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Proclaim! (or read!) in the name of thy Lord and Cherisher, Who created. Created

man, out of a clot of congealed blood. Proclaim! And thy Lord is Most Bountiful.

This thesis is dedicated to my respected parents who struggled their entire life,

siblings, grandparents, family members, friends, and lastly my loving wife.
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ABSTRACT

Islam, Md. Saiful M.S.E.C.E., Purdue University, December 2018. Dynamic Elec-
tronic Asset Allocation Comparing Genetic Algorithm with Particle Swarm Opti-
mization. Major Professor: Lauren Christopher.

The contribution of this research work can be divided into two main tasks: 1)

implementing this Electronic Warfare Asset Allocation Problem (EWAAP) with the

Genetic Algorithm (GA); 2) Comparing performance of Genetic Algorithm to Particle

Swarm Optimization (PSO) algorithm. This research problem implemented Genetic

Algorithm in C++ and used QT Data Visualization for displaying three-dimensional

space, pheromone, and Terrain. The Genetic algorithm implementation maintained

and preserved the coding style, data structure, and visualization from the PSO im-

plementation. Although the Genetic Algorithm has higher fitness values and better

global solutions for 3 or more receivers, it increases the running time. The Genetic

Algorithm is around (15-30%) more accurate for asset counts from 3 to 6 but re-

quires (26-82%) more computational time. When the allocation problem complexity

increases by adding 3D space, pheromones and complex terrains, the accuracy of GA

is 3.71% better but the speed of GA is 121% slower than PSO. In summary, the

Genetic Algorithm gives a better global solution in some cases but the computational

time is higher for the Genetic Algorithm with than Particle Swarm Optimization.
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1. INTRODUCTION

1.1 Overview of Problem Statement

Allocation of available resources (assets) is a familiar optimization problem, and

electronic asset allocation has been a significant concern for defense systems nowa-

days. Allocating electronic assets in real-time and responding to dynamics in the

battlefield is needed. Researchers tried different optimization techniques and algo-

rithms for solving this problem. The state-of-the-art uses evolutionary computational

methods: Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) [1]. The

Electronic Warfare research problem refers to the assignment of assets to transmitters

in a multidimensional environment created by three-dimensional space, frequency, an-

tenna azimuth, and elevation orientation. The primary goal of the research is to place

radio assets in optimal places to preserve adequate coverage of transmitter targets in

spatial position and bandwidth assignment. Prime factors for this assignment prob-

lem are: power received, receiver sensitivity, target priority, receiver feed-horn power

limitations, spatial positioning, frequency and bandwidth coverage, and terrain con-

straints. A heuristic method like Particle Swarm Optimization was the initial choice

for the dynamic and real-time solution of this research. Computational simplicity

and quick convergence of this algorithm provides real-time solution complying with

the requirement of under 1 second. Optimization algorithms can be stuck in local op-

timization points and the algorithm’s computational efficiency varies with the nature

of the problem. The research problem was to compare Particle swarm optimization

with another evolutionary computational algorithm: Genetic Algorithm, testing the

accuracy, ability to reach a global solution, and computational efficiency. The Ge-

netic Algorithm implementation preserves the style of coding, data structure, and

visualization of Particle Swarm Optimization.
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1.2 Project Inheritance and Background

The primary goal of the research was to optimize the allocation of assets in three-

dimensional space and frequency, and as an optimization algorithm, PSO was the first

choice. This research was a real-time problem and needed to be solved in real time or

near-real-time. The starting point of this research was initiated by Dr. Russell Eber-

hart for Expeditionary Electronic Warfare Division, Spectrum Warfare System De-

partment, at Naval Surface Warfare Center (NSWC) Crane. Reynolds [2] developed

the initial phase of this research, Crespo [3] designed a preliminary two dimensional

environment using Qt.

Reynolds [2] integrated PSO algorithm with the problem of asset allocation in

the Electronic Warfare Environment; began significant two-dimensional GUI devel-

opment, developed the fitness function, and analyzed asset allocation mathematically

using PSO. Jonah Crespo [3] solved the PSO for three dimensions, human-in-the-

swarm integration with two dimensional user input of moving keep-away boundaries,

and designed the initial combination of topological constraints. Later on, we had

three more contributors: Paul Witcher, Calvin Wieczorek, and William Boler. De-

veloping the PSO with real-time movement simulation of assets and transmitters in

three dimensional space along with tracking and simulated assets to the PSO solu-

tions using the Hungarian algorithm was Witcher’s contribution [4]. Boler [5] re-

factored and added code to make the project more object oriented, and implemented

asset’s antenna direction in the three dimensional space based on radiation patterns

of antennas. His contribution includes adding human-in-the-swarm construction of

Pheromones with movable attraction or repelling zones or beacons in three dimen-

sional solution space, and implemented a Meta-PSO, where PSO was used to solve for

the weights of the fitness function. Wieczorek [6] implemented advanced terrain mod-

els collected from ArcGIS, modified the existing program to display three dimensional

environments using Qt Data Visualization, and employed multi-threading technique.

Some of the previous contributors published work is available in [7] and [8].
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1.3 Project Overview

1.3.1 Particle Swarm Optimization (PSO) Algorithm

Dr. Russell Eberhart and Dr. James Kennedy in 1995 introduced Particle Swarm

Optimization (PSO) replicating swarm behavior of flocking birds, fish schooling, and

flying insects [9,10]. PSO is an evolutionary computational method for finding optimal

solution [11, 12]. The fundamental concept of PSO is analogous to a flock of birds

searching for food. Group of birds can be collectively called “swarm”, or “population”

and each bird is a particle of the swarm. In our research problem, we choose two

hundred particles to search for a solution. They are randomly initialized in hyper-

dimensional problem space consists of 3D space, frequency, antenna azimuth, and

elevation orientation. Distance from the food regulates the random movement of

birds, and it is called fitness or “goodness of solution”. Our research goal is to place

assets in an optimal location for communication or jamming in Electronic Warfare

(EW) environment where each asset has transceiver antennas with corresponding

bandwidth. Every time power of the asset transceiver antennas are checked to make

sure that the feed-horn is not overloaded. Power of the transceiver antennas, the

priority of transmitters assigned to assets, distance and spread between transceiver

antennas, and the effect of pheromones constructed the fitness value. Reynolds [2]

and Boler [5] designed fitness function for the research project as follows, where Wi

are weights:

Fitness = W1̇(power)+W2̇(priority)+W3̇(spread)+W4̇(distance)+W5̇(pheromones)

(1.1)

In Equation 1.1, the coefficients Wi are the weights associated to determine a

“good” solution. Figure 1.1 describes components of the fitness function and Figure

1.2 describes component’s weight of the fitness function, developed by the Meta-PSO

in [5]. Maximizing or minimizing the fitness value is the goal of PSO, in our case

higher the fitness better the solution. Birds will determine their direction of flight
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Fig. 1.1. Description of the Components of the Fitness Function.

Fig. 1.2. Description of the Component Weight of the Fitness Function.

based on their fitness and listen to their neighbors. Birds will move closer to their

final destination in every generation considering their neighborhood best and personal

best. Evolving some generations fulfilling termination criteria birds will find optimize

solution and converge to the food which is compared to reach the last solution in

PSO.

Fig. 1.3. Representation of Solution Data Structure.
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As seen in Figure 1.3, each particle (row) is a possible solution. Each particle

has dimensions of a 3D location, frequency, with antenna azimuth and elevation

orientation. The PSO algorithm is run iteratively until it meets certain termination

condition. Each iteration of the PSO calls a generation. The termination conditions

are fitness slope, window size, and max generation. The window size is the number

of generations PSO will run when its fitness slope remains unchanged. Fitness slope

is the best minimum slope angle over window size. Max generation is a limit used in

case the termination process takes too long. PSO runs by the following two Equations

1.2 and 1.3:

vi+1 = viI + C1Rand()1(xpb − xi) + C2Rand()2(xnb + xi) (1.2)

xi+1 = xi + vi+1 (1.3)

In Equation 1.3, xi+1 is the next position for each particle in the solution space.

It updates from the previous position, xi and vi+1, the next velocity. In Equation 1.2,

I is the Inertia and vi is the current velocity. C1 and C2 are constants, and Rand() is

a random generator. (xpb − xi) is the difference between the current position and the

best position found so far so that the particle will be given a larger velocity when it is

further away from the current personal best. (xnb − xi) is the difference between the

current position, and the best position found between all the particle i’s neighbors.

This difference in positions will give a larger velocity when the current position is

farther away from the best neighbor’s position. There are several functions to follow

PSO work flow: “Fly” function updates particles with velocity and position equations.

“Evaluate” function finds fitness of each particle. “Update” function updates particle

and neighbor particle’s velocity and position. Finally, “Terminate” function ends

PSO work flow based on fitness slope or window size or max generation. After each

generation, every particle has a personal best xpb, which is the best solution that PSO

finds for a particle so far, and a neighborhood best xnb, which is the best solution

its neighbor has found. These particles are first initialized randomly in 3D solution
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space, then they are updated using two Equations 1.2 and 1.3 from [11]. Figure

1.4 represents 2D graphical user interface view of the project. It has four sections.

The top left section is the allocation plot where transmitters and assets are placed

in 2D space according to their frequency, power, and priority. The top right part is

the fitness plot, and it plots fitness value against some generations. Middle plot is

the bandwidth plot, and it contains a plot of transmitters and assets in their power

rating (dBm) against frequency (MHz). Finally, bottom plot is the text output for

the project.

Fig. 1.4. 2D Graphical User Interface View of the Project.
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1.4 Literature Review

1.4.1 PSO GA Comparison

The Genetic Algorithm [13] came into light through research done by Holland

in the early 1970s. PSO was introduced by Kennedy and Eberhart in 1995 and

became popular immediately after its invention. Both algorithms use the evolutionary

computing. Hence, research on comparing PSO with GA is a topic of interest for

researchers.

In paper [14], Hassan et al. compares PSO and GA with a set of test problems,

spacecraft reliability design and telescope array configuration problem. It shows that

PSO can find the same global optimal solution as GA, but with superior computa-

tional efficiency at 99% confidence level in 7 of 8 test problems. Chaturvedi et al.

in [15] compares the execution time of GA, PSO, and krill herd (KH) Algorithm and

the result shows that the time taken by KH Algorithm is more than PSO and GA

for a hundred iterations, and PSO is the quickest. In paper [16], Shabir et al. studies

implementation, features, and effectiveness of GA and PSO algorithms and concludes

that hybridization of GA and PSO is a potential solution to particular limitations of

these algorithms. Sharma et al. [17] states that GA performs better with large popu-

lation size while PSO for small population size. Proposed hybrid algorithm was tested

on five global optimization test functions (Beale, Booth, Matyas, Levy, Schaffer), and

performs better than simple GA and PSO both. Interestingly, the research in [18] by

Jones and Karl for the identification of model parameters shows that GA arrives its

final parameter values in lesser generations, and this is the opposite of other research.

1.4.2 PSO and GA in Asset Allocation

Our research compares PSO with GA in dynamic asset allocation. There is not

much research for asset allocation in real time, and comparing PSO and GA. The dy-

namic weapon-target assignment (DWTA) problem was solved in [19] by Chen et al.
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using GA and two memetic algorithms. The authors found memetic algorithms based

on greedy local search generate better DWTA decisions with less computation time

than GA, especially for large-scale problems. The work done in [20] by Zeng et al.

utilizes discrete particle swarm optimization (DPSO) to solve weapon-target assign-

ment (WTA) problem. The result shows that DPSO outperforms regular GA and GA

with greedy eugenics in convergence efficiency and CPU time. Integrated Yard Truck

Scheduling and Storage Allocation Problem (YTS-SAP) was demonstrated by Niu et

al. in [21] for computation time and solution quality, and PSO outperformed GA.

In [22], according to Ohatkar and Bormane PSO show better performance than GA in

respect of an improvement in the signal-to-interference ratio (SIR), reduction in inter-

ference, required computation time, and generations needed. The work done in [23]

by Jiang et al. states a multi-dimensional jamming resource allocation (JRA) prob-

lem using hybrid quantum-behaved particle swarm optimization and self-adjustable

genetic algorithm (HQPSOGA). They compared standard PSO, quantum-behaved

PSO, and integer-value GA. Monte Carlo simulation result shows that HQPSOGA

developed better interference capacity efficiently for the jammer’s formation than

other algorithms. The closet research to ours is in [1] and uses PSO and GA for

solving the real-time resource allocation problem. They compare their performance

using open source testbed SWARD (System for Weapon Allocation Research and De-

velopment). Their experiment shows that PSO can provide a high-quality solution

for small-scale problems whereas GA is suitable for largest tested problem cases. Us-

ing six firing units and six targets run-time was recorded 0.104 second and with the

most extensive set up: nine firing units and nine targets run-time was 1293.084 sec-

onds. Comparing our research using three firing units or assets and thirty targets or

transmitters our run time was below 1 second. Additional use of three-dimensional

terrain and pheromone in our study takes a significant amount of time where the

closet research [1] was not in three dimensions.
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1.4.3 Individual Contribution

This research contribution is in two different areas. The first contribution imple-

ments the existing asset allocation research problem with the Genetic Algorithm op-

timization method. It includes maintaining the same coding style and data structure

to comply with previous research contributors. The second part of the accomplish-

ment is comparison and performance analysis of GA with PSO. The comparison is

made regarding global solution accuracy and computational time. Comparison anal-

ysis between PSO and GA is an essential and integral part of this ongoing research

as it provides effectiveness and insight into the utilization of the two optimization

algorithms.

The following chapters will describe the research work embodied in this text.

Chapter 2 discusses the implementation of the research problem in the Genetic Al-

gorithm. It explains implementation GA in respect of coding, mathematical analysis

to set up parameters of GA and their effects in comparison and analysis. Chapter 3

demonstrates the comparison of GA and PSO in global solution accuracy and com-

putational time. It also describes the scope of the two optimization algorithms for

this research problem. Chapter 4 is the summary of the research contributions and

Chapter 5 provides recommendations for future work.
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2. GENETIC ALGORITHM IMPLEMENTATION

2.1 Purpose

Our research compares Particle Swarm Optimization (PSO) to Genetic Algorithm

(GA). We chose GA because it is an evolutionary heuristic population-based search

method [24] like PSO. The GA allows us to diversify the searching behavior. Our goal

was to compare the Genetic Algorithm with Particle Swarm Optimization regarding

both time complexity, and global solution accuracy.

2.2 Attempts and Implementations

For implementing the Genetic Algorithm for this research project, we tried dif-

ferent approaches. The project already has a coding style and structure for PSO, so

the careful modification of the coding was important. Various coding methods were

found to be possible for the GA but some were not suitable for our coding style. In

the next subsections, we will go through some attempts and their consequences.

2.3 GAlib

GAlib [25] is a C++ library of Genetic Algorithm components developed by CAD-

lab from mechanical engineering department of Massachusetts Institute of Technology

(MIT). It is a C++ library of the Genetic Algorithm objects. The library includes

implementing tools to use Genetic Algorithms in C++ program using any genetic

operators and representation to do optimization. GAlib has the versatility and can

be used on various UNIX platforms (Linux, MacOSX, SGI, Sun, HP, DEC, IBM),

MacOS and DOS/Windows systems. It can use PVM for distributed, parallel im-

plementations as well as capable of handling the Athena or Motif widget sets, or
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MFC/VC++. Although its source code is not in the public domain, but can be used

at no cost for non-profit purposes. Its current versions can be found in [26]. To work

with the Genetic Algorithm library, we need to work with two classes: a genome and

a genetic algorithm. Every genome instance is a single solution to the problem. The

Genetic Algorithm object defines the evolution process of GA. The objective func-

tion of the Genetic Algorithm determines the fitness of each genome for survival. It

utilizes the genome operators and selection strategies to generate new children from

parents. To solve any research problem using a Genetic Algorithm there are three

things to do: defining a representation, set the genetic operators, and determine the

objective function.

GAlib library is a potential source for solving optimization using Genetic Algo-

rithm and some researchers customized it and used it for their problems. For our case

the coding style and data structure didn’t match and combining different structures

is not efficient. Hence, we could not use GAlib and moved forward with another

approach.

2.4 Genetic Algorithm Design from First Principles

In [27], Sivanandam and Deepa introduce GA’s first principles, beginning with

Darwin’s theory of evolution: “Survival of the fittest” for Goldberg’s Genetic Algo-

rithm. The Genetic Algorithm adapts Darwin’s evolution concept in a natural way

to solve a problem defined by the fitness function. A single chromosome can be

the solution of the Genetic Algorithm and collection of the chromosomes called as

a population can also be the solution to any research problem. Moreover, a single

chromosome is composed of genes where according to the problem’s nature genes

value can be either numerical, binary, symbols or characters. The fitness function

will measure the suitability of the solution generated by GA. Crossover is the process

of creating new offspring chromosomes in population from genes composition of their

parents. Few of the chromosomes will also go through the process of mutation in
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their genes to maintain diversity in solution. Mutation helps GA to look for a global

solution while it is stuck in a local solution. Crossover rate and mutation rate is

values within the range of 0 to 1 which controls the crossover and mutation process.

Darwinian evolution rule controls and selects chromosome in the population for the

next generation, and the fitness value of the chromosome determines it. For maxi-

mization problem chromosome with higher fitness value have a higher probability of

being selected for next generation and vice versa for a minimization problem. Con-

sidering the termination criteria after several generations, the chromosome with their

fitness value may converge to the best solution for the problem.

Hermawanto and Denny in [28] present a very illustrative flowchart of the Genetic

Algorithm, and Figure 2.1 shows our representation of this.

2.4.1 Initialization and Evaluation

GA was implemented based on the principle of placing assets in an optimal location

in the Electronic Warfare (EW) environment. The Power of the transceiver antennas,

the priority of transmitters assigned to assets, distance and spread between transceiver

antennas, and pheromones constructed the fitness value which is described in Chapter

1 in Equation 1.1. In Chapter 1 Figure 1.1 describes components of the fitness function

and Figure 1.2 describes component’s weight of the fitness function. From Figure 2.2

every row is a chromosome and dimensions inside chromosomes are genes. Figure 2.2

refers that each particle (row) is a possible solution. Each particle has dimensions

of 3D location, frequency, with antenna azimuth and elevation orientation. After

initialization, every chromosome fitness value is calculated according to Equation 2.1

in each generation.

Fitness = W1̇(power)+W2̇(priority)+W3̇(spread)+W4̇(distance)+W5̇(pheromones)

(2.1)
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Fig. 2.1. Flow Chart of Genetic Algorithm Operation.
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Fig. 2.2. Representation of Solutions with Chromosomes and Genes.

2.4.2 Selection Process

Selection is the next phase for GA and in our research problem, and we used a

roulette wheel selection process. In our case, the chromosomes with the higher fitness

value have a higher probability to be selected for the next generation. For roulette

wheel, first of all the fitness value of the chromosomes are scaled to the range of

0 to 1, and then 1 is added to avoid divide-by-zero problems. The summation of

fitness values of all the chromosomes are calculated, and partial fitness is evaluated.

Calculating cumulative fitness value of all the chromosomes is the next phase. A

random number generator is used to generate random numbers within the range of

0 to 1 for all chromosomes. Last of all, comparing the cumulative fitness value to an

arbitrary number of all the chromosomes to select the best chromosomes for the next

step. Elitism can also be used with roulette wheel to make the selection process more

precise but, due to the computational complexity, elitism was avoided. In Figure

2.3, a basic roulette wheel selection process for the Genetic Algorithm is shown. For

this case, we have a population of five chromosomes and percentage values of the

chromosomes represent how much each chromosome is contributing to total fitness

value. Chromosome 1 has the most highest percentage which is 40% and chromosome

1 is more likely to be selected when the wheel is rolled. Chromosome with lowest

percentage has less chance to be selected for next generation.
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Fig. 2.3. Genetic Algorithm Roulette Wheel Selection Process.

2.4.3 Crossover Process

Crossover is the process of the crossing of the parent’s chromosomes to produce

new child chromosomes. There are different types of crossovers, for example: single

point, double point, k point, and uniform crossover. Utilization of various crossover

techniques depends on the nature of the problem. In our research, we used single point

crossover which takes the randomly selected position in the parent chromosomes and

then exchanges to make sub-chromosomes. A random number generator is used to

generate random numbers within the range of 0 to 1 for all chromosomes. Comparing

crossover rate (Cr), and random numbers parent chromosomes are randomly selected.

After the selection of parent chromosome, the next process is identifying the position

of the crossover point. For this purpose again random numbers are generated between

1 to (length of chromosome minus 1).
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Fig. 2.4. Genetic Algorithm Single Point Crossover Process.

After determining crossover points, parents chromosomes need to cut at the crossover

points and interchange their genes. Figure 2.4 demonstrates single point crossover.

2.4.4 Mutation Process

Mutation is the process of replacing genes in a chromosome at random position

with a new value. The mutation rate (Mr) determines the number of genes in the

population that will go through the mutation process. The total number of genes in

an overall population is equal to the total number of genes in chromosome, multiplied

by the population number. The number of genes to be mutated is calculated from

mutation rate and a total number of genes in population. The position of mutation is

also determined randomly. First of all, a random integer is generated between 1 and

total number of genes, then multiplied by mutation rate. Figure 2.5 demonstrates

mutation process where a random value K is added in place of value D. With the

finishing of mutation process one single generation is completed. We need to evaluate

the fitness function for another generation. If the fitness function value is increasing,

then the GA is going towards the desired solution. So, these new chromosomes will

undergo the same process as the previous generations such as: evaluation, selection,

crossover, and mutation and producing a new chromosomes for the next generation.

Eventually, GA will terminate based on the termination conditions.
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Fig. 2.5. Genetic Algorithm Mutation Process.

2.5 Setting Up GA Parameters

To analyze the performance of the Genetic Algorithm, suitable parameters must

be chosen. Population size, crossover rate, and mutation rate are the parameters

needed for the complete operation of Genetic Algorithm. This section describes how

these parameters are selected.

2.5.1 Setting Up Population Size for Test Case Analysis

Population size is a principle parameter for Genetic Algorithm. According to

Rylander et al. [29] increasing population size increases the accuracy but it leads to

higher runtime. The result of experimental trails for our research was a population

size of 175. Initially, a test case was developed to select the best population size for

this research problem.

According to test case criteria from Table 2.1 Max Generations was kept 3000,

Swarm termination Window Size was kept 1000. Moreover, Inject Global Best option

was kept disabled and Genetic Algorithm parameters: Crossover Rate and Mutation

Rate was set up as 0.60 and 0.005 respectively. According to [30] we selected values for

crossover and mutation rate. Thirty transmitters are placed randomly in 3D space and

then run for fifty times to record average fitness and runtime values. The population

size of the chromosome was increased from 50 to 300. Increasing population size
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Table 2.1. The Test Case Setting for Population Size Measurement:

Parameter Name Normal Setting Value
Receivers 3

Transmitters 30
Tx Spread Radius 30.00

Layout Left-Right
Frequency Step 0.10

Receiver Bandwidth 10.00
Receiver RF Front End Limit (dBm) 5.00

Receiver SF Sensitivity (dBm) -88.00
Max Generations 3000
Max Run Time (ms) 0

Swarm Termination Fitness Slope 0.0100
Swarm Termination Window Size 1000

Initialization Seed 0
Population Size 200

Neighbors 20
Antenna Type Aperture

Beam Width X (Degree) 60.00
Beam Width Y (Degree) 60.00
Inject Global Best Not Enabled
Crossover Rate 0.6000
Mutation Rate 0.0050

Spreading Loss Factor 2.00
Absorption Factor 0.00000
Stochastic Factor 0.00000

FPF 20.00

leads to increased run time. The goal of this testing procedure is to find a balanced

solution: higher fitness with the low runtime.

In Figure 2.6, population size was varied from 50 to 300 and it is seen that pop-

ulation size of 175 provides better average fitness value of 4889.03. In Figure 2.7

with 175 population size value, average run time was measured 9204.3. Hence, this

population size provides the best result balancing higher fitness value and lower run

time.
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Fig. 2.6. Average Fitness Value vs Population Size for Population Size
Test Case Analysis.

Fig. 2.7. Average Run Time vs Population Size for Population Size
Test Case Analysis.
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2.5.2 Test Settings for Result Analysis

Fig. 2.8. Test Case Setup for Analysis.

In Figure 2.8, four types of test settings are shown for examining test conditions.

Two of them are normal settings: straight line and random settings and two are

extended settings: straight line and random settings. All of the settings have a

population size of 175 with crossover rate of 0.6, and mutation rate of 0.005. Previous

researchers designed normal settings so we kept same for GA to compare PSO and GA.

In general, GA needs more generations to find a better result that is why extended

settings are used.

2.5.3 Normal Test Settings for Test Result Analysis

In normal test settings for test result analysis max generations, swarm termination

window size and population size are different from setting in Table 2.1. The normal

settings differs from the extended settings by max generations, and swarm termina-

tion window size. For normal settings, max generations is set as 1000, and swarm

termination window size is 50. For both normal and extended settings population

size is set as 175. The normal settings has two choices: run in straight line, and run

in random.
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Fig. 2.9. Normal Straight Line Settings Experimental Result.

Run in straight line is a set up where a red box in allocation plot indicates all

30 transmitters placed in the straight line. Transmitters had their starting frequency

from 50 Hz and spaced by 1 Hz with alternating priorities five, three, and one accord-

ingly. The Figure 2.9 shows the allocation plot on the left side and fitness plot on the

right-hand side for this experiment. From the fitness plot the fitness value is 9824.21

and run-time is 1027 ms, and the process terminates after only 180 generations for

the short termination window size.

Fig. 2.10. Normal Random Settings Experimental Result.
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Run in random is a set up where all 30 transmitters are placed randomly in space

and also randomly assigned frequencies and priorities. A red box in the allocation

plot indicates the transmitter positions. In Figure 2.10, the fitness value is 4664.83

and run-time is 934 ms, and the process terminates after only 240 generations.

From Figure 2.9 and 2.10, we observe that in the frequency plot; indicated by a

black box, that the Genetic Algorithm cannot cover all the transmitters so it could

not optimize correctly with these standard constraint settings.

2.5.4 Extended Test Settings for Test Result Analysis

The next experiment uses extended settings and modifies the max generations

to 5000 and swarm termination window size to 2000. Like the normal settings, the

extended settings also has two types of set up: run in straight line, and run in random.

Fig. 2.11. Extended Straight Line Settings Experimental Result.

Run in straight line is a set up where where all 30 transmitters are placed in

a straight line starting at frequency of 50 Hz and increasing by 1 Hz. Each have

alternating priorities five, three, and one accordingly. From Figure 2.11 the fitness

value is 11908 and run-time is 29174 ms. Runtime is higher, as the process lasts

for 4250 generations. Although runtime is higher, the higher fitness means that the
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solution is more robust than the normal settings. Run in random is a set up where all

30 transmitters are placed randomly in space and also randomly assigned frequencies

and priorities. A red box in the allocation plot indicates the transmitter positions.

For this experiment, the Fitness value is 5756.21 and run-time is 22460 ms. Runtime

is higher as the process lasts for 4400 generations shown in Figure 2.12. The frequency

plot in Figure 2.11 of the Genetic Algorithm now covers all the transmitters, hence

optimizes correctly in extended constraint settings.

Fig. 2.12. Extended Random Settings Experimental Result.

In summary, the Genetic Algorithm needs more generations to reach its optimized

solution compared to PSO. So the extended settings are required. The extended

settings are used to make sure GA can converge to perfect solution compared to the

PSO.

2.5.5 Setting Up Crossover and Mutation Rate for Test Case Analysis

Selection of crossover rate and mutation rate are critical to the Genetic Algorithm.

The process for choosing crossover and mutation rate is similar to population size

selection. A test case is set up to find the best crossover and mutation rate through

analysis, and then these values are used in Genetic Algorithm with different constraint
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conditions. Crossover rate and mutation rate selection process and result with these

values are discussed in this section. Some papers claim that (50-100%) is the perfect

crossover range where 60% is best crossover value, and (0.5-1%) is the ideal mutation

range. Initially, a test case was developed to select appropriate crossover and mutation

rate for this research. The test case setting for crossover rate and mutation rate is

same for setting of population size. Population size is set as 175 from population size

test case analysis. Thirty Transmitters are placed randomly in 3D space and run 50

times to take average fitness and runtime value.

Crossover rate was varied from 50% to 70%, and mutation rate was altered within

the range of (0.5-0.8%). The goal is to select the best combination of crossover

rate and mutation rate that provides an excellent solution with higher fitness and

minimum runtime, i.e., minimum generations. From Figure 2.13 crossover rate of 0.6

and mutation rate of 0.008 provide the best result balancing higher fitness value and

lower run time, seen in shaded row.

Fig. 2.13. Test Case Analysis for Crossover and Mutation Rate.
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2.5.6 Normal Test Settings for Test Result Analysis

Population size, crossover rate, and mutation rate from the test case analysis will

be used in this subsection with different conditions. We used two different settings

for the experiment: normal settings and extended settings. Both of the settings have

a population size of 175, crossover rate of 0.6, and mutation rate of 0.008.

Fig. 2.14. Normal Straight Line Settings Experimental Result for Crossover
and Mutation Rate.

From Figure 2.14, fitness plot shows that fitness value is 10617.9 and run-time is

1044 ms. The process terminates after 175 generations for short termination window

size. From Figure 2.15, fitness value is 3970.19 and run-time is 792 ms where genera-

tions are 150. In Figure 2.14 and 2.15, the frequency plot; indicated by a black box,

shows that the Genetic Algorithm cannot cover all the transmitters so it could not

optimize correctly with standard constraint settings.

2.5.7 Extended Test Settings for Test Result Analysis

The extended settings for testing crossover rate and mutation rate differs from

Table 2.1 by crossover rate and mutation rate. From Figure 2.16, fitness value is

11610.3 and run-time is 14730 ms in extended settings. Runtime is higher because
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Fig. 2.15. Normal Random Settings Experimental Result for Crossover and
Mutation Rate.

Fig. 2.16. Extended Straight Line Settings Experimental Result for Crossover
and Mutation Rate.

the process lasts for 2150 generations. Although runtime is higher, higher fitness

means the solution is more robust in extended settings than normal settings. In

Figure 2.17, fitness value is 5756.22 and run-time is 12528 ms, and the number of

generations is 2225. In frequency plot of Figure 2.11, the Genetic Algorithm covers

all the transmitters hence, optimizes correctly in extended constraint settings.
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Fig. 2.17. Extended Random Settings Experimental Result for Crossover
and Mutation Rate.

Typically, the Genetic Algorithm needs more generations to reach an optimized

solution, so normal settings is not sufficient hence, extended settings is required. The

extended settings is used to make sure the Genetic Algorithm can converge to a

perfect solution like Particle Swarm Optimization. But when comparing the Genetic

Algorithm with Particle Swarm Optimization, we will use normal settings.
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3. COMPARISON ANALYSIS

3.1 Purpose

Initially, our asset allocation research problem was implemented with Particle

Swarm Optimization (PSO). The PSO result is a fast solution that fulfills requirement

of optimizing under 1 second. This chapter compares Particle Swarm Optimization

Algorithm with Genetic Algorithm showing some weaknesses and strengths of the

two. The Run Time, Global Solution Finding and Accuracy of Solution are measured

for both of the algorithms.

3.2 Run Time Comparison Analysis

Runtime comparison analysis is the most critical analysis for this research project

as the primary goal was to allocate assets in real time. Therefore, finding the factors

both for ground truth and random position that take the most of the running time,

identifying the solution ground truth were the most challenging tasks. Straight line

setup is known as solution ground truth for our analysis. Combination of transmitters

and receivers to have the best global solution hence, the best overall fitness value with

minimum run time is the objective of this analysis. Also, run time cost analysis with

increasing transmitter numbers or receiver numbers is also analyzed in this section.

3.2.1 Implementation

For run time comparison analysis, transmitters are set up in random places in 3D

space. Different transmitter receiver combinations are tried to analyze best global

solution or best overall fitness value with minimum run time. With normal settings,

both Particle Swarm Optimization Algorithm and Genetic Algorithm are run for 50
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times. The total fitness values and run-time values are calculated, and averaged.

Then, the number of transmitters is increased from ten to sixty in steps of ten.

Likewise, the number of receivers is increased from one to six.

3.2.2 Run Time Result Comparison

Fig. 3.1. Run Time Comparison Analysis for Different
Transmitter-Receiver Combinations.

Figure 3.1 shows run time comparison analysis for both Particle Swarm Optimiza-

tion Algorithm and Genetic Algorithm for different transmitter-receiver combinations.

In Figure 3.1, Particle Swarm Optimization provides better fitness value or global

solution for a lower number of transmitter-receiver combinations, and the Genetic

Algorithm is suitable for a higher number of transmitter-receiver combinations, typ-

ically 30 transmitters- 3 receivers combination and above. In all transmitter-receiver

combinations Genetic Algorithm has a higher time cost value than Particle Swarm

Optimization. Fitness function calculation dominates overall run time both for PSO

and GA equally. So, the higher run time for GA is because of taking more generations

to convergence than PSO. Finally from analysis 30 transmitters-3 receivers appear to

be the best combination as for both algorithms.

Figure 3.2 and 3.3 shows runtime comparison analysis for both Particle Swarm

Optimization Algorithm and Genetic Algorithm for increasing transmitters and in-
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Fig. 3.2. Run Time Comparison Analysis for Increasing Transmitters.

creasing receivers respectively. In Figure 3.2 the horizontal and vertical axis represent

an average run time for PSO and average run time for GA respectively. We have six

data points A, B, C, D, E, and F that stand for six combinations of transmitters-

receivers, where transmitters are varied from 10 to 60 and receivers are kept constant

at 3. It’s clear from the graph that, for most of the cases average run time of GA is

higher than PSO. From two-dimensional error bars in the graph, normally GA has

higher standard deviation than PSO hence, GA run time varies much in 50 runs. For

Figure 3.2, we have similar six data points A, B, C, D, E, and F for six combinations
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Fig. 3.3. Run Time Comparison Analysis for Increasing Receivers.

of transmitters-receivers but here receivers are varied from 1 to 6 and transmitters are

kept constant at 30. Complying with the previous experiment, average run time of

GA is higher than PSO in most of the cases and GA has a higher standard deviation

than PSO. Comparing both experimental set-ups, increasing receivers cost a much

higher run time than increasing transmitters, because the fitness function has more

complex computations with increasing receivers. Normally, it is the fitness calculation

that dominates overall run time in a single generation.
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3.3 Global Solution, Convergence Rate, and Fitness Finding Comparison

Analysis

Global solution analysis measures the ability to reach global maximal of Particle

Swarm Optimization and Genetic Algorithm for this particular research problem.

Sometimes in optimization problems, algorithms fail to reach a global solution and

instead are stuck in a local solution. Convergence rate analysis is a test for examining

the convergence speed of both algorithms and comparing their performance. The

fitness finding analysis compiles the overall fitness value that both algorithms can

achieve within test settings and constraints.

3.3.1 Implementation

Throughout the testing analysis, two test settings are used extensively: normal

settings and extended settings with two sub settings: straight line settings and random

settings. For comparing Particle Swarm Optimization with Genetic Algorithm in this

subsection, normal settings and extended settings with the straight line set up are

used. As straight line setting is the ground truth for this problem, so the possible

global solution and fitness value are known and hence, it is easy to judge the accuracy

of the algorithms. In this experiment, population size of 175, crossover rate of 0.60,

and the mutation rate value of 0.008000 were used. This selection process of these

parameters was analyzed and discussed in the previous chapter. For extended settings,

max generations of 5000 and swarm termination window size of 2000 were chosen.

Whereas, for normal settings max generations of 1000 and swarm termination window

size of 50 were selected. Finally, global solution, convergence rate, and fitness finding

capability of PSO and GA were compared.
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3.3.2 Global Solution Result Comparison

Particle Swarm Optimization is very efficient in finding a global solution in a

short time. Global solution for this research problem is the solution that covers all

transmitters in three-dimensional space and frequency. Particle Swarm Optimization

can cover all transmitters even in normal settings, where max generations and swarm

termination window size is kept to a smaller value. “Max Generations”, “Swarm

Termination Window Size”, and “Swarm Termination Fitness Slop” are the three

termination conditions for the process.

Fig. 3.4. Result of Global Solution Analysis for PSO in Extended Settings

From Figure 3.4 and 3.5, the bandwidth plot shows a red rectangle where three

receivers can cover all thirty transmitters. For these settings, the overall fitness value

is known to be around 12,000, and it is found 11908 for both extended settings and

normal settings.

In same way, the normal settings bandwidth plot in Figure 3.6 shows that, three

receivers fail to cover all thirty transmitters but in Figure 3.7 with extended settings,

three receivers successfully covers all thirty transmitters. For this reason, the first

figure with normal settings has overall fitness value of 10022.7 and second figure with

extended settings has higher fitness value of 11908. We can conclude that, both
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Fig. 3.5. Result of Global Solution Analysis for PSO in Normal Settings

Fig. 3.6. Result of Global Solution Analysis for GA in Normal Settings

Particle Swarm Optimization and Genetic Algorithm can find a global solution, but

for Genetic Algorithm we need extended settings, where termination conditions need

to be more flexible.
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Fig. 3.7. Result of Global Solution Analysis for GA in Extended Settings

3.3.3 Convergence Rate Result Comparison

The “Convergence rate” is how quickly both algorithms can reach a global solu-

tion. From Figure 3.4 in extended settings, the Particle Swarm Optimization reaches

its global solution in approximately 60 generations and from Figure 3.5 in normal

settings, generations required is also close to 60.

But from Figure 3.7, although Genetic Algorithm reaches a global solution it takes

many more generations: 900 to 1000. And from Figure 3.6, the Genetic Algorithm

fails to reach a global solution where it achieves its own best solution in approximately

115 generations. In summary, Particle Swarm Optimization converges to a global

solution more quickly than Genetic Algorithm.

3.3.4 Fitness Finding Result Comparison

Fitness finding result analysis is for testing the best overall fitness value reaching

capability of the both algorithms. We define best fitness value as the fitness value for

a global solution. From Figure 3.4 and 3.5, the Particle Swarm Optimization does

reach a global solution for this problem and reaches the best overall fitness value.
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In Figure 3.7, the Genetic Algorithm reaches a global solution and best fitness value

only in extended settings. But from Figure 3.6, the Genetic Algorithm fails to reach

a global solution and best fitness value with normal settings.

3.4 Time Limiting Comparison Analysis

Time Limiting analysis measures performance of Particle Swarm Optimization and

Genetic Algorithm and make a comparison of them. For this purpose both algorithms

are run for a time span of 1 second. In this time span, how both algorithms behave

is the concern of this analysis.

3.4.1 Implementation

Thirty transmitters are set up in a straight line in an extended settings. In ex-

tended settings, max generations is set as 5000 and swarm termination window size as

2000 wherein normal settings these parameters have value of 1000 and 50 respectively.

All other settings are kept same which is shown in Table 2.1.

3.4.2 Time Limiting Result Comparison

From the experimental result, Particle Swarm Optimization can cover all 30 trans-

mitters with only three receivers. For this reason, the fitness value of 11908 is close to

maximum fitness value of 12,000 in 1000 ms runtime. PSO converges the fitness value

of 11908 within approximately 25 generations. Hence, Particle Swarm Optimization

can optimize in a short time and few generations. The Genetic Algorithm covers

almost all transmitters but unable to cover all 30 transmitters with three receivers.

So its fitness value of 11114.1 is little less than maximum fitness value of 12,000 in

1013 ms runtime. It takes approximately 25 generations to converge to fitness value

of 11114.1.
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We can conclude that, since we set up termination condition of this analysis to

1000 ms the Genetic Algorithm did not get enough time to reach its the optimal

solution. In regarding performance measurement, both algorithms have the potential

to solve the research problem correctly, but in respect of speed or time, Genetic

Algorithm is slower than Particle swarm optimization.

3.5 GUI Environments Comparison Analysis

This research problem has implementation with different graphical user interface

(GUI) environments. The basic form is a representation in three-dimensions. In ad-

dition to three-dimensions, pheromone and terrain can be added to it. With different

complex GUI environments, time complexity or cost to find a possible global solution

also varies.

3.5.1 Implementation

For this test, transmitters are set up in random places in three-dimensional space.

With normal settings both Particle Swarm Optimization Algorithm and Genetic Al-

gorithm is run 50 times. The overall fitness values and run-time values are averaged

respectively. It is for basic representation in three dimensions. Then the pheromone

is added to three-dimensional representation and tested in the same way. Likewise,

terrain is added to three-dimensional representation separately and tested. Finally,

both pheromone and terrain are added to three-dimensional representation and tested.

The more complex is the environment, the more the time cost to evaluate the fitness

function hence, more generations are needed for both PSO and GA.

3.5.2 GUI Environments Result Comparison

Figure 3.8 shows the average fitness graph and Figure 3.9 shows the average run-

time graph for both Particle Swarm Optimization Algorithm and Genetic Algorithm
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Fig. 3.8. Fitness Graph for Test Case Analysis for Different GUI Environment.

for different GUI environments. In Figure 3.8 the horizontal and vertical axis repre-

sent an average fitness value for PSO and average fitness value for GA respectively.

We have four data points A, B, C, and D that represents four GUI environments:

3D, 3D+Pheromone, 3D+Terrain, and 3D+Pheromone+Terrain. From the graph,

GA has equal or higher average fitness value than PSO. From two-dimensional error

bars in the graph, the standard deviation of GA is equal to PSO and in some cases

for PSO variations in fitness value is little higher than GA. For Figure 3.9, we have

similar four data points A, B, C, and D. Average run time of GA is higher than PSO
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Fig. 3.9. Runtime Graph for Test Case Analysis for Different GUI Environment.

in most of the cases and GA has a higher standard deviation than PSO. Except for

basic three-dimensional representation, in all other representations, GA has higher

fitness hence, a better solution than PSO. Moreover, in all GUI representations, GA

has a higher time cost value than PSO. Although the Genetic Algorithm has a better

solution than Particle swarm optimization, it cannot compensate very higher time

cost for more complex situations.
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4. SUMMARY

Implementing dynamic Electronic Warfare Asset Allocation Problem (EWAAP) with

the Genetic Algorithm and performance analysis of the Genetic Algorithm with the

Particle Swarm Optimization Algorithm were two parts of this research. Previous

C++ coding style in the back-end, and QT data visualization for displaying three-

dimensional space, pheromone, and terrain were maintained in the Genetic Algorithm

implementation. For receiver numbering 3 or more, the Genetic Algorithm has a

higher fitness value, hence, better global solution but it costs more run time. Sta-

tistically, for asset numbers from 3 to 6 the GA has (15-30%) higher fitness value

with (26-82%) more computational time than PSO. For complex set up, with three-

dimensional space, pheromone, and terrain; time complexity increases both for Parti-

cle Swarm Optimization and Genetic Algorithm but it impacts the Genetic Algorithm

more. With 3D space, pheromones, and complex terrains, the GA has 3.71% better

fitness value but the speed of GA is 121% slower than PSO. The Genetic Algorithm

can find a global solution like Particle Swarm Optimization, sometimes with a higher

fitness value. But the Genetic Algorithm has lower convergence speed than particle

swarm optimization. In conclusion, the Genetic Algorithm proves to give a better

solution in some cases but the time cost is higher for the Genetic algorithm.
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5. RECOMMENDATIONS

The Genetic algorithm has different variants for selection, crossover, and mutation

process, but not every technique was tried due to the structural complexity of the

code. The interconnection of code among different sections makes it a large complex

Object-Oriented style. It was not possible to analyze with different GA variants.

It may happen that with different parameters and settings, Genetic Algorithm can

perform better than Particle Swarm Optimization.

Lastly, because of the structure of the code, this research could be implemented

with even more complex topographical constraints, defining the assets on land, sea,

or undersea; and providing limitations on asset physics and spatial movements.
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