Passive Vibration Mitigation Via Mechanical Nonlinear Bistable Oscillators

2019-08-13T19:30:57Z (GMT) by Christian Bjorn Grantz
Passive vibration mitigation via multi-stable, mechanical means is relatively unexplored. In addition, achieving vibration suppression through avoiding resonance is at the forefront of up and coming research. This thesis investigates the application of a purely mechanical, bistable device as a passive method of vibration suppression. A purely mechanical device does not require power, multiple materials, or electrical circuits, and a passive device does not require external interaction or control. Therefore, a passive, mechanical device could be implemented with ease even in physically constrained environments with large dynamic loads, such as turbomachinery. The purely mechanical, bistable device presented herein replicates the two switches per resonance crossing evident in semi-active Resonance Frequency Detuning method. This work explores two different bistable, mass-spring models. The first is a single degree of freedom nonlinear mass spring model aiming to utilize asymmetry in the potential function to change the stiffness of the overall system. The second model is a coupled, two degree of freedom system that combines the nonlinear softening and hardening spring characteristics with the unique stiffnesses of two stable states. The performance is verified by targeting the first mode of a cantilever beam, with the device shifting the resonance away from the excitation frequency. Future research could apply these idealized models to complex, rotating structures and replicate the performance of the passive, mechanical devices in a physical geometry that could be manufactured as a part of a target structure.