Spectral Properties and Generation of Realistic Networks

2019-08-13T18:18:53Z (GMT) by Nicole E Eikmeier
Picture the life of a modern person in the western world: They wake up in the morning and check their social networking sites; they drive to work on roads that connect cities to each other; they make phone calls, send emails and messages to colleagues, friends, and family around the world; they use electricity flowing through power-lines; they browse the Internet, searching for information. All of these typical daily activities rely on the structure of networks. A network, in this case, is a set of nodes (people, web pages, etc) connected by edges (physical connection, collaboration, etc). The term graph is sometimes used to represent a more abstract structure - but here we use the terms graph and network interchangeably. The field of network analysis concerns studying and understanding networks in order to solve problems in the world around us. Graph models are used in conjunction with the study of real-world networks. They are used to study how well an algorithm may do on a real-world network, and for testing properties that may further produce faster algorithms. The first piece of this dissertation is an experimental study which explores features of real data, specifically power-law distributions in degrees and spectra. In addition to a comparison between features of real data to existing results in the literature, this study resulted in a hypothesis on power-law structure in spectra of real-world networks being more reliable than that in the degrees. The theoretical contributions of this dissertation are focused primarily on generating realistic networks through existing and novel graph models. The two graph models presented are called HyperKron and the Triangle Generalized Preferential Attachment model. Both of the models incorporate higher-order structure - leading to more sophisticated properties not examined in traditional models. We use the second of our models to further validate the hypothesis on power-laws in the spectra. Due to the structure of our model, we show that the power-law in the spectra is more resilient to sub-sampling. This gives some explanation for why we see power-laws more frequently in the spectra in real world data.