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ABSTRACT

Karakus, Murat PhD, Purdue University, December 2018. A Framework for Economic
Analysis of Network Architectures. Major Professor: Arjan Durresi.

This thesis firstly surveys and summarizes the state-of-the-art studies from two

research areas in Software Defined Networking (SDN) architecture: (i) control plane

scalability and (ii) Quality of Service (QoS)-related problems. It also outlines the

potential challenges and open problems that need to be addressed further for more

scalable SDN control planes and better and complete QoS abilities in SDN networks.

The thesis secondly presents a hierarchical SDN design along with an inter-AS QoS-

guaranteed routing approach. This design addresses the scalability problems of con-

trol plane and privacy concerns of inter-AS QoS routing philosophies in SDN. After

exploring the roots of control plane scalability problems in SDN, the thesis then pro-

poses a metric to quantitatively evaluate the control plane scalability in SDN. Later,

the thesis presents a general framework for economic analysis of network architectures

and designs. To this end, the thesis defines and utilizes two metrics, Unit Service Cost

Scalability and Cost-to-Service, to evaluate how SDN architecture performs compared

to MPLS architecture in terms of unit cost for a service and cost of introducing a

new service along with giving mathematical models to calculate Capital Expendi-

tures (CAPEX) and Operational Expenditures (OPEX) of a network. Moreover, the

thesis studies the problem of optimal final pricing for services by proposing an opti-

mal pricing scheme for a service request with QoS in SDN environment while aiming

to maximize benefits of both service providers and customers. Finally, the thesis

investigates how programmable network architectures, i.e. SDN, affect the network

economics compared to traditional network architectures, i.e. MPLS, in case of fail-
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ures along with exploring the economic impact of failures in different SDN control

plane models.
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1 INTRODUCTION

Traditional networks have reached their architectural limitations. Increasing cloud

services, server virtualization, sharp growth of mobility, content-like video, and big

data etc. have led researchers and network operators/administrator/analysts to re-

think today’s network architectures. In traditional architectures, network devices

and appliances are complex and difficult for (re)configuration and (re)installation

since they require highly skilled personnel. Adding or moving a device from a net-

work requires extra costs. It is also time-consuming because IT people need to deal

with multiple switches, routers, etc. and update ACLs, VLANs and other mech-

anisms [1]. Furthermore, as business demands or user needs increase day by day,

application developers, carriers, and enterprises delve into evolving new services and

facilities. However, vendor dependency is an obstacle deterring them from developing

new networking applications and services for their networks due to slow equipment

product cycle, application testing and deployment. Modifying forwarding hardware

in networking devices like routers and switches renders new network applications pos-

sible. If developers become more capable of making changes to forwarding hardware

in routers and switches, new applications can be developed without dependency of

equipment vendors. Therefore, today’s data centers, carriers, and campuses need

more dynamic architectures.

Software Defined Networking (SDN) [2–6] architecture has emerged in response

to the aforementioned limitations of traditional networking architectures. SDN aims

to decouple the control plane and data plane. This separation provides network oper-

ators/administrators with efficient use of network resources and eases provisioning of

resources. Also, SDN brings ease of programmability in changing the characteristics of

whole networks. This simplifies the management of the network, since it is decoupled

from the data plane. Therefore, network operators can easily and quickly manage,
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configure, and optimize network resources with dynamic, automated and proprietary-

free programs in SDN architecture [1, 7]. Google’s datacenter WAN, B4 [8], is one

of the examples for SDN adopted in a large-scale network with the aforementioned

purposes . In addition, since the network is logically centralized in SDN, controllers

have a global visibility of the whole network unlike conventional networking. Hence,

they can dynamically optimize flow-management and resources.

1.1 Network Programmability

Network programmability has been proposed as a solution to mitigate the deficien-

cies as mentioned earlier for the traditional architectures. While there is no consensus

on the definition of the network programmability, it is mostly accepted that a network

is programmable when the control and data planes are separated by an interface that

allows modification and monitoring of the network state through machine readable

data-driven APIs. The value of the network programmability is three-fold: (a) the re-

duction in complexity enabled by centralized routing decisions, (b) the ability to allow

applications to interact with the control plane, and (c) automation of network-related

tasks such as network resource configuration/optimization through proprietary-free

programs written by network administrators [9].

Network programmability has its own benefits in terms of both network manage-

ment and network revenues. Today, networks are mostly configured manually for

provisioning, which requires considerable time, effort, and expertise. This process is

error-prone and can lead to many mistakes due to human interventions. Also, manual

repetition of the same configuration across a large number of heterogeneous devices

inevitably increase the possibility of having some errors in someplace. Network pro-

grammability provides automation that is a cure for large-scale repetition of common

tasks that will result in saving time and making the network more error-free and

available by reducing the Mean Time Between Mistakes (MTBM). Automating these
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tasks can drive the bottom line down by reducing the OPerational EXpenditures

(OPEX) required to run the network as well.

Moreover, programmable networks help increase the network utilization. Network

traffic often follows daily, hourly, weekly, and seasonal patterns. These patterns may

require rapidly moving of traffic around to less utilized links. Since this rapid modi-

fication to the network is not trivial in the traditional architectures, network admin-

istrators often over provisions their network resources, which increases the CAPital

EXpenditures (CAPEX) in the network. For example, bandwidth is selected to sup-

port the highest traffic across a single link. During non-peak times, this bandwidth

is not used and is, therefore, a cost that has no return on investment is incurred. In

a programmable network, traffic can be engineered in near real time to adjust the in-

creasing load on the network. This dynamic nature prevents network operators from

unnecessary network capacity increases and, thus, produces CAPEX savings. Plan-

ning bandwidth usage in advance in this way is called bandwidth calendaring. While

calendaring cannot replace the need for effective bandwidth planning, it can move the

emphasis away from building for peak load and toward building for a number closer

to the average load across longer time periods.

There have been different attempts to realize network programmability in the

literature. Active Networks [10], software routers such as Click Router [11] and XORP

[12], Overlay Networks [13], and Path Computation Element (PCE) [14] are just a few

examples to name from both academy and industry. SDN is another recent networking

paradigm to bring network programmability in use of networking industry.

1.2 Problem Statement

Increasing revenue for a network is crucial for its operations as well as future. Net-

works can increase their revenue by serving more end-users, reducing CAPEX/OPEX,

introducing new services and so on. Network owners need wise plans before making

decisions on investing money. These plans include deciding on which networking
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architecture is appropriate for specific types of services, pricing those services, scal-

ability aspects and programmability points of architectures and so on. These are all

challenging decisions and have impact on sustainability of a network.

Network architectures, such as IntServ, DiffServ, and MPLS, have been proposed

over the years based on the needs of end-users. Each network architecture has its own

advantages and disadvantages. For example, IntServ is capable of per-flow resource

reservation unlike the DiffServ architecture, IntServ architecture suffers from scala-

bility problems. These pros and cons define the limits of the network architectures

and have impact on how network services are provided to customers. In addition

to network architecture, network topology designs, such as centralized, distributed,

and hierarchical, can also have impact on a network services and operations due to

some factors such as latency, bandwidth provisioning, overhead generation and so on.

Therefore, it is important for a network owner to aware advantages and disadvan-

tages of network architectures and topology designs regarding economic aspects of

the network before investing on specific ones.

Also, having a scalable network is crucial for providing network services to cus-

tomers. If the network is not scalable, some service interruptions or cuts can occur,

which can then adversely affect the revenue of the network. Scalability proposals in

literature study the network scalability problem in terms of improving the scalabil-

ity of architectures or topology designs with respect to some network metrics such

as throughput and latency and do not propose a metric to quantify the scalability

itself. However, a metric to quantify scalability of a network architecture or design

can provide network owners and administrators some insights while they construct

their networks.

Moreover, determining the unit cost of a service that a network provides to its

customers is vital for networks to sustain their businesses in the market. This process

is followed by determination of an optimum final price to be charged by the networks

for their services. On one hand, network owners want to charge more from customers

to maximize their profit and revenues. On the other hand, if they determine the costs
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and final prices for their services too low or high, they may have the risk of making

loss or losing customers in the long run. Therefore, how to determine the cost and

set the optimal prices for network services to make the revenue and profit maximized

while attracting customers is a challenging problem. Although many solutions have

been proposed from both industry and academia, pricing the Internet services is still

an ongoing research problem for researchers. Both of these phases are crucial and

require careful and correct mechanisms for a network’s business future.

1.3 Dissertation Statement

Recently, SDN has emerged as a new way to architect networks by providing

network programmability and exposing network APIs. SDN has got the attention

of researchers from both academia and industry as a means in order to decrease

network costs and generate revenue for service providers due to features it promises

in networking [15–22]. SDN paradigm has several key attributes that have an impact

on the CAPEX and OPEX equations of a network. Some of the main attributes of

SDN are network programmability, hardware and software independence, virtualized

software infrastructure, multi-tenancy, and resource pooling and so on. These features

as well as how SDN can impact CAPEX and OPEX for a network are explained later

in the thesis.

To address the aforementioned challenges, this thesis firstly introduces a scalable

hierarchy-based SDN network design to mitigate the scalability problem of SDN ar-

chitecture. The proposed design helps network administrators reduce their CAPEX

and OPEX through the scalability-driven design philosophies adopted as explained

later in the thesis. It also addresses QoS routing privacy problem of networks, which

is one of the challenging issue of inter-AS QoS routing problem.

Secondly, this thesis presents a metric in order to evaluate the control plane scal-

ability in SDN. The metric is introduced after carefully exploring the roots of control

plane scalability problem in SDN. The thesis also gives mathematical models of the
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proposed metric over different control plane designs. The metric realizes the real scal-

ability performance of a network by not just focusing on typical network parameters

such as throughput and latency. It also captures the relationship between the unit

service cost and scalability as shown later in the thesis.

Thirdly, this thesis defines two metrics, “Unit Service Cost Scalability” and “Cost-

To-Service, to measure the unit cost for a service request as well as cost of introducing

a new service in the network in case of SDN architecture. The thesis compare the

SDN architecture to MPLS architecture to evaluate how programmable networking

performs compared to traditional networking using the two metrics. The thesis also

presents mathematical models to calculate CAPEX and OPEX of an SDN network.

Later, the thesis also presents an optimal final pricing scheme to charge users while

maximizing network benefits of both the network an customers.

Finally, the thesis also investigates how programmable network architectures, i.e.

SDN technology, affect the network economics compared to traditional network archi-

tectures, i.e. MPLS technology, under certain failure scenarios. This work also aims

at being a useful primer to providing insights regarding how network architectures

and control plane models perform with respect to network economics under failures

for network owners to plan their investments accordingly.

1.4 Dissertation Organization

This chapter outlines the structure and presents a brief overview of the chapters.

Chapter 2 surveys scalability problems of the control plane (i.e. controllers) in

SDN architectures as opposed to other general SDN surveys. It discusses the main

causes that make the control plane suffer from scalability issues in an SDN architec-

ture. It also presents characterizations and classifications of proposals based on the

primary concepts exploited to alleviate the controller scalability issues.

Chapter 3 aims at making a picture of QoS-motivated literature in OpenFlow-

enabled SDN networks by surveying relevant research studies. It organizes the related
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studies into seven categories that are the most prominent ways in which QoS can

benefit from the concept of SDN. These categories (i.e. problems) and related studies

are explained (i.e. solutions) in corresponding sections. In addition, QoS capabilities

of OpenFlow protocol is discussed by reviewing its versions along with some well-

known, open-source, and community-driven control platform projects. Finally, it

outlines the potential challenges and open problems that need to be addressed further

for improved and complete QoS abilities in OpenFlow-enabled SDN networks.

Chapter 4 proposes a hierarchy-based network architecture along with an inter-

AS routing approach with QoS. It exploits idea of levels in which networks with

controllers reside and a main controller, which works like a broker, is on top of them

to keep the global network state and view. The experiment results indicate that a

controller in a hierarchic setting handles 50% less number of traffic than a controller

in a non-hierarchic environment.

Chapter 5 firstly explores the roots of control plane scalability problem in SDN as

well as proposed existing solutions. A metric is then proposed in order to evaluate the

control plane scalability in SDN. This chapter also gives mathematical models of the

proposed metric over different control plane designs. Furthermore, the performance

of these control plane designs is compared by extensive experiments.

Chapter 6 investigates how programmable networking, i.e. SDN technology, affects

the network economics compared to traditional networking, i.e. MPLS technology.

To this end, this work defines two metrics Unit Service Cost Scalability and Cost-to-

Service to evaluate how SDN architecture performs compared to MPLS architecture.

Also, mathematical models are presented to calculate certain cost parts of a network.

In addition, a comparison of different popular SDN control plane models, Centralized

Control Plane (CCP), Distributed Control Plane (DCP), and Hierarchical Control

Plane (HCP), are given to understand the economic impact of them with regards

to the defined metrics. Video service with different traffic patterns, (1) 20% (inter-

domain) - 80% (intra-domain), 2) 50% (inter-domain) - 50% (intra-domain), and 3)



8

80% (inter-domain) - 20% (intra-domain), has been used for the comparison due to

its QoS requirements and the facts explained earlier.

Chapter 7 proposes an optimal pricing scheme for a service request with QoS

in SDN environment using the Nash bargaining problem, which aims to maximize

benefits of both service providers and customers. It integrates a new cost function

and network connectivity degree factor into the proposed pricing scheme. In addition,

it gives a general scheme of revenue and profit that a service provider makes. This

scheme employs the idea of penalty for each request that the service provider cannot

provide to its customers. Furthermore, this work applies these schemes in a scalable

SDN-based hierarchic architecture and evaluate with extensive experiments.

Chapter 8 investigates how programmable network architectures, i.e. SDN tech-

nology, affect the network economics compared to traditional network architectures,

i.e. MPLS technology, in case of failures. In addition, it explores the economic

impact of failures in different SDN control plane models: Centralized (Single) Con-

trol Plane (CCP), Distributed (Flat) Control Plane (DCP), and Hierarchical Control

Plane (HCP). This work exploits the predefined metric called Unit Service Cost Scal-

ability to evaluate economic performances of SDN architecture along with aforemen-

tioned control plane models and MPLS architecture under different failure scenarios.

It considers two different failure types: i) a random single data plane link failure and

ii) a random controller (i.e. control plane) failure.

Finally, Chapter 9 concludes this dissertation with concluding remarks and pro-

vides directions for future work.
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2 A SURVEY: CONTROL PLANE SCALABILITY ISSUES AND

APPROACHES IN SOFTWARE-DEFINED NETWORKING (SDN)

2.1 Abstract

SDN architecture has emerged in response to limitations of traditional network-

ing architectures in satisfying today’s complex networking needs. In particular, SDN

allows network administrators to manage network services through abstraction of

lower-level functionality. However, SDN is a logically centralized technology. There-

fore, scalability, and especially the control plane (i.e. controller) scalability in SDN

is one of the problems that needs more attention. This survey study first discusses

the scalability problems of controller(s) in an SDN architecture. It then comprehen-

sively surveys and summarize the characterizations and taxonomy of state-of-the-art

studies in SDN control plane scalability. The study organizes the discussion on con-

trol plane scalability into two broad approaches: Topology-related approaches and

Mechanisms-related approaches. Topology-related approaches study the relation be-

tween topology of architectures and scalability issues. It has sub-categories of Central-

ized (Single) Controller Designs and Distributed approaches. Distributed approaches,

in turn, have also sub-categories: Distributed (Flat) Controller Designs, Hierarchi-

cal Controller Designs, and Hybrid Designs. Mechanisms-related approaches review

the relation between various mechanisms used to optimize controllers and scalability

issues. It has sub-categories of Parallelism-based Optimization and Control Plane

Routing Scheme-based Optimization. Furthermore, this study outlines the potential

challenges and open problems that need to be addressed further for more scalable

SDN control planes.



10

2.2 Introduction

Increasing cloud services, server virtualization, sharp growth of mobility and

content-like video have led researchers to rethink today’s network architectures. In

traditional architectures, network devices and appliances are complex and difficult

for (re)configuration and (re)installation since they require highly skilled personnel.

Adding or moving a device from a network requires extra costs. It is also time-

consuming because IT people need to deal with multiple switches, routers, etc. and

update ACLs, VLANs and other mechanisms [1]. Furthermore, as business demands

or user needs increase day by day, application developers, carriers, and enterprises

delve into evolving new services and facilities. However, vendor dependency is an ob-

stacle deterring them from developing new networking applications and services for

their networks due to slow equipment product cycle, application testing and deploy-

ment. Therefore, today’s data centers, carriers, and campuses need more dynamic

architectures.

SDN architecture has emerged in response to the aforementioned limitations of

traditional networking architectures. SDN aims to decouple the control plane and

data plane. This separation provides network operators/administrators with efficient

use of network resources and eases provisioning of resources. Also, SDN brings ease

of programmability in changing the characteristics of whole networks. This simplifies

the management of the network, since it is decoupled from the data plane. Therefore,

network operators can easily and quickly manage, configure, and optimize network

resources with dynamic, automated and proprietary-free programs in SDN architec-

ture. Google’s datacenter WAN, B4 [8], is one of the examples for SDN adopted in

a large-scale network with the aforementioned purposes. In addition, since the net-

work is logically centralized in SDN, controllers have a global visibility of the whole

network unlike conventional networking. Hence, they can dynamically optimize flow-

management and resources.
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Despite the advantages of centralized control in SDN architectures, SDN faces

some issues challenging its nature (i.e. centralized control) due to day by day increas-

ing network demands. Although network operators enhance the performance of the

network controllers, it still cannot be enough to meet the high network demands such

as flow request and monitoring network statistics. For example, one of the earlier

SDN controllers, NOX [23], can serve only 30K flow requests per second with a re-

sponse time less than 10 ms. This insufficiency appears more in large-scale networks

or data centers compared to small networks. Kandula et al. [24] report that a cluster

of 1500 servers receives 100K flows per second on average. Also, Erickson [25] states

that a network with 100 switches can result in 10 million flow arrivals per second in

the worst case. These numbers indicate that the control plane in an SDN architecture

is prone to suffer from scalability issues due to its centralized nature. Furthermore,

Sezer et al. [1] state that one of the main challenges in SDN is the scalability issue,

which especially needs more attention by researchers. Therefore, understanding and

improving the scalability of the SDN control plane (i.e. controller) is a critical prob-

lem for successful adoption of SDN for large scale networks or networks with many

flows.

2.2.1 Chapter Organization

This chapter surveys scalability problems of the control plane (i.e. controllers)

in SDN architectures as opposed to other general SDN surveys. It discusses the

main causes that make the control plane suffer from scalability issues in an SDN

architecture. It also presents characterizations and classifications of proposals based

on the primary concepts exploited to alleviate the controller scalability issues. In

addition, the study points out the main challenges along with existing proposals in

controller scalability.

The data plane scalability in SDN is not a part of this study’s scope. However,

as a brief note, data plane scalability in SDN is mostly dominated by (1) processing
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power, (2) capacity of memory/buffer, and (3) software implementation of data plane

devices. For a more detailed and comprehensive discussion on data plane scalability

in SDN, the readers are referred to following studies: [26–33].

In the remaining sections of the chapter, Section 2.3 gives a light-weight overview

of the SDN framework with OpenFlow protocol. Section 2.4 discusses the Scalability

concept regarding its meaning and present some scalability metrics proposed in the

literature to quantitatively measure the scalability of systems both in general and SDN

context as well as contributors to scalability issues in SDN. Section 2.5 presents the

organization of the studies over control plane scalability in SDN. Section 2.6 outlines

the relation between topology of architectures and scalability issues while Section

2.7 discusses the relation between other mechanisms used to optimize the controller

performance and scalability issues. Section 2.8 presents a comparative discussion over

control plane scalability proposals. In Section 2.9, the study outlines the potential

challenges and open issues that need to be addressed further for fully scalable SDN

control planes in the future in a nutshell. Finally, Section 2.10 wraps the chapter up

with concluding remarks.

2.3 An Overview of SDN Architecture and OpenFlow Protocol

SDN architecture with OpenFlow protocol enables network operators to treat flows

in a finer-granular way compared to the traditional networks by means of controllers.

In a traditional network, flows (or packets) are mainly treated based on a single

or a few attribute combinations of packet headers, such as longest destination IP

prefixes, destination MAC addresses, or a combination of IP addresses and TCP/UDP

port numbers etc. SDN allows to manage flows based on more attributes of packet

headers by means of a Controller-Data Plane Interface (C-DPI) such as OpenFlow

protocol [34–37].
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As shown in Fig. 2.1, Open Networking Foundation (ONF)1 vertically splits SDN

architecture into three main planes [38]:
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Figure 2.1.: An Overview of an SDN Control Plane. Main components in a control
plane of an SDN network are a controller(s) and interfaces (e.g. A-CPI, C-DPI, and
I-CPI).

• Data Plane: The data plane is the bottom plane and consists of network devices

such as routers, physical/virtual switches, access points etc. These devices are

accessible and managed through C-DPIs by SDN controller(s). The network

elements and controller(s) may communicate through secure connections such

as the TLS connection. OpenFlow protocol is the most prevalent standard

C-DPI used for communication between controller(s) and data plane devices.

• Control Plane: An SDN control plane comprises a set of software-based SDN

controller(s) to provide control functionality in order to supervise the network

forwarding behavior through C-DPI. It has interfaces to enable communica-

tion among controllers in a control plane (Intermediate-Controller Plane Inter-

face, i.e. I-CPI [39], optionally secured using the TLS), between controllers

and network devices (C-DPI), and also between controllers and applications

1https://www.opennetworking.org/
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(Application-Controller Plane Interface, i.e. A-CPI). An A-CPI2 renders possi-

ble the communication between network applications/services and controller(s)

for network security, management etc. A controller consists of two main com-

ponents: Functional components and control logic. Controllers include more

than one functional components such as Coordinator, Virtualizer etc. to man-

age controller behaviors. Furthermore, SDN control logic in a controller maps

networking requirements of applications into instructions for network element

resources [38].

• Application Plane: An SDN application plane consists of one or more end-

user applications (security, visualization etc.) that interact with controller(s)

to utilize an abstract view of the network for their internal decision making

process. These applications communicate with controller(s) via an open A-CPI

(e.g. REST API). An SDN application comprises an SDN App Logic and A-CPI

Driver.

In an SDN network with OpenFlow protocol and OpenFlow-enabled switches,

there are three main parts in a switch: Flow Table, Secure Channel, and OpenFlow

Protocol. An OpenFlow switch maintains a number of flow tables containing a list

of flow entries. Each flow entry consists of 3 parts: A “Rule” field to define the

flow entry based on certain header attributes such as source/destination addresses,

an “Action” field to apply on a packet matching the values in the “Rule” field, and

a “Stats” field to maintain some counters for the entries [37]. A Secure Channel

(e.g. TLS) is the interface that connects data plane elements to a remote controller.

Switches are managed and configured by the controller over the secure channel. In

addition, the controller receives events from the switches and sends packets out to

switches through this channel.

In SDN, a controller can work in three operational modes to setup a new flow rule

(a.k.a flow entry): reactive mode, proactive mode, and hybrid mode [40]:

2An A-CPI is mostly called “Northbound Interface” by the SDN community.
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• Reactive Mode—In the reactive mode, when a new packet arrives to a network

device (e.g. switch), the switch does a flow rule lookup in its flow tables. If no

match for the flow is found, the switch forwards it to the controller using C-DPI

so that the controller decides how to handle the packet. After the controller

processes the packet according to the network policies, it creates and sends a

flow entry to be installed in the network device. Future flows matching with

this flow entry based on packet header attributes will be treated according to

the corresponding matching rule.

• Proactive Mode—In the proactive mode, flow entries are setup in flow tables of

the switches before new flows arrive at the switches. When a packet arrives at

a switch, the switch already knows how to deal with that packet. In this case,

the controller is not involved in any flow rule setup process.

• Hybrid Mode—In the hybrid mode, a controller benefits advantages of both

reactive and proactive modes. It is quite possible that network administrators

proactively install certain flow entries in data plane devices and the controller(s)

reactively modify (delete/update) them or even add new flow entries based on

incoming traffic.

While the proactive mode brings some concerns regarding inefficient use of switch

memory, the reactive mode provides more agile, flexible, and dynamic environment

for both controllers and switches [40].

2.3.1 Scalability Support in OpenFlow Protocol

There are also some scalability related improvements in OpenFlow specifications.

One improvement is the “group table mechanism” specified in version 1.1 [41] and

later. A group table consists of group entries. A group entry, in turn, consists of a

group identifier, a group type, counters, and a list of action buckets. This mechanism

enables multiple flow table entries to point to the same group identifier, so that the
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group table entry is performed for multiple flows. For example, if you need to update

the action on this set of flow table entries (all have the same action), the controller

can only update the pointed group table entry action instead of updating the action

of all flow table entries. Another improvement is that it provides multiple controller

support as of its version 1.2 [42] through the “controller role change mechanism”.

This scheme enables a switch to establish communication with a single controller or

multiple controllers in parallel under different controller roles such as master, equal,

and slave.

2.4 Scalability and Its Causes in SDN

Scalability is a frequently-claimed attribute of various systems. It is a multi-

dimensional topic. While the basic notion is intuitive, the term scalability does not

evoke the same concept to everybody. Therefore, there is no general precise agreement

on neither its definition nor content. While some people may refer to scalability as

optimization of processing power to CPUs, others may define it as a measure of

parallelization of applications across different machines. However, regardless of its

meaning to someone, it is a desired property indicating positive sense regarding a

system, architecture, algorithm and so on.

Furthermore, trade-offs concerning some concepts such as performance, resiliency,

availability, reliability and flexibility have to be taken into account by network design-

ers and managers while designing a network architecture [43]. A “solution” proposed

as a scalability cure for a network may introduce trade-offs that harm other useful

properties of the network. For example, in the context of SDN, proactive rule installa-

tion in SDN switches decreases the load of the controller, thus reducing the processing

time and flow initiation overhead in the controller. However, this constraints the flex-

ibility coming from reactive flow installation and reduces decision-making dynamicity

of the controller and management of the network. Also, controller distribution is

one way to overcome computational load on controller but it brings consistency and
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synchronization problems as well. Therefore, scalability is not an independent prob-

lem that can be exclusively dealt with but is a combination of issues that introduces

trade-offs to be explicitly stated while proposing a remedy.

2.4.1 Existing Scalability Metrics in General

There are several research efforts [44–50] proposing a metric to measure scalability

of systems. Most of these metrics are for homogeneous environments. The majority

of these proposals revolve around two major types of scalability metrics: Isospeed

scalability and Isoefficiency scalability.

The Isospeed scalability is characterized by the fact that an achieved average

unit speed of an algorithm on a given machine can remain constant with increasing

number of processors and problem size for an algorithm-machine combination [44].

In [45], the authors present a metric to describe the scalability of an algorithm-

machine combination in homogeneous environments. Their scalability function is

defined as ψ(p, p′) = p′W
pW ′ where p and p′ are the initial and scaled number of processors

of the systems respectively, and W and W ′ are the initial and scaled problem size

(workload) respectively.

The Isoefficiency scalability is described as the ability of parallel machine to keep

the parallel efficiency constant when the system and problem size increase [46]. The

parallel efficiency is defined as speedup over the number of processors, i.e. E = S
p
.

Speedup is also given by the ratio of problem size (W ) and parallel execution time (Tp),

i.e. S = W
Tp

where Tp = W+T0(W,p)
p

with T0(W, p) extra communication overhead [47].

Pastor and Orero [48] define heterogeneous scalability by presenting a heteroge-

neous efficiency function. They attempt to extend the homogeneous Isoefficiency

scalability model to heterogeneous computing and, therefore, their work inherits the

limitation of parallel speedup, requiring the measurement of solving large-scale prob-

lem on single node. Sun et al. [49] propose a scalability metric called Isospeed-

efficiency for general heterogeneous computing systems. This metric combines the
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roots of both Isospeed scalability and Isoefficiency scalability metrics by means of a

concept called “Marked Speed” to describe the computing power for a stand-alone

node and a combined computing system.

2.4.2 Scalability in SDN

In SDN networks, controller performance is one of the primary concerns while

designing more scalable networks. There are many studies exploring performances of

controllers with respect to different network workload, implementations, architectures

and so on [51–55]. Although studies evaluate scalability performance of controllers

they propose regarding various performance metrics, such as path installation time,

link utilization, and so on, depending on their target problem, the most prominent

and considered metrics are control plane throughput, which refers to the number of

flow requests handled per second, and (flow setup) latency, which refers to the delay

to respond flow requests, in SDN context. In SDN, a controller needs to proactively or

reactively set up (i.e. handle) and tear down flow-level forwarding state in OpenFlow

switches. Once set up, the flow forwarding state remains cached on the OpenFlow

switches so that this process is not repeated for subsequent packets in the same flow.

This setup process includes a latency as well. It is perceived that this flow setup

process is to be likeliest source of control plane (i.e. controller) performance bottle-

neck by the SDN community. Hence, the number of flow requests handled per second

(throughput) and flow setup latency come into prominence in evaluation of control

plane scalability performance. Therefore, the term Scalability, particularly control

plane scalability in SDN context, is characterized by the aforementioned two metrics,

throughput and flow setup latency, as well as in this work. A more detailed compar-

ison of studies with respect to their scalability performance in terms of throughput

and flow setup latency metrics is given in Section 2.8.

There are also few research efforts proposing a metric to quantify scalability of

SDN networks. Hu et al. [56] present a metric for SDN control plane scalability. They
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use the scalability metric, which is based on productivity of a distributed system,

presented in [50] to quantify the scalability of SDN control plane by adapting to

the SDN case. A similar work in [57] also proposes a metric to quantify control

plane scalability by ratio of workload (number of flows entering the network through

the data plane) and overhead (number of messages processed in the control plane).

However, these metrics have been proposed recently. Therefore, their adoption by

SDN research community may be seen as one of the metrics for scalability performance

measurement by the time.

2.4.3 Contributors to Scalability Issues in SDN

SDN is a logically centralized architecture, therefore scalability is one of the crucial

issues to be addressed in SDN as in many traditional networks [58]. However, in

particular, scalability concerns of the control plane in SDN are intrinsic to SDN

owing to its separated structure. This section points out the main reasons that make

the control plane a scalability bottleneck in SDN.

• Separation of Control Plane and Data Plane: The separation of the data plane

and control plane is a contributor to scalability issues of the SDN architecture,

particularly control plane scalability, since this decoupling requires the manage-

ment of network devices from a remote controlling mechanism (i.e. controller).

Since data plane devices have no longer ability to make decisions about traf-

fic packets a communication has to be established with controllers to receive

corresponding decisions about the packets. This communication brings extra

message burden for both controllers and data plane devices. Therefore, this

separation may result in significant signaling overhead between control plane

and data plane, depending on the network architecture (e.g. distributed, hier-

archical etc.) and applications on top of the controller. Hence, this makes the

control plane play a bottleneck role regarding the scalability of the system.
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• Quantity of Events/Requests Handled by a Controller: This problem pertains

more to the single controller designs than to the distributed (flat), hierarchical

or hybrid designs since it results from the centralization of computation at a

single central entity. An increase in the number of network devices reinforces

the foregoing problem for controllers. As the network grows with respect to the

size of the nodes (e.g. hosts, switches etc.), the controller will have to cope with

more events and flow requests, which can make the controllers a bottleneck point

due to its limited computation resources such as CPU and memory. Therefore,

the number of control messages sent by data plane devices to the controller(s)

becomes one point to be addressed because the controller may not be able to

handle all the incoming requests. For example, a NOX controller can handle

up to 30K requests/sec, which is enough for small to mid-size networks [59].

However, that number may not be enough for some network settings, such as

data centers, depending on the number of servers and the switches [24,60]. This

issue may also result in delay in programming of data-plane (devices) since it

may increase flow rule setup process delay at controller, which eventually affects

the speed of the network.

• Controller-Switch Communication Delay: As stated in [61], the controller’s

placement (distance between network devices and controller) is one of the factors

that introduces latency into the flow setup time. Flow setup latency is typically

determined by switch packet processing time, RTT (round-trip-time) between

controller and switches, and controller packet processing time. If the controller-

switch communication delay (determined by RTT) is high, then resulting flow

setup latency becomes high too, which causes longer flow rule addition, deletion

or update in switch flow tables. This, in turn, may result in congestion in both

control plane level and data plane level and longer failover time in the network.

Hence, scalability of the controller degrades. Although this delay depends on

physical distance between controllers and data plane devices, a well-defined

placement of controllers may minimize the delay. This particularly becomes
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important in WAN compared to small scale networks. Azodolmolky et al. [62]

outline a comprehensive analytical model for the behavior of a scalable SDN de-

ployment regarding boundary performance of event processing delay and buffer

space of SDN controllers by means of the network calculus as a mathematical

framework.

SDN brings the possibility of various network innovations, but lacks uniform def-

initions and standard implantation in reality. Many essential issues of the controller

(plane), however, need to be well addressed so as to improve the development and

usages of SDN.

2.5 Classification of Control Plane Scalability Proposals

As discussed in Section 2.4, there is no consensus on the definition of scalability.

Therefore, it is not easy to present an unified classification for scalability solutions.

The organization presented reflects this study’s own point of view over the proposed

studies in SDN control plane scalability.

As shown in Fig. 2.2, this study organizes the discussion on control plane scala-

bility into two broad approaches.

The first approach is Topology-related Approaches with sub-categories of Central-

ized (Single) Controller Designs and Distributed approaches. This category studies

the relation between topology of architectures and scalability issues. Distributed ap-

proaches are Distributed (Flat) Controller Designs, Hierarchical Controller Designs

and Hybrid Designs. Reducing the workload on a controller will result in a better

performance of the controller regarding scalability. Therefore, distribution of control

plane (i.e. controller) workload among controllers is one way related to the scalability.

Hybrid designs represent the studies that leverage the data plane by devolving some

limited control functions to the switches to partition the control plane workload. This

approach is hybrid due to involvement of both the control plane and data plane in

the network control. It differs from the distributed (flat) and hierarchical designs in
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Control Plane 
Approaches

Mechanisms-related
Approaches

Centralized (Single) 
Controller Designs

Distributed 
Approaches

Distributed 
(Flat) Controller 

Designs

Topology-related
Approaches

Hierarchical 
Controller 

Designs

Hybrid 
Designs

Parallelism-based 
Optimization

Control Plane 
Routing Scheme-

based Optimization

Figure 2.2.: Taxonomy of Control Plane Approaches in SDN. The proposed ap-
proaches are categorized into two categories with sub-categories. Topology-related
approaches revolve around structure of the framework to distribute the total work-
load that the controllers handle. Mechanisms-related approaches offer different ways
of optimization for controllers and application implementations.

the way that switches are involved in decision processing and network control. These

approaches are explained further in the corresponding subsections throughout the

chapter.

The second approach, Mechanisms-related Approaches, reviews the relation be-

tween various mechanisms used to optimize controllers and scalability issues. Enhanc-

ing controllers with respect to their performance by some optimization techniques re-

sults in better scalability performance too. In addition, reducing the events resulting

from routing mechanism of a controller is another way to increase the scalability in

control plane since routing process brings worth considering load to controller.

Also, some proposals may seem to belong more than one category. Hence, this

work classifies and presents such proposals by mainly focusing on their primary ap-

proaches.

Table 2.1 shows the network types targeted by the studies. Most of the proposals

target data centers, enterprise networks or WAN networks since these networks are

more vulnerable to the control plane scalability issues.
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Table 2.1.: Network types targeted by the studies. Most of the proposals target data
centers (DC), enterprise networks or WAN networks.

Proposals

Network
Types

Campus Cloud DC Enterprise WAN

Beacon [25] X
DEFO [63] X
DevoFlow [64] X
DIFANE [65] X
DISCO [66] X X X
D-SDN [67] X
ElastiCon [68] X X
Ethane [69] X X
Fibbing [70] X X X X X
FlowBroker [71] X
HyperFlow [72] X X
Kandoo [73] X X X
Logical xBar [74] X
Maestro [75] X X
McNettle [76] X
NOX [23] X X
NOX-MT [51] X X
Onix [77] X X X X
ONOS [78] X X
Orion [79] X
Tavakoli et al. [80] X
Tam et al. [81] X
Yazici et al. [82] X X
Bari et al. [83] X
Karakus et al. [84] X
Owens et al. [85] X X X X
Soliman et al. [86] X
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2.6 Topology-related Approaches

This approach reviews the relation between topology of architectures and scal-

ability issues. The proposals that use different topology models, illustrated in Fig.

2.3, can be classified in four prevalent architectures: Centralized (Single) Controller

Designs, Distributed (Flat) Controller Designs, Hierarchical Controller Designs, and

Hybrid Designs. These designs have their own intrinsic advantages and disadvantages

with respect to control plane scalability. These architectures are explained and the

related studies are presented in corresponding subsections below.

Network
Devices

Controller

Control 
Path

Data Path

(a) Centralized (Single) Con-
troller Design

Controller

Controller

Controller

Controller-to-Controller Path

(b) Distributed (Flat) Controller De-
sign

Root Controller

Controller

Controller

Controller

(c) Hierarchical Controller Design

Controller

(d) Hybrid Design

Figure 2.3.: An Overview of Topology-related Architectures. The two-sided solid,
dashed, and dashed-dotted arrows represent two-way data path among network de-
vices, control path between controller and data devices, and controller-to-controller
path among controllers, respectively. In 2.3a (Centralized (Single) Controller De-
sign), there is one main controller with global network state. In 2.3b (Distributed
(Flat) Controller Design), every controller is responsible for different sites/parts of
network(s) with partial or full shared network view. In 2.3c (Hierarchical Controller
Design), there are levels in which controllers are responsible for different sites (sub-
domains) and a Root controller on top with global network view for global applications
like routing. In 2.3d (Hybrid Design), data plane devices are also involved in network
control.
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2.6.1 Centralized (Single) Controller Designs

This type of architecture settings revolve around a single central controller [23,69]

with a global network view. The design of this architecture is simple and it is easy to

manage the network. This design may meet the needs of small to mid-size networks.

However, it is not efficient to handle the burden of environments such as data centers

and large-scale networks due to number of events/requests that the controller must

handle as stated in the Section 2.4. Therefore, a single controller design is considered

less scalable compared to distributed (flat) controller, hierarchical controller and/or

hybrid designs.

The authors in [69] develop a new networking architecture called “Ethane” that

targets the enterprise networks although it is first deployed in campus network. In an

Ethane network, network managers are able to define policies and each request that

is not matching a flow entry has to traverse through the controller. There are three

concerns that the authors address and resolve in this architecture. First, Ethane

renders that high-level policies become the authority part to control the network.

Second, the packet paths are managed by policies in order to have better control and

global network view. Third, the Ethane network requires a precise binding between

a packet and its origin to be able to identify where the packet coming is from.

NOX [23] is inspired by the need for a centralized and uniform programmatic in-

terface that would make a network more manageable. NOX is a network operating

system that is more than just a controller platform for a network. As in most SDN

controller platforms, NOX treats the packets based on the first packet of a flow travers-

ing through the controller. This flow-based method helps in having more granular

control over the traffic in a network. In [80], the authors investigate whether gen-

eralized solutions such as NOX can handle characteristic requirements of specialized

environments such as datacenters.
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2.6.2 Distributed Approaches

This approach classifies and presents the studies [64–68, 70–74, 77–79, 81–84, 87]

that distribute the control plane workload on controllers based on topological models,

such as flat, hierarchical as well as hybrid designs. As using distributed controllers

brings advantages such as load distribution and avoiding centralized (single) controller

failure, it brings some challenges such as overhead from controller communication,

latency due to state synchronization, and (policy/state) consistency among controller

instances that are being addressed by researchers. These challenges are discussed in

Section 2.9.

2.6.2.1 Distributed (Flat) Controller Designs

In this structure, each controller manages a sub-network/domain of the whole

network. There are two strategies for distributed controller architectures to implement

controller’s network view. In the local view strategy, each controller has its own

local network view and each of its neighboring local networks is abstracted as a

logical node. In the global view strategy, on the other hand, each controller has a

global view of the whole network. In both cases, the controllers need to communicate

through controller-to-controller channels to exchange needed state information (e.g.

reachability information) regarding their domains.

HyperFlow [72] is logically centralized albeit its distributed architecture is an

event-based control plane for OpenFlow. In HyperFlow, the authors exploit local

controllers, serving all requests for their own remote sites, due to an increase in the

flow setup times and flow initiation rates. It is actually implemented as a NOX [23]

application that is responsible for: (a) global network view synchronization between

controllers, (b) communication to switches controlled by another controller from a

different site, and (c) managing responses coming from switches in other sites to the

request-originator controllers. A system called “publish/subscribe” message paradigm

is exploited to accomplish these tasks through controllers from different sites.
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In [77], the authors propose a new distributed network platform called “Onix”

for large-scale networks in response to deficiencies (e.g. providing consistent network

state distribution, global network view among network applications, and failure recov-

ery mechanisms) in a common control platform. Onix instances propagate network

states to other instances to be able to scale large networks. The authors follow three

approaches to improve scalability in Onix architecture; (1) Network Information Base

(NIB)3 partitioning by controller instances for less work, (2) cluster aggregation for

a hierarchical structure, and (3) consistency and durability of the network states for

applications. A similar work, Software Transactional Networking (STN) [87], also

proposes a distributed control plane along with a scheme with a middleware to re-

solve policy consistency among distributed controller over the data plane. While

Onix expects application writers to provide the necessary logic to detect and resolve

conflicts of network state due to concurrent control, STN propose concurrent policy

composition mechanisms that can be used by any application in a general fashion.

Tam et al. [81] study the feasibility of using multiple controllers to improve scala-

bility without global network view and limited network topology information stored

in controllers in a data center environment. They leverage flow routing example to

see practicability of these controllers and propose two approaches, path-partition and

partition-path, for the corresponding purpose.

In [82], the authors propose a distributed cluster-based controller architecture

and a framework to retain the communication and coordination between controllers

to obtain a more scalable network. This cluster-based architecture brings flexibility

to the network regarding adding or removing controllers since it does not involve

network applications. The controllers select a master controller that is in charge of

delineation between controllers and switches.

Distributed controller architectures are proposed to mitigate the scalability issues

of SDN networks. However, distributed controller architecture may not achieve the

planned scalability because of the unbalanced load across the controllers since network

3NIB is a data structure to store network state and is roughly analogous to the Routing Information
Base (RIB) used by IP routers.
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administrators decide which and how many switches connect to a controller when they

setup the network. Therefore, this may cause an overload in the controller.

ElastiCon [68] distributes the workload evenly through the controllers by means

of a controller pool. This elastic distributed controller architecture dynamically shifts

the workload across the controllers by adding or removing controllers to the controller

pool and/or rebalancing the load of an individual controller based on threshold values.

Phemius et al. [66] present the “DISCO” (DIstributed Sdn COntrol plane) frame-

work consisting of multiple controllers controlling different SDN domains that share

aggregated network-wide information for a consistent network view on each controller.

The DISCO framework has two main parts. While the intra-domain part is respon-

sible for controller’s own domain functionalities, the inter-domain part manages the

flows across the distributed networks by exchanging the aggregated network state in-

formation such as reservation, topology etc. The difference of the DISCO framework

from the other distributed architectures is its capability of differentiation of intra-

domain and inter-domain information along with heterogeneous inter-domain links

such as MPLS tunnels and SATCOM links.

Bari et al. [83] address difficulties of deploying multiple distributed controllers in

a large-scale WAN network. They present a framework that readjusts the required

active controllers with some assigned switches in accordance with current network

dynamics to reduce flow setup time, horizontal overhead (between controllers) and

vertical overhead (between controllers and switches). Their proposed management

framework is responsible for (re)assignment of switches to controllers in case of a

need.

ONOS [78] is another distributed SDN control platform aimed at improving scal-

ability, performance and availability of networks. ONOS addresses how a network

OS can scale horizontally to avoid becoming a performance bottleneck and avoid be-

ing a single point of failure. In ONOS, a large-scale WAN network can be divided

into multiple parts controlled by different ONOS instances. These distributed ONOS

instances construct a global network view for the network.
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It is worth to mention another collaborative, open-source controller platform, the

“OpenDaylight” (ODL) project [88]. The ODL is a Linux Foundation collaborative

project to promote use of SDN. The ODL community has come together to estab-

lish an open reference controller framework to freely program and control an SDN

architecture.

2.6.2.2 Hierarchical Controller Designs

In hierarchical architectures [67,71,73,74,79,84] local controllers handle local ap-

plications’ requirements with frequent events, and a main more powerful controller,

usually called as “Root”, deals with non-local applications’ needs requiring global net-

work view and rare events as opposed to local controllers. Although controllers may

have a global view of the whole network in the distributed (flat) controller designs,

lower-tier controllers (which are more localized compared to upper-tier controllers)

do not maintain a global view of the network in the hierarchical controller designs.

Therefore, this design is different from the distributed (flat) design regarding network

views of the controllers.

Kandoo [73] focuses on scaling a controller by decreasing the number of frequent

events on the control plane since these events bring more overhead than others to the

control plane. Kandoo’s architecture comprises of two layers to sustain scalability.

The bottom layer consists of local controllers which are not connected to each other

and do not maintain a network wide state while the top layer is a logically centralized

controller, connected to all bottom layer controllers, with the global network view.

Frequent and resource-greedy events like flow arrivals are processed by the local con-

trollers at the bottom layer, thereby preventing the root (top layer) controller from

coping with more numbers of events.

McCauley et al. [74] discuss “Logical xBar” that is a recursive building block used

to construct a centralized abstract hierarchical control plane. It exploits the idea of

aggregating smaller units for forwarding into larger ones. The proposed control plane
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design has two building blocks: 1) Logical xBar, which is a programmable entity that

can switch packets between ports, and 2) Logical Server which handles the forwarding

table management and the control plane computations. In the proposed design,

the network itself does not necessarily need to be physically hierarchical, instead

aggregation of logical xBars and logical Servers bring that abstracted hierarchy on

the network.

Flat and hierarchical control plane structures may still suffer from certain issues.

In flat control plane architecture, the controllers may face increasing computational

complexity resulting from growing large size networks. On the other hand, the cen-

tralized hierarchical architectures suffer from path stretch problems [89].

In [79], the authors propose the “Orion”, a hierarchical control plane for large-

scale networks managed by the same administrator to alleviate the above-mentioned

two problems. Orion has three layers: the bottom layer consists of network devices

of areas; the middle layer consists of area controllers; and the top layer contains sub-

domain controllers. Sub-domain controllers have global network views for their own

domains and synchronize this information with each other by a distributed protocol.

In [67], the authors introduce Decentralize-SDN, D-SDN, framework that dis-

tributes a control plane not only physically but also logically in a SDN. D-SDN

exploits the hierarchy of controllers in which main controllers (upper layer) delegate

control to secondary controllers (bottom layer) to manage certain network devices.

Marconett and Yoo [71] propose the “FlowBroker” architecture for a better col-

laboration between multiple domains in terms of load balancing and network per-

formance. The FlowBroker architecture exploits the idea of hierarchy with domain

controllers and one or more super-controllers, called as Brokers, atop. Each domain

controller may attach to more than one Broker according to their reputations that

reflect performance of a Broker regarding load balancing and reliability. The Flow-

Broker architecture allows Brokers to cooperate between them to share abstracted

network states coming from the domain controllers below level. They report that as

the domain count increases from 6 to 10, the difference between utilizing 1 broker or
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5 broker agents equals a 5 to 8% decrease in maximum link utilization, a 28 to 84%

reduction in end-to-end delay, and 69 to 151% reduction in traffic loss.

Karakus and Durresi [84] propose a hierarchy-based network architecture along

with an inter-AS routing approach with QoS. The authors use an idea of levels in

which networks with controllers reside on top. There is also a main controller that

works like a broker on top of networks to keep the global network state and view. Their

experiment results indicate that a network controller in a hierarchic setting handles

50% less number of traffic than a network controller in a non-hierarchic environment.

2.6.2.3 Hybrid Approach

This approach differs from the distributed (flat) and hierarchical designs in a

way that data plane devices are involved in decision processing and network control.

Therefore, this approach is considered hybrid due to involvement of both the control

plane and data plane in the network control. This subsection presents several SDN

architectures [64,65,70] that leverage the data plane by devolving some limited control

functions (such as sending rules to other network devices to be added, deleted or

updated in their flow tables etc.) to network devices for control plane workload

partitioning, thereby improving scalability. This might happen either by installing

rules proactively or reactively in the switches. Also, it is obvious that keeping flows

as much as possible in the data plane reduces overhead and improves the controller

performance regarding throughput and latency.

“DIFANE (DIstributed Flow Architecture for Networked Enterprises)” [65] is an

architecture that preserves traffic in the data plane through managing packets in

switches called ”Authority Switches”. In DIFANE, the authority switches are assigned

rules by means of the controller that maintains an algorithm to partition the rules

and minimizes rule fragmentation along with the authority switches.

“DevoFlow (Devolved Flow)” [64] addresses frequent interactions between the

control plane and the data plane for the sake of full control and global view over
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the network. Since this redundant interaction on almost every flow setup brings

extra overhead and delay, the authors propose DevoFlow to reduce the interaction

while preserving the required amount of visibility by conveying some functionalities

of the control plane to the data plane. More efficiency and scalability are achieved

because the controller controls only significant, and long-lived flows such as elephant

flows. Use of wild-card rules which aggregate multiple rules into one minimizes the

controller-switch communication as well. DevoFlow lets the switches make local de-

cisions through cloning rules, multi-path support, and re-routing. However, there are

some issues that remain open in DevoFlow such as how to manage some network

applications including QoS, security, and traffic engineering.

Fibbing [70,90] is another hybrid SDN architecture that applies a central control

over traditional distributed link-state protocols such as OSPF and IS-IS. In Fibbing

architecture, the controller is still centralized and responsible for path computation

based on requirements from operators as in SDN case. However, the actual compu-

tation of Forwarding Base Information (FIB) entries and their installation on data

plane devices is done by the distributed control plane of traditional protocols run on

the network. In this way, Fibbing takes advantages of centralized control (SDN) and

distributed traditional protocols for scalability.

2.7 Mechanisms-related Approaches

Section 2.6 has discussed topology-related approaches. This section discusses other

mechanisms used to optimize controller(s). Mechanisms-related approaches primarily

exploit various optimization techniques in order to alleviate the foregoing scalability

issues in SDN networks. They aim to empower the controller performance so that

it can handle more packet flows per second (i.e. throughput), improve the latency,

and reduce overhead. One way to increase throughput and improve latency is to

exploit the parallelism in multi-core systems by means of some methods such as multi-

threading, I/O batching etc. while another way is reducing the events processed
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in the control plane. These events mostly result from routing decisions made by

the controller(s). Some research efforts propose better optimized routing decision

mechanisms to reduce events to be processed in the control plane.

2.7.1 Parallelism-based Optimization

Parallelism, such as multi-threading, I/O batching and so on, is an optimization

technique to improve I/O performance, reduce overhead and memory consumption

of the controllers [25, 51, 75, 76]. These help increase controler’s performance and

therefore improve the scalability of the control plane.

Maestro [75] uses a multi-core architecture to leverage the parallelism in order

to increase controller speed along with a hassle-free programming model for appli-

cation writers. Maestro uses the batching of packets to individual destinations to

improve processing and communication efficiency besides multi-threading structure.

It is designed to evenly partition the workload in cores to increase the performance

(i.e throughput) by keeping all processor cores busy by means of the “pull” fashion

instead of the “push” fashion. It is pointed out that Maestro can achieve 600K re-

quests/sec which implies that a distributed architecture of Maestro is needed to meet

today’s data center requirements.

McNettle [76] exploits multi-core opportunities of the Glasgow Haskell Compiler

(GHC)4 [92] and the run-time system. A certain number of CPU cores supports the

McNettle system to scale up and the control algorithms requiring a global network

state of flow arrival rates. In McNettle, when a packet cannot be associated with

a flow rule, a packet-miss message is sent by a corresponding switch to invoke the

packet-miss function included in message handlers forming McNettle programs. The

authors claim that McNettle may scale up to 5K switches with 46 cores over a single

controller with up to 13M flows/sec.

4GHC is an open source compiler for Haskell [91] (a functional programming language).
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NOX-MT [51], the successor of NOX, is also a multi-thread controller which sur-

passes its predecessor (NOX) regarding throughput and response time. It embodies

the fact that performance of a controller can be improved to certain levels by ex-

ploiting some optimization techniques such as multi-threading, I/O batching, malloc

implementations etc. The authors leverage a performance measurement benchmark,

Cbench [93], to emulate the switches and compare results of three different con-

trollers, Beacon, Maestro and NOX, with NOX-MT regarding controller responsive-

ness, throughput performance and controller latency. The NOX-MT outperforms the

other controllers by handling 1.8M flow requests/sec with an average response time

of 2 ms.

Erickson [25] reveals “Beacon” that provides an easy-to-handle environment for

programmers, extra abilities to manage applications, and better performance. One in-

centive design decision behind the Beacon is to enable network operators/administrators

in order to manage (adding and/or removing) applications while running the Beacon.

The Beacon is reinforced for a high performance by multi-threaded designs: “Shared

Queue” and “Run-To-Completion”. In “Shared Queue” design, the pipeline threads

take the messages from the shared queue in order to process by corresponding appli-

cations. In case of the “Run-To-Completion” design, on the other hand, there are no

pipeline threads and each message is processed by I/O threads. The evaluation results

show that the Beacon outperforms some other controllers such as Maestro [75], NOX

etc. by responding 1.35M messages/sec with a single thread. It also scales linearly

with 12 threads by responding more that 12.8M messages/sec.

2.7.2 Control Plane Routing Scheme-based Optimization

Reducing the processed events resulting from routing decisions of the controller(s)

is another way to increase the scalability and performance of the control plane in an

SDN architecture. In [85,86,94] the authors aim for a better and less event-producing
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routing schemes managed directly by controller(s) in order to scale up the OpenFlow-

based networks.

Gao et al. [94] leverage a Dynamically Reconfigurable Processor (DRP) to increase

the scalability of the controller. The authors exploit an emulated network-on-chip,

called “diorama network”, to perform routing. In the diorama network, they send

emulated packets from source nodes to destination nodes through the network in

order to figure out the shortest path. Their study is motivated by the fact that since

routing by controllers affects the performance of controllers, slow routing decisions

will increase the response time of controllers to switches in the data plane. An issue

that is not investigated by the authors is how the proposed design copes with link

failures in the network.

Source routing and its variations are also utilized to increase controller scalability

and performance in SDN [85, 86]. The underlying motivation behind these studies

relies on reducing the state distributed by the controller to data plane devices. This

state distribution on each switch on a path takes a long time and pushes the controller

response time. Hence, it increases the delay and network convergence time. It exploits

the idea of inserting path information in packet headers so that each node can acquire

the next node information where the packets are to be sent without communicating

with the controller. This approach is different from the traditional OpenFlow hop-

by-hop routing model in which each node communicates to the controller to learn

what to do and where to send the flows.

QuagFlow [95] and RouteFlow [96] (evaluation of the QuagFlow) are some other

projects that aim at certain objectives: (1) utilization of cheap network devices with

minimal embedded software, (2) enabling use of legacy IP routing protocols, OSPF,

RIP, BGP etc., without re-writing in a centralized way, and (3) ensuring interop-

erability with legacy network devices. They provide a transparent unification of

the Quagga routing software suite [97] and OpenFlow-enabled hardware. They run

control logic of underlying OpenFlow switches through a virtual network composed

by virtual machines (VMs), which execute a routing engine (e.g. Quagga). These
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VMs are connected to each other to represent the physical topology. The virtual

environment is kept in external servers communicating with a controller application.

Decisions made by the legacy IP protocols are converted to flow rules by the controller

application and installed to switch flow tables by the controller. Therefore, there is

no requirement for modification of the existing routing protocols.

Scalability in carrier-grade networks also requires attentions from researchers due

to some reasons such as number of and geographical distances between devices. Har-

tert et al. [63] propose a solution framework, DEFO (Declarative and Expressive

Forwarding Optimizer), to achieve high scalability as well as robustness at carrier-

grade networks. Their solution is based on two logical layers: connectivity layer and

optimization layer. While the connectivity layer is responsible for default forwarding

behavior and defines connectivity paths, the optimization layer defines exceptions to

this default forwarding behavior and implements optimized paths, which are over-

written connectivity paths and computed by stitching connectivity paths together.

2.8 Comparison of Control Plane Scalability Proposals

Controllers are the main entities in decision-making processes in SDN networks.

They perform crucial tasks affecting performance of the whole network. Currently,

there exist more than 35 different publicly-available and proprietary SDN OpenFlow

controllers created by different research groups, vendors, and organizations from both

academia and industry, written in different languages, and having different perfor-

mances. This rapid growing of controllers has raised questions regarding performance

benchmarking of these controllers. Some research efforts [59, 98] have been proposed

to evaluate performances of the controllers with respect to certain metrics. In [59],

the authors present a limited analysis of controllers’ performances by using a new

benchmarking framework called “hcprobe”. Similarly, Jarschel et al. [98] also intro-

duce a tool called “OFCBenchmark” to benchmark OpenFlow controllers. As stated

earlier, the performance of an SDN controller is characterized by several metrics,
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Table 2.2.: Certain scalability related metrics such as control plane throughput in
terms of the number of flows handled and flow setup latency by control plane from
the studies.

Proposals

Metrics
Throughput
(Flows/sec)

Flow Setup Latency

Beacon [25] up to 12.8M avg 24.7 µs
DevoFlow [64] - -
DIFANE [65] up to 3M min 0.4 ms
DISCO [66] - -
D-SDN [67] - -
ElastiCon [68] up to 30K min 1 ms
Ethane [69] up to 11K min 1.5 ms
Fibbing [70] - min 0.89 ms
FlowBroker [71] - -
HyperFlow [72] - -
Kandoo [73] up to 1.3M -
Logical xBar [74] - -
Maestro [75] up to 3.5M avg 55 ms
McNettle [76] up to 13M max 10 ms
NOX [23] up to 30K avg 49 ms
NOX-MT [51] up to 1.8M avg 2ms
Onix [77] up to 200K min 2 ms
ONOS [78] up to 19K avg 34 ms
Orion [79] up to 50K min 11 ms
Tam et al. [81] - -
Yazici et al. [82] up to 36K -
Bari et al. [83] - min 5 ms
Karakus et al. [84] - -
Owens et al. [85] - -
Soliman et al. [86] - -

but, throughput and flow setup latency latency are the most considered ones by the

SDN research community. In terms of the control plane scalability, the throughput

metric typically represents the number of flows that a control plane (i.e. controller)

can handle in certain amount of time while the flow setup latency denotes the time

elapsed from arrival of a “packet in” message from a switch to installation of the

corresponding flow rule in the switch flow table.

Table 2.2 shows performance related results of studies with respect to some scal-

ability related metrics such as throughput and flow setup latency. Since some studies
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evaluate performance of their systems regarding different metrics such as path instal-

lation time [81], ratio of elephant to mouse flows [73], link utilization [71] and so on,

it is difficult to show all the metrics used in studies in a table. In addition, these

numbers heavily depend on the evaluation environments. In other words, each study

uses different network dynamics and parameters such as workload, network topol-

ogy, number of controllers, applications for testing etc. during their experiments.

Also, these controllers are designed for different problems. Therefore, it is highly

recommended that readers individually examine the corresponding studies in order

to rightly evaluate their scalability performances with respect to their characteristics.

Using different number of threads shows that single threaded controllers, such as

Ethane and NOX, are very limited regarding the throughput because they cannot

handle a large number of flows. However, the controllers that are multi-threaded,

such as Beacon, Maestro, McNettle, and NOX-MT, can handle a large number of

flows per second. The authors in [82] report that the average number of controller

responses per second per switch when one, two, three, and four controllers are used

are approximately 6K, 12K, 25K, and 36K, respectively. ElastiCon’s throughput

performance with respect to the number of controllers varies from 30K to 72K, its

response time performance for packet-in arrivals up to 2K packets/sec regarding 1-

controller, 2-controllers, and 4-controllers cases varies from 1.1 ms to 13.8 ms, 1.0 ms

to 4.3 ms, 1.0 ms to 2.2 ms, respectively. In Orion architecture, the total number

of new flows that area controller(s) can handle per second varies from 8K to around

50K with respect to the number of area controllers. It is also reported that minimum

average flow setup delay between areas is around 11 ms while maximum of which

reaches to around 25 ms depending on the number of domain controllers, areas, and

switches in an area. In [83], the authors state that their framework shows around 160

ms and 5 ms average flow setup time performance for 1-controller and n-controllers

cases, respectively, on RF-I topology (79 nodes, 294 links) while it is 185 ms and

12 ms, respectively, on RF-II topology (108 nodes, 306 links). In ONOS, 45.2 ms

and 34.1 ms latency values are reported for the time elapsed from a network event
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detection to sending first corresponding OFPT FLOW MOD message for rerouting 1K

flows and path installation, respectively. In DIFANE, packets experience 0.4 ms

round-trip time at 100 single-packet flows/sec sending rate. While NOX-MT has an

average response time of 2 ms, Beacon has the minimum average latency with 24.7

µs among the others.

Table 2.3.: Some features such as the controller that works with, used programming
language and evaluation setup characteristics of the studies.

Proposals

Features
Controller Programming

Language

Evaluation Setup

Beacon [25] Beacon Java Used Cbench for tests run on Amazon’s Elastic Com-

puter Cloud using a Cluster Compute Eight Extra Large

instance containing 16 cores.

DEFO [63] DEFO Scala Used many different real and realistic topologies with

different number of nodes and links and compared it to

Cisco MATE [99], a traffic engineering tool.

DevoFlow [64] Any Depends on

controller used

Implemented a flow-level data center network simulator.

Used a three-level Clos topology w/ 168 switches and a

two-dimensional HyperX topology w/ 97 switches.

DIFANE [65] Any Depends on

controller used

Used XORP [100] to run the link-state routing proto-

col and kernel-level Click-based OpenFlow switches as

a authority switches.

DISCO [66] Any DISCO Used Floodlight [101] controllers and Mininet [102] SDN

simulator to create 3 SDN WANs w/ 4 switches each and

connected to each other.

DRP [94] Any Depends on

controller used

Constructed an emulated network (w/ 6 routers and 10

links) on a commercially available dynamically reconfig-

urable processor DAPDNA-2.

ElastiCon [68] Any Java Used modified Floodlight controller, k=4 fat tree topol-

ogy and a modified version on Mininet to run the Open

vSwitch [103] instances on different hosts.

Ethane [69] Ethane

Controller

C++/Python Deployed at Stanford’s Computer Science department

for over 4 months and managed over 19 switches and

300 hosts.
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Table 2.3 continued

Proposals

Features
Controller Programming

Language

Evaluation Setup

Fibbing [70] Fibbing

Controller

Python/C Used ISP topologies [104] whose sizes range from 80

nodes to over 300. All measurements were performed

using OSPF on a Cisco ASR9K router equipped with

12GB of DRAM as well as on a Juniper M120 router

equipped with 2GB of DRAM.

FlowBroker [71] Any Java Used Floodlight controller and Mininet tool to test 5

different scenarios.

HyperFlow [72] NOX C++ Used 10 servers each equipped with a gigabit NIC and

running as a storage node.

Kandoo [73] Kandoo C/C++/Python Used a simple tree topology where each switch is con-

trolled by one local controller and Kandoo root con-

troller atop in modified version of Mininet and Open

vSwitch.

Maestro [75] Maestro Java Implemented an emulator to generate flow requests from

hosts on a common 79-switch topology going to Maestro

controller.

McNettle [76] McNettle Haskell Used a modified version of Cbench and ran the con-

troller on a DELL Poweredge R815 server with 48 cores.

NOX [23] NOX C++/Python Ran it in their internal network of roughly 30 hosts for

over 6 months.

NOX-MT [51] NOX-MT C++/Python Used Cbench representing 100K hosts and 32 emulated

switches.

Onix [77] Onix C++ Evaluated Onix in two ways: with micro-benchmarks

to test Onix’s performance as a general platform, and

with end-to-end performance measurements of an in-

development Onix application in a test environment.

ONOS [78] Any Java Used Floodlight controller and connected a 6-node

ONOS cluster to an emulated Mininet network of 206

software switches and 416 links. Also demonstrated in

Internet2 [105] topology.

Orion [79] Any Java Used Floodlight controller as area controllers. Con-

ducted different experiments for different number of do-

main (from 1 to 2 ) and area controllers (from 1 to 6)

and switches (from 20 to 120).

Tam et al. [81] Any Depends on

controller used

Used 4 controllers on topology of an irregular network

with 28 nodes and 66 links.

Yazici et al. [82] Any Java Used Beacon controllers for the experimental setup with

4 controllers and 4 emulated switches to run Cbench

instances.
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Table 2.3 continued

Proposals

Features
Controller Programming

Language

Evaluation Setup

Bari et al. [83] Any Python Used POX [106] controller and Mininet to simulate RF-

I (79 nodes, 294 links) and RF-II (108 nodes, 306 links)

ISP topologies.

Karakus et al. [84] Any Depends on

controller used

Used a topology with 4 different autonomous domains

with 4 switches each and a Broker conntected to domain

controllers.

Owens et al. [85] VSDN

Controller

C/C++ Used NS-3 [107] tool to simulate a 6-node network with

increasing connection requests for the controller.

Soliman et al. [86] Any Depends on

controller used

Used Internet2 OS3E topology with 34-nodes.

Table 2.3 illustrates some features, such as the controller that works with, used pro-

gramming language in controller implementation and evaluation setup characteristics,

of the studies. Most of the proposals work with any SDN controller with some mod-

ification efforts. However, the Floodlight [101] controller is the most used one in the

evaluation phase of the studies due to its good documentation, active community

support, and integration with REST API. Also, Java is the prevalent programming

language used in implementation of the studies due to their controller choice although

some studies do not report which programming language they used.

Table 2.4 illustrates the approaches used by the studies to achieve control plane

scalability. Topology-related approaches uses single, distributed (flat) or hierarchi-

cal controller designs. Mechanisms-related approaches exploit multi-threading, I/O

batching, better routing schemes etc. There are also hybrid (i.e. both the control

plane-centric and data plane-centric) studies. Some research efforts belong to more

than one approach because they more or less exploit some other approaches too.

However, they have been classified based on their main methods, which are discussed

in corresponding sections.

Controller designers may consider two architectural design goals while designing

their controllers to improve scalability performance: (1) they can utilize static switch

partitioning—distribution and allocation of connected network devices to worker

threads running in the controller—and packet batching—where multiple bytes are



42

read from or written to the underlying network using a socket buffer—techniques to

achieve high throughput and (2) workload adaptive packet batching and task batch-

ing—a strategy used to allocate already received packets to the worker threads for

processing, hence directly impacting the latency of the controller—to reduce flow

setup latency.

Table 2.4.: Approaches used to achieve control plane scalability. Topology-related
approaches utilizes central (single), distributed (flat), hierarchical controller and hy-
brid designs. Mechanisms-related approaches exploit multi-threading, I/O batching,
better routing schemes etc. Some research efforts belong to more than one approach
because they exploit some other approaches in their designs too. However, they
have been classified based on their primary approaches, which are discussed in the
corresponding (sub)sections.

Proposals

Approaches Topology-related Approaches
Mechanisms-related Ap-

proaches

Centralized

(Single)

Controller

Designs

Distributed Approaches
Parallelism-

based

Optimization

Control Plane

Routing-based

Optimization

Distributed

(Flat) Con-

troller

Designs

Hierarchical

Controller

Designs

Hybrid

Designs

Beacon [25] X

DEFO [63] X X

DevoFlow [64] X X

DIFANE [65] X

DISCO [66] X

DRP [94] X X

D-SDN [67] X

ElastiCon [68] X

Ethane [69] X

Fibbing [70] X X X

Marconett [71] X

HyperFlow [72] X X
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Table 2.4 continued

Proposals

Approaches Topology-related Approaches
Mechanisms-related Ap-

proaches

Centralized

(Single)

Controller

Designs

Distributed Approaches
Parallelism-

based

Optimization

Control Plane

Routing-based

Optimization

Distributed

(Flat) Con-

troller

Designs

Hierarchical

Controller

Designs

Hybrid

Designs

Kandoo [73] X

McCauley [74] X

Maestro [75] X

McNettle [76] X

NOX [23] X X

NOX-MT [51] X X

Onix [77] X

ONOS [78] X

Orion [79] X

Tavakoli [80] X

Tam et al. [81] X X

Yazici [82] X X

Bari et al. [83] X

Karakus [84] X X

Owens [85] X

Soliman [86] X

2.9 Challenges and Existing Proposals in SDN Control Plane

While SDN is becoming a mature technology, the control plane scalability issues

deserve more research efforts from both academia and industry. This section discusses

the general problems in an SDN control plane. However, each of these problems affects

the scalability of the control plane in SDN. Therefore, these problems need to be taken

care of by network operators while designing/operating their SDN networks. In the

following, the main SDN control plane challenges along with existing proposals is

stated.

• Controller(s) Failure: In a traditional network, when one or more network nodes

fail, flows are routed through alternative paths/nodes to maintain the traffic

continuity. However, in an SDN architecture, failure of the controller(s) may
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result in a chaos for the specific part(s) of the network controlled by the failed

controller(s) due to two main critical reasons: (i) The controllers are responsible

for all configurations, operations, and validations of the network topologies,

resources etc. and (ii) data plane devices lack an ability for an online “detour”

of flows. This problem may become worse in the single controller design case.

In addition, distributing the load of a failed controller to other controllers brings

extra load on them, which reduces performances thereby their scalability. This

distribution may even result in a cascading failures of controllers because it can

exceed the capacity of them.

One way to address this problem is to enhance the network with backup/standby

controllers [108, 109]. In case of the main controller failure, these backup con-

troller(s) may take the responsibility of the network operations over from the

main controller. In this case, controllers need to be synchronized to be in a

consistent status regarding network states.

In [110], the authors present a disaster-aware control plane design to reduce

controller-related interruptions. They model the problem of designing a disaster-

resilient control plane problem regarding the number of controllers, their place-

ment, and the control plane topology. Pashkov et al. [111] propose a fault-

tolerant control plane design, High-Available Controller (HAC) architecture,

to address the fast recovery of the control plane by adding an additional clus-

ter middleware between the controller core and controller network services and

applications.

• State/Policy Distribution/Consistency: Another important problem regarding

scalability is the network state distribution and consistency between controllers

of a control plane. This problem mainly happens in the distributed and/or

hierarchical architectures due to distribution of network states among controller

replicas. In addition, this distribution needs to be fast and reliable to provide the

consistency between controller instances [112]. Moreover, policy consistency [87]
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in a distributed control plane is required because network-wide policies do not

come from a single component of a network, but rather, they are formed by

different functional modules such as routing, monitoring, and access control

as well as multiple human operators controlling different parts of the network.

These conflicts may result in serious inconsistencies such as violation to another

policy and wrong forwarding of the packet etc. on the data plane. Therefore,

more efficient algorithms and mechanisms are needed to maintain state/policy

consistency among the distributed controllers.

Distributing network state among local controllers in the same domain does not

necessarily deal with security issues. However, the Internet consists of many

networks managed by different authorities. Therefore, the logically centralized

control model of SDN must be extended to account for inter-domain traffic.

This extension requires peering, thereby state sharing, among different admin-

istrative domains to have a relative global network view in order to determine

the next hop. However, this distribution has to be secure, private, and con-

sistent. In addition, some other critical questions regarding this sharing are

how and what to exchange with other domains. Yin et al. [113] state that the

types of messages exchanged among controllers may be various such as reacha-

bility information, flow setup/tear-down/update requests, network parameters

(bandwidth, delay, loss etc.), service-level agreements (SLAs), virtual network

information and so on. In [39,114,115], the authors propose a West-East (WE)

Bridge mechanism to enable different SDN administrative domains to securely

peer and cooperate with each other.

• Flow Rule Setup Latency: This problem refers to the delay in new flow rule

setup process in the context of control plane scalability [54]. As explained

earlier, proactive mode and reactive mode are two prominent modes to setup

a new flow rule. The proactive mode mode does not impose any latency in

the flow rule setup from the controller’s point of view. In the reactive mode,
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the controller response time (i.e. delay) is crucial. Controllers having longer

flow rule setup latencies may not meet requirements of certain applications such

as fast fail-over and reactive routing of latency-sensitive flows. Therefore, such

control planes cannot be scalable enough to satisfy the network needs. However,

this delay can be relatively reduced by imposing more controller and switch

resources such as CPU, memory etc. and devolving some control functions to

the switches.

In [116], the authors conduct various setup experiments to test the latency

of various controllers by changing the number of switches, number of threads,

and controller workload. They conclude that adding more threads beyond the

number of switches does not improve latency, and serving more switches than

available CPUs increases controller response time.

Some studies [64,65] mitigate the flow rule setup latency by leveraging the idea

of “Control Function Devolvement”. This idea relies on the delegation of some

of the control functions to the data plane so as to alleviate the load on the

controller(s), thereby reducing controller-switch communication frequency.

• Controller Placement: In addition the number of controllers, placement of the

controller(s) [61] has impacts on performance of the network as well. Subopti-

mal controller placement affects many other problems such as flow rule setup

latency due to controller-switch communication delay, controller-controller com-

munication delay, control plane overhead, fault tolerance, resiliency and so

on. Although there are some studies addressing this problem in the litera-

ture [117–124], it is still an ongoing issue and needs further attention of re-

searchers.

Hu et al. [117] propose algorithms to automate the controller placement deci-

sions given a physical network and the number of controllers. The main objec-

tive of these algorithms is to maximize resiliency of SDN to failures. In [118,119],
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the authors address the controller placement problem to maximize the reliability

of control networks.

Rath et al. [120] present a non-zero-sum game-based distributed technique to

discuss optimal controller placement in SDN. Hock et al. [121] introduce the

Pareto-based Optimal COntroller-placement (POCO) framework, which brings

network operators a range of options to select the controller placement based

on their particular needs regarding the metrics like latency, load balancing etc.

In [122], the authors focus on the controller placement problem for WAN. They

use the Spectral Clustering placement algorithm to partition a large network

into several small SDN domains. Jimenez et al. [123] utilize the algorithm called

“k-Critical” to discover the minimum number of controllers and their locations

to create a robust control topology that deals with failures and balances the

load among the selected controllers.

Furthermore, control plane overhead is affected by the placement of controllers

due to traffic between switches and controllers (packet in and flow mod mes-

sages) and among controllers (e.g. state sharing). Obadia et al. [124] chal-

lenge the problem of minimizing control overhead by optimizing the number

of controllers and their placement. This approach differs from others because

they target minimization of control overhead instead of minimization of switch-

controller delay.

2.10 Chapter Summary

SDN is a promising emerging architecture for many networking environments such

as data centers, enterprise networks, campus networks, cloud networks, and WAN.

The major advantages of SDN are its programmability and agility. However, the

scalability issues in the control plane is one major problem in SDN that needs more

research attention. This chapter has firstly given an overview of the SDN architecture

and OpenFlow protocol along with its support mechanisms for scalability. It has dis-
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cussed the scalability as a concept in general and presented various metrics proposed

for quantification of scalability. There is no consensus on the definition of scalability.

In other words, while the basic notion is intuitive, scalability does not evoke the same

concept to everybody. In the context of SDN, scalability is characterized by the two

prominent metrics, throughput and flow setup latency. Also, the study has pointed

out the main reasons that make the control plane a scalability bottleneck in SDN:

Separation of Control Plane and Data Plane, Quantity of Events/Requests Handled

by a Controller, and Controller-Switch Communication Delay. Furthermore, it has

presented the organization for taxonomy of scalability-centric studies in two broad ap-

proaches: Topology-related approaches and Mechanisms-related approaches. While

the former reviews the relation between topology of architectures and scalability is-

sues, the latter discusses the relation between various mechanisms used to optimize

controllers and scalability issues. Finally, the chapter has outlined the potential chal-

lenges and open problems that need to be addressed further for more scalable SDN

control planes: Controller(s) Failure, State/Policy Distribution/Consistency, Flow

Rule Setup Latency, and Controller Placement.
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3 QUALITY OF SERVICE (QOS) IN SOFTWARE DEFINED NETWORKING

(SDN): A SURVEY

3.1 Abstract

Supporting end-to-end Quality of Service (QoS) in existing network architectures

is an ongoing problem. Although researchers from both academia and industry have

proposed many solutions to solve the QoS limitations of the current networking,

many of them either failed or were not implemented. SDN paradigm has emerged

in response to limitations of traditional networking architectures. Its main advan-

tages are the centralized global network view, programmability, and separation of the

data plane and control plane. These features have got attention of researchers to

improve the QoS provisioning of today’s various network applications. This survey

chapter aims at making a picture of QoS-motivated literature in OpenFlow-enabled

SDN networks by comprehensively surveying relevant research studies. It organizes

the related studies according to the categories that are the most prominent ways in

which QoS can benefit from the concept of SDN: Multimedia flows routing mech-

anisms, inter-domain routing mechanisms, resource reservation mechanisms, queue

management and scheduling mechanisms, Quality of Experience (QoE)-aware mech-

anisms, network monitoring mechanisms, and other QoS-centric mechanisms such as

virtualization-based QoS provisioning and QoS policy management etc. In addition,

this study discusses QoS capabilities of OpenFlow protocol by reviewing its versions

along with some well-known, open-source, and community-driven controller projects.

Furthermore, it outlines the potential challenges and open problems that need to be

addressed further for better and complete QoS abilities in SDN/OpenFlow networks

and lessons learned during preparation of this survey study.
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3.2 Introduction

With the growth of the Internet, new types of networking applications and services

(e.g. web surfing, texting, VoIP, email, audio, video conferencing and streaming,

online gaming, e-commerce etc.) have emerged for end users. These applications

and services generate their own characteristic flows which need to be delivered by

the Internet. However, all of these applications require different treatments for their

own flows to make the delivery successful over a network [125]. For example, some

applications such as video conferencing require a certain bandwidth for its flows while

applications like VoIP are more sensitive to the delay over a network [126]. Addressing

these requirements needs a well-defined Quality of Service (QoS) mechanism(s) in a

network. However, today’s de facto delivery model, best-effort, in the Internet is not

capable of serving to all of the aforementioned services. In addition, proposed QoS

solutions have not been successful enough to solve the QoS issues of the traditional

networking paradigms.

The Internet Engineering Task Force (IETF) has defined various types of QoS

architectures to support QoS provisioning. The Integrated Services (IntServ) model

[127] is based on the per-flow concept. It utilizes the resource reservation protocol

(RSVP) [128] to provide the QoS to end users. In IntServ model, resources are

explicitly reserved through an end-to-end path and hence all routers store network

states related to the service. Therefore, it suffers from the scalability and complexity

issues. To mitigate that scalability issue, researchers have proposed the Differentiated

Services (DiffServ) model [129], which is on flow-aggregation basis and exploits the

hop-by-hop process. It classifies the incoming flows (using pre-configured classes)

based on the Type of Service (ToS) field in the header of the packets. Since DiffServ

treats packets in the same class identically, it is difficult to provide quantitative

QoS to individual flows. It is strong on simplicity, but weak on guarantees. The

Multiprotocol Label Switching (MPLS) [130–132] is another technology that is used

to reduce the complex routing table lookups by labeling techniques. All of these
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advantages and disadvantages show that the current QoS architectures are not truly

successful at QoS support for service providers, enterprises and/or end users.

SDN is a new emerging architecture in recent years. SDN is described in Open

Networking Foundation’s [2] definitions as “In the SDN architecture, the control and

data planes are decoupled, network intelligence and state are logically centralized,

and the underlying network infrastructure is abstracted from the applications.”. This

separation provides network operators/administrators with efficient use of network re-

sources and ease of resource provisioning. Also, SDN brings ease of programmability

to change the characteristics of whole networks. This ability simplifies the manage-

ment of the network since it is decoupled from the data plane. Therefore, network

operators can easily and quickly manage, configure, and optimize network resources

with dynamic, automated and proprietary-free programs written by themselves in

SDN architecture.

In addition, since the SDN is logically centralized, controllers have a global visibil-

ity of the whole network unlike conventional networking. Hence, they can dynamically

optimize flow-management and resources. Furthermore, per-flow or application-level

QoS provisioning becomes easier and feasible for network administrators. For these

reasons, SDN is drawing attention of companies, universities, data centers, and service

providers to be deployed in their networks. Google’s private WAN (B4 [8]), connect-

ing Google data centers across various geographical location over the world, is one

of the examples for SDN adoption in a large-scale network with the aforementioned

purposes.

3.2.1 Chapter Organization

This survey chapter aims at making a picture of QoS-motivated literature in

OpenFlow-enabled SDN networks by surveying relevant research studies. The scope

of this work revolves around the term QoS characterized by network characteristics

such as bandwidth, delay, jitter, and loss along with industry-wide set of standards
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QoS-Motivated Studies in 
SDN/OpenFlow Networks

Multimedia 
Flows Routing 
Mechanisms

Inter-domain 
QoS Routing 
Mechanisms

Resource 
Reservation 
Mechanisms

Queue Management 
and Scheduling 

Mechanisms

QoE-Aware 
Mechanisms

Network 
Monitoring 

Mechanisms

Other QoS-
Oriented 

Mechanisms

Figure 3.1.: The Organization of QoS-based studies in SDN/OpenFlow networks. The
first two types of mechanisms are driven by the routing functionality. The third and
fourth types of mechanisms are concentrated around resource reservation and queue
management and packet scheduling for QoS support. The fifth type of the studies
address the QoE of the system while the sixth group of the studies revolve around
network monitoring frameworks. The last group of the mechanisms study miscella-
neous QoS-related issues such as QoS policy management, QoS testbed extensions
etc.

and mechanisms for ensuring high-quality performance for critical applications. Focus

of studies presented in and the scope of this study are centered around aforementioned

typical network characteristics.

As seen in Fig. 3.1, the study organizes the related studies into seven cate-

gories that are the most prominent ways in which QoS can benefit from the concept

of SDN: Multimedia flows routing mechanisms, inter-domain routing mechanisms,

resource reservation mechanisms, queue management and scheduling mechanisms,

Quality of Experience (QoE)-aware mechanisms, network monitoring mechanisms,

and other QoS-centric mechanisms such as virtualization-based QoS provisioning and

QoS policy management etc. Each category itself in the organization reflects a prob-

lem/challenge for QoS in SDN. Therefore, the organization is indeed a taxonomy of

the problems for QoS in SDN at the same time. These categories (i.e. problems) and

related studies are explained (i.e. solutions) in corresponding sections. In addition,

QoS capabilities of OpenFlow protocol is discussed by reviewing its versions along

with some well-known, open-source, and community-driven control platform projects.

Finally, it outlines the potential challenges and open problems that need to be ad-

dressed further for improved and complete QoS abilities in OpenFlow-enabled SDN

networks.
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This study gives an overview of the relations between QoS and SDN. This survey

study may be a useful primer for a reader interested in studying QoS in/with SDN.

After reading this survey chapter, the reader will be familiar with:

• A lightweight overview of the SDN Architecture

• QoS capabilities of specific OpenFlow protocol versions

• QoS support of some well-known, active, and open-source SDN controller projects

• QoS problems in SDN and related solutions from researchers

• Some other potential challenges and critical points for QoS in SDN requiring

attention of research community

The rest of the chapter is organized as follows: Section 3.3 discusses the QoS

capabilities of OpenFlow protocol in its different versions and that of (well-known)

open-source SDN control platforms. Section 3.4 summarizes the role of SDN with re-

lation to QoS. While Section 3.5 outlines multimedia flows-based routing mechanisms

Section 3.6 presents inter-domain QoS routing frameworks. Section 3.7 introduces re-

source reservation based frameworks to provide QoS. Section 3.8 discusses frameworks

focusing on queue management and packet scheduling. Section 3.9 states the QoE-

oriented mechanisms. Section 3.10 presents network monitoring frameworks. Section

3.11 discusses miscellaneous QoS-related mechanisms. Section 3.12 outlines few po-

tential challenges and open problems for QoS support in OpenFlow networks along

with lessons learned while preparation of this survey. Finally, Section 3.13 wraps the

chapter up with concluding remarks.

3.3 QoS Implementation in OpenFlow-Enabled SDN Networks

Although SDN and OpenFlow couple support some limited QoS capabilities it

allows us to obtain per-flow QoS control in a more scalable, flexible and finer-granular

way compared to the above traditional architecture. This section reviews the QoS
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capabilities of OpenFlow protocol by looking at its different versions and that of

(well-know) open-source SDN control platforms.

3.3.1 QoS in OpenFlow Protocol

Each OpenFlow specification version has brought some different features along

with minor and major changes compared to their previous versions. In the following,

the study highlights the QoS-related features and changes implemented in the different

versions of OpenFlow specification.

OpenFlow 1.0—In OpenFlow 1.0 [133], there is an optional action called “en-

queue”, which has been renamed to “set queue” in OpenFlow 1.1 and later versions,

that forwards packet through a queue attached to a port. An OpenFlow-enabled

switch can have one or more queues depending on its ports. An OpenFlow controller

can query an information about queues of a switch. However, the behavior of the

queue is determined outside the scope of OpenFlow, which can be configured through

the OF-CONFIG protocol [134] but requires OpenFlow 1.2 and later versions. Also,

header fields can include VLAN priority and IP ToS, so packets can be matched

against rules and their associated header fields can be rewritten.

OpenFlow 1.1—OpenFlow 1.1 [41] performs matching and tagging of VLAN and

MPLS labels and traffic classes. Prior versions of OpenFlow specification had lim-

ited VLAN support (only supported a single level of VLAN tagging with ambiguous

semantic). The new tagging support has explicit actions to add, modify and remove

VLAN tags, and can support multiple levels of VLAN tagging. This version also adds

a similar support the MPLS shim headers.

OpenFlow 1.2—OpenFlow 1.2 [42] has added an ability that enables a controller

to query all queues in a switch. It also has added experimenter queue property.

Another QoS related improvement in this version is that it has added a max-rate

queue property. In addition, this version specifies that queues can be attached to

ports and be used to map flows on them.
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OpenFlow 1.3—OpenFlow 1.3 [135] introduces the rate-limiting functionality by

means of meter tables consisting of meter entries. A meter entry consists of “Meter

Identifier”, “Meter Bands”, and “ Counters”. A Meter Band, in turn, consists of

“Band Type” (e.g. drop or remark DSCP etc.), “Rate” (e.g. kb/s burst), “Counters”,

and optional “Type specific arguments”, such as drop and DSCP remark, as seen in

Fig. 3.2.

Meter Identifier Meter Bands Counters

Band Type Rate Counters Type Specific Arguments

(a)

(b)

Figure 3.2.: Main components of a meter band (b) in a meter entry (a).

Counters may be maintained per-queue, per-meter, and per-meter band etc. They

help controller collect statistics about the network. There may be one or more meter

bands per meter table entry. Meters can be combined with the optional set queue

action, which associates a packet to a per-port queue in order to implement complex

QoS frameworks such as DiffServ. These meters complement the queue framework

already in place in OpenFlow by allowing for the rate-monitoring of traffic prior to

output. More specifically, with meters, the ingress rate of traffic can be monitored as

defined by a flow rule. Packets can be directed to a specific meter using the optional

meter( meter id) instruction, where the meter can then perform some operations

based on the rate it receives packets.

OpenFlow 1.4—OpenFlow 1.4 [136] presents the flow monitoring framework that

allows a controller to monitor the changes done by other controllers to any subsets of

the flow tables in real time. To this end, a controller can define a number of monitors,

each selecting a subset of the flow tables. Each monitor includes a table id and a

match pattern that defines the subset monitored. When any flow entry is added,

modified or removed in one of the subsets defined by a flow monitor, an event is sent

to the controller to inform it about the change.
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OpenFlow 1.5—OpenFlow 1.5 [137] replaces the “meter” instruction, which was

used for metering in previous versions, with a meter action. As a result, multiple

meters can be attached to a flow entry, and meters can be used in group buckets.

3.3.2 QoS in SDN Controllers

Since OpenFlow does not currently provide support for queue configuration in its

specification, queue configuration is handled by specific OF-CONFIG and OVSDB

(Open vSwitch Database Management Protocol) [138] protocols. The former is cur-

rently being standardized by ONF and the latter is already standardized by the IETF.

Although OVSDB is already implemented in OVS switches, there is no available con-

trollers providing a standardized management of queues. Currently, there are many

different SDN controller platforms offering various features for users. Although there

are many commercial and proprietary SDN controllers from different vendors, there

also exist some collaborative and open-source projects with active development sup-

port from research community and industry. Below, the study discusses some of these

active, open-source, and collaborative SDN controller projects with regards to their

QoS support.

OpenDaylight—OpenDaylight (ODL) [88] is a community-led and open-source

controller platform. It is a Linux Foundation collaborative project to promote use of

SDN. The ODL community has come together to establish an open reference controller

framework to freely program and control an SDN architecture. ODL project consists

of many other sub-projects, such as southbound protocol plugins (e.g. OpenFlow,

NetCONF, SNMP, and BGP) and applications (e.g. DDoS Protection and Virtu-

alization Coordinator), complementing each other to compose a complete reference

controller platform for heterogeneous networks. PCMM (PacketCable MultiMedia),

presented in ODL-Lithium release in June 2015, plugin is another southbound plugin

utilized to enable flow-based dynamic QoS for the DOCSIS infrastructure. Packet

Cable MultiMedia (PCMM) provides an interface to control and management service
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flow for CMTS network elements. Also, OVSDB southbound plugin has been intro-

duced in ODL-Lithium release, which can manage and configure queues in switches.

In addition, the Reservation module in ODL also aims at providing dynamic low-level

resource reservations so that users can get network services, connectivity or a pool of

resources (ports, bandwidth) for a specific period of time.

ONOS—ONOS (Open Network Operating System) [139] is a distributed SDN

control platform aimed at improving scalability, performance and availability of net-

works for service providers. It is also an open-source platform with over 50 partners

and collaborators that contribute to all aspects of the project. ONOS has limited

QoS support currently. It supports OpenFlow metering mechanism, but this feature

is rarely implemented in existing switches. The idea behind this support is based

on implementation of OpenFlow set queue functionality in ONOS. As another QoS

support improvement attempt in ONOS, a new high-level instruction SetQueueIn-

struction has been implemented in org.onosproject.net.flow.instructions library and

the corresponding references in ONOS libraries have been modified accordingly.

Floodlight—Floodlight [101] is a Java-based another open-source SDN controller

that is supported by community developers including engineers from Big Switch

Networks. There are community driven projects built on top of Floodlight propos-

ing integrating/updating new/existing modules. QoS module [140] implemented for

Floodlight controller aims at providing an application that does burden of matching,

classification, flow insertion, flow deletion, and policy handling for QoS. The module

utilizes OpenFlow 1.0 enqueue action and the network ToS bits. It controls tracking

and storing services with their DSCP values, applying policies for services class, and

tracking of policies in switches. The QueuePusher [141] extension utilizes OVSDB

protocol integrated with northbound API of Floodlight to generate appropriate queue

configuration messages. The QueuePusher module uses a CRUD (Create, Read, Up-

date, Delete) API, exposed by Floodlight, that allows external entities to manage

Open vSwitch.
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3.4 Relationship between SDN and QoS

QoS is typically defined as an ability of a network to provide the required services

for a selected network traffic. The primary goal of QoS is to provide priority with

respect to QoS parameters including but not limited to:

• bandwidth

• delay

• jitter

• loss

characteristics. In order to provide QoS, differentiating application flows is needed

since they battle for available network resources. These network resources have to be

allocated to ensure the precedence of the higher-priority traffic for the appropriate

network resource distribution. This process often requires knowledge of the current

network states, so that the right decisions with regard to packet forwarding can be

made.

Today, QoS provisioning mostly relies on Service Level Agreements (SLAs) be-

tween end users and service providers. This approach works well for best-effort service

and does not support finer-granular traffic control. However, there are other types of

applications, such as VoIP, online-gaming, and video conferencing, whose flows are

sensitive to delay, jitter, and bandwidth, thereby requiring special handling. Also,

“hop-by-hop” decision architecture of the Internet is sometimes difficult to monitor,

mainly because of the many different vendor-specific firmwares at use. There is no

standardized way for specifying high level traffic control policies and restrictions with

regard to the depth of traffic differentiation exist.

QoS is mainly implemented in two approaches: hard QoS and soft QoS. The

hard QoS method guarantees the QoS requirements of connections but it suffers from

resource limitations. IntServ method is an example of this type of QoS guarantee-

ing approach. On the other hand, the soft QoS method is not as strict as hard QoS

methods regarding QoS requirements. DiffServ is an example of the soft QoS method.
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Table 3.1 illustrates the implemented QoS models (hard QoS vs. Soft QoS) with re-

spect to QoS metrics considered in the survey studies. Certain metrics are considered

target QoS metrics to be provided in the studies. Therefore, Table 3.1 also reveals a

broad category of problems/challenges handled in the studies from the QoS metrics

viewpoint.

Table 3.1.: QoS models implemented in the techniques. The hard QoS approach
guarantees the network resources for flows sent from source to destination. IntServ
mechanism is an example for this approach. On the other hand, the soft QoS method
does not guarantee the QoS requirements of the flows sent from source to destination
throughout the entire session. DiffServ method is an example of soft QoS method.

Techniques

QoS Models Hard QoS Soft QoS

Bandwidth Delay Jitter Loss Bandwidth Delay Jitter Loss

Wallner et al. [140] X X

Civanlar et al. [142] X X X

HiQoS [143] X X

OpenQoS [144] X X X

VSDN [145] X X X

RVSDN [146] X X X

Tomovic et al. [147] X

Egilmez et al. [148] X X X

Egilmez et al. [149] X X X X

ARVS [150] X X

Yilmaz et al. [151] X X

Egilmez et al. [152] X X

Egilmez et al. [153] X X X X

Karakus et al. [84] X X

FlowBroker [71,154] X X X X X X

Wang et al. [155,156] X X

Miao et al. [157] X X X X

CXP [158] X X X X

Kim et al. [159] X X X

NCL [160] X X X

Duan et al. [161,162] X X X X
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Table 3.1 continued

Techniques

QoS Models Hard QoS Soft QoS

Bandwidth Delay Jitter Loss Bandwidth Delay Jitter Loss

FlowQoS [163,164] X X X X

Afaq et al. [165,166] X

QoSFlow [167] X

OpenQFlow [168] X X

Xu et al. [169] X X X

Wang et al. [170] X X X X

Caba et al. [171] X X X X

Truong et al. [172] X X X X

Kumar et al. [173] X X

Yiakoumis et al. [174] X X X X X X

Kassler et al. [175] X X

Q-POINT [176] X X X X X X

QFF [177] X

Gorlatch et al. [178,179] X X

Jarschel et al. [180] X X

Ayadi et al. [181] X X

Q-Ctrl [182] X X

PolicyCop [183] X X

OpenCache [184,185] X X

Sonkoly et al. [186] X X X X X X

SoIP [187] X

ACDPA [188] X X

SDN adopts separation of data plane and control plane for networks. This sepa-

ration enhances the network controller with regard to control of the networks. Also,

in SDN concept, the network applications are not forced to deal with low-level con-

figurations of data plane devices and are provided with abstract view of the network

by controllers. Controllers can obtain global network view and states, e.g. statistics,

network resource availability, events, by sampling of packets. Using this informa-

tion, control policies and SLAs can be specified (even dynamically be adjusted) by

an administrator at a higher abstraction level without a need to reconfigure low-level

settings at each of the forwarding devices. The set of policies and also the different

flow classes are unrestricted, allowing for fine-grained tuning based on the needs of

the user. The rules can, therefore, be defined per-flow (if necessary) and the controller
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has the task to apply them properly to the different network elements. Without a

doubt, all of these mechanisms are crucial for QoS.

QoS can benefit from advantages of SDN concept in different network functions.

Table 3.2 shows some main features of SDN, which are used in the surveyed papers,

and their relation with this work’s organization. Flow based forwarding allows net-

works to route different application flows in different treatments (e.g. priorities).

Dynamic flows rule update enables network operators to update rules installed in

network devices on-the-fly without interrupting device operations. SDN also renders

flow/packet analysis possible to acquire header fields of them. Since SDN provides

global network view it is possible to maintain related states for a full path of a flow.

Furthermore, monitoring network statistics based on different levels such per-flow,

per-port, per-device and so on is achievable. Moreover, in OpenFlow-enabled SDN

networks, queue management and scheduling operations are also possible by means

of some other southbound plugins such as OF-CONFIG and OVSDB protocols.

• One function that SDN can help networks improve is QoS-motivated routing.

With SDN architecture, per-flow routing (both intra-domain and inter-domain)

becomes viable through more scalable, simpler and less time-consuming mech-

anisms compared to traditional architectures. OpenFlow enables network oper-

ators to use various routing algorithms (rather than the typical shortest path)

within the controller to generate forwarding tables that govern different isolated

flows, such as the QoS flows, in the data plane [189]. Also, dynamic routing

of flows are viable by controllers due to decoupling of control and forwarding

functions of devices. These abilities, per-flow and dynamic routing, allow net-

work administrators to come up with more QoS-motivated routing mechanisms

for their networks.

• Also, SDN can help network operators create powerful and easy-to-use au-

tomated QoS management frameworks by means of resource reservation and

queue management and packet scheduling for their networks. QoS provisioning
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for network applications require well-defined control mechanism due to dynamic

nature of network resources. As SDN brings capabilities to obtain global view of

network controlling QoS configuration becomes easier compared to traditional

network architectures.

• Furthermore, user QoE improvement can also benefit from SDN capabilities.

User satisfaction cannot be guaranteed just by providing certain QoS param-

eters since these low-level network parameters represent the network states in

terms of numbers. However, real user satisfaction (i.e. QoE) may require dif-

ferent QoS parameters which can dynamically change over the time. SDN’s

ability to manage network flows in a finer-granular way by flow rules through

an automated control can help improve user QoE in a network.

• Moreover, network monitoring task is another function that SDN can help

within a network. Monitoring task is crucial for a network since it helps detect

and respond threads, performance issues in real time, and predicting future

behaviors in a network. SDN allows network managers to monitor network

dynamics through counters at very low levels such as per-packet, per-port, per-

table, per-queue, and per-meter.

• Finally, SDN can be utilized to provide QoS in some miscellaneous ways such

virtualization-based QoS provisioning, QoS policy management, and content

delivery mechanisms due to some of its features such as per-flow control concept

and multi-header field based routing.

The aforementioned network functions/tasks mainly form the underlying logic of

the organization in which the surveyed papers are presented. These categories are

the most prominent ways in which QoS can benefit from the concept of SDN.

In the rest of the chapter, Table 3.3 shows some features of studies such as queuing

and/or scheduling mechanisms, scaling domain, simulation and/or emulation environ-

ment, and the controller(s) exploited in the development stages. Table 3.4 illustrates
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the corresponding SDN planes that the techniques impact. Table 3.5 illustrates the

organization, based on the categories identified, of the studies surveyed in the chapter

along with their short descriptions.

3.5 Multimedia Flows Routing Mechanisms

With proliferation of different applications (e.g. video conferencing, VoIP etc.)

on the Internet, more sophisticated and efficient routing mechanisms are needed for

these types of application to meet their QoS demands. However, routing in today’s

traditional networking is an ossified issue due to some unsolved issues such as net-

work’s limited global view, per-hop decisioning, and limited QoS abilities for flows.

The SDN and OpenFlow couple is considered a prospective solution architecture for

the routing problems of the current networking. Decoupling of control plane and data

plane in SDN brings many opportunities to routing functionalities. Supporting QoS

in SDN/OpenFlow networks becomes more feasible owing to a logically centralized

controller component of the SDN. With OpenFlow, it is possible to use various rout-

ing algorithms with different objectives such certain delay limit or packet loss (rather

than just shortest path routing) within a controller and generate flow tables accord-

ingly in forwarding devices. Flows can be dynamically routed in a per-flow basis with

end-to-end QoS over the paths by means of the controller. Further, it allows to utilize

the network resources in a more efficient way compared to today’s architectures.

QoS-greedy multimedia applications such as video conferencing, distance learning,

and interactive gaming are becoming prevalent in recent years. Efficient delivery of

streaming media over the Internet presents many challenges. Flows of multimedia

streaming require steady network resources with little or no packet drop and delay

variation depending on the application. For example, while VoIP data is delay sen-

sitive HTTP data requires reliable transmission. This indicates that different types

of media may have different quality impairments under the same network condition.

Therefore, designing multimedia flows routing frameworks that can cope with varying
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network conditions becomes important. Classification and prioritization of flows are

the key points at designing such frameworks. QoS routing of video streaming over

OpenFlow networks is studied in [142]. The authors introduce a formula based on

linear programming aiming at reducing packet loss and keeping delay tolerable for

Scalable Video Coding (SVC) base layer video flows while calculating routes for QoS

flows. The idea is to keep the best-effort traffic on typical shortest paths and maintain

a best-effort traffic table while video flows are routed on QoS-rich paths calculated

by the proposed formula and maintaining QoS flows table for them. HiQoS applica-

tion [143] exploits an SDN-based ECMP (Equal Cost Multipath Routing) algorithm,

presented in [190], to find multiple paths between source and destination along with

using queuing mechanisms to provide bandwidth guarantee for different classes of

traffic. It differentiates different types of traffic and provide different bandwidth guar-

antees to different services through queuing mechanisms on the SDN switches. The

multi path routing component finds multiple paths meeting certain QoS constraints

between the source node and the destination node, and calculates the optimal path

for each flow by real time monitoring of the network state.

An OpenFlow controller (OpenQoS) design for video streaming with QoS sup-

port is presented in [144]. The key concept in this architecture is the classification

of the incoming flows as multimedia flows and data flows using packet header fields.

These flows are dynamically routed on the QoS-supported paths while data flows are

subject to best-effort routing. Another controller architecture and protocol (VSDN)

for supporting QoS for video applications over SDN networks is presented in [145].

It allows video applications to request end-to-end guaranteed services (GS) from the

network. They achieve guaranteed services by modifying limited switch capabilities

provided by OpenFlow. The queue properties of OpenFlow, “ofp queue properties”,

has been modified to support GS based queuing as “ofp queue prop gs rate” to con-

tain required fields for token bucket based traffic shaping. VSDN switch creates a

token bucket shaping queue for each requested flow. The queuing process using GS

regulates traffic per flow based on traffic specification provided by VSDN controller.
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The study in [146] is an extension of the VSDN architecture to address reliable QoS

support for video streaming by adding “reliability” constraint to the problem of path

calculation for a requested QoS path. Classification of flows is exploited for different

routing treatment in networks. Tomovic et al. [147] also propose an SDN controller

architecture that performs route calculations and resource reservations based on flow

specifications for priority flows in an automated manner. It uses an algorithm that

avoids highly utilized links even if traffic passing over them is best-effort.

Finding a route that provides best QoS for flows is not an easy task. Also, cal-

culating such a route is not enough since network resources can dynamically change

anytime. Therefore, a certain path may not be a good route for a flow all the time. To

this end, frameworks taking into account these network changes are needed to keep

flows under QoS guaranteed routes and provide optimized QoS. QoS routing should

optimize a different cost function than simply the path length. For example, routes

that have larger capacity even with longer distances may be more preferable to shorter

routes that may cause packet loss. In [148,149], the authors propose an optimization

framework for video streaming with dynamic rerouting capability on the OpenFlow

controller. To this end, they introduce two optimization problems along with their

formulations. In the first problem, only lossless QoS flows (the base layer of the SVC

encoded video) are routed under congestion conditions with an aim of no packet loss.

In the second problem, both lossless QoS flows and lossy QoS flows (enhancement

layers of the SVC encoded video) are routed with goals of no packet loss and mini-

mized loss, respectively. ARVS (Adaptive Routing Video Streaming) approach [150]

also studies the same optimization problem for adaptive routing of video packets. In

ARVS, if the shortest path does not satisfy the delay variation constraint, the base

layer packets have the first priority to be rerouted to a calculated feasible path based

on the available bandwidth of this path, and the enhancement layer packets will stay

on the shortest path. However, if there is no available bandwidth in this path, the

base layer packets will stay on the shortest path while the enhancement layer packets

will be rerouted to this path.
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Server load balancing can affect quality of video streaming for end users. Server

load balance requires continuous monitoring of the load of each server and dynamically

rerouting current or new service requests to available servers for lower delay and

distortion in case of servers are overloaded. SDN can help mitigate this problem

since it can provide global network view to users. For this problem, a load balancing

application that reroutes flows of video streams is presented in [151]. When the

application detects server overloading, it calculates cost metrics (packet loss and

delay) for each route connecting the user to each server. The old flows are deleted

and new flows are pushed to all switches along the new least cost route.

Providing QoS-guaranteed paths for flows in networks is a challenging task for

network operators. This objective requires taking many restrictions (e.g. bandwidth,

delay etc.) into account before supplying such paths. Researchers anticipate that SDN

and OpenFlow couple can help network administrators make flow-based routing easier

compared to current state of it since it can provide centralized and finer-granular flow

management along with global network view. Therefore, they propose various routing

frameworks that exploit advantages of SDN and OpenFlow to make QoS provisioning

easier for network paths.

3.6 Inter-domain QoS Routing Mechanisms

A single controller solution in the current OpenFlow specification is not scalable

for large-scale multi-domain networks due to the limitation in processing power of the

single controller, latency resulting from distant network devices, and huge amount of

overhead because of messaging between controller and switches. Therefore, there is

need for a distributed control plane with multiple controllers so that each controller is

responsible for a part (domain) of the network. Routing end-to-end QoS flows between

these networks requires collecting up-to-date global network state information, such

as delay, bandwidth, and packet loss rate for each link. However, over a large-scale

network, this is a difficult task because of problem dimension (size) and network
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operators’ intent not to share internal precise network dynamics in detail. Therefore,

distributed QoS routing models need to consider all these challenges to ensure optimal

end-to-end QoS for applications.

A distributed control plane-based routing architecture for video streaming over

OpenFlow networks is presented in [152, 153]. In this routing architecture, each

domain controller aggregates internal network resource information for each border

node pairs (called virtual links) and share with other domain controllers. In this

way, each controller acquires a global view of whole network and becomes capable of

calculating an end-to-end QoS optimized route for flows. Karakus et al. [84] propose a

similar QoS routing architecture but it utilizes a hierarchy-based network architecture

in which network controllers compose hierarchy-levels along with another controller,

called “Broker”, on the top level. Each network controller shares its summarized

network state information with the Broker instead of other controllers. The Broker

keeps the global network state and view to share necessary information with certain

controller when needed. FlowBroker [71, 154] architecture also exploits Brokers for

network performance enhancement and load balancing regarding flow coordination

over multiple domains in SDN.

An important problem in inter-data center (IDC) traffic management is bandwidth

allocation to competing applications while maximizing the overall network utilization

and considering QoS metrics and fairness. MCTEQ [155,156] model proposes a joint

bandwidth allocation to multiple traffic classes. It uses SDN concept to give preference

to higher priority traffic in grabbing bandwidth by associating its utility with a larger

weight while considering end-to-end delay requirement of interactive applications.

Miao et al. [157] exploit SDN paradigm’s control plane to update the look-up-table

(LUT) of OPS (Optical Packet Switching) nodes at data center networks by extending

OpenFlow protocol. By this way, application flows are switched by the OPS at sub-

ms hardware speed, decoupled from the slower (millisecond timescale) SDN control

operation. Hence, with flows prioritization and faster speed, it is possible to guarantee

QoS for flows for intra data center traffic.
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Pathlets (i.e. partial paths) based models are also leveraged to provide inter-

domain end-to-end QoS paths. In this model, pathlets with specific QoS properties

from each autonomous domain are advertised to an independent external entity that

manage them for an end-to-end route. Control Exchange Point (CXP) [158] exploits

abstracted network paths to orchestrate the end-to-end stitching of slices (a flow space

associated with a specific service and a virtual topology (e.g. pathlets)) that the ISPs

provide. The task of the CXP is to admit requests for QoS-guaranteed end-to-end

paths, embed paths in the inter-domain virtual topology, and monitor the provided

QoS guarantees.

3.7 Resource Reservation Mechanisms

This type of frameworks typically exploits flow classification and a rate-shaping

through some modules implemented in controllers. A classifier module uses packet

header fields to classify the packet and assign a priority to the corresponding flow

based on network QoS policies. The rate-shapers then manage the flow rates to

install corresponding rules in switches over the path in order to reserve resources for

flows needing QoS.

The rate-limiters and priority queues can also be used with high level service re-

quirements for resource reservation to provide QoS. The architecture in [159] exploits

extensions to the OpenFlow’s QoS capabilities. The proposed QoS controller creates

network slices for different applications and feeds them with required performance

requirements. These network slices are set of services defined by certain QoS perfor-

mance requirements such as max bandwidth, min delay, etc. for each network slice.

The authors utilize a mechanism called “QoS APIs”, an extension to OpenFlow, so as

to control configuration and management of QoS parameters. The aggregated band-

width usage is accomplished by the rate-limiter APIs and the queue mapping API is

exploited to map flow(s) to priority queues in ports in order to cope with bandwidth

and delay allocation.
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Table 3.3 shows some features of studies such as queuing and/or scheduling mech-

anisms, scaling domain, simulation and/or emulation environment, and the con-

troller(s) exploited in the development stages. Most of the studies target a single

domain and do not modify (i.e. use available default queues) the queue mechanism(s)

of associated data plane devices (e.g. switches) in their architectures. Moreover, al-

beit the most of the studies state that their frameworks work with any OpenFlow

controller by little modification (if not necessary), the Floodlight controller has been

also chosen due to its QoS support over other controllers, highly modular design, and

rich set of APIs.

Table 3.3.: Some features of studies such as queuing and/or scheduling mechanisms,
scaling domain, simulation/emulation environment, and the controller(s) exploited in
the development stages of the techniques.

Techniques

Features Queuing/

Scheduling

Scale

(Domain)

Simulation/Emulation Environ-

ment
Controller

Wallner et al. [140] Default Single
Presentation of the architecture, no

simulation or testbed implementation
Floodlight

Civanlar et al. [142] Default Single
Simple 4-forwarder OpenFlow

testbed
NOX

HiQoS [143] Default Single

Used Mininet [102] tool and topol-

ogy with 5 switches, 2 servers, and

11 clients

Floodlight

OpenQoS [144] Default Single
3 OpenFlow-enabled Pronto 3290

switches, 1 controller, 3 hosts
Floodlight

VSDN [145]

Token Bucket

Shaping (TBS),

Weighted Fair

Queuing (WFQ)

Single
A topology of 6 nodes in NS-3 simu-

lator
VSDN

RVSDN [146] TBS and WFQ Single
A topology of 6 nodes in NS-3 simu-

lator
RVSDN

Tomovic et al. [147] HTB Single
6 Open vSwitch (OVS), 4 clients, 4

servers
POX

Egilmez et al. [148] Default Single
Used a simulator implemented using

LEMON library, used 6 nodes
Any

Egilmez et al. [149] Default Multi

Used a simulator implemented us-

ing LEMON library, used 15 domains

with 300 nodes total

Any
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Table 3.3 continued

Techniques

Features Queuing/

Scheduling

Scale

(Domain)

Simulation/Emulation Environ-

ment
Controller

ARVS [150] Default Single

Used Mininet and a topology with 30

nodes, 20 Mbps bandwidth, 10 ms

and 20 ms delays randomly of each

link

Floodlight

Yilmaz et al. [151] Default Single

Used 2 servers, 2 switches, 1 con-

troller and a traffic loader to test dif-

ferent scenarios

OpenDaylight

Egilmez et al. [152] Default Multi

Used a simulator implemented using

LEMON library, used 6 domains with

30 nodes each

Any

Egilmez et al. [153] Default Multi

Used a simulator implemented using

LEMON library, used 6 domains with

30 nodes each

Any

Karakus et al. [84] Default Multi
4 domains with 4 nodes each in sim-

ulation
Any

FlowBroker

[71,154]
Default Multi

Used Mininet to test 5 different sce-

narios
Floodlight

Wang et al. [155,

156]

WFQ, RED,

Self-clocked Fair

Queueing (SCFQ)

Multi

Used Google’s IDC backbone network

(G-WAN) and IBM’s global data cen-

ter network (SoftLayer) for extensive

simulations

Central

Traffic

Manager

Miao et al. [157] Default Single
Used virtual networks connected to

each other with ToRs and Racks.
OpenDaylight

CXP [158] Default Multi Used 5 IXPs data Any

Kim et al. [159]
Priority Queuing

(PQ)
Single 3 ProCurve 5406zl switches NOX

NCL [160] Default Single/Multi
Presented a use case with description

of the architecture
Floodlight

Duan et al. [161,

162]
Default Single/Multi Numerical Results with examples Any

FlowQoS [163,164] Default Single

OpenWrt router with OVS integra-

tion, Raspberry Pi as controller hard-

ware

POX

Afaq et al. [165,

166]
Default Single

Used Mininet and a linear topology

with 4 OVSes connected to a host

each

Floodlight

QoSFlow [167]

HTB, Stochastic

Fairness Queuing

(SFQ), RED

Single Up to 3 TPLink 1043ND switches Any
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Table 3.3 continued

Techniques

Features Queuing/

Scheduling

Scale

(Domain)

Simulation/Emulation Environ-

ment
Controller

OpenQFlow [168]

Rate Controlled

Static Priority

(RCSP), CETA

based scheduling

Single

Used a data plane module Cav-

ium OCTEON CN5650 with multi-

core processors, each assigned differ-

ent tasks

Any

Xu et al. [169]

Pre-defined

queues w/ priority

levels

Single

A topology w/ 8 switches and 6 hosts

in Mininet and also a psychical net-

work w/ 3 switches

RYU

Wang et al. [170]

Weighted RED,

PQ, Weighted

Round-Robin

(WRR) schedul-

ing

Single
Used a testbed with 3 Dell R410

servers and 4 R710 servers
NOX

Caba et al. [171]
Priority Queuing

(PQ)
Single

Used Distributed OpenFlow Testbed

(DOT) [191] and topology consisting

VMs containing controller and 4 OVS

switches and 3 hosts

Floodlight

Truong et al. [172] Default Single/Multi

Implemented in a testbed infrastruc-

ture, consisting of 3 layers, set up in

their lab

Any

Kumar et al. [173] FIFO and HTB Single

Emulated a small home network

with TP-LINK WR1043ND gateway

router and DELL PowerEdge R620

OVS switch as ISP access switch

Floodlight

Yiakoumis et al.

[174]

Minimum-rate

queuing and WFQ
Single

Implemented a minimal user-ISP

with TP-LINK WR1043ND home

gateway router and 48-port Pronto

switch as ISP access switch

Any

Q-POINT [176] WFQ Single

Evaluated in a random topology

with 4 nodes and CARnet-like topol-

ogy with 9 nodes using IBM ILOG

CPLEX Optimization Studio

Any

QFF [177] Default Single

A testbed recreating home network

with TP-LINK WR1043ND home

gateway router with Pantou and 3

clients

Any
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Table 3.3 continued

Techniques

Features Queuing/

Scheduling

Scale

(Domain)

Simulation/Emulation Environ-

ment
Controller

Gorlatch et

al. [178,179]
Default Single

Numeric experimental study for low-

level and application-level QoS met-

rics

Any

Jarschel et al. [180] Default Single

A testbed with two Pronto 3290

switches and a Dell PowerEdge 860

server as controller platform

Floodlight

Ayadi et al. [181] Default Single Numerical evaluation Any

Q-Ctrl [182] Default Single

Real-time experimental setup with 2

PowerEdge T110 II servers, HP2920

and Pica8 switches and 6 VMs

launched in servers

Floodlight

PolicyCop [183] Default Single
An experiment with 5 switches and 4

hosts
Floodlight

OpenCache

[184,185]
Default Single No complete experiments yet NOX

SoIP [187] Default Single/Multi

Used 3 switches w/ 100 Mbps link

capacities for edge network and 2

routers for core network

Any

ACDPA [188] Default Single

Used Mininet and a topology w/ ran-

domly connected 20 switches and 30

hosts

OpenDaylight

SDN and Network as a Service (NaaS) paradigms can be cooperated to address

the problem of providing QoS parameters for application requirements while provid-

ing end-to-end service provisioning. NCL (Network Control Layer) [160] framework

supports the low-level network QoS provisioning for requirements of different types of

data flows by means of resource reservation. While SDN brings the ability to flexibly

manage and program the underlying network, the NaaS paradigm supply users secure

and isolated access to the network. In addition, the NaaS paradigm provides ability

to easily expand or shrink the network services. The proposed NCL architecture has

two main parts: The QoS SDN Application (SDNApp) and the Monitor Module.

The SDNApp accounts for adaptation of control plane to the providers’ requirements

and configures the data plane accordingly. while the SDN Monitor component is re-

sponsible for monitoring the network states and collecting statistics from switches by

means of OpenFlow counters. Duan et al. [161] also present a NaaS-applied frame-

work in SDN that enables network service orchestration for supporting inter-domain
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end-to-end QoS. A high-level abstraction model for network service capabilities is

proposed and a technique for determining required bandwidth in network services to

achieve QoS guarantee is developed. Network calculus is exploited in the proposed

modeling and analysis which makes the developed techniques general and applicable

to networking systems consisting of heterogeneous autonomous domains. In [162], the

authors extend the study presented in [161] to develop the idea of NaaS-SDN inte-

gration to propose a framework of a NaaS-based Service Delivery Platform (SDP) for

a multi-domain SDN environment. This platform provides a high-level abstraction

of each SDN domain as a network service and enables network service orchestration

for end-to-end service delivery. They investigate two key technologies for achieving

end-to-end QoS guarantee through this SDP, an abstract model for network service

capabilities and a technique for end-to-end bandwidth allocation.

Making per-flow and application-based QoS allocation hassle-free is an important

task in home networks using an SDN-based approach because home networking de-

vices have less processing power than typical networking devices and the users are

not skilled. FlowQoS [163, 164] is a system in which users of the broadband access

network simply specify the high-level applications that should have higher priority

(e.g., adaptive video streaming, VoIP) compared to others. The FlowQoS controller

performs the appropriate application identification and QoS configuration for both

upstream and downstream traffic to implement a user’s preferences. For each flow,

FlowQoS performs on-the-fly application identification. It also installs rules in the

data plane that forward individual flows according to user-specified priorities for those

applications. The system creates links in a virtual topology in the home router, con-

figures each of these links with a user-specified rate, and assigns flows to these links

to provide rate shaping per application.

Long-lived flows are mostly called elephant flows and are large transfer such as

backups. These elephant flows can affect the performance of the network since net-

work resources are consumed by them and they fill buffers end-to-end. Other flows

may be affected from this tendency because they also use the same buffers with ele-
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phants. Therefore, detecting elephant flows and satisfying their QoS needs is needed

for a better network performance. In [165, 166], a QoS provisioning mechanism is

proposed for elephant flows after their detection. In the proposed approach, flows

over a specified threshold value, called elephant flows, are subject to QoS module

application that routes them to rate-limited queues (e.g. max or min bandwidth) for

traffic shaping QoS technique. The QoS module application enables the network to

define a queuing policy which exploits the enqueue action in OpenFlow to enqueue

certain types of flows in the network.

3.8 Queue Management and Scheduling Mechanisms

The order of some packets in a queue may have more priority than other packets

which are ahead of them in the queue. This idea has impact on QoS along with the

traffic shaping. Hence, the QoSFlow [167] model manipulates the multiple packet

schedulers, i.e. not only FIFO, in Linux kernel in order to provide more flexible and

manageable QoS control mechanisms in OpenFlow-enabled networks. The QoSFlow

combines the Linux packet schedulers along with OpenFlow networks and supports

the Hierarchical Token Bucket (HTB), Random Early Detection (RED), and Stochas-

tic Fairness Queuing (SFQ) schedulers. The QoSFlow enriches the software switches

of OpenFlow. The authors state that they use OpenFlow 1.0 because of its stability

and ability to let users make use of different schedulers. The QoS module of QoS-

Flow has three components: Traffic Shaping, Packet Schedulers, and Enqueueing.

The Traffic Shaping and Packet Schedulers are responsible together for manipulation

of bandwidth size in queues. On the other hand, the Enqueueing component admin-

istrates the flow table messages of OpenFlow protocol and mapping flows to queues

where maximum 8 queues is supported per switch port.

OpenQFlow architecture [168] is a variant of OpenFlow architecture that provides

microflow-based QoS in a scalable manner. It divides classic flow table framework to

three tables: flow state table, forwarding rule table, and QoS rule table. The flow state
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table entries are used to maintain 128-byte micro-flow state information including

forwarding, QoS, and statistics information. It is used to find the forwarding and QoS

information base without rule table lookups. Therefore, this increases the scalability

of OpenQFlow architecture. Each entry of forwarding rule table maintains a pointer

to a forwarding information base that comprises of forwarding information such as

forward and drop. Similarly, each QoS table entry has a pointer to a QoS information

consisting of the traffic type, bandwidth, and priority information. OpenQFlow brings

two packet scheduling schemes, BETA and CETA, that provide max-min fairness

without the need of output queues per flow.

Queue-based classification techniques are used in [140] to achieve the QoS support

in Floodlight-controlled SDN networks. To this end, traffic shaping (rate limiting) and

DiffServ DSCP (Differentiated Services Code Point) approaches are exploited for QoS

support in Floodlight-based SDN networks. The authors describe different class of

services along with rate limiting paths between switches. In their approach, the main

player is the “SDN module” that is responsible for packet matching, classification,

and flow operations like insertion, deletion etc. This QoS component tracks and stores

service classes with their DSCP values. The QoS module allows the network to define

two different main policies: Queue-based policy and ToS/DSCP-based policy. The

Queue-based policy exploits enqueueing mechanisms for flows while the ToS/DSCP-

based policy uses class of services with a name (e.g. Expedited Forwarding, Best

Effort etc.) and a corresponding DSCP value. An IPv4 ToS-based QoS mechanism is

also proposed in [169]. It classifies flows as QoS flows and best flows and then assign

them queues based on their priorities.

Another software defined automatic QoS management model is introduced in [170].

The proposed model includes certain QoS functions such as packet marking, queue

management, and queue scheduling. It utilizes Weighted Random Early Detec-

tion (WRED) queue management algorithm, Priority Queuing (PQ), and Weighted

Round-Robin (WRR) queue scheduling algorithms. It also proposes a Collaborative
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Borrowing Based Packet-Marking (CBBPM) algorithm to improve the utilization rate

of network resource.

OpenFlow alone is not enough to build more complex SDN services that require

complete control and management of the data plane in terms of configurations of

ports, queues, and so on. OVSDB protocol has been exploited to configure QoS

capabilities of OVS switches in data plane in [171]. The proposed QoS Config API

allows applications to configure priority queues on the ports of data plane devices by

adding OVSDB at the D-CPI of a network controller. Hence, services and applications

built on top of an SDN controller using the proposed QoS API can make use of the

full set of QoS features available in OVS devices.

3.9 QoE-Aware Mechanisms

The requirements for network applications are diverse and today’s networks try

to support them based on QoS parameters. However, user satisfactions are not nec-

essarily always met by just providing QoS for some applications like IPTV, real-time

online interactive gaming, e-learning etc. since QoS is not powerful enough to express

all features involved in a communication service [192]. Therefore, the performance

of a specific application cannot be determined by simply relying on QoS metrics.

Instead, user QoE is an alternative measurement of user satisfactions for those ap-

plications over the network. Therefore, a major challenge for future networks is to

dynamically adapt QoE demands of the users to QoS parameters in the network.

However, mapping user QoE to network QoS parameters is a challenging issue over

the networks. This is especially true for networks with limited resources like today’s

access networks. To this end, there are some researches aiming to maximize QoE of

users while providing required QoS in SDN/OpenFlow networks.

Table 3.4 illustrates the corresponding SDN planes that the techniques impact.

Each study targets a main plane in the SDN architecture to implement the idea

presented in the studies. Most of the techniques are conducted in control plane since
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it provides the control functions of the SDN paradigm. It is important to notice that

the techniques do not solely rely on a specific plane of SDN architecture to implement

their ideas due to cooperation among planes.

Table 3.4.: Impact of the techniques on the SDN planes.

Techniques

SDN Planes
Application Plane Control Plane Data Plane Management Plane

Wallner et al. [140] X

Civanlar et al. [142] X

HiQoS [143] X

OpenQoS [144] X

VSDN [145] X

RVSDN [146] X

Tomovic et al. [147] X

Egilmez et al. [148] X

Egilmez et al. [149] X

ARVS [150] X

Yilmaz et al. [151] X

Egilmez et al. [152] X

Egilmez et al. [153] X

Karakus et al. [84] X

FlowBroker [71,154] X X

Wang et al. [155,156] X X X

Miao et al. [157] X X

CXP [158] X

Kim et al. [159] X

NCL [160] X

Duan et al. [161,162] X X

FlowQoS [163,164] X X

Afaq et al. [165,166] X X

QoSFlow [167] X

OpenQFlow [168] X X X

Xu et al. [169] X X

Wang et al. [170] X X X
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Table 3.4 continued

Techniques

SDN Planes
Application Plane Control Plane Data Plane Management Plane

Caba et al. [171] X X

Truong et al. [172] X

Kumar et al. [173] X X

Yiakoumis et al. [174] X X

Kassler et al. [175] X X

Q-POINT [176] X X

QFF [177] X

Gorlatch et al. [178,179] X

Jarschel et al. [180] X X

Ayadi et al. [181] X

Q-Ctrl [182] X

PolicyCop [183] X X

OpenCache [184,185] X

Sonkoly et al. [186] X

SoIP [187] X

ACDPA [188] X X

OpenNetMon [193] X X

PayLess [194] X X

Isolani et al. [195] X X

Jose et al. [196] X X

OpenSketch [197] X X

OpenTM [198] X X

OpenSAFE [199] X X

IPTV is an emerging application recently in networking world. Controlling and

implementing QoS policies on a network is an issue for IPTV services. The QoE-aware

IPTV network architecture presented in [172] combines IP Multimedia Subsystem

(IMS) and OpenFlow-based network to optimize the network resources and service

characteristics according to user satisfactions. In this design, users are able to rate the

services that they are receiving and the proposed architecture maps and provisions

the network QoS parameters accordingly. The architecture consists of three layers.

The Application Layer includes the IMS IPTV Client and QoS engine to predict the

user satisfaction. The IMS Core Layer is responsible for signaling and session/service

control. Finally, the Media Layer is the data plane consisting of OpenFlow switches

for transportation of traffic in the unicast, multicast or broadcast manners.
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Enabling users to gain some controls over bandwidth allocation of access links for

their devices and applications at home networks can be used to improve user QoE

in such networks. The study in [173] leverages the SDN paradigm in ISP network

to make such control delegation possible for users. The authors state that such a

control by users not only improve user QoE but also allows ISP to monetize their

services and powerfully compete with other ISPs in the market. They design a GUI

that allows a typical user to specify their requirements on a per-device and per-

application basis. The GUI then translates these requests into the appropriate API

calls exposed by the SDN controller hosted in the ISP network. Finally, the ISP’s

SDN controller determines an appropriate resource allocation for the request, which

it then configures into the switching hardware associated with that user’s access link.

Yiakoumis et al. [174] also present a very similar idea that proposes allowing users to

choose the relative priority of their applications, and indicate their preference to the

ISP that then enforces the preference by an OpenFlow controller.

Optimized path assignment while improving the QoE level of user perception

for multimedia services is studied in [175]. The proposed system aims to enable

negotiation of service and network communication parameters between users and

to find a path for delivering flows for corresponding communication. The system

leverages OpenFlow to set up the networking paths for users in order to maximize QoE

while considering network resources such as link capacities, delay etc. and network

topology. The two principle components of the proposed system are QMOF (QoS

Matching and Optimization Function) and PAF (Path Assignment Function). QMOF

resides in the SDN application layer and conducts an initial parameter matching

process to produce feasible service configurations. PAF is located in the SDN control

layer and executed on an OpenFlow controller. It optimizes the network paths to

meet the resource requirements of a currently active service configuration. In [176],

the authors propose the “Q-POINT”, a QoE-driven path optimization model, built

on [175] by formulating and solving the multi-user domain-wide QoE optimization

problem. Their aim is to find a best path for each media flow while maximizing
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the aggregated user-expected QoE value over all users and service flows in an SDN

network domain, subject to resource constraints and network topology. They present

the problem as a mathematical model, which is formulated as a mixed integer linear

program.

Dynamic adjustment of bit rate has been used to reduce pauses and buffering times

in video playbacks in recent researches. This idea brings its own advantages for overall

user experiences. However, that model has some issues such as unstable and bursty

flows, network congestion owing to independent adoption strategy as well. Further-

more, user requests to maximize their satisfactions without knowledge of others on the

network is another drawback of variable bit rate idea. The “OpenFlow-assisted QoE

Fairness Framework (QFF)” [177] architecture aims at mitigating aforementioned

problems. The QFF framework improves the QoE for all network and video stream-

ing devices, thereby users, along with network resources and requirements. The QFF

framework watches video streams in the network so that it can dynamically adapt

the flow parameters to fairly increase the QoE for users. The QFF exploits the idea

of sharing resources (particularly bandwidth) evenly among users because a user or

device may have a very low bandwidth rate than another one although its resolution

is much higher than the latter. This results in reduced QoE of users. An OpenFlow-

enabled controller takes a place in the heart of the QFF framework to control its

functionalities.

Real-Time Online Interactive Applications (ROIA) such as Real-Time Strategy

(RTS) games (e.g. StarCraft) require highly dynamic QoS characteristics from a

network. ROIA currently use the network on a best-effort basis, because of the lack

of control over QoS in traditional networks. However, this results in a sub-optimal

QoE by the end-user. Use of SDN technology to meet the dynamic network demands

of ROIA, therefore improving QoE, is studied in [178, 179]. The study propose a

Northbound API consisting of two parts, Base API and Application-level API, in

order to differentiate and map application-oriented QoS metrics to network-oriented

ones. The Base API is a bridge between SDN controller and SDN modules. It receives
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applications’ high-level QoS metrics and translates them to low-level network QoS

metrics so that the controller can provide. The Application-level API is responsible

for applications’ high level QoS metrics and prevents developer from low-level details.

Application information, such as per-flow parameters, and application signatures,

and related QoS levels offer greater flexibility in terms of supporting QoE than hard

QoS parameters. However, using them may require an overhead of signaling effort

compared to management at the network level. The study in [180] investigates how

different kinds of information or application quality parameters can support a more

effective network management in an SDN-enabled network. The authors examine the

trade-off between the QoE improvement due to more detailed application information

and corresponding signaling overhead in an SDN-enabled testbed for the application

of YouTube streaming.

3.10 Network Monitoring Mechanisms

One of the benefits that SDN promises is efficient use of network resources and

ease of resource provisioning. SDN renders these features possible by decoupling of

data plane and control plane. This separation simplifies the management of the net-

work. Network operators maintain a global view of a network from a central control

mechanism (i.e. controller). They can dynamically optimize flow management and

resources. Moreover, per-flow, and/or application-level QoS provisioning becomes

easier and feasible for network administrators. However, making all these features

possible requires well-designed network monitoring frameworks. Network monitor-

ing is employed for many different applications such as QoS management, resource

utilization, anomaly detection, traffic engineering and so on. It helps collect data

from network components like switches, routers (through southbound APIs such as

OpenFlow), and controllers (through west/eastbound APIs from other controllers).

Monitoring frameworks should be able to gather, process and deliver monitored data

at requested aggregation levels (such as per flow, port, table etc.) and frequency
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without introducing too much monitoring overhead into the network. In addition,

they should pay attention to the accuracy and timeliness of measurements.

OpenNetMon [193] is a network QoS metrics monitoring module written for POX

controller. It is used to monitor per-flow QoS metrics by polling flow ingress and

egress switches at an adaptive rate. It utilizes querying flow counters to obtain per-

flow throughput. They subtract the increase of the packet counter at destination

switch from the increase of the source switch packet counter in order to calculate

per-flow packet loss. The idea to calculate the path delay is to inject probe packets

traveling the same path (i.e. links, nodes, buffers etc.). However, as a disadvantage,

injecting such probes can bring extra message overhead to the controller.

PayLess [194] is a network statistics gathering framework. The PayLess frame-

work works as a moderator between network applications and controller. It trans-

lates the high-level monitoring requirements of network applications for controllers

and prevents applications from low-level details of statistics collection and storage

management. The authors of PayLess also propose an adaptive monitoring algorithm

which takes into consideration polling frequency to reduce the monitoring message

overhead as well as accuracy of monitored statistics by only monitoring important

switches.

An interactive approach to SDN monitoring, visualization, and configuration is

studied in [195]. The proposed monitoring manager retrieves information about the

network and stores it in a local database through a module called “Infrastructure

Synchronizer”. This module gathers control and data information such as traffic

statistics and network topology information and stores a history of these changes

along with SDN-related configurations performed by the network administrator.

A traffic measurement framework for online large traffic aggregates based on an

OpenFlow approach is introduced in [196]. The proposed model works on commodity

OpenFlow switches and can be used for various measurement tasks. The hierarchical

heavy hitters (HHH) traffic problem is exploited to understand the trade-off between

accuracy and overhead in the proposed framework.
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OpenSketch [197] is a measurement architecture that provides a three stage packet

processing pipelines (hashing, filtering, and counting) in SDN. It helps operators by

making understanding the complex switch implementations and parameter tuning

easier in diverse sketches. It proposes a measurement library configuring the pipelines

for different sketches and allocating switch memory across tasks to maximize accuracy.

OpenTM [198] concentrates on measuring traffic matrix estimation by periodically

polling one switch on each flow’s path and then combining the measurements. In

OpenTM, after a switch has been chosen it is constantly queried for gathering flow

statistics. Polling a single switch does not impose significant load on the network but

may affect accuracy if the switch is not carefully chosen. A disadvantage of OpenTM

is that it is limited to generating traffic matrices for offline use and does not capture

packet loss and delay. OpenSAFE [199] uses OpenFlow to enable flexible monitoring

of network traffic for security problems. It directs spanned network traffic towards

predefined sinks (e.g., IDS) according to pre-specified policies. While such an ap-

proach could be used to compute network utilization (by analyzing the redirected

traffic), the overhead it creates by copying all network traffic is prohibitive. Open-

SAFE requires hardware investments to perform the actual monitoring that network

operators are reluctant to do.

3.11 Other QoS-related Mechanisms

QoS in SDN/OpenFlow networks is not bounded just by routing, queue man-

agement, and QoE-aware mechanisms. Studies have been conducted in many broad

areas of networking by taking advantage of SDN concept. Virtualization-based QoS

providing, QoS policy management, content delivery mechanisms, and testbed QoS

extension are some of the other ongoing studies in the SDN/OpenFlow networks.

• Virtualization-based QoS Provisioning—In recent years, many research efforts

focus on effectively virtualization of computation, storage, server and network

resources that are provided as a service over a network. Although server and
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storage virtualization show a great success regarding efficiency and performance,

the network resource virtualization do not achieve the same success due to re-

stricted access of network operators to control plane of network devices. There-

fore, SDN brings capabilities that pave the way for virtualizing network re-

sources in an on demand manner by abstraction of the underlying network

infrastructure to the applications. Ayadi et al. [181] exploit the network vir-

tualization and SDN paradigm to meet applications’ QoS requirements. The

proposed VNOS (Virtual Network Operating System) plane is the fundamental

layer for the virtualization of the network. In terms of the SDN, they use a

distributed approach which manages the flows for QoS requirements in each

network. The “Network as a Service” framework is used on top of the SDN

controllers for management of virtual network flows. NaaS framework brings

the management of aggregated flows and creation of a logical virtual network.

To manage aggregation of flows, a mechanism called “solver 1” is leveraged

to categorize the flows regarding their QoS criteria such as availability, delay,

capacity, and reliability. These criteria are associated with a degree of high,

medium, and low for flows and then each flow is classified as a pre-defined

class of service (CoS) for aggregation. After classification and aggregation of

the flows, a logical virtual network is created by interaction of management,

control, and data planes. Q-Ctrl [182], QoS Controller, is an architecture for

programmatically attaining requested QoS constraints by users in a SDN-based

cloud infrastructure. The Q-Ctrl system is able to execute in a virtual over-

lay network via Open vSwitch (OVS), physical network infrastructure equipped

with an SDN controller, or a simulated SDN environment via Mininet. It regu-

lates and allocates the bandwidth for the virtual machines running on the Cloud

infrastructure.

• QoS Policy Management—In general, service level agreements (SLAs) are used

to establish QoS parameters for traffic management of QoS-greedy applications

such as online interactive gaming, video streaming, and video conferencing.
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Each SLA consists of a set of Service Level Objectives (SLOs) that are used

to derive network level policies, which are in turn translated into device level

primitives (e.g. forwarding rules, queue configurations, packet dropping rate,

and traffic shaping policies). In traditional network architectures like DiffServ

and MPLS, managing these QoS related policies are difficult due to static traf-

fic classes with a coarse granularity of QoS levels and installation requirement

of specialized software or hardware components in the network. On the other

hand, SDN promises a rich northbound API possibility and global network view,

it enables network operators to implement wide-range of network policies and

rapid service deployment. PolicyCop [183] project aims at bringing a flexible,

easy-to-control, and vendor-independent management of QoS policies by means

of SDN Northbound APIs in SDN/OpenFlow networks. PolicyCop fairly ben-

efits the features of OpenFlow to make itself a good management framework.

It provides per-flow control and on-demand aggregation thanks to OpenFlow.

Traffic definition is easier by PolicyCop, compared to DiffServ and MPLS, due to

no need of shutting down the network devices. It promises reduced operational

overhead and is easy to deploy in a network because of its vendor-independent

feature. PolicyCop architecture has 3 planes: data plane, control plane, and

management plane. The data plane and control plane are classic SDN planes.

The management plane is the heart of the PolicyCop framework. It is divided

into two parts as well: Policy Validator and Policy Enforcer. The Policy Valida-

tor tracks and detects the policy violations while the Policy Enforcer component

takes charge in case of any policy violations and maintains network policy rules.

• Content Delivery Mechanisms—The ability to shape and control data traffic

is one of the primary advantages of SDN. Being able to direct and automate

data traffic makes it easier to implement QoS for certain applications such

as Video-on-Demand (VoD). The increase in the use of VoD services brings

a huge demand on servers of content networks. However, this demand load

floods network resources such as bandwidth, latency etc. in response to user
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requests. OpenCache [184, 185] mitigates the duplication of traffic in cases if

a user from network A gets a content from another network B and another

user from network A requests the same content from network B. Therefore,

the content needs to traverse the operator’s network again. By OpenCache,

the VoD content is cached within the network (i.e. network A) to avoid this

duplication. Therefore, it reduces not only congestion and inefficiency but also

increases throughput and response time to user requests. It still keeps the

unicast delivery fashion so that existing infrastructure can be maintained. To

this end, OpenCache exploits SDN’s data plane and control plane separation

philosophy in order to redirect user requests for the same content to a local

cache. In the OpenCache framework, there is another controller called “Cache

Controller” that is intermediary (i.e. connected) between SDN controller and

cache instances. The cache controller allows connections of redirected requests.

It also maintains a full global state of underlying network so that it can modify

and manage the cache instances.

• Testbed QoS Extension—Vendor-dependent implementations of composite de-

vice structures regarding hardware and software requires more attention to QoS

support of testbeds. Hence, QoS support in OpenFlow-based testbeds like OFE-

LIA1 will contribute and encourage to SDN/OpenFlow QoS research from both

academia and industry. Therefore, Sonkoly et al. [186] extend the Ofelia’s ar-

chitecture to support more QoS features for OpenFlow experiments in a more

flexible, user friendly, and easy-to-manage way by a comprehensive study of

different QoS settings and use-cases. The authors study the QoS features of

diverse devices used in the Ofelia project for a comprehensive QoS performance

analysis. Also, they extend the OpenFlow switches by defining vendor spe-

cific queue properties to selected queue types. Middleton and Modafferi [200]

present their experience over 2 years running SDN network experiments on

1http://www.fp7-ofelia.eu/
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three classes of testbed facilities: commercial Amazon EC22, pre-commercial

federated testbed of FIWARE Lab3 instances,and experimental OFELIA. They

focus on measuring how testbed features limit the ability to perform an ide-

alized experiment, and how effectively that experiment can be executed using

the testbed support apparatus provided. This study compares and gives results

for three testbeds regarding some qualitative metrics such as QoS Monitoring,

external IP addresses, network slice isolation reliability and so on.

• SDN over IP for QoS—Although IETF has proposed a series of architectures

QoS in IP networks, none of them has been successful to be a unified adoption

due to their deficiencies such as complex structures or lack of fine-grained con-

trol over flows. It is becoming clear that a future architectures such as SDN

can be a solution for aforementioned problems. However, use of such a new

architectures over existing networks requires some long-term and fundamental

changes such as equipment, training of network operators etc. Therefore, in-

teroperation of legacy networks and SDN is being researched to overcome such

changes in short-term. SoIP (SDN over IP) [187] approach promises providing

better QoS guarantee for end users and applications using SDN over IP concept.

The basic idea of SoIP is to update or reconstruct the network edge and build

SDN-based overlay networks to take advantage of its per-flow control over flows

while the network core maintains the existing differentiated services based on

the ToS field of IP protocol header. This approach not only preserves the ex-

isting infrastructure and network devices but also enhance resource utilization

and QoS guarantee.

• SDN and Hadoop for QoS—Advanced Control Distributed Processing Archi-

tecture (ACDPA) [188] takes advantage of both SDN and Hadoop4 software

framework to provide better QoS for flows. It uses SDN for network abstrac-

2http://aws.amazon.com/ec2
3https://www.fiware.org/lab/
4http://hadoop.apache.org/
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tion and control and Hadoop for processing large amount of data coming from

data plane. In ACDPA, Wireshark packet sniffer is used to capture packets from

the network. Hadoop is then used to process the captured packets regarding

classification and the results are given to the controller. The SDN controller

gives corresponding priorities to the flows and propagate associated flow rules

to switches to provide QoS.

Table 3.5.: Organization and descriptions of the studies surveyed in SDN/OpenFlow
networks. These categories are the most prominent ways in which QoS can benefit
from the concept of SDN.

Organization

Description
Techniques Description

[142] A QoS-enabled routing architecture for scalable video streaming

[143]
Design of HiQoS application for multi path routing and queueing

mechanisms

Multimedia Flows

Routing

Mechanisms

(Sec. 3.5)

[144]
A controller design, OpenQoS”, for QoS-enabled routing of multime-

dia traffic delivery

[145,146]
A QoS-enabled (reliable) routing architecture (R-VSDN) for video

streaming

[147]
A QoS routing framework to provide resource-guaranteed paths for

multimedia applications

[148–150]
A QoS-enabled dynamic optimization-based routing architecture for

scalable video streaming

[151] Server load balancing application that reroutes flows of video streams

[152,153]
A distributed QoS routing architecture for scalable video streaming

over multi-domain OpenFlow networks

Inter-domain QoS

Routing

Mechanisms

(Sec. 3.6)

[84]
A hierarchic network architecture with an inter-AS QoS routing ap-

proach

[71,154] Design of Broker-based FlowBroker architecture for QoS support

[155,156]
Design of MCTEQ model proposing a joint bandwidth allocation for

trafffic classes

[157] Use of SDN and OPS nodes for QoS support

[158]
Design of Control Exchange Points (CXPs)” for QoS routing among

ISPs

[159]
A network QoS control framework for management of converged net-

work fabrics

[160]
A Network Control Layer (NCL) based on SDN, OpenFlow, and

NaaS for QoS requirements of applications
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Table 3.5 continued

Organization

Description
Techniques Description

Resource

Reservation

Mechanisms

(Sec. 3.7)

[161,162]
A framework to apply NaaS in OpenFlow networks to enable network

service orchestration for supporting inter-domain end-to-end QoS

[163,164]
A system, FlowQoS, enabling users to specify high-level application

flow prioritization (e.g. VoIP etc.)

[165,166] A QoS provisioning mechanisms for elephant flows

Queue

Management and

Scheduling

Mechanisms

(Sec. 3.8)

[167]
A QoS control framework (QoSFlow) using multiple packet sched-

ulers

[168]
A QoS-motivated SDN architecture (OpenQFlow) for scalable and

stateful SDN/OpenFlow networks

[140,169] ToS/DSCP-based classification approach for QoS

[170] A hierarchical autonomic QoS model by adopting SDN

[171] A QoS configuration API using OVSDB protocol

[172]
A QoE-Aware IPTV network architecture design over OpenFlow net-

works

QoE-Aware

Mechanisms

(Sec. 3.9)

[173,174]
A system to improve user QoE by bandwidth allocation management

framework at home networks

[175,176] Design of Q-POINT, a QoE-driven path optimization model

[177]
An OpenFlow-assisted QoE Fairness Framework (QFF) to maximize

the QoE of clients in a shared network

[178,179]
A Northbound API design for online applications to increase QoE of

users

[180]

A study investigating how different kinds of information such as per-

flow parameters, application signatures etc. can improve network

management

[193] Design and implementation of OpenNetMon monitoring framework

[194] Design and implementation of PayLess monitoring framework

Network

Monitoring

Mechanisms

(Sec. 3.10)

[195]
Design and implementation of an interactive network monitoring

framework

[196] Design and implementation of traffic measurement framework

[197] Design and implementation of OpenSketch monitoring framework

[198] Design and implementation of OpenTM monitoring framework

[199] Design and implementation of OpenSAFE monitoring framework

Other QoS-related

Mechanisms

(Sec. 3.11)

[181]
A language to express QoS requirements of applications when placing

virtual network components

[182]

A QoS controller architecture, Q-Ctrl, for programmatically attain-

ing requested QoS constraints by users in an SDN-based cloud in-

frastructure
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Table 3.5 continued

Organization

Description
Techniques Description

[183] Design of a QoS policy management framework called PolicyCop

[184,185] A caching mechanism (OpenCache) to store content for VoD services

[186]
An architectural extension for QoS-enabled experiments in Ofelia

using OpenFlow

[187]
Design of SoIP architecture showing interoperability of SDN and IP

for better QoS

[188]
Design of ACDPA architecture using SDN and Hadoop for better

QoS support

[200]
Report of 2 years-running SDN network experiments on 3 different

testbeds

Table 3.5 illustrates the organization, based on the categories identified, of the

studies surveyed in the study along with their short descriptions.

3.12 Discussion

3.12.1 Research Challenges

While SDN matures, QoS provisioning in SDN/OpenFlow networks deserves more

research efforts from both academia and industry. This subsection explains few main

issues that need further attentions to complete QoS abilities of SDN/OpenFlow en-

vironments.

• Inter-AS QoS Provisioning: Most of the current research studies have been

focused on providing QoS in intra-domain. While single-domain problem is im-

portant, supporting QoS for flows at inter-domain level is arguably more crucial

and difficult owing to two obvious reasons among others: Firstly, majority of the

traffic in the Internet is between hosts which are part of different autonomous

networks (i.e. inter-AS traffic). Secondly, network administrators eschew shar-

ing their internal network-related configurations since they are proprietary.

SDX (Software Defined Internet Exchange) project [201,202] tries to realize the

use of SDN for inter-domain routing in IXPs (Internet Exchange Points) for

more expressive, flexible and destination-independent forwarding. It aims at
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curing the deficiencies of today’s de facto inter-AS routing protocol BGP [203]

by utilizing SDN features. SDX can enable some applications that are difficult

and complex (if not impossible) in today’s routing infrastructure: domain-based

or application specific peering, enforceable inter-domain routing policies, remote

traffic control, preventing free-riding, time-based routing, wide-area server load

balancing etc. SDX faces some challenges as well such as developing proper

isolation mechanisms for AS route selection processes, backward compatibility,

and resolution of potential policy conflicts among ASes. A similar study [158]

demonstrates an architectural model, “Control Exchange Point (CXP)”, which

dynamically stitch partial paths (called pathlets) provided by ISPs and provi-

sions end-to-end QoS for services. CXPs leverage SDN principles such as the

clean decoupling of the routing control plane from the data plane and the con-

sequent centralization of control. The task of the CXP is to admit requests

for QoS-guaranteed end-to-end paths, embed paths in the inter-domain virtual

topology and monitor the provided QoS guarantees.

Another approach used in SDN case to mitigate the inter-domain routing is to

utilize a more powerful controller(s), mostly called “Broker”, with a full global

network view over different ASes. This controller(s) is connected to domain

controllers of other ASes. FlowBroker [71, 154, 204] architecture proposes use

of brokers connected with network controllers. These brokers collect network

state updates from each associated domains and forms corresponding local and

global link state tables. When an inter-as flow requests comes to a broker, the

broker calculates a path satisfying network metrics (e.g. packet loss ratio, delay

etc.) of the request and sends this path information to controllers over the path.

The main concern with this broker approach is that network operators consider

their internal configurations proprietary and are not willing to share them with

a third party control mechanisms.

The eXtensible Session Protocol (XSP) [205] supports application-driven con-

figuration of network resources across domains. XSP provides mechanisms that
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enable the configuration of dynamic networks services in support of applications

such as GridFTP. The XSP libraries and APIs consolidate applications with a

standard interface to define parameters determining network paths. The real-

ization of these paths is then managed by the XSP Daemon (XSPd) that signals

the underlying provisioning service while providing feedback to the application.

• QoS Signaling Overhead:

SDN is a logically centralized architecture. This structure results in gather-

ing all QoS-related signaling messages (i.e. overhead) at control mechanism of

the network (i.e. controller) by means of statistics messages from data plane

elements to controller(s). OpenFlow enables network operators to collect statis-

tics at different level of flows such as per-flow or aggregation of flows. However,

each of these collection approaches comes at a cost. While per-flow approach

brings finer granularity regarding QoS-related states, it suffers from the scalabil-

ity issue. On the other hand, aggregation of statistics mitigates the scalability

problem yet restrains the OpenFlow fine-granular flow independence semantics.

Also, in an SDN/OpenFlow environment, a controller can poll a switch to collect

statistics on the active flows. Alternatively, it can request a switch to push flow

statistics (upon flow timeout) at a specific frequency (i.e. periodically). More-

over, one important issue is how often the QoS information should be sent from

network elements to controller. Even though pulling statistics frequently from

data plane help controller maintain up-to-date global vision of network states, it

brings extra overhead to be handled by the controller owing to processing infor-

mation. Therefore, this is process is a trade-off between measurement accuracy,

timeliness and signaling overhead and thereby resulting in control plane scala-

bility issue for controller [206]. The PayLess [194] framework provides different

flow aggregation levels by a RESTful API for flow statistics collection. It uses

an adaptive statistics collection algorithm that delivers highly accurate informa-

tion in real-time without incurring significant network overhead. The algorithm
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can achieve an accuracy close to constant periodic polling method while having

up to 50% reduced messaging overhead compared to periodic poling strategy.

3.12.2 Lessons Learned

This survey experience has showed us several important points that require more

attention from researchers to provide QoS in SDN networks.

QoS support for applications and service provisioning have been difficult tasks to

achieve for quite a while even though newer applications such as video conferencing,

VoIP etc. demand performance guarantees. Despite a large volume of work, QoS

has not been completely deployed in today’s networks. A primary reason for this

is the complexity of proposed QoS solutions and largely manual per-device config-

uration of QoS knobs by network administrators. Supporting QoS for services and

applications requires a well-defined automated QoS control and network management

mechanisms in order to maintain the requested QoS performance over a network. A

QoS control mechanism should provide an automated but fine-grained control for flow

configurations. Also, it should be adaptive to dynamic workloads for dynamic QoS

configurations based on network states. Furthermore, it should support legacy de-

vices and large-scale networks like WANs. In addition, it should provide network-wide

optimization in resource allocation by utilizing a global view of the network.

In recent years, some emerging applications, such as distance learning, video con-

ferencing and so on, are becoming prevalent in networking world. Despite the advan-

tages of these QoS-dependent applications for users, they still suffer from some issues

regarding QoS or QoE requests of their users/customers. Firstly, today’s QoS based

applications take into account only the network parameters as a QoS performance.

However this approach does not reflect the user’s real satisfaction of provided services.

Secondly, even if the user’s satisfaction, i.e. QoE, is provided, converting this QoE

indicators to network-based QoS parameters is another issue. Also, this conversion
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needs to be in a dynamic and optimized way. Thirdly, controlling and implementing

QoS policies on the network is another issue for IPTV services.

An A-CPI enables applications to communicate with the controller to express their

needs including dynamically specifying the QoS parameters of applications. Since

they provide crucial tasks between applications and controller, network operators

should consider certain points while designing A-CPIs. An A-CPI should be able to

tolerate slow modifications of networks such as resource allocation for applications. It

should also allow for determining the requirements beforehand using the application

if possible. Defining different kinds of network parameters for different data types

should be possible by an A-CPI. An interface should make sense for application

developers while providing application metrics. A desired interface should not involve

any application-related metrics such as response time. Instead, it should be able to

convert these application-oriented metrics to network-based metrics such as delay,

bandwidth etc.

3.13 Chapter Summary

Providing QoS is still a hot research problem in existing networking architectures.

The emerging applications in the Internet (e.g. video streaming, VoIP etc.) generate

diverse flows which require different treatments for each one. However, providing

QoS needs of these flows is not easy with today’s networking models. Therefore,

researchers has started exploiting the SDN paradigm and OpenFlow protocol since

they bring centralized global network view, and more fine-granular flow management

opportunities in networks. These features of SDN make it a better candidate in

order to provide QoS for applications in easier and more flexible ways compared to

traditional network architectures. This survey study has made a picture of QoS in

OpenFlow-enabled SDN networks by surveying the current QoS-motivated studies in

the field. It has organized the related studies according to the categories that are the

most prominent ways in which QoS can benefit from the concept of SDN: Multimedia
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flows routing mechanisms, inter-domain routing mechanisms, resource reservation

mechanisms, queue management and scheduling mechanisms, Quality of Experience

(QoE)-aware mechanisms, network monitoring mechanisms, and other QoS-centric

mechanisms. It has also outlined the potential challenges and open problems that

need to be addressed further for better and complete QoS abilities in SDN/OpenFlow

networks and lessons learned during preparation of this survey chapter.
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4 A SCALABLE HIERARCHIC SDN ARCHITECTURE

4.1 Abstract

All new networking architectures come with their own problems. Software De-

fined Networking (SDN) has its own challenges which are needed to be addressed

by researchers as well. One of the crucial problems with SDN is the control plane

scalability since it is a bottleneck for its evolution. As the network grows, the num-

ber of messages a controller receives also increases. This increase puts the controller

scalability in the heart of problems of SDN. This chapter proposes a hierarchy-based

network architecture along with an inter-AS routing approach with QoS. It exploits

idea of levels in which networks with controllers reside and a main controller, which

works like a broker, is on top of them to keep the global network state and view. The

experiment results indicate that a controller in a hierarchic setting handles 50% less

number of traffic than a controller in a non-hierarchic environment.

4.2 Introduction

Traditional networking is forcing its limits to meet the needs of today’s users,

enterprises and carriers due to its limited capabilities. Configuration or installation

of network devices and appliances requires more trained people and increases costs

and take time to do so. Vendor dependency is an obstacle for network application

developers and IT people to develop new types of network applications [1]. Increases

in network applications, such as virtualization, cloud services as well as mobility and

video content, requires more dynamic architectures of data centers, carriers or ISP

networks.
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SDN aims to handle above-mentioned drawbacks of today’s networking architec-

tures. It brings the idea of separation of data plane and forwarding plane along with a

controller to acquire the global view of the network. Network managers become more

capable of efficient manipulating of network resources. SDN makes management of the

network easy for network operators/administrators by providing flexible programma-

bility resulted from decoupled forwarding and data planes. Network managers can

easily manage their network resources by dynamic, automated and easy-to-handle

applications. OpenFlow [34, 36] is the first standard protocol for communication

of separated forwarding plane devices/applications (e.g. controller) and data plane

dump devices (e.g. routers, switches). It removes the vendor-dependency of data

plane devices and make them able to communicate with all kinds of controllers.

SDN is an evolving networking architecture and has not completed its evolution.

Scalability, as in all new networking architectures, in SDN is one of the most im-

portant challenges that will complete evolution of the SDN. As stated in [1], the

scalability issue in SDN has not been focused by researchers as much as it deserves.

Decoupling of data and forwarding planes is the most important reason to the scal-

ability issue, particularly control plane scalability, since it requires management of

data plane devices from a remote point (i.e. controller) and therefore control plane

scalability becomes a focal point for the system. Also, as the number grows regard-

ing the number of network devices such as routers, switches etc., the controller will

need to handle more events and flow requests. This increase requires the control

plane to be scalable with respect to the network size. In addition, the placement

of the controller in a network has effect on the scalability of the control plane since

the distance between controller and data plane devices introduces latency into the

system [61]. There are some proposals to mitigate the control plane scalability issue

of SDN in the literature. They are mainly categorized in either central controller-

based [23,69] or distributed controller-based [66,68,72,82,83] solutions. Optimization

techniques-oriented proposals are other types of the solutions. These proposals are

discussed in more detail in Section 4.3. However, very few of them revolve around
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a hierarchic controller-based solution. In this type of architecture, every domain has

its own controller with their own network view and there is a Broker with a more

global network view which orchestrates those controllers. This type of solution is

more efficient and mitigates the issue of control plane scalability of an SDN network.

That is the motivation for us to propose a hierarchy-based network architecture in

this chapter.

In the remaining of the chapter, an extensive survey of studies, which aim to

improve the scalability of the SDN with different techniques, in the literature is

given in Section 4.3. Section 4.4 explains the details of the architecture and routing

approach proposed along with its components. Section 4.5 clarifies how the proposed

architecture works while Section 4.6 discusses the experiment results. Finally, Section

4.7 wraps the chapter up with concluding remarks.

4.3 Related Work

The proposed solutions to control plane scalability issue of an SDN network can

be classified in two broad categories. First, control plane itself is a vicinity to solve

the scalability of the network by means of some networking architectures. Second

category aims to exploit some well-known optimization techniques in order to alleviate

the foregoing issue in an SDN network.

As a solution to improve the scalability of an SDN network, networking topologies

like central controller architecture and distributed networking are famous settings for

SDN networks. Central controller centric settings utilize a central controller which is

powered with global network view, applications and policies.

[69] proposes a central controller based network targeting enterprises networks.

An Ethane network comprises of a controller which accounts for routing task and sim-

ple and dump switches to forward packets on controller commands. Ethane network

performs five main functions: registration, bootstrapping, authentication, flow setup,

and forwarding. While Ethane brings ease of use and can scale to large networks, it
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might be cheated by means of MAC addresses to send packets, which is an open issue

to be addressed.

NOX [23] is a network operating system which is more than just a controller plat-

form for a network. A NOX network has switches, server(s) running NOX software

acting like a controller along with applications atop, and a database to keep network

view for applications. The network view consists of network topology, users, end-

points, etc.. As in most SDN controller platforms, NOX treats the packets based on

the first packet of a flow traversing through the controller. This flow-based method

helps increase the scalability of a network.

In distributed type of architectures, the controllers share the same global view

and cope with the traffic locally and coming from neighbor domains. The purpose of

a distributed networking is to reduce the load on the central controller and avoid the

failure of the central controller.

In HyperFlow [72], local controllers are utilized to serve all requests for their own

remote sites and thereby flow setup times and flow initiation rates drop by the time.

HyperFlow is logically centralized albeit its distributed architecture is an event-based

control plane for OpenFlow and is actually implemented as a NOX application. Its

main tasks are: global network view synchronization between controllers, communica-

tion with switches controlled by another controller from a different site, and managing

responses coming from switches in other sites to the request-originator controllers.

[82] introduces a distributed cluster-based controller architecture to retain the

communication and coordination between controllers to obtain a more scalable net-

work. This cluster-based architecture brings flexibility to the network regarding

adding or removing controllers since it does not bother network applications. In

the proposed network, each switch is associated with a single controller via an IP

network.

[77] proposes Onix, a distributed control platform, in responses to lack of a control

platform which provides consistent network state and global network view for network

devices and applications. Onix instances propagate network states to other instances
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to be able to scale large networks. The authors follow three approaches for a better

scalability in Onix architecture; (1) work partitioning by applications for less work

on instances, (2) cluster aggregation for a hierarchical structure, and (3) consistency

and durability of the network states for applications.

The architecture called ElastiCon in [68] aims to evenly distribute load in con-

trollers by a controller pool since they may not be loaded equally due to static configu-

ration. The proposed architecture has two main mechanisms to dynamically shift the

workload across the controllers in a pool which is dynamically expanding or shrink-

ing. Their framework considers the total load on controllers and may add or remove

controllers based on the load exceeding or falling down a threshold. It may also move

switches from one controller to another if the load on a controller is more than a

pre-defined threshold.

Kandoo [73] focuses on scaling controller by decreasing the number of frequent

events on the control plane since these events bring more overhead than others to the

controller plane. Kandoo’s setting is similar to this framework proposed but there are

two differences. First, in Kandoo, the local controllers are handling less number of

switches than the local controllers proposed in the setting proposed in this chapter.

Second, routing with Quality of Service (QoS) for connection requests is considered in

the architecture proposed. Users may specify their requested QoS values when they

ask for a connection. On the other hand, the Orion [79] exploits a hybrid hierarchical

architecture along with a routing method for large-scale networks in which a large size

domain, managed by one administrator, is divided into sub-domains. The proposed

framework differs from the Orion since routing with QoS for both intra-domain and

inter-AS traffic is considered while the Orion considers for only intra-domain traffic.

Optimization-based designs aim to empower the controller performance so that it

can handle more packet flows per second and reduce the latency and overhead. They

achieve this by exploiting some techniques like parallelism, multi-threaded designs,

batching, efficient routing decisions.
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In [75], Maestro is proposed to increase scalability in SDN networks by empower-

ing multi-core architecture to leverage the parallelism in order to increase controller

speed along with hassle-free programming model for application writers. Maestro is

designed to partition the workload evenly available in threads in cores to increase the

performance (i.e throughput) by keeping all processor cores busy by means of “pull”

fashion instead of “push” fashion. Maestro balances the memory consumption by

keeping no data between stages in CPU cores’ threads.

Beacon [25] is reinforced for a high performance by multi-threaded designs; “Shared

Queue” and “Run-To-Completion”. In “Shared Queue” design, each switch is con-

nected to single I/O thread which reads the messages from the switches and then send

to a shared queue. The pipeline threads take the message from the shared queue in

order to process by corresponding applications. In the “Run-To-Completion” design,

on the other hand, there is no pipeline threads and each message is processed by I/O

threads.

[85,86] propose source routing based routing schema in SDN. They aim to reduce

the number of events processed by the controller because each flow installation in

hops across the path will create an event and make the controller busy. The routing

schema in [85] and this chapter’s are similar with respect to considering QoS for

requests. However, the proposed setting is hierarchic and considers inter-AS traffic

as well albeit they consider the traffic in a single domain.

4.4 Scalable Hierarchic Architecture

In this section, a scalable hierarchy-based proposal is presented along with its

components in details. The proposed architecture consists of levels from bottom to

up. The levels can be increased, as they are needed, through up. In this version of the

framework, there are currently two level: Network-Level (bottom-level) consisting of

independent domains/ISPs/ASes(Autonomous system) which are also SDN domains

with their own local controllers, and Broker-level (up-level) consisting of a super
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controller acting like a supervisor for the bottom-level controllers. These components

are explained in corresponding subsections below.

4.4.1 Advertisement

This section explains how reachable addresses and available path advertisements

are carried out in the proposed architecture. Every AS domain controller advertises

their reachable addresses information (a method for this advertisement is out of this

chapter’s scope) only to the Broker controller so that when a request comes to the

Broker, it will be able to determine the source and destination ASes.

Table 4.1.: All possible paths between R5 – R7 in AS2

Path ID Path Details QoS Values (B, D)

P21 R5 – R7 (28, 3)
P22 R5 – R8 – R7 (19, 8)
P23 R5 – R6 – R8 – R7 (7, 7)

Every local controller will advertise its border switches/routers (entering or exiting

points) to the Broker with neighbor connectivity information (through which border

router/switch) as well as inter-connecting links so that the Broker will know which AS

is connected to which AS by which border node. Every AS controller will calculate all

possible paths between their own border nodes (entering and exit points), e.g. in AS2,

paths between R5 – R7, R5 − R8, and R7 − R8 (assuming links are bidirectional),

with the corresponding QoS parameters. Then they make these QoS values a tuple

as in the following:

Tuple1 → (Available Bandwidth, Delay, Jitter, · · · )

For example: All possible paths between R5 − R7 in AS2 are like in the Table 4.1:

All possible path advertisements from other ASes are as in the Table 4.2. Here,

the QoS values shown in Table 4.1 and 4.2 are for representation purpose. In other
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Table 4.2.: All possible paths (advertisements) from all ASes.

Path ID Path Details QoS Values (B, D)

P11 R1 – R2 – R4 (10, 2)
P12 R1 – R2 – R3 – R4 (7, 4)
P13 R1 – R3 – R4 (11, 4)
P14 R5 – R7 (28, 3)
P14 R1 – R3 – R2 – R4 (7, 6)
P21 R5 – R7 (28, 3)
P22 R5 – R8 – R7 (19, 8)
P23 R5 – R6 – R8 – R7 (7, 7)
P24 R5 – R8 (21, 4)
P25 R5 – R6 – R8 (7, 3)
P26 R5 – R7 – R8 (19, 7)
P27 R7 – R8 (19, 4)
P28 R7 – R5 – R8 (21, 7)
P29 R7 – R5 – R6 – R8 (7, 6)
P31 R10 – R12 (8, 1)
P32 R10 – R9 – R2 (12, 10)
P33 R10 – R9 – R11 – R12 (16, 10)
P41 R13 – R14 (18, 4)
P42 R13 – R15 – R14 (20, 6)
P43 R13 – R15 – R16 – R14 (15, 7)
P44 R13 – R14 – R16 (16, 6)
P45 R13 – R14 – R15 – R16 (15, 11)
P46 R13 – R15 – R16 (15, 5)
P47 R13 – R15 – R14 – R16 (16, 8)
P48 R14 – R16 (16, 2)
P49 R14 – R15 – R16 (15, 7)
P410 R14 – R13 – R15 – R16 (15, 9)

words, certain bandwidth and delay values are assigned to the links between nodes

by manually and the numbers shown in the corresponding tables and figures are

calculated by concave feature of bandwidth (i.e. minimum) and additive feature of

delay for the single paths.
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4.4.2 Domain Controllers: Bottom Level

In the bottom level of the architecture, there are independent domains/ISPs/ASes

with their own controllers (local). These networks are also SDN networks and oper-

ate independent of each other. Their controllers have all required applications and

services to make their own decisions for local traffic flows.
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Figure 4.1.: An overview of the hierarchical network with multi-ASes. Every network
has its controller and the Broker controller reside on top of them with connections to
all of the bottom-level controllers.

The controllers are not connected to each other, thereby not able to communicate

with other network controllers. Networks are connected to each other through inter-

connecting links between their entering/exiting border nodes in the data plane and are

not necessarily connected to every other ASes as in today’s Internet architecture. As

shown in Fig. 4.1, AS1, AS2, AS3, and AS4 form the bottom-level of the architecture.

AS1 is, for example, connected to AS2 and AS3 although AS2 has connection to all

other ASes. R4 is an entering/exiting border node for AS1 and similiarly, R5, R7,

and R8 are for AS2. The same idea of hierarchy can be applied in each ASes as the

AS network size grows and is needed. Therefore, one can have many levels in this

architecture.
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4.4.3 Broker: Up Level

The Broker resides in the up level and acts like a super controller for all bottom

level AS controllers. All the local controllers are connected to the Broker. They can

communicate with the Broker in both direction. The Broker is responsible for finding

an end-to-end route from source to destination specified in the request coming to

the Broker. When a host wants to send a flow to a destination from another AS,

the source AS controller will communicate to the Broker so that it will calculate an

end-to-end route for the flow.
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Figure 4.2.: Path level view of the Broker. It represents the available paths satisfying
the requested QoS values between border nodes in an AS.

The paths in Table 4.1 will be advertised to the Broker in a file (one file for

each border node pair) without the path details information, just (PathID, QoS).

Therefore, the details of the path is hidden inside an AS. An AS controller sends just

PathID and corresponding QoS values and hence the Broker will know that there are,

for example, 3 paths from R5 to R7 with corresponding QoS values. The procedure

in 4.4.1 is applied for all border node pairs in all ASes (as in Fig. 4.1) and the

advertisements are obtained as in the Table 4.2 since it is needed for using an AS as

a transit way. The Broker should know this so as to which ASes the flow should go
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through. An update advertisement will be send to the Broker in case of any change

regarding QoS values in the above information.
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Figure 4.3.: AS level view of the Broker. It represents the available ASes satisfying
the requested QoS values.

The Broker will also know the QoS values and connection information of inter-

connecting links between ASes since the local controllers will advertise their connec-

tivity information (neighbor ASes that they connect to) to the Broker so that the

Broker will know which AS is connected to which one. After all of these advertise-

ments, the Broker’s view will be like in Fig. 4.2 when it gets a connection request

with certain QoS values. It will just see the paths satisfying (eliminating the rest)

the requested QoS values between border node pairs in ASes in case of an end-to-end

path request comes to the Broker.

The total advertisements (files) from each AS will be bn ∗ (bn − 1)/2 where bn

is the number of border nodes in an AS (all paths between a border node pair is

advertised in a single file). For instance, for AS2 with 3 border nodes, there will be

3 ∗ (3− 1)/2 = 3 advertisement files. Based on all these paths with QoS information

between border node pairs from all ASes and inter-connecting link connection and

their QoS values, the Broker will have a complete global network view, as in the Fig.

4.3, based on border node pairs from ASes.
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4.5 How the Architecture Works

This section briefly explains how the proposed architecture works in an hierarchic

environment.

When a connection request comes to a local controller (e.g. AS1’s controller),

it checks if the destination is from its domain. If so, then it handles the routing

procedure locally based on its routing table.

If the destination is from another domain, then it will inform the Broker about

the destination and QoS values in the request. The Broker will know the AS of the

destination because of the advertised reachability addresses by all ASes. Then it will

ask the source AS controller to calculate QoS paths advertisements between source

switch/router and every border nodes (exit points) as indicated in the Section 4.4.1.
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Figure 4.4.: A Distributed SDN Architecture without hierarchy. Each controller is
connected to its neighbor controllers.

The Broker will also ask the destination AS to calculate QoS path advertisements

between every border nodes (entering points) and the switch/router that destination

host is connected to. These advertisements will be sent to the Broker. Here, it

should be noted that these advertisements are different from the ones in Section

4.4.1 because these paths are from source router/switch to exiting border nodes, not

between any border node pairs as in the Section 4.4.1. Based on these advertisements,

other advertisements from other ASes (as in Table 4.2) and inter-connecting links’
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QoS values, the Broker will have border node-level and AS-level views, as in the

Fig. 4.2 and Fig. 4.3, respectively, and will determine the best routes meeting

the requirements of the request. Upon calculating the best route for the request,

the Broker will send the entering (ingress) and exiting (egress) border node points

(switches) along with corresponding ports to corresponding ASes. Then the Broker

will ask every AS controller across the path (including source AS, destination AS and

transit ASes) to reserve the required QoS values. Upon getting the confirmation from

them, the flow starts traveling.

4.6 Evaluation

This section analyzes the number of network events processed in the control planes

(i.e. controllers) of each ASes in the proposed hierarchic architecture and as well as

non-hierarchic (distributed, as shown in Fig. 4.4) architecture. For the distributed

setting, state sharing and not-sharing case are considered in network setup phases.

The following metric have been chosen to assess the scalability performance of the

proposed hierarchic SDN architecture since the goal is to reduce the number of mes-

sages the controllers exchanges.

• Number of Messages per Control Plane - measures the number of messages

handled per control plane in proposed hierarchic and distributed architecture.

In Fig. 4.5, the number of messages the Broker exchanges is not same with

the number of connections it handles. So there is not a linear relation between the

number of messages and number of connections at Broker. This happens because for

each connection request from source to destination, the Broker calculates an optimal

path. This optimal path may include more than 2 ASes (at least 2 ASes including

source AS and destination AS). The flow (actually any flow) will go through at least

2 ASes (transiting 2 ASes). Therefore, the Broker will exchange 1 message for each

transit AS controller on the path to set the path and make the reservation. Hence, the

number of messages the Broker exchanges depend not only number of connections it
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Figure 4.5.: Number Connections vs. Number of Messages at Broker in hierarchy.
There is no sharing of state between controllers of ASes.

handles but also the number of ASes each path includes for each flow. For example,

for a request from the source (in AS1) and destination (in AS4), the flow may go

through AS1 – AS2 – AS4 which requires the Broker to exchange 3 messages with

corresponding controllers (one for each).
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Figure 4.6.: Number of Connections vs. Number of Messages at controller of AS1.
In this architecture, there is no hierarchy. There are two cases: 1) State sharing with
each other controller, 2) No state sharing with each other controller.

Fig. 4.6 shows how the AS1 controller messages are affected in the case of no

hierarchy, i.e. there is no Broker on top of the AS controllers. The architecture would

be similar to the hierarchic setting. The only difference is not that there is Broker

over the AS controllers and the AS controllers are connected to only their neighbor
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AS controllers as in the Fig. 4.4. That setting is in distributed fashion and two cases

have been considered: 1) w/o state sharing, 2) w/ state sharing. In the first case (i.e.

w/o state sharing), the AS controllers do not exchange their states such as reachable

network addresses in advance. Therefore they do not know anything about each

other. They are able to communicate with each other in case of a connection request

to out of their domains (i.e. inter AS traffic). When a connection request comes to

the controller, it will talk to their neighboring AS controllers to check whether they

are able to send the request to the destination. For example, as in the Fig. 4.4, the

controller of AS1 is only connected to controllers of AS2 and AS3.

When a source from AS1 wants get a connection to a destination from AS4, the

AS1 controller will just exchange messages with neighbor AS controller (i.e. A2 and

AS3). In this case, the number of messages will be 2 times of number connections.

In the second case (i.e. w/ state sharing), the controllers share some of their network

states as indicated before (e.g. reachable network addresses). This state sharing

brings the extra message exchanges for each controller in advance. Handling with

a connection request is the same procedure as explained in the case of no sharing.

They still need to talk to their neighbor AS controllers if they can send the request

to the destination. As shown in the Fig. 4.6, there will be some number of messages

that AS1 controller has already exchanged with others beforehand in case of sharing

setting although there is no connection request.

Fig. 4.7 shows the comparison of the number of messages at controller of AS

with hierarchy and without hierarchy. In case of an hierarchic architecture, the bot-

tom level controllers like AS1 controller will not handle with their inter-AS traffic

connection requests. If the destination in the request is from another AS, then the

controller will forward the request to the Broker so that it calculate an optimal path

for it since it has the global view of the entire architecture. Therefore, the AS1’s

controller exchanges only 1 message, which is forwarding it to the Broker. Hence,

there is a one-to-one ratio between number of connection and number of messages

the AS1’s controller exchanges in a hierarchic architecture. The without hierarchy
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Figure 4.7.: Number of Connections vs. Number of Messages at controller of AS1
in the hierarchic and non-hierarchic architectures. There is no state sharing in each
case.

case is the same with case explained above and there is no sharing. As shown in the

Fig. 4.7, the number messages that AS1’s controller exchange in the no hierarchy

case is 2 times of the hierarchy case. A hierarchic architecture reduces 50% of the

number of messages that a controller handles.

4.7 Chapter Summary

This chapter have presented a hierarchical SDN architecture and inter-AS QoS

based routing approach. The purpose of the proposed architecture is to improve

the scalability of the control plane (i.e. controller) in an SDN network by reducing

the number of messages that a controller deals with. The experiment results have

shown that a network controller will handle 50% less messages for inter-AS traffic in

a hierarchic environment compared to non-hierarchic environment since they do not

need to keep global network view and synchronize with other states. This situation

reduces the number of messages although the number of connections increase in a

network.
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5 MEASURING SCALABILITY IN SDN

5.1 Abstract

SDN architecture promises to mitigate limitations of traditional networking archi-

tectures in order to satisfy today’s complex networking needs. However, as all new

networking architectures, SDN also presents several inevitable technical challenges

to be addressed by researchers. Control plane scalability is one of the crucial issues

deserving more attention from both academia and industry in SDN as well. There are

many existing solutions proposing a way to alleviate the control plane scalability in

SDN. However, one prominent common ground they share is that they measure the

control plane scalability performance in terms of typical network QoS parameters such

as throughput and latency. Although these metrics may be a good performance indi-

cators for quality of service measurement in mid-term and long-term, they may not

reflect real scalability performance of control planes in SDN environments. However,

a metric for scalability of control plane in SDN can provide network administrators

some insights while they construct their SDN networks. This chapter firstly explore

the roots of control plane scalability problem in SDN as well as proposed existing

solutions. A metric is then proposed in order to evaluate the control plane scalability

in SDN. This chapter also gives mathematical models of the proposed metric over

different control plane designs. Furthermore, the performance of these control plane

designs is compared by extensive experiments.

5.2 Introduction

Traditional networks have reached their architectural limitations. Increasing cloud

services, server virtualization, sharp growth of mobility and content-like video have
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led researchers to rethink today’s network architectures. In traditional architectures,

network devices and appliances are complex and difficult for (re)configuration and

(re)installation since they require highly skilled persons. Adding or moving a device

from a network requires extra costs. It is also time-consuming because IT people need

to deal with multiple switches, routers, etc. and update ACLs, VLANs and some

other mechanisms. Furthermore, as business demands or user needs increase day by

day, application developers, carriers, and enterprises need to delve into evolving new

services and facilities. However, vendor dependency is an obstacle deterring them

from developing new networking applications and services for their networks due to

slow equipment product cycle, application testing and deployment. Therefore, data

centers, carriers, and campuses need more dynamic architectures today.

SDN architecture has emerged in response to aforementioned limitations of tra-

ditional networking architectures. SDN aims to decouple the controller plane and

data plane. This separation provides network operators/administrators efficient use

of network resources and eases provisioning of resources. Also, SDN brings ease of

programmability to change the characteristics of whole networks. This simplifies the

management of the network since it is decoupled from the data plane. Therefore,

network operators can easily and quickly manage, configure, and optimize network

resources with dynamic, automated and proprietary-free programs written by them-

selves in SDN architecture. In addition, since network is logically centralized in SDN,

controllers have a global visibility of the whole network unlike conventional network-

ing. Hence, they can dynamically optimize flow-management and resources.

However, SDN also presents several technical challenges. Sezer et. al [1] states

that these challenges can be classified in four different categories. The first one is how

to deal with high-performance packet processing in a flexible/programmable manner.

The second is interoperability or standardization that needs to be addressed in SDN

infrastructure. The third is security issues in SDN. The final category is the scalability

issue in SDN, which especially needs more attention by researchers.
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Scalability proposals in SDN study the problem in terms of improving the scala-

bility of control plane with respect to some network metrics such as throughput and

latency and do not propose a metric to quantify the scalability [51, 59]. However,

a metric for scalability of control plane in SDN can provide network administrators

some insights while they construct their SDN network. This chapter firstly explores

the roots of control plane scalability problem in SDN as well as proposed existing

solutions. A metric is then proposed in order to evaluate the control plane scalability

in SDN. This chapter also gives mathematical models of the proposed metric over

different control plane designs. Furthermore, the performance of these control plane

designs is compared by extensive experiments.

In the remaining of the chapter, the chapter digs out the roots of SDN control

plane scalability issues and presents some existing solutions alleviating the problems

in Section 5.3. In addition, the chapter gives a snapshot of several research attempts

proposing a scalability metric to measure the scalability of systems. Section 5.4 de-

scribes the proposed scalability metric in a general perspective. In Section 5.5, the

chapter models the metric by a mathematical methods over different SDN control

plane designs throughout in corresponding subsections. After discussing the experi-

mental results in Section 5.6, the chapter is summarized with concluding remarks in

Section 5.7.

5.3 Control Plane Scalability in SDN

This section points out the main reasons that make control plane a scalability

bottleneck and present some existing solutions alleviating the control plane scalability

issue in SDN. In addition, this section exhibits several research attempts proposing a

scalability metric to quantify the scalability of distributed systems. Below are some

of the main reasons that make control plane a scalability bottleneck:

• Separation of Control Plane and Data Plane: This decoupling requires manage-

ment of network devices from a remote controlling mechanism (i.e. software).
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Separation of these planes may result in significant signaling overhead depend-

ing on the network type (e.g. distributed, hierarchical etc.) and applications

on top of the controller.

• Quantity of Events/Requests Handled by Controller: As the network grows

with respect to the size of the network elements, the controller will have to cope

with more events and flow requests. Therefore, the number of control messages

sent by data plane devices to controller(s) becomes one point to be addressed

because the controller may not be able to handle all the incoming requests [59].

• Propagation and Processing Delay of/in Controller: The controller’s placement

(distance between network devices and controller) is one factor that introduces

latency into the system along with controller processing power and communi-

cation among controllers, which affects the control plane scalability as well. [62]

outlines a comprehensive analytical model for the behavior of a scalable SDN de-

ployment regarding boundary performance of event processing delay and buffer

space of SDN controllers by means of network calculus as a mathematical frame-

work.

5.3.1 Existing Solutions for Control Plane Scalability in SDN

The existing solutions to the control plane scalability issue of an SDN network can

be classified in three broad categories. First category is the control plane topology-

oriented solutions such as single controller design, distributed controllers design, and

hierarchical controller designs. Second category aims to exploit optimization tech-

niques in order to alleviate the foregoing issue in SDN networks. Finally, some sate-

of-the-art solutions are centered around the data plane of the SDN network by giving

some limited control back to switches over flows.

In [69], the authors propose an architecture called “Ethane” which enables network

managers to define policies and flow entries. There are three concerns that the authors

address and resolve in this architecture. First, Ethane renders that high-level policies
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become the authority part to control the network. Second, the packet paths are

managed by policies in order to have better control and global network view. Third,

the Ethane network requires a precise binding between a packet and its origin to be

able to identify where the packet coming is from.

HyperFlow [72] is logically centralized albeit its distributed architecture is an

event-based control plane for OpenFlow [34]. In HyperFlow, the authors exploit local

controllers, serving all requests for their own remote sites, due to an increase in the

flow setup times and flow initiation rates.

Kandoo [73] focuses on scaling a controller by decreasing the number of frequent

events on the control plane since these events bring more overhead than others to the

controller plane.

[84] proposes a hierarchy-based network architecture along with an inter-AS rout-

ing approach with QoS. The authors use an idea of levels in which networks with

controllers reside on top. There is also a main controller which works like a broker

on top of networks to keep the global network state and view.

In [75], a controller system called “Maestro” is proposed to increase scalability

in SDN networks. Maestro uses a multi-core architecture to leverage the parallelism

in order to increase controller speed along with a hassle-free programming model for

application writers. Maestro uses the batching of packets to individual destinations to

improve processing and communication efficiency besides multi-threading structure.

DIFANE [65] is an architecture that preserves traffic in the data plane through

managing packets in switches called ”Authority Switches”. These authority switches

keep OpenFlow rules. DIFANE is motivated by minimizing the number of packets

traveling in the control plane since this journey becomes a bottleneck for the scala-

bility issue.



118

5.3.2 Scalability Metric Proposals

There are several research efforts proposing a metric to measure scalability of

systems. However, these metrics attempt measuring scalability performance of al-

gorithms, parallel machines, and distributed systems. Also, most of these metrics

are for homogeneous environments. Majority of these proposals revolve around two

major types of scalability metrics: Isospeed scalability and Isoefficiency scalability.

The Isospeed scalability is characterized by the fact that an achieved average unit

speed of an algorithm on a given machine can remain constant with increasing number

of processors and problem size for an algorithm-machine combination [44]. In [45],

the authors presents a metric to describe the scalability of an algorithm-machine

combination in homogeneous environments. Their scalability function is defined as

ψ(p, p′) = p′W
pW ′ where p and p′ are the initial and scaled number of processors of the

systems respectively, and W and W ′ are the initial and scaled problem size (workload)

respectively.

The Isoefficiency scalability is described as the ability of parallel machine to keep

the parallel efficiency constant when the system and problem size increase [46]. The

parallel efficiency is defined as speedup over the number of processors, i.e. E = S
p
.

Speedup is also given by the ratio of problem size (W ) and parallel execution time (Tp),

i.e. S = W
Tp

where Tp = W+T0(W,p)
p

with T0(W, p) extra communication overhead [47].

[48] defines heterogeneous scalability by presenting a heterogeneous efficiency

function. They attempt to extend the homogeneous Isoefficiency scalability model to

heterogeneous computing and, therefore, their work inherits the limitation of parallel

speedup, requiring the measurement of solving large-scale problem on single node.

[49] proposes a scalability metric called Isospeed-efficiency for general heterogeneous

computing systems. This metric combines the roots of both Isospeed scalability and

Isoefficiency scalability metrics by means of a concept called “Marked Speed” to

describe the computing power for a stand-alone node and a combined computing

system.



119

The work in [56] is the closest to the work presented in this chapter because it

presents a metric for SDN control plane scalability. They apply the proposed metric

in three typical control plane designs in SDN. Their work borrows the idea presented

in [50] for distributed systems. They use the scalability metric, which is based on

productivity of a distributed system, presented in [50] to quantify the scalability of

SDN control plane by adapting to the SDN case. The work in this chapter is different

than [56] in a way that, this work assumes that the QoS (i.e. average flow processing

time in SDN case) is the same for a network when scaled from N1 to N2. Also, this

scheme does not depend on cost of the system.

5.4 Scalability Metric

In this work, it is assumed that there are total of s switches, regardless of total

number of local domains in a network setting such as distributed and hierarchical, in

each different network settings. It is also assumed that there are h hosts connected to

every single switch in all settings. Therefore, the total number of hosts is H = s×h in

each network architecture type. The matrix below specifies the data traffic between

hosts in network setting:



i/j 1 2 · · · h · · · 2h · · · sh

1 0 λ1,2 · · · λ1,h · · · λ1,2h · · · λ1,sh

2 λ2,1 0 · · · λ2,h · · · λ2,2h · · · λ2,sh

...
...

... · · · ... · · · ... · · · ...

sh λsh,1 λsh,2 · · · λsh,h · · · λsh,2h · · · 0


where λi,j is the flow sending rate from host i destined to host j, and i, j = 1, 2, ..., sh.

It is assumed that these random λi,j variables are independent identically and have

the Poisson distribution.

This work defines the scalability metric for a network as the ratio of workload

(W ) over overhead (O) as in Eg. 5.1. The overhead refers to the number of messages
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processed in the control plane by a controller(s) and workload to the number of flows

entering the network through the data plane. The whole network is considered a

black-box and is therefore assumed that any flow entering the network is part of the

workload.

Scalability = f(W,O) =
W

O
(5.1)

In SDN, when the first packet of a new flow enters a network through a switch,

the switch starts a flow initiation request if there is no rule entry matching the packet

in switch’s flow table. This flow initiation request is then sent to the controller. The

controller processes it and installs a rule for the flow in switches over the path calcu-

lated by the controller. Therefore, a rule-missing flow results in some other control-

messages which are created, processed, and sent by a switch and/or controller. Also,

a controller may deal with some other periodic messages, such as statistics, generated

in the network but not related to rule installation process. These types of messages

are categorized as a overhead message in this work. These overhead messages keep

a controller busy and thereby cause the control plane (i.e. controller) to degrade

scalability performance regarding some network QoS results such as throughput and

processing delay. Therefore, scalability performance of a control plane depends on

overhead resulted in the control plane. If these messages can be reduced, the scala-

bility performance of a control plane upgrades with respect to workload.

5.5 Modeling of the Scalability Metric over Different Control Plane Designs in SDN

In an SDN network with OpenFlow protocol, there are three different types of

messages between a controller and data plane devices: Controller-to-Switch, Asyn-

chronous, and Symmetric messages. Each of these message type has its sub-types as

well. Controller-to-Switch messages, Asynchronous messages, Symmetric messages

are represented by α, β, and γ, respectively, throughout the chapter.

• Controller-to-Switch: These messages are initiated by the controller and may

or not require a response from the switch. “features request”, “features reply”,
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“set configuration”, and “flow mod” messages are some main prevalent sub-

types of this message type.

• Asynchronous: Switches send controllers asynchronous messages to denote a

packet arrival or switch state change. “packet in” and “flow removed” messages

are some most-used sub-message types of “Asynchronous” messages.

• Symmetric: Symmetric messages are sent without solicitation from a controller

or switch, in either direction. “hello” and “echo” messages are prevalent sub-

types of “Symmetric” messages.

Network
Devices

Controller

Control 
Path

Data Path

(a) Centralized (Single)
Control Plane (CCP) De-
sign

Controller

Controller

Controller

Controller-to-Controller Path

(b) Distributed Control Plane
(DCP) Design

Root Controller

Controller

Controller

Controller

(c) Hierarchical Control
Plane (HCP) Design

Figure 5.1.: A representational overview of popular SDN control plane models.
The two-sided solid, dashed, and dashed-dotted arrows represent two-way data path
among network devices, control path between controller and data plane devices, and
controller-to-controller path among controllers, respectively. In 5.1a (CCP), there is
one main controller with global network state. In 5.1b (DCP), every controller is
responsible for different sub-domains of the network(s) with partially shared network
view. In 5.1c (HCP), there are layers where controllers reside and are responsible for
different sites (sub-domains) and a master (or Root) controller on top with global
network view for global applications like routing. The data plane and control plane
topologies shown in this figure are just representative purposes.

This work characterizes the overhead in a control plane, i.e. a controller, as

the function of these three message types of OpenFlow protocol, synchronization

messages, and messages for global flows going through a domain because a controller

is occupied with processing these messages. An architecture setting generating less

of these messages results in a better scalability performance compared to the one
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with more of these messages. Therefore, the number of overhead messages can be

quantified as below:

O = f(α, β, γ, ω,Ω,Ψ)

=
s∑

k=1

(αk + βk + γk + ωk) + Ω + Ψ
(5.2)

The overhead function is formulated in each network setting in corresponding

sections. The metric mainly measures the overhead messages based on “Controller-

to-Switch”, “Asynchronous”, and “Symmetric” messages sent/processed from/at a

controller with respect to a switch. Each of these message types for different con-

trol plane designs, shown in Fig. 5.1, is modeled in corresponding sections with

respect to their prevalent sub-message types. The main sub-messages, for exam-

ple, for “Controller-to-Switch” messages are δ and θ messages. For “Asynchronous”

messages, they are σ and ρ sub-message types sent from a switch. Finally, for “Sym-

metric” messages, ε messages are the ones which are mostly sent between a controller

and a switch. Further, the synchronization messages (ω and Ω) between domain con-

trollers to obtain a fully or partly global view bring also overhead messages to be

processed at a controller in distributed or hierarchical settings. Lastly, a flow origi-

nated from another domain and going through a certain domain (say n-th domain)

also brings some burden (Ψ) to the (n-th) controller. Table 5.1 gives the associated

notations used in the chapter for each of these message types. It is noted that there

is no distinction between lρk and gρk in CCP setting since there is only one domain.

Therefore, using just ρk is fine.

The workload model that is proposed in this work depends on both the number of

hosts in the network and the flow sending rate between hosts. The whole network is

considered a black-box and is therefore assumed that any flow entering the network

is part of the workload.

W = f(H, λ) =
H∑
i=1

H∑
j=1

λij (5.3)
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Table 5.1.: Definition of notations used in the chapter.

Notation Meaning

sk Switch k

αk Number of Controller-to-Switch messages sent from a controller to sk
βk Number of Asynchronous messages sent from sk to a controller

γk Number of Symmetric messages sent between a controller and sk
δk Number of stat requests messages periodically sent from a controller to sk
θk Number of flow mod messages sent from a controller to sk
σk Number of flow removed messages sent from sk to a controller

lρk Number of packet in messages sent from sk to a controller for local flows

gρk Number of packet in messages sent from sk to a controller for global flows

εk Number of echo messages sent between a controller and sk
ωk Number of synchronization messages sent by a controller to neighbor domain

controllers for global flows of sk
cr Average number of switches over an end-to-end (e2e) path in CCP setting
drln Average number of switches over an e2e path in n-th domain in DCP-LV

setting
drgn Average number of switches over an e2e path in n-th domain in DCP-GV

setting
Hrn Average number of switches over an e2e path in n-th domain in HCP setting
dΩl

n Number of synchronization messages exchanged between n-th controller and
its neighbor controllers for global flows going through them in DCP-LV set-
ting

dΩg
n Number of synchronization messages periodically exchanged between n-th

controller and other controllers in a unit time to obtain a global view of
networks in DCP-GV setting

HΩn Number of synchronization messages exchanged between n-th domain con-
troller and master controller for global flows originating from other domains
and going through n-th domain in HCP setting.

dΨl
n Number of global flows originating from other domains and going through

n-th domain in DCP-LV setting
dΨg

n Number of global flows originating from other domains and going through
n-th domain in DCP-GV setting

HΨn Number of global flows originating from other domains and going through
n-th domain in HCP setting

dN l
n Average number of neighbor domains of n-th domain in DCP-LV setting
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This workload model does not change in any of different network designs unlike the

overhead model because the total number of hosts (H) and flow sending rate (λ)

between hosts are the same in each network settings.

5.5.1 Centralized Control Plane (CCP) Design

This type of architecture setting revolves around a centralized single controller

[23, 69] with a global network view. The design of this architecture is simple and

it is easy to manage the network. However, it is not efficient to handle the burden

of environments such as data centers and large-scale networks [60]. The overhead is

defined in CCP design as following:

O = f(α, β, γ, ω,Ω,Ψ)

=
s∑

k=1

(αk + βk + γk + ωk) + Ω + Ψ
(5.4)

In the CCP design, there is no any kinds of synchronization messages (i.e. ωk = 0

where k = 1, 2, · · · , s and Ω = 0). Further, because there is only one single centralized

domain, there is no case in which a domain can route a flow through another domain

(i.e. Ψ = 0). Every flow is just handled in one domain based on the global view of the

controller. Therefore, these variables are zero and have no impact over the overhead

in the CCP design. Since a CCP design consists of just one domain, the total number

of switches in a domain is s.

The “Controller-to-Switch” messages are characterized as in the Eq. (5.5) for each

switch sk:

αk = 3 + δk + θk

= 3 + δk + ρk × cr

= 3 + δk +

[
kh∑

i=(k−1)h+1

( (k−1)h∑
j=1

λij +
H∑

j=kh+1

λij

)]
× cr

(5.5)
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The “flow mod” messages (θk) depends on the “packet in” messages (ρk) because

every “packet in” message makes the controller install a flow entry (by a “flow mod”

message) on every switch over an e2e path. Also, 3 is added for “features request”,

“features reply”, and “set configuration” messages sent and/or processed by/at con-

troller after controller-switch channel establishment.

The Eq. (5.6) gives the total number of “Asynchronous” messages per switch.

These messages are dominated by the “flow removed” (σk) and “packet in” messages.

βk = σk + ρk

= σk +
kh∑

i=(k−1)h+1

( (k−1)h∑
j=1

λij +
H∑

j=kh+1

λij

) (5.6)

Finally, the “Symmetric” messages sent between a switch (sk) and a controller is

defined as in Eq. (5.7):

γk = 2 + εk (5.7)

Here, 2 is added in the formula for “hello” messages sent and/or processed at/by

controller (i.e. 1 message going from controller and 1 message coming from switch).

5.5.2 Distributed Control Plane Design with Local View (DCP-LV)

A distributed control plane with local view (DCP-LV) design consists of dis-

tributed controllers associated with switches. It is assumed that there are dml con-

trollers, each of which connects to s
dml

switches on average, in this distributed setting.

In this structure, each controller manages a sub-network/domain of the whole net-

work. In the DCP-LV design, each controller has its own local network view and each

of its neighboring local networks is abstracted as a logical node. However, these con-

trollers do not synchronize their states at all. The controllers need to communicate

through controller-to-controller channels to exchange needed state information (e.g.

reachability information etc.) regarding their domains. Therefore, a controller does

not know about IP prefixes of other domains all the time.
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A flow is categorized in two ways: a local flow and a global flow. If a flow’s source

host and destination host belong to the same domain, then it is called as local flow.

Local flows are handled by the controller of that domain if a switch starts a flow

initiation request for the flow. On the other hand, a global flow has a source host

and destination host which belong to different domains. When a controller receives

a flow initiation request for a rule-missing flow, it determines whether it is a global

flow. If it is a global flow, the controller then starts asking its neighbor domain

controllers if they can provide a path to the flow so that it can reach its destination.

This process brings extra burden to the controller. The overhead in a sub-domain,

say n-th network, in DCP-LV design is given as in the Eq. (5.8):

O = f(α, β, γ, ω,Ω,Ψ)

=

n s
dml∑

k=(n−1) s
dml

+1

(αk + βk + γk + ωk) + dΩl
n + dΨl

n × drln

(5.8)

where (subscript) n represents the n-th domain. For global flows going through

neighbors of n-th domain, the n-th controller receives synchronization messages from

neighbor controllers, as similar to case in which n-th controller asks to its neighbors for

its global flows, stating that whether it can provide a path to those flows. Therefore

this process will bring extra message burden (dΩl
n) to a controller. Further, each global

flow originating from other domains and going through n-th domain also makes the

n-th controller install rules on switches over a path throughout its domain (dΨl
n).

Since θk represents the number of flow mod messages created and installed on

switches by a controller for local and global flows originating within the domain and

coming from hosts of sk, it can be written that θk = (lρk + gρk)× drnl . It is multiplied

by drnl because regardless of local or global connection, a controller needs to install
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rules for the connection to take it from ingress switch to egress switch. It should be

noted that for any domain n, the subscript k is (n− 1) s
dml

+ 1 ≤ k ≤ n s
dml

.

αk = 3 + δk + θk

= 3 + δk + (lρk + gρk)× drln

= 3 + δk +

[
kh∑

i=(k−1)h+1

( (k−1)h∑
j=1

λij +
H∑

j=kh+1

λij

)]
× drln

(5.9)

The Asynchronous messages can be calculated by the same idea as in case of

CCP design. However, the number of packet in messages are the total of (lρk + gρk)

in DCP-LV design.

βk = σk + (lρk + gρk)

= σk +
kh∑

i=(k−1)h+1

( (k−1)h∑
j=1

λij +
H∑

j=kh+1

λij

) (5.10)

The Symmetric messages sent between a switch (sk) and a controller is defined as

in the Eq. (5.11):

γk = 2 + εk (5.11)

The Eq. (5.12) gives the number of synchronization messages created/sent by a

controller for its global flows coming from hosts of sk. A controller creates one message

(to be sent) per neighbor domain controller for its one global flow and receives another

message from a neighbor domain.

ωk = 2× gρk × dN l
n

= 2×

[
kh∑

i=(k−1)h+1

( (n−1) s
dml

h∑
j=1

λij +
H∑

j=n s
dml

h+1

λij

)]
× dN l

n

(5.12)

where dN l
n is the average number of neighbor domains of n-th domain in DCP-LV

design.
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5.5.3 Distributed Control Plane Design with Global View (DCP-GV)

As in the DCP-LV setting, it is assumed that there are dmg controllers, each of

which connects to s
dmg

switches on average in DCP-GV setting as well. Each controller

manages a sub-network/domain of the whole network. However, unlike DCP-LV

setting, each controller has a global view of the whole network. This global view of

the whole network is acquired by a controller because they periodically exchange their

state information through controller-to-controller channels among themselves. Each

controller, therefore, can process all the flow initiation requests by itself. There is no

synchronization message exchange (i.e. ωk = 0 where (n − 1) s
dmg

+ 1 ≤ k ≤ n s
dmg

for any n-th domain) between a controller and its neighbor controllers per global

flow unlike the case in DCP-LV due to global periodic state synchronization. On the

other hand, the periodic state synchronization (dΩg
n) bring its own message burden

to a controller. The overhead in n-th domain in DCP-GV design is given as in the

Eq. (5.13):

O = f(α, β, γ, ω,Ω,Ψ)

=

n s
dmg∑

k=(n−1) s
dmg

+1

(αk + βk + γk + ωk) + dΩg
n + dΨg

n × drgn

(5.13)

The αk, βk, and γk can be calculated in the same manner with DCP-LV design

case as explained in Section 5.5.2. However, in calculation of αk,
drgn is used, instead

of drln.

5.5.4 Hierarchical Control Plane (HCP) Design

This work assumes that the HCP design consists of two layers: The lower layer

consisting of local domain controllers and the upper layer in which a master controller

resides. In HCP design, it is also assumed that there are Hm controllers, each of

which controls to s
Hm

switches on average. The domain controllers manage their own
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domains with a full control over. However, as in the DCP-LV design, a local controller

does not main a global view of the whole network. The master controller has a full

global view of the whole network by abstracting all domains as logical nodes. A flow is

either a local flow or global flow as explained in DCP-LV design. Local flow initiation

requests are handled by corresponding local controllers while global flow initiations

are first handled by the master controller and then corresponding local controllers

over the e2e path of the flow. The overhead in n-th network in HCP design is given

as in the Eq. (5.14):

O = f(α, β, γ, ω,Ω,Ψ)

=

n s
Hm∑

k=(n−1) s
Hm

+1

(αk + βk + γk + ωk) + HΩn + HΨn × Hrn
(5.14)

where HΩn can be calculated as HΩn = 2× HΨn. It is multiplied by 2 because when

a new flow from another domain comes to n-th domain to pass through, the n-th

domain controller sends a message to master controller stating that it has received

a flow destined outside of its domain. Then the master controller sends a response

message back to the n-th domain controller stating which egress switch and port that

the flow should go through. Therefore, the Eq. (5.14) can be rewritten as:

O = f(α, β, γ, ω,Ω,Ψ)

=

n s
Hm∑

k=(n−1) s
Hm

+1

(αk + βk + γk + ωk) + HΨn × (2 + Hrn)
(5.15)
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The Eq. (5.16) gives the number of synchronization messages created/sent by a

controller for its global flows coming from hosts of sk. A controller creates one message

for its one global flow.

ωk = gρk × 2

=

[
kh∑

i=(k−1)h+1

( (n−1) s
Hm

h∑
j=1

λij +
H∑

j=n s
Hm

h+1

λij

)]
× 2

(5.16)

where ωk is twice of gρk because for each global flow originating from n-th domain

there are 2 messages exchanged between the domain controller and master controller

due to same philosophy with HΩn.

The αk, βk, and γk can be calculated in the same manner with DCP-LV design as

explained in Section 5.5.2. However, in calculation of αk,
Hrn is used, instead of drln.

5.6 Evaluation

This section presents the experiments conducted using Mininet [102] tool to pro-

vide intuitive conclusions regarding scalability of four different SDN network control

plane architectures. In each experiment, the number of hosts connected to a switch

varies from 5 to 125 by increasing 5 at each iteration. The experiments have averaged

30 runs for each experiment to achieve and exceed 95% statistical significance.

Fig. 5.2 presents the scalability patterns with respect to increasing number of

hosts (i.e. workload) in different control plane settings. In this experiment, a random

topology with 15 switches have been deployed in each architecture settings. In Fig.

5.2a, the flow sending rate from host i destined to host j is 1 per second, i.e. λi,j = 1

where i 6= j, otherwise 0. The total number of domains in DCP-LV, DCP-GV,

and HCP settings have been set to m = dml = dmg = Hm = 3 (in CCP, m = 1)

with 5 switches each. In all settings, the scalability of architectures show a stable-like

behavior. This happens because hosts send each other new flows. Therefore, while the

total workload increases, the total overhead messages described in previous sections
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Figure 5.2.: Scalability vs. Total Number of Hosts (i.e. workload). In 5.2a, hosts
send new flows to each other all the time while In 5.2b, hosts start sending the same
flows to each other after they have sent first flows.

increase as well, thereby resulting in keeping the ratio of workload and overhead

almost the same. On the other hand, in Fig. 5.2b, the experiment settings are

the same except that hosts do not send each other new flows all the time. Instead,

they keep sending the previously sent flows after they have sent first flows. This,

therefore, does not let the overhead messages sent by controller(s) increase while the

workload increases. Hence, the scalability show an increasing pattern by the time. In

both figures, it can be seen that hierarchical control plane (HCP) provides the best

scalability while the centralized control plane (CCP) has the worst scalability. Also,

DCP-LV architecture shows a better performance compared to DCP with global view

(DCP-GV) regarding scalability.

Fig. 5.3 captures the scalability and workload (through total number of hosts)

relation with respect to number of domains in DCP-LV, DCP-GV, and HCP settings.

The same topology with 36 switches have been used. In each different architecture,

λi,j = 1 is per second (hosts send new flows to each other). In all settings, the

number of domains have been changed from m = dml = dmg = Hm = 3 to 9 as in

Fig. 5.3a, 5.3b, and 5.3c, respectively. As the figures indicates, the more number of

domains results in better scalability result. This happens due to the fact that when

you partition a whole network into smaller domains, the total number of switches and
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Figure 5.3.: Scalability vs. Total Number of Hosts (i.e. workload) with respect to
number of domains in different control plane architectures.

hosts in a domain will be less. This reduces the total overhead that a controller deals

with in the domain.
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Figure 5.4.: Scalability vs. Total Number of Hosts (i.e. workload) with respect to
average length of a path (i.e. total switches over a path) in different control plane
architectures.

Fig. 5.4 shows the scalability and total number of hosts (i.e. workload) relation

regarding average length of a path (i.e. number of switches over a path) in all control

plane settings. The same topology with 36 switches have been deployed as well.

In each different architecture, λi,j = 1 is per second (hosts send new flows to each

other) and the total number of domains in DCP-LV, DCP-GV, and HCP settings to

m = dml = dmg = Hm = 3 (in CCP, m = 1). In CPP (Fig. 5.4a), the average path

length have been changed from r = cr = 5 to 7 while in DCP-LV, DCP-GV, and

HCP the average path length varies from r = drl = drg = Hr = 2 to 4 as in Fig.



133

5.4b, 5.4c, and 5.4d, respectively. In all control plane architectures, a shorter average

path length (i.e. less number of switches over a path) results in better scalability

result. This happens due to the fact that when a new flow comes to a controller, the

controller needs to calculate a path for the flow and install necessary rules on switches

over the calculated path. Therefore, the longer a path would cause a controller to

create and install the more rules in switches over a path.

5.7 Chapter Summary

Although SDN brings many advantages regarding network and flow management,

it still has several issues that need further attention from researchers. Control plane

scalability in SDN is one of the crucial issues to be addressed in SDN as well. Many

existing solutions propose a way to mitigate the control plane scalability in SDN.

However, they quantify the control plane scalability performance in terms of some

network QoS parameters such as throughput and latency. This chapter has firstly ex-

amined the roots of SDN control plane scalability issues and presented some existing

solutions alleviating the problems. The chapter has also given a snapshot of several

research attempts proposing a scalability metric to measure the scalability of sys-

tems. Finally, a scalability metric has been described and modeled by mathematical

methods over different SDN control plane designs.
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6 A FRAMEWORK FOR ECONOMIC ANALYSIS OF NETWORK

ARCHITECTURES AND DESIGNS

6.1 Abstract

Economical and operational facets of networks drive the necessity for significant

changes towards fundamentals of networking architectures. Recently, the momentum

of programmable networking attempts illustrates the significance of economic aspects

of network technologies. SDN has got the attention of researchers from both academia

and industry as a means to decrease network costs and generate revenue for service

providers due to features it promises in networking. This work investigates how pro-

grammable network architectures, i.e. SDN technology, affect the network economics

compared to traditional network architectures, i.e. MPLS technology. This study

defines two metrics, Unit Service Cost Scalability and Cost-to-Service, to evaluate

how SDN architecture performs compared to MPLS architecture. Also, mathemati-

cal models are presented to calculate certain cost parts of a network. In addition, a

comparison of different popular SDN control plane models, Centralized Control Plane

(CCP), Distributed Control Plane (DCP), and Hierarchical Control Plane (HCP), are

given to understand the economic impact of them with regards to the defined metrics.

A video traffic with different patterns is used for the comparison. This work aims at

being a useful primer to providing insights regarding which technology and control

plane model are appropriate for a specific service, i.e. video, for network owners to

plan their investments.
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6.2 Introduction

Traditional networks are forcing their limits to meet the needs of today’s users,

enterprises and carriers due to their limited capabilities. Increasing cloud services,

server virtualization, the sharp growth of mobility, and content-like video have led

researchers to rethink today’s network architectures. In traditional architectures, net-

work devices and appliances are complex and challenging for (re)configuration and

(re)installation since they require highly skilled persons. Adding or moving a device

from a network brings extra costs. It is also time-consuming because IT people need to

deal with multiple switches, routers, etc. and update ACLs, VLANs and some other

mechanisms. Furthermore, as business demands or user requirements increase day by

day, application developers, carriers, and enterprises need to delve into evolving new

services and facilities. However, the software and the hardware in network equipment

are vertically integrated and proprietary. Therefore, vendor dependency is an ob-

stacle deterring them from developing new networking applications and services for

their networks due to slow equipment production cycle, long protocol standardization

process, application testing, and deployment. As a result, dynamicity in networking

becomes an inevitable and crucial feature to meet the needs of today’s end users.

6.2.1 Chapter Organization

This study investigates how programmable networking, i.e. SDN technology

( [207, 208]), affects the network economics compared to traditional networking, i.e.

MPLS technology. The MPLS technology has been chosen as the traditional architec-

ture for comparison because it has the concept of flows similar to SDN architecture

although MPLS-based flows (FEC+LSP) are not as generic and flexible as the SDN

flow abstraction in terms of the match definitions and forwarding actions. Also, MPLS

is the most implemented and accepted architecture by service providers to provide

QoS among others named earlier. To this end, this work defines two metrics Unit Ser-

vice Cost Scalability and Cost-to-Service to evaluate how SDN architecture performs
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compared to MPLS architecture. Also, mathematical models are presented to calcu-

late certain cost parts of a network. In addition, a comparison different popular SDN

control plane models, Centralized Control Plane (CCP), Distributed Control Plane

(DCP), and Hierarchical Control Plane (HCP), are given to understand the economic

impact of them with regards to the defined metrics. Video service with different traf-

fic patterns, (1) 20% (inter-domain) - 80% (intra-domain), 2) 50% (inter-domain) -

50% (intra-domain), and 3) 80% (inter-domain) - 20% (intra-domain), has been used

for the comparison due to its QoS requirements and the facts explained earlier. This

work aims at being a useful primer to providing insights regarding which technology

and control plane model are appropriate for a specific service, i.e. video, for network

owners to plan their investments. Furthermore, it should be noted that the economic

analysis framework proposed in this study is independent of an architecture. SDN

and MPLS architectures are the ones considered in this study. It can be applied to

any architecture in order to evaluate its economic promises.

In the rest of the chapter, Section 6.3 presents a snapshot of papers that study

cost models and expenses for network providers. While 6.4 gives an overview of SDN

technology, Section 6.5 discusses value proposition of SDN over network expenditures.

Section 6.6 presents MPLS in general, and Section 6.7 discusses the economics of

MPLS technology. Section 6.8 analyzes network costs and presents two metrics:

Unit Service Cost Scalability and Cost-to-Service along with the experiment results,

Section 6.9 summarizes the study with concluding remarks.

6.3 Related Work

The studies related to network expenditures can be mainly classified into three

general categories: 1) identification of CAPEX and OPEX for a network in general,

2) economic analysis of mobile networks, and 3) cost determination using different

methods for a network.
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The first category of network expenditures related studies considers identification

of CAPEX and OPEX for a network in general. Verbrugge et al. [209] introduce a

cost model to identify expenditures of telecom operators. They discuss the relation

between CAPEX and OPEX for telecom networks. The authors mainly split CAPEX

into four categories and OPEX into three general parts with carious subparts, respec-

tively. They also discuss activity-based descriptions of identified operational processes

for telecom networks. [210] proposes an operational cost model to calculate actual

OPEX cost for telecom operators. Their identified CAPEX and OPEX parts are

the same. In their cost model, rented infrastructure (e.g. building and equipment)

costs do not contribute to CAPEX but OPEX. However, Swisscom et al. [211] state

that all costs related to infrastructure should be considered as CAPEX. In [212], the

authors study the impact of the resilience schemes on both CAPEX and OPEX for

a network operator using process-based approach. The authors in [213,214] evaluate

how GMPLS technologies impact network operators’ processes using a quantitative

technique, and provide a calculation of the expected OPEX savings.

The second category of network expenses related studies mostly concerns with

economic analysis of mobile networks. Naudts et al. [215] perform a techno-economic

analysis of SDN for mobile networks in different architecture cases: a classic scenario

in which a distributed network is considered, an SDN scenario with centralized net-

work architecture, and a network architecture shared based on SDN among several

network operators through FlowVisor [216] controller. The authors state that the

benefits of SDN outweigh its extra costs according to the quantitative analysis con-

ducted. In [217], the authors present a general qualitative study on how SDN/NFV

(Network Function Virtualization) affects OPEX for service provider networks. The

authors summarize that SDN/NFV is expected to reduce service provider OPEX

due to consolidating and optimizing the network and surrounding operating model.

Zhang and Hammainen [20] also study the SDN impact on network expenditures using

a Finnish LTE reference network. Their findings show that SDN reduces the network

related annual CAPEX by 7.72% and OPEX by 0.31% compared to non-SDN LTE.
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Knoll [218,219] uses a model called “Life-cycle Cost (LCC)” to investigate a detailed

techno-economic structure of SDN/NFV based mobile networks. The LCC-based

model considers the life-cycle phases of a network from the idea to set up a certain

product or service, followed by the installation and operation of the network up to

the decommissioning of the equipment. Bouras et al. [21] also present a cost model

to estimate the CAPEX, OPEX, and TCO (Total Cost of Ownership) of SDN/NFV

based mobile 5G networks and compare them with a traditional network architecture.

In [220], the authors study the determination of unit cost for a service with QoS pa-

rameters over various SDN network topologies. They characterize the unit cost for a

service with respect to CAPEX, OPEX, and workload of a network in a certain time

period.

Finally, the last category consists of the studies concerned about cost determina-

tion using different methods for a network. Kwak et al. [221] propose a cost estimation

method based on ABC (Activity-Based Costing) procedure to reduce network OPEX

and, thus, the general cost. The authors also present several useful use cases of

the suggested cost estimation method and describe expected effects. [222] proposes a

method to analyze the implementation of network design optimization by validating

network cost models. The authors’ key validation technique is the balance between

the total network cost calculated from traffic and which of summing the cost of mod-

ules. In [223], the authors use a cost mode named “Total Element based Long Run

Incremental Cost (TELRIC)” to calculate and distribute the cost of a network element

according to the usage that each user type makes of in Next Generation Networks

(NGNs). In [224], the authors present a technique for estimating and comparing the

costs of different data center architectures and analyze costs of these architectures

based on the proposed methodology. Casier et al. [225] propose a cost allocation

model based on a combination of resource usage and peak capacity to understand

how the different CAPEX and OPEX cost parts for a service provider can be allo-

cated to the services. Bailey [226] discusses the economic realities of migrating to

the cloud and virtualized networking. His conclusion is that once the network was a
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service, now the data center is the new network for the purpose of economic modeling

and business insights.

As can be seen from the studies presented above, this study differs from them

in a way that it defines and presents two metrics to investigate how programmable

networking, i.e. SDN technology, impact the unit cost for a service and service intro-

duction cost compared to traditional networking, i.e. MPLS technology. It calculates

CAPEX and OPEX as a means to use in calculation of unit service cost metric. It

also includes network performance with regards to total number of satisfied requests

(i.e. workload) in the model proposed unlike aforementioned studies.

6.4 SDN Overview

SDN allows managing flows in a finer-granular way based on more attributes

of packet headers by means of a Controller-Data Plane Interface (C-DPI) such as

OpenFlow protocol [34]. As shown in Fig. 2.1, Open Networking Foundation (ONF)

[227] vertically splits SDN architecture into three main planes [38]:

6.4.1 Data Plane

The data plane is the bottom plane and consists of network devices such as routers,

physical/virtual switches, access points, etc. These devices are accessible and man-

aged through C-DPIs by SDN controller(s). The network elements and controller(s)

may communicate through secure connections such as the TLS connection.

6.4.2 Control Plane

An SDN control plane comprises a set of software-based SDN controller(s) to

provide control functionality in order to supervise the network forwarding behavior

through C-DPI. It has interfaces to enable communication among controllers in a

control plane (Intermediate-Controller Plane Interface, i.e. I-CPI [39], optionally
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secured using the TLS), between controllers and network devices (C-DPI), and also

between controllers and applications (Application-Controller Plane Interface, i.e. A-

CPI).

As illustrated in Fig. 5.1, some of the popular control plane models used in

SDN technology are CCP, DCP and HCP. These models have their own intrinsic

advantages and disadvantages with respect to the different concepts such as control

plane scalability [228], resiliency [229], better manageability and so on. These are the

control plane models in SDN that have been considered while conducting analysis

to understand their impact over network economics. However, they are not the only

control plane models in SDN.

6.4.2.1 Centralized Controller Plane Model (CCP)

This type of settings revolves around a single central controller [23, 69] with a

global network view. The model is simple and it is easy to manage the network. This

design may meet the needs of small to mid-size networks.

6.4.2.2 Distributed Controller Plane Model (DCP)

This model [66, 72] consists of distributed controllers associated with switches.

Each controller manages a subnetwork/domain of the whole network and has its own

local network view, which is, in turn, abstracted as a logical node to its neighboring

controllers. These controllers communicate with each other (i.e. connected neighbors)

when they receive a packet destined out of its domain in order to set up an end-to-end

path.

6.4.2.3 Hierarchical Controller Plane Model (HCP)

An HCP design [79,84] consists of two control plane layers minimum: The lower-

layer, consisting of local domain controllers, and the upper-layer where another con-
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troller, usually called “master”, resides. The domain controllers manage their own

domains with full control and are not connected to each other but the master con-

troller. However, a local controller does not maintain a global view of the whole

network. Instead, the master controller has a full global view of the entire network

by abstracting all domains as logical nodes.

6.4.3 Application Plane

An SDN application plane consists of one or more end-user applications (security,

visualization, etc.) that interact with a controller(s) to utilize an abstract view of

the network for their internal decision making process. These applications communi-

cate with a controller(s) via an open A-CPI (e.g. REST API). An SDN application

comprises an SDN App Logic and A-CPI Driver.

6.5 SDN Value Proposition

This section discusses the values of SDN architecture that are results of pro-

grammable networking. It is important for a network owner to identify and un-

derstand these values while evaluating economic position of an architecture before

investing money on the architecture.

6.5.1 SDN Impacts over CAPEX

Virtualization and flexible placement of network functions, fine-grain network traf-

fic optimization, and efficient resource utilization through orchestration associated

with SDN provide an intuitive indication of potential CAPEX reduction [217]. SDN

can influence CAPEX of a network in different ways. Some of the key factors that

affect the potential CAPEX changes include:
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• Simpler Network Devices: In an SDN network, each network device will be

simpler because complex features such as proprietary software implemented by

vendors are not needed. The devices will be simpler and cheaper white-boxes.

• Extra Components: In an SDN scenario, the network will have other elements

that a traditional network does not have. These elements include a controller(s)

hardware and controller software licenses (if not used an open-source software).

• Network Dimensioning: Since network controller(s) can have global network

view in SDN case, this leads to better network resource utilization by means of

some methods such as load balancing. Therefore, there may not be a need for

over-provisioning the network, which can reduce the capital expenditures.

6.5.2 SDN Impacts over OPEX

[230] reports that OPEX for service providers are up to 5 times higher than

CAPEX according to the financial analysis conducted. This increased cost leads

service providers to pay more attention to the OPEX part of their expenses. SDN

promises to lower some of the main OPEX components for service providers using its

various features:

• Energy-Related Costs: In an SDN network, switches will not have an embedded

control plane, which consumes the most of the total energy that a switch needs.

Also, since SDN allows more efficient traffic optimization over the network de-

vices, this reduces the total number of needed devices.

• Maintenance Costs: SDN creates a homogeneous network environment on hard-

ware and software. There is no case in which different vendor-dependent devices

need to be managed and maintained independently.

• Reparation Costs: SDN provides better testing opportunities, identifying bugs,

and so on before reaching out the actual production traffic. Software related is-



143

sues can be remotely fixed without touching network devices since these devices

are simple and SDN is software-centric.

• Service Provisioning Costs: Service provisioning cost in SDN scenario is ex-

pected to be lower due to automated configuration of network devices, less per-

sonnel need for network tasks due to automation, reduced manual configuration

and so on.

6.6 MPLS Overview

Although the original idea behind the development of MPLS was to facilitate fast

packet switching, currently its main goal is to support traffic engineering and provide

quality of service. The goal of traffic engineering is to facilitate efficient and reliable

network operations and at the same time optimize the utilization of network resources.

Routers that support MPLS are known as Label Switching Routers (LSRs). When an

LSR identifies the Forwarding Equivalent Class (FEC)1 associated with the packet, it

selects a label from a pool of free labels, and makes an entry in a table referred to as

the Label Forward Information Base (LFIB) [231]. This table contains information

regarding the incoming and outgoing labels associated with an FEC and the output

interface, i.e. the FEC’s next hop router. The LSR also saves the label in its FIB

in the entry associated with the FEC. A Label Switched Path (LSP) is referred to

as a path from the ingress node to the egress node of an MPLS domain followed by

packets with the same label.

6.6.1 MPLS-TE

MPLS-TE model mainly consists of Path Management, Traffic Assignment, Net-

work State Information Dissemination, and Network Management components [232].

Path Management is a mechanism by which MPLS network manages the packet for-

1A FEC is a class which comprises the group of packets which are treated in the same manner by
the LSR.
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warding, which includes choosing the right path for the specific packet, maintaining

the existing path and finding new paths due to failure or addition of links. Traf-

fic Assignment performs the assignment of traffic to the established tunnel by path

management to do load distribution. Network State Information Dissemination com-

ponent conducts the advertisement of the topological and state information of the

network to all the nodes of the MPLS network. The final component, Network Man-

agement, is responsible for configuration and fault management functions.

6.6.2 Signaling Protocols in MPLS-TE

There are two main signaling protocols that support TE in MPLS networks:

Constraint-based Label Distribution Protocol (CR-LDP) [233] and Resource Reser-

vation Protocol-Traffic Engineering (RSVP-TE) [234].

CR-LDP is the extension of the signaling protocol LDP. It is extended from LDP

with the additional support to explicitly route the information about the traffic pa-

rameters for the reservation of the resources along the LSPs. CR-LDP is a hard state

protocol as it sends the signaling messages only once without refreshing.

RSVP uses the direct routes to set up the Constraint-based Routed LSPs (CR-

LSPs) (also known as ER-LSPs). It uses UDP for resource reservation and label allo-

cation. RSVP supports Integrated Service (IntServ) model of QoS. The TE supported

RSVP, which is an extended version of RSVP and known as RSVP-TE, supports loop

detection, periodization, reordering of a path, and strict/loose CR-LSPs.

6.7 Economic Position of MPLS

Service providers continue to use MPLS to transparently carry legacy services as

part of their evolutionary service strategy. This factor results in an opportunity for

both service providers and customers to exploit MPLS as a new service opportunity.

In terms of the service provider, MPLS can speed the service delivery window for

customers who subscribe to these services. For the customers, MPLS can reduce WAN
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costs or offer services internally to various departments or subsidiaries. On the other

hand, enterprise organizations are using MPLS to develop virtualized architectures

to scale WAN/LAN, campus, and data center resources [132].

MPLS attracts service providers as a business opportunity due to cost savings and

revenue generation factors it can provide. This business opportunity is ultimately

translated to deploying a global ubiquitous network and to developing services that

are based on this technology. Moreover, MPLS-based faster TTM service delivery

windows of new services are critical for the service providers. In addition, MPLS can

provide any-to-any service constructs that customers can utilize.

Furthermore, service providers expect operational savings by deploying new IP/MPLS-

based services. Applications such as voice, once implemented in circuit-based net-

works, are perceived by service providers to be less expensive to deploy over IP.

These cost savings come from the opportunity to consolidate multiple infrastructures

(PSTN for voice and video, and data over IP). The consolidation can be facilitated

by such mechanisms as a differentiated class of service (CoS).

Finally, controlling costs while supporting existing and new services, and transi-

tioning multiple networks to a consolidated packet-based service-oriented technology,

such as MPLS, are indeed requirements for service providers.

6.8 Network Economic Performance Indicators

A final price that end users pay for their use of services from networks mostly

rely on a unit cost for the service charged by the network. However, these types of

internal cost calculations are highly proprietary since networks typically do not share

their internal cost structures in current practices. On the other hand, understanding

of these internal price calculations is crucial as researchers try to come up with an

optimal final pricing scheme for both users and service providers.

Determining cost for a QoS service in a network is not an easy task for network

operators. If the cost of a service in a network is miscalculated, two consequences
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are possible for the network in mid-term and long-term. One consequence is that the

network may start making a loss if customers pay lower than real cost for services

they use based on the cost calculated by the network operators. Another possible

consequence is that a network may lose customers, thereby losing revenue, in long-

term if the network calculates higher cost than the real cost for services. In this

case, the network may seem to be making profit in short-term but customers would

eventually stop receiving service from the network. As a result, cost calculation is a

crucial stage for a network in terms of reflecting a real cost structure for services so

that both networks and customers can utilize an optimum service-cost relationship

for their future businesses. We note that our cost calculation scheme reflects the

minimum cost that a network should charge for the service. It neither leads to a

loss nor a profit for a network. Keeping cost at a higher or lower level depends on a

network’s market strategies.

To this end, we analyze network costs and present two metrics: Unit Service Cost

Scalability metric to evaluate unit cost performance of a network technology for ser-

vice requests with respect to increasing service request workload and Cost-to-Service

metric to economically quantify the cost of introducing a new service in a networking

technology in this section. We also present CAPEX and OPEX calculations, which

is used in determination of unit cost for a service with QoS parameters in a network.

We only consider bandwidth QoS parameter for service requests along with multiple

numerical service tiers. We should note that the unit cost calculation scheme pro-

posed in this paper reflects the minimum cost that a network should charge for the

service to compensate its expenditures. Therefore, it neither leads to an financial loss

nor a profit for a network. Keeping cost at a higher or lower amount depends on

network’s market strategy and it is out of this paper’s scope.
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6.8.1 Unit Service Cost Scalability Metric

Scalability is a frequently-claimed attribute of various systems. It is a multi-

dimensional topic. While the basic notion is intuitive, the term Scalability does not

evoke the same concept to everybody. While some people may refer to scalability

as optimization of processing power to CPUs, others may define it as a measure

of parallelization of applications across different machines. Therefore, there is no

general, precise agreement on neither its definition nor content. However, regardless

of its meaning to someone, it is a desired property indicating positive sense for a

system, algorithm, network and so on.

There are several research efforts [44–50] proposing a metric to measure scalability

of systems. Most of these metrics are for homogeneous environments. The majority

of these proposals revolve around two major types of scalability metrics: Isospeed

scalability and Isoefficiency scalability. The Isospeed scalability is characterized by

the fact that an achieved average unit speed of an algorithm on a given machine

can remain constant with increasing number of processors and problem size for an

algorithm-machine combination [44]. In [45], the authors present a metric to describe

the scalability of an algorithm-machine combination in homogeneous environments.

Their scalability function is defined as ψ(p, p′) = p′W
pW ′ where p and p′ are the initial and

scaled number of processors of the systems respectively, and W and W ′ are the initial

and scaled problem size (workload) respectively. The Isoefficiency scalability is de-

scribed as the ability of parallel machine to keep the parallel efficiency constant when

the system and problem size increase [46]. The parallel efficiency is defined as speedup

over the number of processors, i.e. E = S
p
. Speedup is also given by the ratio of prob-

lem size (W ) and parallel execution time (Tp), i.e. S = W
Tp

where Tp = W+T0(W,p)
p

with

T0(W, p) extra communication overhead [47]. Pastor and Orero [48] define heteroge-

neous scalability by presenting a heterogeneous efficiency function. They attempt to

extend the homogeneous Isoefficiency scalability model to heterogeneous computing

and, therefore, their work inherits the limitation of parallel speedup, requiring the
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measurement of solving large-scale problem on single node. Sun et al. [49] propose a

scalability metric called Isospeed-efficiency for general heterogeneous computing sys-

tems. This metric combines the roots of both Isospeed scalability and Isoefficiency

scalability metrics by means of a concept called “Marked Speed” to describe the

computing power for a stand-alone node and a combined computing system.

Scalability means not just the ability to operate, but to operate efficiently and

with adequately quality of service, over the given range of configurations. There are

certain questions that need answers from researchers. One interesting example for

such questions is that whether the cost of the system to provide service affect the

system scalability. Jogalekar and Woodside [50] state that increased capacity should

be in proportion to the cost of the system, and quality of service should be maintained.

Moreover, when discussing network scalability, a large number of influencing factors

have to be taken into account to arrive at a full picture. Behringer et al. [235] state

that TCO is one example for such factors.

There are several research efforts proposing a metric to measure scalability of

systems while considering the cost of the systems. [236] proposes a scalability met-

ric, called “P-Scalability”, taking into account the cost of the system in distributed

systems. It utilizes a concept called “power” measure and the cost of the system to

provide service at a scale factor k. It is defined as:

P − Scalability(k1, k2) = P (k2)·Cost(k1)
P (k1)·Cost(k2)

where P (k) = Throughput/ResponseT ime. This metric combines capacity and re-

sponse time (both are present in the power P ) with the cost of the system. [50] defines

scalability around “productivity” of the system in distributed systems. Productivity

F (k) is the value delivered per second, divided by the cost per second:

F (k) = λ(k)·f(k)
C(k)

where λ(k) is throughput in response/sec at scale k, f(k) is the value of QoS at scale

k, and C(k) is the cost of the system at scale k.
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As proposed in these studies, the cost of providing service while preserving QoS

for each service request in a system should be considered as evaluating the scalability

of the system. In this context, we define a metric called Unit Service Cost Scalability

to evaluate unit cost performance of a network for service requests with respect to

increasing service request workload. This metric takes into account the network

workload and different expenditures incurred to preserve the QoS at the same level

for all service requests in the network. We expect that more scalable architectures

result in less unit service cost in networks because such networks are able to handle

more workload with respect to the same amount of network expenses compared to

others.

This study characterizes the unit cost for a service (request) from a service tier as a

function of network CAPEX, OPEX, and Workload over a certain time period. Work-

load is referred to service requests of all service tiers coming from users/customers to

and satisfied by the network. The general unit cost framework for a service (request)

with one QoS parameter (bandwidth) from a service tier is shown in Eq. 6.1. This

formula implies that the unit service cost for a request from certain service tier is the

ratio of TCO (CAPEX + OPEX) over workload in a given period.

Cbwj = f(C,O,W ) =


C+O∑

j=1 wj ·|bwj |
· |bwj| before δ

C+Cδ+O+Oδ∑
j=1 (wj+wδj )·|bwj | · |bwj| after δ

(6.1)

where bwj, |bwj|, Cbwj , C, O represent the type of (i.e. bandwidth) service with tier j,

the numerical value of the service tier bwj, the unit cost of the service bwj, CAPEX,

and OPEX in a time period (e.g. month, year), respectively. wj and wδj represent the

workload and possible additional workload of service bwj and W =
∑

j=1 wj and Wδ =∑
j=1 wδj . Similarly, Cδ, Oδ, and Wδ represent possible extra CAPEX, OPEX, and

workload, respectively, incurred after introducing different kinds of changes/upgrades

(represented as δ) in the network.
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6.8.1.1 Calculation of CAPEX

CAPEX
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Equipment 
Cleaning

FixingDiagnosis

OPEX

Figure 6.1.: CAPEX cost groups and corresponding input costs. The dashed rectan-
gles represent the input costs (in CAPEX) to the corresponding cost groups repre-
sented as gray rounded rectangles. The arrows point to the direction of the input.

CAPEX consists of expenses that are made for acquiring or upgrading a fixed,

physical and non-consumable assets of a company. They are needed to expand the

services to the customers. As seen in Fig. 6.1, CAPEX is mainly determined by

the initial physical infrastructure expenses (H), initial software expenses (S), and

operational network upgrade costs (A). Therefore, CAPEX is a function of these

expenses and can be written as in Eq. 6.2:

C = f(H,S,A) = H + S +A (6.2)

6.8.1.1.1 Initial Physical Infrastructure Expenses (H) These expenses are

related to hardware and the infrastructure of a network. The initial physical infras-

tructure (H) of a network primarily consists of cables, network devices, and also extra

hardware such as a server that controller(s) installed on (in SDN case). Therefore, H

can be written as in Eq. 6.3:

H =

|l|∑
i=1

Cli +

|d|∑
j=1

Cdj +

|c|∑
k=1

Cck (6.3)
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where |l|, |d|, |c| represent the total number of links, network devices, controller

hardware and Cli , Cdj , Cck represent the cost of the corresponding link, network device,

and controller hardware, respectively.

6.8.1.1.2 Initial Software Expenses (S) Similarly, the initial software ex-

penses (S) such as the purchase of management systems, licenses for proprietary

controllers (in SDN case) can be calculated as in Eq. 6.4:

S =

|s|∑
m=1

Csm (6.4)

where |s| and Csi represent the total number of paid software used in the network and

the cost of corresponding software, respectively.

6.8.1.1.3 Operational Network Upgrade Costs (A) These expenses are in-

curred from the ongoing network upgrade activities, represented as δ, such as adding,

deleting, upgrading controller(s) (in SDN case), network device(s), link(s), and so on

in the network. These expenses correspond the Cδ and Oδ in the Eq. 6.1. They are

considered because, after foregoing modifications, extra CAPEX and OPEX may be

incurred in the network.

Finally, substituting Eq. 6.3 and Eq. 6.4 in Eq. 6.2, the new CAPEX equation

becomes as in Eq. 6.5:

C = f(H,S,A)

=

|l|∑
i=1

Cli +

|d|∑
j=1

Cdj +

|c|∑
k=1

Cck +

|s|∑
m=1

Csm +A
(6.5)

This study considers only the initial physical infrastructure expenses (H), the

initial software (S) expenses, and the operational network upgrades costs (A) as the

main drivers for CAPEX for both SDN and MPLS cases in this study.
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6.8.1.2 Calculation of OPEX: Overhead-based Approach
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Figure 6.2.: OPEX cost groups and corresponding input costs in overhead-based
approach. The dashed rectangles represent the input costs (in OPEX) to the corre-
sponding cost groups represented as gray rounded rectangles. The arrows point to
the direction of the input.

OPEX is more complicated to calculate than CAPEX because it requires more

information about internal network dynamics. However, such information is propri-

etary and highly hidden by network owners. As seen in Fig. 6.2, Main drivers for

OPEX in overhead-based approach are (i) infrastructure energy expenses (K), (ii)

maintenance expenses (M), and (iii) reparation expenses (R) in a network. There-

fore, it can be stated, in general, that OPEX is a function of these expenses and can

be written as in Eq. 6.6:

O = f(K,M,R) = K +M+R (6.6)

6.8.1.2.1 Infrastructure (K), Maintenance (M), and Reparation (R) Costs

It is difficult to simulate these expenses in an artificial simulation environment with-

out real and accurate parameters from networks. This study assumes that they have a

relation with the total messages handled in the network in SDN case in order to model

them without data from a real network. These messages are internal overhead mes-

sages (O) generated in the network and service requests (W ) (i.e. workload) entering

the network. The idea behind this assumption is that the more messages handled
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in the network result in the more infrastructure energy expenses (e.g. due to more

power and energy consumption) and require the more maintenance, and reparation,

which brings more expenses as well, in the network. In order to monetize continuous

infrastructure, maintenance and reparation expenses for OPEX, this study assumes

that every single message processed in the network brings $ε cost to the network.

Therefore, the total of these expenses becomes as in Eq. 6.7:

K +M+R = Cpw

( |d|∑
j=1

pwdj +

|c|∑
k=1

pwck

)
+ ε

(∑
j=1

wj +O

)
(6.7)

where Cpw, pwdj , pwck represent cost of KWh electricity power, energy consumption

of network device dj and controller ck per hour, respectively.

On the other hand, in MPLS case, MTBF (Mean Time Between Failures) and MTTR

(Mean Time To Repair) values are used to calculate Reparation (R) costs of network

devices as in Eq. 6.8:

R = |d| ∗ T
MTBF

∗MTTR ∗ p (6.8)

where T and p represent a time period that the OPEX is calculated for and pay rate

for the employee who repairs a device, respectively. It is assumed that each device

is repaired by one employee.The same formula, as in Eq. 6.7, is also used for energy

expenses (K) in MPLS too:

K = Cpw

( |d|∑
j=1

pwdj +

|c|∑
k=1

pwck

)
(6.9)

where the number of controllers (|c|) is zero in MPLS case. It is also assumed that

total of Maintenance (M) costs are the half of the Reparation (R) costs, R =
M
2

.

6.8.1.2.2 Overhead Messages As defined in Chapter 5, overhead is referred

to the messages processed in the control plane by a controller(s). In SDN, when

the first packet of a new flow enters a network through a switch, the switch starts

a flow initiation request if there is no rule entry matching the packet in switch’s
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flow table. This flow initiation request is then sent to the controller. The controller

processes it and installs a rule for the flow in switches over the path calculated by the

controller. Therefore, a rule-missing flow results in some other control-messages which

are created, processed and sent by a switch and/or controller. Also, a controller may

deal with some other periodic messages, such as statistics, generated in the network

but not related to rule installation process. These types of messages are categorized

as an overhead message. In an SDN network with OpenFlow protocol, there are three

different types of messages between a controller and data plane devices: “Controller-

to-Switch”, “Asynchronous, and “Symmetric” messages. Each of these message types

has its sub-types as well.

This work characterizes the overhead in a control plane, i.e. a controller, as the

function of these three message types of OpenFlow protocol and synchronization

messages among controllers. A control plane model generating less of these messages

results in less OPEX. As explained in Chapter 5, the number of overhead messages

are quantified as in Eq. 5.2.

A total number of overhead messages in a control plane model such as CCP, DCP,

and HCP can be different. Therefore, the OPEX in each corresponding model can be

different. The details of overhead messages calculation and discussion is in Chapter

5.

6.8.1.3 Calculation of OPEX: Overhead-based Approach - Evaluation

This section presents numerical results to provide some insights in order to un-

derstand the economic impact of SDN architecture with different control plane mod-

els (CCP, DCP, and HCP) and MPLS architecture on unit service cost using the

overhead-based approach. In this context, this work analyzes unit service cost and

service introduction cost for the video service by total number of satisfied requests,

CAPEX and OPEX in different SDN models and MPLS architecture.



155

6.8.1.3.1 Experimental Setup

6.8.1.3.1.1 SDN Setup Mininet emulator [102] with POX controller [106]

has been used in SDN case. While there is one controller in CCP model, the whole

network has been divided into 4 fully-connected sub-networks with a controller for

each in DCP and HCP models with a varying number of switches in different sim-

ulation cases shown in the figures. There is also a master controller on top of local

domain controllers in HCP model.

6.8.1.3.1.2 MPLS Setup Regarding MPLS setting, ns3 [107] network sim-

ulator has been used. A signaling protocol such as RSVP-TE or CR-LDP has been

needed to support constraint-based routing in MPLS. Since none of them has been

implemented in ns3 at the time of this writing and it is time-consuming and effort-

greedy to implement them in ns3, extra packets have been generated between network

elements to mimic link state advertisements and state refresh messages for LSPs from

aforementioned signaling protocols in MPLS.

6.8.1.3.1.3 Shared Setup The experiments have used 3 Mbps flow sending

rate for all service requests. Therefore, there is only one service tier and |bw| = 3 for

all requests. Other numerical calculations have been done using MATLAB platform.

Also, a modified version of Waxman [237] random topology generator defined by

Erdos-Renyi random graph model has been used to randomly create the networks

while preserving connectivity degrees of nodes (i.e. switches) as three in all switch

cases and models. Furthermore, a heuristics, i.e. A*Prune Algorithm [238], has been

used to find a feasible path through the network because constraint-based routing with

two or more constraints has been shown to be an NP-hard [239]. A*Prune algorithm

combines A*-search with a correct pruning technique. A*Prune algorithm can be

used to solve finding the K shortest paths subject to multiple constraints (KMCSP).

Finally, all experiments were performed on Ubuntu 14.04 in Oracle VirtualBox using

an Intel Core i7-5500 system with 12GB RAM.
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The scheme explained in Chapter 5 has been used to get overhead messages with

respect to number of requests in SDN models. The experiments have used three

different traffic patterns: 1) 20% (inter-domain) - 80% (intra-domain), 2) 50% (inter-

domain) - 50% (intra-domain), and 3) 80% (inter-domain) - 20% (intra-domain). In

each pattern, the source and destination switches are chosen randomly for service

request while preserving the traffic pattern condition. Furthermore, all calculations

are based on one year period. Finally, it has averaged 15 runs for each experiment to

achieve and exceed 95% statistical significance.

Table 6.1.: List of parameters and their values used in calculation of CAPEX and
OPEX (overhead-based approach).

Parameter
Value

CCP DCP HCP MPLS

|d| 4, 8, 12, 16,
20, 24, 28, 32

4, 8, 12, 16,
20, 24, 28, 32

4, 8, 12, 16,
20, 24, 28, 32

4, 8, 12, 16,
20, 24, 28, 32

Cd $1000 $1000 $1000 $2000

|l| 6, 12, 18, 24,
30, 36, 42, 48

6, 12, 18, 24,
30, 36, 42, 48

6, 12, 18, 24,
30, 36, 42, 48

6, 12, 18, 24,
30, 36, 42, 48

Cl $500 $500 $500 $500
|c| 1 4 4 + 1 N/A

Cc $500∗|d|
|c|

$500∗|d|
|c|

$500∗|d|
|c| N/A

|s| 1 4 4 + 1 N/A

Cs $500∗|d|
|c|

$500∗|d|
|c|

$500∗|d|
|c| N/A

ε $10−8 $10−8 $10−8 N/A
Cpw $0.116 KWh $0.116 KWh $0.116 KWh $0.116 KWh
pwd 48 W 48 W 48 W 60 W
pwc 400 W 400 W 400 W N/A
T 1 year 1 year 1 year 1 year

MTBF N/A N/A N/A 2000 hours
MTTR N/A N/A N/A 10 hours

Table 6.1 lists the parameters and their values used in calculation of CAPEX and

OPEX (overhead-based approach). It is difficult to gather precise input values for

some of these parameters because they are proprietary and companies are not will-

ing to publicly share them. These value assumptions constitute an average of each
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parameter based on Internet research, literature review ( [20, 21, 209, 212, 240–249]),

and research discussions. Although these input numbers may not be reflecting precise

and/or realistic values, they should not impact the nature of the calculation frame-

work since these values are very relative for every network company. The same cost

has been used for all links (Cl) in both SDN models and MPLS case. However, it

has been assumed that $100 and $500 for a link cost in 1 Gbps and 100 Gbps link

bandwidth cases, respectively. It has been assumed that device cost is double (Cd)

in MPLS case since traditional network equipment is expected to be more expensive

than SDN equipment due to integrated control plane (i.e. proprietary software im-

plementation). It has also been assumed the same cost, which is proportional to the

number of network devices (|d|) and that of controllers (|c|) in different device num-

ber cases, for a controller hardware (Cc) and software (Cs) in all models. Regarding

device energy consumption, these values depend on many factors such as number of

ports, capacity of port, memory type used, number of coming flows/packets and so

on. Therefore, an average value has been used from these studies ( [240,244–247,249])

for both SDN and MPLS devices. Furthermore, it has used the same number of em-

ployees and pay rate in service introduction steps in both SDN and MPLS cases for

all switch cases. The time spent by an employee has been made proportional to the

number of network devices and controllers in service introduction steps of SDN mod-

els. These time ratios are based on customer feedback from SDN use cases explained

in [243]. In MPLS, this time is much more compared to SDN case due to mostly

manual configurations over multiple heterogeneous devices. Finally, these values are

the same for the different traffic patterns.

6.8.1.3.2 Experimental Results These results are based on the CAPEX calcu-

lation formulas presented in Subsection 6.8.1.1, OPEX calculation formulas presented

in Subsection 6.8.1.2, and values presented in Table 6.1.

Fig. 6.3 shows the relation between the total number of satisfied QoS-based re-

quests regarding the different switch numbers in SDN models and MPLS under the
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different traffic patterns. This experiment consists of two parts: 100 Gbps and 1 Gbps

link bandwidth parts. In the first part, (Fig. 6.3a, 6.3b, and 6.3c), enough bandwidth

(100 Gbps) has been provided in links so that there is no service request rejection

due to network resource limitations, while the link bandwidth has been reduced to 1

Gbps to see their performances under network resource limitations in the second part

of the experiment (Fig. 6.3d, 6.3e, and 6.3f).
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Figure 6.3.: Total number of satisfied (controller) requests (i.e. Workload) with QoS
in terms of the different switch numbers in SDN models and MPLS under the different
traffic patterns with 100 Gbps and 1 Gbps link bandwidth.

In SDN models, the satisfied requests numbers represent the total number of requests

that have been serviced in the corresponding models in a second by all controller(s)

before rejecting a request in each switch number case. This rejection happens due
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to controller message handling capacity. In each traffic pattern, the total number of

satisfied requests in all SDN models show reduction while switch number increases

because the network paths that are set up by the controllers become longer. Therefore,

controllers need to handle more overhead messages per path setup. In addition, as

traffic becomes more inter-domains, total satisfied request numbers also reduce in

all SDN models because paths become longer, which also results in more overhead

in control planes that controllers need to deal with. In MPLS case, the network is

able to serve requests at least HCP model in 100 Gbps case, which gives the best

result in SDN case. Although MPLS could serve more due to no controller capacity

constraint and enough bandwidth on links, it has been left at the same number as

HCP model. These numbers also depend on SDN controller performance. However,

comparing controllers performance is out of this chapter’s scope. In 1 Gbps link

bandwidth case, the link bandwidth resource is exhausted before controllers reach

their message handling capacity in SDN models. In this part of the experiment, the

total number of satisfied requests show the tendency of increase in SDN and MPLS

cases while switch number increases because adding more switches in the topology

results in more link connectivities. This increases the number of possible end-to-end

paths from a source to destination that can be used for a request. However, the

number of satisfied requests is less than CCP because the flooding of available link

bandwidth information (i.e. link state advertisements) and tunnel refresh messages

(i.e. overhead) also consumes usable link bandwidth in MPLS case. The difference

between CCP and MPLS regarding the total number of satisfied requests increases

as the switch and link numbers increase because the aforementioned advertisement

and refresh messages increase as well.

Fig. 6.4 shows the relation between the TCO with respect to the different switch

numbers in SDN models and MPLS under the different traffic patterns. This exper-

iment also consists of two parts: 100 Gbps (Fig. 6.4a, 6.4b, 6.4c) and 1 Gbps (Fig.

6.4d, 6.4e, 6.4f) link bandwidth parts. Main drivers of TCO are CAPEX and OPEX.

Therefore, it is considered that TCO is the sum of CAPEX and OPEX. OPEX cost
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Figure 6.4.: Total Cost of Ownership (TCO) with respect to the different switch
numbers in SDN models and MPLS under the different traffic patterns with 100
Gbps and 1 Gbps link bandwidth.

is mostly dominated by the total number of messages (overhead + workload) han-

dled by the controller(s) in SDN case as discussed in Subsection 6.8.1.2.1. In this

experiment, when controllers reach their maximum throughput point, which happens

in the first part of the experiment, more switches have been added to the network

and started sending traffic. It has been assumed that a controller’s port number is

the same as the number of switches it manages. Therefore, when new switches are

added to the network, the current controller either needs to be upgraded (i.e. re-

placed with a new one with enough ports) or a new controller needs to be added,

depending on the model, in the network. Since CCP model has only one controller,



161

then the current controller needs to be upgraded. However, this upgrade brings ex-

ponential CAPEX addition since the previous controller is not used anymore. On

the other hand, in DCP and HCP models, current controllers can still be used while

adding new controllers in the network. This brings fewer expenses compared to CCP

model case. This fact is the reason for a fast increase in TCO of CCP model under

all traffic patterns and link bandwidth types, which is an example for C∆δ
as well

discussed in Subsection 6.8.1.1.3. Furthermore, TCO of HCP model is more than

DCP model because HCP model handles more workload (W ) than DCP model, see

Eq. 6.7, and there is extra master controller cost in HCP model. On the other hand,

MPLS shows more TCO compared to all SDN models because of its OPEX, which

is not programmable and does not bring any cost reduction. In the second part of

the experiment, TCO shows reduction in all SDN models and MPLS under all traffic

patterns because CAPEX reduces due to link cost and OPEX reduces due to the

number of workload and overhead.

Fig 6.5 shows the relation between the unit service cost with respect to the different

switch numbers in SDN models and MPLS under the different traffic patterns. This

experiment has two parts as well: 100 Gbps and 1 Gbps link bandwidth parts. In

the 100 Gbps link bandwidth part (Fig. 6.5a, 6.5b, and 6.5c), while CCP shows the

highest unit service cost among all models, DCP gives higher unit service cost than

HCP based on one-to-one point comparison of curves. Although MPLS and HCP

have the same and the highest number of satisfied requests, MPLS gives higher unit

service cost than DCP and HCP because its CAPEX and OPEX is higher than that of

DCP and HCP under all traffic patterns. Furthermore, both SDN models and MPLS

result in lower unit service costs as the traffic becomes more local (i.e. intra-domain)

because more requests are satisfied as explained previously. The unit service cost

increases while the number of switches increase because CAPEX and OPEX increase

and total satisfied number of requests decreases in both SDN models and MPLS as

implied by the Eq. 6.1. In 1 Gbps link bandwidth part (Fig. 6.5d, 6.5e, and 6.5f),

MPLS gives higher unit service cost than SDN models because it shows the lowest
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Figure 6.5.: Unit service cost with respect to the different switch numbers in SDN
models and MPLS under the different traffic patterns with 100 Gbps and 1 Gbps link
bandwidth.

number of satisfied requests. CCP gives the highest unit service cost among SDN

models while HCP gives slightly lower cost than DCP under all traffic patterns. Both

SDN models and MPLS unit service cost results are similar (due to a similar number

of satisfied requests) under all traffic patterns because link bandwidth is exhausted

before controller capacity. Therefore, traffic pattern has little to no effect on unit

service cost in 1 Gbps link bandwidth case. The CAPEX and OPEX increase ratio is

faster compared to total number of satisfied requests in both SDN models and MPLS

as the number of switches increase. Therefore, the unit service cost also increases

while the number of switches increase. Finally, the unit service cost is higher for
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both SDN models and MPLS in 1 Gbps link bandwidth case compared to 100 Gbps

link bandwidth case in each switch case due to the total number of satisfied requests,

CAPEX, and OPEX results.

6.8.1.4 Network OPEX Activities

Table 6.2 shows the activities along with their duration and frequency attributes

and their values in a network. These activities are those that can be different in

terms of their duration and frequency in a programmable network and traditional

(non-programmable) network.

Table 6.2.: List of activities along with their attributes (i.e. duration and frequency)
and their values considered in calculation of OPEX (Activity-based approach).

Activity Name
Duration Frequency

SDN MPLS SDN MPLS

Service Provi-
sioning

1 hour 8 hours per connection per connection

Device-Level
Configuration

1 hour 4 hours
per 9K connec-
tions per device

per 2K connec-
tions per device

Topology-based
Modification

1 hour 4 hours
when new re-
source added

when new re-
source added

Fault Detection 30 mins 2 hours
Every 9K hours
per device

Every 2K hours
per device

Fault Reparation 2 hours 10 hours
Every 9K hours
per device

Every 2K hours
per device

It is difficult to gather precise input values for these parameters because they are

proprietary and relative and companies are not willing to publicly share them either.

These value assumptions constitute an average of each parameter based on Internet

research, literature review ( [250–254]), and our discussions. “Duration” refers to the

time that an activity takes to be finished while “Frequency” refers to the number of

times that an activity occurs in a network. In other words, duration refers to “how

long”, frequency refers to“how many times” questions, respectively.
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“Service Provisioning” activity refers here to providing a service first time to an

end-user (or customer) while the service had already been implemented/created in

the network. This activity includes all tasks that are necessary to start, update, test

and/or stop the customer’s service. Sample tasks in this activity may be, not limited

to, updating necessary databases for the customer, traveling to site to configure corre-

sponding cabinets on the field, and so on. This activity is applied for each connection

request in a network. We assume this activity takes much less time in a SDN network

compared to MPLS network due to the automation feature that programmability

adds to the network.

“Device-level Configuration” activity can be characterized by converting network-

wide policies to device-level configurations. These configurations are different than

and/or independent of customer service provisioning requests and applied on the

current network devices. Some of the sample tasks in this activity may be, not lim-

ited to, routing protocol-based configurations such as updating BGP preferences, or

OSPF/IS-IS routing algorithm etc., resource management-based updates to devices,

updating ACLs, VLANS for packet filtering, testing devices, and so on. In SDN case,

network devices are simple devices without any intelligence (i.e. no routing protocols

etc.). Also, they are accessible and configurable from a remote control points (i.e.

controllers). Therefore, we assume it takes less time to configure a network device

compared to traditional network devices. In traditional networking case, devices are

more complex due to the intelligence. It is not easy, if not impossible, to access and

configure from a remote point. Also, configuring a device may require some other con-

figurations in neighboring devices for a complete and accurate configuration. There-

fore, we assume it takes more time to configure a network device compared to SDN

devices. In addition, we assume that these types of configurations may be needed

more frequent in traditional network devices case compared to SDN case because

traditional devices are complex. Therefore, they may require more interventions per

device from network administrators to efficiently operate in the network.
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Tasks in “Topology-based Modifications” activity can be the similar or same as in

the “Device-level Configuration” case. However, this activity is triggered only when

a new device and/or link is added (connected), removed, and replaced in the net-

work. Also, any modification in the network topology can require configurations by

administrators in other (particularly nearby/neighbor) devices to ensure the coordi-

nation among the network devices. As explained in the “Device-level Configuration”

activity, we assume it takes longer in MPLS case compared to SDN case due to the

same reasons. We assume that certain number of connections in the network result

in topology based modifications (adding/replacing new device(s)/link(s)) in the net-

work. This modifications can be due to limited memory size of the devices, or adding

network resources such as bandwidth etc., due to inefficient resource management

capabilities of the network architecture and so on. We trigger this activity in this

study when there is not enough resources and therefore new links and devices are

added to the network in the experiments.

“Fault Detection” activity does not refer to the path failure detection problem,

which is well-studied and done in milliseconds in both SDN and traditional networks.

Detecting a network failure is the first step to recover from it. However, the failure

detection or identifying the failure (i.e. reason(s), location, type, time etc.) may

not be a straightforward task in a network. Although there are certain dedicated

software tools (e.g. SNMP) to help detect a failure, they may not help pinpoint the

aforementioned attributes of the failure since they usually throw a simple alarm(s)

when certain monitored network parameters exceed predefined thresholds. However,

this process can be done in different duration and with(out) human-device interaction

depending on the network architecture. For example, since SDN provides real-time

global full network view on network devices and links, this process can be shorter

and easier compared to a traditional architecture. Some sample tasks in this activity

may be, not limited to, checking network cable(s)/devices with physically or through

software tools using probing techniques etc. to pinpoint it, checking network log files,

and so on. Frequency attribute of this activity represents the MTBF (Mean Time
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Between Failure) and we assume longer MTBF value for traditional devices owing to

the complexity they come with and overhead they handle in a network compared to

SDN devices.

“Fault Reparation” activity includes tasks necessary to fix a detected failure in

the network. After being informed and detected a failure, following tasks may be

applied depending on the network architecture: Analysis (interacting multiple devices

personally on the site or using a controller), travel by technicians (to the place of

failure), fixing the failure (with device configuration), testing devices to verify the

repair, and so on. Duration attribute of this activity represents the MTTR (Mean

Time To Repair) and we assume longer MTTR value for traditional devices due to

the complexity and proprietary status compared to SDN devices.

These activities are not the only ones in a network and may not be precise re-

garding their duration and frequency. Network administrators can classify and define

different activities depending on their network. Furthermore, the granularity level of

activities may result in discrepancy in calculation of OPEX cost in the network.

6.8.1.5 Calculation of OPEX: Activity-based Approach

OPEX are the ongoing costs and contribute to the operational costs of a network

to keep its operations (e.g. technical, commercial, and administrative) running on a

daily basis. These expenses widely vary depending on the network. OPEX is more

complicated to calculate than CAPEX because it requires more information about

internal network dynamics. However, such information is proprietary and highly

hidden by network owners.

This method of OPEX calculation utilizes an activity-centric approach to calculate

OPEX in a network. Such an activity-based approach would help network adminis-

trators capture savings on OPEX of their networks owing to the reasons explained

earlier. To this end, this approach defines a set of cost groups, G, as follows:

G = {g1, g2, ..., gn} = {gi|1 ≤ i ≤ n}
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where gi is a cost group considered in OPEX calculation in a network. There are four

cost groups in OPEX, as seen in Fig. 6.6, in this study: Service Provisioning and

Management cost group, Maintenance cost group, First Time Setup cost group, and

Reparation cost group.

CAPEX

Links

Controllers

Devices Management 
Systems Licenses

Equipment 
Upgrades

Operational Network 
Upgrade

Initial 
Software 

Initial Physical 
Infrastructure

Reparation

Maintenance

Service 
Provisioning and 

Management

Device-Level 
Configuration

Topology-based 
Modification

Fault 
Repair

Fault 
Detection

OPEXFirst Time Setup

Service 
provisioning

Figure 6.6.: OPEX cost groups and corresponding activities in activity-based ap-
proach. The dashed rectangles represent the input activities (in OPEX) to the cor-
responding cost groups represented as gray rounded rectangles. The arrows point to
the direction of the input.

Similarly, this study defines and describes activities, as seen in Table 6.2, that take

place to keep the network operational. These activities can be various and different

in terms of time it takes to complete or number of occurrences in a network. A set

of activities is defined, A, as follows:

A = {a1, a2, ..., am} = {aj|1 ≤ j ≤ m}

where aj is an activity considered in OPEX calculation in a network. There are five

activities in this study. Fig. 6.6 also shows which activities are input (i.e. involved)

into which cost groups in this study.

Finally, another set, E, is defined for the employees of the network as follows:

E = {e1, e2, ..., er} = {ek|1 ≤ k ≤ r}

where ek is an employee of the network.
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After defining these sets, cost of an activity can be calculated as in Eq. (6.10):

Caj =

|eaj |∑
k∈eaj

aj∆tek ∗ pek (6.10)

where Caj , eaj , |eaj |, aj∆tek , and pek represent total cost of an activity aj, set of

employees who have done activity aj, number of employees who have done activity aj,

amount of time that employee ek spends in/for activity aj, and pay rate of employee

ek, respectively. aj∆tek represents the duration attribute of an activity shown in Table

6.2.

On the other hand, after substituting Eq. (6.10) in Eq. (6.11), cost of a cost

group can be calculated as in Eq. (6.11):

Cgi =

|agi |∑
j∈agi

Caj ∗ gi∆faj

=

|agi |∑
j∈agi

|eaj |∑
k∈eaj

aj∆tek ∗ pek ∗ gi∆faj

(6.11)

where Cgi , agi , |agi |, and gi∆faj represent total cost of a cost group gi, set of activities

involved in expenditure group gi, number of activities involved in expenditure group

gi, and how many times an activity aj is applied in expenditure group gi, respectively.

gi∆faj represents the frequency attribute of an activity shown in Table 6.2.

Finally, after substituting Eq. (6.11) in Eq. (6.12), OPEX can be calculated as

the summation of these cost groups as in the Eq. (6.12):

O =

|G|∑
i=1

Cgi

=

|G|∑
i=1

|agi |∑
j∈agi

|eaj |∑
k∈eaj

aj∆tek ∗ pek ∗ gi∆faj

(6.12)

where |G| is the number of cost groups involved in OPEX calculation for the network.
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6.8.1.6 Calculation of OPEX: Activity-based Approach - Evaluation

This section presents numerical results to provide some insights in order to under-

stand the economic impact of SDN architecture with different control plane models

(CCP, DCP, and HCP) and MPLS architecture on unit service cost. In this context,

this work analyzes unit service cost and service introduction cost for the video service

using total number of satisfied requests, CAPEX and OPEX in different SDN models

and MPLS architecture.

6.8.1.6.1 Experimental Setup Since the experimental setup is the same as in

the Subsection 6.8.1.3.1, the details are not given here.

Table 6.3 lists the parameters and their values used in calculation of CAPEX and

OPEX (activity-based approach) in this study. It is difficult to gather precise input

values for some of these parameters because they are proprietary and companies are

not willing to publicly share them. These value assumptions constitute an average of

each parameter based on Internet research, literature review ( [20, 21, 209, 212, 240–

242]), and research discussions. Although we should note that these input numbers

may not be reflecting precise and/or realistic values, they should not impact the

nature of the calculation framework since these values are very relative for every

network company. We have used the same cost for all links (Cl) in both SDN models

and MPLS case. However, it has been assumed that $100 and $750 for a link cost in 1

Gbps and 100 Gbps link bandwidth cases, respectively. We have assumed that device

cost is double (Cd) in MPLS case since traditional network equipment is expected to be

more expensive than SDN equipment due to integrated control plane (i.e. proprietary

software implementation). We have also assumed the same cost, which is proportional

to the number of network devices (|d|) and that of controllers (|c|) in different device

number cases, for a controller hardware (Cc) and software (Cs) in all models. We have

assumed that an activity aj is always done by 2 employees and the pay rate of an

employee is $60 per hour in any activity and SDN and MPLS cases. We have used the

data provided in [250] for the total time spent in corresponding service introduction
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Table 6.3.: List of parameters and their values used in calculation of CAPEX and
OPEX (activity-based approach).

Parameter
Value

CCP DCP HCP MPLS

|d|
4, 8, 12, 16,
20, 24, 28,
32

4, 8, 12, 16,
20, 24, 28,
32

4, 8, 12, 16,
20, 24, 28,
32

4, 8, 12, 16, 20, 24, 28,
32

Cd $750 $750 $750 $2000

|l|
6, 12, 18,
24, 30, 36,
42, 48

6, 12, 18,
24, 30, 36,
42, 48

6, 12, 18,
24, 30, 36,
42, 48

6, 12, 18, 24, 30, 36, 42,
48

Cl $500 $500 $500 $500
|c| 1 4 4 + 1 N/A

Cc $500∗|d|
|c|

$500∗|d|
|c|

$500∗|d|
|c| N/A

|s| 1 4 4 + 1 N/A

Cs $500∗|d|
|c|

$500∗|d|
|c|

$500∗|d|
|c| N/A

|G| 4 4 4 4
|A| 5 5 5 5
|eaj | 2 2 2 2
pek $60 $60 $60 $60

MTBF 9000 hours 9000 hours 9000 hours 2000 hours
MTTR 2 hours 2 hours 2 hours 10 hours

eI , pI , tI 2, $60, 14 2, $60, 14 2, $60, 14 2, $60, 6 ∗ |d|
(

log10 0.7
log10 2

+1
)

eE, pE, tE 2, $60, 3.5 2, $60, 3.5 2, $60, 3.5 2, $60, 4 ∗ |d|
(

log10 0.7
log10 2

+1
)

eT , pT , tT 2, $60, 3.5 2, $60, 3.5 2, $60, 3.5 2, $60, 3 ∗ |d|
(

log10 0.7
log10 2

+1
)

steps of SDN models. Authors in [250] state that these values would be the same for

different switch cases and/or control plane models owing to the automation feature

in SDN. In MPLS, we have used a 70% learning curve-based [255] and switch number

proportional timing values for each service introduction step in all switch cases to

make it more realistic. Time values in MPLS are more compared to SDN case due

to mostly manual configurations over multiple heterogeneous devices. Finally, these

values are the same for the all traffic patterns and link bandwidth cases in both SDN

models and MPLS.
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6.8.1.6.2 Experimental Results These results are based on the CAPEX calcu-

lation formulas presented in Subsection 6.8.1.1, OPEX calculation formulas presented

in Subsection 6.8.1.5, and values presented in Table 6.2 and Table 6.3. The total num-

ber of satisfied requests are the same as in Fig. 6.3 for each switch cases under all

traffic patterns and link bandwidth cases due to the same experimental setup. There-

fore, the results are not presented here again.
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Figure 6.7.: Total Cost of Ownership (TCO) with respect to the different switch
numbers in SDN models and MPLS under the different traffic patterns with 100
Gbps and 1 Gbps link bandwidth.

Fig. 6.7 shows the relation between the TCO with respect to the different switch

numbers in SDN models and MPLS under the different traffic patterns. This exper-
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iment also consists of two parts: 100 Gbps (Fig. 6.7a, 6.7b, 6.7c) and 1 Gbps (Fig.

6.7d, 6.7e, 6.7f) link bandwidth parts. Main drivers of TCO are CAPEX and OPEX.

Therefore, we consider that TCO is the sum of CAPEX and OPEX. In this experi-

ment, when controllers reach their maximum throughput point, which happens in the

first part of the experiment, we have added more switches to the network and started

sending traffic. In 100 Gbps link bandwidth case, TCO of SDN models and MPLS

shows a reduction because OPEX reduces in each switch case. The reason behind

the OPEX reduction is the decrease on the total number of satisfied connections as

shown in Fig. 6.3 and dependency of total cost of activities on the connections. TCO

of SDN models and MPLS also decreases as traffic becomes more inter-domain centric

because the total number of satisfied connections shows reduction as well. TCO of

HCP model is higher than DCP and CCP models because it handles more connections

(i.e. workload (W )) among all and has extra master controller hardware and software

cost. Also, although it has the same number of connections MPLS reflects more TCO

than all SDN models because activities in MPLS cost more due to longer duration

compared to all SDN models. In 1 Gbps link bandwidth case, TCO of SDN models

and MPLS are less compared to 100 Gbps link bandwidth case because CAPEX is less

due to link cost and the total number of connections decrease in this case. However,

TCO of SDN models and MPLS shows an increase as the switch number increases be-

cause total connections increase which result in more OPEX in the network. Finally,

as explained in the previous link bandwidth case, TCO in MPLS is more than all

SDN models because activities in MPLS cost more due to longer duration compared

to all SDN models.

Fig 6.8 shows the relation between the unit service cost with respect to the different

switch numbers in SDN models and MPLS under the different traffic patterns. In

each figure, while the top-subfigure shows the corresponding results to compare for

all SDN models and MPLS, the bottom-subfigure shows the corresponding results

to make the differences visible only for SDN models due to figure scaling. This

experiment has two parts as well: 100 Gbps and 1 Gbps link bandwidth parts. In
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Figure 6.8.: Unit service cost with respect to the different switch numbers in SDN
models and MPLS under the different traffic patterns with 100 Gbps and 1 Gbps
link bandwidth. In each figure, while the top-subfigure shows the corresponding
results to compare for all SDN models and MPLS, the bottom-subfigure shows the
corresponding results to make the differences visible only for SDN models due to
figure scaling.

the 100 Gbps link bandwidth part (Fig. 6.8a, 6.8b, and 6.8c), unit service cost for

all SDN models and MPLS increases in each switch case although total TCO and

satisfied connections decrease as well. This happens due to the fact that the decrease

ratio of workload is more than that of TCO. Although MPLS and HCP have the

same and the highest number of satisfied requests, MPLS gives higher unit service

cost than all SDN models because its CAPEX and OPEX is higher than that of

SDN models under all traffic patterns. While CCP shows the highest unit service
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cost among all SDN models, DCP gives slightly higher unit service cost than HCP

based on one-to-one point comparison of curves due to differences in total connections

handled in corresponding models. Furthermore, both SDN models and MPLS result

in very slightly higher unit service costs as the traffic becomes more non-local (i.e.

inter-domain) because less requests are satisfied as explained previously. In 1 Gbps

link bandwidth part (Fig. 6.8d, 6.8e, and 6.8f), MPLS also gives a higher unit service

cost than SDN models because it shows the lower number of satisfied requests and

higher TCO compared to SDN models. CCP gives the highest unit service cost among

SDN models while HCP gives slightly lower cost than DCP under all traffic patterns.

Both SDN models and MPLS unit service cost results are similar (due to a similar

number of satisfied requests) under all traffic patterns because link bandwidth is

exhausted before controller capacity. Therefore, traffic pattern has little to no effect

on unit service cost in 1 Gbps link bandwidth case. The CAPEX and OPEX increase

ratio is faster compared to total number of satisfied connections in both SDN models

and MPLS as the number of switches increase. Therefore, the unit service cost also

increases while the number of switches increase. Finally, the unit service cost is

higher for both SDN models and MPLS in 1 Gbps link bandwidth case compared to

100 Gbps link bandwidth case in each switch case due to the total number of satisfied

requests, CAPEX, and OPEX results as implied by Eq. 6.1.

6.8.2 Cost-to-Service Metric

Programmable networks (e.g. SDN) bring standardized and programmatic in-

terfaces (e.g. OpenFlow) that provide automation in network operations such as

configuration across multiple, heterogeneous devices and flow management for effi-

cient resource utilization. They also minimize human intervention in network oper-

ations, which helps in reducing network OPEX. This automation increases service

velocity, streamlines service introduction, and fosters innovative applications and ser-

vices. Also, if it is combined with NFV, very agile service creation can be achieved,
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as network functions can be dynamically started and logically chained to compose

customized end-to-end network services. On the other hand, in the traditional non-

programmable networks (e.g. MPLS), there are a number of devices requiring different

skill sets, including different technicians, programmers, and customer care personnel

due to lack of standard programmable interfaces. They do not provide the flexibility

necessary to make dynamic network changes and create new service offerings. Any

changes to these networks are difficult, slow, and risky. Therefore, programmable

networking helps reduce the costs of network operations and time required for intro-

duction of a new service.

Network operators may decide to introduce new services for their users for different

purposes such as generating new revenue opportunities. This process includes various

steps before making the service fully operational. We define these steps as Service

Design/Implementation (I), Service Testing (E), and Service Tuning Up (T ) in this

study.

Service Design/Implementation phase mostly includes planning the configuration

specifics for each network entities and sites. This planning involves design details of

network elements and sites including port mappings, interface naming, host naming,

IP addressing, VLAN addressing and many more. A proper design process is crucial

for the continuity and timeliness of the whole service introduction without any errors.

In addition, implementing planned design may require necessary coding over various

network entities such as network devices, controllers, databases, and management

systems depending on the technology, installation, and configuration of equipment

and files. In SDN case, these actions/behaviors can be minimized because such ac-

tions do not necessarily have to be taken for all network entities. Instead, applying

necessary actions once centrally and then distributing them to the relevant network

devices saves number of employees and time spent for the service introduction. Service

Testing phase aims at detecting network configuration issues causing faulty service

functioning and service quality degradation, which may result in revenue losses. This

testing process can be automatically conducted by exploiting network programming
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or manually as the technology allows. In programmable networking, it is possible

to program and test every single element in the network remotely and quickly com-

pared to traditional networking, which also saves the number of employees necessary

and time to spend for testing purposes for a fast service introduction. Finally, Ser-

vice Tuning Up phase includes final touches necessary to fix the detected issues from

the testing phase and maximize the service quality to generate/retain the revenue

from the service. Programmable networks also save costs in this phase due to the

automation it provides as in the previous step.

Each step explained above brings its own expenses to the total cost of service

introduction process. In this context, we describe a metric called Cost-to-Service to

economically quantify the cost of introducing a new service in a network technology.

To monetize the cost of the service introduction, we define this metric as the total

cost of each step described above where the cost of each is the function of number of

employees (e) (worked), employee pay rate per hour (p), and time in hours (t) (spent

by employees) in each step. Therefore, this metric can be written as in Eq. 6.13:

SC =f(e, p, t) = CI + CE + CT

=
∑
i=1

eIi p
I
i t
I
i +

∑
j=1

eEj p
E
j t

E
j +

∑
k=1

eTk p
T
k t
T
k

(6.13)

where subscripts i, j, and k represent the corresponding employees involved in and

CI , CE, and CT are the cost of each corresponding steps.

6.8.2.1 Cost-to-Service Metric Evaluation

The values used for each steps descbribed aobve are shown in Table 6.3. Fig. 6.9

shows the service introduction cost with respect to the different switch numbers in

SDN models and MPLS. The cost results are the same for the different traffic patterns

and link bandwidth cases as well because they have no effect on service introduction

steps described in Subsection 6.8.2. In MPLS, the service introduction cost increases
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Figure 6.9.: Service introduction cost with respect to the different switch numbers
in SDN models and MPLS. The results are the same for the different traffic patterns
and link bandwidth cases as well.

as the number of switches increase because we have used a 70% learning curve-based

and number of devices (|d|) proportional time frames spent in corresponding steps

by each employee. The time spent in corresponding service introduction steps are

the same according to the study presented in [250] in SDN models. Therefore, they

give the same results for each switch case. Based on the values assumed, MPLS

gives the highest service introduction costs among all due to lack of automation and

programmability, which is reflected in time.

6.9 Chapter Summary

SDN paradigm has several key attributes that have an impact on the CAPEX

and OPEX equations of a network. It has got the attention of researchers from both

academia and industry as a means to be leveraged in order to decrease network costs

and generate revenue for service providers due to features it promises in networking.

This study has investigated how programmable network architectures, i.e. SDN tech-

nology, affects the network economics compared to traditional network architectures,

i.e. MPLS technology. To this end, this work has defined two metrics, Unit Service

Cost Scalability and Cost-to-Service, to evaluate how SDN architecture performs com-
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pared to MPLS architecture. It has also presented mathematical models to calculate

certain cost parts of a network. In addition, it has compared different popular SDN

control plane models, Centralized Control Plane (CCP), Distributed Control Plane

(DCP), and Hierarchical Control Plane (HCP), to understand the economic impact of

them with regards to the defined metrics. The simulation results have revealed that

MPLS shows more TCO compared to all SDN models because of its OPEX, which

is not programmable and does not bring any cost reduction. TCO of HCP model is

more than DCP model because HCP model handles more workload than DCP model

and there is extra master controller cost in HCP model. In addition, CCP shows the

highest unit service cost because it results in more CAPEX and least workload among

all models. On the other hand, HCP results in the lowest unit service cost because

it handles the most number of workload. The results have also demonstrated that as

the number of switches increases the unit service cost increases as well because the

total number of satisfied requests are decreasing due to longer paths in both SDN

models and MPLS. Furthermore, it has been shown that MPLS gives the higher ser-

vice introduction costs compared to SDN models owing to lack of automation and

programmability, which is reflected in time. In SDN case, on the other hand, the

number of network elements, such as controllers, impact the total cost of service in-

troduction because of the time spent in each service introduction step. These results

have pointed out that programmability has great impact on network economics.
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7 PRICING END-USERS FOR NETWORK SERVICES IN SDN

7.1 Abstract

Although many solutions have been proposed from both industry and academia,

pricing the Internet services is still an ongoing research problem for researchers. This

study proposes an optimal pricing scheme for inter-AS traffic requests with QoS made

by customers in SDNs. This pricing scheme exploits the Nash bargaining problem

which aims to maximize benefits of both service providers and customers. This work

integrate a new cost function and network connectivity degree factor into the pro-

posed pricing scheme. Also, it gives a general scheme of revenue and profit that a

service provider makes. This scheme employs the idea of penalty for each request

that a service provider cannot provide for its customers. Furthermore, it applies

these schemes in the scalable hierarchic architecture, presented in Chapter 4, with

extensive experiments.

7.2 Introduction

The Internet consists of thousands of networks which are directly or indirectly

interconnected to each other. Exchanging traffic between two networks in the Internet

are regulated by the economic arrangements like “peering” and “transit”. In a peering

case, two or more independent networks directly connect to each other with a promise

of no charging for traffic exchanged among them. In the latter case, a network (usually

smaller) purchases a service from another network to carry its traffic to others in

return for a service fee.

Today, there are mainly two types of charging systems available by networks. In

the first case, customers (i.e. end-users) are charged based on a flat rate, mostly
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called “capacity-based pricing”, regardless of the amount of traffic they receive or

send over a time period (e.g. a month). An ISP prices its service tiers based on a

QoS parameter(s) (usually bandwidth), and customers are allowed to receive and/or

send traffic up to that QoS rate. In this type of pricing scheme, ISPs that sell traffic

services to others may not be receiving balanced traffic requests from all purchasing-

networks. This may happen because users of a purchasing-ISP may load the upstream

ISP up with traffic. On the other hand, the second type of charging system is based

on usage of customers, called “usage-based pricing”, and mostly uses the 95-percentile

pricing method. In this case, the bandwidth consumed by a customer is measured in

time intervals (e.g. 5-minutes) and are sorted according to the Mbps rates consumed.

The 5% of the highest rates are discarded and the Mbps values that have to be paid

are determined. Therefore, a customer only pays for 95% of his/her usage [256].

Charging an end user is still a research problem from a service provider perspective

since it requires consideration of many aspects of a network (e.g. cost), user satis-

faction, and other networks’ services over an end-to-end (e2e) path purchased by the

service provider. This charging should satisfy both end-users and service providers

with optimum prices for corresponding services. An optimal price is usually a result

of a negotiation process between customers and service providers. On the other hand,

charging between service providers (p2p) is similar to the customer-service provider

(c2p) case since they are also customers of each other.

The study in this chapter exploits and builds on the idea presented in [257].

This chapter proposes an optimal pricing scheme for a service request with QoS

in SDN environment using the Nash bargaining problem, which aims to maximize

benefits of both service providers and customers. It integrates a new cost function

and network connectivity degree factor into the proposed pricing scheme. Although

the idea in [257] is for end users (customers)-service provider (c2p) relation, this work

applies the same idea to service provider (customer)-service provider (p2p) relation

and adapt a new cost function. It also integrates the idea of network connectivity

degree factor into the pricing scheme. In addition, it gives a general scheme of revenue
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and profit that a service provider makes. This scheme employs the idea of penalty for

each request that the service provider cannot provide to its customers. Furthermore,

this work applies these schemes in the scalable SDN-based hierarchic architecture [84]

and evaluate with extensive experiments.

The next section gives a snapshot of papers that study pricing schemes of providers

on the Internet. Section 7.4 describes the SDN-centric scalable hierarchic architecture

in which the proposed pricing scheme is applied. Section 7.5 first defines the price

optimization problem in the context of the Nash bargaining process, and adapt the

cost function and network connectivity degree parameter into the final price in corre-

sponding subsections. Then, it show sa general scheme for network revenue and total

profit. After discussing the experiment results in Section 7.6, the study is summarized

with concluding remarks in Section 7.7.

7.3 Related Work

[258] proposes a protocol called “Border Pricing Protocol (BPP)” which is sim-

ilar to Border Gateway Protocol (BGP) to exchange the pricing information among

Autonomous Systems (AS) on the Internet. ASes can request pricing information

from other ASes and store the pricing information for destinations as in BGP’s path

information case for destinations. The authors state that ASes need to store two dif-

ferent information bases: The Pricing Information Base (PIB) for price information of

particular destination and Charging Information Base (CIB) for charging information

of each sender.

In [259, 260], the authors study the relation between the number of ISPs and

prices in localized regions. They conclude that ISPs, which are co-located, involve an

inevitable customer fight due to Nash reversion as the number of local ISPs increase

in the region. They also state that even if the ISPs are not located in the same

regions, thereby not involved in a price war directly, they still get into process of

setting transit prices for each other.
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The study in [261] focuses on networks offering tiered services and prices for their

customers. The authors firstly propose a solution to identify the optimal service

tiers for customers. They then discuss the optimal prices for corresponding tiered

services by exploiting game theoretical methods to satisfy both users and service

providers. [262] also studies the similar problem for service providers and end-users.

A model for transit traffic is proposed so that ISPs can arrange their service tiers and

corresponding prices. They point out that tiered services, which are organized based

on the cost of traffic flows, is sub-optimal.

[263] examines the relation between time and prices of service providers. Their

study summarizes that service providers can achieve maximum revenue and social

welfare if they differentiate prices across users and time. [264] states that network

resources can be used more efficiently by users through exploiting price differentiation

on volume usage-based connectivity pricing. The authors claim that unbundling

services might be better in access networks than core networks.

Altmann et al. [265] provides an approach to find out most economical inter-

connection for ISPs, especially small and medium-size ISPs, that also needs to buy

services from upstream providers to provide services to their users. This purchasing

gives them pressure regarding their service prices and directs them to reduce their in-

terconnection costs. The model they propose leverages AS-level topology information,

measurement information regarding bits/bytes, and pricing scheme information.

7.4 Scalable Hierarchic Architecture

This section briefly describes the SDN-based architecture and explains how it

works in an hierarchic environment. The hierarchic architecture, as explain in Chapter

4, consists of levels from bottom to up. The levels can be increased, as they are needed,

through up. In this version of the framework, as shown in Fig. 4.1, there are currently

two level: Network-Level (bottom-level) consisting of independent ISPs/ASes which

are also SDN domains with their own local controllers, and Broker-level (top-level)
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consisting of a super controller, called ”Broker”, which acts like a supervisor for the

bottom-level controllers.

The Broker receives following information from all AS controllers: 1) the advertise-

ments for paths between border node pairs including their QoS values and Path IDs,

2) unit prices for bandwidth, 3) unit prices for delay classes, and 4) inter-connecting

links between ASes. Once the Broker gets aforementioned information, it builds its

own general border node-level view and AS-level view as in the Fig. 4.2 and Fig.

4.3, respectively. The Fig. 4.2 represents the available paths satisfying the requested

QoS values between border nodes in ASes. On the other hand, Fig. 4.3 is the final

abstract global view of the domains and represents the available ASes that have paths

satisfying the requested QoS values. These views are updated by AS controllers when

a change happens.

When an inter-AS request comes to an AS controller, the controller forwards the

request with QoS values to the Broker (due to out of domain destination). The

Broker first figures out the paths satisfying the requested QoS values based on the

advertisements coming from all ASes. Then, it updates the border node pair-level

view and AS-level view based on the paths satisfying the requested QoS values. Upon

having AS-level view, the Broker finds complete e2e paths by stitching those paths

satisfying the request from domain for the request. It also calculates prices for these

e2e paths according to the pricing scheme proposed in Section 7.5.

7.5 Pricing Framework

It is assumed that U(x) and C(x) are non-decreasing a utility (measure of the

value that a customer receives from the service) and cost (for carrying a customer

traffic) functions, respectively [257]. Let P1 denote the price that customers pay for

the service and P2 denote the amount that the service provider receives for the service

and P2 ≤ P1 . P1 and P2 are not necessarily the same due to transactional cost G

(P1 = P2 if G = 0). Also, let Y1 = U − P1 and Y2 = P2 − C be surplus of customers
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and service provider, respectively. It can be represented that the net social surplus

as a union of customer surplus and provider surplus minus the transaction cost. The

goal is to increase customer and provider satisfactions by optimal division of the net

social surplus between the customers and the provider. Furthermore, it is assumed

that β, where 0 ≤ β ≤ 1, and 1− β represent the bargaining power of the customers

and that of the provider, respectively. Then, it can be defined that the Nash product

as Ω = Y β
1 Y

1−β
2 in the bargaining process [266–268]. At this point, the goal turns into

maximizing the Nash product by finding optimal values for Y1 and Y2. This can be

represented as a price optimization problem and can be formulated as in the Section

7.5.1.

7.5.1 Price Optimization Problem

Let Phigh be the maximum price that customers would pay for a service where

Phigh ≤ U , and Plow be the minimum price that a service provider would accept for

the service where C ≤ Plow. Given U , C, Phigh, Plow, G, β, and 1− β, the objective

is to maximize the Nash production function:

maximize
Y1,Y2

Ω = Y β
1 Y

1−β
2

subject to Y1 + Y2 ≤ U − C −G,

U − Phigh ≤ Y1,

Plow − C ≤ Y2.

(7.1)

The objective function Ω is the function of Y1 and Y2 and obtains its maximum

value while Y1 +Y2 = U −C−G where Y1 and Y2 are optimal values and represented

as ∗Y1 and ∗Y2. ∗Y1 and ∗Y2 can be found by rewriting the optimization problem in

Equation (7.1) as:

max
Y1,Y2

Ω
′
= Y β

1 Y
1−β

2 + η(Y1 + Y2 − U + C +G) (7.2)
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where η is the Langrange multiplier. After taking partial derivatives of Ω′ with respect

to Y1 and Y2 and set them to zero along with the fact that Y ∗1 + Y ∗2 = U − C − G,

then it is obtained:

∗Y1 = β(U − C −G) (7.3)

∗Y2 = (1− β)(U − C −G) (7.4)

Equation (7.3) implies that net user surplus is directly proportional to the bargaining

power of customers (β), while equation (7.4) implies a similar proportion on net

provider surplus. Using the definitions of Y1 and Y2, the optimal prices ∗P1 and ∗P2

can be obtained as below:

∗Y1 = U − ∗P1 = β(U − C −G)

∗P1 = U − β(U − C −G) = (1− β)U + β(C +G)
(7.5)

∗Y2 = ∗P2 − C = (1− β)(U − C −G)

∗P2 = C + (1− β)(U − C −G) = (1− β)(U −G) + βC
(7.6)

These optimal prices, ∗P1 and ∗P2, represent the optimal amount that customers

would pay for the service and the optimal amount that the service provider would

receive for the service, respectively.

7.5.2 Cost Function

The optimum price that customers pay for a request/service, P ∗1 , in (7.5) is the

final price of the service including the cost and profit, ∗P1 = cost + profit = C + f .

Subtracting the cost, C, from (7.5) would give the profit (f) portion of the optimal

price for the service as in below:
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∗P1 = C + f

f = ∗P1 − C = (1− β)U + β(C +G)− C

f = (1− β)(U − C) + βG

(7.7)

Therefore, it can be obtained;

∗P1 = C + f

∗P1 = C + (1− β)(U − C) + βG
(7.8)

This work proposes that absolute cost function for a service request made by a cus-

tomer should be a function of the QoS parameters (e.g. bandwidth, delay) of the re-

quest, time (∆t) that the resources are used, and unit prices for the QoS parameters.

These unit prices for QoS parameters are determined by service providers internally.

This work does not study this determination but only consider the bandwidth and

delay regarding QoS parameters in this chapter.

Let N = {Ni | Ni is an independent network/provider, 1 ≤ i ≤ n} be the set of

all networks. This study defines the new cost function C(b, d,∆t) as follows:

C(b, d,∆t) =
b×∆t× piB(b)

piD(d)
(7.9)

where b and d are the bandwidth and delay values respectively in the request, piB(b)

is the unit price for bandwidth value in a provider Ni, and piD(d) is the unit price for

delay value based on the associated delay segment (class) in the provider Ni. p
i
B(b)

and piD(d) might be different for each network since they determine their own unit

prices internally. Here, for the sake of simplicity, it is assumed piB(b) and piD(d) are

independent of time, that is, they do not change throughout the day. As shown in Fig.

7.1, delay segments represent the delay intervals with certain numbers determined by

the providers internally and the determination of those intervals and numbers are out

of this chapter’s scope.
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Figure 7.1.: Delay segments vs. unit prices for the segments. Delay parameter (i.e.
value) in a request will be in an interval of delay segments. Each delay segments has
a corresponding price. The better delay request requires the more price.

Delay segments reflect that the better delay value request will result in an increased

cost in return, or vice-versa. This work uses segments/intervals for delay unit pricing

since the increased ratio of the delay parameter does not necessarily reflect the same

ratio on price. For example, a delay request with 1 ms should not cost two times

more than a request with 2 ms.

This cost function captures the impact of requested QoS values from customers

by increasing or decreasing the cost incurred by the provider by means of time and

unit prices of bandwidth and delay. Obviously, more bandwidth, time, and better

delay will affect the cost of the service for the customers accordingly.

7.5.3 Network Connectivity Degree

Service providers invest money to build their connectivity with other providers

to improve their QoS or provide more services for their customers. A network with

many connections (by means of border nodes with inter-connecting links) to other

networks involves more end-to-end (e2e) paths from a source host to a destination

host compared to a network with less connections. More centric networks (which have

more border nodes connecting to more networks) will profit more due to the increased
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number of e2e paths they mediate. This idea leads us to think the connectivity degree

of a provider should also be part of the profit that a provider makes for each service

it provides to its customers. Therefore, this work proposes these networks should

exploit their connectivity in their pricing schemes because they have more chance to

be used as a transit network in a path. This exploitation will increase the price they

charge for the transit service, thereby affecting its chance of being chosen in a path.

Yet if the sender selects another path that does not involve that network, the number

of paths will be less, which leads to less path choices for the sender. This choice is a

trade-off between price and the probability of having more paths with better QoS.

This study defines the network connectivity degree factor for a network, Ni, as

X i = α× b̄i where α is the control factor and b̄i is the number of border nodes in Ni.

It is assumed that α is the same for all networks, but b̄i might be different for each

Ni. Therefore, each network may have different X i for itself.

7.5.4 Final Price for a Service

After integration of the cost function and network connectivity degree factor (X i)

into the optimal price in (7.8), the new final optimal price charged by a provider for

a service becomes as follows:

∗P1 =
b×∆t× piB(b)

piD(d)
+
[
(1− β)(U − b×∆t× piB(b)

piD(d)
) + βG

]
×X i (7.10)

This new updated optimal price in (7.10) captures both QoS values in a service

request, duration of the request and network connectivity degree factor of a provider.

The formula provided in (7.10) reflects the price for a service request by one

provider. However, a flow on the Internet mostly passes through many providers

until it reaches its final destination. This journey requires many transit services from

other providers. Obviously, a source provider may not be able to directly connect

to all other networks over an e2e path. Therefore, other providers need to charge

the network that forwards the flow. This charging happens until the flow reaches its
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destination. As a result of this process, the final price, ∗P , for a service throughout

an e2e path for customers can be calculated as follows:

∗P =
∑
Ni∈Ψ

∗P i
1

=
∑
Ni∈Ψ

Ci +
[
(1− β)(U − Ci) + βGi

]
×X i

=
∑
Ni∈Ψ

[
b×∆t× piB(b)

piD(d)
+
[
(1− β)(U i − b×∆t× piB(b)

piD(d)
) + βGi

]
×X i

] (7.11)

where Ψ is the set of networks over the e2e path. The equation in (7.11) implies

that the final price for a certain e2e path consists of the sum of the partial prices

from networks over the e2e path. As a result, the total charge will be split among

the networks over the e2e path. This splitting happens by recursive payments from

one provider to another ending with the destination provider (by analogy provider A

passes the data to provider B and so on).

7.5.5 Network Revenue and Total Profit

It has been stated that the formula in (7.10) is calculated to find the price that is

paid by a customer for a service request in a network. This price includes cost and

profit for the service provided. A service provider selling services to other providers

receives payments in return of the services provided. On the other hand, it also

pays to other service providers that it purchases transit services from. Also, peering

with other networks does not bring a huge payment burden to an ISP but it incurs

costs to maintain the peering links between peered networks. In addition, this work

proposes inclusion of a penalty factor for a service request that is not satisfied by the

service provider. This factor financially penalizes the service provider for each service

that the service provider cannot provide to a customer. This unsatisfied service can

happen due to many reasons such as inadequate network resources like bandwidth,

delay etc. A penalization for an unsatisfied service happens based on the QoS values,
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i.e. bandwidth, delay etc., of the request. Furthermore, every ISP spends money for

maintenance of their own local resources to keep providing and improving services

to its customers. All of these payments and/or costs form the revenues of an ISP.

Therefore, the profit of a network Ni can be expressed as in the equation (7.12).

Let Ci be the set of customers, P i be the set of providers and Ri be the set of

peer networks of a network Ni. Then, the total profit of a service provider would be:

F i =
∑
c∈Ci

S(tic)−
∑
p∈Pi

S(tpi )−
∑
r∈Ri

S(cir)−
∑
c∈Ci

P (qci )− I i (7.12)

where F i is the total profit of the provider Ni, S(tic) is the payments received from

customer c based on the total traffic tic exchanged between two networks Nc and Ni,

S(tpi ) is the payments made by network Ni to its upstream provider Np based on the

total traffic tpi exchanged between two networks, S(cir) is the cost for maintenance

of peering links between networks Nr and Ni, P (qci ) is the penalty payments made

by Ni to another network Nc due to unsuccessful QoS provisioning, and finally I i

is the financial investment payments to improve infrastructure/hardware (increased

link bandwidth, more switches/routers etc.) of the provider.

7.6 Evaluation

This section has analyzed how cost, profit, price, and number of unsatisfied service

requests in a provider (here AS1) are responding to the changes in the bandwidth,

delay and time parameters of a request made by a customer. In the experiments,

requests have been made from any source host in a provider to any destination host

in another provider as an inter-AS traffic with QoS. The experiments have used

the utility function as U(x) = λxγ log θx. This utility function is the same for all

providers. The cost function is shown in equation (7.9) and the same for all providers

as well. The utility function is an increasing, strictly concave, and continuously

differentiable function of QoS parameters. It has also been considered in the context
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of elastic traffic [269]. The parameters λ, γ, and θ can be used to control the slope

of the utility function. It has also assumed that the transactional cost, G, is zero for

simplicity. It has averaged 60 runs for each experiment to achieve and exceed 95%

statistical significance.
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Figure 7.2.: (a) shows the relation between bandwidth and price change regarding
cost, profit, and final price per request while time and delay are constant. (b) com-
pares cost, profit and final price per request based on delay and price change while
bandwidth and time are constant. (c) evaluates cost, profit and final price per request
by means of time and price while bandwidth and delay are constant.

Fig. 7.2a has analyzed the relation between bandwidth and price regarding impact

of the proposed new cost function and network connectivity degree factor over cost,

profit and final price per request. In this experiment, it has used λ = 0.5, γ = 0.5,

and θ = 1000 as it has kept constant as d = 100 ms and ∆t = 120 seconds. It has

changed the bandwidth (b) value from b = 0.1 Mbps to b = 2.0 Mbps. As seen in

Fig. 7.2a, cost per request is increasing by an increase of the bandwidth value. This

cost will be reflected to the user as (s)he requests more or less bandwidth for his/her

requests.

Fig. 7.2b compares cost, profit and final price per request while delay is increasing

and bandwidth and time are constant. It has used λ = 25, γ = −0.5, and θ = 1 as

it has kept b = 1.0 Mbps and ∆t = 120 seconds. It has varied the delay (d) value



192

from d = 5 ms to d = 100 ms. As seen in Fig. 7.2b, cost per request is decreasing

by an increase of the delay value since the smaller delay value (better delay) results

in the less number of paths satisfying the delay value. On the other hand, the bigger

delay values will increase the chance for more paths satisfying the requested delay.

The profit per request shows a sharp increase up to around 20 ms and then shows a

stable behavior. This depends on the utility of the users because the utility customers

receive goes down as the delay increases over time.

Fig. 7.2c evaluates cost, profit and final price per request by means of time and

price. In this experiment, it has used λ = 0.1, γ = 0.5, and θ = 1 as it has kept

b = 1.0 Mbps and d = 100 ms and increased the time (∆t) value from ∆t = 5 seconds

to ∆t = 240 seconds. As expected, the cost increases as the time increases because

the longer QoS requests bring more burden to service providers. The profit also shows

an increasing behavior with some slope depending on utility function.
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Figure 7.3.: Total Number of Requests vs. Total Profit ($) with respect to investment
on link bandwidth capacities and penalties for each unsatisfied service request. Inter-
nal link bandwidth capacities are compared with different values, as a result of local
internal investment, starting from 10 Mbps to 50 Mbps while number of requests are
increasing.

Fig. 7.3 captures the effect of financial investment and penalty on the total profit

with respect to number of total requests. The investment can be improvement on

network infrastructure like better links with increased link bandwidth or delay ca-



193

pacity. Service providers can invest money on their networks to improve the QoS

for user requests or provide more services for their users. These type of investments

help improve user satisfactions and reduce the number of unsatisfied requests. These

unsatisfied requests reduce (or keep stable) service provider’s total profit since each

unsatisfied request brings penalty for the service provider. Therefore, investment on a

network and the number of unsatisfied requests maintain an inverse ratio. As shown in

Fig. 7.3, the total profit at the beginning is negative since the service provider spends

money on links. Obviously, the investment on links with 50 Mbps capacity requires

more money compared to that of 10 Mbps. In addition, while the total profit with 50

Mbps link capacity is less than 10 Mbps link capacity at the beginning, 50 Mbps link

capacity case makes more profit than 10 Mbps case over time. This happens since

the number of unsatisfied requests with 50 Mbps links is less than that of 10 Mbps

links. In other words, 10 Mbps case brings more penalties (i.e. unsatisfied requests)

by the time and reduces total profit. This relation is a trade-off between financial in-

vestments and the number of unsatisfied requests. Therefore, service providers should

plan their investments carefully regarding the total requests that they receive (or ex-

pect) from customers. A careless plan for a service provider can even result in service

provider’s bankruptcy. For example, a service provider invests more money for links

with 50 Mbps bandwidth capacity and therefore starts with a negative total profit as

shown in Fig. 7.3. The provider expects that it will make more profit by the time as

the number of requests increases since there will be less unsatisfied requests, thereby

less penalty. However, if the service provider does not receive the expected number

of requests from its customers, assuming just around 50 requests as in Fig. 7.3, it

will not be able to make more profit to compensate its investments. Hence, service

providers should wisely plan their financial investment strategies.

Fig. 7.4 also reflects the same relation and characteristics as Fig. 7.3 in case of

investment on link delay capacity. Links with better delay capacity, e.g 5 ms, require

more investment compared to links with worse delay. Although 5 ms link capacity
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Figure 7.4.: Total Number of Requests vs. Total Profit ($) with respect to investment
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case starts with a less total profit compared to 25 ms link capacity case, it makes

more total profit by the time owing to less unsatisfied requests.

7.7 Chapter Summary

The optimal final price for a service request is usually a result of negotiation pro-

cess between end users (customers) and service provider. On the other hand, charg-

ing between service providers (p2p) is similar to end users-service provider (c2p) case

since they are also customers of each other. This study has defined the price opti-

mization problem from the perspective of Nash bargaining process and adapted the

cost function and network connectivity degree parameter into the final price. It has

also given a general scheme of revenue and profit a provider makes with integration

of investment and penalty factors. It has finally applied these schemes in the scal-

able hierarchic architecture. The experiment results have showed that both cost and

profit per request reflect the characteristics of the QoS parameters used in the pricing

schemes.
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8 ECONOMIC ANALYSIS OF SDN UNDER VARIOUS NETWORK FAILURE

SCENARIOS

8.1 Abstract

Failures are inevitable in an operational network. They can happen anytime in

different sizes and components of a network. They impact the network economics

regarding CAPEX, OPEX, revenue lost due to service provisioning cut and so on.

In order to mitigate the damages resulting from these failures, reactions of network

architectures and designs are crucial for the future of the network. Recently, SDN has

got the attention of researchers from both academia and industry as a means in order

to increase network availability and reliability due to features, such as centralized

automated control and global network view, it promises in networking. This study

investigates how programmable network architectures, i.e. SDN technology, affect

the network economics compared to traditional network architectures, i.e. MPLS

technology, in case of failures. In addition, it explores the economic impact of failures

in different SDN control plane models: Centralized (Single) Control Plane (CCP),

Distributed (Flat) Control Plane (DCP), and Hierarchical Control Plane (HCP). This

work exploits the predefined metric called Unit Service Cost Scalability to evaluate

economic performances of SDN architecture along with aforementioned control plane

models and MPLS architecture under different failure scenarios. It considers two

different failure types: i) a random single data plane link failure and ii) a random

controller (i.e. control plane) failure. This work also aims at being a useful primer

to providing insights regarding how network architectures and control plane models

perform with respect to network economics under failures for network owners to plan

their investments accordingly.
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8.2 Introduction

Availability in networks is one of the crucial attributes for the future of a network.

When a failure happens in a network, it is important that service disruption for

customers of the network are minimal because customers and the services are sources

for the revenue/economics of the network. Therefore, detection of and recovery from a

failure as quickly as possible has importance to mitigate the service and performance

degradation in networks.

Failures are inevitable in an operational network. They can happen anytime in

different sizes and components of a network. Regardless of the network size and

the type of services and business, they impact the productivity, network economics

regarding CAPEX, OPEX, revenue lost due to service provisioning cut and so on.

They can have a major financial impact on service providers. According to [270],

an hourly cost of downtime for computer networks is USD 42,000. A company, for

example, suffering from an average downtime of 100 hours a year can lose more than

$4 million per year. Also, the study in [271] states that cloud networks from 28 cloud

providers amass losses estimated at USD 273 million and 1,600 hours of disruptions

due to application and infrastructure failures.

Impacts of failures can be different depending on the architecture, programmable

e.g. SDN or traditional e.g. MPLS, as well as topology used in networks. In order to

mitigate the damages resulting from these failures, reactions of network architectures

and designs are crucial for the future of the network. Recently, SDN has got the

attention of researchers from both academia and industry as a means in order to

increase network availability, reliability, and revenue and as well as decrease network

costs, thereby service costs, due to features, such as centralized automated control

and global network view, it promises in networking.

This study investigates how programmable network architectures, i.e. SDN tech-

nology, affect the network economics compared to traditional network architectures,

i.e. MPLS technology, in case of failures. In addition, it explores the economic
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impact of failures in different SDN control plane models: Centralized (Single) Con-

trol Plane (CCP), Distributed (Flat) Control Plane (DCP), and Hierarchical Control

Plane (HCP). This work exploits the predefined metric called Unit Service Cost Scal-

ability to evaluate economic performances of SDN architecture along with aforemen-

tioned control plane models and MPLS architecture under different failure scenarios.

It considers two different failure types: i) a random single data plane link failure and

ii) a random controller (i.e. control plane) failure. This work also aims at being a

useful primer to providing insights regarding how network architectures and control

plane models perform with respect to network economics under failures for network

owners to plan their investments accordingly.

In the rest of the chapter, Section 8.3 gives a quick snapshot of the papers that

study failure detection and recovery. Section 8.4 explains the method along with

experimental details and the metric used in economic analysis of the foregoing network

architectures and control plane models in case of certain failure scenarios. While

Section 8.5 presents economic performances of both SDN models and MPLS in the

data plane link failure scenario, Section 8.6 discusses economic performances of SDN

models in the control plane (i.e. controller) failure scenario. The study is summarized

with concluding remarks in Section 8.7.

8.3 Related Work

Failure detection is the first step of dealing with a failure in a network. A simple

and inefficient approach is to probe each switch on each link in the network utilizing

some kind of control messages such as hello messages (e.g. LLDP) [272]. However,

this solution suffers from some problems such as imprecise detection of the failed de-

vice and scalability issues. Kozat et al. [273] propose a more scalable approach that

revolves around the controller computing an Eulerian cycle across all links under its

responsibility. Xu et al. [274] utilize Monitoring Flow Entries-based Link Failure De-

tection (MLFD) instead of LLDP-based failure detection. MLFD mechanism forms
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a monitoring tree path consisting of switches, which is probed using Link Monitoring

(LM) packets. In [275], the authors propose an OpenFlow-like pipeline design called

SPIDER that provides a detection mechanism based on switches’ periodic link prob-

ing. Bidirectional Forwarding Detection (BFD) [276] with fast failover group type of

OpenFlow is another approach exploited in failure detection.

After the detection of a failure, the network has to deal with recovery of paths

(i.e. recomputation of new paths), that are broken down, in order to fulfill the flows

that are affected by the failure. Failure recovery has two schemes: Protection and

restoration. While protection involves a proactive behavior by installing backup paths

before a failure occurs, the forwarding decisions are made after a failure happens in

the restoration case. In [277], the authors exploit the fast failover group type and BFD

to switch between two disjoint paths (working and protected) before a failure occurs

in the network. Ramos et al. [278] utilize source routing to compute a secondary path

for every path and storing it in the packet header along with the primary path. [279]

introduces a framework, CORONET, which is a system for recovery from multiple

link failures in data plane.

8.4 Economic Analysis of Network Failures

This work studies possible economic effects of different types of network failures

in SDN networks and MPLS. It investigates two different failure scenarios: a random

data plane link failure and a random control plane (i.e. controller) failure. These

failure types are possible common failures in an SDN or MPLS networks. They

also provide network administrators with insights to understand economic impact of

failures in different domains in a network.

Carrier-grade networks require sub 50 ms failure recovery time not to cause a

significant loss in service connectivity, customers subscriptions, and network revenue.

Studies have shown that preserving such a fast recovery time is more possible with

protection schemes without involving controllers in online decision-making process
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[277]. However, the goal of this chapter’s study is not to propose a new standalone

failure recovery mechanism. It aims to economically analyze SDN architecture along

with some popular control plane models used in SDN and MPLS architecture in

case of different types of network failures scenarios. Therefore, this work keeps the

following points in mind (for all scenarios where applicable) while conducting this

study in order to economically evaluate the foregoing architectures and control plane

models:

• It is not interested in or concerned with the speed of a detection/recovery mech-

anism since the goal is not to introduce a standalone network failure detection

and recovery framework, which is out of this work’s scope. It exploits a failure

detection/recovery mechanism for each failure scenario from the literature and

use the same framework for all control plane models to obtain the time of failure

detection/recovery while conducting the economic analysis.

• This study concerns about the economic impact of the failures in different con-

trol plane models. Therefore, using a framework with lower detection/recovery

time affects economic values at the same ratio for all SDN models and MPLS

network.

• Also, there is usually (a possibility for) another study introducing lower failure

detection/recovery time. Thus, there is no end to find the best framework to

name and use in a study similar to this.

In addition, as introduced in the Section 6.8, this work exploits the metrics, Unit

Service Cost Scalability, to evaluate economic performances of corresponding SDN

control plane models and MPLS in the analysis. For more details, readers are referred

to the study presented in Chapter 6.
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8.4.1 Experimental Setup

As shown in Fig. 5.1, the SDN control plane models considered in this study

are CCP, DCP and HCP while conducting analysis to understand their impact over

network economics in case of some failure scenarios. These models have their own

intrinsic advantages and disadvantages with respect to the various concepts such as

control plane scalability, resiliency, better manageability and so on. The data plane

and control plane topologies shown in the Fig. 5.1 are just representational and do

not reflect the data plane topology used in the study.

Centralized (Single) Control Plane Model (CCP): CCP setting revolves around a

single centralized controller with a global network view. The model is simple and it

is easy to manage the network.

Distributed (Flat) Control Plane Model (DCP): This model consists of distributed

controllers associated with switches. Each controller manages a sub-network/domain

of the whole network and has its own local network view, which is, in turn, abstracted

as a logical node to its neighboring controllers. These controllers communicate with

each other (i.e. connected neighbors) when they receive a packet destined out of its

domain in order to set up an end-to-end path.

Hierarchical Control Plane Model (HCP): An HCP design consists of two control plane

layers minimum: The lower-layer(s), consisting of local domain controller(s), and

the top-layer where another controller, usually called “Root”, resides. The domain

controllers manage their own domains with full control and are not connected to each

other but the Root controller. However, a local controller does not maintain a global

view of the whole network. Instead, the Root controller has a full global view of the

entire network by abstracting all domains as logical nodes.

This work has used Mininet emulator with POX controller in SDN models. While

there is one controller in CCP model, it has divided the whole network into 4 fully-

connected sub-networks with a primary controller for each in control planes of DCP

and HCP models and provided 16 switches and 24 links in data planes of all SDN
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models and MPLS. The data plane topology is the same in all SDN models and

MPLS cases. There is also a Root controller on top of local domain controllers in

HCP model. Regarding MPLS setting, it has used ns3 network simulator. It needed

to use a signaling protocol such as RSVP-TE or CR-LDP to support constraint-based

routing in MPLS. Since none of them has been implemented in ns3 at the time of this

writing and it is time-consuming and effort-greedy to implement them in ns3, it has

generated extra packets between network elements to mimic link state advertisements

and state refresh messages for LSPs from aforementioned signaling protocols in MPLS.

In the experiments, it has used 1 Mbps flow sending rate for all service requests.

Also, it has used a modified version of Waxman [237] random topology generator

defined by Erdos-Renyi random graph model to randomly create the networks while

preserving connectivity degrees of nodes (i.e. switches) as three in all models. Fur-

thermore, it has conducted a heuristics, i.e. A*Prune Algorithm [238], to find a

feasible path through the network. A*Prune algorithm can be used to solve finding

the K shortest paths subject to multiple constraints (KMCSP). In all scenarios, in the

first part of the experiments, it has provided enough bandwidth (100 Gbps) in links

so that there is no service request rejection due to network resource limitations, while,

in the second part of the experiments, it has reduced the link bandwidth to 1 Gbps

to see their performances under network resource limitations. In the experiments,

the corresponding failure type occurs at the 2nd second in both failure scenarios.

Moreover, it has averaged 15 runs for each experiment to achieve and exceed 95%

statistical significance in all scenarios. Finally, all experiments were performed on

Ubuntu 14.04 in Oracle VirtualBox using an Intel Core i7-5500 system with 12GB

RAM.

8.5 Scenario 1: Data Plane (Link) Failure

Data plane (link) failure is one of the failure types that we have investigated in

our analysis for economic analysis of failures in different SDN control plane models
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and MPLS. There exist many proposals for link failure detection/recovery methods

in a network. Some of the prevalent methods exploited for failure detection are BFD

sessions, Loss of Signal (LOS), and LLDP packets. In this scenario, we only consider

a random single link failure.

For the link failure scenarios, we have utilized the methods proposed in [280].

This study implements two well-known mechanisms of failure recovery, i.e. protec-

tion and restoration, in OpenFlow networks. In the case of protection, the alternative

paths are reserved before the failure occurs in the network. In the case of restora-

tion, alternative paths are not established until a failure occurs. The controller in

restoration must notify all the affected switches about a recovery action immediately.

For implementation of the protection scheme, the “Group Table” concept specified

for OpenFlow in its version 1.1 is used. OpenFlow introduces the fast-failover group

type in order to perform fast failover without needing to involve the controller. Any

group entry of this type consists of two or more action buckets with a well-defined

order. The status of the bucket can be changed by the monitored port going into

the “down” state or through other mechanisms such as BFD. In the study, BFD was

used to detect the failures. Once BFD declares the failure in the working link, the

action bucket associated with this link in the group table is made unavailable by

changing the value of the alive status. For the restoration method, once the failure

has been detected, the controller is notified about it in order to calculate new paths

for the affected flows. The controller takes then the necessary actions such as path

recomputation for flows affected by the failure and installation of new flow rules for

newly computed paths in the corresponding switches over the new paths.

As to the MPLS case, we have used a similar method to the one explained above for

the SDN models. In the protection case, we have utilized a link protection approach

by pre-programming next-hop port values into the router FIB awaiting activation,

which happens in milliseconds following the failure detection. In the restoration

case, on the other hand, the head end of each path for each flow on the failed links

recomputes a new path following the failure detection. Regarding the failure detection
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and recovery activation, BFD sessions were established between routers for each link

in the networks.
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Figure 8.1.: Total number of satisfied requests and respective unit service cost per-
formances of networks in case of data plane (link) failure with use of protection and
restoration schemes under 100 Gbps and 1 Gbps link bandwidth cases.

Fig. 8.1 shows the total number of satisfied requests and unit service cost perfor-

mances in case of a random single data plane link failure with use of protection (Fig.

8.1a, 8.1b, 8.1c, 8.1d) and restoration (Fig. 8.1e, 8.1f, 8.1g, 8.1h) schemes under 100

Gbps and 1 Gbps link bandwidth cases. We have used the protection and restora-

tion schemes explained earlier for link failure detection and recovery. In 100 Gbps

link bandwidth case, the total number of satisfied requests in the network increases in

both protection (Fig. 8.1a) and restoration (Fig. 8.1e) cases for all SDN control plane
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models and MPLS until the failure happens because there are enough bandwidth to

use in the links. Once the failure happens, the number of satisfied flows in the net-

work shows a reduction because the flows served over the failed link are not satisfied

anymore. The reduction is the lowest in CCP and highest in HCP (465 in CCP, 1392

in DCP, 1750 in HCP, and 1862 in MPLS) among all SDN models and MPLS in both

protection and restoration cases owing to the total number of satisfied flows in the

networks. However, the total number of satisfied requests for all models continue to

increase immediately after the reduction because there are enough bandwidth in the

links for the upcoming requests. On the other hand, in 1 Gbps link bandwidth case,

the number of satisfied requests in the network increase until links become loaded

in both protection (Fig. 8.1b) and restoration (Fig. 8.1f) cases for all SDN control

plane models and MPLS. After links become loaded, it shows a steady-like behavior

until the failure. Once the failure happens, it shows the lowest reduction in CCP

while the highest is in HCP (91 in CCP, 229 in DCP, 261 in HCP, 84 in MPLS) as

in the previous link bandwidth case in both protection and restoration schemes. The

total number of satisfied requests for all models stay steady, unlike the 100 Gbps link

bandwidth case, during the recovery phase because new flows cannot be satisfied in

the network since the links are loaded in both SDN models and MPLS. However,

the recovery phase cannot be completed in 1 Gbps link bandwidth case because the

flows over the failed link cannot be rerouted from failed link to the other links due

to the fact that all links are loaded/full and cannot handle more flows. Therefore,

the number of flows do not increase again after the failure unlike the 100 Gbps link

bandwidth case.

Regarding the unit service cost, in 100 Gbps link bandwidth case, the results reveal

that it decreases as the number of satisfied flows increase until the failure occurs for

all SDN models and MPLS in both protection (Fig. 8.1c) and restoration (Fig. 8.1g)

cases. While the unit service cost increase ratio is the highest in CCP (∼6.1% in

CCP, ∼3.1% in DCP, ∼1.9% in HCP, and ∼4.6% in MPLS), HCP shows the lowest

increase ratio among all models in protection and restoration schemes. After the
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recovery is complete, the unit service cost starts showing a reduction again in both

protection and restoration schemes. In 1 Gbps case, the unit service cost decreases as

the total number of satisfied requests in the network increase until the links become

loaded in both protection (Fig. 8.1d) and restoration (Fig. 8.1h) cases. Then, it

reflects a steady-like behavior until the failure happens. The link failure results in a

sudden increase (∼5.7% in CCP, ∼2.2% in DCP, ∼1.6% in HCP, and ∼6.5% in MPLS

) in protection and restoration schemes in the unit service cost as in the 100 Gbps

link bandwidth case. However, the unit service cost do not show a reduction again

in either of protection and restorations schemes unlike the 100 Gbps link bandwidth

case since the recovery cannot be completed due to the loaded links.

8.6 Scenario 2: Control Plane (Controller) Failure

As SDN brings many advantages to networking, it also suffers from various prob-

lems. One of the serious problems of SDN is that the controller may be a critical point

of failure, which can result in an overall network unavailability. Therefore, the design

of a fault-tolerant control plane is a must for a SDN-based network. There might be

varying number of reasons for failure of a controller: hardware failure (e.g. controller

server hardware), software failure/bug in the server operating system and/or con-

troller software, power outages and so on. One basic solution for a controller failure

is use of redundant controller(s) (i.e. backup/standby controller) in order to automat-

ically take critical responsibilities over network infrastructure control and data flows

management from the failed primary controller in case of a controller failure. While

this procedure is called controller failover, the reverse of the procedure (i.e. restoring

the primary controller) is called controller failback. As of OpenFlow protocol version

1.2.0, it provides the possibility to configure one or more backup controllers which can

assume the network control in case of failure using controller role change mechanism,

but OpenFlow does not provide any coordination mechanism between the primary

and the backup controllers. Therefore, it is network administrators’ responsibility to
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provide such a synchronization method for consistency among them to handle con-

troller failure and add resiliency without happening any fatal damage to network

services and customer satisfactions.

In the control plane failure case, it has utilized the method described in [109]. In

this scenario, every network domain is managed by a single controller, and another

controller is used as backup for every domain controller that can take over its role in

case the primary fails. In case a failure occurs, and to ensure a smooth transition to a

new primary, in this particular instance of a fault-tolerant architecture, the controller

store the network and application related state in a shared data store.
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Figure 8.2.: Total number of satisfied requests and respective unit service cost per-
formances of networks in case of controller failure under 100 Gbps and 1 Gbps link
bandwidth cases.

Fig. 8.2 shows the total number of satisfied requests and respective unit service

cost performances of networks in case of a controller failure in SDN models (CCP,

DCP, and HCP) under 100 Gbps and 1 Gbps link bandwidth cases. It also evaluates

Root controller failure case in HCP model. In 100 Gbps link bandwidth case (Fig.

8.2a), the total number of satisfied requests in the networks show an increase in DCP,

HCP, HCP Root controller failure cases all the time. However, because there is only

one controller in CCP model, the total number of satisfied requests in the network stay

the same once a controller failure happens. The total number of satisfied requests

in the network start increasing after the backup controller takes over the network
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management responsibilities. On the other hand, a primary controller failure results

in just some reduction in increase ratio of the total number of satisfied requests in

the network in DCP and HCP models. In addition, this reduction is more since all

inter-domain connection requests are affected in case of HCP Root controller failure.

In 1 Gbps link bandwidth case (Fig. 8.2b), the total number satisfied requests in

the network increase until the links become loaded and then shows a steady-like

behavior in all control plane models. In CCP model, it does not increase in controller

failure case since there is only one domain controlled by one controller although it

shows very little increase in DCP and HCP models because some requests may find

enough remaining bandwidth in the links depending on source and destination pairs.

Also, HCP and HCP Root failure cases do not make any difference because the total

number of satisfied requests in the network are the same for both failure cases. It

is the same because the network becomes loaded before the controllers reach their

requests handling capacities.

Regarding the unit service cost, it is shown that it decreases as the number of

satisfied requests are increasing in both 100 Gbps (Fig. 8.2c) and 1 Gbps (Fig. 8.2d)

link bandwidth cases. In Fig. 8.2c, the unit service cost stays steady in CCP model

when the controller failure occurs because the satisfied requests number in the network

do not increase while the unit service cost shows a continuous decreasing behavior in

DCP and HCP models in that phase. In Fig. 8.2d, the unit service cost decreases fast

until the links become loaded and then shows a slow reduction in all models. In both

100 and 1 Gbps link bandwidth cases, HCP Root controller failure does not make a

noticeable difference compared to a controller failure in HCP with respect to the unit

service cost.

8.7 Chapter Summary

This work has investigated how programmable network architectures, i.e. SDN

technology, affect the network economics compared to traditional network architec-
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tures, i.e. MPLS technology, in case of failures. In addition, it has explored the

economic impact of failures in different SDN control plane models: CCP, DCP, and

HCP. It has considered two different failure types: i) a random single data plane link

failure and ii) a random controller (i.e. control plane) failure. The experiments have

revealed that the unit service cost shows an increase in case of data link failure in

all SDN models and MPLS. While CCP model shows the highest increase among all

SDN models and MPLS, MPLS shows the least increase ratio among all. Also, this

increase ratio is more for both SDN models and MPLS in use of restoration scheme

compared to use of protection scheme. In control plane (i.e. controller) failure sce-

nario, the unit service cost stays steady in CCP model once the controller failure

occurs because the satisfied requests number in the network do not increase while the

unit service cost shows a continuous decreasing behavior in DCP and HCP models in

that phase in case of 100 Gbps link bandwidth case. In addition, the unit service cost

decreases fast until the links become loaded and then shows a slow reduction in all

models in case of 1 Gbps link bandwidth case. Moreover, in both 100 and 1 Gbps link

bandwidth cases, HCP Root controller failure does not make a noticeable difference

compared to a controller failure in HCP with respect to the unit service cost.
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9 CONCLUSIONS

This thesis has first surveyed and summarized the state-of-the-art studies in terms

of the characterizations and taxonomy of two research areas in Software Defined

Networking (SDN): (i) scalability-related problems and (ii) Quality of Service (QoS)-

related problems. It has also outlined the potential challenges and open problems

that need to be addressed further for more scalable SDN control planes and better

and complete QoS abilities in SDN networks. It then has proposed a hierarchy-based

network architecture along with an inter-AS routing approach with QoS considering

scalability and routing privacy. Later, a metric has been proposed in order to evaluate

the control plane scalability in SDN along with mathematical models of the proposed

metric over different control plane designs. After that, this thesis has defined two

metrics Unit Service Cost Scalability and Cost-to-Service to evaluate how SDN archi-

tecture performs compared to MPLS architecture. Also, mathematical models have

been presented to calculate certain cost parts of a network. In addition, a compari-

son of different popular SDN control plane models, Centralized Control Plane (CCP),

Distributed Control Plane (DCP), and Hierarchical Control Plane (HCP), have been

given to understand the economic impact of them with regards to the defined metrics.

Furthermore, the thesis has proposed an optimal pricing scheme for a service request

with QoS in SDN environment using the Nash bargaining problem, which aims to

maximize benefits of both service providers and customers. The scheme integrates a

new cost function and network connectivity degree factor into the proposed pricing

scheme. Finally, the thesis has investigated how programmable network architectures,

i.e. SDN, affect the network economics compared to traditional network architectures,

i.e. MPLS, under certain failure scenarios: (i) a random single data plane link failure

and (ii) a random controller (i.e. control plane) failure.
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de Lucena, and M. F. Magalhães. Virtual routers as a service: The routeflow
approach leveraging software-defined networks. In Proceedings of the 6th In-
ternational Conference on Future Internet Technologies, CFI ’11, pages 34–37,
New York, NY, USA, 2011. ACM.

[97] GNU Quagga Project. http://www.nongnu.org/quagga/. (Date Last Accessed:
2018-10-17).

[98] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries. A Flexible OpenFlow-
Controller Benchmark. In 2012 European Workshop on Software Defined Net-
working, pages 48–53, Oct 2012.

[99] Planning and Designing Networks with the Cisco MATE Portfolio, White Pa-
per, 2013, Cisco.

[100] M. Handley, O. Hodson, and E. Kohler. XORP: An Open Platform for Network
Research. SIGCOMM Comput. Commun. Rev., 33(1):53–57, January 2003.

[101] Floodlight. http://www.projectfloodlight.org/floodlight/. (Date Last Accessed:
2018-10-17).

[102] Mininet. http://mininet.org/. (Date Last Accessed: 2018-10-17).

[103] Openvswitch. http://openvswitch.org/. (Date Last Accessed: 2018-10-17).

[104] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring isp topolo-
gies with rocketfuel. IEEE/ACM Trans. Netw., 12(1):2–16, February 2004.

[105] Internet2. http://www.internet2.edu/. (Date Last Accessed: 2018-10-17).

[106] Pox. https://github.com/noxrepo/pox. (Date Last Accessed: 2018-10-17).

[107] ns-3 Network Simulator. https://www.nsnam.org/. (Date Last Accessed: 2018-
10-17).

[108] P. Fonseca, R. Bennesby, E. Mota, and A. Passito. A replication component for
resilient openflow-based networking. In Network Operations and Management
Symposium (NOMS), 2012 IEEE, pages 933–939, April 2012.



218

[109] F. Botelho, A. Bessani, F. M. V. Ramos, and P. Ferreira. On the design of prac-
tical fault-tolerant sdn controllers. In Software Defined Networks (EWSDN),
2014 Third European Workshop on, pages 73–78, Sept 2014.

[110] S. S. Savas, M. Tornatore, M. F. Habib, P. Chowdhury, and B. Mukherjee.
Disaster-Resilient Control Plane Design and Mapping in Software-Defined Net-
works. ArXiv e-prints, September 2015.

[111] V. Pashkov, A. Shalimov, and R. Smeliansky. Controller failover for sdn en-
terprise networks. In Science and Technology Conference (Modern Networking
Technologies) (MoNeTeC), 2014 International, pages 1–6, Oct 2014.

[112] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann. Logically
centralized?: State distribution trade-offs in software defined networks. In Pro-
ceedings of the First Workshop on Hot Topics in Software Defined Networks,
HotSDN ’12, pages 1–6, New York, NY, USA, 2012. ACM.

[113] H. Yin, H. Xie, T. Tsou, D. R. Lopez, P. A. Aranda, and R. Sidi. SDNi:
A Message Exchange Protocol for Software Defined Networks (SDNS) across
Multiple Domains. Internet-Draft draft-yin-sdn-sdni-00, Internet Engineering
Task Force, December 2012. Work in Progress.

[114] P. Lin, J. Bi, and Y. Wang. Webridge: west-east bridge for distributed hetero-
geneous sdn noses peering. Security and Communication Networks, 8(10):1926–
1942, 2015.

[115] L. Pingping, B. Jun, C. Ze, W. Yangyang, H. Hongyu, and X. Anmin. We-
bridge: West-east bridge for sdn inter-domain network peering. In Computer
Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference
on, pages 111–112, April 2014.

[116] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A.ndrew R. Curtis, and
S. Banerjee. Devoflow: Cost-effective flow management for high performance
enterprise networks. In Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, Hotnets-IX, pages 1:1–1:6, New York, NY, USA, 2010.
ACM.

[117] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng. On the placement of
controllers in software-defined networks. The Journal of China Universities of
Posts and Telecommunications, 19, Supplement 2:92 – 171, 2012.

[118] Y. Hu, W. Wendong, X. Gong, X. Que, and C. Shiduan. Reliability-aware con-
troller placement for software-defined networks. In Integrated Network Manage-
ment (IM 2013), 2013 IFIP/IEEE International Symposium on, pages 672–675,
May 2013.

[119] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng. On reliability-optimized
controller placement for software-defined networks. Communications, China,
11(2):38–54, Feb 2014.

[120] H. K. Rath, V. Revoori, S. M. Nadaf, and A. Simha. Optimal controller place-
ment in software defined networks (sdn) using a non-zero-sum game. In World
of Wireless, Mobile and Multimedia Networks (WoWMoM), 2014 IEEE 15th
International Symposium on a, pages 1–6, June 2014.



219

[121] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-Gia.
Pareto-optimal resilient controller placement in sdn-based core networks. In
Teletraffic Congress (ITC), 2013 25th International, pages 1–9, Sept 2013.

[122] P. Xiao, W. Qu, H. Qi, Z. Li, and Y. Xu. The sdn controller placement problem
for wan. In Communications in China (ICCC), 2014 IEEE/CIC International
Conference on, pages 220–224, Oct 2014.

[123] Y. Jimenez, C. Cervello-Pastor, and A. J. Garcia. On the controller placement
for designing a distributed sdn control layer. In Networking Conference, 2014
IFIP, pages 1–9, June 2014.

[124] M. Obadia, M. Bouet, J. L. Rougier, and L. Iannone. A Greedy Approach for
Minimizing SDN Control Overhead. In Network Softwarization (NetSoft), 2015
1st IEEE Conference on, pages 1–5, April 2015.

[125] Y. Liu, Y. Li, Y. Wang, and J. Yuan. Optimal scheduling for multi-flow update
in software-defined networks. Journal of Network and Computer Applications,
54:11 – 19, 2015.

[126] S. Yang, S. Ho, Y. Lin, and C. Gan. A multi-rat bandwidth aggregation mech-
anism with software-defined networking. Journal of Network and Computer
Applications, pages –, 2015.

[127] R. Braden, D. Clark, and S. Shenker. RFC 1633 : Integrated Services in the
Internet Architecture: an Overview, 1994.

[128] L. Zhang, S. Berson, S. Herzog, and S. Jamin. RFC 2205 : Resource ReSerVa-
tion Protocol (RSVP) – Version 1 Functional Specification, 1997.

[129] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. RFC 2475
: An Architecture for Differentiated Service, 1998.

[130] E. Rosen, A. Viswanathan, and R. Callon. RFC 3031 : Multiprotocol Label
Switching Architecture, 2001.

[131] B. S. Davie and A. Farrel. MPLS: Next Steps. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2008.

[132] J. W. Evans and C. Filsfils. Deploying IP and MPLS QoS for Multiservice Net-
works: Theory & Practice. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2007.

[133] OpenFlow Switch Specification (1.0.0). Open Networking Foundation, Decem-
ber 2009.

[134] OpenFlow Management and Configuration Protocol 1.2 (OF-Config 1.2). Tech-
nical report, Open Networking Foundation (ONF), 2014.

[135] OpenFlow Switch Specification (1.3.0). Open Networking Foundation, June
2012.

[136] OpenFlow Switch Specification (1.4.0). Open Networking Foundation, October
2013.



220

[137] OpenFlow Switch Specification (1.5.0). Open Networking Foundation, Decem-
ber 2014.

[138] B. Pfaff and B. Davie. RFC 7047: The Open vSwitch Database Management
Protocol, 2013.

[139] ONOS Project. http://onosproject.org/. (Date Last Accessed: 2018-10-17).

[140] R. Wallner and R. Cannistra. An sdn approach: Quality of service using big
switchs floodlight open-source controller. In Proceedings of the Asia-Pacific
Advanced Network, volume 35, pages 14–19, 2013.
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