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Tightly regulated power converters behave as constant power loads which may introduce 

instability in power systems. Prior to this work, the design-oriented stability criteria of DC and 

three-phase AC systems has been extensively studied, while the stability of single-phase AC power 

systems has received less attention. In this research, the modeling and stability analysis of single-

phase AC power systems is studied. In particular, this research focuses on a system architecture 

where loads are connected in series and powered by a current source. Based on the proposed 

current source and load power electronic based topologies, which are typically used in airfield 

lighting systems, three types of system characterization are developed: waveform-level model, 

average-value qd model, and qd impedance/admittance measurement. Each approach has its own 

advantages and drawbacks, but the result - a frequency-domain (s-domain) representation of the 

system, is identical. Applying the generalized Nyquist stability criterion, the small-signal stability 

criteria of the system is developed. It is shown that the predictions of the system stability using 

these three approaches are consistent.   
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1. INTRODUCTION 

 Recently, the designers of airfield lighting systems began considering LEDs (light emitting 

diodes) as an alternative to incandescent lights. LEDs are much more efficient than traditional 

lighting devices, and are increasingly used in various situations. However, in order to meet aviation 

requirements, LED based lighting fixtures must be carefully designed. In particular, because the 

LED output wavelength is dependent on LED current [1], a precise current controller is required. 

Furthermore, in most applications, the LED brightness is adjusted by changing the duty cycle of a 

PWM current source, so that the current flowing through the LED is switching between zero and 

a tightly controlled value.  

 In the past, airfield lighting systems used a vault-centric architecture, where the series 

connected lighting fixtures were powered and controlled by a current source located in a lighting 

vault. Typically, a lighting vault is a building with all the lighting power system control equipment 

which is located near the runways. The lighting fixtures, which consist of isolation transformers 

and incandescent lights, are distributed on the airport runway and connected in series. All fixtures 

are simultaneously controlled by a current source known as a CCR (constant current regulator). 

Figure 1.1 illustrates a vault-centric architecture realized using thysistor control. The brightness of 

the incandescent lights is adjusted by controlling the conducting angle of the thysistor. Other types 

of CCR vault-centric systems can be realized by a matrix downconverter [2] or a ferroresonant 

CCR [3, 4]. Typically, the current transmitted to load lighting fixtures is 60 or 50 Hz, 0 to 6.6A 

rms, and sinusoidal. Each fixture has a circuit breaker on the secondary winding of the isolation 

transformer (which is not shown in Figure 1.1). If a fault occurs in the fixture (for example, a burnt 

lamp), the circuit breaker shorts the secondary winding, so that the rest of the system is not 

impacted. Alternately, the isolation transformers may be saturated to provide a protection against 

such faults.   

 Figure 1.2 (a) illustrates a vault-centric architecture using LEDs instead of incandescent 

lights. The LED PWM driver (the shaded triangle) is located in the equipment vault and works as 

a current source; every fixture has a passive full-bridge rectifier. The current waveform produced 

by the current source and transmitted to the fixture isolation transformers is ideally a square-wave. 

However, in practice given the transmission line inductance (in Figure 1.2 as the leakage 

inductance of the transformers), capacitance (shown as the wire-to-ground capacitances in Figure 
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1.2), and parasitic paths, achieving a high fidelity square wave current is highly problematic. The 

resulting waveform distortion is acceptable when the pulse width is high (over 25%); however, 

when the supply pulse width drops to below 2.5%, or even 0.15% (which are standard brightness 

level steps), the current waveform received by LEDs is far from the desired one, resulting in color 

distortion.  

 

Figure 1.1 Vault-centric system with CCR and incandescent lights 

 

 

 

Figure 1.2 (a) Vault-centric (b) Fixture-centric architecture 
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 In order to solve this problem without modification of existing circuit structure and cables, 

a fixture-centric architecture has been proposed. In the fixture-centric architecture shown in Figure 

1.2 (b), each LED fixture has a PWM driver and modulate its LED’s square wave current 

individually. The current source is similar to the AC current source in Figure 1.1, and the 

transmitted current is ideally sinusoidal. In practice, the transmitted current will not be highly 

distorted. 

 Although the fixture-based architecture facilitates brightness control, the existence of 

multiple control loops makes the system more susceptible to stability problems. The LED fixture 

including power-electronic based semi-autonomous converter constitute a constant power load [5-

10]. Failures such as overheating and component breakdown will occur if the system is unstable.   

 Previously, the stability of dc systems has been extensively studied in various situations: 

DC-DC converters [11-16], DC transmission [17, 18] and DC micro-grids and distribution systems 

[19]. Research involving three-phase AC system stability includes: Lyapunov-based control [20], 

small-signal stability [21-23], distributed control [24], and stability region analysis [25-29]. 

However, single-phase AC system analysis has received less attention. The aim of this research is 

to study the principle and application of single-phase AC system stability using the fixture-centric 

airport lighting system as an example. In three-phase AC system stability analysis, a qd 

transformation can be applied to three-phase ac quantities to obtain dc qdo quantities, whose 

stability can be analyzed using Nyquist theory. Herein, this methodology will be applied to single-

phase AC systems.  

 This dissertation is organized as follows. Chapter 1 introduced the basic architecture of the 

airport runway lighting system and the motivation of performance evaluation and stability analysis 

for the same. In Chapter 2, the fixture-centric system is analyzed in detail, and the waveform-level 

models of system components are established. By combining one source model and a number of 

load fixture models, the system model predicts transient performance of brightness level steps. In 

Chapter 3, the signal-phase qd transformation and the average-value modeling method are 

introduced; accordingly, the system is described by an average-value qd model (AVQDM), where 

both the single-phase AC variables (currents, voltages and flux linkages) and DC variables appear 

as constants under steady-state conditions. In Chapter 4, work on DC system stability is reviewed 

to illustrate power system stability criteria. The generalized Nyquist Theorem is applied on the 

linearized AVQDM of the system components. Thus, the system stability criteria is derived. 
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Finally, the stability analysis based on system component characterization through 

impedance/admittance measurement is considered. This is set forth in Chapter 5.     
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2. SYSTEM DESCRIPTION AND WAVEFORM-LEVEL MODEL 

 In time-domain analysis of power systems, two major approaches are widely used: 

waveform-level modeling (WLM) and average-value modeling (AVM). Waveform-level 

modeling is a detailed representation of every system component, and it includes representation of 

the switching of the power electronic devices. Therefore, it is accurate but computationally 

intensive. Average-value modeling is a simplified representation of power systems that only 

captures the primary dynamics in a moving-average sense. Therefore, the AVM is computationally 

less intensive then the WLM. Furthermore, the AVM can be linearized about an operating point to 

yield a linear time-irrelevant (LTI) multiple-input-multiple-output (MIMO) system model for 

stability analysis, which will be discussed in Chapter 4.  In both modeling methods, the system 

time-domain behavior can be expressed as 

 ( , )p fx x u   (2.1) 

 ( , )gy x u   (2.2) 

where px is the time derivative of the state vector x . The state vector x  contains the least number 

of variables that can determine the status of the entire circuit (currents, voltages, and flux linkages). 

The symbols u and y represent the input and output vector, respectively.  

 In this chapter, a system consists of a current source and load fixtures is set forth for a 

notional series AC single-phase power system utilized in airfield lighting. In additional to the 

system description, the WLM is formulated by finding the system variable dynamics in the form 

of (2.1) and their relationship with output variables in the form of (2.2).  

 

 Current Source 

 The current source is designed to supply a constant amplitude and constant frequency 

sinusoidal current to an uncertain load. It is assumed that the current source is supplied from an 

ideal DC voltage source. As shown in Figure 2.1, in the notional system, the current source consists 

of an H-bridge AC-DC inverter, a transformer, and an output filter (consisting of the transformer 

secondary leakage inductance and an output capacitor). The inverter is controlled using hysteresis 

modulation so that the transformer primary current ip tracks the desired primary current ip
*. The 
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desired primary current ip
* is obtained from the feedback control as shown in Figure 2.2. The 

hysteresis modulation and the current control will be described in Subsection 2.1.1 and 2.1.2, 

respectively. The state space model of the source including the transformer and output filter is set 

forth in Subsection 2.1.3. For illustration, a load step-change simulation is carried out in 

Subsection 2.1.4.  

2.1.1 Hysteresis modulation of single-phase AC current source 

 Hysteresis modulation is a commonly used current control strategy, and is described in 

detail in Section 12.8 of [30]. The current is regulated by controlling the four switches 1s  to 4s  as 

shown in Figure 2.1: when s1 and s4 are ‘on’, s2 and s3 are ‘off’, the primary voltage across the 

transformer vp is equal to vdc, and ip will increase; when s1 and s4 are ‘off’, s2 and s3 are ‘on’, the 

primary voltage across the transformer vp is equal to -vdc , and ip will decrease.  

 The principle of hysteresis modulation applied in this current source as shown in Figure 

2.2 is to change the switch state to increase the primary current when it reaches the lower bound 

of an allowed region, and to decrease the current when it reaches the upper bound, so that the 

average value of ip follows the desired waveform ip
* as shown in Figure 2.3. The lower bound is 

the desired current minus the hysteresis level and the higher bound is the desired current plus the 

hysteresis level. Through the low-pass filter formed by the secondary leakage inductance of the 

transformer and the output capacitor Cac, the output current iac will exclude the high-frequency 

components introduced by switch operations.  

 Although the hysteresis modulation can be used to control the primary current waveform, 

because of the transformer and the output filter, the waveform of iac will vary with the load 

characteristics. Herein, the current control is introduced to maintain the output current at the 

desired frequency and amplitude.  

 

2.1.2 Current control 

 The proposed current control diagram is shown in Figure 2.4. It includes a proportional 

path with a low-pass filter, a path with a two-pole inverse notch filter, and a DC filter. The low-

pass filter eliminates the high-frequency component of the transmission line current. The inverse 

notch filter is utilized to ensure that the desired fundamental component of the source output 



18 

 

 

current is exactly obtained. To illustrate the function of the inverse notch filter, assume that the 

relationship between the output current and the control output is given by 

 

Figure 2.1 Topology of constant AC current source  

 

 

 

Figure 2.2 Hysteresis state transition diagram  

 

 

Figure 2.3  Current waveform from hysteresis modulation  
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   *p

ac p

s

N
i T s i

N
   (2.3) 

where T(s) is a transfer function dependent upon the transformer, output filter and load 

characteristics. The DC filter has an extremely low cut-off frequency such that its impact at the 

fundamental frequency can be neglected. From (2.3) and Figure 2.4,  

    
2

*

2 21

p i e
ac ac ac

e

k k
i T s i i

ss





 
   

 
  (2.4) 

Solving (2.4) for iac yields 

 
   

   

2 2 2

*

2 2 2 2 2

( ) ( 1)

( 1)( ) ( ) ( 1)

p e i e

ac ac

e p e i e

k T s s k T s s
i i

s s k T s s k T s s

  

    

  


     
  (2.5) 

Since iac
* is an impulse function centered at s = ± jωe, which can be substituted to (2.5) yielding 

iac
 = iac

*. Therefore, the output current waveform will exactly follow the desired sinusoidal 

waveform in steady-state conditions.  

 

 

Figure 2.4 Current control 

 

 The DC filter shown in Figure 2.4 is designed to attenuate DC offsets in ip. Because of the 

transformer, the DC component of ip is not coupled to that of iac. Consequently, DC offsets in ip   

do not decay quickly as desired, which increases the system loss. To solve this problem, the DC 

offset feedback based on low-pass filtering ip is used.  
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2.1.3 State-space model 

 For the topology shown in Figure 2.1, the status of the subsystem consisted with the 

transformer and the output filter (the passives) can be determined by  

 '
T

sp p s si i v   x   (2.6) 

which can be shown to be a minimal set of variables. The inputs of the state space model are vp 

and iac, and the output of this model is vac (or vs of the transformer). As described in Chapter 1 of 

[30], the referred secondary current is defined by 

 
' s
s s

p

N
i i

N
   (2.7) 

 where Np and Ns are the numbers of turns of the primary and secondary winding of the transformer, 

respectively. Meanwhile, the referred secondary voltage is defined by  

 ' p

s s

s

N
v v

N
  (2.8) 

For simplicity, it is assumed that the transformer is always operating at linear region. Thus, the 

relationship between the flux linkages and the currents can be expressed as a linear function 

 
' ' '

p lp m m p

s m ls m s

L L L i

L L L i





     
     

     
  (2.9) 

where Lm is the magnetizing inductance, Llp is the primary leakage inductance, and Lls
’ is the 

referred secondary leakage inductance (the calculation of the referred values can be found in 

Chapter 1 of [30]). Taking the inverse of (2.9) yields 

 

'

' '' 2

1

( )( )

p pls m m

s sm lp mls m lp m m

i L L L

i L L LL L L L L





     
     

         
  (2.10) 

From Ohm’s and Faraday’s law, the dynamic of the flux linkages can be described by 

 p p p pp v r i     (2.11) 

 
' ' ' '

s s s sp v r i     (2.12) 

Substituting (2.11) and (2.12) to (2.10) yields 

 

' ' ' '

' 2

( )( ) ( )

( )( )

ls m p p p m s s s

p

ls m lp m m

L L v r i L v r i
pi

L L L L L

   

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  (2.13) 



21 

 

 

 

' ' '

'

' 2

( )( ) ( )

( )( )

lp m s s s m p p p

s

ls m lp m m

L L v r i L v r i
pi

L L L L L

   

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  (2.14) 

The dynamics of vs is governed by   

 '1
( )

p

s s ac

s s

N
pv i i

C N
     (2.15) 

 Thus, the time derivatives of the state variables ip, is’, and vs are expressed using only the 

state variables, inputs, and the system parameters.  

 

2.1.4 Source-only simulation 

 Based on the source model subsystems described in previous subsections, the simulation 

can be visualized by the diagram in Figure 2.5. The source adjust its output voltage vac for varying 

load characteristics to maintain a constant sinusoidal output current iac.  

 

 

Figure 2.5 Source simulation 

 

 The load of this source-only simulation is assumed to be a series L-R circuit. The load 

inductance is 100 mH, which is a large but reasonable value considering a system with fifty series-

connect load fixtures (referring to the proposed fixture schematic shown in 2.2.1). The load 

resistance steps from 100  to 200  at 0.5s, when the current is at its peak (as the worst case). 

The load model can be described by a single state variable aci  using  
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1

( )ac ac load ac

load

pi v r i
L

    (2.16) 

with input vac and output iac as a state space model.  

 Combining the source model and the load model, and using the parameters in Table 2.1, 

the system performance for this step-change resistance can be simulated and evaluated. The solver 

used is ODE4 (Runge-Kutta), and the time step is 1 μs. As shown in Figure 2.6, the output current 

becomes distorted at the step change of the load resistance, but recovers within 50 ms. The 

waveform of is is distorted due to the fast switching of the H-bridge, but with the output filter the 

waveform of iac is nearly ideal. The waveform of vac is leading iac by a small amount of angle due 

to the inductive load characteristic. The primary movement of ip represent the control output ip
*, 

which eliminates the distortion of iac feedback and has no DC offset. 

 

Table 2.1  Parameter list of the source  

Component Value 

Turns ratio (Np/Ns) 0.8 

Primary winding resistance (rp) 0.02    

Secondary winding resistance (rs) 0.04   

Magnetizing inductance (Lm) 0.12 H 

Primary leakage inductance (Llp) 0.1 mH 

Secondary leakage inductance (Lls) 0.6 mH 

DC supply voltage (vdc) 500 V 

Output capacitance (Cac) 5 μF   

Hysteresis level (ih) 0.1 A 

Output current rms amplitude (iac
*) 2 A 

Output current frequency (ωe) 377 rad/s  

Proportional gain (kp) 0.5 

Integrational gain (ki)  0.8 

Low-pass filter time constant   1.6 ms 

DC filter time constant dc 0.265 s 

DC filter gain kdc 1 
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Figure 2.6   Source-only simulation waveforms 
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 Load Fixture  

 A typical physical structure of a lighting fixture including the isolation transformer is 

shown in Figure 2.7. The fixture is embedded on the runway or taxiway. The isolation transformer 

and the transmission lines are buried in the ground. The isolation transformer has three cables: two 

single conductor cables are connected to its primary winding; the other cable has two conductors, 

which are connected to the secondary winding. The primary windings of all fixtures are connected 

to the transmission line in series. A fixture waveform-level model should include an isolation 

transformer model (with saturation), a regulated AC-DC converter, a LED with PWM driver, and 

input and output filters. In this section, first the design motivation and principle is introduced with 

a prototype topology in Subsection 2.2.1, with the control method set forth in Subsection 2.2.2. 

The transformer model is described in Subsection 2.2.3, and the LED and its PWM driver model 

is described in Subsection 2.2.4. A stand-alone fixture simulation is demonstrated in Subsection 

2.2.5.  

 

 

Figure 2.7  Load fixture structure [31] 
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2.2.1 Fixture design motivation and principle 

 The primary design motivation of the fixture-centric architecture lighting fixture is to 

control the LED light density by the pulse-width of a square-wave current. The input to the fixture 

can be assumed a constant sinusoidal current source. To this end, the use of power electronic based 

regulated rectifier and PWM driver are desired.  

 As shown in Figure 2.8, the PWM driver is realized with a switch parallel-connected to the 

LED: when this switch is turned on, the voltage drop across the switch becomes very small, thus 

the LED is turned off; when the switch is turned off, the current flowing through the switch is zero, 

and so that ild = iLld, and the LED is turned on. Therefore, the duty cycle of the LED is the logical 

compliment of the switch duty cycle ds. By regulating iLld to be a constant, a square-wave LED 

current can be achieved.   

 

Figure 2.8 Fixture topology 

 

 As shown in Figure 2.9, the H-bridge serves as a regulated rectifier to convert the sinusoidal 

current iLs from the input to a DC current ir to the output. The H-bridge operation involves two 

status:  

 1. Switches s1 and s4 are on, s2 and s3 are off, so that ir = iLs, and vr = vCld. 

 2. Switches s2 and s3 are on, s1 and s4 are off, so that ir = - iLs, and vr = - vCld. 

 The duty cycle of the H-bridge dH represents the percentage of the time when the H-bridge 

is on status 1 minus the percentage of the time of status 2. Therefore, by controlling dH, the output 

current of the H-bridge ir can be regulated. 

 To generate the switching signal of the H-bridge to control its duty cycle, the sine-triangle 
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modulator shown in Figure 2.9 is utilized. Similar approaches using sine-triangle modulation can 

be found in [32-36].  The modulator produces a high-frequency triangular signal dref, whose 

amplitude is 1. This reference waveform is compared to the duty cycle: if dH > dref, the H-bridge 

is operated in status 1; otherwise, the H-bridge is operated in status 2. Therefore, by configuring 

dH a certain value between -1 and 1, the average-value of the rectified current ir can be settled on 

a corresponding value between - iLs and iLs. The input filter consisted with Ls and Cs prevents the 

high-frequency switching signal produced by the H-bridge from entering the fixture input.  

 

 

Figure 2.9 Sine-triangle modulator 

 

2.2.2 Fixture control 

 As shown in Figure 2.10, the fixture control employs a PI feedback control and a multiplier. 

The PI control also includes a provision for anti-windup for back-calculation. In normal operation, 

the PI control output (y) does not saturate so that the anti-windup has no impact. When the feedback 

signal iLld takes a large step, the overshoot of the response will be limited.   

 The purpose of the multiplier is to generate an H-bridge duty cycle dH in-phase with the 

fundamental frequency component of iLs, while the amplitude of dH is controlled by y. The term 

iLs,base is set to be the nominal amplitude of iLs. A low-pass filter is applied on iLs to eliminate high-
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frequency components. To analyze the primary dynamics of the fixture with this control method, 

it is convenient to define a fast-average so that the impact of the switching of the power electronics 

may be viewed on a continuous sense. In particular, 
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where Tsw is the switching period of the power electronics. Using this definition, it can be shown 

that the steady-state H bridge duty cycle can be expressed as 
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and that the rectifier current ir can be estimated as 
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Substituting (2.18) to (2.19), the approximate fast average of ir can be expressed as 
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Figure 2.10 Fixture control 

 

 On the other hand, the rectified current can be approximated using a half-cycle average 

defined by 
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where Te is the fundamental period of the input sinusoidal signal of the rectifier. Using this 

definition, and assuming that Te is an even multiple of Ts, the load current iLld can be approximated 

as 
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Assuming that in steady-state 

  ,
ˆ cosLs Ls base ei i t     (2.23) 

where ωe = 2π/Te, ϕ is a constant, it can be shown using (2.20) and (2.23) that  

 
,

1

2
Lld Ls basei yi   (2.24) 

Therefore, ideally the load current is a DC current (with a small ripple) proportional to the PI 

control output.  

2.2.3 Transformer model 

 Unlike the source transformer, the saturation of the fixture transformer needs to be 

considered. This is because that transformer saturation is used to limit the voltage across a fixture 

when an open-circuit fault occurs inside the fixture. To this end, consider a core with a uniform 

cross-section area A and the magnetizing flux density of the cross-section Bm. When the 

magnetizing field density Hm increases, Bm might be expressed as   
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where Ms is the saturation flux density. Multiplying both sides of (2.25) by the cross-section area 

of yields 
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where Φs = MsA. Suppose that two windings are coupled with this core: the primary winding has 

Np number of turns, and the secondary winding has Ns number of turns. The positive currents 

through the two windings magnetize the core in the positive direction. Thus it can be shown that 

the total field density can be expressed by  
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where Rm0 is mutual leakage reluctance, which is dependent of the geometry as  
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where lc is the overall material length. If seen from the primary winding, a magnetizing current 

can be defined as s
m p s

p

N
i i i

N
  . Herein, multiplying both left and right side of (2.27) by Np yields  

 
2

0

lim
p m

m s
H

m

N i

R
 


    (2.29) 

This suggests that the magnetizing flux linkage can be expressed by 

   0m m mf i L i     (2.30) 

where L0 is the mutual leakage inductance, ( )mf i  is a function that saturates at λs. A choice of 

( )mf i is the arctangent function 

    arctanm mf i i     (2.31) 

 The advantages of using this function include: (i) this function is differentiable and 

secondary differentiable, (ii) it is computationally inexpensive, (iii) it is convenient for 

linearization, and (iv) it has only three parameters α, β and L0 which are readily found from 

measurement. As shown in Figure 2.11, the approximation of the λ - i characterization using this 

function is accurate when the magnetizing flux linkage is small or close to saturation. The process 

of finding these parameters from characterizing a transformer product is attached as Appendix B. 

The major disadvantage of using this function is that hysteresis and core loss are not included. 

However, for this research, as the system loss analysis is not a primary objective, it is reasonable 

to use this function as an approximation.  

 Using this transformer i   magnetizing characteristic modeling, the state space model of 

transformer described in 2.1.3 can be modified to represent saturation. In addition, the input of the 

transformer is assumed to be an ideal current source, both ip and pip can be set as input variables 

of the state space model. Therefore, the only state variable assumed with the transformer is im. To 

this end, start from the relationship between the magnetizing flux linkage and the secondary current 

as  
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Meanwhile, taking the time derivative of both sides of (2.30) yields 
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Figure 2.11 i   curves of isolation transformer   

 

Equating (2.32) and (2.33), and substituting is’ = im - ip, the time derivative of im can be expressed 

as 
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    (2.34) 

At this point, the state space model of the transformer is established. The inputs of the model are 

ip and pip; its outputs are is and vp which can be obtained by  
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 p p p l pm pv r i L pip     (2.36) 

 In the system representation, the inputs of the transformer become vp and vs, and the outputs 

are ip and is. Therein, the transformer model should be modified. This will be considered in Section 

2.3. 
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2.2.4 LED and PWM driver model 

 From the diode physics, a LED I V characteristic can be expressed as 
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or equivalently 
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 (2.38) 

 As a reference, a set of I V  measurements and the corresponding least square regression 

analysis is depicted in Figure 2.12. The regression finds the parameters v0 and i0 to minimize the 

square error of the current between each measurement data point and the ideal exponential function. 

 

Figure 2.12 LED I-V curve 

  

 The PWM driver of the LED controls the light density by regulating the duty cycle of the 

parallel switch. In the situations where the commanded LED duty cycle decreases rapidly, the LED 

might be supplied with a load current much higher than the desired value, until the fixture control 
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responds. In this situation, LED overheating will occur. To prevent this, the slew-rate limited 

differential duty cycle control is applied as shown in Figure 2.13. The slew rate of the duty cycle 

is dependent on the difference between the commanded value and actual value, and its absolute 

value is restricted by the slew rate limit. Therefore, when a step change in the commanded LED 

duty cycle occurs, the actual duty cycle ‘smoothly’ increases or decreases to the commanded value.  

 The PWM driver of the switch in parallel with the LED in also shown in Figure 2.13 to 

illustrate the generation of a switching signal. In terms of modeling, the input of this component 

(including the LED, the parallel switch, and the associated controls) is iLld and dLED
*, and its output 

is vld and ild. A reference signal dref is generated and compared with the LED duty cycle dled to 

generate s. Assuming that the voltage drop on the switch is zero, the following strategy is used for 

the switch control and model output: 

 (1) if dref ≥ dLED, s =1 or iLld ≤ 0, then ild = 0, vld = 0. 

 (2) Otherwise, ild = iLld, vld is obtained from (2.38) 

 

 

Figure 2.13 LED duty cycle control and PWM driver 
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2.2.5 Fixture-only simulation 

 In addition to the component described in Subsection 2.2.1-2.2.4, the fixture also includes 

an input filter and an output filter. They can each be modeled using two state variables, [vs  iLs]
T 

for the input filter, and [vCld  iLld]
T for the output filter. Corresponding to the topology in Figure 

2.8, the input of the input filter are is and vr, and its output are iLs and vs; the input of the output 

filter are ir and vld, and its output are iLld and vCld. The dynamics of these state variables are 

governed by  
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where rLs and rLld are inductor resistances.  

 

Figure 2.14 Fixture-only simulation diagram 
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 Combining the fixture components, the fixture model block diagram is depicted in Figure 

2.14. To study both the steady-state and the transient performance of the fixture, a case study of 

output level step change is illustrated below, using the parameters listed in Table 2.2. The ODE 

solver is Runge-Kutta (ODE4), and the time step is 0.5 μs. The LED duty cycle command dLED
* 

steps from 50% to 20% at t = 0.5 s. The source of the fixture is assumed to be an ideal current 

source. 

 Figure 2.15 shows the steady-state waveforms of ip, vp, iLld, iLs, ir, vr, and vCld when the LED 

duty cycle is set to 50%. It can be seen that corresponding to the sinusoidal input current ip, the 

input voltage needed is very close to a sinusoidal waveform, which is desired for achieving good 

system performance with a current source introduced in 2.1. Meanwhile, the LED load current iLld 

is maintained close to its desired value with a reasonable amount of ripple, so that the primary 

design objective of producing a ‘square-wave’ LED current is achieved, as shown in the same plot. 

The high-frequency switching signal of the H-bridge is shown by comparing iLs to ir and vCld to vr. 

The waveforms show that by prudently choosing fixture parameters, the high-frequency switching 

components can be eliminated from the fixture outputs and the inputs.   

 The step response study is shown in Figure 2.16. The waveform of ip shows an ideal 

sinusoidal current, while the required input voltage vp to maintain this current is shown to shift 

with the load step change. The LED load current is shown to have 1.2A peak value, which is 

acceptable for not causing significate over heating issues. Figure 2.16 also shows the instantaneous 

input power Pin. It can be see that a large percentage of the total power is reactive power, which is 

caused by the phase difference between vp and ip (since the voltage is leading the current, the fixture 

can be regarded as inductive load). The λm trace in Figure 2.16 shows that magnetizing flux linkage 

of the isolation transformer is very small relative to the λ - i curve in Figure 2.11, therefore it is 

reasonable to assume that the transformer is working in linear region or normal operation. 
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Table 2.2 Fixture parameters 

Component Value 

Turns ratio (Np/Ns)  1.019 

Primary winding resistance (rp)  0.15   

Secondary winding resistance (rs) 0.07  

Transformer coefficient α 0.0191 

Transformer coefficient β 23.73 

Transformer coefficient L0  0.7 mH 

Primary leakage inductance (Llp) 0.357 mH 

Secondary leakage inductance (Lls) 0.197 mH 

Input filter capacitance (Cs) 150 μF  

Input filter inductance (Ls) 1 mH 

Input filter inductor resistance (rLs) 0.05  

Output filter capacitance (Cld) 50 mF 

Output filter inductance (Lld) 4 mF 

Output filter inductor resistance (rLld) 0.05  

Proportional gain (kp) 2 

Integrational gain (ki) 20 

Anti-windup gain (kb) 3.5 

Low-pass filter time constant () 2.7 ms 

Desired load current (iLld
*) 0.8 A 

LED parameter i0  0.297 fA 

LED parameter v0 0.158 V 

H-bridge switching frequency (fsw) 30 kHz 

Load parallel switching frequency (fswld) 3 kHz 

Duty cycle slew rate limit 5 
-1s   
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Figure 2.15 Fixture steady-state waveforms 
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Figure 2.16 Fixture step-change waveforms
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 System Model and Simulation 

 In order to illustrate source-fixture interaction, a system consisting of one source and fifty 

fixtures in series is considered. Assuming that each fixture operates identically, the voltage across 

and current through each fixture will be equal. This is not true if transmission line effects are not 

negligible, in which case the system must be described as a distributed system. In practice, two 

types of transmission cables exists: both of them consist of a single copper conductor and 

insulation layers, and one of them contains a grounded metal screen. Either type of cable introduces 

inductances and capacitances to the ground. As an approximation, the transmission line resistance 

can be included in the primary winding resistance of the isolation transformers. As shown in Figure 

2.17, the transmission line inductance can be modeled as a part of leakage inductance of isolation 

transformers Llp. The capacitance between the cable conductor and the ground can crudely be 

modeled as a part of source output capacitance Cac.  

 Instead of assuming a current-in voltage-out fixture model as in the stand-alone simulation, 

the fixture model becomes voltage-in current-out. The isolation transformer model must be 

modified accordingly. To this end, starting from the time derivative of the fixture transformer 

primary current (which is the transmission line current)   
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and substituting (2.43) to (2.33) yields  
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By adding (2.43) to the state dynamics and modifying (2.33) to (2.44), ip is added to the state space 

model to the transformer stand-alone model in Subsection 2.2.3. Additionally, the voltage across 

each fixture is the output voltage of the source divided by the number of fixtures. 

 To study system transient performance due to different parameter combinations, two cases 

are studied and presented below. For both cases, the commanded LED duty cycle steps from 0% 

to 100%, which mimics a situation where the lighting system is working initially with all LEDs 

turned off, and at a certain time point all the LEDs are turned on simultaneously. Fifty fixtures are 
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connect in series and powered by one source. The system parameters used in Case 1 is listed in 

Table 2.3, and the modification to the parameters for Case 2 is listed in Table 2.4. The solver 

utilized here is the same as separated simulations illustrated in previous subsections, i.e. Runge-

Kutta (ODE4), and the time step is 0.5 μs.  

 

 

Figure 2.17 Transmission line model simplification 

 

 The simulation result for Case 1 is depicted in Figure 2.18. the ac current iac and its error 

with respect to the desired value iac
*, the actual LED duty cycle, the load voltage on each fixture 

vp, the magnetizing flux linkage λm of fixture transformers, and the LED load current iLld are plotted. 

It can be seen that during the entire shown time interval, the error of iac is small. The fixture load 

voltage and magnetizing flux linkage follows the changing of LED duty cycle. The magnitude of 

the magnetizing flux linkage is small and can be regarded as within the ‘linear’ region. The LED 

load current shown in the fifth trace shows that with appropriate choice of system parameters, a 

good output performance can be achieved even though the current source is not ideal.  

 As a contrast, the simulation result of Case 2 is depicted in Figure 2.19. In this case, as can 

be seen, the AC current fails to return to the desired waveform. In this unstable situation, 

distortions occur in the waveforms of vp, λm, and iLld. This shows that with inappropriate choices 

of system parameters, instability will occur. The LED duty cycle also influence the stability, which 

indicates that a reliable system should be stable for all the useable LED duty cycle values.  

 Based on the analysis of the above two cases, it can be concluded that system stability is 

dependent on the system parameter choices. From a design prospective, this indicates that the 

stability should be considered as a design constrain. In order to obtain the stability of this system 

directly from the parameters instead of performing the time-domain simulation for all situations, 

the waveform-model needs to the converted to a LTI system, whose stability can be addressed 
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using Nyquist techniques. This will be carried out in Chapter 3 and 4.  

Table 2.3 Case 1 system parameters 

 Source component Value 

Turns ratio (Np/Ns) 0.7 

Primary winding resistance (rp) 0.04  

Secondary winding resistance (rs) 0.06  

Magnetizing inductance (Lm) 0.2 H 

Primary leakage inductance (Llp) 0.1 mH 

Secondary leakage inductance (Lls) 0.5 mH 

DC supply voltage (vdc) 500 V 

Output capacitance (Cac) 7.95 μF   

Hysteresis level (ih) 0.1 A 

Output current rms amplitude (iac
*) 2 A 

Output current frequency (ωe) 120 π   rad/s 

 Proportional gain (kp) 0.25 

 Integrational gain (ki)  0.35 

Low-pass filter time constant   1.6 ms 

 DC filter time constant  dc 1.6 s 

DC filter gain kdc 2 

Fixture component  

Turns ratio (Np/Ns)  1.019 

Primary winding resistance (rp)  0.15  

Secondary winding resistance (rs) 0.07  

Transformer coefficient α 0.0191 

Transformer coefficient β 23.73 

Transformer coefficient L0  0.7 mH 

Primary leakage inductance (Llp) 0.357 mH 

Secondary leakage inductance (Lls) 0.197 mH 
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Table 2.3 continued 

Input filter capacitance (Cs) 150 μF  

Input filter inductance (Ls) 1 mH 

Input filter inductor resistance (rLs) 0.05   

Output filter capacitance (Cld) 50 mF 

Output filter inductance (Lld) 2 mH 

Output filter inductor resistance (rLld) 0.05   

Proportional gain (kp) 3 

Integrational gain (ki) 15.5 

Anti-windup gain (kb) 3.5 

Low-pass filter time constant ( ) 2.7 ms 

Desired load current (iLld
*) 0.8 A 

LED parameter i0  0.297 fV 

LED parameter v0 0.158 A 

H-bridge switching frequency (fsw) 30 kHz 

Load parallel switching frequency (fswld) 3 kHz 

Duty cycle slew rate limit 2.5 -1s  

Transmission line component  

Transmission line resistance 0.05 Ω 

Transmission line inductance 0.043 mH 

Transmission line capacitance 0.1μF  

  

Table 2.4 Case 2 system parameter modification 

 
Component modified Case 1 

 

Case2 

 Source output capacitance (Cac) 7.95 μF 18.95 μF 

Source proportional gain kp 0.25 0.3 

Fixture primary leakage inductance (Llp)  0.357 mH 0.457 mH 

Fixture input filter capacitance (Cs) 150 μF 75 μF 

Fixture input filter inductance (Ls) 1 mH 2 mH 
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Figure 2.18 Case 1 system waveform-level model simulation result 
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Figure 2.19 Case 2 system waveform-level model simulation result
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3. AVERAGE-VALUE QD MODEL 

 In this chapter, the waveform-level single-phase AC current source and fixture models are 

used to derive average-value qd models so that the AC currents and voltages appears as constants 

under steady-state conditions. This property is useful for small-signal stability analysis. To this 

end, two techniques are employed in this chapter: qd reference frame transformation and average-

value modeling (AVM). In Section 3.1, the definitions of qd variables, qd transformation and 

inverse qd transformation for a single-phase AC system are introduced, and their application to a 

linear state space model are illustrated. In Section 3.2, the average-value modeling method is 

introduced and two types of averaging method are included: fast-averaging of switching of power 

electronics and slow-averaging for rectifiers. Section 3.3 sets forth linear average-value qd model 

for the source and a nonlinear average-value qd model (AVQDM) for the fixture. The results of 

the stand-alone simulation of the two models are compared to the corresponding results in Chapter 

2. Section 3.4 presents simulation results of the system consisting of the proposed source and 

fixture models, which are compared to the waveform-level model simulation results in Chapter 2.  

3.1 Reference Frame Transformation 

3.1.1 Introduction 

 In AC system modeling and analysis, a reference frame transformation is frequently used 

to convert three-phase or two-phase sinusoidal voltages and currents to DC quantities [37-42]. In 

single-phase AC system analysis, an imaginary b-phase system might be introduced to facilitate 

the application of two-phase qd transformation, which is discussed in detail in Chapter 5 of [30]. 

The definitions of qd and ab quantities are  

  
q

qd

d

f

f

 
  
 

f  (3.1) 

  
a

ab

b

f

f

 
  
 

f  (3.2) 

where the variable f can be a voltage, current, or flux linkage. The two-phase qd transformation of 

ab variables is defined as 
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qd abf Kf  (3.3) 

where 
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and where θe is the angular position of the synchronous reference frame. To recover the ab 

quantities from the qd quantities defined in (3.1), it can be shown that 

  
1

ab qd

f K f  (3.5) 

where 

  1 K K  (3.6) 

 The position of the synchronous reference frame θe can be regarded as the angular position 

of the q-axis of this reference frame rotating at a constant speed ωe starting from 0 at t = 0. Suppose 

that the reference frame is chosen so that its angular frequency ωe is equal to the fundamental 

angular frequency of the AC system. Namely, ωe is the synchronous frequency of the system. Then, 

for steady-state conditions, an a-phase quantity in this system can be expressed in the form 

  2 cosa s e af F      (3.7) 

where a  represents the phase of the a-phase quantity relative to the q-axis. It is assumed that the 

b-phase system has exactly identical characteristics to the a-phase system for all frequency 

components, except that the phases of its fundamental component (at ωe) are lagging the 

corresponding a-phase quantities by 90 degrees. Thus,  

  2 cos 2 sin
2

b s e a s e af F F


   
 

     
 

  (3.8) 

Applying the transformation in (3.3) and (3.4) to (3.7) and (3.8) yields 

  
2 cos

2 sin

s a

qd

s a

F

F





 
  

  

f  (3.9) 

 Therefore, any single-phase AC quantity in the form of (3.7) can be transformed into qd 

quantities as in (3.9) which appear as constants in steady-state conditions, and recovered from its 

qd quantities using (3.5) and (3.6).  
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 For steady-state analysis, it is useful to convert the phasor representation of a single-phase 

ac quantity to its corresponding qd representation. To this end, define the phasor corresponding to 

the a-phase quantity in the form as in (3.7) as  

  a s af F    (3.10) 

whereupon 

  Re{ 2 } 2 cosej

a a s e af f e F
       (3.11) 

In the steady-state conditions, both Fs and ϕa are constants. The phasor of the b-phase quantity 

whose angular position is lagging the a-phase quantity by 90 degrees becomes  

  b af jf   (3.12) 

which corresponds to the expression in (3.8) 

  Re{ 2 } 2 sinb b s e af f F       (3.13) 

It can be shown that the qd values corresponding to this phasor may be expressed as 

 
2 cos Re{ }

Im{ }2 sin

s a a

qd

as a

F f

fF





   
    

      

f   (3.14) 

Equivalently, the phasor of the a-phase quantity can be represented by the corresponding qd values 

using  

  a q df f jf   (3.15) 

 Therefore, if the steady-state phasor quantity of an AC signal is known, its qd 

representation can be obtained using (3.14) accordingly; if the steady-state qd values of an AC 

signal is known, its phasor quantity can also be obtained. Furthermore, if the steady-state phasors 

in a single-phase AC circuit can be calculated from system parameters, their corresponding qd 

quantities can be obtained. This will be used in calculating steady-state operational points of the 

system in Chapter 4. It should be noted that depending on the choice of initial position of the 

synchronous reference frame, the operational points can be different for the same system.  

3.1.2 System transformation 

 From 3.1.1, the steady-state quantities in an AC system can be represented in both phasors 

and in qd forms equivalently. However, the dynamics of the qd quantities of single-phase AC 

systems remain uncertain. To illustrate the dynamics of the qd quantities of an AC system, it is 
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desirable to derive a new state space model where the states are the qd variables. Consider a linear 

system with n states in the a-phase and governed by the ODE 

 a a apx = Ax + Bu   (3.16) 

where A is a n-by-n matrix. Assume a b-phase system having identical characteristics to the a-

phase system 

 b b bpx = Ax + Bu   (3.17) 

 Define the combined ab states and ab inputs as  

 
a

ab

b

 
 
 

x
x =

x
  (3.18) 

  
a

ab

b

 
 
 

u
u =

u
 (3.19) 

The combined state vector is then governed by the ODE  

 ab ab abp
   

    
   

A 0 B 0
x x u

0 A 0 B
  (3.20) 

The combined qd states and qd inputs are defined as 

 
q

qd

d

 
 
 

x
x =

x
  (3.21) 

  
q

qd

d

 
 
 

u
u =

u
 (3.22) 

It is convenient to define the qd transformation matrix for a system with n states in one phase as  

 
cos( ) sin( )

sin( ) cos( )

e n e nn

e n e n

 

 

 
  

 

I I
K

I I
  (3.23) 

where In is the identity matrix of the n’th order. Defining 

  
n

qd abx = K x  (3.24) 

 
n

qd abu = K u   (3.25) 

and substituting (3.24) and (3.25) into (3.20) yields  

 
e n

qd qd qd qd qd qd qd

e n

p




   
      

  

A I B 0
x x u A x B u

I A 0 B
  (3.26) 
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 In conclusion, if an n-state LTI system can be modeled by a linear state space described as 

in (3.20), its qd transformed states are governed by (3.26). The two state space models are 

mathematically equivalent for arbitrary initial position of the synchronous reference frame. 

 

3.2 Average-Value Qd Modeling Of Linear System Components (Source) 

3.2.1 Average-value modeling 

 Average-value modeling (AVM) has been used to reduce computational intensity in 

simulations of synchronous machine-rectifier systems [43], converter-machine systems [44-47] 

brushless DC machines [48], machine-load systems [49], PWM DC-DC converters [50-53] and 

many other applications. In a system where fast switching signal component with switching period 

Tsw is introduced, the fast average-value of a signal x(t) can be defined as 

  
1

ˆ( ) ( )

sw

t

sw t T

x t x d
T

 


   (3.27) 

so that the fast switching behavior is neglected. Since Tsw is much smaller than the period of the 

fundamental components of the AC system (i.e. the synchronous frequency), the primary dynamics 

of the system are conserved in average-value modeling.  

 On the other hand, to address the relationship between the AC part and the DC part in the 

fixture so that in the steady state both the AC and DC signals are constant, a ‘slow’ averaging is 

also desired. The ‘slow’ averaging eliminates the ripple at harmonics of the fundamental frequency 

from a DC quantity, most notably the double fundamental frequency term. This half-cycle 

averaging is defined as 

  
/2

2
( )

e

t

e t T

x t x d
T

 


    (3.28) 

As also shown in Subsection 2.2.2, applying this half-cycle averaging to the output current of the 

rectifier yields a representation in which the DC current is constant in the steady-state.  

 The dynamics of the average-value signals are much less computationally intensive then 

in waveform-level modeling. Moreover, the ‘averaged’ signal is constant in the steady-state. This 

makes it straight forward to linearize the system description about a desired operating point, which 

in turn facilitates small-signal stability analysis.  
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3.2.2 Source average-value qd model and simulation 

 The average-value qd model (AVQDM) for the source can be developed by first deriving 

its average-value model in state space form: all the time derivatives of the states are expressed in 

terms of states and inputs; then, applying (3.25) the qd state space model is determined.   

 Consider the source model shown in Figure 3.1, a switching signal is generated by the H-

bridge inverter. The fundamental (synchronous) frequency of the current generated by this inverter 

is equal to the frequency of the commanded current ip
* from the control shown in Figure 2.2. The 

switching frequency due to this inverter depends on dc supply voltage, system impedance and the 

hysteresis level, and is usually much larger than the fundamental frequency. Therefore, the 

average-value model of the source can be obtained by assuming that the fast average of the 

transformer primary current is equal to the commanded current ip
*. 

 

 

Figure 3.1 Current source topology 

 

 Considering the control diagram in Figure 3.2, the AC output current iac is the feedback 

signal to the source control. The AC output voltage vac is controlled so that iac follows the desired 

current iac
*. As the source consists of linear components and a linear control law, the source 

average-value model becomes a linear system.   

 Combining all the essential states in the source schematic and the control to describe the 

system status of the source, five state variables and two input variables are needed. In particular, 

   1 2 3           
T

ac s c c cv i x x xx  (3.29) 
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  *  
T

ac aci i   u  (3.30) 

 

Figure 3.2 Current source control 

 

 Considering the circuit shown in Figure 3.1, the dynamics of vac is governed by 

   
1

 ac s ac

ac

pv i i
C

    (3.31) 

Next, time derivative of the secondary current may be expressed by 

  '1
s ac m s s

ls

pi v v r i
L

     (3.32) 

where vm’ is the magnetizing voltage referred to the secondary winding, which can be shown as 

  ' ' '

m m s pv L pi pi    (3.33) 

and where ip’ and Lm are the primary current and transformer mutual inductance referred to the 

secondary winding, respectively. Substituting (3.33) to (3.32) yields 

   ' '

'

1
s ac m p s s

ls m

pi v L pi r i
L L

  


 (3.34) 

The remaining three states, xc1, xc2 and xc3 are the control state variables, which are governed by 

the control transfer function as presented in Figure 2.2 as 

   *

2 2 1

ps i
p ac ac

p e p

kN k
i i i

N s s 

 
     

 (3.35) 

Thus, the referred primary current may be written as 

   ' *

2 2 1

pi
p ac ac

e p

kk
i i i

s s 

 
     

 (3.36) 
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In order to incorporate (3.36) into (3.34) so that the dynamics of is can be expressed in terms of 

state variables and input variables, it is desirable to convert (3.36) to a state space form where the 

output is pip’. To achieve this, first express (3.36) as 

 
 

 
2 2 2 1 2 2 2

' *

3 1 2 2 1 2

i e p p i p e p p e p

p ac ac

p e p e p

k k s k s k k
si i i

s s s

     

    

  

 

   
   
   
 

  (3.37) 

To convert (3.37) to state space form, define 

    22 2 2 1 2 2( ) ( )i e p p i p e p p eY s k k s k s k Z s           
 

 (3.38) 

 3 1 2 2 1 2( ) ( )p e p eU s s s s Z s            (3.39) 

where Y(s) = sip
’ - kp(iac

* - iac), and U(s) = iac
* - iac. Converting (3.38) and (3.39) to time-domain,  

   2 2 1 2 2 2( ) ( ) ( ) ( )i e p p i p e p p ey t k k z t t k zk z t            (3.40) 

 
1 2 1 2( ) ( ) ( ) ( ) ( )p e p eu t z t z tt z z t          (3.41) 

Defining    1 2 3           
T

c c c

T
x x x z z z , (3.40) and (3.41) yields 

 

1 2 2 1

1 1

2 2 *

3 3

1 1

1 0 0 0 0

0 1 0 0 0

c p e e p c

ac

c c

ac

c c

x x
i

p x x
i

x x

             
       

         
             

  (3.42) 

 

1

' 2 2 1 2 2 2

2 *

3

c

p p ac

p i e p p i p e p p e c

acp p

c

x
k k i

pi k k k k x
i

x

     
 

  

 
               
      

  (3.43) 

Substituting (3.41) to (3.33) yields 

 

 

2 2 1 2 2 2

'

'

1 2 3

*

'

1

) ( )( (( ) )
p

i e p p i p e p

s ac s s

ls m

m
c p e acc ac

p

c

ls m

pi v r i
L

k
k k k k

L

L
x x i ix

L L
     



   

 


 
    

  




  (3.44) 

Using the state variable and input definitions in (3.27) and (3.38), the ODEs (3.29), (3.40) and 

(3.42) can be rearranged in the form of px = Ax + Bu where  
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 

1
0 0 0 0

' ' '1 2 2 1 2 2 2
' ' ' ' '

1 2 2 10 0

0 0 1 0 0

0 0 0 1 0

Cs

r L L Ls m m mk k k ki e p p i p e p p e
L L L L L L L L L Lls m ls m ls m ls m ls m

p e e p

     

   

 
 

 
 

      
     
 
     
 
 
  

A  (3.45) 

  

' '

' '

1
0

1 1

0 0

0 0

ac

p pm m

ls m p ls m p

C

k kL L

L L L L 

 
 

 
 

 
   

 
 
 
 
 

B  (3.46) 

 Finally, the source average-value qd model can be derived by substituting the A and B 

matrices in (3.41) and (3.42) to (3.27), which yields the form of pxqds = Aqdsxqds+Bqdsuqds with 

  
1 2 3 1 2 3

T

acq sq c q c q c q acd sd c dq d ds cd cv i x x x v i x x x  x  (3.47) 

 * *
T

qds acq acq acd acdi i i i   u   (3.48) 

 
5

5

e

qds

e





 
  
 

A I
A

I A
  (3.49) 

 qds

 
  
 

B 0
B

0 B
  (3.50) 

The output of the source model is the ac output voltage vac as shown in Figure 2.1. Accordingly, 

the output of the qd model is [vacq vqcd]
T, which can be obtained from the (3.43) as  

 
1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

acq q

s qd

acd d

v

v

    
     

    

x
C x

x
  (3.51) 

 In conclusion, the source average-value qd model in a state space form is established by 

(3.43)-(3.49). It is a current-in voltage-out LTI system. To verify this AVQDM, the case study in 

subsection 2.1.4 is repeated. In this case study, the source is connected to a series L-R load, and 

the load resistance changes step at 0.5 second. As shown in Figure 3.3, the steady-state values of 

the qd quantities of iac, is vac, and ip appear as constants in steady-states, and their step-responses 

are consistent with DC signals.  
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 Figure 3.4 illustrates the comparison of waveforms of the WLM and AVQDM for the same 

step response as in subsection 2.1.4. The recovered single-phase ac signals are obtained using (3.5). 

In this case study, the solver used is variable-step ODE23 (Bogacki-Shampine), which greatly 

decrease the runtime of the model comparing the WLM. It can be seen that the high-frequency 

components of ip and is waveforms are neglected in the AVQDM, while their dominant 

components are preserved. The filtered output signals, iac and vac are identical in both modeling 

methods. In conclusion, the source average-value qd model well represents both the steady-state 

and dynamic waveforms. 
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Figure 3.3 Source average-value qd waveforms
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Figure 3.4 Source waveforms comparison 
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3.3 Average-Value Qd Modeling Of Nonlinear System Components (Load) 

3.3.1 Approximation for fast-switching and rectifiers 

 Corresponding to the source AVQDM, the load fixture model will be designed to be 

voltage-in current-out. Consider the topology shown in Figure 3.5. This system can be divided into 

an AC part to the left side of the H-bridge and a DC part to the right side of the H-bridge. The 

main difficulty of developing an AVQDM for the load fixture is to establish the current and voltage 

relationship between the two parts.  

 

Figure 3.5 Load fixture topology (repeated from Figure 2.8) 

 

 

Figure 3.6 Load fixture control (repeated from Figure 2.10) 



57 

 

 

 A fast switching signal is generated by the H-bridge which works as an active rectifier. In 

AVM, this fast switching is ‘averaged’ so that the rectified current can be expressed as in (2.19) 

where 

  ˆ
r H Lsi d i  (3.52) 

In (3.52), dH is the duty cycle of the H-bridge. In Figure 3.6, the iLs filter with time constant  is 

neglected, because the purpose of the filter is to eliminate the fast switching components, which 

has little influence. Therefore,  

  
,

H Ls

Ls base

y
d i

i
  (3.53) 

Substituting (3.53) to (3.52) yields 

  
2

,

ˆ
r Ls

Ls base

y
i i

i
  (3.54) 

Thus the waveform of ir will have a dc part and a low frequency AC part at double the fundamental 

frequency of iLs. Given the large time-constant of the output filter consisted with Cld and Lld, ir can 

be approximated with the ‘slow’ average defined in subsection 3.2.1 as 

  2

,

1 1 1
d d

e e

e e

r r e Ls e

Ls base

i i yi
i

 

   

 
 

 

    (3.55) 

 To simplify (3.55), it is assumed that the PI control output y is independent of θe. This is 

true in steady-state, and during transient it provides a reasonable approximation. Applying this 

approximation on (3.55) yields 

 2

,

1
d

e

e

r Ls e

Ls base

y
i i

i



 






    (3.56) 

As shown in Subsection 3.1.1, an imaginary b-phase can be introduced corresponding to the DC 

part in order to perform the two-phase qd transformation. The a-phase (the original phase) and the 

b-phase (the imaginary phase whose fundamental frequency component is lagging the a-phase by 

90 degrees) ir can be expressed using 

  

2

, 2

d
1 1

d

e

e

e

e

a Lsa e

rab

Ls base

b Lsb e

y i

i
y i



 



 










 
 
 

  
 
 
 





i  (3.57) 
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The a- and b- phase iLs may be represented in form of qd values as 

 
1

cos sin

si cosn

Lsq e Lsd e

Lsab Lsqd

Lsq e Lsd e

i i

i i

 

 


 
  




 
i K i   (3.58) 

Substituting (3.58) to (3.57) yields  

  
,

2 21

2
rab Lsq Lsd ab

Ls base

i i
i

 i y   (3.59) 

 Therefore, (3.59) establishes the relationship between the DC current and the qd values of 

the AC part currents.  

 Another difficulty remains in finding the relationship between vr and vCld. It can be shown 

that for the assumed two-phase system  

 
,

01

0

ra Ha Clda a Clda Lsa

rab

rb Hb Cldb b Cldb LsbLs base

v d v y v i

v d v y v ii

       
         
       

v   (3.60) 

Therefore the qd representation of vr can be derived by 

 
       

       

1

.

2 2

2 2

.

01

0

cos sin ( )sin cos1

( )sin cos sin cos

a Clda

rqd Lsqd

b CldbLs base

a Clda e b Cldb e a Clda b Cldb e e

Lsqd

a Clda b Cldb e e a Clda e b Cldb eLs base

y v

y vi

y v y v y v y v

y v y v y v y vi

   

   

 
  

 

  
  

  

v K K i

i

  (3.61) 

 In steady state, iLsqd appears constant; it is therefore assumed that iLsqd is independent of θe. 

As an approximation, vrqd can be represented by taking the half-cycle average of the matrix 

components in (3.61) as done in (3.55). This yields 

 
,
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rqd Lsqd
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y v y v

y v y vi
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  

 
v i   (3.62) 

 Since ir is a DC current, it should be identical in a and b phase. Therefore, it is reasonable 

to model the DC part as an actual DC subsystem rather than a two-phase AC system. The input (ir) 

and the output (vrqd) of this DC subsystem can be expressed as 

  
,

2 21

2
r ra rb Lsq Lsd

Ls base

i i i i yi
i

      (3.63) 

 
,

Cld
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yv

i
v i   (3.64) 
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 At this point, the current and voltage relationships between the AC and DC parts are 

established using (3.63) and (3.64); the AC part is modeled as a two-phase (qd) subsystem and the 

DC part is modeled as a DC subsystem. 

3.3.2 Fixture average-value state-space model 

 Having the current and voltage relationship between the AC and DC parts, and assuming 

that the DC part is a single-phase subsystem, the fixture state space model ODEs can be derived 

as follows. Consider the DC part, which contains the output filter and the LED driver as shown in 

Figure 3.5, two state variables vCld and iLld are used to describe the dynamics of this part. Using the 

LED characteristic from subsection 2.2.4, it can be shown that   

  2 2

,

1 1

2
Cld Lsq Lsd Lld

ld Ls base

pv i i y i
C i

 
   

  

  (3.65) 

 
0

0

1
ln 1Lld

Lld Cld Lld Lld LED

ld

i
pi v r i d v

L i

  
     

  

  (3.66) 

The PI control output y in the above equations is governed by  

  
*( )i p Lld Lldy k I k i i    (3.67) 

where the integrator variable I is governed by 

 *

Lld LldpI i i    (3.68) 

 Now consider the AC part of the load fixture. A linear model of the isolation transformer 

will be used (which is identical to the source transformer model in Subsection 2.1.3) in steady of 

the nonlinear model described in Subsection 2.2.3, where the arctangent function is utilized to 

demonstrate saturation. A can be seen in the WLM simulation results in Figure 2.16 and 2.19, the 

magnetizing flux linkage usually does not exceed 0.01 Vs during steady state. According to the 

transformer characterize as shown in Figure 2.11, this value is relatively small so that the linear 

approximation is adequate.   

 The linearized transformer model can be expressed as in (2.7-2.14) and the primary and 

referred secondary currents are used as states. The input filter and output filter is described in 

(2.38-2.41). The input of the whole fixture model is vp and the output of this model is the primary 

current ip. 
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 Combining the equations above, the fixture average-value qd model can be formulated by 

the state vector and input vector 

 ' '
T

pq sq sq Lsq pd sd sd Lsd Cld Lldi i v i i i v i v i I   x   (3.69) 

 *

2

T

pq pd Lldv iv d   u   (3.70) 

where the single-phase states  are governed by (3.63-3.66). Expanding the matrix form system 

ODE as in (3.29), the ODEs describing the AC part become 
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pi v r i i

L i
      (3.78) 

 Combining above equations, the approximate average-value qd model for the load fixture 

is established. Note that (3.65), (3.66), (3.77) and (3.78) includes multiplication of states, thus the 

result model is nonlinear. On the other hand, the anti-windup and the limitation of the H-bridge  
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duty cycle shown in the control diagram in Figure 3.6 should also be included in the average-value 

qd model for time-domain simulation. 

3.3.3 Fixture-only simulation 

 For validation, the AVQDM waveforms of the case study in Section 2.2 are plotted in 

Figure 3.7. The fixture is assumed to be connected to an ideal current source, and the transformer 

model modification for current source can be referred to Subsection 3.2.2. In this case study, the 

solver used is variable-step ODE 23 (Bogacki-Shampine), which greatly decrease the runtime of 

the model comparing the WLM. As shown in Figure 3.7, the steady-state waveforms of the AC 

quantities ip, vp, iLs, and vr appear as different constants in different steady state conditions, as the 

duty cycle of the LED decreases from 50% to 20%. The reconstructed actual waveforms are 

compared to the waveform-level modeling result in Figure 3.8. It can be seen from the output 

current iLld waveforms that the high-frequency current ripple is neglected in the AVQDM. The 

other AC signals predicted by this model are almost identical to those predicted using WLM. 
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Figure 3.7 Fixture AVQDM waveforms  
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Figure 3.8 Fixture waveforms comparison
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3.4 System Average-value Simulation  

 By combining the source and the fixture, the system AVQDM is established. By assigning 

the same parameter sets as in Section 2.3, the waveforms of WLM and AVQDM can be compared. 

Instead of using fixed-step ODE45 with 1μs step size to incorporate the fast-switching of 

converters, the AVQDM can use variable-step ODE23 (Bogacki-Shampine), which greatly 

decreases the runtime.  

 Corresponding to the results in Figure 2.18 and 2.19, the new results are depicted in Figure 

3.9 and 3.10. As can be seen, when the system is stable, the proposed AVQDM accurately 

reproduces the waveforms of iac, the transmission line current, vp, the voltage across each fixture, 

and λm, the magnetizing flux linkage of the fixture isolation transformers. The primary dynamics 

of the LED load current iLld is also well preserved. When the instability occurs, errors between the 

WLM and AVQDM waveforms can be seen. However, from a design prospective, having the 

errors is acceptable for the reason that the system instability should be avoided; never the less, the 

proposed AVQDM predicts the point where the instability of the system waveform-value model 

occurs. In next chapter, starting from the AVQDM, the small-signal stability analysis with certain 

operating point will be performed and for the same cases, its predictions will be compared to those 

of the WLM. 
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Figure 3.9 Case 1 System simulation result comparison 
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Figure 3.10 Case 2 System simulation result comparison 
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4. STABILITY ANALYSIS 

 The Nyquist stability criterion is a widely used technique for determining the stability of a 

dynamical system. This technique is also frequently used in power system studies including DC 

systems [54], three-phase AC systems [42, 55], grid-connected inverters [56] and many others. To 

address the small-signal analysis for the single-phase ac series system introduced in previous 

chapters, the generalized Nyquist stability criterion for MIMO (multiple-input multiple-output) 

systems can be utilized. To this end, first the state space models of system components (the source 

and the fixtures) are linearized to create a LTI (linear time-invariant) MIMO system models; then 

the models are converted to frequency-domain transfer functions, and accordingly a system 

transfer function can be obtained; finally, system stability can be decided using the generalized 

Nyquist criterion using the eigenvalues of the system transfer function.  

 In this chapter, first the stability analysis of a DC system is introduced as an example of a 

SISO (single-input single-output) system. In Section 4.2, a generalized Nyquist theorem for MIMO 

system is introduced, and its implementation to the single-phase AC system average-value qd 

model (AVQDM) is illustrated. In Section 4.3, the conversion from the time-domain AVQDM to 

a frequency-domain model is set forth. Finally, the Nyquist stability criterion is reviewed and 

utilized to predict stability of this single-phase ac series system for the two cases provided in 

Chapter 2 and 3.  

4.1 Reference Frame Transformation 

 Consider the model of a dc system shown in Figure 4.1. The system consists a source with 

Thevenin supply voltage vsT and small-signal (incremental) impedance Zs, a load with nominal 

load current ilN and small-signal admittance Yl. The system output, the voltage across the load can 

be expressed by  

  
1

sT s lN

s l

v Z i
v

Z Y





   (4.1) 
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Figure 4.1 Equivalent circuit of dc system 

 

This DC system can be regarded as a SISO LTI system with the input vsT - ZsilN, output v, and 

transfer function h(s) = (1+ZsYl)
-1.  

 If the system can be realized by the state model {A, B, C, D}, the transfer function can also 

be written as  

    
1

h s s


 C I A B   (4.2) 

In order to provide a general framework for stability analysis for such systems, the definition of 

bounded-input bounded-output (BIBO) and bounded-input bounded-state (BIBS) stability are 

stated below [42]. 

Definition: A system is BIBO stable if, for each admissible bounded input u(t) (i.e. ||u(t)||∞ < ∞) 

the response y(t) is bounded. Here u(t) is an n-by-one vector-valued function, y(t) is an m-by-one 

vector-valued function, ( ) max ( )i
i

t u t
 
u , and ( ) sup ( )i i

i

u t u t

 . 

Definition: A system with state model {A, B, C, D} having arbitrary initial conditions is BIBS 

stable if for any bounded input u(t), the state response 

         
0

0
t ttt e e u d


 


  

AA
x x B  (4.3) 

is bounded. 

 These definitions are valid for MIMO systems as well as SISO systems. BIBS stability of 

a system is a sufficient but not necessary condition of BIBO stability. If a system is BIBO stable 

and all its states are controllable and observable, the system is BIBS stable.  

 Returning to the discussion of the dc system, for the system transfer function in (4.3), the 

system is BIBO stable if and only if all the poles of h(s) are in the Open Left Hand Plane (OLHP). 

Equivalently, the system is BIBO stable if all the zeros of the denominator 1 + ZsYl are in the 

OLHP. This can be verified by Nyquist stability criterion: 1 + ZsYl will have all zeros in the OLHP 
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if the number of counter-clockwise encirclements around (-1 + j0) of the Nyquist plot of ZsYl is 

equal to the number of RHP poles of ZsYl. The gain margin of the ‘stable’ case of the Nyquist 

contour represents the number of the identical load that could be connected in parallel to the source 

without causing instability.    

 The Nyquist stability criterion guarantees that the output of the system is stable. However, 

it does not ensure all states in the system to be stable. By the definition of BIBS stability, it can be 

shown that a system is BIBS stable if all the eigenvalues of the system matrix A are in the LHP 

and, if there is an eigenvalue on the imaginary axis, it may not be repeated and it has to be 

uncontrollable [57]. It can also be shown that the eigenvalues of A are the poles of h(s) from (4.4) 

if the system realization {A, B, C, D} is controllable and observable (i.e., minimal [58]); in this 

case, the Nyquist stability ensures that the system is BIBS stable. 

4.2 Generalized Nyquist Criterion and Its Application 

4.2.1 Introduction 

 In the 1970s, MacFarlane and Postlethwaite [59] extended the stability theory of Nyquist 

to a generalized Nyquist stability criterion which addresses matrix transfer functions for multiple-

input multiple-output (MIMO) systems. The generalized Nyquist Theorem may be stated as the 

follows with the illustration of Figure 4.2. The full mathematical proof of the generalized Nyquist 

criterion is given in [59] and a short derivation is provided in [42]. 

Theorem[59]: Let the MIMO system in Figure 4.2 have no open-loop uncontrollable or 

unobservable modes whose corresponding characteristic frequencies lie in the right-half plane. 

Then this system will be closed-loop stable if and only if the sum of counter-clockwise 

encirclements around the critical point (-1 + j0) by the set of characteristic contours of the return 

ratio L(s) = G(s)K(s) is equal to the total number is right-half plane poles of G(s) and K(s). 

 

 

Figure 4.2 MIMO system  
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 The characteristic contours are the Nyquist contour responses of the eigenvalues (which 

are also s-domain functions) of the return ratio L(s). The Nyquist contour starts from (0 + j0) on 

the complex plane, moves up to (0 + j∞), followsa semicircle in the clockwise direction to (0 - j∞), 

and finally moves up back to (0 + j0). Substituting the complex number s for every point in this 

contour to the return ratio L(s) yields n eigenvalues, where n is the size of output vector y; each 

eigenvalue following the Nyquist contour generates a characteristic contour, and there are n 

characteristic contours.  

4.2.2 Implementation of the generalized Nyquist criterion 

 In this research, for the single-phase series ac system, the entire circuit including the source, 

the fixtures and transmission line components can be considered as a lumped system similar to a 

DC system, but in terms of qd variables. Namely, the system consists of a current source nominal 

current iqdsN, a source admittance Yqds, a load with Thevenin voltage vqdlT and load impedance Zqdl 

as shown in Figure 4.3. Based on the average-value qd model developed in Chapter 3, iqdsN and 

vqdlT are vectors with q- and d- variables, and Yqds and Zqdl are two-by-two matrices of s-domain 

transfer functions. The source transfer function can be expressed as 

  
1

0

qdac

qdac qdsN qds qdac qds qds qds qds

qd

s
             

v
i i Y v C I A B D

i
  (4.4) 

where Aqds, Bqds, and Cqds are the source state space realization which can be obtained from (3.49), 

(3.50) and (3.51), and Dqds = 0. The constant iqd0 is the desired ac current with iqd0 = [iacq
*  iacd

*]T. 

The source admittance matrix Yqds is the left-most two-by-two submatrix of the negative source 

transfer function -Cqds(sI - Aqds)
-1Bqds.  

 

Figure 4.3 Lumped system circuit 
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Similarly, the fixture transfer function can be written as 

  
1

0

qdac

qdac qdlT qdl qdac qdf qdf qdf qdf

qd

s
             

i
v v Z i C I A B D

v
  (4.5) 

where Aqdf, Bqdf, Cqdf, and Dqdf can be obtained by linearizing the state space transient functions 

(3.71-3.78), which will be discussed in next subsection. The operating point vqd0 includes the 

nominal values of the DC part, and in particular vqd0 = [iLld
* vCld0 y0 vld0]

T. The load impedance 

matrix Zqdl can be found as the left-most two-by-two submatrix of the fixture transfer function 

Cqdf(sI - Aqdf)
-1Bqdf + Dqdf.  

 Combining (4.4) and (4.5) yields the system transfer function similar to (4.1) as  

 
1

qdac qds qdl qdsN qds qdlT



        i I Y Z i Y v   (4.6) 

Applying the generalized Nyquist criterion to the system, the following statement can be 

concluded:  

 Let the MIMO system in Figure 4.4 have no open-loop uncontrollable or unobservable 

modes whose corresponding characteristic frequencies lie in the right-half plane. Then this system 

will be closed-loop stable if and only if the sum of counter-clockwise encirclements around the 

critical point (-1 + j0) by the set of characteristic contours of the return ratio Lqd(s) = -YqdsZqdl is 

equal to the total number is right-half plane poles of Yqds and Zqdl.  

 

 

Figure 4.4 MIMO equivalent system of the single-phase ac system 

  

 From a practical prospective, both the source and the load fixtures are designed to be stable: 

the source is designed to output a constant amplitude sinusoidal current, when supplying a fixed 

sinusoidal voltage load; the fixture is designed to be BIBS stable when supplied by an ideal 

constant current source. Therefore, neither Yqds nor Zqdl introduces any RHP poles. The 

characteristic contours are the contours of the eigenvalues of Lqd (s) for s along the Nyquist path. 

Therefore, the stability criterion of the single-phase AC system becomes: 
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 The system shown in Figure 4.4 is closed-loop stable if and only if the contours of 

eigenvalues of Lqd(s) = -YqdsZqdl going through the Nyquist path do not encircle the critical point 

(-1 + j0).  

 For the system consisted of one source and identical load fixtures with the load impedance 

Zqdl, the gain margin of the characteristic contours of Lqd(s) = -YqdsZqdl predicts the maximum Nf 

for maintaining system stability. In particular, the system with Nf  identical load fixtures is stable 

if and only if the contours of eigenvalues of -Nf YqdsZqdl  going through the Nyquist path do not 

encircle the critical point (-1 + j0).  

4.3 Stability Analysis Using The Average-Value Qd Models 

 Based on (4.4) and (4.5), in order to develop a system stability criteria for the single-phase 

series ac system, the source state space realization {Aqds, Bqds, Cqds, Dqds} and the linearized fixture 

realization {Aqdf, Bqdf, Cqdf, Dqdf} are needed. The system model is modified as shown in Figure 

4.5. As can be seen the transmission line inductance and resistance have been added to the source 

and fictitious resistance ri has been introduced across the primary winding of the fixture isolation 

transformer. Thus, the source model becomes voltage-in current-out and the fixture model 

becomes current-in voltage-out. As the resistance value of ri is very large, these modifications have 

almost no impact on the system performance.  

 

Figure 4.5 Modified system model for stability analysis 

 To use this new system structure to derive the system frequency-domain model, the 

average-value qd state space model of the source in (3.45), (3.46) and (3.49) should be modified. 

The new single-phase state vector (not qd) is set to 

 1 2 3[ ]T

ss ac s s c c ci v i x x xx   (4.7) 

and the input becomes uss = [vac iac
*]T. Accordingly, the single-phase state space realization can be 
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shown as  
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Converting Ass and Bss to the average-value qd form and rearranging the order of inputs and outputs 

yields 
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1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0
qds

 
  
 

C  (4.12) 

 qds D 0   (4.13) 

The source admittance Yqds can therefore be found as the left-most two-by-two submatrix of -

Cqds[sI - Aqds]
-1Bqds.  

 Now consider the nonlinear fixture model as introduced in subsection 3.3. To linearize a 

nonlinear ODE in the average-value qd models, the first-order Taylor expansion  
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can be used. The linearized ODE (3.65) can be expressed as 
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where  

   *

i p Lld Lldy k I k i i    (4.16) 

In (4.15), y0, iLsq0, and iLsd0 are operational points of y, iLsq and iLsd, respectively. Similarly, the 

linearized LED voltage can be expressed be approximated by  

  * *

0 0ld LED LED LED LED LED Lld Lld ld LED LED Lld LED LED Lldv d v d v r i i v d r i d r i       
    (4.17) 

where vLED0 is the operating point of the LED voltage. The nominal load voltage is noted as vld0 (= 

dLEDvLED0), which is regarded as an input variable. The incremental resistance rLED can be found to 

be the slope of the V-I curve as shown in Figure 2.12 at this operating point. Therefore, (3.64) can 

be linearized as  
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Moreover, (3.77) and (3.78) can be linearized as  
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Considering the modified system model in Figure 4.5, the voltage across each fixture can be 

obtained by 

 ( )p i ac pv r i i    (4.21) 

Combining the above equations, the linearized state space model of the fixture becomes 

 
' '

T

qdf pq pd sq sd sq sd Lsq Lsd Cld Lldi i i i v v i i v i I   x   (4.22) 

 
*

0 0 0

T

qdf acq acd Lld Cld ldi i i v y v   u   (4.23) 
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qdf

i
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r

 
  
 

D   (4.27) 

where D = (Lm + Llp)(Lm + Lls’) - Lm2. The load small-signal impedance matrix can be found as the 

left-most two-by-two sub matrix of Cqdf[sI - Aqdf]
-1Bqdf + Dqdf.  

 At this point the work necessary to carry out stability analysis is complete. To verify the 

prediction of system stability using this technique, the two sets of system parameters in Table 2.3 

and 2.4 are implemented (the number of fixtures Nf = 50 is also incorporated). There are two 

contours of eigenvalues as labeled. The Nyquist plots of two LED duty cycles (0 and 100%) in 

Case 1 are shown in Figure 4.6. The Nyquist plots of two LED duty cycles (0 and 50%) in Case 2 

are shown in Figure 4.7. It can be shown that all the transfer functions of the source and the fixture 

models used in these case studies have no ORHP poles, so that the encirclements of the critical 

point should be zero. It can be seen that this method predicts a system instability in Case 2 for 50% 

LED duty cycle, due to an encirclement of the critical point. To further verify if the prediction of 



77 

 

 

this method agrees with the time-domain simulation, two more situations in Case 2 conditions are 

tested around the boundary that a contour crosses the critical point. It is expected to see that a 

contour that barely encircles the critical point corresponds to a barely unstable case, and a contour 

that barely not encircles the critical point corresponds to a barely stable case. 

  

 

 

Figure 4.6 Nyquist plots of Case 1 
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Figure 4.7 Nyquist plots of Case 2 

 

 Figure 4.8 shows a barely unstable situation for 13.5% LED duty cycle, from which an 

increasing oscillation can be seen in the WLM iLld waveform in time-domain. This oscillating 

component can also be seen in waveforms of other variables. Meanwhile, Figure 4.9 shows a barely 

stable case for 12% LED duty cycle for both the Nyquist plot and the WLM simulation. From 

these studies around the stability boundary, it can be concluded that the stability prediction made 

by Nyquist method agrees with the time-domain simulation for this case study. 
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Figure 4.8 Barely unstable situation 
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Figure 4.9  Barely stable situation 
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 The gain margin of the Nyquist plot of a system with one load fixture can be utilized to 

predict the maximum number of fixtures to be safely driven. To show this, the parameter of Case 

2 is used and the Nyquist plot with Nf = 1 is shown in Figure 4.10. The final LED duty cycle is 

40%. As can be observed from the enlarged plot closer to the crossover between the contours and 

x-axis, the gain margin of the single-load system is around 39.3, so that the maximum number of 

load fixtures is 39. Figure 4.11 shows the time-domain waveforms of 38, 39, 40, and 41 load 

numbers by simulating WLM. It can be seen that the system goes through the border between 

stability and instability as the load number increase from 38 to 41.  

 

 

Figure 4.10 Nyquist plot of Case 2, Nf  = 1
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Figure 4.11 Time-domain waveforms for 38, 39, 40, and 41 load numbers 
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5. IMPEDANCE MEASUREMENT 

 As stated in Section 4.2, a property of the frequency-domain stability analysis is that the 

gain margin predicts the maximum number of load fixtures that can be stably driven. However, 

the method developed in Chapter 4 is based on the average-value qd model of the system, which 

requires detailed knowledge of the system components. An advantage of the Nyquist stability 

analysis is that the impedance of a system component can be physically measured, so there would 

be no need for the detailed knowledge of what is inside of the load or source “black box.” To show 

this, the theoretic basis of small-signal q-q, q-d, d-q, d-d impedance characterization of a system 

component (either load fixture or source) based on measurement is introduced in this chapter.  

 Previously, [54] and [60] developed impedance measurement methods in DC and three-

phase AC systems, respectively; [61] proposed a single-phase impedance measurement method, 

which utilizes the Hilbert transformation to produce an artificial b-phase system for qd 

transformations. It employs the FFT (fast Fourier transformation) to extract phasor information 

from the transformed qd signals. Based on these previous works, a simplified small-signal qd 

impedance measurement approach with direct phasor extraction is developed herein. In particular, 

Section 5.1 introduces the methodologies of small-signal injection, phasor extraction of a certain 

frequency component, and impedance (or admittance) calculation. Section 5.2 presents 

simulations of the qd impedance and admittance measurement on the load fixture and the current 

source, respectively, using the waveform-level models developed in Chapter 2. Although, the 

simulation results are not in perfect agreement with the analytic results from AVQDM (average-

value qd model), the gain margins estimates agree. Section 5.3 demonstrates the hardware 

validation of the proposed method using an experimented load fixture.  

5.1 Principles of Impedance/Admittance Measurement 

5.1.1 Definition of small-signal injection and response 

 From previous chapters, all qd currents, voltages, and flux linkages should be constant in 

the steady-state. Therefore, the qd current can be expressed as the sum of the DC component and 

a small-signal variation as 

    0qd qd qdt t i i i   (5.1) 



84 

 

 

where iqd0 is the DC operating point of the qd current, and Δiqd is the small-signal variation. 

Similarly, the qd voltage can be expressed as 

    0qd qd qdt t v v v   (5.2) 

where vqd0 is the DC operating point of the qd voltage corresponding to iqd0, and Δvqd is the voltage 

variation due to Δiqd. For the load fixture, the relationship between the voltage and current 

variations can be described by the incremental (or small-signal) impedance matrix as 

 qq qd
qd qdqd qdl

dq dd

Z Z

Z Z

 
     

 
v Z i i   (5.3) 

Similarly, for the source, the relationship between the current and voltage variations can be 

described by the incremental admittance matrix as  

 qq qd
qd qd qdqds

dq dd

Y Y

Y Y

 
     

 
i Y v v   (5.4) 

Both (5.3) and (5.4) contains four s-domain transfer functions corresponding to the small-signal 

q-q, q-d, d-q, and d-d dependences. In Chapter 4, these components were derived through average-

value modeling. The outcome of impedance/admittance measurement is a set of frequency-domain 

evaluations of system component characteristics, which can be used for small-signal stability 

analysis. In particular, it was shown in Subsection 4.2.2 that the system return loop response with 

Nf number of load fixtures is 

   ( ) f qds qdls N L Y Z   (5.5) 

Therefore, the incremental impedance characterization using small-signal injection produces a 

means to perform stability assessment without detailed circuit knowledge.  

 To acquire the impedance matrix in (5.3) or the admittance matrix in (5.4) at a certain 

frequency, sinusoidal currents or voltages with small amplitudes can be used as “probes” to be 

injected to an operating load or source. For certain frequency ωi, if two different sets of current 

injections (phasors of Δiqd1 and Δiqd2) are made, while two sets of voltage responses (phasors of 

Δvqd1 and Δvqd2) are measured, the four unknowns, Zqq, Zqd, Zdq, and Zdd of Zqdl in (5.5) can be 

solved using   
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  (5.6)  

Here, the phasor representation of any variable f at frequency ωi is denoted 
i

f


 .  

 In order to solve (5.6), all the phasors associate with the two injections and responses are 

needed. To this end, first the qd-phase injections are chosen and used to determine the 

corresponding values on a-phase for either a simulation or an experiment. Note that the two sets 

of injections should be linearly independent, otherwise the current matrix in (5.6) becomes 

singular. The choice of injection is discussed in Subsection 5.1.2. Second, an algorithm is needed 

to extract the phasor information from a measured time-domain waveform; this is introduced in 

Subsection 5.1.3. Third, the expectations of measured waveforms are discussed to gather all 

components that contribute to qd phasors. Finally, in Subsection 5.1.5, a method to directly extract 

the desired information from the measured a-phase waveform to calculate qd phasors is illustrated.  

 Since positive and negative frequency components must be treated differently, this chapter 

assumes that, without loss of generality, only positive frequency components are present.  

5.1.2 Injection assignment 

 To begin, a set of qd current injections can be expressed as 

  
 

 

 
 

cos

cos

q i qq

qd

d d i d

I ti t
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     

i   (5.7) 

Similarly, the qd voltage response can be expressed as  

  
 

 

 
 

cos

cos

q i qq

qd

d d i d

V tv t
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v   (5.8) 

The phasor forms of these variables with respect to ωi as fundamental frequency, are  

 q qq

qd

d dd

Ii

Ii





   
     

   
i   (5.9) 
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v   (5.10) 

where Iq, Id, Vq, and Vd are magnitudes; and ϕq, ϕd, θq, and θd are phases, respectively. 

 Recall from previous chapters that the qd variables in time domain can be obtained by 

applying qd transformation 

      qd abt t tf K f   (5.11) 

where 

    
   
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K K   (5.12) 

Consequently, the a and b phase variables corresponding to (5.7) or (5.8) become 
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f   (5.13) 

where variable  f  can be either current or voltage.  

 For the first injection set, assign fq = fd = f1, ϕq = ϕd +π/2= ϕ1 within (5.13), which yields 
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f   (5.14) 

with the phasor form 

 1
1 1
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f   (5.15) 

If ωe  < ωi, a negative frequency appears in (5.14). To avoid this, (5.14) can be rewritten as  
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f   (5.16) 

for ωe  < ωi so that all frequencies become positive. Note that consequently, its phasor form has 

also been changed. On the other hand, if ωe  = ωi, there is no phasor definition for (5.14) or (5.16). 

Therefore, this special case should be avoided. Hence, equation (5.15) can be reformed as 
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For the second injection, set fq = fd = f2, ϕq = ϕd - π/2 = ϕ2 yielding 
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with phasor form 
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Note that the qd forms of the above two set of injections are 
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 Aside from ensuring the linear independence, the advantage of the above two injection sets 

are that they correspond to simple a-phase and b-phase waveforms, and the b-phase waveform is 

(either positive or negative) 90 degrees apart from the a-phase one. Therefore, only simulation or 

experiment of a-phase is needed, which fills the demand of characterization of a single-phase ac 

system. 

5.1.3 Phasor extraction from time-domain waveform 

 Because of the noise present in both physical circuits and measurements, a phasor 

extraction algorithm is needed to convert a measured time-domain signal to its phasor form. This 

algorithm is expected to remove any frequency component except the desired one at ωi. In [61], 

this is accomplished with FFT (fast Fourier transform). With increasing numbers of sampling 

points of a waveform and sampling frequencies, the computing complexity of FFT increases. To 

avoid this, we may extract the phasor based on only one frequency, thus the FFT (or DFT) becomes 

a single Fourier series. The derivation below provides a simple illustration of the phasor extraction 
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using Fourier series in a continuous-time perspective.    

 Recall that every periodic time-domain signal can be expressed by a sum of sinusoidal 

signals as 

     0

1

cosn n n

n

x t a t a 




     (5.22) 

By definition, the ωn component of this signal has a phasor form an∠ϕn. It can be shown that    
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     (5.24) 

where T = 2π/ωn, and k is an integer larger than 1. Therefore, the phasor at frequency ωn of a given 

periodic signal x(t) can be extracted using 
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4
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n

t

x t x t dt
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


     (5.26) 

where T = 2π/ωn. To ensure accuracy, it is desired that k is a large integer to reduce errors from 

those disturbances whose frequency is not a multiple of T.  

 In practice, it is important that (5.25) and (5.26) are carried out with respect to the same 

time reference for the injected current and the voltage response within one set. From (5.6), the time 

references between the two sets are irrelevant, i.e., the two sets of current injections and voltage 

responses do not have to be measured or processed with the same time reference.  

5.1.4 Time-domain considerations 

 Recall the topology of the load fixture as shown in Figure 5.1. Herein, to measure the load 

impedance, small signal current is injected to ip and the voltage responses in vp is measured. The 

load voltage on the H-bridge rectifier can be expressed as  

 r CldHv d v   (5.27) 

The AC duty cycle dH is a sinusoidal signal controlled by the inductor current iLs with 
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,

ˆ
H Ls

Ls base

y
d i

i
   (5.28) 

where y is the DC control output, and iL,base is a constant. Therefore, ideally vr (switching averaged) 

is a sinusoidal voltage.  

 

Figure 5.1 Load Fixture topology   

 

 Next, the rectified current can be expressed by 

 
2

,

ˆ
Ls Lsr H

Ls base

y
i d i i

i
    (5.29) 

where ˆ
Lsi  retains both the fundamental frequency component (at ωe) and the small-signal injection 

component (at |ωe - ωi| or ωe + ωi). 

 Suppose that the first injection (5.14) is carried out in ip. This component will then be 

passed to iLs. Because of the square of iLs in (5.29), the rectified current will then incorporate all 

frequency components at the linear combinations of ωe - ωi and ωe. These frequencies includes ωi. 

Thus, an ωi component will appear in vCld. Then, from (5.27) and (5.28), vr will incorporate all 

frequency components at the linear combinations of ωi and ωe, and others. Therefore, an ωe + ωi 

components will appear in vr, and then passed back to vp. Figure 5.2 illustrate these time-domain 

waveforms and the corresponding spectrum amplitude (extracted using FFT), where ωi = 2π∙40 

Hz and ωe - ωi = 2π∙20 Hz perturbation is injected to a-phase. As can be seen in the spectrums, a 

small ωe + ωi = 2π∙100 Hz component appears in vr and vp.  
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Figure 5.2 Load waveforms with ωi = 2π∙40 Hz, first set (5.14).  

 

 On the other hand, suppose that the second injection (5.18) is carried out. This component 

will then be passed to iLs. Because of the square of iLs in (5.29), the rectified current will then 

incorporate all frequency components at the linear combinations of ωi + ωe and ωe. These include 

many frequencies including ωi. Thus, an ωi component will appear in vCld. Then, from (5.27) and 

(5.28), vr will incorporate all frequency components at the linear combinations of ωi and ωe, and 

others. Therefore, an |ωe - ωi| components will appear in the voltage responses in vr, and then 

passed back to vp. Figure 5.3 illustrate this situation where ωi = 2π∙40 Hz and ωe + ωi = 2π∙100 Hz 

perturbation is injected to the a-phase. As can be seen from the spectrums, a small ωe - ωi = 2π∙20 

Hz component appears in vr and vp.  

 In summary, it is expected in a nonlinear system, both the |ωi - ωe| and ωe + ωi components 

exist, no matter which frequency of the two is injected to the current. Meanwhile, (5.20) and (5.21)  
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shows that these two components both contribute to the qd phasors. Therefore, both the two 

components must be considered for both injections. 

 

 

Figure 5.3 Load waveforms with ωi = 2π∙40 Hz, second set (5.18). 

5.1.5 Single-phase qd impedance measurement algorithm 

 Consider any set of qd current injections in the form (5.7). Its phasor form (5.9) can be 

regarded as arbitrary linear combination of the two linearly independent injections (5.20) and 

(5.21). From (5.13) and use trigonometric identities,  

 
     

     

2 cos cos

sin sin ]

a q e i q q e i q

d e i d d e i d

f f t f t

f t f t

     

     

      

     
   (5.30) 

From the phasor perspective, assuming ωe > ωi, suppose from measurement we have 

  
1

2e i
a q q d d m mf f jf a jb
 

 


         (5.31) 
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  
1

2e i
a q q d d m mf f jf c jd
 

 


         (5.32) 

We may also assume  

 
i

q q qf f a jb


       (5.33) 

 
i

d d df f c jd


       (5.34) 

Substituting (5.33) and (5.34) into (5.31) yields 

  
1

2
m ma jb jc d a jb       (5.35) 

Substituting (5.33) and (5.34) into (5.32) yields 

  
1

2
m ma jb jc d c jd       (5.36) 

Combining (5.35) and (5.36), and after some algebra,  

 

1 0 1 0

0 1 0 1

0 1 0 1

1 0 1 0
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m

m

m
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bb
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dd

    
    


    
     
    

     

  (5.37) 

Substituting (5.37) back into (5.33) and (5.34) yields  

 
*

i e i e i
q m m m m a af a jb c jd j f f
     

          (5.38) 

 
*

i e i e i
d m m m m a af ja b jc d j f j f
     

           (5.39) 

 Similarly, when ωe < ωi, (5.30) can be rewrite as 

 
     

     

2 cos cos

sin sin ]

a q i e q q e i q

d i e d d e i d

f f t f t

f t f t

     

     

      

     
  (5.40) 

In this case, suppose from measurement we have 

  
1

2i e
a q q d d m mf f jf a jb
 

 


         (5.41) 

  
1

2e i
a q q d d m mf f jf c jd
 

 


         (5.42) 
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Substituting (5.41) and (5.42) into (5.33) yields 

  
1

2
m ma jb jc d a jb       (5.43) 

Substituting (5.41) and (5.42) into (5.34) yields 

  
1

2
m ma jb jc d c jd       (5.44) 

Combining (5.43) and (5.44) and manipulating  
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m
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    
    
    
    
    

     

  (5.45) 

Substituting (5.45) back into (5.33) and (5.34) yields  

 
i i e e i

q m m m m a af a jb c jd f f
     

         (5.46) 

 
i i e e i

d m m m m a af ja b jc d j f j f
     

           (5.47) 

 By observation of the phasor relationship between (5.17) and (5.20), the qd phasor of the 

first injection set can be directly obtained from its a-phase phasor using  
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,
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 
       



f   (5.48)  

where the star sign represents complex conjugate. Similarly, by observing the relationship between 

(5.19) and (5.21),  

 
2

2
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
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 
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f   (5.49) 

Since not only the components at the injected frequency |ωe - ωi| (ωe + ωi) contributes to the qd 

phasors, but also another one with different frequency ωe + ωi (|ωe - ωi|), (5.48) and (5.49) should 
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be added together for both the first and the second set of injections. The word ‘add’ here means 

the numeric sum of complex numbers, while the phasors are extracted independently based on 

different frequencies. Hence,  
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f   (5.50)  
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f   (5.51) 

Which is identical to the results (5.38), (5.39), (5.46), and (5.47). Therefore, for the introduced two 

injection phasors (5.20) and (5.21) can be regarded as a set of basis vectors, and any two linearly 

independent vectors within the space based on this basis set can be utilized for injections.    

 In summary, the qd transformation and Hilbert transformation used in [61] can be 

eliminated from the overall process, so that the computational expense is greatly reduced. Also, 

the measurement for operating point waveform (at 60 Hz) in [61] is no longer needed. The process 

of this simplified single-phase qd impedance measurement can be summarized in Table 5.1. 
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Table 5.1 Qd impedance measurement procedure 

Step Operation 

1 Inject current variations Δia1 at |ωe - ωi| 

2 Measure ia1(t)  and va1(t) 

3 Extract phasors of ia1(t)  and va1(t) at |ωe - ωi| and ωe + ωi 

4 Calculate the phasors of Δiqd1 and Δvqd1 using (5.50) 

5 Repeat Step 1 to 4 for Δia2 at ωe + ωi 

6 Use (5.6) to solve impedance values Zqq, Zqd, Zdq, Zdd at ωi. 

7 Repeat Step 1 to 6 for next ωi 

5.2 Numerical Validation Study 

 To test the single-phase impedance/admittance measurement method introduced in Section 

5.1, a simulation is presented in this section. The waveform-level model of the single-phase load 

fixture is used to mimic the real equipment. The input operating points are obtained from the 

simulation results from previous chapters. The overall input current is assumed to be a sum of the 

operational point values and the small-signal variation injections. The current variation amplitude 

of the load fixture is 0.05 A, and the voltage variation amplitude of the source is 0.5 V. The output 

level (duty cycle of LED) is 50%. Parameters in Table 2.1 (for source) and Table 2.2 (for load 

fixture) are utilized for both qd average-value modeling and measurement simulations. The 

simulation uses the ode4 (Runge-Kutta) solver and the simulation time step is 1 μs, which is 

relatively large (compared to the 0.5 μs time step used in Chapter 2) but increases speed. In the 

following studies for both the load fixture and the source, 50 integer frequencies are tested. The 

phasor extraction uses the time interval from 3s to 4s after the simulation starts.  

 Figure 5.4 represents the comparison between the fixture impedance measurement 

simulation and the modeled impedance from the linearized fixture model in Subsection 4.2.2. It 

can be seen that the two set of results are very close except for around 120 Hz (754 rad/s). This is 

caused by the approximation taken in the qd average-value modeling in Chapter 3, where the 
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voltage across Cld is assumed to be constant state variable in steady state, so that the rectifier input 

voltage vr is ideally sinusoidal; however, as discussed in Subsection 5.1.3, vr can include multiple 

frequency components that influence qd variables. This verifies the effectiveness of the simplified 

measurement procedure proposed in Subsection 5.1.4.  

 Figure 5.5 provides a verification of the source admittance measurement, which is carried 

out with identical procedures with impedance measurement except for the interchange of voltages 

and currents. It can be seen that the simulation of the measurement results agree with the average-

value model results very well.   

 

Figure 5.4 Comparison between impedance measurement and modeling 

 

 To verify the Nyquist stability analysis based on the measurement, Zqdl and Yqds, Figure 

5.6 provides the comparison between the plots of the eigenvalues of YqdsZqdl from 30 to 180 Hz, 

using the system parameters from Table 2.3 and Table 2.4, and the output duty cycle is 50%. These 
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contours are a part of the Nyquist plot shown in Figure 4.7 (dLED = 0.5 case). There is a symmetric 

contour of the plotted one which represents the eigenvalues of YqdsZqdl from -30 to -180 Hz, which 

is not shown here. Also, from Figure 4.7, this part incorporate the critical point where left-most 

crossover of the x-axis, and it is used to found gain margin. As can be seen from the enlarged 

contours in the right part of Figure 5.6, the eigenvalue contours are different but the gain margins 

are close. The gain margin obtained analytically from AVQDM is around 39.3, while from 

simulated impedance/admittance measurement it is around 40. Therefore, their predictions on the 

maximum number of load fixtures to be stably driven are close.  

 

Figure 5.5 Comparison between admittance measurement and modeling  
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Figure 5.6 Nyquist plot comparison  

 In conclusion, the simulation validates the proposed procedure for the single-phase small-

signal impedance/admittance measurement. Compared to the waveform-level and average-value 

modeling method for stability analysis, which is design-oriented, the impedance measurement 

approach is more useful in stability analysis incorporating an existing hardware. In next Section, 

an experiment to demonstrate the qd impedance measurement is introduced.  

5.3 Hardware Validation 

5.3.1 Model modification 

 The implementation of the considered topology is driven by functionality, cost, size, 

efficiency, heat dispassion, etc. Amplitude-shift or frequency-shift keying technologies may be 

utilized to control every load fixture. Multiple DC regulators are required to power different circuit 

aspects. These cause the actual design of lighting fixture to be complex.  

  To realize the proposed fixture shown Figure 5.1 with limited cost, the modified circuit 

and control diagram shown in Figure 5.7 and 5.8, respectively, are used. In this design, only the 

basic functionality is realized. The details of the circuit design and realization of control with 

operational amplifiers are discussed in Appendix I. The characterization of the isolation 

transformer and the inductors are presented in Appendix II. It can be seen from Figure 5.7 that 

compared to the topology of Figure 5.1, the parallel switch of the load LED is removed for control 

simplicity, and two Zener diodes are added for LED overload protection.  



99 

 

 

 

Figure 5.7 Modified fixture topology  

 

 

Figure 5.8 Modified control diagram 

 

 Additional filters are added to this control diagram. To filter the low-frequency ripple 

(especially the 120 Hz ripple due to rectifier) from iLld going into the control, a load current filter 

is added with cut-off frequency load (in radians per second). For the load current filter, a simple 

state variable assignment is to include both proportional and integrational paths of the PI control 

with 

      *1

1
i p Lld Lld

load

y s k I k i i s
s

   
 

  (5.52) 

where y is the output of the filtered PI control as shown in Figure 5.8, and I is the integrator value. 

Transforming (5.38) to time-domain yields 

  * 1pi
Lld Lld

load load load

kk
py I i i y

  
      (5.53) 
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The purpose of this low-pass filter is to reduce low-frequency noises (especially the 120 Hz noise 

caused by the rectifier).  

 For the lower part of Figure 5.8, a high-pass filter (with critical frequency 1/h in radians 

per second) is added, so it forms a band-pass filter with the original low-pass filter (with critical 

frequency 1/l in radians per second). The pass band of this filter is then from 1/h to 1/l , and 

should be around the synchronous frequency, so that ripple and noise in the sensed iLs will be 

attenuated in the control. From these transfer functions 

    
1

h
Lsf Ls

h

s
i s i s

s







  (5.54) 

    
1

1
Lsff Lsf

l

i s i s
s




  (5.55) 

two state variables (iLsf and iLsff) are needed to demonstrate the time-domain behavior of this band-

pass filter with 
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pi i i
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    (5.57) 

Since (5.42) and (5.43) are linear ODEs, their corresponding qd variable dynamics are similar to 

(3.75) and (3.76) and are governed by  
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Therefore, instead of (4.22), the state vector of the fixture becomes 

 
' '
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x
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The corresponding state transient matrix, instead of (4.24), can be modified as 
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  (5.63) 

 The modification of B, C, and D matrices of this fixture are only adjusting dimensions with 

zeros. This modified qd average-value mode is used in next Subsection for hardware validation. 



102 

 

 

5.3.2 Experiment results 

 Figure 5.9 shows the lab setup for the impedance measurement. The LED fixture board is 

powered by a programmable current source, California Instruments 4500CS. The measurement on 

both current and voltage is taken at the primary winding of the transformer, and is shown and 

recorded using an oscilloscope. For validation, 20 frequencies from 180 Hz to 1320 Hz, which are 

multiples of 60 Hz, are selected for injection frequency ωi. In this way, all sets of data except 180 

Hz and 1320 Hz ones can be used twice, since it can be equal to ωi - ωe when carrying the first set 

as (5.21), or ωe + ωi for second set (5.23). In data acquisition, every set of measured voltage and 

current are stored as a vector with 100100 elements representing waveforms over 0.1 s. The 

parameters utilized in both the experiment and the simulation are shown in Table 5.2.  

 The measurement results and their comparison with the qd average-value modeling and the 

simulation of waveform-level model are shown in Figure 5.10 and Table 5.3. It can be seen that 

the overall error between the three methods are small. The error factors include capacitor ESRs 

(Equivalent series resistance), semiconductor loss, transformer hysteresis loss, noise, and probe 

errors. Also, the closer to the synchronous frequency (60 Hz), the more systematic error will occur 

in data processing as the number of periods used in computation goes down.  
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Figure 5.9 Experiment environment  
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Table 5.2 Fixture parameters 

Component Value 

Turns ratio (Np/Ns)  1.02 

Primary winding resistance (rp) 0.108  

Secondary winding resistance (rs) 0.107  

Transformer coefficient α 0.252 

Transformer coefficient β 3.9087 

Transformer coefficient L0 1.5 mH 

Primary leakage inductance (Llp) 0.156 mH 

Secondary leakage inductance (Lls) 0.15 mH 

Input filter capacitance (Cs) 206 μF  

Input filter inductance (Ls) 1.058 mH 

Input filter inductor resistance (rLs) 0.255   

Output filter capacitance (Cld) 47 mF 

Output filter inductance (Lld) 1.5 mH 

Output filter inductor resistance (rLld) 0.49   

Proportional gain (kp) 0.19 

 Integrational gain (ki) 0.763 

Low-pass filter time constant (l ) 3.3 ms 

 
High-pass filter time constant (h ) 22 ms 

Load current filter (load) 0.275 s 

Desired load current (iLld
*) 0.8 A 

LED parameter (i0)  4.6E-20 A 

LED parameter (v0)  15.25 V 

H-bridge switching frequency (fsw) 30 kHz 
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Figure 5.10 Hardware experimental result   
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Table 5.3 Impedance value by three methods 

Ω 

 

 
Hz 

Zqq Zqd Zdq Zdd 

A* S* M* A S M A S M A S M 

180 
1.52 - 

j0.845 

0.765 + 

j0.910 

1.44 - 

j0.531 

0.371 + 

j0.170 

0.353 - 

j0.711 

0.056+ 

j0.0951 

-0.371 - 

j0.171 

-0.338+ 

j0.745 

-0.710 - 

j0.316 

1.51 - 

j0.854 

0.802 + 

j0.933 

1.65 - 

j1.200 

240 
1.83 - 
j1.27 

1.66 + 
j1.37 

1.75 - 
j1.074 

0.483 + 
j0.377 

0.556 - 
j0.412 

0.858 + 
j0.359 

-0.482 - 
j0.377 

-0.542+ 
j0.402 

-0.458 - 
j0.791 

1.83 - 
j1.28 

1.68 + 
j1.35 

2.13 - 
j0.687 

300 
2.61 - 
j1.73 

2.54 + 
j1.85 

2.97 - 
j1.487 

0.508 + 
j0.928 

0.584 - 
j1.05 

-0.0279 
+ j1.23 

-0.507 - 
j0.928 

-0.597 
+ j1.03 

-0.212 - 
j1.30 

2.62 - 
j1.73 

2.56 + 
j1.86 

2.68 - 
j1.10 

360 
4.19 - 

j1.17 

4.30 + 

j1.11 

3.87 - 

j0.470 

-0.597+ 

j1.980 

-0.851 - 

j2.23 

-0.960 

+ j1.46 

0.597 - 

j1.98 

0.825 + 

j2.23 

1.01 - 

j1.37 

4.20 - 

j1.17 

4.32 + 

j1.04 

4.00 - 

j0.635 

420 
3.84 + 

j0.479 

3.65 - 

j0.5130 

3.44 + 

j0.631 

-2.73 + 

j0.291 

-2.95 - 

j0.0399 

-1.92 - 

j0.424 

2.73 - 

j0.291 

2.96 + 

j0.079 

2.02 + 

j0.30 

3.84 + 

j0.490 

3.65 - 

j0.504 

4.00 + 

j0.554 

480 
3.92 + 

j0.988 

3.96 - 

j1.10 

3.43 + 

j1.304 

-1.56 - 

j2.280 

-1.36 + 

j2.59 

-0.885 - 

j1.90 

1.56 + 

j2.28 

1.35 - 

j2.53 

0.872 + 

j1.92 

3.92 + 

j0.992 

3.98 - 

j1.14 

3.43 + 

j1.32 

540 
2.51 + 

j2.40 

2.24 - 

j2.49 

2.14 + 

j2.055 

0.829 - 

j1.620 

0.976 + 

j1.48 

0.463 - 

j1.22 

-0.829 

+ j1.62 

-0.983 - 

j1.48 

-0.685 

+ j1.28 

2.51 + 

j2.40 

2.22 - 

j2.48 

2.08 + 

j1.92 

600 
1.13 + 
j1.73 

0.988 - 
j1.68 

0.977+ 
j1.567 

0.821 - 
j0.505 

0.801 + 
j0.425 

0.600 - 
j0.533 

-0.821+ 
j0.505 

-0.808 - 
j0.46 

-0.634+ 
j0.548 

1.13 + 
j1.73 

0.945 - 
j1.65 

0.974 + 
j1.58 

660 
0.699 + 

j1.00 
0.587 - 
j0.96 

0.67 + 
j0.960 

0.568 - 
j0.183 

0.548 + 
j0.163 

0.438 - 
j0.193 

-0.568+ 
j0.183 

-0.555 - 
j0.165 

-0.440+ 
j0.198 

0.699 + 
j1.00 

0.583 - 
j0.948 

0.653 + 
j0.991 

720 
0.543 + 

j0.491 

0.452 - 

j0.46 

0.46 + 

j0.563 

0.417 - 

j0.0808 

0.403 + 

j0.0794 

0.385 + 

j0.0228 

-0.417+ 

j0.0808 

-0.405 - 

j0.0727 

-0.381 - 

j0.0318 

0.543 + 

j0.491 

0.444 - 

j0.454 

0.465 + 

j0.587 

780 
0.474 + 

j0.106 

0.384 - 

j0.0784 

0.466 + 

j0.230 

0.330 - 

j0.0411 

0.319 + 

j0.0422 

0.268 + 

j0.0022 

-0.330+ 

j0.0411 

-0.321 - 

j0.0327 

-0.329 

j0.0485 

0.474 + 

j0.106 

0.383 - 

j0.086 

0.517 + 

j0.247 

840 
0.438- 

j0.203 

0.352 + 

j0.217 

0.523 - 

j0.051 

0.276 - 

j0.0232 

0.271 + 

j0.0213 

0.238 + 

j0.0320 

-0.276+ 

j0.0232 

-0.271 - 

j0.0199 

-0.245 - 

j0.0661 

0.438 - 

j0.203 

0.351 + 

j0.218 

0.555 - 

j0.047 

900 
0.418 - 

j0.465 

0.332 + 

j0.476 

0.551 - 

j0.282 

0.241 - 

j0.0141 

0.235 + 

j0.0130 

0.209 + 

j0.0441 

-0.241+ 

j0.0141 

-0.237 - 

j0.0166 

-0.217- 

j0.0836 

0.418 - 

j0.465 

0.331 + 

j0.473 

0.610 - 

j0.263 

960 
0.406 - 
j0.696 

0.320 + 
j0.700 

0.629 - 
j0.488 

0.217 - 
j0.0092 

0.212 + 
j0.0088 

0.184 + 
j0.0606 

-0.217+ 
j0.0092 

-0.213 - 
j0.0106 

-0.192 - 
j0.0508 

0.406 - 
j0.696 

0.322 + 
j0.702 

0.658 - 
j0.469 

1020 
0.398 - 
j0.905 

0.312 + 
j0.906 

0.693 - 
j0.652 

0.199 - 
j0.0062 

0.196 + 
j0.0042 

0.166 + 
j0.0571 

-0.199+ 
j0.0062 

-0.196 - 
j0.0040 

-0.170 - 
j0.0605 

0.398 - 
j0.905 

0.313 + 
j0.907 

0.714 - 
j0.655 

1080 
0.392 - 

j1.10 

0.309 + 

j1.10 

0.767 - 

j0.816 

0.186 - 

j0.0044 

0.183 + 

j0.0026 

0.141 + 

j0.0715 

-0.186+ 

j0.0044 

-0.183 - 

j0.0025 

-0.152 - 

j0.0733 

0.392 - 

j1.10 

0.308 + 

j1.10 

0.776 - 

j0.810 

1140 
0.388 - 

j1.28 

0.307 + 

j1.28 

0.841 - 

j0.955 

0.176 - 

j0.0032 

0.173 + 

j0.0024 

0.125 + 

j0.0796 

-0.176+ 

j0.0032 

-0.173 - 

j0.0016 

-0.134 - 

j0.0885 

0.388 - 

j1.28 

0.306 + 

j1.27 

0.851 - 

j0.947 

1200 
0.385 - 

j1.45 

0.305 + 

j1.45 

0.927 - 

j1.081 

0.168 - 

j0.0024 

0.165 + 

j0.0014 

0.115 + 

j0.0819 

-0.168+ 

j0.0024 

-0.165 - 

j0.0018 

-0.119 - 

j0.1060 

0.385 - 

j1.45 

0.304 + 

j1.44 

0.949 - 

j1.07 

1260 
0.383 - 

j1.62 

0.304 + 

j1.61 

1.01 - 

j1.191 

0.162 - 

j0.0019 

0.159 + 

j0.0011 

0.106 + 

j0.0844 

-0.162+ 

j0.0019 

-0.159 - 

j0.0012 

-0.110 - 

j0.111 

0.383 - 

j1.62 

0.303 + 

j1.61 

1.04 - 

j1.19 

1320 
0.381 - 

j1.78 

0.303 + 

j1.76 

1.10 - 

j1.303 

0.157 - 

j0.0015 

0.154 + 

j0.0006 

0.095+ 

j0.0786 

-0.157+ 

j0.0015 

-0.154 - 

j0.0001 

-0.109 - 

j0.0932 

0.381 - 

j1.78 

0.302 + 

j1.76 

1.14 - 

j1.29 

 

*Notes: A = Analytic method with average-value qd model, S = simulation with waveform-level 

model, M = Measurement
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6. SUMMARY AND FUTURE WORK 

 In summary, this dissertation establishes a modeling and stability analysis methodology for 

single-phase series AC power systems. Three approaches of modeling or characterization are 

proposed: the waveform-level modeling (WLM), the average-value qd modeling (AVQDM), and 

the impedance (or admittance) measurement. All these three approaches can be utilized in stability 

analysis, and their results have been demonstrated to be consistent.  

 The three approaches have their own advantages and drawbacks. The WLM modeling is 

accurate but computationally intensive. It is the most reliable for design validation. However, the 

WLM does not directly yield the load impedance and the source admittance for frequency-domain 

stability analysis. The AVQDM, compared to WLM, is computationally less demanding. Another 

advantage of the AVQDM is that it gives an analytic expression for load impedance or source 

admittance, which is convenient for frequency-domain stability analysis. Both the WLM and 

AVQDM is based on a known detailed design of load fixture and source. The impedance 

measurement methodology, however, is more useful with field applications when the detailed 

design is unknown. 

 There are a few topics that are related to or need further development based on the work 

presented in this dissertation. First, due to equipment limitations, the low-frequency part of the 

impedance measurement is difficult, and so improving the low-frequency accuracy is of interest. 

Second, the admittance measurement of the current source should be tested. Since the admittance 

magnitude is small in most frequency ranges (as shown in Figure 5.5), it might be a better solution 

to measure its impedance instead and calculate the inverse. Third, the transmission line model may 

have a better representation rather than lumped elements, especially when it is extremely long 

(with a significate potion of the wavelength for 60 Hz). Fourth, parameter variations can be 

considered to form a 3D load impedance space (in frequency, magnitude and phase) and be 

compared to the forbidden region generated by the source admittance. This will be different and 

more complex compared to the DC system case in [5], since here the impedance and admittance 

are two-by-two matrices instead of variables. 
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APPENDIX A. LED FIXTURE DESIGN EXAMPLE 

 This appendix is a supplement to Section 5.3. To implement the proposed notional topology, 

numerous factors must be considered, including functionality, cost, size, efficiency, heat 

dispassion, etc. Amplitude-shift or frequency-shift keying technologies may be utilized in practice, 

and additional demodulation function are needed for the control circuits subsequently. In addition, 

multiple DC regulators are required to power on different circuit aspects. These cause the actual 

design to be complex and expensive.  

 The proposed design aims to achieve the basic functionality with limited cost. An overview 

of the circuit is shown in Figure A.1. There are two parts of this design: the power stage and the 

control stage. The power part is similar to the proposed topology in Chapter 2, but the parallel 

switch of the load LED for duty cycle control is removed. The control part, with modification 

presented in Chapter 5, is achieved by an analog circuit with amplifiers, a multiplier and PWM 

generator. Section A.1 and A.2 describe the power stage and the control stage respectively. The 

parameters of the circuit elements are also shown in Figure A1, and they correspond to the 

synthesize parameters in Table 5.2.  

A.1 Power stage 

  To reduce complexity, the modulation of the LED duty cycle is removed, therefore the 

LED duty cycle is always 100%. For better robustness and protection, two Zener diodes (D3 and 

D5) are added in parallel to the LED. The reverse conducting voltage of the Zener diodes should 

be an appropriate value higher than the operating voltage of the LED. If the reverse conducting 

voltage is too small, the Zener diodes will draw more current from the LED; if it is too large, the 

protection functionality is lost. The Zener diodes also shorts the LED when the load current 

direction is accidentally reversed.  

 The LED used in this design is an XLamp® XP-E2 Torch LED. During normal operation, 

the current flow through the Zener diodes is very small. When the load current, i.e. sum of LED 

and Zener diode currents, exceeds the current limit of the LED, the percentage of Zener diode 

current increases faster so that the LED current increment is reduced. In the given circuit diagram, 

the tolerance of load current is increased from 1.5 A to around 2 A.   
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Figure A.1 Circuit overview 

A.2  Analog control circuit 

 From analog circuit theory, a PI control can be realized by operational amplifier (op-amp) 

circuits. The circuit in Figure A2 implements a PI control with a low-pass filter. Since the voltage 

on the negative input of the op-amp can be approximated as zero, the current coming into the op-

amp is zero, using KCL, the relationship between input and output voltages of this circuit can be 

expressed by 

 1
2 1

1
2

2

1
0

1

v
v sC

r
r

sC

 
 
   
  
 

  (A.1) 

 After some algebra, the transfer function corresponding to this circuit can be derived as 

 2 2

1 2 1 1 1 2

1 1

1

v r

v r C s r rC s

 
   

  
  (A.2) 
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Therefore, this circuit realizes a PI control with a low-pass filter. The proportional gain of this 

control is r2/r1, and the integrational gain is 1/(r1C2). The cut-off frequency of the load low-pass 

filter (with load as shown in Figure 6.12) is 1/(2πr2C1). 

 

 

Figure A.2 Op-amp based PI control (with filter) 

 

 An analog multiplier is utilized to them to generate a duty cycle signal from the sinusoidal 

waveform and the PI control output. To convert the sinusoidal input to the duty cycle signal 

ranging from 0 to 1 V, a 0.5 V dc offset is applied through the ‘Z’ input of the multiplier. This 

offset value can also be adjusted by a variable resistor (R17). The overall ac gain applied to dH 

through these procedures should be multiplied to the control gain kp and ki for small-signal analysis.  

 The duty cycle signal is then passed to the PWM generator (U5). The input of this device 

is protected by a voltage divider consisted with a resistor (R10) and a Zener diode (D6). The PWM 

signal then passes the control signal to a bridge driver (U4). The major purpose of the bridge driver 

is to utilize a bootstrap circuit (with D1, D2, C12 and C13) to increase the gate voltage of the upper 

two MOSFETs (U6 and U8) so that they are higher than the voltages on their source pins.  
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APPENDIX B. INDUCTOR AND TRANSFORMER 

CHARACTERIZATION 

 This appendix is a supplement to both Chapter 2 and Section 5.3. The objective of the 

characterization of the electromagnetic components is to correlate measurement with lumped 

models. In particular, Section B.1 describes the inductor characterization and Section B.2 

documents the transformer characterization. 

B.1 Inductor characterization  

 The inductor is one of the most basic elements. It is widely used in power electronics 

applications such as DC-DC converters to reduce current ripple. Meanwhile, inductance 

commonly exists in all conductors, and becomes increasingly apparent for high frequency signals. 

In the application discussed in this thesis, the maximum frequency induced in the single-phase 

power system is the switching frequency of H-bridge MOSTFETs or IGBTs. In a load fixture 

active rectifier, the switching frequency is small enough so that the wire inductance on PCB can 

be ignored. Consequently, all small-signal models of inductors (except the transformer mutual 

inductance) in a load fixture can be regarded as series RL circuits. However, for large-signal 

analysis, the saturation of inductors and transformers must be considered. Herein, the voltage 

equations of a magnetically coupled circuit can be expressed as  

 
d

dt
 v ri λ   (B.1) 

where the vectors v, r, I, and λ has only one element for a inductor, and two or more elements for 

a transformer (with two or more windings). The objective of the following two subsection are to 

find the vector r and the function λ(i) of a given inductor or transformer through measurement.  

 The winding resistance of an inductor is dependent on its length, cross-section area, and its 

material (usually copper), and it is usually very small. A two-wire measurement utilizing DMM 

(Digital multi-meter) will not be accurate since the wire and probe resistances are not negligible. 

Meanwhile, due to skin effect [66, 67] and proximity effect [68-70], the AC resistance is dependent 

of frequency and should be larger than the DC resistance. This is not obvious in low-frequency 

situations and is not investigated here. An appropriate method to measure winding resistance is to 
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use four-wire measurement as shown in Figure B1. Since the impedance of the voltage meter is 

very large, its current is negligible, so that the measured voltage and current are both accurate. The 

source in Figure B1 should be a DC voltage supply with current limitations in order to protect the 

DUT (device under test).     

 

 

Figure B.1 Four-wire measurement for DC resistance  

 

 According to (B.1), if the wire resistance of an inductor is known, the flux linkage λ at 

certain time t1 can be found as  

    
1

0
1

t

t
t v ri dt C      (B.2) 

 where C is a constant to eliminate DC offset. Equation (B.2) shows that the function λ(i) can be 

evaluated by measuring current and voltage simultaneously. This can be realized by the setup 

shown in Figure B2. The data acquired in this test can be processed through a script to calculate 

the impedance. Note that the recorded waveform from oscilloscope should include at least one 

complete period of the injected AC waveform, in order to produce a closed λ - i curve. To increase 

accuracy, multiple cycles can be recorded.   

 Figure B3 presents the experiment result with a rated 1.0 mH inductor (Murata 1400 Series) 

utilizing the above data processing method. The parameters of this inductance (Ls, rLs) is shown in 

Table 5.2. As can be seen from this figure, the λ - i curve is very close to the linear curve with 

1.0582 mH inductance.   
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Figure B.2 AC measurement for flux linkage 

 

 

Figure B.3 λ - i curves of 1.0 mH inductor  

 

B.2 Transformer characterization    

 The isolation transformer plays an important role to improve system robustness to open-

circuit errors. In Chapter 3, six parameters are needed for small-signal analysis: primary winding 

resistance rp, secondary winding resistance rs, turns ratio TR, magnetizing inductance Lm, primary 

leakage Llp, and secondary leakage Lls. The winding resistances can be easily estimated through 

DC measurements. To utilize the transformer model described in Chapter 2, it is necessary to 

incorporate the core saturation in large signal analysis and simulations. Herein, three other 
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parameters are necessary to represent the saturation: mutual leakage inductance L0 and nonlinear 

coefficient α and β. It is desired to extract all above parameters from data obtained by a limited 

number of experiments on a given transformer.    

 As in the case of the inductor characterization, the λ - i curve plays a key role in the 

transformer characterization. According to the T-equivalent circuit discussed in Chapter 2, the 

value of turn’s ratio is required to refer secondary coil variables to the first. In order to find the 

turns ratio accurately, the experiment on Figure B4 can be carried out for both the primary and 

secondary coils. Since the secondary winding can be regarded as open, the voltage measured from 

Channel 2 is equal to the magnetizing voltage referred to the primary winding.    

  

 

Figure B.4 Transformer characterization  

 

 Taking measurement and using (B.2) to calculate flux linkages yield two set of data: λs vs. 

ip and λp vs. is. By referring λs and is to the primary side, i.e.,  

 '
p

s s s

s

N
TR

N
       (B.3) 

 
1

' s
s s s

p

N
i i i

N TR
    (B.4) 

the two λ - i curves should be identical, if the turn’s ratio is correct. Therefore, the turns ratio of a 

transformer can be found by choosing TR such that the two λ - i curves coincide. Figure B5 depicts 

an example of a 30/45 W, 60 Hz, 6.6 A (maximum) transformer. The resistances of winding used 

here are obtained from DC resistance measurement.  
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Figure B.5 λ - i curves of transformer 

 

 Since the measured voltage referred to primary winding is equal to magnetizing voltage, 

and the measured current is the current flowing through the mutual inductor, the λ - i characteristic 

on the right side of Figure B5 presents an accurate λ - i curve for the mutual inductance. Therefore, 

Lm, L0, α, and β can be obtained from this figure. From Subsection 2.2.3, the anhysteretic λ - i curve 

can be expressed as  

     0arctanm m mi i L i       (B.5) 

Moreover, the following relationship can be found: 
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From the measured λ - i curve, Lm and L0 can be firstly estimated as slopes when im is zero and very 

large, respectively. After that, the two nonlinear parameters α and β can be obtained together by 

curving fitting (B.5) to match the measured λ - i curve, with the relationship αβ =Lm - L0. The curve 

of (B.5) corresponding to the given transformer as in Figure B5 is shown in Figure B6.  
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Figure B.6 Transformer λ - i curves modeling  

 

 A convenient approach to estimate the linkage inductances is to measure the short-circuit 

waveforms, as shown in Figure B7. When the secondary winding is shorted, it can be regarded 

that the excitation current flows through the primary and the referred secondary circuits, since the 

magnetizing inductance is extremely large compared to the leakage inductances. Therefore, the 

sum of the two leakage inductances, Llp and the referred Lls can be shown as  

 
2

lp lsL TR L L    (B.8) 

where L is the apparent inductance viewed from the primary side, as shown in Figure B8. In (B.8), 

the turns ratio is already known from the magnetizing inductance characterization. Also, in 

approximation, the leakage inductances are proportional to the square of turns ratios, with which 

(B.8) can be solved. The advantage of this method is that the noises in voltage and current 

waveforms due to a large mutual inductance can be avoided.  

 The parameters of this transformer (rp, rs, TR, Llp, Lls, L0, α, and β) are listed in Table 5.2 

and used in Subsection 5.2.  
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Figure B.7 Leakage inductance measurement 

 

 

Figure B.8 Leakage characterization 
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