Purdue University Graduate School
Browse
THESIS.pdf (17.13 MB)

THE EFFECT OF WATER MOLECULES ON HEADGROUP ORIENTATION AND SELF-ASSEMBLY PROPERTIES OF NON-COVALENTLY TEMPLATED PHOSPHOLIPIDS.

Download (17.13 MB)
thesis
posted on 2019-06-10, 18:05 authored by John A Biechele-SpezialeJohn A Biechele-Speziale
Simulations of various hydration levels of lamellar phase 23:2 Diyne PC were performed, and subsequent, serial docking simulations of a tyrosine monomer were replicated for each system in both hydrated and dehydrated states.
The goal was to evaluate how hydration impacts self-assembly and crystallization on the surface, and
whether or not these simulations, when run sequentially, could determine the answer. It was discovered that hydrated and dehydrated surfaces behave differently, and that
headgroup orientation plays a role in the initial docking and self-assembly process of the tyrosine monomer. It was also determined that potential energy as a sole metric
for determining whether or not a specific conformation of intermolecular orientation is not entirely useful, and docking scores are likely useful metrics in discriminating between conformations with identical potential energy values.

History

Degree Type

  • Master of Science

Department

  • Chemistry

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Shelley Claridge

Additional Committee Member 2

Scott McLuckey

Additional Committee Member 3

Chittaranjan Das