUòô	+`@UÜ	being the set of customer nodes who receive deliveries by drones 

only. Each removed node is selected randomly. The operator accepts two inputs: the current 

solution route and the set of drone nodes to be destroyed and, return the updated route after 

removing the drone nodes. If all customer nodes in one of the sub drone routes are removed, the 

truck customer nodes which previously launched and retrieved a drone will become available for 

launching and retrieving any available drone.  

Truck node removal: This operator removes customers who are served by trucks from the current 

route solution and add them to the re-insert list. This operator, however, does not consider 

removing the truck node which performs either launching or landing operation since doing so 

would consequently erase the entire sub drone route associated with the particular truck node. 
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Please note that we have also created another operator that deals with the sub-drone route removal 

directly and will be described subsequently. Similar to the Drone node removal, we assign a 

parameter ïR, which denotes the percentage of truck nodes to be removed. In each iteration, we 

allow ïR ∙ .óUòô	&`äâ-	   nodes to be removed, with .óUòô	&`äâ-	being the set of customer nodes 

who receive deliveries by truck only. The operator accepts and returns the same type of output as 

the previous operator. If all customer nodes are removed from the truck route, the solution for that 

truck route becomes empty and the truck stays at the depot.  

Sub-drone route removal: This operator removes one or multiple sub-drone routes (level two) from 

the truck route (level one). Each sub-drone route includes of the customer nodes who are currently 

served by drones and the truck nodes which perform launching and landing operation. We assign 

a parameter ïT, which denotes the percentage of sub-routes to be removed. In each iteration, we 

allow ïT ∙ öõäú	|@äãÜ	  routes to be removed, with öõäú	|@äãÜ		being the set of sub drone routes 

associated with the selected truck route. All customer nodes in the sub-drone route are added to 

the re-insert list. If all sub-routes are removed from the main truck route, the remaining customers 

will be served by truck alone and the solution route is reduced to the level 1 delivery which is 

equivalent to the solution from regular CVRP. 

Figure 4.3a.) represents the current solution and Figure 4.3b.) represents the solution after all three 

destroy operators are executed. 

  



 
 

98 
 

a.)  

 

b.)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Example of using Destroy operators on 2EVRPD solution. a.) Illustration of current 
2EVRPD solution, b) Solution after the destroy operators: Drone node removal {9}, Truck node 

removal {12,5}, Sub-drone route removal {2,7} 
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4.4.2.3 Repair Operators 

After performing all three types of destroy operators sequentially, all the nodes in the re-insert list 

must be inserted back into the routes of an existing solution. We apply three types of repair 

operators to all nodes in the re-insert list. At the repair phase, each node would go through all three 

repair operators in parallel. Each repair operator returns the new routing solution with the selected 

node already inserted in the route. We compare the solutions obtained from three operators. The 

best-repaired solution will be selected and become the current solution of the problem. We perform 

the repair process until no node is left in the re-insert list and reevaluate the current solution with 

the global solution. The repair operators are described as follows.  

Drone node insertion: The operator takes a node input and inserts it into one of the existing drone 

sub-routes (level 2) in the solution. The route to be inserted to is not restricted to the one that this 

node is removed from and can be a sub drone route in any truck route. The insertion is achieved 

with a simplified cheapest insertion heuristic, the method to insert the node into the position with 

the which gives the lowest increase in total costs. The insertion is prohibited in the drone route if 

the new drone route after insertion causes 1.) the drone’s load to exceed its capacity and 2.) the 

drone’s battery consumption to exceed its battery limitation.  

Truck node insertion: The operator works similarly to the Drone node insertion by inserting the 

selected node into one of the truck routes (level 1) at the current solution. The operator searches 

for all the feasible positions to insert the node and selects the one with the lowest increase in total 

cost. If the current capacity of trucks for all routes is full, the node can be inserted into an empty 

route which creates one more truck route in the solution.   

Drone route creation: The operator creates a new sub drone route by inserting the selected node 

between a pair of truck nodes. It is required that no drone arc can enter or leave both truck nodes. 

In other words, no drone is being launched or landing at the truck nodes. Considering a pair of (i,k) 

nodes where node i must precede node k, we insert node j between node i and node k to create the 

new drone sub route (level 2). A drone is launched from node i, makes a delivery at node j and 

returns to another truck node k. The operator searches for the cheapest pair (i,k) among all possible 

combinations to construct a new drone route with the lowest increase in total cost. Figure 4.4 

represents the solution after all three repair operators are executed. 
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Figure 4.4  Example of using Repair operators on 2EVRPD solution 

 Computational Examples and Results 

This section examines the formulated MIP problem and the proposed algorithms using numerical 

examples. Since our problem has some similarities with the classical CVRP with the use of drones 

on multiple drops delivery, the experiments were done on the CVRP benchmark instances from 

the literature. We conducted our experiments from different sets of instances, taken from four 

classical sets of the CVRP benchmark from Augerat et al. (set A, B and P) and Christofides and 

Elion (set E). The input data are available online at the Capacitated Vehicle Routing Problem 

Library (Xavier, 2014). We assume that the travel time can be represented by the cost metric 

associated with the benchmark problem. We set the truck travel time to be 1.5 time units longer 

than the drone travel time (	"%,#&  = 1.5	"#,%+ ) since the drone speed is roughly about 1.5 times faster 

than the truck speed (Brar et al., 2015). The truck capacity and the number of trucks for each 

instance are excerpted from the instance input as well. Other parameters are currently assigned 

randomly and are subject to more calibrations in the future work. For the headers of all the tables 

presented in this section, we refer n as the number of customer nodes; K as the number of trucks; 

Kd as the number of drones; Q as the truck’s capacity; and Qd as the drone’s capacity. We assume 

that both trucks and drones travel in Euclidean space. All the algorithms were executed in Matlab 

on a computer with 2.7GHz Intel Core i5 with 8GB ram RAM running Windows 7 64-bit mode. 
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All the Mixed-Integer Linear Programming models were solved using GAMS 23.51 with CPLEX 

solver. 

4.5.1 Comparison of 2EVRPD-MIP Model and CVRP-MIP Model on Small-Size 
Problems 

This section compares the solution between the proposed 2EVRPD and the classical CVRP on 

small-size problems. Exact solutions are also obtained for both models using the CPLEX solver 

for comparison. The objective of this experiment is to evaluate the cost (time) saving by 

implementing the multiple drops by drones operation with trucks under the small-size problem 

circumstance. We also want to get an estimation of how long it would take to solve the 2EVRPD 

using the MIP method to obtain an optimal solution. To simplify and reduce the amount of runtime, 

we modified the benchmark problems by reducing the number of customer nodes to be 8 and 

limiting the number of trucks to be 2. The results are shown in Table 4.1 and Figure 4.5.  

 

Table 4.1 Comparison of the results between MIP-2EVRPD and MIP-CVRP on small-size 
instance  

 

 
 

 

 

Instance n K Q Kd Qd 

   CPLEX MIP Solver   

Improvement 
 (%) 

 2EVRPD  CVRP  

 Solution 
(Optimal) 

Runtime   
(Second)  Solution 

(Optimal) 
Runtime 
(Second)  

A1-n8-k2 8 2 100 2 40  289 2966.17  338 69.02  14.50 

A2-n8-k2 8 2 100 2 40  226 2618.37  305 54.73  25.90 

A3-n8-k2 8 2 100 2 40  177 3600.00  204 71.89  13.24 

B1-n8-k2 8 2 100 2 40  313 3122.41  340 70.5  7.94 

B2-n8-k2 8 2 100 2 40  176 3345.11  189 46.38  6.88 

P1-n8-k2 8 2 100 2 40  114 2612.39  140 41.12  18.57 

P2-n8-k2 8 2 100 2 40   125 2786.12   148 37.46   15.54 

       Average 3007.22  - 55.87  14.65 
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Figure 4.5 The grouped bar chart showing the difference between 2EVRPD and CVRP 

objective on different instances 
 

The results show that implementing the drones with multiple drops feature could reduce the 

objective approximately by 14.65% (6.88% to 25.90%) depending on the instance. In general, we 

expect the saving to be lower than the classical CVRP but varied by the location of the customer 

nodes. As the solver takes a significant amount of time (as showing 3007.22 seconds on average) 

to generate the results even for the small-size problem, it might not be worth the time to compute 

for an exact solution on the larger-size problems. Therefore, we conducted more experiments to 

solve 2EVRPD using the proposed heuristics described in Section 4.4. 

4.5.2 Comparison of the Proposed Heuristics and the 2EVRPD-MIP Model 

From Section 4.5.1 experiment, the results indicate that CPLEX can take quite a bit of time before 

returning an exact solution for the small-size problem. In this section, we tested our proposed 

heuristics with the larger problem size that CPLEX can not obtain the exact solutions within a 

reasonable amount of time. We retrieved some of the instances from the benchmark problems and 

tested them with our heuristics. We ran each heuristic 10 iterations for each instance and reported 

the best objective among the iterations, the average objectives and the average runtime. We also 

computed the GAP of the average objective between the one from CPLEX and the other two from 

both heuristics. The negative GAP indicates that the solutions from heuristic algorithms perform 
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better. In addition, we ran the CPLEX for one hour for each instance and compare the results with 

the proposed algorithms. The numerical results are listed in Tables 4.2, and the time plot is shown 

in Figure 4.6.  

 

Table 4.2 Results of the proposed heuristic and CPLEX on the larger instances 

 

 

Figure 4.6 The plot showing the runtime of different solution methods 
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As the results show, both LNS and DTRC algorithms can obtain better results in significantly less 

time compared to CPLEX. On average, we see -36.69% average GAP from CPLEX for the LNS 

and -22.02% average GAP from CPLEX for the DTRC. Please note that the objective reported 

from CPLEX is the current solution found in one hour. The results demonstrate that the two 

heuristics can return reasonably good quality solutions when comparing to the solution of CPLEX 

within one hour. In terms of computational time, we plot the run time for each method (Figure 4.7) 

which shows that DTRC can return the solution using the lowest CPU runtime of only 0.46 seconds 

followed by LNS with the average of 67.27 seconds and CPLEX with the fixed time at 3600 

seconds respectively.  

4.5.3 Comparison of the Proposed Heuristics and the Optimal Solution of CVRP on 
Various Instances 

In this section, we want to test the performance of the proposed heuristics on different variations 

of instances. A total of 50 test benchmark instances were used in this experiment. Each benchmark 

instance was run 10 times independently. We compare the performance of our two heuristics, LNS 

and DTRC, with the CVRP optimal solutions for each instance from the literature. The results are 

shown in Table 4.3. 

 

In terms of solution quality, the LNS returns better objective values than the DTRC’s for all 

instances with an average GAP of about 11% However, the computational time of the DTRC 

heuristic is about 98% lower on average. Figure 4.7 shows the variable number growth for different 

problem sizes and the time increase as problem size increases. The LNS plot shows that the number 

of variables grows exponentially (once greater than 40) as the number of customer nodes increases 

linearly while the DTRC plot does not show an obvious correlation. 

 

When compared with the optimal CVRP solutions, both LNS and DTRC heuristics provide lower 

objective values by 13.25% and 2.09% respectively (Negative GAP on the table means better 

objective). Considering a relatively moderate GAP difference between the LNS and optimal CVRP 

solutions on different problem sets, LNS is quite effective and can be reliable for solving 2EVRPD 

with the appropriate parameter tuning. 
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Figure 4.7 The line scatter plot showing the runtime of different problem size 

Table 4.3 Results of the proposed heuristics and optimal CVRP on the various instances 

Instance n K Q Kd Qd 

		

CVRP 

(Optimal) 

		
Algorithm Method 

  

  Large Neighborhood search (LNS)  
Drone Truck Route Construction 

(DTRC) 

  
GAP 

Best Average Time  

GAP 

(From 

Truck) 

Best Average Time (From 

Truck) 
 

A-n32-k5 31 5 100 2 35  784  -13.9 675 701.8 73.17  2.04 800 812.9 0.61 

A-n33-k5 32 5 100 2 35  661  -17.25 547 566.5 67.93  -0.76 656 666.1 0.67 

A-n33-k6 32 6 100 2 35  742  -17.25 614 633.6 72.7  -7.55 686 697.2 0.46 

A-n34-k5 33 5 100 2 35  778  -17.48 642 653.3 71.18  -5.4 736 757.5 0.65 

A-n36-k5 35 5 100 2 35  799  -16.52 667 683.6 74.37  -7.51 739 755.2 0.78 

A-n37-k5 36 6 100 2 35  669  -25.56 498 543.5 74.63  -5.08 635 653.6 0.99 

A-n37-k6 36 6 100 2 35  949  -12.01 835 850.8 68.23  -8.43 869 918.7 0.78 

A-n38-k5 37 5 100 2 35  730  -21.1 576 622.6 67.42  0.68 735 741.3 0.84 

A-n39-k5 38 5 100 2 35  822  -17.76 676 718.4 71.38  1.82 837 865.2 2.07 

A-n39-k6 38 6 100 2 35  831  -16.25 696 720.9 76.1  -1.32 820 833 1.18 

A-n44-k6 43 6 100 2 35  937  -17.4 774 840.3 80.09  -4.7 893 926.6 2.01 

A-n45-k6 44 6 100 2 35  944  -12.5 826 856.2 85.15  -1.59 929 931.3 0.94 

A-n46-k7 45 7 100 2 35  914  -15.75 770 804.8 110.78  0.66 920 921.2 1.32 

A-n48-k7 47 7 100 2 35  1073  -11.28 952 975 113.57  -2.52 1046 1057.5 1.71 

A-n53-k7 52 7 100 2 35  1010  -9.6 913 949.6 136.06  -1.09 999 1039.2 1.44 

A-n54-k7 53 7 100 2 35  1167  -10.45 1045 1072 113.12  -4.54 1114 1127.2 1.83 

A-n55-k9 54 9 100 2 35  1073  -8.2 985 1011.8 112.09  -2.89 1042 1054.6 2.12 

A-n62-k8 61 8 100 2 35  1288  -6.6 1203 1253.6 171.85  -2.48 1256 1273.8 4.3 

A-n63-k10 62 10 100 2 35  1314  -6.7 1226 1268.8 178.93  -1.9 1289 1311.8 3.61 

A-n65-k9 64 9 100 2 35  1174  -10.22 1054 1106.6 242.33  -0.85 1164 1182.1 4.19 

A-n69-k9 68 9 100 2 35  1159  -10.18 1041 1077.2 219.58  -4.4 1108 1122.4 4.15 
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Table 4.3 continued 

Instance n K Q Kd Qd 

		

CVRP 

(Optimal) 

		
Algorithm Method 

  

  Large Neighborhood search (LNS)  
Drone Truck Route Construction 

(DTRC) 

  
GAP 

Best Average Time  

GAP 

(From 

Truck) 

Best Average Time (From 

Truck) 
 

B-n31-k5 30 5 100 2 35  672  -3.42 649 653.9 67.33  -0.74 667 670.7 0.44 

B-n34-k5 33 5 100 2 35  788  -5.84 742 751.5 78.9  -2.16 771 787.1 0.62 

B-n35-k5 34 5 100 2 35  955  -7.33 885 888.6 79.49  -0.84 947 952.3 0.58 

B-n38-k6 37 6 100 2 35  805  -12.17 707 730.8 77.2  -1.12 796 800.9 0.97 

B-n39-k5 38 5 100 2 35  549  -10.02 494 503.2 79.39  -1.46 541 546.3 0.99 

B-n41-k6 40 6 100 2 35  829  -8.44 759 823 78.68  3.98 862 867.9 0.73 

                  
E-n51-k5 50 5 160 2 50  521  -18.04 427 449.4 153.52  -7.29 483 498.9 1.26 

E-n76-k7 75 7 220 2 55  682  -9.09 620 633.6 298.06  -7.92 628 641.8 8.65 

E-n76-k8 75 8 180 2 45  735  -9.93 662 698.1 492.36  -3.4 710 718.2 7.2 

E-n76-k10 75 10 140 2 40  830  -6.27 778 805.8 278.3  -3.98 797 831.9 4.86 

E-n76-k14 75 14 100 2 35  1021  -3.62 984 1001.7 327.59  -0.29 1018 1032.7 2.61 

                  

P-n16-k8 15 8 35 2 20  450  -1.78 442 442 60.45  3.78 467 467 0.11 

P-n19-k2 18 2 160 2 40  212  -30.66 147 154.5 61.61  4.72 222 228.8 0.35 

P-n20-k2 19 2 160 2 40  216  -29.17 153 157.9 63.25  -1.39 213 215.8 0.32 

P-n21-k2 20 2 160 2 40  211  -32.23 143 147.5 62.44  -0.47 210 231.1 0.52 

P-n22-k2 21 2 160 2 40  216  -31.48 148 156.9 64.89  0 216 216 0.52 

P-n23-k8 22 8 40 2 20  529  -4.35 506 506.6 62.63  -0.95 524 524 0.18 

P-n40-k5 39 5 140 2 40  458  -21.83 358 374.6 78.25  -1.31 452 477.3 1.9 

P-n45-k5 44 5 150 2 40  510  -19.22 412 422.9 85.42  -5.69 481 497.3 1.58 

P-n50-k7 49 7 150 2 40  554  -17.15 459 500.7 106.63  -0.36 552 557.6 0.52 

P-n50-k8 49 8 120 2 40  631  -10.3 566 577.7 92.69  -6.66 589 596.2 1.11 

P-n50-k10 49 10 100 2 35  696  -12.79 607 664.8 114.42  0.29 698 705.6 1.28 

P-n55-k7 54 7 170 2 45  568  -13.91 489 534.3 143.75  -3.7 547 565.5 2.65 

P-n55-k10 54 10 115 2 40  694  -9.65 627 660.9 138.96  -1.59 683 690.5 1.8 

P-n55-k15 54 15 70 2 38  989  -9.71 893 925.9 88.79  -5.76 932 936.6 1.21 

P-n60-k10 59 10 120 2 40  744  -5.91 700 720.1 125.95  -2.02 729 735.5 2.16 

P-n60-k15 59 15 80 2 30  968  -5.37 916 953 118.78  0.83 976 989.7 1.5 

P-n65-k10 64 10 130 2 40  792  -10.73 707 748.7 195.61  -1.14 783 799.6 2.82 

P-n70-k10 69 10 135 2 40  827  -8.22 759 809.5 182.6  0 827 839.3 3.06 

      	 Average  -13.25   122.77  -2.09   1.78 
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4.5.4 Sensitivity Analysis 

Sensitivity analyses were conducted to evaluate the impact of major parameters and components 

of the method. We are specifically interested in making a comparison between a different number 

of drones and see how it would affect the performance of the 2EVRPD solution. In addition, we 

want to see the impact of our new multiple drops feature when comparing with the typical single 

drop proposed by Murray and Chu (2015). Four different operational settings are evaluated 

including 1.) Single drone / Single drop 2.) Single drone / Multiple drops 3.) Two drones / Single 

drop and 4.) Two drones / Multiple drops. All four types of operations are compared with the 

optimal solutions from the classical truck only delivery (CVRP). 

 

Using the same benchmark instances as Section 4.5.3, we conducted the experiment using our 

proposed heuristics for four types of operations. Each instance was run 10 times and we recorded 

all the experimental results in Table 4.4. We use these results to generate the statistical plot in 

Figure 4.8 showing the percentage GAP between each operation objective and CVRP objective 

for all instances with the mean and standard deviation. Negative GAP indicates an improvement 

over the truck alone operation 

 
Figure 4.8 The comparison of different operational types using the GAP from a truck alone 
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Figure 4.9 The comparison of objective values among different delivery modes 
 

In general, all four types of operations’ solutions solved by the LNS algorithm provide the GAP 

from an optimal CVRP solution much lower than the ones solved by the DTRC algorithm. Among 

the types of operations, Two drones / Multiple drops operation provides the best solution (with the 

mean GAP of -13.25%) and Single drone / Single drop provides the worst (with the mean GAP of 

-7.44%). As we expect, more number of drones leads to lower total routes delivery time. In addition, 

we report the solution objectives among different types of delivery features as shown in Figure 4.9 

with the lowest mean objective value from using trucks and drones with multiple drops feature 

followed by using trucks and drones with a single drop feature, and only trucks accordingly. It can 

also be observed that Single drone / Multiple drops operation provides a slightly better solution 

(with the mean GAP of -11.23%) than Two Drones / Single drops operation (with the mean GAP 

of -10.22%). The results demonstrate the potential benefit of implementing trucks and drones 

together with the multiple drops feature in order to significantly reduce the total travel time of the 

entire delivery. 
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Table 4.4 Results of the proposed heuristics and optimal CVRP in different types of operations 

 

Best Average Time Best Average Time Best Average Time Best Average Time Best Average Time Best Average Time Best Average Time Best Average Time

A-n32-k5 31 5 100 35 784 855.00 857.40 0.46 713.00 731.80 72.12 795.00 799.50 0.53 692.00 719.00 65.59 820.00 833.60 0.49 713.00 731.80 72.12 800.00 812.90 0.61 675.00 701.80 73.17

A-n33-k5 32 5 100 35 661 696.00 711.80 0.59 591.00 597.30 68.84 676.00 689.50 0.58 548.00 566.30 68.72 687.00 701.50 0.60 559.00 571.70 77.17 656.00 666.10 0.67 547.00 566.50 67.93

A-n33-k6 32 6 100 35 742 717.00 722.00 0.45 635.00 650.00 64.83 697.00 697.00 0.45 627.00 635.60 64.05 717.00 724.00 0.46 623.00 633.00 70.41 686.00 697.20 0.46 614.00 633.60 72.70

A-n34-k5 33 5 100 35 778 766.00 770.20 0.64 670.00 677.60 66.23 766.00 770.20 0.63 634.00 647.50 70.05 766.00 770.20 0.64 652.00 669.10 74.41 736.00 757.50 0.65 642.00 653.30 71.18

A-n36-k5 35 5 100 35 799 835.00 839.00 0.77 694.00 725.30 64.77 751.00 751.00 0.76 659.00 682.20 69.05 785.00 790.60 0.78 683.00 699.90 71.96 739.00 755.20 0.78 667.00 683.60 74.37

A-n37-k5 36 6 100 35 669 677.00 678.20 0.99 564.00 594.70 72.00 659.00 663.80 1.00 500.00 538.00 70.11 650.00 655.00 1.01 551.00 584.30 75.70 635.00 653.60 0.99 498.00 543.50 74.63

A-n37-k6 36 6 100 35 949 904.00 936.10 0.77 852.00 876.50 65.80 909.00 909.00 0.77 828.00 846.00 67.79 915.00 934.10 0.79 842.00 869.70 66.93 869.00 918.70 0.78 835.00 850.80 68.23

A-n38-k5 37 5 100 35 730 765.00 766.30 0.83 651.00 676.00 75.25 717.00 717.00 0.83 601.00 635.00 70.47 763.00 765.30 0.85 618.00 638.00 71.80 735.00 741.30 0.84 576.00 622.60 67.42

A-n39-k5 38 5 100 35 822 883.00 890.20 2.05 749.00 777.00 67.90 863.00 881.00 2.06 717.00 736.50 72.85 862.00 882.70 2.07 718.00 745.90 70.71 837.00 865.20 2.07 676.00 718.40 71.38

A-n39-k6 38 6 100 35 831 826.00 830.50 1.16 755.00 766.70 71.72 850.00 850.00 1.16 660.00 723.60 80.83 799.00 806.20 1.18 710.00 738.10 76.56 820.00 833.00 1.18 696.00 720.90 76.10

A-n44-k6 43 6 100 35 937 939.00 956.10 2.05 886.00 908.60 67.41 902.00 903.70 1.99 835.00 860.00 73.16 917.00 937.50 2.01 839.00 880.10 78.03 893.00 926.60 2.01 774.00 840.30 80.09

A-n45-k6 44 6 100 35 944 971.00 973.00 0.99 890.00 906.50 81.65 941.00 941.00 0.91 849.00 872.10 76.85 966.00 970.00 0.94 868.00 891.70 86.70 929.00 931.30 0.94 826.00 856.20 85.15

A-n46-k7 45 7 100 35 914 954.00 959.80 1.35 825.00 847.10 78.92 938.00 940.10 1.34 810.00 827.00 86.17 912.00 922.50 1.41 795.00 828.80 91.74 920.00 921.20 1.32 770.00 804.80 110.78

A-n48-k7 47 7 100 35 1073 1092.00 1112.40 1.69 975.00 1017.40 85.79 1071.00 1078.30 1.65 956.00 987.50 86.82 1084.00 1091.80 1.72 966.00 1015.90 90.92 1046.00 1057.50 1.71 952.00 975.00 113.57

A-n53-k7 52 7 100 35 1010 1069.00 1073.10 1.37 969.00 997.10 93.03 1025.00 1027.10 1.37 914.00 953.10 126.34 1053.00 1057.70 1.39 931.00 991.70 124.93 999.00 1039.20 1.44 913.00 949.60 136.06

A-n54-k7 53 7 100 35 1167 1150.00 1160.60 1.83 1084.00 1108.70 84.73 1136.00 1144.20 1.83 1050.00 1075.40 97.71 1117.00 1134.20 1.84 1067.00 1099.50 107.21 1114.00 1127.20 1.83 1045.00 1072.00 113.12

A-n55-k9 54 9 100 35 1073 1086.00 1088.60 2.10 1015.00 1041.80 86.01 1049.00 1049.00 2.09 973.00 1000.90 89.81 1083.00 1085.10 2.18 1011.00 1032.00 109.57 1042.00 1054.60 2.12 985.00 1011.80 112.09

A-n62-k8 61 8 100 35 1288 1315.00 1320.10 4.28 1246.00 1282.30 156.30 1339.00 1340.00 4.27 1244.00 1270.40 95.75 1347.00 1353.00 4.28 1230.00 1261.40 297.44 1256.00 1273.80 4.30 1203.00 1253.60 171.85

A-n63-k10 62 10 100 35 1314 1334.00 1336.00 3.61 1292.00 1317.50 91.54 1299.00 1300.40 3.61 1251.00 1270.10 115.80 1353.00 1357.80 3.60 1235.00 1283.70 225.83 1289.00 1311.80 3.61 1226.00 1268.80 178.93

A-n65-k9 64 9 100 35 1174 1223.00 1231.90 4.01 1148.00 1178.10 150.38 1184.00 1186.90 4.04 1121.00 1140.60 115.00 1208.00 1224.90 4.08 1119.00 1154.10 201.99 1164.00 1182.10 4.19 1054.00 1106.60 242.33

A-n69-k9 68 9 100 35 1159 1166.00 1189.50 4.10 1088.00 1155.90 134.74 1134.00 1138.80 4.12 1075.00 1111.30 105.34 1151.00 1168.40 4.16 1086.00 1130.30 246.72 1108.00 1122.40 4.15 1041.00 1077.20 219.58

B-n31-k5 30 5 100 35 672 672.00 675.20 0.43 657.00 658.80 65.94 669.00 670.20 0.43 648.00 651.50 66.17 675.00 677.00 0.44 655.00 657.50 72.67 667.00 670.70 0.44 649.00 653.90 67.33

B-n34-k5 33 5 100 35 788 784.00 789.40 0.60 751.00 761.60 65.79 772.00 788.00 0.61 734.00 747.90 70.87 787.00 792.50 0.62 749.00 758.60 70.22 771.00 787.10 0.62 742.00 751.50 78.90

B-n35-k5 34 5 100 35 955 965.00 978.40 0.57 904.00 909.70 69.51 969.00 977.30 0.57 887.00 891.10 72.00 966.00 975.60 0.59 892.00 896.30 78.95 947.00 952.30 0.58 885.00 888.60 79.49

B-n38-k6 37 6 100 35 805 835.00 837.90 0.95 740.00 756.30 73.04 809.00 810.60 0.95 708.00 730.20 68.88 835.00 839.30 0.97 725.00 741.60 83.52 796.00 800.90 0.97 707.00 730.80 77.20

B-n39-k5 38 5 100 35 549 543.00 543.90 1.03 513.00 519.50 68.96 551.00 551.30 0.97 492.00 503.50 75.63 541.00 543.80 0.99 505.00 510.80 77.00 541.00 546.30 0.99 494.00 503.20 79.39

B-n41-k6 40 6 100 35 829 885.00 889.10 0.71 822.00 844.80 73.27 873.00 873.00 0.72 817.00 833.10 71.52 886.00 887.90 0.72 813.00 841.40 70.76 862.00 867.90 0.73 759.00 823.00 78.68

E-n51-k5 50 5 160 50 521 571.00 581.10 1.43 466.00 495.10 258.18 499.00 516.90 1.04 446.00 475.20 124.02 522.00 537.60 1.20 456.00 471.10 248.96 483.00 498.90 1.26 427.00 449.40 153.52

E-n76-k7 75 7 220 55 682 712.00 736.00 8.70 664.00 698.80 384.89 630.00 652.30 8.72 616.00 635.20 273.20 651.00 712.30 8.71 609.00 657.20 323.43 628.00 641.80 8.65 620.00 633.60 298.06

E-n76-k8 75 8 180 45 735 745.00 774.80 7.20 696.00 743.30 220.64 729.00 735.60 7.20 698.00 725.80 131.00 701.00 725.30 7.21 673.00 704.00 442.96 710.00 718.20 7.20 662.00 698.11 492.36

E-n76-k10 75 10 140 40 830 875.00 888.40 4.85 831.00 854.70 237.54 858.00 858.00 4.86 805.00 830.70 235.22 838.00 855.10 4.94 808.00 827.30 282.09 797.00 831.90 4.86 778.00 805.80 278.30

E-n76-k14 75 14 100 35 1021 1049.00 1063.70 2.56 1014.00 1040.40 160.61 1038.00 1038.40 2.58 1007.00 1018.70 125.25 1024.00 1029.30 2.62 997.00 1017.50 220.78 1018.00 1032.70 2.61 984.00 1001.70 327.59

P-n16-k8 15 8 35 20 450 469.00 469.00 0.10 444.00 444.00 60.35 467.00 467.00 0.10 442.00 442.00 60.31 469.00 469.00 0.11 444.00 444.00 60.38 467.00 467.00 0.11 442.00 442.00 60.45

P-n19-k2 18 2 160 40 212 221.00 223.40 0.34 175.00 175.80 61.16 246.00 246.00 0.33 164.00 165.90 60.99 220.00 220.00 0.34 159.00 164.20 61.54 222.00 228.80 0.35 147.00 154.50 61.61

P-n20-k2 19 2 160 40 216 215.00 240.50 0.30 177.00 177.30 61.29 234.00 234.00 0.31 165.00 167.30 61.38 203.00 217.30 0.32 158.00 167.80 62.10 213.00 215.80 0.32 153.00 157.90 63.25

P-n21-k2 20 2 160 40 211 205.00 209.40 0.51 170.00 174.40 61.75 203.00 208.40 0.51 159.00 161.20 62.36 199.00 202.00 0.51 159.00 163.10 62.95 210.00 231.10 0.52 143.00 147.50 62.44

P-n22-k2 21 2 160 40 216 227.00 237.40 0.51 177.00 180.50 61.52 217.00 227.80 0.52 156.00 164.40 62.34 221.00 221.00 0.53 166.00 168.70 63.13 216.00 216.00 0.52 148.00 156.90 64.89

P-n23-k8 22 8 40 20 529 527.00 527.00 0.17 500.00 505.40 60.98 524.00 524.00 0.17 500.00 505.20 61.09 527.00 527.00 0.18 506.00 506.20 60.89 524.00 524.00 0.18 506.00 506.60 62.63

P-n40-k5 39 5 140 40 458 462.00 464.80 1.90 399.00 406.20 71.69 472.00 472.00 1.88 358.00 381.50 70.83 457.00 461.40 1.92 377.00 394.10 90.14 452.00 477.30 1.90 358.00 374.60 78.25

P-n45-k5 44 5 150 40 510 527.00 541.30 1.57 448.00 464.50 81.62 493.00 493.00 1.57 400.00 424.20 73.34 504.00 527.90 1.58 411.00 440.20 107.91 481.00 497.30 1.58 412.00 422.90 85.42

P-n50-k7 49 7 150 40 554 576.00 584.30 0.35 522.00 542.00 89.50 575.00 575.50 0.35 492.00 516.70 93.39 552.00 567.20 0.46 501.00 520.50 92.24 552.00 557.60 0.52 459.00 500.70 106.63

P-n50-k8 49 8 120 40 631 606.00 616.30 1.08 581.00 592.60 83.48 607.00 622.20 1.09 557.00 578.40 82.59 603.00 609.40 1.10 576.00 586.70 92.64 589.00 596.20 1.11 566.00 577.70 92.69

P-n50-k10 49 10 100 35 696 702.00 718.90 1.27 669.00 680.40 81.66 699.00 703.50 1.27 651.00 668.20 74.07 704.00 714.90 1.28 660.00 674.10 84.93 698.00 705.60 1.28 607.00 664.80 114.42

P-n55-k7 54 7 170 45 568 581.00 611.90 2.65 517.00 541.30 131.02 569.00 589.80 2.73 496.00 524.50 105.40 573.00 596.20 2.67 498.00 521.50 195.16 547.00 565.50 2.65 489.00 534.30 143.75

P-n55-k10 54 10 115 40 694 696.00 700.60 1.77 656.00 679.60 88.88 693.00 697.60 1.79 640.00 666.30 96.45 697.00 703.60 1.81 657.00 676.30 108.96 683.00 690.50 1.80 627.00 660.90 138.96

P-n55-k15 54 15 70 38 989 955.00 960.00 1.20 928.00 945.10 81.30 932.00 932.50 1.18 917.00 928.20 77.63 950.00 956.60 1.15 914.00 945.80 80.74 932.00 936.60 1.21 893.00 925.90 88.79

P-n60-k10 59 10 120 40 744 738.00 750.40 2.14 723.00 738.30 101.36 737.00 747.70 2.11 705.00 731.10 89.17 736.00 749.90 2.17 689.00 730.10 146.77 729.00 735.50 2.16 700.00 720.10 125.95

P-n60-k15 59 15 80 30 968 966.00 978.80 1.48 940.00 956.20 82.37 972.00 982.90 1.47 937.00 959.20 73.69 966.00 978.80 1.49 938.00 958.80 92.92 976.00 989.70 1.50 916.00 953.00 118.78

P-n65-k10 64 10 130 40 792 838.00 863.40 2.89 782.00 809.50 154.63 810.00 817.80 2.80 761.00 780.10 121.89 794.00 815.90 2.81 741.00 780.00 192.06 783.00 799.60 2.82 707.00 748.70 195.61

P-n70-k10 69 10 135 40 827 854.00 881.70 2.96 833.00 868.10 121.02 812.00 828.00 3.01 774.00 816.40 103.01 838.00 856.00 2.98 787.00 823.60 240.26 827.00 839.30 3.06 759.00 809.50 182.60
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 Conclusion 

In this chapter, we propose a new routing model, the Two Echelon Vehicle Routing Problems with 

Drones (2EVRPD), which implements both trucks and drones in the last-mile delivery. The model 

is a variation of the classic CVRP problem and the extension of the previous FSTSP model. We 

generalize our previous work mTSPD, which we allow multiple drones and multiple trucks to 

perform deliveries, to 2EVRPD, which includes capacity constraints and multiple drops feature. 

The MIP formulation is mathematically constructed to model the 2EVRPD to solve for an optimal 

solution for the small-size instances, in which the results are shown in Section 4.5.1. To solve the 

large-size instances, we develop two heuristics: 1.) Drone Truck Route Construction (DTRC), 

which is a constructive heuristic used for creating an initial 2EVRPD solution from an empty route, 

and 2.) LNS, which iteratively improves the 2EVRPD solution using destroy and repair principles. 

Using these heuristics, we can solve and obtain better solutions than CPLEX solver under the same 

computational time as shown in Section 4.5.2. LNS heuristic generates higher quality than DTRC 

when tested on the various CVRP benchmark problems. LNS also returns the solutions better than 

the reported optimal CVRP on the same instances (Section 4.5.3), which implies that using this 

new approach provides shorter delivery time than simply using trucks alone in the operation. Lastly, 

the result from the sensitivity analysis in Section 4.5.4 shows that implementing a multiple drops 

feature improves the solution quality from the typical single drop feature.
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CHAPTER 5. INTEGRATED VEHICLE ROUTING PROBLEM WITH 
DRONES 

 Problem Description 

In this chapter, we consider another hybrid truck drone routing model which extends the FSTSP 

by allowing multiple drones and multiple trucks to make deliveries with the consideration of both 

trucks’ and drones’ capacities. We refer to this specific type of truck with the drone equipped on 

top as a “hybrid truck.” In addition to that, we include two more types of vehicle fleets in the 

routing operation including a “large drone” or “cargo drone” and a “traditional truck”. A large 

drone is a new generation of plane-sized autonomous delivery vehicles, which is capable of 

carrying hundreds of pounds for hundreds of miles which is significantly much larger in size and 

longer in flying duration (Hawkins, 2019). Large drones offer benefits of speed similar to the small 

drones with more endurance and capacity (Shivakumar, 2019). However, it comes with a heavy 

cost and has been recently tested in only a specific region. Unlike a small drone that is designed to 

carry a single item one at a time, a large drone can carry multiple packages and make multiple 

deliveries to different customers before merging with the truck. Lastly, a traditional truck is simply 

a truck without a small drone and is used in the current last-mile delivery. Figure 5.1a.) and 5.1b.) 

on the next page illustrate the hybrid truck with a small drone and the large drone we discussed. 

 

To the best of our knowledge, none of the previous studies has integrated and combined different 

types of vehicle fleets that involve drones/large drones together. We intend to study and investigate 

the benefits of this approach in comparison with the other existing drone routing models that are 

used for the last-mile delivery. We call this model the “Integrated Vehicle Routing Problem with 

Drones” (I-VRPD). Figure 5.2 represents a simple I-VRPD and its solution in which three different 

types of vehicles are used in the setting. As illustrated, a hybrid truck contains two drones and each 

drone can fly to serve one customer before immediately returning to the truck. The grey solid line 

represents the solution for the traditional truck and the dashed line represents the solution from a 

large drone. 
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a.)   

 

 

 

 

 

  

 

 

 

 

 

 

 

 

b.)   

 

   

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Examples of a.) a hybrid truck with small drone and b.) a large/cargo drone for 
delivery purpose (Hawkins, 2019) 
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Figure 5.2 Illustration of the Integrated Vehicle Routing Problems with Drones (I-VRPD) 
 

It is important to note that each vehicle fleet is operated independently and all vehicle units in each 

fleet are assumed to be homogenous. Each hybrid truck has limited space to carry only a specific 

number of small drones. A small drone can carry a single package one at the time while a large 

drone can carry multiple packages per trip. Both hybrid trucks and traditional trucks have the same 

capacity and unlimited endurance. A small drone and a large drone each uniquely have a limited 

amount of battery capacity, which determines how long the drones can travel before receiving a 

battery swap or a battery recharge. 

 Assumptions and Contributions 

5.2.1 Assumptions 

For the hybrid truck operation, we assume the following assumptions: 

Traditional	Truck	Route 

Large	Drone	Route 

Hybrid	Truck	

Route 
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• Multiple drones are not allowed to be launched or retrieved at the same node at any 

given time.  

• Small drones can only merge with a hybrid truck at a customer node and are not 

allowed to merge with a hybrid truck in any intermediate location. 

• Besides, the time of both hybrid truck and small drone at the customer locations must 

be adjusted to be the same. In other words, they must wait for each other whenever 

one arrives at the customer node before the other.  

• The set-up and recovery times when the small drone is launched or retrieved at a 

particular node can be negligible since their values are small compared to the hybrid 

truck and small drone travel time. 

• And finally, the small drone must go back to the hybrid truck from which it was 

launched (it cannot be merged with different hybrid trucks) and it is important to keep 

track of when the small drones are available for the launch.  

The proposed model aims at finding a combination of solution routes from different fleets of 

vehicles such that the demands of all customers are satisfied while the total delivery time is 

minimized. We believe that the successful integration of drones combining with other vehicle 

types could bring about cost efficiency and reduce the total delivery time of the last-mile delivery. 

5.2.2 Contributions 

We propose a new MIP model and heuristic algorithms to solve a new problem, the Integrated 

Vehicle Routing Problems with Drones (I-VRPD). The main contributions of this paper are the 

following:  

1. We introduce a Mixed Integer Program (MIP) formulation for the I-VRPD. The model might 

be solved by any standard MILP solver, e.g., GAM and IBM CPLEX. They can handle 

small-size problems. 

2. We propose two metaheuristics to solve I-VRPD based on Variable Neighborhood Search 

(VNS) and Large Neighborhood Search (LNS). In particular, an initial I-VRPD is generated 

based on the classical VRP solution and will be iteratively improved by the exploitation of 

local improvement procedures and exploration procedures. Similarly, the LNS will 

repeatedly search for a better solution using four destroy operators and four repair operators.  
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3. We conduct a case study and numerical experiments on different types of problems using 

both MIP and heuristics approaches. The case study and small-size problems can be solved 

directly by the MIP solver and the medium/large-size problems can be solved by the 

heuristics. The results are compared with the classical VRP optimal solutions and other VRP 

with drone (VRPD) routing models on the CVRP benchmark problems.   

 

The remainder of this chapter is structured as follows. Section 5.3 presents the formal definition 

of the I-VRPD model and its mathematical MIP formulation. Section 5.4 presents the two 

heuristics approaches: Variable Neighborhood Search and Large Neighborhood Search, to solve 

the proposed model along with the pseudocodes in detail. In Section 5.5, we provide the results of 

the case study and the numerical experiments on the different test instances and benchmark 

problems with the analysis of the performance of the algorithm. Section 5.6 concludes the paper 

and provides discussions for future research. 

 Mathematical Formulation 

The I-VRPD is a combinatorial optimization problem that can be formulated by Mixed Integer 

Programming (MIP). It is defined on a directed graph G = (V, E), where V is the set of n nodes 

representing customers with one depot and E is the set of arcs. The new integrated system provides 

flexibility and options for clients to receive items from any of the vehicle fleets in which each type 

of fleet has its advantage. While a traditional truck delivers packages with large-volume or huge 

load to customers who might be located far from the depot, the hybrid truck with small drones can 

deliver items with small-volume or light load to the customers who are located close to the depot. 

Additionally, a large drone can carry multiple heavy items with longer battery capacity than the 

small drones which is ideally a great fit for customers who want faster delivery for their large items. 

The resulting configuration is expected to reduce the total system operation cost, improve overall 

delivery speed, and increase long term customer satisfaction. The following notations describe 

data sets, model parameters, and decision variables used to formulate the I-VRPD.  
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Indices 

!, #, $       Represent customers, and depot index  

%         Represent hybrid truck index 

%&         Represent small drone index 

vt       Represent traditional truck index 

vd       Represent large drone index 

 

Sets  

'        Set of customers, 1, 	2, 	3, 	4, 	5, 	6, … , 0  

'1       Set of customer nodes including the starting depot, ' ∪ 0 4  

'5       Set of customer nodes including the ending depot, ' ∪ 0 6  

7           Set of demands for all customers, {&8,	&9, &:,…,	&;} 

<        Set of hybrid trucks, {1,2,3,…,k} 

<7        Set of small drones, {1,2,3,…,kd} 

VT      Set of traditional trucks, {1,2,3,…,vt} 

VD          Set of large drones, {1,2,3,…,vd} 

 

Parameters 

=>,?@        Truck travel time between nodes i and j 

=>,?A        Drone travel time between nodes i and j 

B        Hybrid-trucks capacity (Same for all hybrid trucks) 

B7        Small Drone capacity (Same for all drones) 

QVT      Traditional truck capacity (Same for all traditional trucks) 

QVD      Large drone capacity (Same for all large drones) 

C        Battery limit for drones (Small drone’s battery life) 

BVD Battery limit for large drones (Large drone’s battery life) 

7>        Customer demand at each node i 

 

 

 



 
 

117 
 

Variables 

D>,?E         1 if a hybrid truck k traverses arc (i, j) from node i to node j; otherwise, 0   

F>,?,G
EH,E        1 if a small drone kd of truck k traverses arc (i, j, p) from node i to node j and  

       return to node p; otherwise, 0 

DIJ>,?KL       1 if a traditional truck vt travels from node i to node j; otherwise, 0 

DI&>,?KH                  1 if a large drone vd travels from node i to node j; otherwise, 0 

FJ>E, FIJ>KL, FI&>KH, F&>
EH,E indicates whether a hybrid truck, a traditional truck, a large drone and  

      a small drone serve customer node i accordingly or not 

JJ?E      Hybrid truck k arrival time at node j 

&J?
EH,E      Small drone kd of hybrid truck k arrival time at node j  

JIJ>KL      Traditional truck vt arrival time at node j 

JI&>KH      Large drone vd arrival time at node j 

MN>KH                 The battery consumption of a large drone vd at node i 

OP>
EH,E        The state of node i which can launch a small drone kd of hybrid truck k 	

	 	 					(0 if launchable state, 1 unlaunchable state) 

Q>E, Q>KL, Q>KH          Auxiliary variable for VRP subtour elimination constraints for all vehicle fleets 

 

Three vehicle fleet types are defined as a set of K = {1, 2, 3, 4,…,k}, VT = {1,2,3,…,vt} and VD = 

{1,2,3,…,vd} which represent a hybrid truck fleet, a traditional truck fleet and a large drone fleet 

accordingly. They must carry the amount of load less than their capacities (Q for a hybrid truck, 

QVT for a traditional truck and QVD for a large truck). Each fleet type consists of a certain number 

of homogeneous vehicle units. Each unit of a hybrid truck is attached with a set of small drones, 

KD = {1, 2, 3, 4,…,kd}, each can handle load up to QD. The amount of load is measured by the 

weight unit for all vehicles. In addition, the drone’s travel capability is restricted by its battery 

limitation which is defined as C for a small drone and BVD for a large drone. Each customer i (i = 

1,2,3,…, n) is associated with a known nonnegative demand, 7>, to be delivered, and the depot has 

a fictitious demand 7R = 0.  
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Let 	=>,?@ 	be a truck travel time associated with E, !, # ∈ T  and 	=>,?A 	be a drone travel time 

associated with E, !, # ∈ T, differentiating the travel times for the truck and drone accounts for 

each vehicle’s unique travel speed. The I-VRPD is said to be symmetric if 	=>,?@ = 	 	=?,>@  and 	=>,?A =

		=?,>A  and asymmetric otherwise. Please note that the travel times for truck and drone matrix satisfy 

the triangle inequality	=>,E@ +	=E,?@ ≥		=>,?@ . 

 

For readability purpose, we denote the set of customer nodes by ' = 1, 	2, 	3, 	4, 	5, 	6, … , 0  and 

additionally define a set '1 = ' ∪ 0 4  as the set of customer nodes including the starting depot, 

and set '5 = ' ∪ {0 6 } as the set of customer nodes including the ending depot. We define the 

following decision variables: Let D>,?E 	be	equal to 1 if a hybrid truck k  travels along the arc (i, j) ∈ 

E and 0 otherwise. This refers to the situation when the truck travels from node i ∈ '1 to j ∈ '5 

where i≠j. Similarly, let DIJ>,?KL and DI&>,?KH	be equal to 1 if a traditional truck vt and a large drone 

vd travel along the arc (i, j) ∈ E and 0 otherwise.  Let 	F>,?,G
EH,E be equal to 1 if a small drone kd of 

hybrid truck k travels along the arc (i, j) and (j, p) ∈ E and 0 otherwise. Additionally, we use 

variables FJ>E, FIJ>KL, FI&>KH	and	F&>
EH,E to indicate whether a hybrid truck, a traditional truck, a 

large drone and a small drone serve customer node i accordingly or not 

 

For tracking operational time, we denote the variable JJ?E as the hybrid truck k arrival time at node 

j ∈ '5  and &J?
EH,E as the small drone kd of hybrid truck k arrival time at node j ∈ '5.  JJ?E 

and	&J?
EH,Eare are adjusted to be the same in any node j. The variable JIJ?KL and JIJ?KHrepresent the 

traditional truck vt and large drone arrival time at node j ∈ '5 accordingly. Lastly, we define other 

the auxiliary decision variables including 1) Q>E	Q>KL, Q>KH  which are used in the VRP subtour 

elimination constraints (Desrochers & Laporte, 1991), 2) OP>
EH,Ewhich is used to indicate the status 

of whether a small drone kd of hybrid truck k can be launched from node i or not. 
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The proposed MIP formulation of I-VRPD is presented as follows: 

 

Objective 

    

minimize JJ1(c)E + JIJ1(c)KL + JI&1(c)KH

KH∈fA

		
KL∈f@E∈g

 

 

(1) 

 

The objective function (1) minimizes the total arrival time of all vehicle units across different 

fleets at the depot. 

 

Subject to     

 

F&>
EH,E

EH∈gA

+ 	 FJ>E
E∈g

+ FIJ>KL
KL∈f@

+ FI&>KH
KH∈fAE∈g

= 1; 	∀! ∈ '		 

 

(2) 

Constraints (2) ensure that each customer will receive the package from one of the 

following vehicles: a hybrid truck, a small drone, a traditional truck and a large drone 

exactly once. 

 

  
D1(j),>E

>∈kl

= 1; 	∀% ∈ < (3) 

D>,1(c)E

>∈km

= 1; 	∀% ∈ < (4) 

D>,?E = D?,>E
?∈km

= FJ>E; 	∀! ∈ ',			∀% ∈ <
?∈kl

 

 

(5) 

Constraints (3) and (4) impose that each hybrid truck must depart from and arrive at the 

depot. Constraints (5) ensure the flow conservation of the hybrid truck route at each node 

i, which guarantees that whenever the hybrid truck k arrives at a node, it must depart from 

the node as well.  

 

DIJ1(j),>KL

>∈kl

= 1; 	∀IJ ∈ no (6) 
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DIJ>,1(c),KL

>∈km

= 1; 	∀IJ ∈ no (7) 

DIJ>,?KL = DIJ?,>KL
?∈km

= FIJ>KL; 	∀! ∈ ',			∀IJ ∈ no
?∈kl

 

 

(8) 

Similarly, the sets of constraints (6) to (8) and (9) to (11) impose the same restriction for 

a traditional truck and a large drone which basically ensures the flow conservation and 

guarantee the departure and the arrival to the depot.  

 

  
 

DI&1(j),>KH

>∈kl

= 1; 	∀I& ∈ n7 (9) 

DIJ>,1(c),KL

>∈km

= 1; 	∀IJ ∈ no (10) 

DIJ>,?KL = DIJ?,>KL
?∈km

= FIJ>KL; 	∀! ∈ ',			∀IJ ∈ no
?∈kl

 

 

(11) 

F>,?,G
EH,E

G∈k>∈k

= F&?
EH,E; 	∀# ∈ ', ∀% ∈ <, ∀%& ∈ <7	 

 

(12) 

Constraints (12) impose that a customer at node j must be served by a small drone when 

it travels from node i to node j, and node p in order.  

 

  
F>,?,G
EH,E

G	∈k?	∈kE∈gEH∈gA

≤ 1; 	∀! ∈ ' (13) 

FG,?,>
EH,E

?	∈kG	∈kE∈g

≤ 1; 	∀! ∈ '
EH∈gA

 

 

(14) 

Constraints (13) and (14) represent that at most one drone can depart from and arrive at 

a hybrid truck at each stop. 

 

  
2F>,?,G

EH,E	 ≤ Dt,>E
t∈km
tu>

	 + 	 Dv,GE
v∈k
vuG

; 	∀!, #		 ∈ 		', 	∀$	 ∈ ', ∀% ∈ <, ∀%& ∈ <7 

 

(15) 

Constraints (15) state that a hybrid truck must visit node i and node p if the drone is 

launched from node i and is retrieved at node p. 
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F>,?,G
EH,E

G	∈k>	∈kE∈g

		
EH∈gA

≤ 	1 − 	 F?,x,y
EH,E

y∈kx∈kE∈g

; 	∀#	 ∈ '			
EH∈gA

 (16) 

F>,?,G
EH,E

G	∈k>	∈kE∈g

		
EH∈gA

≤ 	1 − 	 Fx,y,?
EH,E

y∈kx∈kE∈g

; 	∀#	 ∈ '	
EH∈gA

 (17) 

 

Constraints (16) describe the cases that if the small drone flies from node i to node j to 

node p, it can not fly from node j to make delivery at other nodes. Similarly, constraint 

(17) enforces that if a drone small departs from node i to serve a customer at node j and 

merges with the hybrid truck at node p, no other drones can arrive at the delivery node j.  

 

 

The following sets of constraints (18) to (25) guarantee the correct order of launching 

and landing operation for a hybrid truck fleet by ensuring that a small drone can only be 

launched if it has never been launched before or was previously launched, successfully 

completed its job and returned to receive a service at the hybrid truck 

 

  
OP>
EH,E( FG,?,>

EH,E

G∈k?∈k

) = 0; ∀! ∈ z, ∀% ∈ <, ∀%& ∈ <7 (18) 

OP>
EH,E( F>,?,G

EH,E

G∈k?∈k

) = 0; ∀! ∈ z, 	∀% ∈ <, ∀%& ∈ <7 

 

(19) 

Constraints (18) and (19) enforces that a small drone is not allowed to be launched or 

land at node i once the auxiliary variable OP>
EH,E is equal to 1 and vice versa. 

 

  
OP?
EH,E ≥ 1 −|(2 − D>,?E − F>,},G

EH,E

G∈k}∈k

+ OP>
EH,E + Fx,y,?

EH,E

y∈kx∈k

); ∀!, ∀# ∈ ', ∀%

∈ <, ∀%&	 ∈ <7 

(20) 

OP?
EH,E ≤ 1 +|(2 − D>,?E − F>,},G

EH,E

G∈k}∈k

+ OP>
EH,E + Fx,y,?

EH,E

y∈kx∈k

); ∀!, ∀# ∈ ', ∀%

∈ <, ∀%&	 ∈ <7 
 

(21) 

Constraints (20) to (23) ensure that if the small drone is launched from node i and has 

not returned at node p, then the auxiliary variable OP?
EH,Emust be equal to 1, the state 

which no arc drone leaves or enters node j. Constraints (20) and (21) deal with the case 

in which the small drone is launched from node i, and the hybrid truck travels from node 

i to node j at which the small drone has not yet returned.  
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OP?
EH,E ≥ 1 −|(2 − D>,?E − OP>

EH,E + Fx,y,?
EH,E

y∈kx∈k

)	; ∀!, ∀# ∈ ', 	∀% ∈ <, ∀%& ∈ <7 (22) 

OP?
EH,E ≤ 1 +|(2 − D>,?E − OP>

EH,E + Fx,y,?
EH,E

y∈kx∈k

)	; ∀!, ∀# ∈ ', 	∀% ∈ <, ∀%& ∈ <7 

 

(23) 

Constraints (22) and (23) deal with the case when the small drone was previously 

launched (not able to be launched at node i again) and has not returned to the node j 

where the hybrid truck is scheduled to serve its customer. 

 

  
OP?
EH,E ≥ −|(2 − D>,?E + Fx,y,?

EH,E

y∈kx∈k

)	; ∀!, ∀# ∈ ', 	∀% ∈ <, ∀%& ∈ <7 (24) 

OP?
EH,E ≤ |(2 − D>,?E + Fx,y,?

EH,E

y∈kx∈k

)	; ∀!, ∀# ∈ ', 	∀% ∈ <, ∀%& ∈ <7 

 

(25) 

Constraints (24) to (25) ensure that if the small drone returns to node j where a hybrid 

truck k serves its customer, then the auxiliary variable OP?
EH,Emust be equal to 0, the state 

which an arc drone can leave or enter the node j. 

 

  
7? ≤ B& +|(1 − F>,?,G

EH,E

G∈k

		
>∈k

); 	∀# ∈ ', 	∀% ∈ <, ∀%& ∈ <7 

 

26  

Constraints (26) ensure that the amount of load a small drone carries to serve a 

customer at node j must be less than the drone’s capacity (QD) in any given delivery 

node. 

 

 

7>
>∈k

FJ>E + 7>(F&>
EH,E) ≤ B; ∀% ∈ <	

EH∈gA>∈k

 

 

(27) 

Constraints (27) enforce that the total delivery loads of both hybrid truck and small drone 

combined must be less than the hybrid truck capacity in any given node. 

 

  
7>

>∈k

FIJ>KL ≤ Bno; ∀IJ ∈ no (28) 

7>
>∈k

FI&>KH ≤ Bn7; ∀I& ∈ n7 

 

(29) 
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Constraints (28) and (29) address the similar condition as in (27) by ensuring each 

traditional truck vt must carry the load less and its capacity and so does the large drone.  

 

 
The sets of constraints (30) – (31) deal with the battery consumption of the drones.  

 

  
=>,?A 	 + 	=?,GA ≤ C +|(1 − F>,?,G

EH,E

G∈k

		
>∈k

); 	∀# ∈ ', ∀% ∈ <, ∀%& ∈ < 

      

(30) 

Constraints (30) address that when a small drone departs from node i, make a delivery at 

node j and return to node p, it must have enough battery to cover the entire flight which 

must be less its capacity C.  

 

  
MN?KH ≥ MN>KH + =>,?A − | 1 − DI&>,?KH ; 	∀! ∈ '1, ∀# ∈ '5, ∀I& ∈ n7 (31) 

MN>KH ≤ BVD (32) 

 

Similarly, constraints (31) and (32) ensure that the amount of battery consumption of 

each large drone must be less than its battery capacity at any point in time. 

 

  
F>,?
EH,E

?∈k JJ>E − &J>
EH,E = 0; 	∀! ∈ '1, ∀% ∈ <, ∀%& ∈ <7    33  

F?,>
EH,E

?∈k JJ>E − &J>
EH,E = 0; 	∀! ∈ ', ∀% ∈ <, ∀%& ∈ <7       

    

34  

Constraints (33) and (34) adjust the departure time and the arrival time of both small 

drone and hybrid truck to be the same once the two vehicles merge. 

 

  
JJ?E ≥ JJ>E + =>,?@ − | 1 − D>,?E ; 	∀! ∈ '1, ∀# ∈ '5, ∀% ∈ <								 35  

JIJ?KL ≥ JIJ>KL + =>,?@ − | 1 − DIJ>,?KL ; 	∀! ∈ '1, ∀# ∈ '5, ∀IJ ∈ no								 36  

&JGEH,E ≥ &J>
EH,E + =>,?A + =?,GA − | 1 − F>,?,G

EH,E ;	∀!, ∀#, ∀$ ∈ ', ∀% ∈ <, ∀%& ∈ <7       37  

JI&?KH ≥ JI&>KH + =>,?A − | 1 − DI&>,?KH ; 	∀! ∈ '1, ∀# ∈ '5, ∀I& ∈ n7								 

 

38  

Constraints (35), (36), (37) and (38) keep track of the arrival time of the hybrid truck, 

traditional truck, small drone, and large drone at every node accordingly. It adds the truck 
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(drone) travel time to the previous customer node when the truck (drone) travels from 

one customer node to another customer node.  

  
Q>E −	Q?E + B D>,?E ≤ Q – 7?; 	∀!, ∀# ∈ ' ∪ '1 ∪ '5, ∀% ∈ <           39  

7> ≤ Q>E ≤ Q	; 	∀!, ∀# ∈ ' ∪ '1 ∪ '5, ∀% ∈ < 40  

Q>KL	−	Q?KL +	BIJ(DIJ>,?KL) ≤	Qvt	−	7?; 	∀! ∈ z, ∀# ∈ z, ∀IJ ∈ no           41  

7>	≤ Q>KL	≤	QIJ	; 	∀! ∈ z, ∀# ∈ z, ∀IJ ∈ no 42  

Q>KH	−	Q?KH +	BI&(DI&>,?KH) ≤	Qvd	−	7?; 	∀! ∈ z, ∀# ∈ z, ∀I& ∈ n7 43  

7>	≤ Q>KH	≤	Qvd	; 	∀! ∈ z, ∀# ∈ z, ∀I& ∈ n7	
 

44  

Pairs of constraints (39)-(40), (41)-(42), and (43)-(44) are sets of the Desrochers and 

Laporte (DL) sub tour elimination constraint, which ensures that there is no sub tour in 

all tours of the hybrid truck fleet, traditional truck fleet and large drone fleet accordingly 

(Desrochers & Laporte, 1991).  

 

  
D>,?E , 	F>,?,G

EH,E, DIJ>,?KL, DI&>,?KH, FJ>E, F&>
EH,E, FIJ>KL, FI&>KH, OP>

EH,E ∈ 0,1 ,  

JJ?E, &J?
EH,E, MN>KH, 	JIJ?KL, JI&?KH ≥ 0, ∀!, ∀#, ∀$ ∈ ', ∀% ∈ <, ∀%& ∈ <7, ∀IJ ∈

no, ∀I& ∈ n7  

 

45      

Lastly, constraints (45) specify the types and ranges of the variables. Note that the M 

value in the formulation must be large enough. Thus, we can use the total time of all the 

delivery routes made by traditional trucks alone, i.e., solve a regular CVRP. 

 

            

The I-VRPD is a generalization of the classical VRP/TSP and is thus by nature an NP-hard problem. 

Mixed-Integer Programming formulation was developed to obtain an optimal solution that works 

for the small-size problems. Because of the NP-hardness of the I-VRPD, a heuristic approach is 

implemented to find solutions quickly for the larger-size problems.  
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 Solution Methods 

5.4.1 Variable Neighborhood Search 

5.4.1.1 Main VNS Structure 

The Variable Neighborhood Search is a metaheuristic framework that was proposed by 

Mladenovic and Hansen (1997) for solving complex optimization problems particularly in 

TSP/VRP. It is based on a systematic change of the distant neighborhoods of the incumbent 

solution, and jumps from this solution to a new one if an improvement was made. In each 

neighborhood, a set of local searches will be applied repeatedly to determine the local optima. 

Schermer et al. implement this framework for solving the Vehicle Routing Problem with Drones 

heuristically. Since the concept of VRPD is equivalent to the hybrid truck operation in I-VRPD, 

we adapt some of the Schermer et al.’s VNS structure and modify it to fit with our problem by 

designing a new searching operator to explore each neighborhood. 

 

Let denote ÇE(% = 1,… , %ÉxÑ) as  a finite set of pre-selected neighborhood structure and ÇE(D) 

the set of solutions in the %th neighborhood of D. The following steps present the basic VNS 

structure: 

Step 1: Select % from the set of neighborhood ÇE, % = 1,… , %ÉxÑ 

Step 2: Find an initial solution D 

Step 3: Repeat until the stopping criteria are met. The stopping criteria can be e.g., maximum 

number of iterations, the CPU Time, the improvement gap between incumbent solutions, etc. 

1. Set % ← 1  

2. Repeat 

3.      DÜ ← áℎP%â(D, %); Generate a new solution DÜ by a random move at %th      

                                neighborhood of D (DÜ ∈ ÇE(D)); 

4.      DÜ′ ← ãåNPOáâP6Nℎ(DÜ); Improve the current solution by applying some local    

          search method with DÜ. The new local optimum is DÜ′ 

5.      D, %	′ ← zâ!çℎMå6ℎåå&'ℎP0çâ(D, DÜ′, %);	If the local optimum DÜ′ is better than  

          the incumbent, DÜ′will become the new incumbent solution   

          (DÜ ← DÜ′), then % ← 1, else set % ← % + 1 
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The basic VNS can be extended into the Variable Neighborhood Decomposition Search (VNDS) 

which consists of a nested two-level VNS scheme, based on a decomposition of the optimization 

problem. Our problem I-VRPD is well fit with the VNDS approach by assigning two-level 

solutions: I-VRPD and VRP. We denote the variable F, D as a solution for I-VRPD and VRP 

accordingly. The basic principle is to find a solution D to a VRP as the VRP is an easier problem 

without the use of other vehicles, small drones, large drones, hybrid trucks, in the operation. Once 

the solution of VRP is found, we convert this solution into I-VRPD using the technique that will 

be discussed later. We iteratively explore each VRP neighborhood and generate the I-VRPD 

solution by solving the sub VRP problem. Different local search operators will be applied to both 

the VRP and I-VRPD solutions whenever the new solution is found. In addition, we further 

improve the I-VRPD solution by exploring a certain part of the solution. Once there is no 

improvement in the current I-VRPD solution, we change the VRP neighborhood and begin the 

new search. We repeat these steps until the stopping criteria are met. We define JÉxÑ, %ÉxÑ as the 

maximum run time and the maximum neighborhood depth. Algorithm 1 shows the basic structure 

of the VNS for I-VRPD as described.  

 
Algorithm 1. VNS (Main) 

1.   Initialize VRP solution D 

2.   F ← 'å0Iâ6JnéèJåênéè7(D) 

3.   Repeat 

4.        % ← 1 

5.        Repeat 

6.             D ← áℎP%â(D F , %); 

7.     DÜ ← néèãåNPOáâP6Nℎ D, % ; 

8.             FÜ ← 'å0Iâ6JnéèJåênéè7 DÜ, % ;       

9.             FÜÜ ← ênéè7êë$6åIâëâ0J FÜ, % ; 

10.             F, D F , % ← zâ!çℎMå6ℎåå&'ℎP0çâ 	FÜÜ, FÜ, DÜ, % ;  

11.        Until  % = 	%ÉxÑ         

12.  Until  J > 	 JÉxÑ                                      

13.  Return F 

 



 
 

127 
 

5.4.1.2 Initialization 

To quickly generate the VRP solution, we use the Clarke and Wright Saving Algorithm (Clarke & 

Wright, 1964), which is by far the best-known approach and yet conceptually simple, yielding 

reasonably good solutions to the CVRP problem (Laporte, 2009). The Saving algorithm works as 

follows: 1.) create n truck routes (0,	! ,0) for ! = 1,…,	0; 2.) Compute the savings 4>,?= N>,1 + N1,? −

N>,?	for !, # = 1,…,	0.; 3.) Starting from the top of the savings list, merge two routes associated with 

the largest savings given that two delivery nodes are not in the same route, the two nodes must 

directly connect to the depot, e.g. (0, #) and (!, 0), and the total demand of the merged route must 

not exceed the truck capacity; 5.) repeat step (4) until no savings can be used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Example of VRP solution generated from Clarke and Wright Saving Algorithm  
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5.4.1.3 I-VRPD Route Construction from VRP Solution 

This section explains how we convert the VRP solution to the I-VRPD solution as shown in line 

(2) and line (8) of the Algorithm1. Algorithm 2 shows the basic structure of this solution 

transformation. Given the total number of vehicles as n. We assign the parameters èfì, èfA and 

èf@ as the probabilities of the VRP routes that will be assigned to hybrid truck routes, large drone 

routes, and traditional truck routes in order. In other words, there are èfì ∙ n   hybrid truck routes, 

èfA ∙ n  large drone routes, and èf@ ∙ n  traditional truck routes. We then randomly assign each 

VRP route into one of the vehicle fleets. For traditional truck routes, we maintain the same solution 

routes as the original VRP. For each large drone route, we keep the order of customers who get 

served by large drones in the same order as when they get served by regular trucks and re-compute 

the delivery time for each route using the drone travel time. In addition, we must ensure that the 

following criteria are met: 1.) The total demand of the customers to be served in that route must 

be less than the vehicle capacity 2.) The drones’ total traveling distance per trip must be less than 

their endurance or battery capacity for both small drones and large drones. If either one of the two 

criteria is violated, we remove one or more customers from a route and reinsert it to another route 

until the criteria are satisfied. For traditional truck routes and large drone routes, we apply some 

well-known local search such as 2 opt, simple relocate and swap move (Gendreau, 2008), to 

improve the solution quality. For the hybrid routes, we require additional steps to generate the 

solution that includes the small drone’s delivery route as follows:  

 

Step 1: For each hybrid truck route, select the initial truck node where the drone can be 

launched. The initial node is usually the node that is located closest to the depot. 

Step 2:  Select one of the available drones to be launched and then select one of the truck nodes 

as a drone delivery node using the lowest distance between the current drone node and 

an unvisited node. 

Step 3:  Remove the selected drone delivery node from the truck route and add it to the current 

drone route. Check the drone’s battery consumption and ensure that the load does not 

exceed the drone’s capacity. If not, reselect a new node to be served by drone. 

Step 4: Select the closest truck node where the drone lands at. Check drone’s battery 

consumption to ensure that it can fly back to a truck or else, select the new truck node 

for merging with a drone.   
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Step 5:  At the current truck node, select the next available customer node for the next truck 

delivery from the remaining nodes that have not been previously selected to construct 

the drone route yet or the landing node from any drone route. If the latter is selected, 

we obtain a complete drone route and this drone will be available for the new selection 

in the next iteration. Otherwise, we can select the next customer node to be served by 

the truck using the closest distance to the current truck node. 

Step 6:  Repeat steps 2 – 5 until no drone can be selected and connect the last truck node to the 

depot. Complete the same steps for all hybrid truck routes. 

 

Figure 5.4 demonstrates an example of the steps to obtain the hybrid truck route solution while 

Figure 5.5 shows the complete solution of the I-VRPD. 

 

a.)  

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 5.4 Example of áfì route construction for hybrid truck. a.) Initial VRP solution for áfì,    
b.) Construction of  áfì at 6th iteration, c.) Construction of  áfì at 10th iteration, d.) Construction 

of  áfì at 10th iteration 
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Figure 5.4 continued 

      

b.) 
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Figure 5.4 continued 
  

 

 

d.)  
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Figure 5.5 Example of complete I-VRPD route solution 

 

Algorithm 2. ConvertVRPtoIVRPD (F, D) 

1.   Import Solution D 

2.   Assign èfì, èfA and èf@ 

3.        áfì = All solution routes served by hybrid trucks; #hybrid truck routes = èfì ∙ n   

4.        áf@ = All solution routes served by traditional trucks; #traditional truck routes = èf@ ∙ n  

5.        áfA = All solution routes served by large drones;  #large drone routes = èfA ∙ n  

6.              Check if endurance / capacity is violated; else generate new áfA  

7.   For all routes in áfì 

8.        Set RemainN = {All nodes in Route} 

9.        Select the initial truck node 

10.      While RemainN ∉ ∅    

11.            Select a node to be served by drone from RemainN 
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12.    If  Drone’s load ≥ Drone Capacity || Bat consumption ≥ Bat capacity 

13.                 Repeat (11) 

14.             Else  

15.                 Update RemainN = RemainN – {Drone Delivery Node} 

16. Select a truck node for a drone to land 

17.                 If Bat consumption ≥ Bat capacity  

18.                       Repeat (16)  

19.                 End If 

20.                 Update RemainN = RemainN – {A truck node for drone to land} 

21.             End If 

22.                 Choose Next Truck Delivery Node ← minó from RemainN ∪ a truck from (16.) 

23.                 Update Route, RemainN = RemainN - Next Truck Delivery Node 

24.        End While 

25.        Return áfì for each Route 

26.  End For 

27.  Return F 

 

5.4.1.4 Shake and VRP Local Search 

This section explains the operators in line (6) and (7) of Algorithm 1.  As previously mentioned, a 

Shake is a random move that is used to generate a new solution of a VRP solution sub-problem in 

the same neighborhood DÜ ∈ ÇE(D) based on the solution of I-VRPD. This operator aims to initiate 

the new starting point of the search in the same neighborhood which provides a deep exploration 

of the solution space. The Shake operator is used after generating the initial solution of I-VRPD 

or a Neighborhood Change. After implementing the Shake, we apply Local Search to the new 

solution to improve its objective value. It is noted that while we always accept any random solution 

from the Shake operator, we only accept the new current solution after the Local Search when the 

objective of the new solution is better than the current one.  

 

To perform the Shake and Local Search operator, we first need to covert the hybrid truck solution 

(áfì ) into the regular VRP truck solution by removing all drones nodes from the current solution 
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and reinsert all the nodes back to the route using Saving algorithm. The large drone solution (áfA) 

and the traditional truck solution (áf@) are kept as they are. We then apply the Route Exchange, 

where two routes from different vehicle fleets are exchanged. Within each fleet type, we apply the 

following operators: 

- VRP Crossover: Different parts of two different routes are simultaneously exchanged. 

- VRP Exchange: Two nodes from different routes are simultaneously exchanged. 

- VRP Swap: Two nodes from the same route are simultaneously exchanged. 

- VRP Insert: A node is removed and inserted into a different location on the same route. 

- VRP 2opt: Two crossover edges are selected and reordered (swap) it so that they do not   

                     cross   

Figure 5.6a.) to 5.6d.) represents different operators used in both Shake and Local Search steps. 

 

 

                     
           a.)      b.)  

         

          
          c.)      d.)  

Figure 5.6 Example of different local search operators. a.) The VRP solution based on the I-
VRPD solution, b.)Example of the VRP Crossover operator, c.) Example of the VRP Swap (R1) 

and Insert (R2), d.)  Example of the VRP 2opt (R1) and Exchange (R2&R3) 
 

5.4.1.5 I-VRPD Improvement 

In this section, we perform an additional search to the hybrid truck solution (áfì ) by applying 

removing and inserting operators. There are two steps in this process: 1.) randomly remove a 

certain number of small drones nodes and trucks nodes from the current solution 2.) reinsert these 

removed nodes into the partial solution. The improved solution will only be accepted afterward. 

We perform this step to avoid getting stuck at the local optima as the approach to generate áfì 
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from line (7) to (25) are fundamentally greedy and always generate the same áfì  of the I-VRPD 

solution from every VRP solution in each iteration. Algorithm 3 provides the basic structure of 

this search.  

 

Algorithm 3. IVRPDImprovement yÜ, k ; 

1.   Import áfì 

2.   áfìÜ ←	Remove 0DjÉxvv	HcR;öj nodes and 0FLcõúEj nodes 

3. 	 For All 0DjÉxvv	HcR;öj & All 0DjÉxvv	HcR;öj 

4.        áfìÜÜ ←	Insert each node into áfìÜ 

5.   End For     

6.    If áfìÜÜ ≤ áfì 

7.        áfì ← 	áfìÜÜ 
8.   End If 

9.   Return áfì 

 

5.4.2 Large Neighborhood Search 

The Large Neighborhood Search (LNS) is based on a process of continual relaxation and re-

optimization. An initial feasible solution of the problem is destroyed and repaired iteratively to 

gradually improve the solution quality. LNS offers a large move that could expand the solution 

search space by disintegrating a large part of the previous solution and giving the freedom to create 

a new one (Schrimpf et al., 2000). We modify the LNS that was previously used in multiple 

variants of VRP to include the certain operators that specifically work with our I-VRPD problem. 

Since our proposed model involves different components and constraints including different 

solution routes for each vehicle fleet and the sub route for drone delivery, it would be more 

applicable to implement the modified LNS to our problem rather than using standard local search. 

Algorithm 4 shows the basic structure of the proposed LNS for I-VRPD. 
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Algorithm 4. LNS-IVRPD 

1. Initialize VRP solution áfùû 

2. áü†fùûA ← 'å0Iâ6JnéèJåênéè7(áfùû) 

3. Generate	áü†fùûA°öjL ← áü†fùûAkõccö;L ← áü†fùûA 

4. Initialize J!ëâ = 0, ! = 0 

5. Repeat 

6.     While ! ≤	 !ÉxÑ 

7.          Enter Destroy Phase 

8.               áü†fùûA
@öÉGA8 ←	Call Small drone node removal (áü†fùûAkõccö;L) 

9.               áü†fùûA
@öÉGA9 ←	Call Hybrid truck node removal (áü†fùûA

@öÉGA8) 

10.             áü†fùûA
@öÉGA: ←	Call Large drone node removal (áü†fùûA

@öÉGA9) 

11.             áü†fùûA
@öÉGA¢ ←	Call Traditional truck node removal (áü†fùûA

@öÉGA:) 

12.          Enter Repair Phase 

13.             áü†fùûA
@öÉGù8 ←	Call Large drone node insertion (áü†fùûA

@öÉGA¢) 

14.             áü†fùûA
@öÉGù9 ←	Call Traditional truck node insertion (áü†fùûA

@öÉGA¢) 

15.             áü†fùûA
@öÉGù: ←	Call Small drone route creation (áü†fùûA

@öÉGA¢) 

16.             áü†fùûA
@öÉGù¢ ←	Call Hybrid truck node insertion (áü†fùûA

@öÉGA¢) 

17.        Select áü†fùûA
@öÉG  = min (áü†fùûA

@öÉGù8, áü†fùûA
@öÉGù9, áü†fùûA

@öÉGù:, áü†fùûA
@öÉGù¢) 

18.        If Cost (	áü†fùûA
@öÉG ) < Cost (	áü†fùûAkõccö;L) 

19.             áü†fùûAkõccö;L 	← áü†fùûA
@öÉG  

20.             ! = 0 

21.        Else 

22.            	! = ! + 1  

23.        End If 

24.    End While 

25.    If Cost (áü†fùûAkõccö;L) < Cost (áü†fùûA°öjL ) 

26.        áü†fùûA°öjL 	← áü†fùûAkõccö;L  

27.        ! = 0 
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The proposed algorithm based on LNS starts with similar steps that are used in VNS by generating 

the initial solution from VRP solution as shown in line (1) and (2). This initial solution will be 

stored as the current solution as well as the global best solution (line 3). At each iteration, a partial 

solution destruction is performed sequentially using four destroy operators on the current solution 

routes, which will then be repaired by the repair operators afterward (line 7 – line 16). Among all 

four solutions after going through the repair operators, we select the one with the lowest objective 

value and record it as a temporary solution (line 17). If the objective value of the temporary 

solution is lower than the one from the current solution, we accept the new current solution and 

the index i is reset to 0 (line 18-20). If this not the case, we still keep the present current solution 

and perform another round of destroy-repair operations to the temporary solution. We keep 

exploring the search space for any better solution iteratively until the index i reaches !ÉxÑ. The 

current solution at the !ÉxÑLt  iteration will be compared with the global best solution and be 

accepted as the new global best solution if it has the lower objective value (line 21-23). On the 

contrary, if the current solution at the !ÉxÑLt  iteration has the objective value worse than the global 

best solution, we initialize the new áü†fùûA from the VRP as the current solution. We repeat the 

same steps until the J!ëâ ≥ J!ëâÉxÑ and return the best solution. All the different types of destroy 

operators and repair operators will be described in the next subsection.  

5.4.2.1 Destroy Operators  

Our algorithm relies on three different destroy operators, which are invoked at each iteration in 

sequential order. We denote $8, $9, $:, and $¢ as the percentage of small drone only nodes, hybrid 

truck only nodes, large drone only nodes and traditional truck only nodes accordingly. The 

operators are presented in the sequential order of execution as follows. 

 

28.    Else  

29.        áü†fùûAkõccö;L ←	áü†fùûA ← 'å0Iâ6JnéèJåênéè7 áfùû  

30.        ! = 0 

31.    End If 

32. Until J!ëâ ≥ J!ëâÉxÑ 

33. Return áü†fùûA°öjL  
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Small drone node removal: This operator focuses on the hybrid truck routes by removing 

$8 ∙ '§;v•	¶xÉvv	AcR;ö	   nodes from the current hybrid truck solution ( áfì ), with the 

'§;v•	¶xÉvv	AcR;ö		being the set of customer nodes who receive deliveries by drone only. If all nodes 

in a sub drone route are removed, the original launching and landing nodes are considered as truck 

delivery nodes and become available for launching and retrieving any available drone.  

 

Hybrid truck node removal: This operator also focuses on the hybrid truck routes by removing 

$9 ∙ '§;v•	ì•yc>H	LcõúE	;RHö		  nodes from the current hybrid truck solution ( áfì ), with the 

'§;v•	ì•yc>H	LcõúE	;RHö		being the set of customer nodes who receive deliveries by truck only in the 

hybrid truck solution (excluding the launching and landing node). If all customer nodes are 

removed from the hybrid truck route, the solution for that hybrid truck route becomes empty and 

the particular hybrid truck will not be deployed in the operation.  

 

Large drone node removal: This operator focuses on the large drone routes by removing 

$: ∙ 'ßxc®ö	HcR;ö	;RHö		  nodes from the current large drone solution (áfA) , with the 

'ßxc®ö	HcR;ö	;RHö		 being the set of customer nodes who receive deliveries by large drone in the 

large drone solution. If all customer nodes are removed from the large drone route, the solution for 

that large drone route becomes empty and the particular large drone will not be deployed in the 

operation. 

 

Traditional truck node removal: This operator focuses on the traditional truck routes by removing 

$¢ ∙ '@cxH>L>R;xv	LcõúE	;RHö		  nodes from the current large drone solution (áf@) , with the 

'@cxH>L>R;xv	LcõúE	;RHö		 being the set of customer nodes who receive deliveries by traditional truck 

in the traditional truck solution. If all customer nodes are removed from the traditional truck route, 

the solution for that traditional truck route becomes empty and the particular truck will not be 

deployed in the operation. 
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5.4.2.2 Repair Operators 

At the repair phase, each node would go through all four repair operators in parallel. Each repair 

operator returns the new routing solution with the selected node already inserted in the route. We 

compare the solutions obtained from four operators. The best-repaired solution will be selected 

and become the current solution of the problem. We perform the repair process until no node is 

left in the re-insert list and recalculate the objective value of the updated solution. The repair 

operators are described as follows. 

 

Large drone node insertion: The operator takes one of the removed nodes and inserts it into any 

existing large drone solution route using the cheapest insertion heuristic. The new solution route 

must have the cumulative drone’s load less than a large drone capacity and total travel distance 

less than its endurance. 

 

Traditional truck node insertion: The operator takes one of the removed nodes and inserts it into 

any existing traditional solution route using the cheapest insertion heuristic. 

 

Hybrid truck node insertion: The operator inserts the selected node into one of the truck routes at 

the current solution. The operator searches for all the feasible positions to insert the node into and 

selects the one with the lowest increase in total cost. If the current capacities of trucks for all routes 

are full, the node can be inserted into an empty route, which creates one more truck route in the 

solution.   
 

Small drone route creation: The operator creates a new sub drone route by inserting the selected 

node between a pair of truck nodes. A pair of truck node includes a truck node where a small drone 

is launched from (launching node) and a node where a small drone lands at. The inserted node is 

a customer node served by a small drone. The operator searches for the cheapest pair among all 

possible combinations to construct a new drone route with the lowest increase in total cost.  

 

Figures 5.7a.) and 5.7b.) represent the I-VRPD solution after all four destroy operators are 

executed and the solution after all four repair operators are executed accordingly.
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a.)  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 5.7 Example of LNS heuristic on I-VRPD solution. a.) Solution after the destroy 
operators: Small drone node route creation insertion {2,11}, Hybrid truck node 

insertion{1,4,15},Large drone node insertion {10},Traditional truck node insertion {3}, b.) 
Repair operators on 2EVRPD solution: Small Drone removal{2,3}, Hybrid truck node removal 

{4,11}, Large drone node removal {15}, Traditional truck node removal {1,10}. 
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Figure 5.7 Continued 

 

 

 

b.)   

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

142 
 

 Computational Examples and Results 

This section examines the formulated MIP problem and the proposed algorithms using numerical 

examples and a case study. We conducted our experiments from different sets of instances, taken 

from four classic sets of the CVRP benchmark from Augerat et al. (sets A, B, and P) and 

Christofides and Elion (set E). The input data are available online at the Capacitated Vehicle 

Routing Problem Library (Augerat et al., 1995). We assume that the travel time can be represented 

by the cost metric associated with the benchmark problem. We set the truck travel time to be 1.5 

time units longer than the drone travel time (	=?,>@  = 1.5	=>,?A ) since the drone speed is roughly about 

1.5 times faster than the truck speed (Brar et al., 2015). The truck capacity and the number of 

trucks for each instance are excerpted from the instance input as well. Other parameters are 

currently assigned randomly and are subject to more calibrations in the future work. For the 

headers of all the tables presented in this section, we refer to n as the number of customer nodes, 

K as the number of hybrid trucks, KD as the number of small drones, VT as the number of 

traditional trucks, VD as the number of large drones, Q as the truck capacity, and QD as the small 

drone capacity. We assume that large drones have sufficient capacity equal to both traditional and 

hybrid trucks. In addition, we assume that both trucks and drones travel in Euclidean space. All 

the algorithms were executed in Matlab on a computer with 2.7GHz Intel Core i5 with 8GB ram 

RAM running Windows 7 64-bit mode. All the Mixed-Integer Linear Programming models were 

solved using GAMS 23.51 with CPLEX solver. 

5.5.1 Experiment on the Small-Size Problems 

5.5.1.1 A Case Study 

In this section, we conduct a case study using the real-world scenario to investigate the usefulness 

of the I-VRPD model in the practical aspect and compare different solution routes under various 

settings. We randomly select eight customer nodes and one depot node in Lafayette/West Lafayette 

area. For this particular experiment, all trucks are assumed to travel in the road network while the 

drones travel in the air space following Euclidean distance. Other assumptions are still the same as 

we indicated in an earlier part of the study. We ran the MIP from Section 5.3 in the solver and 

generated different solution routes as shown in Figure 5.8.  
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a.)             b.) 

  

  

 

   

 

    

  

 

  

          

c.) d.) 

 

  

 

  

 

 

 

     

 

                  

Figure 5.8 Result of the case study. (a) Single Traditional truck (Delivery time: 2046 S.). (b) 
Single Hybrid truck (Delivery time: 1369 S.). (c) One Hybrid truck & One Traditional truck 
(Delivery time: 1070 S.). (d) One Hybrid truck, One Traditional truck &One Large (Delivery 

time: 671 S.).                                        
 

Figure 5.8a.) represents the solution route using a traditional truck alone which is the typical way 

of delivery and Figure 5.8b.) represents the solution route using a hybrid truck with one small 

drone. The gain from using a drone in the model account for 33% improvement of the delivery 

time. If one traditional truck is added to the operation as shown in Figure 5.8c.), it will additionally 

reduce the delivery time by 21.8%. Lastly, when combining a large drone, a hybrid truck and a 

Traditional truck 
Hybrid truck  

 Small drone 

 Traditional truck 

Hybrid truck  

 Small drone 

 Traditional truck 

Hybrid truck  

 Small drone 

Large Drone 
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traditional truck together in the operation, the result shows a significant reduction in delivery time 

by 67% from the traditional truck alone. The case study demonstrates the potential benefit of 

integrating different types of vehicles in last-mile delivery and illustrates the feasible solution route 

from the real-world scenario.      

5.5.1.2 Comparison of I-VRPD MIP and other MIP Routing Models 

This section compares the solution between the proposed I-VRPD and other routing models 

including VRPD3  which utilizes small drones in a hybrid truck and classical CVRP on different 

small-size benchmark problems. We obtained the exact solutions for both models using the 

CPLEX solver for a comparison. The goal of this experiment is to evaluate the cost (time) saving 

when combining different fleet of vehicles to make deliveries. We also want to get an estimation 

of how long the solver would take to obtain an optimal solution for I-VRPD problem. For each 

instance, the number of customer nodes is set to be 8 and the maximum number of vehicles to be 

used is 2. The CVRP model consists of only two traditional trucks while the VRPD model consists 

of only a hybrid truck in which each unit is equipped with one small drone. Exactly one hybrid 

truck and one large drone are used in the I-VRPD. The results are shown in Table 5.1. 

 

Table 5.1 Comparison of the results between MIP-I-VRPD, MIP-VRPD and MIP-CVRP on 
small-size instance 

 

Instance 

MIP CPLEX Improvement (%) 

I-VRPD  VRPD  CVRP  

Objective 
Runtime 

(Second) 
 Objective 

Runtime 

(Second) 
 Objective 

Runtime 

(Second) 

I-VRPD 

v.s. VRPD 

I-VRPD 

v.s. CVRP 

A1-n8-k2 253 623.13  300 2196.09  338 88.72 15.67 25.15 

A2-n8-k2 218 455.85  248 2788.66  305 75.30 12.10 28.52 

A3-n8-k2 159 382.53  185 1471.09  204 95.86 14.05 22.06 

B1-n8-k2 259 653.64  287 2231.58  340 76.11 9.76 23.82 

B2-n8-k2 201 609.42  248 1964.14  252 64.66 18.95 20.24 

P1-n8-k2 108 256.87  120 1038.87  140 40.86 10.00 22.86 

P2-n8-k2 113 177.37   126 1325.49   148 36.83 10.32 23.65 

Average     451.26 
    

1859.41 
    

68.33 12.98 23.76 
        

                                                
3 See the APPENDIX section for the VRPD formulation 
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When comparing I-VRPD to VRPD, the results show an improvement in objective value 

approximately by 12.98% (9.76% to 18.95%) depending on the instance. The objective value 

improvement is much more significant when comparing to CVRP with the average improvement 

of 23.77% (20.14% to 28.52%). The results from this experiment demonstrate the gain from 

implementing the new routing model when using all heterogeneous fleet of vehicles in the setting. 

In addition, it takes a significant amount of time to obtain the optimal solution for all MIP models 

to generate the optimal solutions even for the small-size problem (451.26 seconds for I-VRPD, 

1859.41 for VRPD, and 68.33 for CVRP). Thus, we conducted more experiments to solve I-VRPD 
in the same instances using the proposed heuristics described in Section 5.4.  

 

5.5.1.3 Comparison of the Proposed Heuristics and the I-VRPD MIP Model 

From the previous section, we solve the I-VRPD using the MIP formulation to obtain the exact 

solution with the tradeoff of large computational time. In this section, we examine how well the 

heuristics perform when applying to the small-size instances. We ran VNS and LNS heuristics 10 

times for each instance and report the Best Objective, Best GAP (%), Average Objective and 

Average Runtime (second) for both VNS and LNS. The GAP is computed as the percentage 

difference between the best (average) objective from the heuristics and the optimal solution from 

MIP. The goal of this experiment is to evaluate the performance of both heuristics when comparing 

with the exact solution from the MIP solver and to measure how fast the heuristics can generate 

good solutions when compared with the solver’s computational time. The results are shown in 

Table 5.2. 
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Table 5.2 Comparison of the results between VNS, LNS heuristics and MIP-I-VRPD on small-
size instance 

 

Instance 

  I-VRPD 

 Heuristics  MIP 

 VNS  
Best 

% Gap 

Avg % 

GAP 

Time   

(sec) 
 LNS 

Best 

% Gap 

Avg % 

GAP 

Time   

(sec) 
 Optimal 

Time  

(sec) 

A1-n8-k2  253 0.0 0.0 52.00  253 0.0 0.0 31.23  253 623.13 

A2-n8-k2  218 0.0 0.0 68.40  218 0.0 0.0 30.44  218 455.85 

A3-n8-k2  159 0.0 0.0 51.76  159 0.0 0.0 30.13  159 382.53 

B1-n8-k2  259 0.0 0.0 52.94  259 0.0 0.0 30.07  259 653.64 

B2-n8-k2  201 0.0 0.0 53.01  201 0.0 0.0 30.13  201 609.42 

P1-n8-k2  110 1.9 1.9 52.15  110 1.9 1.9 30.05  108 256.87 

P2-n8-k2   113 0.0 0.0 67.20  113 0.0 0.0 30.11   113 177.37 

Average 
    

0.3 
  

56.78 
   

0.3 
  

30.31 
    

451.259 
                

  

From Table 5.2, both VNS and LNS heuristics perform well in all small-size problems while 

consuming significantly less computational time than the CPLEX. The Best % Gap column shows 

that the VNS and LNS can equivalently find optimal solutions for all instances (0% GAP) with an 

exception in one instance (‘P2-n8-k2’ with a 1.9% GAP). It is also interesting to see that the 

Average % GAP returns 0 for almost all instances which indicates that the heuristics can find 

optimal solutions in every iteration. In terms of runtime, both heuristics use significantly less 

computational time than CPLEX by approximately seven times and fourteen times for VNS and 

LNS accordingly. Thus, we conclude that both heuristics perform well in the small-size problem 

and will be used to solve for an approximate solution in the larger-size problem. 

5.5.1.4 Comparison of VRPD-MIP Model and CVRP-MIP Model on Small-Size Problems 

This section specifically compares the solutions between the proposed VRPD and the classical 

CVRP on small-size problems. Exact solutions are also obtained for both models using the CPLEX 

solver for a comparison. The objective of this experiment is to evaluate the cost (time) saving by 

implementing the drone’s operation with a truck under the hybrid truck operation. We also want 

to get an estimation of how long it would take to solve the VRPD using the MIP method to obtain 

an optimal solution. We conducted the experiment in the two settings: the one with a bigger truck 

size capacity (Q) and the one with smaller trick size capacity (Q). For the first setting, one truck is 
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sufficient enough to be used in the operation while it is required to have at least two trucks to 

perform a delivery in the second setting. The results are shown in Table 5.3 and Table 5.4. 
   

Table 5.3 Computational results of the first setting:  n = 8, k = 1, Q = 200, Kd = 1, Qd = 40 
 

Instance 

MIP CPLEX 

Improvement 

(%) 

  

VRPD CVRP (No Drone)   

Solution 

(Optimal) 
Runtime(Second) 

Solution 

(Optimal) 

Runtime 

(Second) 
  

A1-n10-k2 235 170 279 8.08 15.77   

A2-n10-k2 218 406 285 7.92 23.51   

A3-n10-k2 132 332 152 8.46 13.16   

B1-n10-k2 236 196 265 9.33 10.94   

B2-n10-k2 182 230 189 5.85 3.70   

P1-n10-k2 82 460 109 6.96 24.77   

P2-n10-k2 84 180 109 7.29 22.94   

Average 282 Average 16.40 
  

  

 

Table 5.4 Computational results of the second setting:  n = 8, k = 2, Q = 70, Kd = 1, Qd = 40 
 

Instance 

MIP CPLEX 

Improvement 

(%) 

  

VRPD CVRP (No Drone)   

Solution 

(Optimal) 
Runtime(Second) 

Solution 

(Optimal) 

Runtime 

(Second) 
  

A1-n10-k2 355 1670 383 25.74 7.31   

A2-n10-k2 263 829 329 20.89 20.06   

A3-n10-k2 200 1621 221 26.12 9.50   

B1-n10-k2 335 1273 356 21.9 5.90   

B2-n10-k2 302 1424 317 35.88 4.73   

P1-n10-k2 127 487.17 148 6.57 14.19   

P2-n10-k2 126 540.29 149 8.16 15.44   

Average 1121 Average 11.02 
  

  

 

The results show that implementing the trucks with drones could reduce the objective values 

approximately by 16.40% in the first setting and 11.02% in the second setting. The results from 

this numerical experiment corresponds with the result from the case study we demonstrated earlier. 

In general, we expect the saving to be lower than the classical CVRP but varied by the location of 

the customer nodes. Looking at the solution objective of the VRPD-MIP on both cases, it appears 
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that the model with one big truck capacity performs better (return lower objective value) than the 

one with two small trucks size even though they both held the same total capacity.  

 

In addition, a sensitivity analysis was conducted to evaluate the impact of major parameters and 

components of the method. We are specifically interested in making a comparison between 

different number of vehicles as well as the different sizes of truck capacity to see how it would 

affect the performance of the VRPD solution. For the types and number of vehicle experiment, 

three different operational settings are evaluated including 1.) Two small trucks – zero drone; 2.) 

One big truck; and, 3.) One big truck – one drone. For the size of truck capacity, we experiment 

with three different capacities: 1.) Q = 70 (Two truck – one drone); 2.) Q = 100 (Two truck – one 

drone); and, 3.) Q = 200 (One large truck – one drone). Using the same benchmark instances as 

Section 4.2, we report the results of the sensitivity analysis in Figure 5.9 and Figure 5.10 as follows.  
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          Figure 5.9 Delivery time among different types of vehicles 

 

 

 

 

 

 

 

 

 

 

 

 

  

   Figure 5.10 Delivery time among different truck capacities. 
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The result from the experiment clearly shows that the operation with one large truck and one drone 

outperforms other types of operations in all problem instances as shown in Figure 5.9. This 

demonstrates that using a drone in the operation positively results in the better objective values 

than using one more small truck. It is also noted that given the same total capacity, the case with 

one large truck returns better results than the case with the multiple small trucks as shown in Figure 

5.10. We investigate this case carefully and notice that when the size of the instance is small, 

having an additional unit of the truck increases the total delivery time since it requires additional 

time for the truck to leave and return to the depot both ways. However, this might not be the case 

when the problem size gets larger. 

5.5.2 Experiment on the Large-Size Problems 

5.5.2.1 Comparison of the Proposed Heuristics and the Optimal Solution of CVRP on 
Various Instances 

In this section, we want to test the performance of the proposed heuristics on different variations 

of instances. For each instance, three types of vehicles are used for the operation including a large 

drone, a hybrid truck and a traditional truck. At least one unit of each vehicle type must be used. 

A total of 46 test benchmark CVRP instances were used in this experiment and each benchmark 

instance was run 10 times independently. We compare the performance of our two heuristics, VNS 

and LNS, with the CVRP optimal solutions for each instance from the literature. We report the 

GAP from the CVRP solution, best solution, average solution and average runtime as shown in 

Table 5.5 and 5.6.  

 

Similar to the small-size problem, it is shown that the objective of the I-VRPD is lower than the 

CVRP objective indicating the lower delivery cost when using the proposed model. When 

comparing the two heuristics, the VNS performs better than the LNS on average as the negative 

GAP in VNS is bigger than the one in LNS (Negative GAP on the table means better objective 

than the CVRP). On average, the GAP is -22.34% (-23.03%) for VNS and -19.02%(-19.53%) for 

LNS in the case with one small drone (two small drones). However, the VNS also consumes a 

larger computational time when comparing to the LNS.
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Table 5.5   Results of the proposed I-VRPD heuristics and optimal CVRP on the various 
instances (One small drone) 

 

Instance 
CVRP 

(Optimal) 

    
I-VRPD Heuristic (One small Drone) 

   

 VNS  LNS 

 GAP Best Average Time  GAP Best Average Time 

A-n32-k5 784  -20.03 627.00 627.50 643.42  -16.96 651.00 655.20 64.66 

A-n33-k5 661  -21.33 520.00 522.50 643.37  -18.00 542.00 548.20 62.78 

A-n33-k6 742  -27.49 538.00 542.50 624.55  -24.39 561.00 561.85 65.99 

A-n34-k5 778  -20.95 615.00 615.70 627.23  -20.05 622.00 630.80 64.06 

A-n36-k5 799  -23.90 608.00 610.70 638.61  -22.03 623.00 623.70 72.40 

A-n37-k6 949  -26.34 699.00 702.30 660.35  -24.13 720.00 728.00 67.79 

A-n38-k5 730  -22.88 563.00 577.30 656.88  -15.62 616.00 621.80 65.54 

A-n39-k5 822  -22.51 637.00 640.90 658.69  -19.83 659.00 682.50 65.15 

A-n39-k6 831  -28.88 591.00 596.40 704.18  -23.23 638.00 643.80 74.30 

A-n44-k6 937  -25.72 696.00 698.90 699.91  -20.81 742.00 755.30 70.30 

A-n45-k6 944  -21.82 738.00 744.90 654.82  -18.96 765.00 776.20 72.93 

A-n46-k7 914  -26.48 672.00 682.40 699.17  -22.54 708.00 714.00 71.15 

A-n48-k7 1073  -23.21 824.00 830.70 722.24  -19.66 862.00 873.70 76.41 

A-n53-k7 1010  -25.15 756.00 768.50 800.36  -20.99 798.00 806.50 79.87 

A-n54-k7 1167  -23.22 896.00 907.10 749.17  -20.14 932.00 939.60 76.47 

A-n55-k9 1073  -22.37 833.00 841.50 732.12  -18.64 873.00 896.80 74.97 

A-n62-k8 1288  -23.84 981.00 1007.20 980.68  -16.38 1077.00 1084.50 80.47 

A-n63-k10 1314  -20.24 1048.00 1069.50 776.59  -16.06 1103.00 1116.80 82.90 

A-n64-k9 1401  -20.77 1110.00 1115.70 716.83  -18.99 1135.00 1143.40 78.12 

A-n65-k9 1174  -21.64 920.00 930.20 758.00  -16.10 985.00 995.70 75.97 

A-n69-k9 1159  -22.35 900.00 931.70 818.93  -20.88 917.00 931.40 81.19 

B-n31-k5 672  -18.60 547.00 550.20 630.60  -18.30 549.00 555.00 64.35 

B-n34-k5 788  -17.64 649.00 653.00 630.39  -16.88 655.00 659.90 62.39 

B-n35-k5 955  -18.64 777.00 779.30 628.09  -17.59 787.00 795.30 63.80 

B-n38-k6 805  -26.21 594.00 602.20 680.60  -20.00 644.00 658.30 71.47 

B-n39-k5 549  -23.13 422.00 423.40 649.83  -21.31 432.00 437.40 66.69 

B-n41-k6 829  -15.80 698.00 704.60 717.74  -13.51 717.00 721.40 71.15 

E-n51-k5 521  -24.38 394.00 397.80 799.92  -22.26 405.00 426.00 85.75 

E-n76-k7 682  -22.14 531.00 540.70 1009.11  -15.54 576.00 594.90 124.55 

E-n76-k8 735  -24.08 558.00 565.30 1144.85  -19.73 590.00 605.10 91.45 

E-n76-k10 830  -21.57 651.00 660.40 1428.96  -17.11 688.00 704.40 88.69 

E-n76-k14 1021  -20.57 811.00 818.40 799.08  -17.92 838.00 849.00 81.17 

P-n16-k8 450  -18.67 366.00 374.20 605.22  -19.56 362.00 362.80 60.54 

P-n20-k2 216  -26.39 159.00 159.00 609.11  -25.93 160.00 160.20 60.52 
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Table 5.5 continued 

 
P-n22-k2 216  -23.61 165.00 166.00 611.54  -19.91 173.00 182.60 61.13 

P-n23-k8 529  -19.09 428.00 428.70 607.91  -19.09 428.00 430.20 61.37 

P-n50-k7 554  -20.40 441.00 443.70 714.20  -17.87 455.00 463.30 70.45 

P-n50-k8 631  -23.30 484.00 489.20 662.45  -21.55 495.00 501.80 69.71 

P-n50-k10 696  -19.25 562.00 566.90 673.66  -16.81 579.00 590.40 76.98 

P-n51-k10 741  -17.00 615.00 616.67 654.29  -14.71 632.00 641.55 70.46 

P-n55-k10 694  -19.31 560.00 561.80 695.23  -15.99 583.00 586.40 68.48 

P-n55-k15 989  -22.14 770.00 773.30 674.76  -20.32 788.00 798.27 67.19 

P-n60-k10 744  -18.82 604.00 612.70 747.99  -14.78 634.00 640.80 72.26 

P-n60-k15 968  -33.88 640.00 685.40 771.28  -18.18 792.00 800.40 72.42 

P-n65-k10 792  -19.19 640.00 644.40 768.42  -16.04 665.00 678.50 79.76 

P-n70-k10 827  -22.73 639.00 644.20 867.80  -19.47 666.00 682.78 101.48 

Average   -22.34     733.68   -19.02     73.64 
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Table 5.6   Results of the proposed I-VRPD heuristics and optimal CVRP on the various 
instances (Two small drones) 

 

Instance 
CVRP 

(Optimal) 

    
I-VRPD Heuristic (Two small Drones) 

   

 VNS  LNS 

 GAP Best Average Time  GAP Best Average Time 

A-n32-k5 784  -20.15 626.00 628.00 641.24  -16.96 651.00 654.40 66.34 

A-n33-k5 661  -23.45 506.00 509.10 656.27  -19.67 531.00 549.20 65.93 

A-n33-k6 742  -28.44 531.00 536.90 663.71  -24.93 557.00 561.50 67.30 

A-n34-k5 778  -21.72 609.00 611.50 665.32  -20.18 621.00 633.60 66.57 

A-n36-k5 799  -26.03 591.00 596.00 752.43  -22.03 623.00 623.70 72.40 

A-n37-k6 949  -26.66 696.00 700.30 778.69  -23.92 722.00 727.70 71.29 

A-n38-k5 730  -25.89 541.00 555.40 756.84  -18.63 594.00 615.10 73.81 

A-n39-k5 822  -24.33 622.00 624.20 738.57  -19.83 659.00 680.20 73.80 

A-n39-k6 831  -29.00 590.00 592.90 741.44  -24.43 628.00 638.40 84.70 

A-n44-k6 937  -26.89 685.00 689.40 771.47  -22.63 725.00 740.30 71.51 

A-n45-k6 944  -23.62 721.00 736.50 749.49  -20.34 752.00 762.60 75.52 

A-n46-k7 914  -27.13 666.00 675.90 725.77  -22.98 704.00 718.10 73.48 

A-n48-k7 1073  -23.86 817.00 859.62 863.50  -20.04 858.00 872.80 81.09 

A-n53-k7 1010  -28.02 727.00 755.38 1095.22  -20.89 799.00 805.20 82.44 

A-n54-k7 1167  -23.91 888.00 902.20 1163.74  -20.57 927.00 937.40 88.06 

A-n55-k9 1073  -22.83 828.00 838.60 767.92  -17.43 886.00 912.50 90.76 

A-n62-k8 1288  -26.01 953.00 992.00 1195.60  -16.54 1075.00 1094.60 76.59 

A-n63-k10 1314  -19.86 1053.00 1069.50 1028.11  -15.37 1112.00 1117.00 100.00 

A-n64-k9 1401  -20.77 1110.00 1117.30 1491.15  -19.27 1131.00 1140.70 93.45 

A-n65-k9 1174  -22.49 910.00 925.80 1224.14  -16.87 976.00 986.30 93.20 

A-n69-k9 1159  -23.38 888.00 895.40 1687.10  -21.40 911.00 929.80 123.29 

B-n31-k5 672  -18.60 547.00 547.10 640.39  -18.30 549.00 560.50 63.81 

B-n34-k5 788  -17.64 649.00 650.20 663.54  -16.50 658.00 668.70 70.21 

B-n35-k5 955  -19.37 770.00 773.40 676.91  -16.96 793.00 797.10 67.07 

B-n38-k6 805  -27.08 587.00 602.30 778.33  -20.99 636.00 654.00 73.76 

B-n39-k5 549  -23.13 422.00 422.90 761.76  -20.22 438.00 439.80 76.54 

B-n41-k6 829  -15.92 697.00 703.10 729.71  -13.87 714.00 719.80 76.81 

E-n51-k5 521  -26.49 383.00 385.40 945.47  -19.96 417.00 427.10 70.61 

E-n76-k7 682  -25.37 509.00 523.50 3296.19  -18.48 556.00 580.90 126.75 

E-n76-k8 735  -26.53 540.00 547.80 2306.90  -23.95 559.00 576.20 188.68 

E-n76-k10 830  -23.98 631.00 650.20 2063.14  -17.71 683.00 692.20 110.25 

E-n76-k14 1021  -21.06 806.00 813.71 841.43  -18.32 834.00 845.18 69.74 

P-n16-k8 450  -16.89 374.00 376.20 608.13  -19.56 362.00 362.80 60.66 
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Table 5.6 continued 

 
P-n20-k2 216  -27.78 156.00 156.00 613.52  -26.85 158.00 160.10 61.02 

P-n22-k2 216  -27.31 157.00 157.00 631.82  -25.00 162.00 162.50 61.55 

P-n23-k8 529  -19.09 428.00 428.80 612.22  -19.09 428.00 429.70 62.29 

P-n50-k7 554  -21.84 433.00 437.60 798.11  -18.05 454.00 460.80 76.88 

P-n50-k8 631  -24.09 479.00 484.90 700.97  -21.71 494.00 499.30 77.98 

P-n50-k10 696  -19.40 561.00 567.24 730.24  -16.52 581.00 588.00 75.11 

P-n51-k10 741  -17.00 615.00 617.50 680.02  -14.17 636.00 643.70 70.37 

P-n55-k10 694  -20.46 552.00 556.80 720.57  -16.43 580.00 583.40 77.57 

P-n55-k15 989  -21.94 772.00 773.90 682.59  -20.53 786.00 797.00 76.07 

P-n60-k10 744  -18.82 604.00 610.30 782.35  -15.32 630.00 642.70 79.16 

P-n60-k15 968  -19.73 777.00 780.80 810.54  -17.56 798.00 803.70 78.14 

P-n65-k10 792  -20.20 632.00 636.80 884.85  -16.67 660.00 670.80 113.55 

P-n70-k10 827  -25.15 619.00 624.50 1370.86  -20.68 656.00 679.20 106.26 

Average   -23.03      945.40   -19.53     81.79 

 

5.5.2.2 Comparison of the Proposed Heuristics and the Solution of VRPD on Various 
Instances 

Continuing from the previous section, we also want to compare the results of the I-VRPD solved 

by the proposed heuristics with the VRPD on the same set of instances. As previously mentioned, 

only a hybrid truck vehicle is used in VRPD. To the best of our knowledge, we could not find any 

optimal VRPD solution on this set of instances in the literature. We solved the VRPD and obtained 

the solution using our modified LNS heuristic. The modified LNS consists of the operators which 

focus entirely on the route generated by the hybrid truck. We compare the performance of our two 

heuristics, VNS and LNS, with the best VRPD solutions for each instance which is solved 10 times. 

We report the GAP from the VRPD solution, best solution, average solution and average runtime 

in two scenarios where (1) one small drone and (2) two small drones are used as shown in Table 

5.7 and 5.8.  

 

This experiment yields similar results with the experiment in Section 5.5.2.1 in which the objective 

of the I-VRPD is lower than the VRPD objective as shown by the negative GAP. The GAP is, 

however, a bit smaller than the one with CVRP since the VRPD uses small drones in the operation 

while the CVRP only utilizes the regular trucks in the route. On average, the solution GAP is -
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18.06% (-16.28%) for VNS and -14.57%(-12.45%) for LNS in the case with one small drone (two 

small drones). The results also show that the VNS outperforms the LNS using much higher 

computational time (bigger negative GAP).  

 

Table 5.7 Results of the proposed I-VRPD heuristics and VRPD on the various instances (One 
small drone) 

Instance 

VRPD 

Solution 

(Best) 

    
I-VRPD Heuristic (One small Drone) 

   

 VNS  LNS 

 GAP Best Average Time  GAP Best Average Time 

A-n32-k5 750.00  -16.40 627.00 627.50 643.42  -13.20 651.00 655.20 64.66 

A-n33-k5 593.00  -12.31 520.00 522.50 643.37  -8.60 542.00 548.20 62.78 

A-n33-k6 653.00  -17.61 538.00 542.50 624.55  -14.09 561.00 561.85 65.99 

A-n34-k5 671.00  -8.35 615.00 615.70 627.23  -7.30 622.00 630.80 64.06 

A-n36-k5 717.00  -15.20 608.00 610.70 638.61  -13.11 623.00 623.70 72.40 

A-n37-k6 861.00  -18.82 699.00 702.30 660.35  -16.38 720.00 728.00 67.79 

A-n38-k5 654.00  -13.91 563.00 577.30 656.88  -5.81 616.00 621.80 65.54 

A-n39-k5 742.00  -14.15 637.00 640.90 658.69  -11.19 659.00 682.50 65.15 

A-n39-k6 758.00  -22.03 591.00 596.40 704.18  -15.83 638.00 643.80 74.30 

A-n44-k6 906.00  -23.18 696.00 698.90 699.91  -18.10 742.00 755.30 70.30 

A-n45-k6 902.00  -18.18 738.00 744.90 654.82  -15.19 765.00 776.20 72.93 

A-n46-k7 828.00  -18.84 672.00 682.40 699.17  -14.49 708.00 714.00 71.15 

A-n48-k7 998.00  -17.43 824.00 830.70 722.24  -13.63 862.00 873.70 76.41 

A-n53-k7 964.00  -21.58 756.00 768.50 800.36  -17.22 798.00 806.50 79.87 

A-n54-k7 1103.00  -18.77 896.00 907.10 749.17  -15.50 932.00 939.60 76.47 

A-n55-k9 1031.00  -19.20 833.00 841.50 732.12  -15.32 873.00 896.80 74.97 

A-n62-k8 1317.00  -25.51 981.00 1007.20 980.68  -18.22 1077.00 1084.50 80.47 

A-n63-k10 1301.00  -19.45 1048.00 1069.50 776.59  -15.22 1103.00 1116.80 82.90 

A-n64-k9 1266.00  -12.32 1110.00 1115.70 716.83  -10.35 1135.00 1143.40 78.12 

A-n65-k9 1159.00  -20.62 920.00 930.20 758.00  -15.01 985.00 995.70 75.97 

A-n69-k9 1100.00  -18.18 900.00 931.70 818.93  -16.64 917.00 931.40 81.19 

B-n31-k5 662.00  -17.37 547.00 550.20 630.60  -17.07 549.00 555.00 64.35 

B-n34-k5 759.00  -14.49 649.00 653.00 630.39  -13.70 655.00 659.90 62.39 

B-n35-k5 914.00  -14.99 777.00 779.30 628.09  -13.89 787.00 795.30 63.80 

B-n38-k6 735.00  -19.18 594.00 602.20 680.60  -12.38 644.00 658.30 71.47 

B-n39-k5 518.00  -18.53 422.00 423.40 649.83  -16.60 432.00 437.40 66.69 

B-n41-k6 843.00  -17.20 698.00 704.60 717.74  -14.95 717.00 721.40 71.15 

E-n51-k5 490.00  -19.59 394.00 397.80 799.92  -17.35 405.00 426.00 85.75 

E-n76-k7 641.00  -17.16 531.00 540.70 1009.11  -10.14 576.00 594.90 124.55 

E-n76-k8 745.00  -25.10 558.00 565.30 1144.85  -20.81 590.00 605.10 91.45 
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Table 5.7 continued 
E-n76-k10 836.00  -22.13 651.00 660.40 1428.96  -17.70 688.00 704.40 88.69 

E-n76-k14 996.00  -18.57 811.00 818.40 799.08  -15.86 838.00 849.00 81.17 

P-n16-k8 446.00  -17.94 366.00 374.20 605.22  -18.83 362.00 362.80 60.54 

P-n20-k2 182.00  -12.64 159.00 159.00 609.11  -12.09 160.00 160.20 60.52 

P-n22-k2 182.00  -9.34 165.00 166.00 611.54  -4.95 173.00 182.60 61.13 

P-n23-k8 511.00  -16.24 428.00 428.70 607.91  -16.24 428.00 430.20 61.37 

P-n50-k7 530.00  -16.79 441.00 443.70 714.20  -14.15 455.00 463.30 70.45 

P-n50-k8 588.00  -17.69 484.00 489.20 662.45  -15.82 495.00 501.80 69.71 

P-n50-k10 692.00  -18.79 562.00 566.90 673.66  -16.33 579.00 590.40 76.98 

P-n51-k10 739.00  -16.78 615.00 616.67 654.29  -14.48 632.00 641.55 70.46 

P-n55-k10 671.00  -16.54 560.00 561.80 695.23  -13.11 583.00 586.40 68.48 

P-n55-k15 946.00  -18.60 770.00 773.30 674.76  -16.70 788.00 798.27 67.19 

P-n60-k10 737.00  -18.05 604.00 612.70 747.99  -13.98 634.00 640.80 72.26 

P-n60-k15 955.00  -32.98 640.00 685.40 771.28  -17.07 792.00 800.40 72.42 

P-n65-k10 790.00  -18.99 640.00 644.40 768.42  -15.82 665.00 678.50 79.76 

P-n70-k10 831.00  -23.10 639.00 644.20 867.80  -19.86 666.00 682.78 101.48 

Average   -18.06     733.68   -14.57     73.64 
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Table 5.8 Results of the proposed I-VRPD heuristics and VRPD on the various instances (Two 
small drones) 

 

Instance 
CVRP 

(Optimal) 

    
I-VRPD Heuristic (Two small Drones) 

   

 VNS  LNS 

 GAP Best Average Time  GAP Best Average Time 

A-n32-k5 784  -12.32 626.00 628.00 641.24  -8.82 651.00 654.40 66.34 

A-n33-k5 661  -10.76 506.00 509.10 656.27  -6.35 531.00 549.20 65.93 

A-n33-k6 742  -15.85 531.00 536.90 663.71  -11.73 557.00 561.50 67.30 

A-n34-k5 778  -6.45 609.00 611.50 665.32  -4.61 621.00 633.60 66.57 

A-n36-k5 799  -13.34 591.00 596.00 752.43  -8.65 623.00 623.70 72.40 

A-n37-k6 949  -18.79 696.00 700.30 778.69  -15.75 722.00 727.70 71.29 

A-n38-k5 730  -14.67 541.00 555.40 756.84  -6.31 594.00 615.10 73.81 

A-n39-k5 822  -12.89 622.00 624.20 738.57  -7.70 659.00 680.20 73.80 

A-n39-k6 831  -17.71 590.00 592.90 741.44  -12.41 628.00 638.40 84.70 

A-n44-k6 937  -18.36 685.00 689.40 771.47  -13.59 725.00 740.30 71.51 

A-n45-k6 944  -15.57 721.00 736.50 749.49  -11.94 752.00 762.60 75.52 

A-n46-k7 914  -17.16 666.00 675.90 725.77  -12.44 704.00 718.10 73.48 

A-n48-k7 1073  -14.98 817.00 859.62 863.50  -10.72 858.00 872.80 81.09 

A-n53-k7 1010  -23.39 727.00 755.38 1095.22  -15.81 799.00 805.20 82.44 

A-n54-k7 1167  -17.47 888.00 902.20 1163.74  -13.85 927.00 937.40 88.06 

A-n55-k9 1073  -17.78 828.00 838.60 767.92  -12.02 886.00 912.50 90.76 

A-n62-k8 1288  -22.90 953.00 992.00 1195.60  -13.03 1075.00 1094.60 76.59 

A-n63-k10 1314  -15.15 1053.00 1069.50 1028.11  -10.39 1112.00 1117.00 100.00 

A-n64-k9 1401  -20.83 1110.00 1117.30 1491.15  -19.33 1131.00 1140.70 93.45 

A-n65-k9 1174  -17.94 910.00 925.80 1224.14  -11.99 976.00 986.30 93.20 

A-n69-k9 1159  -19.27 888.00 895.40 1687.10  -17.18 911.00 929.80 123.29 

B-n31-k5 672  -17.12 547.00 547.10 640.39  -16.82 549.00 560.50 63.81 

B-n34-k5 788  -13.93 649.00 650.20 663.54  -12.73 658.00 668.70 70.21 

B-n35-k5 955  -14.06 770.00 773.40 676.91  -11.50 793.00 797.10 67.07 

B-n38-k6 805  -18.81 587.00 602.30 778.33  -12.03 636.00 654.00 73.76 

B-n39-k5 549  -17.58 422.00 422.90 761.76  -14.45 438.00 439.80 76.54 

B-n41-k6 829  -15.41 697.00 703.10 729.71  -13.35 714.00 719.80 76.81 

E-n51-k5 521  -15.08 383.00 385.40 945.47  -7.54 417.00 427.10 70.61 

E-n76-k7 682  -20.47 509.00 523.50 3296.19  -13.13 556.00 580.90 126.75 

E-n76-k8 735  -21.63 540.00 547.80 2306.90  -18.87 559.00 576.20 188.68 

E-n76-k10 830  -21.61 631.00 650.20 2063.14  -15.16 683.00 692.20 110.25 

E-n76-k14 1021  -18.99 806.00 813.71 841.43  -16.18 834.00 845.18 69.74 

P-n16-k8 450  -16.14 374.00 376.20 608.13  -18.83 362.00 362.80 60.66 

P-n20-k2 216  -8.24 156.00 156.00 613.52  -7.06 158.00 160.10 61.02 
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Table 5.8 continued 

 
P-n22-k2 216  -7.65 157.00 157.00 631.82  -4.71 162.00 162.50 61.55 

P-n23-k8 529  -15.75 428.00 428.80 612.22  -15.75 428.00 429.70 62.29 

P-n50-k7 554  -10.91 433.00 437.60 798.11  -6.58 454.00 460.80 76.88 

P-n50-k8 631  -15.67 479.00 484.90 700.97  -13.03 494.00 499.30 77.98 

P-n50-k10 696  -15.38 561.00 567.24 730.24  -12.37 581.00 588.00 75.11 

P-n51-k10 741  -17.45 615.00 617.50 680.02  -14.63 636.00 643.70 70.37 

P-n55-k10 694  -16.62 552.00 556.80 720.57  -12.39 580.00 583.40 77.57 

P-n55-k15 989  -16.99 772.00 773.90 682.59  -15.48 786.00 797.00 76.07 

P-n60-k10 744  -14.81 604.00 610.30 782.35  -11.14 630.00 642.70 79.16 

P-n60-k15 968  -18.04 777.00 780.80 810.54  -15.82 798.00 803.70 78.14 

P-n65-k10 792  -15.85 632.00 636.80 884.85  -12.12 660.00 670.80 113.55 

P-n70-k10 827  -20.95 619.00 624.50 1370.86   -16.22 656.00 679.20 106.26 

Average   -16.28      945.40   -12.45     81.79 
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5.5.3 Discussion of the Computational Time and Heuristic Performance 

To investigate the computational time of the heuristics, we used the results from Section 5.5.2.1 

and Section 5.5.2.2 to plot the average runtime and the number of nodes for each instance. Figure 

5.11 shows the variable number growth for different problem sizes and the time increase as 

problem size increases. The VNS plot shows that the runtime grows exponentially at the rate faster 

than the LNS plot as the number of customer nodes increases. Using the results from Table 5.5-

5.8, we also plotted the mean and the standard deviation of objective values for all instances based 

on the delivery model as shown in Figure 5.12. It is clear that the I-VRPD problems solved by 

VNS and LNS return better objective values than the objective values of the traditional delivery 

model using trucks alone. When comparing the two heuristics, the VNS seems to perform better 

than the LNS with the lower mean objective. Although the VNS returns better solutions than the 

LNS in general, a large amount of computational time could be troublesome once the problem size 

gets bigger.  

 

 
Figure 5.11 The scatter plot showing the runtime of different problem size. 
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Figure 5.12 The plot showing the objective value of different delivery models. 

 Conclusion 

In this chapter, we propose a new routing model, the Integrated Vehicle Routing Problems with 

Drones (I-VRPD), which combines three routing operations: Traditional truck routing, Hybrid 

truck routing and Large drone routing for the last-mile delivery. The I-VRPD is considered as an 

extension of the traditional VRP with the use of heterogeneous trucks and drones in which the 

hybrid truck is equipped with small drones.  The MIP formulation is mathematically constructed 

to model the I-VRPD to solve for an optimal solution for the small-size instances, for which the 

results are shown in Section 5.5.1. We present different routing scenarios in the case study to 

visually demonstrate the implementation of the I-VRPD in the real world aspect. We additionally 

make a comparison of the I-VRPD and other routing models that shows the significant savings in 

term of delivery time. To solve the large-size instances, we propose two efficient heuristics based 

on the Variable Neighborhood Search (VNS) framework and Large Neighborhood Search (LNS) 

framework that provide optimal/near-optimal solutions while using less computational time for 

small-size problems. We use both heuristics to solve for the approximate solutions and compare 

them with the solutions from CVRP and VRPD models. Overall, through our computational study, 

we can show that both heuristics perform quite well and our new approach to combine different 

fleet vehicles clearly shows the potential benefits over the existing models in the literature.  
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CHAPTER 6. CONCLUSION AND FUTURE RESEARCH  

 Summary and Conclusion 

In this dissertation, we presented an insightful study on the application of drones in last-mile 

delivery. We primarily focused on the truck drone routing problem with the goal to reduce the 

transportation time in the last-mile delivery which could potentially help companies improve their 

operational decisions as the e-commerce trend is growing. Contrary to conventional vehicle 

routing problem (VRP) that uses only one type of vehicle, a truck, to make a delivery to all 

customers, truck drone routing problems utilize drones in the operation to increase the delivery 

speed as a drone is generally faster and flexible to travel in the airspace. When combining with a 

truck’s main advantage which is its capacity and endurance, this hybrid vehicle can outperform 

the traditional way of delivery. The primary application of this hybrid truck drone delivery 

involves improving a last-mile delivery operation with the goal of minimum delivery time of the 

operators which eventually would increase customer satisfaction and lead to more profit margin to 

the e-commerce company. The combined vehicles can also be used to deliver relief supplies to the 

victims in the area where traditional trucks may not be able to access. The goal is to deliver the 

kits to those with urgent need and primary care as quick as possible. After a careful review of the 

existing truck drone routing problems in the literature, we can define three main research studies 

which are presented in the following three chapters. 

 

The first part of the research introduces the multiple Traveling Salesman Problem with Drones 

(mTSPD). The model is an extension of the multiple Traveling Salesman Problem (mTSP) which 

aims to optimally find the shortest paths for the m salesmen to able to visit all customer nodes 

exactly once. The mTSPD extends mTSP by using small drones which are attached on top of the 

trucks to make deliveries to some customers. We assumed that a truck behaves like a salesman and 

has infinite capacity to carry both drones and parcels. This problem extends the FSTSP study by 

deploying multiple trucks and multiple drones in the operation with the distinct feature of allowing 

drones to be launched and return to any available truck without restricting it to return to the one it 

is originally launched from. We formulated the problem as a Mixed Integer Programming (MIP) 

formulation to solve for the solution optimally. This problem is NP-hard and we are only able to 
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solve small-size problems by employing the MIP model within a restricted timeframe and limited 

memory. 

 

Therefore, an Adaptive Insertion algorithm (ADI) heuristic is developed to solve large-scale 

problems. The algorithm builds up the tours from the initial mTSP solution which are then 

converted to the mTSPD solution by applying removal and insertion operators. To evaluate the 

algorithm, we compare the solution obtained from the proposed heuristic with the optimal solution 

from the CPLEX solver in the small-size problems. We generated five types of problems based on 

the nodes distribution and depot location. The result has shown that the ADI heuristic performs 

very well and can reach optimal solution with significantly less time than CPLEX. In large-size 

instances, we tested the performance of the ADI with some of the benchmark min-max TSP/mTSP 

instances from TSPLIB and compare the results with the best solution from the Adapted FSTSP 

heuristic. We found that the algorithm returns solutions with a lower average objective when 

compared with the optimal objective of the truck-only operation the ones from FSTSP models both 

in small-size and large-size problems.  

 

The second study considers two levels (echelons) of delivery: primary truck routing from the main 

depot to serve assigned customers and secondary drone routing from the truck, which behaves like 

a moveable intermediate depot to serve other sets of customers. We named the proposed model, 

the Two Echelon Vehicle Routing Problems with Drones (2EVRPD). The 2EVRPD can be 

considered as a generalized version of the mTSPD and is a variation of the classical VRP. In the 

proposed 2EVRPD model, we allowed multiple drones and multiple trucks to perform deliveries 

similar to the mTSPD model; however, there are two major distinctions to consider. First, we took 

into account of the capacities of both drones and trucks in the routing as well as the demand of the 

customers. This makes the problem much more realistic in the sense that each truck can only be 

equipped with certain number of drones and can carry certain number of packages.  

 

Second, a drone itself can make multiple deliveries per launch and can carry limited number of 

packages. This feature creates more efficient routing solution which can be seen from different 

sets of experiments. The MIP formulation is mathematically constructed to optimally solve the 

2EVRPD for the small-size problems. Two heuristics are developed to solve the large-size 
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problems: Drone Truck Route Construction (DTRC) and Large Neighborhood Search (LNS). The 

DTRC is primarily used to generate the initial 2EVRPD solution from an empty route by first 

constructing the VRP solution and using the obtained VRP solution to construct the drone routes.  

 

Once the initial 2EVRPD solution is generated, we improved the solution quality by applying the 

second algorithm which is based on the Large Neighborhood Search approach. This algorithm uses 

the well-studied destroy and repair principles by iteratively searching for a better solution using 

three destroy operators and three repair operators. We used these two heuristics to solve the small- 

size problems and compare their performances with the MIP solved by CPLEX. It appears that 

LNS performs significantly better than DTRC and can obtain the optimal solution in most 

instances. However, by limiting the amount of computational time to one hour for the medium-

large instances, DTRC can return the solution using less computational time than LNS. Overall, 

both heuristics can outperform CPLEX solutions in all medium/large-size problems with better 

solution quality in LNS and better computational time in DTRC. When comparing with the CVRP 

from the literature, both heuristics of 2EVRPD return better objective values than the optimal 

CVRP objective value which demonstrates that the proposed approach provides faster delivery 

time than simply using trucks alone in the operation. In addition, the sensitivity analysis shows 

that allowing drones to make multiple deliveries prior returning to trucks significantly reduces the 

delivery time when comparing with the drone’s route that only allows single delivery per trip. 

 

The third research considers a novel delivery routing model called Integrated Vehicle Routing 

Problem with Drones (I-VRPD) which combines three vehicle fleet types: traditional truck, large 

drone, and hybrid truck with small drone. A large drone or cargo drone is recently introduced to 

the public with its main advantages to carry a large number of loads in the long distance and has a 

large battery capacity so that it can last a long time. A hybrid truck with small drone is defined as 

a truck with the equipped drone that can make a delivery one at the time and is previously used in 

mTSPD, and 2EVRPD. A traditional truck is merely a regular truck used for the current last-mile 

delivery and is used in common VRP. 

 

The goal of this research is to develop a routing solution from these three heterogeneous fleets of 

vehicles and analyze its performance when comparing with the solution from a single fleet vehicle. 
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The problem is formulated as a Mixed Integer Programming Model (MIP) and two metaheuristics 

are proposed to solve this problem: The first algorithm is based on a modified Variable 

Neighborhood Search (VNS) framework. The algorithm begins with initializing the VRP solution 

and convert it to the I-VRPD solution. It will then explore the specific neighborhood through 

several well-known local searches and designed operator to improve the solution. When the I-

VRPD solution does not improve or gets stuck in the local optima after several iterations, the 

algorithm alternatively explores another neighborhood and perform a new search in the new region. 

The algorithm repeatedly performs searching until the termination criteria is reached. The second 

algorithm is developed based on Large Neighborhood Search (LNS) framework similar to the one 

proposed in 2EVRPD model.  

 

We used four destroy operators and four repair operators to search for the best I-VRPD solution 

within the reasonable time. A case study in Lafayette/West Lafayette is constructed to visually 

demonstrate the route solution obtained by different vehicle fleet types which appears to show that 

the solution route (which uses combing fleet types of vehicles) significantly performs better than 

a single fleet type. We also examined how well the heuristics perform by comparing the results 

from the heuristics with the optimal solutions obtained from the MIP. The results show that both 

algorithms can equivalently find optimal solutions for almost all instances on the small-size 

problems. For the large-size problems, we applied both VNS and LNS heuristics and compare their 

solutions with traditional VRP solutions (CVRP) and hybrid trucks solutions (VRPD). The results 

demonstrate that the proposed I-VRPD outperforms the CVRP and VRPD similar to the 

experiment in the small-size problem. In terms of performance between the two heuristics, VNS 

yields better results on average but use more computational time than LNS once the problem size 

gets bigger. 

 

In the bottom line, our proposed models, mTSPD, 2EVRPD and I-VRPD extend the classical 

routing problem with the use of multiple drones and trucks as well as different fleet types of 

vehicles to make deliveries. Due to the complexity of the problem, very few studies have been 

conducted on the synchronization of multiple trucks and drones delivery. While the mTSPD 

presents more flexibility in the drone’s operation as drones can be launched and retrieved by any 

truck, the 2EVRPD presents more realistic view as it incorporates the capacity constraints and 
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allows multiple deliveries per trip for drones which utilize the drone’s advantages more effectively. 

In addition to that, I-VRPD represents comprehensive truck drone routing by combining different 

vehicle fleet types in the last-mile delivery operation which brings out each vehicle type advantage 

to generate more efficient routing solutions. Throughout the entire study in this dissertation, it was 

shown from the numerical experiments that our proposed model, mTSPD, 2EVRPD, and I-VRPD 

have demonstrated the significant reduction in the delivery time compared to the classical delivery 

models like TSP/VRP and should be considered for the implementation in last-mile delivery.  

 

Nevertheless, this study has several limitations. First, regarding to the comparison method between 

different delivery systems, we did not use the same amount of resources when deploying vehicle 

units in each delivery system. This could make the results much less meaningful because more 

vehicle units generally result in lower delivery time regardless of the types of vehicles we used. 

For instance, in small-size problems, only one truck is deployed to deliver all packages in the 

traditional delivery system while a truck with the equipped drone(s) is deployed in the proposed 

delivery system. Hence, it might be unfair to conclude that using hybrid truck with drone should 

be implemented due to lower delivery time. 

 

One way to make this comparison fairer is to adjust the units of vehicles in each type to be the 

same e.g. two trucks in traditional delivery represent two vehicle units, which is equivalent to the 

same number of vehicle units when using one truck equipped with a drone in hybrid delivery. 

Since adding one more unit of truck is relatively more expensive than adding one more unit of 

drone, it is important to consider the cost of adding one unit of drone versus adding one unit of 

truck into the delivery system. This aspect can be included in the objective function, thus 

minimizing both cost of delivery in terms of delivery time and the monetary cost of vehicle units. 

Therefore, we have to design the new delivery system that measures the tradeoff between the 

timesaving from adding vehicles in the system and the cost of deploying vehicles in the operation. 

 

Second, the proposed models conducted in the deterministic setting might not be practical in a 

real-life scenario, which all important factors such as delivery demand, weather condition, and 

changes in customer order can affect the system dynamically. We can resolve this limitation by 
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having operators reevaluate these factors consistently throughout the entire operation and reinput 

the new information as well as execute the updated order in the vehicle to reflect the changes.   

 Future Research 

Based on the limitations of this research, we conclude this chapter with the directions for future 

research: 

6.2.1 Extension to the Multiple Traveling Salesman Problem with Drones (Chapter 3) 

Future research could integrate other realistic constraints in the current model, such as time 

windows, endurance, cost, and capacity when operating drones in a different circumstance. From 

an algorithmic perspective, we look forward to more effective algorithms (e.g. Adaptive Large 

Neighborhood Search) to solve the mTSPD problem with a better objective value and lower 

computational time. It would be interesting to solve the model with other metaheuristic algorithms 

like simulated annealing or memetic algorithms.  

In addition, we would like to relax the assumption that drones can only merge with trucks at the 

customer locations and allow both vehicles to meet at any point along the truck’s path. This would 

make the delivery much more efficient and represent a more realistic setting. Lastly, we expect to 

work on developing a new Vehicle Routing Problem with Drones (VRPD) by extending the 

proposed mTSPD to take into account the truck capacity as well as the drone capacity.  

6.2.2 Extension to the Two Echelon Vehicle Routing Problem with Drones (Chapter 4) 

This research work can also be extended by using different types of both vehicles (heterogeneous 

fleets of both trucks and drones) as well as multiple depots to expand the range of the operation. 

Since the battery life of the drone is highly sensitive to its own weight and the load it carries, it 

would also be interesting to study how the payload (weight) and the battery consumption can affect 

the drone travel performance and prioritize which customer orders should get served first. 

Additional constraints on the weight of each item will be added and the objective function will be 

modified to minimize the energy consumption by a large drone which make multiple deliveries 

per trip.   
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In addition, future works may include designing the system which integrates the proposed model 

with drone only delivery as a unified last-mile delivery system. From an algorithmic perspective, 

designing other metaheuristic algorithms could be an effective way to solve the 2EVRPD problem 

with a better objective value and lower computational time. Considering the proposed heuristics 

in this research, the DTRC has the advantage of strong computation capability offsetting its worse 

performance when comparing to the LNS. Thus, if we develop some additional schemes inside the 

DTRC, this will increase the performance with little computational burden. One option is to 

expand the search space by introducing various search operators among different VRP routes 

causing the solution to get stuck in the local optimum which seems to be the case now.  

Lastly, the research direction can be shifted to the logistics problem with drones which involves 

more strategic decisions such as the location of depots as well as both tactical and operational 

which include assigning customers to the opened depots and the organization of the vehicles with 

drones routing (LRPD).  

6.2.3 Extension to the Integrated Vehicle Routing Problem with Drones (Chapter 5) 

For the future work, we can consider additional fleets of vehicles or various modes of 

transportation in the operation including the use of electric bikes, scooters and droids. Each of 

these has its own advantage and would offer more alternative and efficient ways to make delivery 

when integrating them together rather than using the traditional one mode of transportation to 

perform a last-mile delivery. For example, AGVs deliver packages without human intervention 

and customers will be notified for the exact arrival time of the vehicle at the location. The 

customers are directed to pick up items from the specified locker mounted to the vehicle. Likewise, 

a droid is a small autonomous vehicle that can delivery packages to the doorstep by traveling only 

on sidewalks. They can carry loads as heavy as 50 pounds for as far as 30 miles. On the other hand, 

bike couriers are used for instant delivery in urban areas. They are often seen in point-to-point 

delivery, especially for B2B documents and prepared food. The recharging stations or transfer 

points can also be included to allow more flexibility for the drones to recharge and receive service 

before making another delivery trip. It would create more competitive advantages if we can reduce 

the service time or charging time for drones to overall improve the delivery performance.  
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Another area of improvement has to deal with the locations to deliver packages for individual 

customers. Due to the large size of cargo drones, it will be quite challenging for the cargo drones 

to land at the customer location. One possible solution is to implement a package drop mechanism 

which allows drone to drop off a package to the designated area at the customer location without 

having to land. Another alternative solution is to allocate the shared space for cargo drones to land 

where customers can go and pick up their packages at the certain location within the specified time 

frame. As for the MIP formulation, we can strengthen the computational performance of the 

mathematical models using valid inequalities. We can also conduct a bound analysis to investigate 

the maximum possible savings achievable by employing hybrid trucks and large drones in the 

operation. From an algorithmic perspective, designing other metaheuristic algorithms could be an 

effective way to solve the I-VRPD problem with a better objective value and lower computational 

time. 
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APPENDIXS A. PROBLEM DEFINITION OF VRPD 

The Vehicle Routing Problems with Drones (VRPD) is a variant of a Vehicle Routing Problem 

with the implementation of drones in the operations. The problem aims to find the optimal set of 

routes for a fleet of vehicles to travel to deliver to a given set of customers. We name this problem 

VRPD since the problem utilizes the advantages of small (drone) and large (truck) vehicles in a 

delivery system. In the VRP taxonomy, the most elementary VRP considered in the literature is 

the one called Capacitated Vehicle Routing Problem (CVRP). The CVRP aims to determine a set 

of vehicles of minimum total cost over a single period with the following constraints: 1.) each 

route must start and end at the depot; 2.) each customer must be served by exactly one vehicle; and 

3.) the total demand of each route does not exceed the vehicle capacity. 

 

Our proposed VRPD model takes into account the capacities of both truck and drone as well as 

the order of launching and landing operations. In addition to covering the first main three 

constraints of the CVRP, the VRPD also includes the following additional constraints: 4.) each 

customer has to be served by exactly once either by a truck or a drone (i.e., customer demand 

cannot be split); 5.) the time of both truck and drone at the customer locations must be adjusted to 

be the same; 6.) the load that the drone can carry must be less than the drone’s capacity; and 7.) 

drone can only be launched for the trip which it has enough battery to complete its delivery and 

fly back to the truck. The original VRP problem itself is already an NP-Hard and thus including 

the drones in the operation makes the problem much more complex and challenging as it has to 

decide the combinatorial solution of the truck route as well as the drone route while maintaining 

the order of launching and landing operations. Successful practical application of this feature in 

the industry could potentially bring about cost efficiency and reduce the total delivery time of the 

last-mile delivery.  
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APPENDIXS B. FORMULATION OF VRPD 

The VRPD is defined on a directed graph G = (V, E), where V is the set of n nodes representing 

customers with one depot and E is the set of arcs. Let 	=>,?@ 	be a truck travel time associated with E, 

!, # ∈ T and 	=>,?A 	be a drone travel time associated with E, !, # ∈ T. Differentiating the travel 

times for the truck and drone accounts for each vehicle’s unique travel speed. The VRPD is said 

to be symmetric if 	=>,?@ = 	 	=?,>@   and 	=>,?A = 	 	=?,>A   and asymmetric otherwise. The travel times for 

truck and drone matrix satisfies the triangle inequality 	=>,E@ +	=E,?@  ≥		=>,?@ . 

 

A fleet of K homogeneous trucks, defined as a set of K = {1, 2, 3, 4,…, k}, with capacity Q is 

located at the depot. The maximum number of KD homogeneous drones, defined as a set of KD = 

{1, 2, 3, 4,.., kd}, with the capacity Qd is attached along with each truck. The total length of a 

drone route in each launch does not exceed a pre-set limit B (Battery life). In our model, the fleet 

size of truck and the number of drones in each truck are given a priori. Denote the set of customer 

nodes by ' = 1, 	2, 	3, 	4, 	5, 	6, … , 0 . As for the depot, we assign it to two unique node numbers 

at 0 4 , the starting depot, and 0 6 , the ending depot.  Set '1 = ' ∪ 0 4  as the set of customer 

nodes including the starting depot and set '5 = ' ∪ {0 6 } as the set of customer nodes including 

the ending depot. Each customer i (i = 1, . . . , n) is associated with a known nonnegative demand, 

&> , to be delivered, and the depot has a fictitious demand &R = 0. The customer demand can be 

satisfied by either truck or drone delivery. 

 

We define the following decision variables: Let D>,?E 	equal to 1 if a truck k travels along the arc (i, 

j) ∈ E and 0 otherwise. This refers to the situation when the truck travels from node i ∈ '1 to j ∈

'5 where i≠j. Let F>,?,G
EH,E equal to 1 if arc (i, j) and (j, p) ∈ E is used on the path and 0 otherwise. 

This refers to the situation when a drone kd of truck k is launched from node i ∈ ' to node j ∈ ' 

(visiting customer node) and merges with a truck or the ending depot at node p 	∈ ' 

(recharging/swapping a battery at the truck). Let ©J>E equal to 1 a truck k serves customer node i 

and 0 otherwise. Similarly, let ©&>
EH,E equal to 1 if a drone kd of truck k serves customer node i 

and 0 otherwise. 
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We denote the variable oJ?E as the truck k arrival time at node j ∈ '5 and 7J?
EH,Eas the drone kd of 

truck k arrival time at node j ∈ '5. oJ?E and	7J?
EH,Eare the arrival times of the truck and drones at 

node j respectively. Lastly, we define other the auxiliary decision variables including 1.) Q>E which 

is used in the VRP sub tour elimination constraints, 2.) OP>
EH,Ewhich is used to indicate status 

whether a drone kd of truck k can be launched from node i or not. The proposed MIP formulation 

of VRPD is presented as follows. 

Objective 

minimize ™ (1) 

The objective function	(1) minimizes the total truck arrival time of trucks at the depot. 

Subject to 

 
oJ1(c)E

E∈g

= ™ (2) 

Constraint (2) straightforwardly represents the sum of each truck arrival time at the 

depot. 

 

©&>
EH,E

EH∈gA

+ 	 ©J>E
E∈gE∈g

= 1; 	∀! ∈ '	 (3) 

Constraints (3) ensure that each customer will receive the package either by a drone or 

truck. It restricts each customer to be visited exactly once by exactly one vehicle. 

D1(j),>E

>∈kl

= 1; 	∀% ∈ < 

 

 

(4) 

D>,1(c)E

>∈km

= 1; 	∀% ∈ < (5) 

Constraints (4) and constraints (5) impose that each truck must depart from and arrive at 

the depot. 
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D>,?E = D?,>E
?∈km

= ©J>E; 	∀! ∈ ',			∀% ∈ <
?∈kl

 

Constraints (6) ensure the flow conservation of the truck route at each node i, which 

guarantees that whenever the truck k arrives at a node, it must depart from the node as 

well. 

(6) 

F>,?,G
EH,E

G∈k	

		
>∈k
>uE	

= 	©&?
EH,E	; 	∀# ∈ ', 	∀% ∈ <, ∀%& ∈ <7 (7) 

Constraints (7) ensure that if a drone travels from node i to node j and to node p, then a 

customer at node j must receive a package delivered by a drone 

F>,?,G
EH,E

G	∈k
?uG	

?	∈k
>u?	

E∈g

		
EH∈gA

≤ 1; 	∀! ∈ ' 

 

 

(8) 

FG,?,>
EH,E

?	∈k
?u>	

G	∈k
Gu?	

E∈g

≤ 1; 	∀! ∈ '
EH∈gA

 9  

Constraints (8) and (9) ensure that only a single drone is allowed to travel from and to 

node i. Without these sets of constraints, it can occur the scenario where two drones 

travel from and to the node i. 

 

2F>,?,G
EH,E 	≤ Dt,>E

t∈km
tu>

	+ 	 Dv,GE
v∈k
vuG

;	∀!, #		 ∈ 		', ∀$	 ∈ ', ∀% ∈ <, ∀%& ∈ <7 10  

Constraints (10) state that a truck must visit node i and node p if the drone is launched 

from node i and is retrieved at a node.  

 

F>,?,G
EH,E

G	∈k
>uG	

>	∈k
>u?	

E∈g

		
EH∈gA

≤ 	1 −	 F?,x,y
EH,E

y	∈k
xuy	

x	∈k
xu?	

E∈g

;	∀#	 ∈ '		
EH∈gA

 (11) 
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F>,?,G
EH,E

G	∈k
>uG	

>	∈k
>u?	

E∈g

		
EH∈gA

≤ 	1 −	 Fx,y,?
EH,E

y	∈k
xuy	

x	∈k
xu?	

E∈g

;	∀#	 ∈ '		
EH∈gA

 (12) 

Constraints (11) describe the cases that if the drone flies from node i to node j to node p, 

there are no other drones that make such a delivery simultaneously from node j to node 

a to node b. Similarly, constraints (12) describe the cases that if the drone flies from 

node i to node j to node p, there are no other drones that make such a delivery 

simultaneously from node a to node b to node j. 

 

OP>
EH,E FG,?,>

EH,E

G	∈k
?u>	

?	∈k
?uG	

= 0; ∀! ∈ z, ∀% ∈ <, ∀%& ∈ <7 

 

(13) 

OP>
EH,E F>,?,G

EH,E

	G∈k
?u>	

?	∈k
?uG	

= 0; ∀! ∈ z, 	∀% ∈ <, ∀%& ∈ <7 

Constraints (13) and (14) impose that the drone is not allowed to be launched or land at 

the node i once the auxiliary variable OP>
EH,E is equal to 1 and vice versa. 

	

(14) 

OP?
EH,E ≥ 1 −| 2 − D>,?E − F>,},G

EH,E

G	∈k
}u>	

}	∈k
}uG	

+ OP>
EH,E + Fx,y,?

EH,E

y	∈k
xuy	

x	∈k
xu?	

; ∀!, ∀# ∈ ', 	∀%

∈ <, ∀%&	 ∈ <7 

 

 (15) 

OP?
EH,E ≤ 1 +| 2 − D>,?E − F>,},G

EH,E

G	∈k
}u>	

}	∈k
}uG	

+ OP>
EH,E + Fx,y,?

EH,E

y	∈k
xuy	

x	∈k
xu?	

; ∀!, ∀# ∈ ', 	∀%

∈ <, ∀%&	 ∈ <7 

 

(16) 
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OP?
EH,E ≥ 1 −| 2 − D>,?E − OP>

EH,E + Fx,y,?
EH,E

y	∈k
xuy	

x	∈k
xu?	

	; ∀!, ∀# ∈ ', 	∀% ∈ <, ∀%& ∈ <7 

 

(17) 

OP?
EH,E ≤ 1 −| 2 − D>,?E − OP>

EH,E + Fx,y,?
EH,E

y	∈k
xuy	

x	∈k
xu?	

	; ∀!, ∀# ∈ ', 	∀% ∈ <, ∀%& ∈ <7 

Constraints (15) to (18) ensure that if the drone is launched from node i and has not 

returned at node j, then the auxiliary variable OP?
EH,Emust be equal to 1, the state which 

no arc drone leaves or enters node j. Constraints (15) and (16) deal with the case in which 

the drone is launched from node i, and the truck travels from node i to node j at which 

the drone has not yet returned. Constraints (17) and (18) deal with the case when the 

drone was previously launched (not able to be launched at node i again) and has not 

returned to the node j where the truck is making a delivery at yet.  

	

(18) 

OP?
EH,E ≥ −| 2 − D>,?E − Fx,y,?

EH,E

y	∈k
xuy	

x	∈k
xu?	

; 	∀!, ∀# ∈ ', 	∀% ∈ <, ∀%& ∈ <7 

 

(19) 

OP?
EH,E ≤ +| 2 − D>,?E − Fx,y,?

EH,E

y	∈k
xuy	

x	∈k
xu?	

; 	∀!, ∀# ∈ ', 	∀% ∈ <, ∀%& ∈ <7 

Constraints (19) to (20) ensure that if the drone returns to node j where a truck k serves 

its customer, then the auxiliary variable OP?
EH,Emust be equal to 0, the state which an arc 

drone can leave or enter the node j.  

	

(20) 

7? ≤ B& +| 1 − F>,?,G
EH,E

G	∈k
>uG		

		
>∈k
>u?	

; 	∀# ∈ ', 	∀% ∈ <, ∀%& ∈ <7 

 

(21) 
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=>,?A 	+	=?,GA ≤ C +| 1 − F>,?,G
EH,E

G	∈k
>uG		

		
>∈k
>u?	

; 	∀# ∈ ', ∀% ∈ <, ∀%& ∈ <7 

 

	(22) 

Constraints (21) and (21) ensure drone’s load must be less than its capacity and the 

drone’s battery consumption must be less than its battery’s capacity when returning to 

the truck node p accordingly. 

 

7>
>∈k

©J>E + 7>(©&>
EH,E) ≤ B; ∀% ∈ < 

EH∈gA>∈k

 

Constraints (23) enforce that the total delivery loads of both truck and drone combined 

must be less than the truck capacity at each truck route k. 

(23) 

F>,?,G
EH,E

G	∈k		

		
?∈k	

oJ>E − 7J>
EH,E = 0; 	∀! ∈ '1, ∀% ∈ <, ∀%& ∈ <7 (24) 

FG,?,>
EH,E

G	∈k		

		
?∈k

oJ>E − 7J>
EH,E = 0; 	∀! ∈ ', ∀% ∈ <, ∀%& ∈ <7 

Constraints (24) state that the departure time of drones and trucks must be the same. 

Also, once the drone and truck are in the same node, they must wait for each other before 

each of them can leave the node. Similarly, constraints (25) ensure that the arrival time 

of both truck and drone will be the same when they merge at the same node. These sets 

of constraints are based on the assumption that if either the drone or truck arrives earlier 

than the other, the earlier one has to wait until the later one arrives (both constraints are 

binding, resulting in the same arrival time of both truck and drone). 

(25) 

oJ?E ≥ oJ>E + =>,?@ − | 1 − D>,?E ; 	∀! ∈ '1, ∀# ∈ '5, ∀% ∈ < (26) 

7JGEH,E ≥ 7J>
EH,E + =>,?A + =?,GA − | 1 − F>,?,G

EH,E ; ∀!, ∀#, ∀$ ∈ ', ∀% ∈ <, ∀%& ∈ <7 

 

(27) 
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Constraints (26) keep track of the arrival time of the truck at every node. It adds the truck 

travel time to the previous customer node when the truck travels from one customer node 

to another customer node. Similarly, constraints (27) keep track of the arrival time of the 

drone at the node to which the drone returns after making a delivery. 

Q>E −	Q?E + B(D>,?E ) ≤ Q − 7?; 	∀!, ∀# ∈ ' ∪ '1 ∪ '5, ∀% ∈ < 	(28) 

7> ≤ Q>E ≤ Q	; 	∀!, ∀# ∈ ' ∪ '1 ∪ '5, ∀% ∈ < (29) 

Constraints (28) and (29) are sets of the Desrochers and Laporte (DL) sub tour 

elimination constraint which ensures that there is no sub tour in all tours of the trucks. 

 

At Initial State (Time = 0)  

oJ>E = 0, 	7J?
EH,E = 0 ∀! ∈ z, ∀# ∈ z, ∀% ∈ <, ∀%& ∈ <7 (30) 

The set of constraints (30) set the initial departure time of drones and trucks to be zero 

for all nodes i, all drones kd and all trucks k.          

 

D>,?E 	 ∈ 	 0,1 				∀!, j	 ∈ ' ∪ '1 ∪ '5 (31) 

F>,?,G
EH,E ∈ 0,1 				∀!, j, p	 ∈ ', ∀% ∈ <, ∀%& ∈ <7 (32) 

©J>E ∈ 0,1 	, ©&>
EH,E ∈ 0,1  ∀! ∈ ', ∀% ∈ <, ∀%& ∈ <7 (33) 

oJ?E ≥ 0, 7J?
EH,E ≥ 0, ∀! ∈ ' ∪ '1 ∪ '5, ∀% ∈ <, ∀%& ∈ <7 (34) 

OP>
EH,E ∈ 0,1 ,  ™&1> ∈ 0,1 , ™&2> ∈ 0,1  	∀! ∈ ', ∀% ∈ <, ∀%& ∈ <7 

Constraints (31–35) specify the types and ranges of the variables. Note that the M 

value must be large enough. We can use the total time of all the delivery routes made 

by trucks alone (CVRP). 

(35) 
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