## Robust Sensor Selection Strong Detectability

An unknown input observer provides perfect asymptotic tracking of the state of a system affected by unknown inputs. Such an observer exists (possibly requiring a delay in estimation) if and only if the system satisfies a property known as strong detectability. In this thesis, we consider the problem of selecting (at design-time) a minimum cost subset of sensors from a given set to make a given system strongly detectable. We show this problem is NP-hard even when the system is stable. Furthermore, we show it is not possible to approximate the minimum cost within a factor of log(n) in polynomial-time (unless P=NP). However, we prove if a given system (with a selected set of sensors) is already strongly detectable, finding the smallest set of additional sensors to install to obtain a zero-delay observer can be done in polynomial time. Next we consider the problem of attacking a set of deployed sensors to remove the property of strong detectability. We show finding the smallest number of sensors to remove is NP-hard. Lastly through simulations, we analyze two greedy approaches for approximating the strong detectability sensor selection problem.