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ABSTRACT 
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High repetition frequency nanosecond pulses have been shown to be effective in generating 

plasma for reconfigurable RF systems. In the present work, the focus is on simulation of 

nanosecond pulsed discharges in Argon at 3 Torr and interelectrode spacing of 2 cm with pulse 

repetition frequency of 30 kHz. The simulations have been carried out using a hybrid model, 

HPEM code developed by Prof. Mark J. Kushner at University of Michigan. The simulation 

results were compared to the experiments. Although a mismatch of results has been found, the 

simulations seem to capture the underlying physical phenomena. The electron temperature in 

the afterglow of the pulse seems to decay faster compared to the electron number density in 

the plasma, which is an essential feature in designing low noise plasma antennas.  
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1. INTRODUCTION 

1.1 Objective  

The objectives for the current thesis are to employ hybrid modeling to simulate a high-PRF 

nanosecond pulsed discharge in argon gas using the HPEM code. A two-dimensional 

(axisymmetric) simulation for a parallel-plate electrode setup in Argon gas with 3 ns FWHM 

pulse at pulse repetition frequency of 30 kHz has been performed. The simulation results were 

compared to the experimental results and should be able to capture the underlying physical 

processes. If a faster decay of electron temperature compared to the electron number density 

occurs after the pulse, then such plasma devices could be used for low noise plasma antennas.  

1.2 Motivation 

The search for the next generation of RF devices, with rapid configurability and tunability, 

brings us to the use of plasma for RF devices. Weakly ionized cold plasmas are attractive due 

to rapid switching, they can be turned on or off instantly, and they have high-tunability through 

variation of the conductivity and permittivity of the plasma by changing the applied voltage. 

There are a few obstacles in developing the plasma antennas, one of them being the thermal 

noise due to high electron temperatures. Maintaining the conductivity of the plasma while 

reducing the Johnson-Nyquist thermal noise is a challenge. Plasma sustained by high repetition 

nanosecond pulsed discharges could produce the required high average electron number 

density, while having low electron temperatures during the decay of the plasma after the pulse 

[5]. While the experiments provide insight into the performance of the device, an 

understanding of the underlying physical processes could help improve their efficiency. 

Modeling these plasmas is challenging, but it could help better understand the underlying 

physical processes. 

1.3 Plasma  

A plasma could be described as a quasi-neutral gaseous mixture of electrons, ions and excited 

neutrals co-existing with the neutral gas. The term plasma was first coined by Langmuir. 

Plasmas can be characterized by the average electron energies, degree of ionization, and the 
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average number densities of electrons and ions. The presence of charged species in plasma 

makes it electrically conductive, and the electrical conductivity can vary based on the charged 

species type and concentrations. Plasmas can be naturally occurring or manmade.  

Plasmas could be generally divided into hot and cold/low temperature plasmas. Hot plasmas 

are plasmas having very high electron temperatures, on the order of 100 eV-1000 eV, and a 

very high ionization fractions, as observed in fusion devices and stars. The cold/low 

temperature plasmas are weakly ionized with electron temperatures ranging from 1 eV-10 eV. 

Generating and sustaining a hot plasma could be difficult, but a typical LTP (Low Temperature 

Plasma) can be generated and sustained in a lab through electric discharges. A simple setup for 

LTPs includes electrodes connected to a power supply and enclosed in a glass chamber filled 

with gas. This configuration creates plasma at room temperature based on the applied voltage 

and power on the electrodes. Low temperature plasmas are in a highly non-equilibrium 

thermodynamic state, since the electron temperatures in the plasma can be very high compared 

to the temperatures of the heavy particles (which are on the order of room temperature). These 

energetic electrons can efficiently generate radicals, charged species, excited states and 

photons.  

LTPs operate close to room temperature while delivering a chemically rich environment, thus 

delivering highly reactive plasma species in a beneficial and non-destructive way to even 

extremely heat sensitive surfaces [9]. This feature of LTPs finds many recent technological 

uses. For example, the microelectronics industry is enabled by the beneficial plasma–surface 

interactions which deposit and remove materials with nanometer resolution in the fabrication 

of microprocessors [10]. This beneficial contact with surfaces now extends to liquids, organic 

tissues and wounds, which led to the emerging field of plasma medicine [11]. LTPs may also 

non-destructively and beneficially interact with surfaces internal to the plasma, such as in a 

particle or aerosol-laden dusty plasma which has enabled, for example, nanomaterial synthesis 

[12]. LTPs can also be generated and sustained within liquids and bubbles in liquids, now being 

investigated for chemical processing, and medical applications [13]. One promising 

application of LTP’s is in reconfigurable RF systems.   
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Figure 1.1: Schematic of the plasma sustained between two electrodes 

 

1.3.1 Cathode Sheath 

The simple planar electrode configuration shown in Figure 1.1 can be easily built to sustain 

glow discharge at room temperature. The Townsend condition must hold for a self-sustained 

electric discharge.  

∫ 𝛼[𝐸(𝑥)]
𝑙

0
𝑑𝑥 = ln(1 +

1

𝛾
)                               

    (1.1) 

where α is the Townsend ionization coefficient as a function of electric field E, and γ is the 

secondary emission coefficient. This condition reflects a balance of ion current at the cathode, 

due to the ionization events produced by electrons, and the electron current at the anode. This 

implies the ion current to the cathode should match the electron current to the anode to sustain 

a basic electric discharge. If the electric field were uniform throughout the plasma the self-

sustainment condition would require extremely high voltage to sustain the plasma throughout 

the electrode gap. Instead, a lower voltage is sufficient if the potential drop is concentrated. 
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The ionization efficiency is higher in strong fields, so the distribution of potential would be 

ideal if the potential difference could be concentrated over a small region near the cathode to 

ensure ionization at minimum applied voltage. To sustain the current generated in the region 

(cathode sheath) throughout the remaining gap between electrodes, an additional voltage is 

only needed to compensate for losses of electrons to the anode, recombination, and attachment 

via weak ionization. We can exactly observe this optimization in nature; this region is called 

the cathode sheath. The cathode sheath is a thin region near the cathode with strong electric 

fields of several orders of magnitude greater than the bulk of the plasma. These strong electric 

fields cause majority of ionization and buildup of positive space charge in this small region 

near the cathode (cathode sheath).  

1.3.2 Glow discharges and Plasma Tunability 

The electric discharge sustained between electrodes through an applied DC voltage, can be 

classified into different regimes based on the voltage-current characteristics of the discharge 

as seen in figure 1.2.  

 

Figure 1.2: V-i characteristic of discharge sustained between electrodes for wide range of 

currents, (A) region of non-self-sustaining discharge, (B-C) Townsend dark discharge, (D-E) 

normal glow discharge, (E-F) abnormal glow discharge, (F-G) transition to arc, (G-H) arc. [ 

picture taken from Ref. [8]] 

 

Glow discharges can be normal or abnormal glow discharges. The normal glow discharge has 

a constant sheath thickness and operates at a constant voltage and constant current density 

while the discharge current in the plasma could be increased until the discharge turns into 
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abnormal. The voltage increases along with the current density and the discharge current in the 

plasma, so the sheath thickness is reduced. This feature of abnormal glow discharges enables 

tuning of RF circuits by changing the applied current.  

Plasma sustained in between a simple electrode setup has two main regions, the sheath and the 

bulk plasma. These regions respond to an applied RF signal in different ways [7]. The cathode 

sheath consists of very few electrons and since the ions present have a very low mobility, the 

cathode sheath could be treated as a vacuum capacitor. The thickness of the sheath could be 

varied in an abnormal glow discharge regime by changing the discharge current. The bulk 

plasma region consists of quasi-neutral plasma, the response of this region to the RF signal 

could be analyzed by looking at the relative permittivity 𝜖𝑟 of the plasma. 

𝜖𝑟 = (1 −
𝜔𝑝

2

𝜔2 + 𝜈𝑚
2

) − 𝑖 (
𝜎

𝜖0𝜔
) 

𝜖𝑟 = (1 −
𝜔𝑝

2

𝜔2 + 𝜈𝑚
2

) − 𝑖 (
𝜈𝑚

𝜔

𝜔𝑝
2

𝜔2 + 𝜈𝑚
2

) 

               (1.2) 

where 𝜎 is the electrical conductivity of the plasma, 𝜈𝑚 is the electron-neutral collision 

frequency,  𝜔 is the angular frequency of the electromagnetic wave. 𝜔𝑝 is the frequency of the 

plasma which is given by, 

𝜔𝑝 = √
𝑒2𝑛𝑒

𝜖0𝑚
 

               (1.3) 

e is the charge of the electron, 𝑛𝑒 is the electron number density, 𝜖0 permittivity of free space 

and 𝑚 is the mass of electron. The real part of the 𝜖𝑟 affects the speed and wavelength of the 

propagating electromagnetic wave and the imaginary part corresponds to 

attenuation/absorption of the wave [8]. The imaginary part is proportional to the plasma 

conductivity. The typical values of 𝑛𝑒,  𝜔𝑝 and, 𝜈𝑚 for a discharge in argon at a pressure of 3 

torr are: 𝑛𝑒 ~ 1016 (m-3), 𝜔𝑝 ~ 109 – 1010 (s-1), 𝜈𝑚 ~ 109 (s-1).  

It could be observed that the real part of 𝜖𝑟 is always <1, unlike the regular dielectrics where 

𝜖𝑟 > 1. A negative real part implies that the plasma acts as an inductor. The plasma frequency 
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is dependent on the electron number density and the collision frequency is dependent on the 

pressure and electron temperature. Thus, we can tune the plasma by varying these quantities 

and, in turn, varying the plasma frequency and collision frequency.   

The equivalent circuit for the plasma to the RF signal has been demonstrated in Figure 1.3 [7].  

 

Figure 1. 3: Schematic of equivalent plasma circuit 

 

1.3.3 Plasma Antennas and Nanosecond Pulses 

Plasmas having tunable resistive, capacitive and inductive properties, making them valuable 

for RF electronics [7]. Through years of research, the potential advantages of plasma antennas 

over conventional metallic antennas have been uncovered. “Plasma antennas have been shown 

to be capable of being rapidly turned on and off, to withstand high powers, to have low mutual 

coupling in multi-element arrays, and to be frequency-reconfigurable” [5]. One of the major 

problems in developing plasma antennas is the presence of Johnson Nyquist thermal noise 

given by Eq. (1.4).  

𝑃𝑛𝑜𝑖𝑠𝑒

∆𝑓
=

4𝑘𝑇𝑒

1 +
𝜔2

𝜈𝑚
2

 

               (1.4) 

where 𝑃𝑛𝑜𝑖𝑠𝑒 is the thermal noise power, ∆𝑓 is the bandwidth, 𝑇𝑒 is the electron temperature, 

𝜔 is the frequency of RF signal, 𝜈𝑚 is the collision frequency. 
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The Johnson Nyquist noise is proportional to electron temperature. In a plasma generated by 

conventional methods, reducing the electron temperature could reduce the noise, but this will 

in turn effect the collision frequency and the ionization of the plasma. This reduces the 

conductivity of the plasma which is a function of the collision frequency and electron number 

density: 

𝜎 = 𝜖0𝜈𝑚

𝜔𝑝
2

𝜔2 + 𝜈𝑚
2

 

               (1.5) 

Antennas should have good electrical conductivity, and direct attempts to reduce the noise lead 

to a loss in performance of plasma antennas. A balance needs to be made between optimizing 

the thermal noise and the plasma conductivity. It has been found that plasma generated by high 

pulse repetition frequency nanosecond pulses could potentially solve this problem [24,5]. 

Nanosecond pulses could create very high electric fields during the pulse and thus cause 

significant ionization during the pulse. In between the pulses, the electron temperature decays 

faster compared to the electron number density, this feature could be exploited to create low 

noise plasma antennas.     

1.4 Plasma Modeling 

Low-temperature plasmas find application in a variety of fields. To get a complete 

understanding of physics governing the plasma, the required equipment may be very 

expensive, or the method involved may be very complex [6]. Modeling and simulation of 

plasmas can enhance our understanding of plasma chemistry and transport, and help develop 

methods for design, control and optimization of plasma processes and equipment. The synergy 

between modeling, simulation, and laboratory experiments is invaluable for further improving 

our understanding of LTPs and for developing better simulation tools with predictive 

capabilities over a wider range [9].  

LTPs have many diversified physical processes to be addressed during modeling and 

simulation [6]. It is expected that a plasma model should address the fundamental plasma 

phenomena [1]. Different plasma models could be developed based on the simulation 



18 

 

conditions and the equipment design required, to capture the underlying plasma physics while 

each has its own advantages and limitations. We can generalize the plasma models as fluid, 

particle-based and hybrid models. Fluid models solve the first few moments of the Boltzmann 

equation, for example, the continuity, momentum and energy equations for the species. The 

required transport and rate coefficients for electrons, ions, and reactive species are obtained by 

solving the electron Boltzmann equation [3]. The Poisson equation for electric potential is 

coupled with the governing equations for charge carriers. The fluid or continuum models 

describe the averaged statistical properties of the plasma species. This approach fails at 

extremely low pressures or for species with low concentrations or even in the presence of large 

gradients or strong transient effects [6]. The fluid models might be accurate to model the bulk 

plasma but may not resolve some important characteristics of the plasma like the high energy 

electrons emitted from the cathode sheath.  

Particle-based models use a statistical approach, a representative collection of particles that 

represent the species population are followed in space and time. The stochastic nature of elastic 

collisions and inelastic collisions in which particles are produced or destroyed is emulated by 

letting such processes happen at random times, but with an average frequency which matches 

the real frequency [6]. These models can accurately describe any phenomena, but are 

computationally intensive, and thus are limited by computational power. 

The hybrid method of modeling can make use of both the fluid models and the particle-based 

models or can make use of different algorithms and solution procedures for different processes. 

In hybrid modeling we can make use of the fluid models for the bulk of the plasma and particle 

methods for non-local transport of high-energy beam type electrons which are emitted from 

the cathode. HM is a hierarchical approach to modeling where different modules are combined 

to accurately simulate the required conditions at hand, and run the simulation in real time [1].  

For the current study, we use argon gas at a pressure p = 3 torr, with an inter-electrode gap of 

d = 2 cm. The electron mean free path is approximately estimated to be on the order of 90 µm. 

This is much smaller than the inter-electrode distance, so a fluid model could be applied for 

the bulk of the plasma. Secondary electrons produced at the cathode, and accelerated in the 

sheath to high energy, will be injected into the bulk plasma, and be active in ionization deep 

inside that bulk plasma since the energy relaxation length of the electrons is on the order of a 
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few millimeter approximately 0.7cm. This non-local behavior of beam type electrons requires 

particle-based modeling. So, the current study requires hybrid modeling for simulation.  
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2. METHODOLOGY 

2.1 Hybrid Modeling and HPEM 

Plasma modeling is computationally intensive, a direct integration of coupled sets of 

differential equations addressing all the phenomena will be extremely challenging. Hybrid 

modeling (HM) is an efficient plasma modeling technique to address both fundamental physics 

and practicality of equipment design, while striking a balance between computation time and 

physical accuracy. HM is a hierarchical approach to modeling whose goals include integration 

of diverse, first principles physics modules which can be implemented over a large enough 

dynamic range in time to be relevant to equipment modeling [1].  

The Hybrid Plasma Equipment Model (HPEM) is developed by Prof. Mark Kushner at the 

University of Michigan. HPEM is built on the principles of Hybrid Modeling. It is used to 

model low temperature plasmas for equipment design. As mentioned earlier, a direct 

integration of the coupled sets of differential equations could be computationally intensive and 

may not be practical to implement and address different phenomena. HPEM consists of 

different modules pertaining to different physical processes. The physics in each module is 

compartmentalized to work independently; this allows for the use of different algorithms to 

represent the same physical processes. In this manner, the modules and algorithms best suited 

for the conditions of interest can be used without affecting other modules. The user can turn 

off the modules which are not deemed to be important, and can also choose from different 

algorithms to best solve the problem at hand. These modules exchange information in a 

hierarchical manner. There is a need to resolve a wide range of time scales for different 

processes involved, for example the dynamic time scale for fluid module is on the order of 10 

µs whereas that for the electron energy transport module is on the order of 1 µs. HPEM 

determines the relative time scales of integration within the modules to resolve the physics and 

the time for exchange of information between modules. In each iteration, HPEM cycles 

through all the active modules and the vastly disparate time scales in the modules are iteratively 

combined using time-slicing techniques. This allows for the best representation of the physical 

processes.  
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This work made use of the Fluid Kinetic Poisson Module (FKPM) and Electron Energy 

Transport Module (EETM) modules of the HPEM for this study. These modules communicate 

as shown in Figure 2.1.  

 

Figure 2. 1: HPEM modules used and execution path. 

 

Table 2. 1: Estimated order of values of space and time scales for the present simulation. 

Electron mean free path:  𝜆𝑒 =
1

𝜋𝑑2𝑁𝐴𝑟
   d= radius of argon 

atom. 

~ 90 µm 

Diffusion length scale (Λ):  
1

Λ
= √(

2.4

𝑅
)

2

+ (
𝜋

𝐿
)

2

 
~ 0.6 cm  

Characteristic diffusion time for species i (τi):  𝜏𝑖 =  
Λ2

𝐷𝑖
 for electrons ~ 10-7 s 

for heavy particles ~ 10-2 s 

Dielectric relaxation time (Δtd):  Δ𝑡𝑑 =  
𝜖0

𝜎
 ~ 10-11 s 

Drift Velocity: 𝜐𝑑 =
Λ

Δ𝑡𝑑
  for electrons ~ 6. 106 (𝑐𝑚

𝑠⁄ ) 

for heavy particles ~ 60 (𝑐𝑚
𝑠⁄ ) 

CFL criteria (Δtc):  Δ𝑡𝑐 ≤  
Δ𝑧

𝜐𝑑
      for electrons ~ 10−9 − 10−10 (𝑠) 

for heavy particles ~ 10−5 −
10−6 (𝑠) 
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2.2 Fluid Kinetic Poisson Module (FKPM) 

The continuity, momentum and energy equations are solved in fluid kinetics-Poisson module 

(FKPM) to produce densities, momenta, and temperatures of neutral and charged species. Due 

to the tight coupling of electrostatic fields to the densities of charged particles, the solution of 

Poisson’s equation for the electrostatic potential 𝛷𝑠(𝑟, 𝜃), is performed within the FKPM. The 

FKPM accepts 𝑘𝑆𝑒(𝑟, 𝜃) as inputs from EETM, to output the densities  𝑁(𝑟), fluxes 𝜙(𝑟) and 

temperatures 𝑇(𝑟) (collectively abbreviated as 𝑁𝜙𝑇(𝑟), of neutral and charged species; and 

electrostatic potential  𝛷𝑠(𝑟, 𝜃) which provides the electrostatic field  𝐸𝑠(𝑟, 𝜃), in addition to 

reaction rate coefficients 𝑘(𝑟, 𝜃), and source functions 𝑆(𝑟, 𝜃) of heavy particles. 

2.2.1 Ions and Neutrals. 

We choose to use full hydrodynamic conservation equations in the FKPM for our simulation 

[14,15]. The continuity, momentum, and energy equations are solved for all particles.  The 

continuity equation 

𝜕𝑁𝑖

𝜕𝑡
= −∇. 𝜙𝑖

⃗⃗ ⃗⃗ + 𝑆𝑖 

                                                                 (2.1)    

where  𝑁𝑖, 𝜙⃗⃗𝑖 = 𝑁𝑖𝜐⃗𝑖, and  𝑆𝑖 are the species density, flux, and source for species i. The first 

term on the left-hand side of Eq 2.1 represents the rate of change of number density in a control 

volume, while the first term on the right-hand side represents the net flux of species i entering 

the control volume and the second term represents the production or loss of species i in the 

control volume.   

The conservation of momentum equation is solved to produce the  𝜙⃗⃗𝑖 flux of heavy particles. 

𝜕(𝑁𝑖𝜐⃗𝑖) 

𝜕𝑡
= −

1

𝑚𝑖
∇( 𝑁𝑖𝑘𝑇𝑖) − ∇. (𝑁𝑖𝜐⃗𝑖𝜐⃗𝑖) +

𝑞𝑖

𝑚𝑖
𝑁𝑖(𝐸𝑆

⃗⃗⃗⃗⃗) − ∇. 𝜈𝑖̿

− ∑
𝑚𝑗

𝑚𝑖 + 𝑚𝑗
𝑁𝑖𝑁𝑗(𝜐⃗𝑖 − 𝜐⃗𝑗)

𝑗

𝜈𝑖𝑗 

                                                           (2.2a) 

where  𝜐⃗𝑖 is the velocity, 𝜈̿𝑖 is the viscous stress tensor (used only for neutral species) and  𝜈𝑖𝑗 

is the collision frequency between species i and species j. The last term of the equation accounts 

for the momentum losses due to collisions with species j. The first term on the left-hand side 

of Eq 2.2a represents the net acceleration of species in a control volume, while the first term 



23 

 

on the right hand side represents the force due to the pressure gradient, the second term 

represents the acceleration created due to the flux of particles i on the control volume, the third 

term  represents the acceleration due to the static electric field (for current study no magnetic 

fields or non-conservative electric fields are included), the fourth term represents the viscous 

forces on the control volume and the last term is the change in momentum of species i due to 

collision with species j. [14] 

The drift-diffusion equation is used for electron flux Eq 2.2b, 

  

𝜙⃗⃗𝑒 = −𝐷𝑒∇( 𝑁𝑒) + 𝑞𝑒𝜇𝑒𝑁𝑒(𝐸𝑆
⃗⃗⃗⃗⃗) 

                                                                                        (2.2b) 

 The energy equation is solved to obtain the temperatures and number densities of the ions and 

neutral species. 

𝜕 (𝑁𝑖𝜀𝑖)

𝜕𝑡
= −∇. ( 𝜅̿∇𝑇𝑖) − 𝑃𝑖∇. 𝜐𝑖⃗⃗ ⃗ − ∇. (𝑁𝑖𝜐𝑖⃗⃗ ⃗𝜀𝑖) +

𝑁𝑖𝑞𝑖
2

𝑚𝑖𝜈𝑖
𝐸S

2 − 𝜈𝑖̿. ∇𝜐⃗𝑖 − ∑ 𝑘𝑚𝑖𝑗

𝑚,𝑗

𝑁𝑖𝑁𝑗𝜀𝑖

+ ∑ 𝑘𝑚𝑗𝑙𝑁𝑖𝑁𝑗∆𝜀𝑚𝑗𝑙

𝑚,𝑗,𝑙

 

  (2.3a)    

where  𝜀𝑖 is the total energy, 𝜅̿𝑖 is the thermal conductivity, 𝑃𝑖 is the partial pressure, and  𝑇𝑖 is 

the temperature of the species. The rates of reactions for heavy particles (neutrals and ions) 

could be entered in Arrhenius format during the input and the electron impact rate coefficients 

and source functions are calculated in the EETM module.  

The term on the left-hand side of Eq 2.3 represents the net change in energy of species i in a 

control volume, while the first term on the right hand side represents the net flux of heat into 

the control volume through conduction, the second term represents (compressive heating) the 

work done by the pressure in heating the control volume, the third term represents advective 

transport i.e., the net flux of heat into the control volume by particle i, the fourth term  

represents joule heating the work done by static electric field (for current study no magnetic 

fields or non-conservative electric fields are included) in heating the control volume, the fifth 

term represents viscous dissipative heating due to the viscosity (effects neglected for charged 

species), the sixth term implies all the reactions m of species i with species j having rate 

coefficient 𝑘𝑚𝑖𝑗 which result in removal of species i produces a loss of energy for species i of 

𝜀𝑖 per event, the last term implies all the reactions m of species l with species j having rate 
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coefficient 𝑘𝑚𝑗𝑙 which result in formation of species i  produces energy for species i of ∆𝜀𝑚𝑗𝑙 

per event. The last two terms tend to account for change in enthalpy in a non-conventional 

manner.  

The bulk electron energy transport is addressed by time integration of the electron energy 

equation   

𝜕 (
3
2 𝑛𝑒𝑘𝑇𝑒)

𝜕𝑡
= 𝑃 − 𝐿(𝑇𝑒) − ∇. (

5

2
𝜙𝑒𝑘𝑇𝑒 − 𝜅̿(𝑇𝑒). ∇𝑇𝑒) + 𝑃𝐸𝐵 

  (2.3a)   

𝑃 is the power deposition from electrostatic field, 𝑃𝐸𝐵 is the power transferred from slowing 

beam type electrons to the bulk distribution, and 𝐿 is the power loss due to collisions. The 

electrostatic heating is given by collisional Joule heating 𝑃 = 𝑞𝑒𝜙⃗⃗𝑒 . 𝐸. Isotropic transport 

coefficients and electron impact rate coefficients were obtained from solution of Boltzmann 

equation using a 2-term spherical harmonic expansion approximation. 

2.2.2 Poisson Solver  

The tight coupling of charged particle densities and electrostatic fields requires Poisson’s 

equation for the electrostatic potential Eq (2.4) to be solved in the FKPM.  

∇. 𝐸⃗⃗𝑆 =
𝜌

𝜖0
          ;          ∇. (∇Φ𝑆) =

𝜌

𝜖0
            

                                                                   (2.5b)  

For the current study, we solve the Poisson semi-implicitly with implicit electron densities and 

fluxes i.e., the Poisson equation is solved for a future time using an incremental prediction of 

charge densities based on the divergence of their fluxes provided by drift-diffusion 

expressions. The appearance of potential in the drift-diffusion fluxes provides a degree of 

implicitness [2].  

 −𝜖0∇. ∇Φ𝑆(𝑡 + Δ𝑡) = ∑ 𝑞𝑖[𝑁𝑖(𝑡) − Δ𝑡∇. 𝜙𝑖
⃗⃗ ⃗⃗ (Φ𝑆(𝑡 + Δ𝑡))  + 𝑆𝑖(𝑡)]𝑖    +   𝜌𝑠(𝑡)   −

 Δ𝑡∇. (∑ 𝑞𝑖𝜙𝑠𝑖
⃗⃗ ⃗⃗ ⃗⃗ (Φ𝑆(𝑡 + Δ𝑡))𝑖 − 𝜎𝑀∇Φ𝑆(𝑡 + Δ𝑡))        

                                                                   (2.5a)  

𝜙⃗⃗𝑖 = −𝐷𝑖∇( 𝑁𝑖) + 𝑞𝑖𝜇𝑖𝑁𝑖(∇Φ𝑆)     

                                                                   (2.5b)      

𝑛𝑒(𝑡 + Δ𝑡) =  𝑛𝑒(𝑡) − ∇. 𝜙𝑒
⃗⃗ ⃗⃗ ⃗(Φ𝑆(𝑡 + Δ𝑡)) +  𝑆𝑒(𝑡) 

(2.6)    
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where 𝜌𝑠(𝑡) is the charge density in or on non-plasma materials, 𝜙𝑠𝑖 is the flux of charged 

species incident onto surfaces in contact with plasma, 𝜎𝑀 is the material conductivity. This 

treatment of semi-implicit Poisson equation with implicit electrons allows us to get rid of the 

limitations on time step (Δt) caused by the dielectric relaxation time [2]. The method of 

successive over relaxation (SOR) is used with incomplete LU Biconjugate gradient sparse 

Ax=b solver for the implicit solution of the Poisson equation. The convergence criteria for the 

Poisson solver is  
𝛷𝑠−𝛷𝑠,𝑜𝑙𝑑

𝛷𝑠
≤ 10−4 . The boundary conditions for the Poisson’s equation 

depend on the surface (metallic or dielectric); for a metallic surface the boundary value of the 

potential is specified by the surface potential. 

2.3 Electron Energy Transport Module (EETM) 

The electron energy transport module solves for the electron impact rate coefficients  𝑘𝑒(𝑟, 𝜃) 

and electron impact source functions 𝑆𝑒(𝑟, 𝜃), taking as inputs the electrostatic field  𝐸𝑠(𝑟, 𝜃) 

and the number densities 𝑁(𝑟) from the FKPM. Due to the implementation of secondary 

electron emission in the present calculations, there are two types of electrons. These two types 

need to be treated differently. The energy distribution functions for low-energy bulk electrons 

are computed using the 2-term spherical harmonic approximation to the Boltzmann equation 

(BE). The secondary electrons, which act as high energy beam type electrons, are modeled 

using electron Monte Carlo Simulation (eMCS). For computational efficiency, interaction 

between these two types of electrons is neglected here. The energy scale for both sets of 

calculations is discretized into 5 ranges 0 eV - 5 eV, 5 eV - 12 eV, 12 eV – 50 eV, 50 eV – 100 

eV, 100 eV - 2000 eV with each range divided into 100 bins.  

2.3.1 Boltzmann Solution and Electron Energy equation 

The Boltzmann equation is implicitly solved with a two-term spherical harmonic expansion. 

The equation is discretized in energy space using the energy spacing described above. The 

electron impact and transport coefficients are generated as functions of E/N. These results are 

translated into a table of transport coefficients vs the mean electron energy for a given selection 

of E/N values [3], to be utilized in the FKPM module. The electron energy equation is 

integrated implicitly in time in the FKS to provide electron temperature. 
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2.3.2 Electron Monte Carlo Simulation (eMCS) 

Electron Monte Carlo simulations integrate the electron trajectories based on the 

electromagnetic fields obtained from the Electromagnetics module (EMM) and the static 

electric fields obtained from the Fluid kinetics module (FKM) and employs Monte Carlo 

techniques for collisions with heavy particles (neutrals and ions) and electrons [4]. In the 

beginning of eMCS, initial velocities are assigned for electrons from a Maxwellian EED. The 

positions in the reactor are assigned using a distribution weighted by the local electron density 

obtained in the FKM. On subsequent calls to the eMCS the trajectories are restored from their 

coordinates at the end of the previous call to the eMCS. The pseudo-particle trajectories are 

advanced by solving the Lorentz equation and the equation of motion by a second order Euler 

method. 

𝜕𝜐𝑒⃗⃗ ⃗⃗

𝜕𝑡
=

𝑞𝑒

𝑚𝑒
(𝐸⃗⃗ + 𝜐𝑒⃗⃗ ⃗⃗  ×  𝐵⃗⃗⃗⃗ ) 

(2.7)    

𝜕𝑟𝑒⃗⃗ ⃗

𝜕𝑡
= 𝜐𝑒⃗⃗ ⃗⃗  

  

where 𝜐⃗𝑒 , 𝐸⃗⃗ 𝑎𝑛𝑑 𝐵⃗⃗ are the local velocity, electric field, and magnetic field respectively.  

The electron energies of interest are discretized into 5 energy ranges and binned, as mentioned 

earlier. The energy bins have a constant width over a specified energy range to simplify the 

collection of statistics and collisional frequencies. Within a given energy bin i, the total 

collisional frequency 𝜈𝑖 is computed by summing all possible collisions with heavy particles.  

  

𝜈𝑖 = (
2𝜖𝑖

𝑚𝑒
)

0.5

∑ 𝜎𝑖𝑗𝑘𝑁𝑗

𝑗,𝑘

 

   

    (2.8)    

where 𝜖𝑖 is the average energy within the ith bin, 𝜎𝑖𝑗𝑘 is the cross section at energy i, for species 

j and the collision process k, and the 𝑁𝑗 is the number density of species j.  

Not all particles participate in collisions so the non-colliding particles need to have a constant 

collision frequency until they collide. This is accomplished by adding an additional fictitious 

process referred to as a null collision such that all electrons within a given energy range appear 
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to have the same collision frequency. The null collision frequency at an energy 𝜀𝑖 in energy 

range j is given by, 𝜈𝑛𝑖𝑗 = 𝜈𝑚𝑗 − 𝜈𝑖 , where 𝜈𝑚𝑗 is the maximum collision frequency based on 

both electron energy and density of collision partners. Separate maximum collision frequencies 

and null collision frequencies are used for subintervals of the energy distribution to minimize 

the occurrence of null collisions and the time between collisions can be obtained. 

The type of collision is determined by generating a random number r1 on (0,1). If 𝑟1 ≤
𝜈𝑛𝑖𝑗

𝜈𝑚𝑗
⁄  

then the electron collision is null, and the electron trajectory is unhindered. For a real collision, 

we find the particular electron collision j which satisfies 
1

𝜈𝑚𝑗
∑ 𝜈𝑘 < 𝑟2

𝑛−1
𝑘=1 ≤

1

𝜈𝑚𝑗
∑ 𝜈𝑘

𝑛
𝑘=1 , 

where all collision frequencies are computed based on the maximum density of collision 

partner for process n. This requires another null check based on the local density of the 

collisional partner.  For an ionizing collision a secondary electron is added to the simulation at 

the same location as the primary particle, and with a randomly chosen isotropic angular 

distribution. After determining the type and nature of collision, the electron energy is reduced, 

and the trajectory is scattered. The final velocities are determined by applying the scattered 

matrix. The energy distribution functions can be obtained. The inclusion of null collisions 

allows eMCS to accurately simulate non-local effects. 

For the present conditions, only the secondary electrons are treated as beam-type electrons and 

eMCS needs to be applied for these electrons. A similar approach mentioned above is followed 

for the solution, with a few changes. The initial positions of the electrons are not determined 

by bulk plasma; instead, the flux of energetic particles of type j striking the surface 𝜙𝑗(𝑟) is 

derived from FKS. The total rate of secondary emission is obtained from:  

𝑅𝑆 = ∑ 𝑅𝑆𝑘𝑘         𝑅𝑆𝑘 = ∑ 𝛾𝑗𝜙𝑗(𝑟𝑘⃗⃗⃗⃗ )𝑗 𝐴𝑘                                 (2.9)    

where the summation is over the species j having secondary emission coefficient 𝛾𝑗 and surface 

locations k having surface area 𝐴𝑘. A preselected number of secondary electrons are randomly 

launched perpendicular to the surface with an energy equivalent to the work function of the 

material at spatial location k in proportion to 
𝑅𝑆𝑘

𝑅𝑆
⁄  . Particle trajectories are the tracked, and 

the statistics are collected to produce the distribution functions 𝑓𝑠(𝜀, 𝑟). The trajectories of 
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pseudo particles are followed until the particle strikes a surface, or falls below a specified 

energy after which the particle is removed from the simulation. 

Since 𝑓𝑠(𝜀, 𝑟) is normalized to the magnitude of secondary electron current 𝑅𝑆, only electron 

impact source functions due to secondary electrons are transferred back to the FKS.  

𝑆𝑒𝑗 = 𝑁𝑗(𝑟) ∑ 𝑓𝑠𝑖(𝑟)𝑖=1 𝜎𝑗(𝜀𝑖) (
2𝜀𝑖

𝑚𝑒
)

0.5

Δ𝜀𝑖                    (2.10) 

The source functions from secondary emission are incorporated, along with the electron impact 

ionization rates and sources obtained by solving Boltzmann Electron energy equation for the 

Bulk electrons in the FKS. For the present calculations, the e-e collisions and the heating of 

bulk electrons due to the secondary electrons are neglected to reduce computation time. 

2.4 Time dependence      

Plasma modeling in a non-modular approach (a tightly-coupled approach) has no ambiguity 

on time dependence, since all processes are integrated simultaneously as one large set of partial 

differential equations. In hybrid modeling, however, different modules may resolve different 

timescales. HPEM uses time slicing techniques to resolve a wide range of time scales. In time 

slicing, a given module integrates its respective equations in time, and during this integration 

the quantities received from other modules remain time-invariant, or are allowed to vary in 

time in a predetermined way. The HPEM code decides the time spent is any module based on 

its dynamic time scale. 

In time slicing between FKPM and EETM, some knowledge of the changes in mole fractions 

or E/N that can produce a significant change in the 𝑆𝑘𝑒(𝑟, 𝜃) is required. When these changes 

in mole fraction or E/N exceed a certain limit the 𝑆𝑘𝑒(𝑟, 𝜃) values need to be updated. These 

changes can be user specified or automatically decided by the code. For the current simulation, 

the sequence might consist of an initial call to the EETM to provide starting values of 

𝑆𝑘𝑒(𝑟, 𝜃). The densities are time integrated in the FKPM until the change in mole fractions or 

E/N exceeds a threshold value. At that time, the new densities and E/N are transferred back to 

the EETM to update the electron impact rate coefficients and source functions. As the time 

integration approaches the steady state, the frequency with which the EETM is called decreases 

[1]. 
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3. COMPUTATIONAL SETUP, CONVERGENCE AND GRID 

RESOLUTION 

The current work aims at computationally modeling experiments on high voltage nanosecond 

pulse discharges with high repetition frequency in HPEM. The experimental setup under 

investigation is explained in section 3.1, and the results obtained are discussed. Section 3.2 

discusses setting up the computations and post processing, Section 3.3 discusses the 

computational resolution, and Section 3.4 discusses the restart features of the HPEM code and 

simulation of the pulse repetition.  

3.1 Experimental Setup and Results 

The experiments simulated here were carried out in a sealed chamber [5], with two aluminum 

parallel plate electrodes, 10.16 cm in diameter, and separated by 2 cm as shown in Figure 3.1. 

The chamber was filled with Argon at a pressure of 3 Torr. The plasma was generated using a 

FID FPG 1-3MH2 pulser. The pulser outputs a fixed 820 V, 3 ns FWHM pulse at pulse 

repetition frequency up to a maximum of 3 MHz [5]. Tests were performed with pulsed 

repetition rates from 30-75 kHz. We consider the results at a pulse repetition frequency of 30 

kHz for comparison with the computations. During the experiment, the voltage and current 

profiles were measured using a back current shunt. The time-resolved average electron number 

density in the plasma was obtained by microwave interferometry [5]. The plots of voltage and 

current during the pulse and the plots of average electron number densities from the experiment 

are shown in Figure 3.2a and 3.2b respectively. 

 

Figure 3.1: Simplified schematic of the experimental setup 
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a.)          

 b.)  

Figure 3.2: a) Plot of the DC voltage pulse applied and the measured current in the plasma. b) 

Electron number density measured from microwave interferometry 
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3.2 Simulation Setup  

3.2.1 Simulation Domain 

The simulation domain setup has been shown in Figure 3.3. The domain has been simplified, 

but was chosen to resemble the experimental conditions as closely as possible. Like the 

experiments, the anode is the powered side whereas the cathode is grounded. The entire domain 

consists of different regions: the plasma zone, the metal electrodes, dielectric, and the metal 

encasing the entire setup. HPEM requires the user to specify different zones for creating the 

mesh and to apply different materials to those zones. The cells in the plasma zone are assigned 

to be the gas and plasma. HPEM uses the edges of this plasma zone to set the required boundary 

conditions. It is essential that the plasma zone is surrounded by a solid boundary (metals or 

dielectrics) for proper functioning of the code. Also, the entire simulation setup in HPEM needs 

to be encased in a metal boundary.     

 

Figure 3.3: The simulation domain and mesh setup. 

 

3.2.2 Initialization and HPEM Outputs  

In setting up the simulation, the initial number densities of the species (except the electron 

number density) are unknown. The electron number density measured in the experiments is 

specified for the initial electron number density, and the charged species number densities are 
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chosen so the plasma is quasi-neutral. The species and reaction data set included are listed in 

appendix A. At the start of the simulation, all the species were distributed in the plasma domain 

using an exponential distribution. The secondary emission coefficient is set to a constant value 

of 0.15.  

 HPEM outputs a Tecplot format data file containing the domain averaged values of the species 

densities, temperatures, and plasma potential as a function of time. The data from this output 

file is used for comparison in this thesis. HPEM also outputs the 2D-data at every iteration of 

the simulation in Tecplot format. This is used for calculating the current.   

3.3 Computational resolution 

3.3.1 Time resolution 

To examine the sensitivity of the simulation results to the magnitude of the time step used 

during the pulse, for a given grid resolution of 225x66 (Nz x Nr) in the z-direction and r-

direction, different time steps are chosen below 0.4 ns and the cases are checked for temporal 

convergence. The values of average electron number densities are compared as shown in 

Figure 3.4. There is a maximum variation of 0.85% in electron number density observed with 

time steps of 0.4 ns compared with other time steps. We can conclude that the code converges 

in time with a time step of 0.4 ns, at least for spatially averaged values. 

.  

Figure 3.4: Plots of average electron number density vs time during the pulse with different 

time steps. 
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3.3.2 Spatial resolution 

HPEM code limits the grid resolutions to a maximum of 900x262 (Nz x Nr). The sensitivity of 

the results to the grid resolution has also been investigated. The time step of 0.4 ns is used for 

different grid resolutions: 112x33, 225x66, 450x131 and 900x262. The average electron 

number densities are compared to check for convergence as shown in Figure 3.5.  

 

Figure 3.5: Plots of the average electron number density for different grid resolutions 

(Nz x Nr) 

 

Richardson extrapolation has been applied to these results to obtain the converged solution. 

The accuracy of the methods should increase as the grid spacing is decreased to zero. The 

Richardson extrapolation involves running the simulations on two or more finer grids and 

extrapolating these values to obtain an approximate solution with zero grid spacing [31]. 

Richardson extrapolation was implemented over the 3 different grid resolutions 𝑓1 (900 ×

262), 𝑓2 (450 × 131), 𝑓3 (225 × 66) since the average electron number density values seem 
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to converge for these grid resolutions. 𝑓1 is the value of the function on finest of the three grids, 

the grid spacing is so chosen that the 𝑓1 has half the grid spacing as 𝑓2 and 𝑓2 has half the grid 

spacing as 𝑓3 in both Z and R directions. This choice of grid spacing ensures a constant change 

in area of the unit cell from 𝑓1 to 𝑓2 to 𝑓3.  

𝑓1 = 𝑓𝑒𝑥𝑡 + 𝑎∆1
𝑝   ;   𝑓2 = 𝑓𝑒𝑥𝑡 + 𝑎∆2

𝑝   ;   𝑓3 = 𝑓𝑒𝑥𝑡 + 𝑎∆3
𝑝
                                                                                           

(3.3) 

where, 𝑓𝑒𝑥𝑡 is the exact value of the function with zero grid spacing, ∆𝑖 is the area of the unit 

cell for the chosen grid resolution i,.and a and p are the scaling factors. Since we have three 

equations (Eq. 3.3) and three unknowns a, p and 𝑓𝑒𝑥𝑡 we can solve these equations and obtain 

the 𝑓𝑒𝑥𝑡 value as follows.  

𝑝 =
ln (

𝑓3 − 𝑓2

𝑓2−𝑓1
)

ln(𝑟)
⁄

      𝑤ℎ𝑒𝑟𝑒, 𝑟 =
∆3

∆2
=

∆2

∆1
= 4      

(3.4) 

𝑎 =
𝑓2 − 𝑓1

∆2
𝑝 − ∆1

𝑝 =
𝑓3 − 𝑓2

∆3
𝑝 − ∆2

𝑝 

(3.5) 

𝑓𝑒𝑥𝑡 = 𝑓1 − 𝑎∆1
𝑝
 

(3.6) 

1

𝑅
=

𝑓3 − 𝑓2

𝑓2−𝑓1
  

The convergence ratio R could be determined for the type of convergence observed. A 

monotonic convergence is observed when 0<R<1 and oscillatory convergence for R<0 and 

divergence for R>1. The plot of R (Figure 3.6a) shows divergence and oscillatory convergence 

below 2e-7 s. This is evident in the extrapolated values for the average electron number density 

is shown in Figure 3.6b shooting up to very high values below 1e-07 s. This could be due to 

the choice of time step for the finer grid. A simple estimate shows that the courant limit is not 

satisfied for the given grid resolution of 900 points in Nz and time step of 0.4ns. Our attempts 

to decrease the time step and run the simulation were unsuccessful due to extremely 

unreasonable run times.  
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Figure 3.6 a: Plot of the convergence ratio vs time 

 

Figure 3.6b: Comparison of average electron number density at different grid resolutions and 

Richardson extrapolated value. 
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3.4 Restart and Automation 

The HPEM code has a built-in restart capability. With this feature, the results on the last 

iteration of the simulation are written into a restart file, and this restart file is used for restarting 

the simulation. In restarting the simulation, we cannot alter the conditions of the simulation 

like the number of species, pressure, chemistry, or geometry, since these values are written 

into the restart file. We can, however, change the voltage applied and other parameters which 

control the simulation like the calculation methods. 

The experimental case selected for simulation has a PRF of 30 kHz, which implies the time 

between two consecutive pulses is 33 𝜇𝑠. The length of the pulse with non-zero voltage is 

0.15 𝜇𝑠 beyond which there is no voltage applied as shown in Figure 3.7.  

 

Figure 3.7: Plot of the voltage pulse input for the simulation. 

 

To obtain better computational resolution during the pulse we chose to have atleast 10 time- 

steps to resolve 3 ns FWHM of the pulse, so a time step of 0.4 ns or lower had to be used for 
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the simulations. Since we cannot afford to use this time step for an entire pulse and decay of 

33 𝜇𝑠, we chose to run the case with two different time steps for the simulation. A smaller time 

step 0.4 ns is used during the pulse up to 1 𝜇𝑠 , and then the case is restarted with a relatively 

larger time step (10 -100 ns) when no voltage is applied, until 33 𝜇𝑠. This procedure reduced 

the overall computation time.  

The restart case was implemented on a grid resolution of 225 x 66 (Nz x Nr), first a time step 

of 0.4 ns was used up to 1 𝜇𝑠 and then a time step of 10 ns and 100 ns were employed until the 

beginning of the next pulse i.e 33 𝜇𝑠. The average electron number density and electron 

temperature are compared to show a relative change of less than 1% in both electron number 

density and average electron temperature. The comparison plots are shown in Figure 3.8.  

 

Figure 3.8: Plot of average electron number density and average electron temperature during 

the decay after the pulse with 10 and 100 ns time steps. 
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Figure 3.8b: Plot of electron number density and electron temperature at the center of the 

plasma domain during the decay after the pulse with 10 and 100 ns time steps. 

 

The value of the average electron number density is known from experiments, but the initial 

number densities of other species in the plasma are unknown. We can assume some initial 

number densities for other species, but we may not be able to capture the accurate physics from 

the plasma experiments. Thus, we need to run the pulses until we reach a periodic state, and 

we need to automate this restart for many pulses. Total time to run the simulation for one pulse 

of 33 𝜇𝑠 with a grid resolution of 225x66 takes around 20 hrs, so a grid resolution of 67x131 

was chosen to show that the automation worked and that the periodic state could be reached 

after running for some pulses. The run time for each pulse was reduced to 3 hrs with this grid 

resolution. The initial number densities of ions have been varied for 3 different conditions and 

the simulation reach the same state after running for a few pulses as shown in Figure 3.9 
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Figure 3.9: Plots of average electron and ion number densities for three different initial ion 

number densities. 

 

Thus, the initial composition of plasma doesn’t affect the simulation. The automated program 

has been run until we reached a periodic state. The results for these calculations, plots of the 

average number densities of electrons and ions, are shown in Figure 3.10. A single pulse was 

simulated for finer grid resolutions by initializing the simulation with the mole fractions of 

species observed during this periodic state. 

 

Ne (cm-3) 

NAr+ (cm-3) NAr2+(cm-3) 
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Figure 3.10:Plots of average number densities of electrons and ions and average electron 

temperature, with the simulation run for 100 pulses. 
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4. RESULTS AND DISCUSSION 

The simulation was setup as discussed in Section 3.2. We wish to opt for analyzing the results 

for grid resolution of 225x66 (Nz x Nr) to compare with the experimental results due the ease 

of processing the data. The current was calculated at the cathode and anode and compared with 

the experimental values. Also, the average electron number density in experiment and 

simulation has been compared.  

4.1 Current  

HPEM also outputs the 2D-data at every iteration of the simulation in Tecplot format. This 

data file is used to compute the conduction and displacement current densities at every 

iteration. These current densities 𝑗 are integrated to compute the respective currents I: 

𝐼 = ∫ 𝑗. 𝑑𝐴⃗⃗⃗⃗⃗⃗      where 𝑑𝐴⃗⃗⃗⃗⃗⃗ = 𝑛⃗⃗𝑑𝐴 

(4.1)    

Using the 2D data, a specific control volume has been chosen in the plasma domain as shown 

in Figure 4.1. The current densities at the grid points on the surface of the control volume are 

calculated and then integrated with the area normal to the current densities.  

 

Figure 4.1: Mesh with control volume used to estimate the currents at the cathode and anode 

and radial currents. The red line shows the Control Volume and the Blue arrows show the 

flow of current. 
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The conduction current density is calculated from the flux of the charged species.  

𝑗𝑐 = ∑ 𝑞𝑖Γ⃗𝑖 

(4.2)    

where Γ𝑖 is the flux of charged species i, qi is the charge on the species i.  

The presence of time varying electric fields in the plasma implies the displacement current has 

a significant contribution towards the total current. The displacement current density is 

calculated using the derivative of local electric field.   

𝑗𝑑 = 𝜖0

𝜕𝐸⃗⃗

𝜕𝑡
 

(4.3)    

The displacement current density was estimated using a second-order backward-differencing 

scheme in time to obtain the derivatives of electric field at that time at a given grid point. To 

compute the integral of the current density over a given surface, the current densities at the 

grid point are multiplied with the unit area of the cell, and all the values along the surface are 

added.  

The comparison of displacement currents for the simulation run with different time steps can 

be used to show that the code converges in time. The simulation is convergent in time since 

the displacement currents observed for different time steps are converging as seen in Figure 

4.2. 
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Figure 4.2: Plot of the displacement current at the cathode for different time resolutions to 

check for convergence in time. 

 

The current at the cathode, anode and radial currents at the right most boundary, were 

computed using the control volume mentioned in the Figure 4.1. These currents are compared 

to the experimental values for current in Figure 4.3.  

The observed plots show that the simulated current is less than the experimental value. The 

experimental results correspond to a discharge at a periodic state, whereas the simulation has 

been run for one pulse with just the information of applied voltage and the initial electron 

number density from microwave interferometry. The actual number densities of species to 

initialize the simulation had to be guessed, since the simulation with a resolution of 225x66 

takes unacceptable run times when run for many pulses until steady state is reached. 

The calculated current leaving the anode is not equal to the current entering the cathode, which 

implies a flow of current in the radial direction in the control volume previously mentioned. 

This motivates a check of conservation of the current in the control volume.   
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Figure 4.3: Plot of net current at the cathode and anode. 

4.2 The Maxwell’s Equations and Current Conservation.  

Maxwell’s equations, Eq 4.4, can be used to derive the current conservation equation.  

∇. 𝐸⃗⃗ =
𝜌

𝜖0
   ;   ∇ × 𝐵⃗⃗ = 𝜇0 (𝑗𝑐 + 𝜖0

𝜕𝐸⃗⃗

𝜕𝑡
)  ;   ∇. 𝐵⃗⃗ = 0  ;  ∇ × 𝐸⃗⃗ = −

𝜕𝐵⃗⃗

𝜕𝑡
 

(4.4) 

∇. (∇ × 𝐵⃗⃗) = 0 = 𝜇0∇. (𝑗𝑐 + 𝜖0

𝜕𝐸⃗⃗

𝜕𝑡
)  

(4.5) 

∇. (𝑗𝑐 + 𝜖0

𝜕𝐸⃗⃗

𝜕𝑡
) = 0 = ∇. (𝑗𝑐 + 𝑗𝑑) 

(4.6a) 

∇. 𝑗𝑐 +  𝜖0

𝜕(∇. 𝐸⃗⃗)

𝜕𝑡
= ∇. 𝑗𝑐 +

𝜕𝜌

𝜕𝑡
= 0 
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(4.6b) 

By integrating Eq 4.6a in the control volume we have  

∭ ∇. (𝑗𝑐 + 𝑗𝑑) 𝑑𝑉 = ∯(𝑗𝑐 + 𝑗𝑑). 𝑑𝐴 = 0 

(4.7) 

By integrating equation 4.6b in the control volume we have  

∭(∇. 𝑗𝑐 +
𝑑𝜌

𝑑𝑡
) 𝑑𝑉 = ∯ 𝑗𝑐 . 𝑑𝐴 + ∭

𝜕𝜌

𝜕𝑡
 𝑑𝑉 = 0 

(4.8) 

Equation 4.7 implies the net current (displacement + conduction) through the control volume 

should be zero. So, 𝐼𝑎𝑛𝑜𝑑𝑒 − (𝐼𝑐𝑎𝑡ℎ𝑜𝑑𝑒 + 𝐼𝑟𝑎𝑑𝑖𝑎𝑙) = 0, this has to be checked to show that the 

current is being conserved during the simulation. The plot of 𝐼𝑎𝑛𝑜𝑑𝑒 − (𝐼𝑐𝑎𝑡ℎ𝑜𝑑𝑒 + 𝐼𝑟𝑎𝑑𝑖𝑎𝑙)  

shows that the current is conserved for the simulation but there is a current imbalance observed 

near the time of the peak voltage of the pulse as seen in Figure 4.4. This could be a result of 

the calculation of the displacement current from the time derivative of electric field; near the 

peak of the pulse the electric field gradients are high.  
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Figure 4.4: Plot of current observed and the conservation of current. 

4.3 Electron and Ion Number Densities  

The average electron number densities for different grid resolutions, along with the 

Richardson- extrapolated data, were compared with the experiments, and the results did not 

agree as seen in figure 4.5a. This could be due to the choice of initial number densities for the 

transient species. The extrapolated results for the average electron number density doesn’t 

seem to converge during the pulse peak < 80 ns but beyond that point the results converge, this 

could be due to the choice of time step for the finer grid. A simple estimate shows that the 

courant limit is just barely satisfied for the given grid resolution of 900 points in Nz. Our 

attempts to decrease the time step and run the simulation were unsuccessful due to extremely 

unreasonable run times.  
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Figure 4.5a: Plot of the average electron number density 

 

Figure 4.5b: Plot of the average ion number densities 
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4.4 Cathode Sheath 

The formation of cathode sheath is an important phenomenon in electric discharges. The axial 

electric field in the cathode sheath will be high, so a profile plot of axial electric field at R=0 

during the pulse peak reveals the formation of cathode sheath, as seen in Figure 4.6a.   

  

   

 

Figure 4.6 a: Profile plot of the axial electric fields and plasma potential at different times 

during the pulse. 
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Figure 4.6b: Profile plot of the number densities of electrons and ions at different times 

during the pulse.     
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Figure 4.6c: Profile plot of the electron and ion temperatures at different times during the 

pulse.  
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4.5 Two Sheaths  

During the trailing edge of the pulse, the applied voltage is zero, but the plasma still has a 

potential as seen in Figure 4.7b. The electrons are absorbed and lost at the electrodes relatively 

faster than the ions. This loss of electrons at both the electrodes causes us to observe sheath at 

both the electrodes. In Figure 4.7a, the profile plots of axial electric fields after the pulse peak 

shows the formation of two sheaths at both the electrodes.   

 

  

Figure 4.7 a: Profile plot of the axial electric field and plasma potential at different times 

during the decay part of the pulse. 
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Figure 4.7b: Comparison of the plasma potential with the applied voltage during the decay 

part of the pulse. 

      

 
Figure 4.7c: Profile plot of the number densities at different times during the decay part of 

the pulse. 
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Figure 4.7d: Profile plot of the electron and ion temperatures at different times during the 

decay part of the pulse. 

4.6 Electron Temperature and Number Density 

The average electron temperature increases to a max value of 6 eV during the pulse and 

decreases to less than 1 eV but not to room temperature 0.026 eV, as seen from Figure 4.8a. 

The electron temperature decreases at a faster rate compared with the electron number density, 

simulated for a grid resolution of 225x66. This is promising for the development of plasma 

antennas. Also, the observed electron number density profile doesn’t match the experimental 

observations as seen from Figure 4.9. 
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Figure 4.8 a: Plot of average electron temperature and electron number density. 

 

 

Figure 4.8b: Plot of electron temperature and electron number density at the center of the 

domain. 
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Figure 4.9: Comparison of experimental and simulated average electron number density. 

4.7 Ar-H2O Plasma  

Further analysis of experimental results, Prof. Macheret has pointed out that the presence of 

impurities could be the cause of the decay behavior of the experimentally measured electron 

number density trend. The experimental team has found that presence of few ppm of water 

vapor in the argon gas has changed the electron number density decay behavior. So, we intend 

to add the minimalistic reactions involving water to the data set (Appendix B) and run the 

calculations for a grid resolution of Nz x Nr (225x66) with 0.045% water in argon. The average 

electron number densities and the average electron temperature are compared in figure 4.10a. 

It could be observed that the electron temperature relaxes faster to room temperature 0.026 eV 

with adding 0.045% H2O to pure argon. 

Figure 4.12, the decay of the electron number density shows a similar behavior compared to 

the experiments although the absolute values do not match ideally, including oxygen and its 

respective species into the reaction data set could model the experimental behavior more 

accurately. 
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Figure 4.10 a: Comparison plot of average electron temperature and average electron number 

density. 

 

Figure 4.10b: Comparison of electron number density and temperature at the center of the 

domain with and without H2O reactions. 
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Figure 4.11: Comparison of electron and ion number density at the center of the domain with 

and without H2O reactions. 

 

Figure 4.12: Comparison of average electron number densities with and without H2O 

reactions and comparison with experiments. 
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5. SUMMARY AND CONCLUSIONS 

The use of nanosecond pulse discharges for plasma antennas has been experimentally 

demonstrated at different pulse repetition frequencies. The plasma sustained at different PRF 

reached a periodic state, where the voltage and current were measured using the back current 

shunt and the average electron number density in the plasma were measured using microwave 

interferometry [5]. We choose to simulate a PRF of 30 kHz and compared the results to the 

experimental measurements. The initial composition of plasma is unknown, except for the 

average electron number density, and the applied voltage is available. The initial number 

densities of other species are input as an estimate. The simulation was run for a sufficient 

number of pulses to successfully show the periodic state was reached after a certain number of 

pulses, irrespective of the initial number densities input into the simulation. The code 

compromises in grid resolution were necessary to complete the simulations. 

The HPEM code allowed a maximum grid resolution of 900x262 (Nz x Nr), we observed 

temporal convergence of the code but not spatial convergence. We made use of Richardson 

extrapolation to estimate the converged value; this has been demonstrated for the average 

electron number density calculations. The currents were calculated from the 2D data. We made 

a comparison with the experimental values for a grid resolution of 225x66, since the processing 

of 2D Tecplot data files for other resolutions (450x131,900x262) was difficult due to the 

massive file size; it took unacceptable loading times and processing times. The current was 

observed to be conserved except for a minor imbalance near the time of peak voltage. This 

could be due to truncation errors while calculating the time derivative of electric field during 

the pulse peak when the gradients of electric fields are very high. 

We observed some important properties of the plasma. The cathode sheath was observed from 

the profile plot of axial electric field and plasma potential along the center of plasma domain. 

The formation of a double cathode during the plasma decay was also observed. Finally, the 

plots of electron temperatures reveal that the electron temperature decays faster than the 

electron number density during the decay phase after the pulse. This is very promising for the 

reduction of Johnson-Nyquist thermal noise and improvement of the antenna performance of 

the plasma.  
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A simple 0-D computational analysis of experimental results by Vladlen Podolsky and Prof. 

Macheret with addition of 0.045 % H2O to the pure argon, has shown to match the 

experimentally observed electron number density. The experimentally observed number 

density shows two different rates of electron number density decay. We observe a similar 

behavior in the average electron number density with the inclusion of 0.045% H2O for our pure 

argon simulation. The results could be made more accurate by including the electron impact 

reactions for oxygen species and controlling the number of electron impact reactions as per 

user specification.  

For future work, we could use completely Monte Carlo electrons for the beam type electrons 

and the bulk electrons. The reaction data set with water could be improved and the plasma 

chemistry could also be addressed with Monte Carlo methods to improve the calculations. The 

simulations were run in series on a cluster, a better way to improve the computational speed 

would be to implement the HPEM code to run on parallel processors. 
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APPENDIX A. LIST OF ARGON REACTIONS 

Argon reactions used in the simulation are listed below. [16] [17] [18] [19] [20] 

Table A.1: Electron impact reactions 

Reactions Reaction rate  

𝑒 + 𝐴𝑟(3𝑠) → 𝐴𝑟(𝑖) + 𝑒 

Where 𝑖 = 1𝑠2, 1𝑠3, 1𝑠4, 1𝑠5 

b 

𝑒 + 𝐴𝑟(3𝑠) → 𝐴𝑟(4𝑝) + 𝑒 b 

𝑒 + 𝐴𝑟(3𝑠) → 𝐴𝑟(4𝑑) + 𝑒 b 

𝑒 + 𝐴𝑟(𝑖) → 𝐴𝑟(𝑗) + 𝑒 

Where 𝑖, 𝑗 = 1𝑠2, 1𝑠3, 1𝑠4, 1𝑠5  𝑖 ≠ 𝑗  

b 

𝑒 + 𝐴𝑟(𝑖) → 𝐴𝑟(𝑗) + 𝑒 

Where 𝑖 = 1𝑠2, 1𝑠3, 1𝑠4, 1𝑠5  𝑗 = 3𝑠, 4𝑝, 4𝑑 

b 

𝑒 + 𝐴𝑟(𝑖) → 𝐴𝑟(4𝑝) + 𝑒 

Where 𝑖 = 1𝑠2, 1𝑠3, 1𝑠4, 1𝑠5 

b 

𝑒 + 𝐴𝑟(𝑖) → 𝐴𝑟+ + 𝑒 + 𝑒 

Where 𝑖 = 1𝑠2, 1𝑠3, 1𝑠4, 1𝑠5 

b 

𝑒 + 𝐴𝑟(𝑗) → 𝐴𝑟(𝑖) + 𝑒 

Where 𝑖 = 1𝑠2, 1𝑠3, 1𝑠4, 1𝑠5 ; 𝑗 = 4𝑝, 4𝑑 

b 

𝑒 + 𝐴𝑟(𝑗) → 𝐴𝑟(3𝑠) + 𝑒 

Where 𝑗 = 4𝑝, 4𝑑 

b 

𝑒 + 𝐴𝑟(𝑗) → 𝐴𝑟+ + 𝑒 + 𝑒 

Where 𝑗 = 3𝑠, 4𝑝, 4𝑑 

b 

 

b denotes the reaction rate,are calculated within HPEM as part of EETM module. The reaction 

rates have the following units (1st order : (1/s) ; 2nd order : (cm3/s ); 3rd order : (cm6/s)).  
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Table A.2: Heavy Particle reactions 

Reactions Reaction Rate  

𝑒 + 𝑒 + 𝐴𝑟+ → 𝐴𝑟(1𝑠5) + 𝑒 5.0 ∗ 10−27𝑇𝑒
−4.5 

𝑒 + 𝐴𝑟+ → 𝐴𝑟(1𝑠5) 4.0 ∗ 10−13𝑇𝑒
−0.5 

𝐴𝑟(1𝑠4) → 𝐴𝑟(3𝑠) 1.5 ∗ 107 

𝐴𝑟(1𝑠2) → 𝐴𝑟(3𝑠) 2.0 ∗ 106 

𝐴𝑟(4𝑝) → 𝐴𝑟(4𝑠) 1.0 ∗ 106 

𝐴𝑟(4𝑝) → 𝐴𝑟(1𝑠5) 4.0 ∗ 106 

𝐴𝑟(4𝑝) → 𝐴𝑟(1𝑠3) 1.6 ∗ 107 

𝐴𝑟(4𝑝) → 𝐴𝑟(1𝑠2) 9.3 ∗ 106 

𝐴𝑟(4𝑑) → 𝐴𝑟(1𝑠5) 8.5 ∗ 106 

𝐴𝑟(4𝑑) → 𝐴𝑟(1𝑠4) 2.0 ∗ 105 

𝐴𝑟(4𝑑) → 𝐴𝑟(1𝑠3) 2.0 ∗ 105 

𝐴𝑟(4𝑑) → 𝐴𝑟(1𝑠2) 2.0 ∗ 105 

𝐴𝑟(4𝑑) → 𝐴𝑟(4𝑝) 2.0 ∗ 105 

𝐴𝑟2
∗ → 𝐴𝑟(3𝑠) + 𝐴𝑟(3𝑠) 1.0 ∗ 107 

𝐴𝑟(1𝑠5) + 𝐴𝑟(3𝑠) → 𝐴𝑟(1𝑠4) + 𝐴𝑟(3𝑠) 
1.5 ∗ 10−15 (

𝑇𝑔

300
)

0.5

𝑒
−881.2

𝑇𝑔   

𝐴𝑟(1𝑠4) + 𝐴𝑟(3𝑠) → 𝐴𝑟(1𝑠5) + 𝐴𝑟(3𝑠) 
2.5 ∗ 10−15 (

𝑇𝑔

300
)

0.5

  

𝐴𝑟(1𝑠5) + 𝐴𝑟(3𝑠) → 𝐴𝑟(1𝑠3) + 𝐴𝑟(3𝑠) 
0.5 ∗ 10−15 (

𝑇𝑔

300
)

0.5

𝑒
−2029

𝑇𝑔   

𝐴𝑟(1𝑠3) + 𝐴𝑟(3𝑠) → 𝐴𝑟(1𝑠5) + 𝐴𝑟(3𝑠) 
2.5 ∗ 10−15 (

𝑇𝑔

300
)

0.5

  

𝐴𝑟(1𝑠5) + 𝐴𝑟(3𝑠) → 𝐴𝑟(1𝑠2) + 𝐴𝑟(3𝑠) 
1.5 ∗ 10−15 (

𝑇𝑔

300
)

0.5

𝑒
−3246

𝑇𝑔   

𝐴𝑟(1𝑠2) + 𝐴𝑟(3𝑠) → 𝐴𝑟(1𝑠5) + 𝐴𝑟(3𝑠) 
2.5 ∗ 10−15 (

𝑇𝑔

300
)

0.5
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𝐴𝑟(1𝑠4) + 𝐴𝑟(3𝑠) → 𝐴𝑟(1𝑠3) + 𝐴𝑟(3𝑠) 
0.83 ∗ 10−15 (

𝑇𝑔

300
)

0.5

𝑒
−1148

𝑇𝑔   

𝐴𝑟(1𝑠3) + 𝐴𝑟(3𝑠) → 𝐴𝑟(1𝑠4) + 𝐴𝑟(3𝑠) 
2.5 ∗ 10−15 (

𝑇𝑔

300
)

0.5

  

𝐴𝑟(1𝑠4) + 𝐴𝑟(3𝑠) → 𝐴𝑟(1𝑠2) + 𝐴𝑟(3𝑠) 
2.5 ∗ 10−15 (

𝑇𝑔

300
)

0.5

𝑒
−2365

𝑇𝑔   

𝐴𝑟(1𝑠2) + 𝐴𝑟(3𝑠) → 𝐴𝑟(1𝑠4) + 𝐴𝑟(3𝑠) 
2.5 ∗ 10−15 (

𝑇𝑔

300
)

0.5

  

𝐴𝑟(1𝑠3) + 𝐴𝑟(3𝑠) → 𝐴𝑟(1𝑠2) + 𝐴𝑟(3𝑠) 
7.5 ∗ 10−15 (

𝑇𝑔

300
)

0.5

𝑒
−1217

𝑇𝑔  

𝐴𝑟(1𝑠2) + 𝐴𝑟(3𝑠) → 𝐴𝑟(1𝑠3) + 𝐴𝑟(3𝑠) 
2.5 ∗ 10−15 (

𝑇𝑔

300
)

0.5

 

𝐴𝑟(𝑖) + 𝐴𝑟(𝑗) → 𝐴𝑟+ + 𝐴𝑟(3𝑠) + 𝑒   

 Where 𝑖, 𝑗 = 1𝑠2, 1𝑠3, 1𝑠4, 1𝑠5 ,4𝑝, 4𝑑  

1.2 ∗ 10−9 (
𝑇𝑔

300
)

0.5

  

𝐴𝑟+ + 𝐴𝑟(3𝑠) → 𝐴𝑟(3𝑠) + 𝐴𝑟+ 
5.66 ∗ 10−10 (

𝑇𝑔

300
)

0.5

  

𝐴𝑟(𝑖) + 𝐴𝑟(3𝑠) + 𝐴𝑟(3𝑠) → 𝐴𝑟2
∗ + 𝐴𝑟(3𝑠)  

 Where 𝑖 = 1𝑠2, 1𝑠3, 1𝑠4, 1𝑠5 ,4𝑝, 4𝑑  

1.14 ∗ 10−32 (
𝑇𝑔

300
)

−1

  

𝐴𝑟(𝑖) + 𝐴𝑟(𝑗) → 𝐴𝑟2
+ + 𝑒   

 Where 𝑖, 𝑗 = 1𝑠2, 1𝑠3, 1𝑠4, 1𝑠5 ,4𝑝, 4𝑑  
5.70 ∗ 10−10 (

𝑇𝑔

300
)

0.5

 

𝐴𝑟(4𝑑) + 𝐴𝑟(3𝑠) → 𝐴𝑟2
+ + 𝑒 

2.0 ∗ 10−9 (
𝑇𝑔

300
)

0.5

  

𝐴𝑟+ + 𝐴𝑟(3𝑠) → 𝐴𝑟(1𝑠5) + 𝐴𝑟(3𝑠) 
2.5 ∗ 10−31 (

𝑇𝑔

300
)

−1

  

𝐴𝑟2
∗ + 𝐴𝑟2

∗ → 𝐴𝑟2
+ + 𝐴𝑟(3𝑠) + 𝐴𝑟(3𝑠) + 𝑒 

5.0 ∗ 10−10 (
𝑇𝑔

300
)

0.5

  

𝑒 + 𝐴𝑟2
+ → 𝐴𝑟(3𝑠) + 𝐴𝑟(1𝑠5) 2.69 ∗ 10−8(𝑇𝑒)−0.66  

𝑒 + 𝐴𝑟2
+ → 𝐴𝑟(3𝑠) + 𝐴𝑟(3𝑠) 2.69 ∗ 10−8(𝑇𝑒)−0.66  

𝑒 + 𝐴𝑟2
∗ → 𝐴𝑟2

+ + 𝑒 + 𝑒 
9.0 ∗ 10−8(𝑇𝑒)0.70𝑒

−3.66

𝑇𝑒   

𝑒 + 𝐴𝑟2
∗ → 𝐴𝑟(3𝑠) + 𝐴𝑟(3𝑠) + 𝑒 1.0 ∗ 10−7 
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APPENDIX B. LIST OF Ar-H2O REACTIONS 

Argon-water vapor mixture involves reactions of argon in Appendix A and additional reactions 

of Ar with H2O are implemented in the HPEM code. It has been observed that HPEM includes 

all the electron impact reactions of the species included in the reaction data set despite 

specifying only a few required reactions. [21] [22] [23] 

The additional species we included in the data set for modeling the argon-water mixture are as 

follow, H, H2, OH, H2O, H2O
+, H3O

+, and ArH+. HPEM has a defined set of electron impact 

reactions hard coded. So, the following electron impact reactions of the species specified are 

forced by HPEM to include in our calculations.    

Table B.1: Electron impact reactions 

Reactions Reaction Rate  

𝑒 + 𝐴𝑟𝐻+ → 𝐴𝑟𝐻+ + 𝑒   (momentum transfer) b 

𝑒 + 𝐴𝑟𝐻+ → 𝐴𝑟 + 𝐻  b 

𝑒 + 𝐻2𝑂 → 𝐻2𝑂 + 𝑒 (momentum transfer) b 

𝑒 + 𝐻2𝑂 → 𝐻2𝑂(100) + 𝑒 (Vibrational excitation) b 

𝑒 + 𝐻2𝑂 → 𝐻2𝑂(010) + 𝑒 (Vibrational excitation) b 

𝑒 + 𝐻2𝑂 → 𝐻2𝑂(001) + 𝑒 (Vibrational excitation) b 

𝑒 + 𝐻2𝑂 → 𝐻− + 𝑂𝐻 + 𝑒  b 

𝑒 + 𝐻2𝑂 → 𝑂− + 𝐻2 + 𝑒  b 

𝑒 + 𝐻2𝑂 → 𝑂𝐻− + 𝐻 + 𝑒  b 

𝑒 + 𝐻2𝑂 → 𝐻 + 𝑂𝐻 + 𝑒  b 

𝑒 + 𝐻2𝑂 → 𝑂 + 2𝐻 + 𝑒  b 

𝑒 + 𝐻2𝑂 → 𝐻2𝑂+ + 𝑒 + 𝑒  b 

𝑒 + 𝐻2𝑂 → 𝑂𝐻+ + 𝐻 + 𝑒  b 

𝑒 + 𝐻2𝑂 → 𝑂+ + 2𝐻 + 2𝑒  b 
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𝑒 + 𝐻2𝑂 → 𝐻2
+ + 𝑂 + 𝑒  b 

𝑒 + 𝐻2𝑂 → 𝐻+ + 𝑂𝐻 + 2𝑒  b 

𝑒 + 𝐻2𝑂 → 𝐻 + 𝑂𝐻∗ + 𝑒  b 

𝑒 + 𝐻2𝑂 → 𝐻∗ + 𝑂𝐻 + 𝑒  

𝐻∗ = 𝐻(2) [ 121.6𝑛𝑚 ] 

b 

𝑒 + 𝐻2𝑂 → 𝐻∗∗(3)  + 𝑂𝐻 + 𝑒  

𝐻∗∗ = 𝐻(3) [ 656.3𝑛𝑚 ] 

b 

𝑒 + 𝐻2𝑂 → 𝐻∗∗∗ + 𝑂𝐻 + 𝑒  

𝐻∗∗∗ = 𝐻(4) [ 486.1𝑛𝑚] 

b 

𝑒 + 𝐻2𝑂 → 𝑂(3𝑝5𝑝) [ 777.4𝑛𝑚 ] + 𝐻2 + 𝑒 

𝑂∗∗∗∗ = 𝑂(3𝑝5𝑝) [ 777.4𝑛𝑚 ] 

b 

𝑒 + 𝐻2𝑂+ → 𝐻2𝑂+ + 𝑒   (momentum transfer) b 

𝑒 + 𝐻2𝑂+ → 𝐻2𝑂 + 𝑒 b 

𝑒 + 𝐻 → 𝐻 + 𝑒   (momentum transfer) b 

𝑒 + 𝐻 → 𝐻∗ + 𝑒 b 

𝑒 + 𝐻 → 𝐻∗∗ + 𝑒 b 

𝑒 + 𝐻 → 𝐻∗∗∗ + 𝑒 b 

𝑒 + 𝐻 → 𝐻+ + 𝑒 b 

𝑒 + 𝐻2 → 𝐻2 + 𝑒   (momentum transfer) b 

𝑒 + 𝐻2 → 𝐻2(𝑟1) + 𝑒   {𝑟1 = 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙(0 − 2)} b 

𝑒 + 𝐻2 → 𝐻2(𝑟2) + 𝑒  {𝑟2 = 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙(1 − 3)} b 

𝑒 + 𝐻2 → 𝐻2(𝑣1) + 𝑒  {𝑣1 = 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒} b 

𝑒 + 𝐻2 → 𝐻2(𝑣2) + 𝑒  {𝑣2 = 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒} b 

𝑒 + 𝐻2 → 𝐻2
∗ + 𝑒  {𝐻2

∗ = 𝐻2(𝑏3 Σ)} b 

𝑒 + 𝐻2 → 𝐻2
∗ + 𝑒  {𝐻2

∗ = 𝐻2(𝑐3 Π)} b 



68 

 

𝑒 + 𝐻2 → 𝐻2
+ + 𝑒 b 

𝑒 + 𝐻2 → 𝐻 + 𝐻 b 

𝑒 + 𝐻2 → 𝐻∗(𝛼) + 𝐻 + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝑂𝐻 + 𝑒   (momentum transfer) b 

𝑒 + 𝑂𝐻 → 𝑂𝐻(𝑣1) + 𝑒   {𝑣1 = 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒} b 

𝑒 + 𝑂𝐻 → 𝑂𝐻(𝑎1Π) + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝑂 + 𝐻 + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝑂𝐻(𝑐1Σ) + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝑂𝐻(𝑒1Π) + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝑂𝐻(𝑏1Σ) + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝑂𝐻(𝑖1Σ) + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝑂𝐻(𝑑1Δ) + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝑂𝐻(𝑎3Π) + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝑂𝐻(𝑎3Σ) + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝑂𝐻(𝑑3Δ) + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝑂𝐻(𝑒3Σ) + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝑂𝐻+(𝑥2Σ) + 𝑒 + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝑂𝐻+(𝑎2Π) + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝑂𝐻+(𝑏2Σ) + 𝑒 + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝐻+ + 𝑂 + 𝑒 + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝑂+ + 𝐻 + 𝑒 + 𝑒 b 

𝑒 + 𝑂𝐻 → 𝑂𝐻+ + 𝑒 + 𝑒 b 

b denotes the reaction rate coefficients are calculated within HPEM as part of 

EETM module. 
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Table B.2: Heavy Particle reactions 

Reactions Reaction Rate  

𝑒 + 𝐻2𝑂+ → 𝐻2𝑂 12.55 ∗ 10−8𝑇𝑒
−0.5 

𝑒 + 𝐻3𝑂+ → 𝐻2𝑂 + 𝐻 9.9 ∗ 10−8𝑇𝑒
−0.7 

𝐻2𝑂 + 𝐻2𝑂+ → 𝐻3𝑂+ + 𝑂𝐻 1.85 ∗ 10−9 

𝐻3𝑂+ + 𝑂𝐻 → 𝐻2𝑂 + 𝐻2𝑂+ 1.30 ∗ 10−9 

𝐴𝑟+ + 𝐻2𝑂 → 𝐴𝑟(3𝑠) + 𝐻2𝑂+ 7.0 ∗ 10−10 

𝐴𝑟(3𝑠) + 𝐻2𝑂+ → 𝐴𝑟+ + 𝐻2𝑂 1.5 ∗ 10−10 

𝐴𝑟+ + 𝐻2𝑂 → 𝐴𝑟𝐻+ + 𝑂𝐻 1.31 ∗ 10−9 

𝐴𝑟𝐻+ + 𝐻2𝑂 → 𝐴𝑟(3𝑠) + 𝐻3𝑂+ 4.90 ∗ 10−9 

𝐴𝑟2
+ + 𝐻2𝑂 → 𝐻2𝑂+ + 2𝐴𝑟(3𝑠) 1.65 ∗ 10−9 

𝐴𝑟(4𝑝) + 𝐻2𝑂 → 𝐻2𝑂+ + 𝐴𝑟(3𝑠) + 𝑒 6.60 ∗ 10−10 

 


