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GLOSSARY 

Artificial Neural Networks: They are densely interconnected adaptive processing elements 

capable of performing massive parallel computations (Basheer & Hajmeer, 2000).  The 

neurons are based on the neural structure of the brain. They process information in a 

similar way the human brain does. (Maind & Wankar, 2014). 

Attention: Refers to the process by which organisms select a subset of available information 

upon which to focus for enhanced processing (often in a signal-to-noise-ratio sense) and 

integration. (Ward, 2008). 

Deep Neural Networks: Neural Networks composed of multiple processing layers to learn 

representations of data with multiple levels of abstraction. These methods have 

dramatically improved the state-of-the-art in speech recognition, visual object 

recognition, object detection and many other domains such as drug discovery and 

genomics. (LeCun, Bengio & Hinton, 2015). 
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ABSTRACT 

Author: Devarapalli, Hemanth. MS 
Institution: Purdue University 

Degree Received: December 2018 
Title: Forced Attention for Image Captioning. 
Major Professor: Dr. Julia Rayz 
 

Automatic generation of captions for a given image is an active research area in Artificial 

Intelligence.  The architectures have evolved from using metadata of the images on which classical 

machine learning was employed to neural networks. Two different styles of architectures evolved 

in the neural network space for image captioning: Encoder-Attention-Decoder architecture, and 

the transformer architecture. This study is an attempt to modify the attention to allow any object 

to be specified. An archetypical Encoder-Attention-Decoder architecture (Show, Attend, and Tell 

(Xu et al., 2015)) is employed as a baseline for this study, and a modification of the Show, Attend, 

and Tell architecture is proposed. Both the architectures are evaluated on the MSCOCO (Lin et al., 

2014) dataset, and seven metrics: BLEU – 1, 2, 3, 4 (Papineni, Roukos, Ward & Zhu, 2002), 

METEOR (Banerjee & Lavie, 2005), ROGUE L (Lin, 2004), and CIDer (Vedantam, Lawrence & 

Parikh, 2015) are calculated. Finally, the statistical significance of the results is evaluated by 

performing paired t tests.
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CHAPTER 1. INTRODUCTION 

Image captioning is the generation of properly formed English sentences which describe an image 

(Vinyals, Toshev, Bengio & Erhan, 2015). It is a complex task involving multiple individual parts. 

The algorithm has to read and understand the image, and then express its comprehension in the 

form of text. The text has to be legible, and make sense. Any attempt to tackle this problem would 

have to involve image analysis, and text generation. 

 

Image captioning systems typically consist of two independently functioning parts – an Image 

analysis part, and a Text generation part. Both the Image analysis part and Text generation part are 

different configurations of Artificial Neural Networks. Basheer and Hajmeer (2000) define 

Artificial Neural Networks as computational structures comprised of interconnected simple 

processing elements capable of performing parallel computations. The Image analysis part is a 

Convolutional Neural Network, which is a specialized Artificial Neural Network architecture 

designed to work with two dimensional data. Convolutional Neural Networks are able to handle 

the invariances of two-dimensional shapes with their local connection patterns and constraints on 

their weights (LeCun, Bottou, Bengio & Haffner, 1998). For the Text generation part, Recurrent 

Neural Networks are used. The Recurrent Neural Networks are a class of specialized Artificial 

Neural Networks designed for sequences, and have a hidden state which, in the case of Text 

generation, is used along with the input to predict the next word (Sutskever, Martens & Hinton, 

2011). Additionally, Attention has been used in Image Captioning networks to further improve the 

performance by using feature maps of objects instead of lossy fixed length vector. 

 

Attention mechanism is seen in many sequence models (Vaswani et al., 2017). Prior to attention, 

neural networks used to encode the entirety of the image into a fixed length vector, which is used 

to generate captions. The neural networks did not try to concentrate on specific parts of the image, 

which would have higher significance for the caption. This could lead the neural network to 

generate vague captions, ignoring the main subject of the image. Attention mechanisms are used 

to rectify this problem. These neural networks generate caption which contain the object which 

was attended to. However, the parts of the image to attend to is left to the neural network. This 
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results in a variety of captions being generated, each concentrating on different set of objects in 

the image. 

1.1 Statement of the Problem 

Attention based Image Captioning neural networks attend to a few objects in the image, and 

generate a caption. However, there is no guarantee that all objects will be attended to, while 

captioning. This study attempts to design a network that can attend to the object, generating a 

caption which talks about the object. Hence, generated caption is able to give context to the object’s 

presence in the image. 

1.2 Research Question 

The research question addressed in this thesis is: 

 How much does the performance of an Image Captioning Network improve with the 

addition of forced attention? 

The question will be answered by accomplishing the following tasks: 

 Pick objects to focus on, and prepare the dataset. 

 Establish baseline performance using the Soft Attention Model of the Show, Attend and 

Tell architecture (Xu et al., 2015). 

 Implement forced attention on the Show, Attend and Tell architecture (Xu et al., 2015). 

 Evaluate the performance of the forced attention network and compare it to the baselines. 

1.3 Scope 

The aim of the study is to add the ability to concentrate on a specific object to an image captioning 

neural network. This would involve finding a way to specify a common element (hereby referred 

to as focus object) in the dataset, on which the neural network will concentrate. The neural network 

then attempts attend to the focus object while generating the captions. For the neural network, 

existing implementations of encoding and decoding networks used in Image Captioning networks 

are reused. The majority of the study will be focusing on adding the ability to specify the focus 

object, and make the neural network attend to it. The performance of the network is evaluated 

using the same metrics which are used in the baseline (Xu et al., 2015). 
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1.4 Significance 

Image captioning played an important part in the field of Artificial Intelligence. Being able to 

caption an image accurately finds use in a wide variety of areas. Images can be quickly categorized, 

and tagged – which helps with image search engines. Identifying the parts of an image in a person’s 

library helps with search, which was traditionally based only on dates and locations. This is seen 

in Google’s and Microsoft’s cloud offerings, where the uploaded pictures are tagged according to 

the user, their friends, animals and environments. 

The ability to generate captions, which include context for the focus object, would help improve 

image tagging and categorization. Search engines would be able to filter results with even more 

precision, thanks to the neural network’s ability to concentrate on specific objects.  

 

Sentiment analysis of pictures is another research area where focused image captioning finds use. 

Accurate captions help identify the mood of the scene, as well as the associated objects and people. 

This can help in gauging the sentiment not just for the whole image, but narrowed down to specific 

objects and people. Additionally, having the textual representation helps with tagging and indexing, 

so that they can be retrieved and used later.  

The sentiment analysis use-case ties into advertising and merchandising. Brands can accurately 

identify how their merchandise is being shown in pictures shared on social media. It allows a 

company to understand how or what scenarios the object usually appears in, and thereby change 

or adapt their ad-campaigns, or add new merchandise. 

 

Focused image captioning can also be used to generate massive amounts of training data for other 

machine learning algorithms and neural networks. Having an appropriately captioned image 

dataset is extremely time consuming for humans to create. However, having a neural network  

enables researchers to generate massive amounts of training and validation data. As new datasets 

are hard to come by, focused image captioning can be helpful for this use case.  

 

Focused image captioning can be applied on a video as well, where the object can be tracked, and 

all the actions performed can be captioned. Captioning video itself is another active research area 

in Artificial Intelligence. The approaches taken can be broadly split into two. First, where the video 

is split into its individual frames, after which each image is processed separately. The second also 
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involves splitting the video into separate frames. However, the individual images aren’t processed 

separately, rather, they’re fed together in batches to preserve the temporal relations. Focused image 

captioning can be adapted to either of the two methods, to get better results. 

 

Finally, the ability to focus on an object while captioning in a video is useful in video surveillance. 

Apart from tracking a particular subject, the constant captioning of the subject can help build 

index-able and searchable history, ready to be retrieved and used for further analysis. 

1.5 Assumptions 

Assumptions for this study are primarily related to datasets. The following assumptions were made 

for this study: 

 The captions for the images in MSCOCO dataset are assumed to be the ground truth. 

MSCOCO was the largest image captioning dataset available during the time of this study.  

 MSCOCO is assumed to be diverse enough for the trained model to generalize over 

other/newer datasets. This is a common occurrence in machine learning, where the model 

is not able to generalize while running on other/newer datasets. 

 The performance metrics used for evaluation are assumed to accurately convey the quality 

of the generated caption. 

1.6 Limitations 

The study is undertaken with the following limitations: 

 The metrics obtained on the pruned dataset by previous models is used as the baseline for 

evaluations. 

 The focus objects must be from the MSCOCO dataset. As the network is trained on the 

MSCOCO dataset, it is able to identify and caption objects only from this dataset. 

 The attention forcing mechanism is employed for soft attention. 

1.7 Delimitations 

The study acknowledges the following delimitations: 
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 There are more attention mechanisms available, like hard attention. However, they are not 

being worked upon for this study. Soft attention is used because it is easier to modify. The 

attention maps from soft attention models have larger gradients, and hence forcing attention 

is simpler. 

 Given the fast pace of improvements in Convolutional Neural Networks, there are many 

different configurations of networks available for Image Captioning. Though they all have 

a similar overall structure, the individual components are quite different. This study uses 

residual networks, specifically Resnet50. 

 There may be newer, larger captioning datasets available in the future, however, this study 

is restricted to use the MSCOCO dataset. 

  



19 
 

CHAPTER 2. LITERATURE REVIEW 

This chapter is a summary of the recent research literature in Image Captioning, along with its 

constituent tasks - Image Classification and Text Generation. 

2.1 Introduction 

The ability to caption an image is a fundamental problem in Artificial Intelligence. This particular 

problem ties together both Natural Language Processing and computer vision (Vinayals, Toshev, 

Bengio & Erhan, 2015). Hence, Image Captioning requires effort in both those fields for 

implementing a solution. There have been many attempts in this direction; and the past decade has 

seen tremendous progress.  

 

First, early attempts in image captioning before the prevalence of deep neural networks are 

described. The advent of huge datasets and cheap computing power enabled the resurgence of deep 

neural networks. Hence, work done on creating new datasets is covered next. 

 

As image captioning consists of text generation and image analysis, there is ample work done in 

either field which has to be taken into consideration. Hence, next in line are deep learning methods 

for text generation and image analysis. After which, work done in combining both fields to 

generate descriptions of images are reviewed. 

 

Then, attention, which was another pivotal mechanism in deep learning is described. Finally, the 

evaluation metrics used for this study are reviewed. 

2.2 Early Attempts 

Early image captioning involved assigning keywords, or tags to a given image. Pan, Yang, 

Faloutsos and Duygulu (2004) proposed a graph-based approach (GCap) for this particular 

problem. The training dataset had images, with contiguous blobs or regions having a corresponding 

keyword. Then, a graph is built with nodes for images, keywords and contiguous regions. Any 

query image is segmented into contiguous regions, for which similar nodes are retrieved from the 
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graph. The created graph is traversed from the nearest node to generate the keywords. The authors 

used Corel image dataset of 630Mbytes and calculate the percentage of correct keywords. GCap 

consistently outperformed the previous work by Duygulu, Barnard, de Freitas, and Forsyth (2002). 

 

Aker and Gaizauskas (2010) attempted to generate image descriptions by using the image’s 

metadata – the place names and tags associated with the image. The authors argued that just using 

the GPS coordinates attached to the image doesn’t yield enough information for captioning. Aker 

& Gaizauskas (2010) derived an n-gram language and dependency pattern models using their 

earlier works. The method the authors developed applied only to images with static features – 

either man made or natural (Aker and Gaizauskas, 2010). The authors used a bi-gram language 

model for each object type corpus. The dependency pattern was derived by using the Stanford 

parser (Klein & Manning, 2003). The approach involved querying Yahoo! Search engine with the 

image’s toponym. The top 30 results were parsed using an HTML parser to extract the text, and 

the text was sent to the summarizer. While building the summarizer, Aker and Gaizauskas 

excluded any Virtual Tourist sites, as those websites were used as a part of the training corpus 

itself. The summarizer was an extractive, query-based multi-document summarization system. It 

took two inputs: a toponym for the image, and a set of documents to be used for generating the 

description. As the summarizer may generate multiple sentences, each sentence is scored. For 

scoring the sentences, linear function with weighted features was used, where the weights were 

learned using linear regression. Images and their respective descriptions from Virtual Tourist 

website were used for training the linear regression model.  Finally, Aker and Gaizauskas used 

ROUGE (Lin, 2004) and manual readability as metrics for evaluating their results. Their model 

improved over their previous results, improving ROGUE R2 from 0.095 to 0.102, and ROGUE 

RSU4 from 0.145 to 0.155. However, when evaluating manual readability compared to Wikipedia, 

the authors mentioned that their model performed better in one feature – grammar, but still needed 

improvement in the remaining – clarity, focus, coherence, and redundancy (Aker & Gaizauskas, 

2010). 

2.3 Advent of new Datasets 

Ordonez, Kulkarni and Berg (2011) introduced a new method of captioning images, along with a 

new dataset with a million images. Their new dataset contained images, along with the associated 
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captions written by people. Along with the dataset, the authors proposed two methods to generate 

captions. First was a description generation method which utilizes global image representations to 

retrieve and transfer captions from a dataset to the query image. The second method involved 

utilizing both global representations and direct estimates to produce relevant image descriptions. 

 

To build the dataset, Ordonez et al. (2011) queried Flickr with pairs of query terms, generating a 

large but noisy set of photographs and their associated text. Then, this noisy set of pictures and 

text was filtered, so that the descriptions attached to each photograph are relevant, and visually 

descriptive. For an input query image, global similarity with the dataset is computed. After finding 

the closest matching candidates, the authors transfer the descriptions. The image’s constituent 

Objects, Stuff, People, Scenes and Frequency measure (TFIDF) were used to rank the captions. 

Finally, by training a linear regression model with the generated caption and its resulting BLEU 

score, the authors predicted the best caption. For the second method, 100 most similar images to 

the query were selected. From these images, the constituent Object, Stuff, People, Scene and 

Frequency ranks are extracted, on which an SVM is trained with 5-fold cross validation. The 

authors mention seeing some reasonable results – sometimes describing a scene extremely well, 

some even having good description of attributes, or “being poetic” (Ordonez, Kulkarni & Berg, 

2011). However, there are equally irrelevant descriptions generated too. Overall, the model 

achieved a BLEU-1 score of 0.125 when used with the linear SVM. The authors switched the linear 

SVM with a linear regression model, which resulted in a BLEU-1 score of 0.121. 

 

Microsoft (Lin et al., 2014) released the MSCOCO dataset, also called common objects in context , 

in 2014. Lin et al. (2014) gathered images of complex everyday scenes – which contain common 

objects in their natural context. The dataset is labeled using per-instance segmentations – allowing 

precise object localization. This new dataset contained 328k images with 2.5 million labeled object 

instances. These images were further categorized into 91 different types of objects. The authors 

used Amazon’s Mechanical Turk (Amazon Mechanical Turk, 2018) to add the features to the 

dataset. The dataset had to be annotated to add the category labels, presence of an object, and its 

localization. All of these were delegated to the Mechanical Turk annotators, which required 70,000 

worker hours.  
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Google (Sharma, Ding, Goodman & Soricut, 2018) published a massive dataset containing ~3.3 

million image and caption pairs called Contextual Captions. The authors created this dataset by 

processing billions of webpages in parallel, from which the candidate image and caption were 

extracted. Only the images with a minimum height and width of 400px were used. Each image’s 

alt-text was extracted and processed by Google Cloud Natural Language API, focusing on the 

Parts of Speech, sentiment/polarity and profanity annotations (Sharma, Ding, Goodman & Soricut, 

2018). Similarly, Google Cloud Vision service was employed to assign class labels to the images. 

These class labels are used along with the extracted alt-text to create candidate captions. This 

involved removal of noun modifiers, dates, durations. The identified named-entities were 

appropriately substituted. In addition to publishing this massive dataset, the authors trained two 

image main captioning models, one being a model similar to the baseline used for this study – 

Show and Tell (Vinyals et al., 2015), and the second - a pure attention model (Vaswani et al., 

2017). The authors report that both models when trained on this new dataset perform better than 

the same models trained on MSCOCO. 

2.4 Deep Learning Techniques 

The availability of large datasets like MSCOCO along with cheaper computing infrastructure 

helped usher in the era of deep learning (Jones, 2014). The Image captioning networks can be split 

into two parts – the network which analyzes the input image, and the network which generates the 

caption. Both these neural networks had their own staple methods and properties, along with their 

own breakthroughs. 

2.4.1 Usage of Deep Learning Techniques for Text Tasks 

Though there are many deep learning based approaches in this direction, this review concentrates 

on few pivotal works – use of Recurrent Neural Networks (RNN), namely, Long Short-Term 

Memory units (LSTM); Convolutional Neural Networks (CNN) and Visual Attention. All of these 

built upon their previous work and advanced the state-of-the-art further, improving the 

performance.  

 

RNNs themselves have been successfully used to generate sequences in various domains – like 

music (Boulanger-Lewandowski, Bengio & Vincent, 2012) and text (Sutskever, Vinyals & Le, 
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2014). They are fuzzy, and hence do not have exact templates to match the predictions. Fuzzy 

predictions also have the benefit of not suffering the curse of dimensionality (Graves, 2013). Any 

arbitrary sequence can be modelled by a large RNN. However, in practice, RNNs have amnesia, 

where the prediction is based only on the previous few inputs. This means they cannot recover 

from past mistakes, as they will keep continuing to do the same. Furthermore, generic RNNs also 

suffer from vanishing (or exploding) gradients – where the error either vanishes or explodes if the 

time steps are long. LSTM cells (Hochreiter & Schmidhuber, 1997) were designed to alleviate this 

problem. 

 

Long Short-term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) units are Recurrent Neural 

Networks (RNNs) with architecture designed to be better at storing and accessing information than 

generic RNNs (Graves, 2013). The LSTM cells have a hidden state, which stores information about 

the previously generated outputs. The information about previous outputs is used while generation 

of each word. Sundermeyer, Schlüter and Ney (2012) applied LSTM cells to language modelling 

tasks on English and French datasets. Penn Treebank and Quaero French datasets were used for 

their study. By using LSTMs along with standard neural networks, the perplexity was improved 

by 8%.   

 

Bahdanau, Cho and Bengio (2014) proposed a language translation mechanism using only RNNs. 

They built an encoder-decoder network which could be jointly trained. Previous efforts involved 

translating the source sentence to a fixed length vector (Bahdanau, Cho & Bengio, 2014). This 

meant the algorithm had to compress all the information from the arbitrary length input sentence 

into a fixed length vector – which is lossy. Instead, the proposed neural network encodes the input 

into a sequence of vectors, and chooses a subset of these vectors while decoding. This neural 

network has a Bidirectional RNN as an encoder, whose output is given to the decoder which 

emulates searching through a source sentence. The encoder has forward and backward RNNs each 

having 1000 hidden units, whereas the decoder network has 1000 hidden units. Both segments use 

a multi-layer network with a single maxout hidden layer to compute the conditional probability of 

each target word. The authors (Bahdanau, Cho & Bengio, 2014) report that their neural network 

architecture scores 21.5 and 26.75 compared to the previous architecture’s scores of 13.93 and 

17.82 on the BLEU metric. 
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Few of the commonly used regularization mechanisms (Hinton et al., 2012) in generic deep neural 

networks could not be adapted for RNNs, due to their recurrent connections (Zaremba, Sutskever 

& Vinyals, 2014). Dropout was one such mechanism, where neurons are randomly turned off was 

often used to avoid overfitting. Large and complex RNNs often overfit, which made generalization 

a problem. Therefore, practical applications of RNNs had smaller models to avoid overfitting.  

Zaremba, Sutskever and Vinyals (2014) presented a simple recipe for applying dropout for LSTMs, 

which successfully reduces overfitting. The main contribution of their paper was the application 

of dropout only to the non-recurrent connections. 

2.4.2 Deep Learning Techniques for Image analysis and Classification 

The field of deep learning-based Image analysis and Classification has seen extensive work being 

done. There are many popular networks (for example, ResNet (He, Zhang, Ren & Sun, 2016), 

VGG16 (Simonyan & Zisserman, 2014),  AlexNet (Krizhevsky, Sutskever & Hinton, 2012)) that 

give good results on image datasets. They all use the Convolutional Neural Network, in which a 

set of kernels is used to convolve the input image and generate a feature map. Over the past few 

years, there have been quite a few novel uses of Convolutional Neural Networks for Image 

Classification, where various new techniques like multi-scale, sliding window (Sermanet, Eigen, 

Zhang, Mathieu, Fergus & Lecun, 2013) and very deep convolutional networks (Simonyan & 

Zisserman, 2014) were used.  

 

Overfeat architecture was proposed by Sermanet, Eigen, Zhang, Mathieu, Fergus and Lecun 

(2013). Here, the authors show that by making the network perform multiple tasks, the resulting 

accuracy is boosted. They use sliding windows over multiple-scales for their network. Then the 

network is trained to classify the central pixel of the viewing window, using the window contents 

as the context. The network is given three main tasks – classification, localization, and detection. 

Each task can be considered as the subtask of the next. For the classification, the network uses a 

7-layer neural network, of which five are Convolutional Neural Networks, and two are fully 

connected networks. This 7-layer neural network uses a sliding window along with multi-scale 

classification. Next is the localization task, where the network’s classification output is sent to a 

regression layer, which generates possible bounding boxes. Hundreds of bounding boxes are 
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generated, which are merged to get the best possible box. The detection task is at the end, which 

is similar to the classification task. The only difference being that its necessary to predict a 

background class even if there is no object present. The Overfeat architecture (Sermanet, Eigen, 

Zhang, Mathieu, Fergus & Lecun, 2013) won the ILSVRC12 and 13 competitions with 29.9% 

error.  

 

Donahue et al. (2014, January) proposed a way of using pre-trained networks for smaller datasets. 

Deep neural networks typically require large amounts of data (Sze, Chen, Yang & Emer, 2017). 

So, datasets which may not have enough labeled data cannot be used for training a deep neural 

network. Donahue et al. (2014, January) propose a supervised pre-training of the network – on a 

large labeled dataset. The network is able to learn salient features by themselves without the need 

for hand-engineering the features. Then, the authors pick the 6th and 7th layers of the network – 

fully connected layers which come after the Convolutional layers. These layers are selected to 

capture the feature representation that is generic enough to be used with a smaller dataset, while 

not being noisy. Then, an SVM is trained using the feature representations and performance is 

evaluated. The authors mention that the 6th layer performs much better for the Object recognition 

and domain adaptation tasks. However, for subcategory classification tasks and scene recognition 

tasks, the 7th layer is reported to perform better. Donahue et al. (2014, January) mention that their 

architecture dramatically outperforms the baselines. 

 

Simonyan and Zisserman (2014) investigated the effect of depth of the Convolutional Neural 

Network on accuracy. They used smaller 3x3 filters instead of large filters, and increased the depth 

to get similar accuracy as the large filters. This is in contrast with other top performing models of 

ILSVRC-12 and 13 (Krizhevsky, Sutskever & Hinton, 2012) – which used large filters in the initial 

layers itself. These models had filters as large as 7x7 and 11x11 (Krizhevsky, Sutskever & Hinton, 

2012), which are in stark contrast with the approach taken in Simonyan and Zisserman (2014).  

Instead, the depth was increased, going as deep as 19 layers which improves the accuracy.  

Simonyan and Zisserman (2014) ran their models on the ILSVRC-12 dataset (Russakovsky et at., 

2015), which had 1.3M training images with 1000 classes. The model was named VGG (after the 

lab where it was created, Oxford’s Visual Geometry Group), which outperformed the previous 

generation best performers. The authors secured the 2nd place in the ILSVRC-14 challenge, with 
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7.3% test error. Their model is competitive with the GoogLeNet (Szegedy et al., 2015). The authors 

claim this is remarkable, as they used just combined two models as an ensemble, which is 

significantly less than what is used in most of the ILSVRC submissions. This shows that increasing 

the filters isn’t always required for complex and large volume tasks. 

2.4.3 Image Captioning with Deep Learning 

The previously mentioned efforts in both text generation and image analysis and classification are 

tied together for image captioning. The archetypal approach seen in Image Captioning 

architectures is a Convolutional Neural Network for the image analysis (encoder), and then a 

Recurrent Neural Network for the caption generation (decoder). Numerous innovations have been 

done in each segment to improve the performance.  

 

Vinyals, Toshev, Bengio and Erhan (2015) presented a new neural network architecture called 

Show and Tell, which tries to maximize the likelihood of the target description sentence given the 

image. Show and Tell uses a Convolutional Neural Network to detect objects within an image. 

Then, a Recurrent Neural Network takes these detected objects and generates the caption. For the 

Recurrent Neural Network, they use the Long Short-Term Memory units (LSTMs) (Hochreiter & 

Schmidhuber, 1997).  

 

For the Show and Tell neural network architecture, the authors used BLEU metric (Papineni, 

Roukos, Ward & Zhu, 2002) , which is the most commonly used metric for evaluating image 

description. It is a form of precision of word n-grams between generated and reference sentences. 

The second metric was manual work, for which Amazon’s mechanical turk was employed. The 

dataset used for the study was MSCOCO, which was the largest dataset for this task at the time. 

Show and Tell achieved near to the state of the art, and was competitive to the human performance 

in all categories. This neural network architecture achieved a BLEU-4 score of 27.2. Many authors 

would later build on this work and improve the scores further. 

 

Fang et al. (2015) proposed a unique neural network architecture, where they trained visual 

detectors for words that commonly occurred in captions. The authors used multiple instance 

training to train visual detectors for words, whose outputs are used as conditional inputs for the 
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max-entropy language model. This is in contrast with the usual approach taken in this field – using 

Convolutional Neural Networks to map images to vectors, after which the vectors are fed to a 

Recurrent Neural Network to generate a caption. Another approach is using pure statistical 

approaches, for guiding language models using images. The authors, instead, use both, neural 

networks and statistical approaches . Starting with Convolutional Neural Networks, which detect 

object regions on images. Then, the regions are associated with words using multiple instance 

learning. The authors try to minimize the a priori assumptions when looking at how sentences 

should be structured. Finally, text generation problem is solved as optimization problem along 

with a search for the most likely sentence. Therefore, the visual detector architecture (Fang et al., 

2015) learns to extract nouns, verbs and adjectives from regions in the image. The extracted words 

are used to guide the language model to which generates the text. This neural network architecture 

became the state of the art at the time, producing a BLEU-4 score of 29.1% on the MSCOCO 

dataset. The authors mentioned that their architecture outperformed the previous models on all 14 

metrics of the MSCOCO image captioning task, and managed perform equally or better than 

humans on 12 of the 14. 

 

Chen and Lawrence (2015) explored another facet of Image Captioning. They looked at the bi-

directional mapping between the images and the description. The aim was to learn this mapping 

using a Recurrent Neural Network. This approach is unique, as most previous approaches map 

both the image and the sentence to a common embedding space. The bi-directional nature meant 

that their model could generate images from sentence features, and sentences from image features. 

The Bi-Directional neural network architecture used an existing pre-trained model for classifying 

the image, and then a Recurrent Neural Network to generate the description. The authors added a 

recurrent visual hidden layer, which attempts to reconstruct the visual features from the previously 

generated words. So, this neural network architecture can compare its visual memory of what it 

already said, to what it currently observes. Using this knowledge, the neural network architecture 

predicts what to say next. The authors mentioned that the language model contained anywhere 

from 3000 to 20000 words. A maximum entropy model was used to reduce the perplexity, which 

was learnt from the training corpus. The authors (Chen & Lawrence, 2015) report that their neural 

network architecture consistently beat the Midge and Babytalk (Kulkarni et al., 2013) models, and 

performs near to humans when looking at the BLEU scores on MSCOCO dataset. The authors 



28 
 

reported that they achieved a BLEU, METEOR and CIDer scores of 18.4, 19.5 and 53.1 on the 

MSCOCO dataset, where human performance was at 21.7, 25.2 and 85.4 respectively.  

 

Karpathy and Fei-Fei (2015) published a paper called Visual-Semantic Alignment. They used 

Convolutional Neural Networks over image regions, Bi-Directional Recurrent Neural Networks 

for the sentences, and aligned both of them using a multimodal embedding. Their trained network 

uses this inferred alignment to generate novel descriptions of a given image.  

According to the authors, the two main contributions were – creating a new model which can infer 

the alignment of the segment of the sentence and the region of the image, and then creating a 

network which was able to get state of the art results on Image-Sentence ranking tasks on Flickr8K, 

Flickr 30K. The Visual-Semantic Alignment architecture outperforms the retrieval baselines on 

full images as well as a new dataset of region-level annotations. It also outperformed the previous 

work done in this task – getting a R@1 (Recall @ K, where K can be 1, 5, 10) score of 22.2 on 

Flickr 30K compared to a previous best of 18.4. Karpathy and Fei-Fei (2015) also talk about the 

limitations in their model, as their neural network architecture is restricted by the input image 

resolution. The authors mention that approaches using multiple saccades around the image to 

identify all entities, their mutual interactions, and wider context before generating the description 

would help. 

2.5 Further Innovations in Image Captioning 

All the novel approaches described in the previous sections were all reused, improved upon, and 

assembled in even better neural network architectures.  

 

SentiCap (Mathews et al., 2016) is a neural network architecture with the aim to generate captions 

with sentiment – they appear more human-like, and contain more descriptive adjectives. Here, the 

authors employ two CNN-RNN networks. Each of the neural networks is an archetype of 

convolutional image encoder - recurrent text decoder neural network architecture. One is for 

generating the factual image description, and the other is specifically for generating words with 

sentiment. SentiCap has an additional switching gate, which is employed to switch and combine 

the outputs. This switching gate generates a probability of switching between the two RNNs at 

each time, with a single layer network taking the hidden states of both RNNs as input (Mathews 
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et al., 2016). Another point to note was that the authors trained the networks for positive and 

negative sentiments separately, as both could be valid of majority of the images. For evaluating 

SentiCap, the authors employ both automatic metrics as well as crowd-sourced judgments with 

Amazon Mechanical Turks (AMTs). The automatic metrics are the BLEU, ROGUE, METEOR, 

and CIDER metrics. Whereas, the crown-sourced metric involved AMT tasks, where each image 

had two captions - one generated from the factual description generator and one with sentiment. 

The AMT workers had to rate the descriptiveness, and pick the more positive or negative caption. 

To  ensure the quality of manual evaluation, the authors made sure at least two people agreed on 

the positive or negative sentiment selection. The authors reported that their network had 

significantly more sentences with sentiment words than any of the three baseline methods they 

picked. They also note that, on average, their network was judged by the AMT workers to have 

stronger sentiment compared to the baselines. Finally, SentiCap is reported to generate 95.7% 

novel captions, compared to the author’s factual caption network, which generated 38.2% novel 

captions - on MSCOCO (Mathews et al., 2016).  

 

Another interesting use-case which finds home in this field is question answering systems. As the 

neural networks are able to comprehend the content of an image, and generate its textua l 

representation, work has been done to take this further to build question answering systems.  

 

In this particular study (Ma, Lu & Li, 2016), the authors emphasize on the network’s ability to 

learn the inter-modal interactions. Their neural network architecture is jointly trained to produce 

the answer for a given image and its question. The unique component of the paper is that instead 

of the usual approach of using RNNs for the text generation, the authors use CNNs. This contrast 

is explained by the authors, where they compare their CNN only neural network architecture with 

the CNN-RNN architecture. The authors explain that such networks ignore the different 

characteristics of the questions and answers. The questions - being lengthy, and have a somewhat 

similar structure, differ from answers - which are usually short, and tend to be a single word. Yet 

another justification is offered by the authors for their use of CNNs for text generation. The usual 

approach is using LSTM cells to jointly model the image and question by treating the image as an 

independent word, and appending it to the question at the beginning or the end (Ma, Lu & Li, 

2016). The authors however argue that treating the image as a word cannot effectively exploit the 
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relations between the image and the associated question. The authors propost their neural network 

architecture, which consists of three individual CNNs. The image encoder is a CNN, and then a 

sentence CNN for generating the question representation, and finally a multimodal CNN, which 

fuses the image and question representation to create the joint representation. This is finally fed to 

a softmax layer to generate the answer. This whole neural network is jointly trained in an end-to-

end fashion. The metrics used for evaluating this network is the Wu-Palmer similarity (Wu & 

Palmer, 1994). Also called WUPS, it calculates the similarity between two words based on their 

common sub-sequence in a taxonomy tree (Ma, Lu & Li, 2016). WUPS requires threshold 

parameters, which are set to 0.0 and 0.9 for the WUPS@0.0 and WUPS@0.9 respectively. Apart 

from WUPS, the authors use the accuracy, measuring the proportion of the correctly answered 

questions. The proposed neural network architecture (Ma, Lu & Li, 2016) outperforms all the 

compared models/networks on the DAQUAR-All dataset (Malinowski & Fritz, 2014). Similar ly, 

on the DAQUAR-reduced dataset, their network again outperforms the competition. Finally, on 

the COCO-QA dataset (Ren, Kiros & Zemel, 2015), the proposed neural network architecture (Ma, 

Lu & Li, 2016) outperforms all the competing networks.  

 

Quite recently, there was work done in extracting facts from Images. Sherlock (Elhoseiny et al., 

2017) is one such neural network architecture consisting of two components for encoding – a CNN 

for the visual processing, and a word2vec for the associated caption. The Sherlock architecture 

then attempts to associate the caption and image to generate facts. To do so, the authors (Elhoseiny 

et al., 2017) attempt to minimize the distance between the two embedding spaces – the feature 

map, and the word embedding. The Sherlock architecture is reported to understand various objects, 

actions, as well as interactions between objects. The authors also create a large-scale benchmark 

for such tasks - containing over 814,000 examples and 202,000 unique facts, and show the value 

of relating facts by structure using the proposed model (Elhoseiny et al., 2017). The Sherlock 

architecture is reported to get the best mean Average Precision over all competing models. 

 

Aditya (2017) worked on building explainable image understanding neural networks, which can 

be used to generate captions and answer questions. This work built upon previous work in that 

direction (Aditya et al., 2015)– based on visual common sense, and scene description graphs. The 

author proposes a neural network architecture called DeepIU (Aditya et al., 2016), where the visual 
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data is combined with background knowledge. It is then looped through visual and reasoning 

modules until the results are exhausted, and is able to answer questions about the image, or 

generate description of the said image. This particular architecture takes inspiration from how 

humans function – where the knowledge is continuously refined by asking questions. Another 

noteworthy task tackled by the author is the ability to answer riddles. The author reports that the 

proposed network is able to achieve few interesting on riddles which are harder for humans as well.  

DeepIU (Aditya et al., 2016) performs better than (Karpathy & Fei-Fei, 2015) while measuring 

recall. 

 

Reference based LSTM (Chen et al., 2017) is a simpler neural network architecture which uses the 

classic CNN-RNN architecture. However, the authors employ weighted training for the neural 

network. During training, the authors assign different weights to words. Therefore, the neural 

network is able to assign importance, and hence can better learn key information required for 

captioning. Higher weights were assigned to words which indicate important elements, such as the 

subject, etc. While generating the caption, a consensus score is utilized to exploit the reference 

information of neighbor images (Chen, Ding, Zhao, Chen, Liu & Han, 2017). Reference based 

LSTM (Chen et al., 2017) uses the VGG-16 (Simonyan & Zisserman, 2014) as the CNN encoder 

for extracting image features. For the RNN decoder segment, LSTM cells are used. The authors 

compared their proposed neural network architecture with sever state-of-the-art networks. The 

proposed approach performs better on all metrics (BLEU-1, 2, 3, 4, METEOR, CIDER and 

ROGUE) compared to the previous state-of-the-art neural networks. 

2.6 Advent of Attention Models 

In CNN-RNN architectures, the algorithm is left on its own to find out the entities and generate 

sentences. However, there can be many instances where the algorithm does not look at the relevant 

parts of the image or the algorithm does not pay enough attention to the relevant parts of the image.  

This happens because the neural network compresses the features from the input image into a fixed 

length vector. Attention models attempt to rectify that problem, and allow the model to attend to 

specific parts of the image. With Attention, the neural network can use the features detected in the 

image separately, bypassing the lossy fixed length vector representation.  
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Ba, Mnih and Kavukcuoglu (2014) presented a new approach – using attention for generating 

descriptions of images. The authors employed reinforcement learning, which is usually used in 

training autonomous agents. The proposed neural network was trained to attend to specific parts 

of the image using reinforcement learning, and hence, the neural network could learn to both 

localize and recognize multiple objects. The authors (Ba, Mnih & Kavukcuoglu, 2014) take 

inspiration from the way humans perform – continually moving the fovea to the next relevant 

object, recognizing it, and adding it to the internal representation of the sequence. The authors 

perform a multi-resolution crop of an input image, called a glimpse (Ba, Mnih & Kavukcuoglu, 

2014). The proposed neural network architecture uses each glimpse to update its internal 

representation, and then outputs the next glimpse location as well as the next object in the sequence. 

The authors let the model continue until it decides there are no more objects left to process. As 

mentioned before, this lets the neural network to do both localization and recognition of multiple 

objects. The authors evaluated their neural network architecture on the standard SVHN sequence 

recognition task (Netzer et al., 2011), where it outperforms the state-of-the-art. The proposed 

neural network architecture got a test error percentage of 3.9%, compared to 3.96% of the state-

of-the-art. Another unique aspect is that their model uses less parameters and is less 

computationally intensive than the CNNs which look over the entire image, highlighting the fact 

that attention mechanisms can improve the accuracy and efficiency of CNNs.  

 

Building on Show and Tell (Vinyals, Toshev, Bengio & Erhan, 2015) neural network architecture, 

Xu et al. (2015) introduced a new model – Show, Attend and Tell. Xu et al. (2015) show visually 

how their proposed neural network architecture is able to automatically learn to fix its gaze on 

relevant and salient objects while generating the corresponding words in the output sequence. The 

authors introduced two attention mechanisms – a “soft” deterministic mechanism which is easily 

trainable by standard back propagation methods, and a “hard” stochastic attention mechanism 

which is trainable by maximizing an approximate variational-lowerbound. Apart from this, the 

authors were able to visualize this model, and hence could see “where” and “what” the model was 

paying attention to. Finally, Show, Attend and Tell (Xu at al., 2015) achieved the state-of-the-art 

performance on the three popular benchmark datasets – Flickr8K (Hodosh, Young & Hockenmaier, 

2013), Flickr30K (Young at al., 2014) and MSCOCO (Lin et al., 2014). Show, Attend and Tell 

(Xu at al., 2015) scored BLEU-1 score of 67 on Flickr 8K with both hard and soft attention whereas 
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the previous best were 63 and 65.6. In the Flickr 30K, the BLEU-1 scores for the proposed soft 

and hard attention neural network architectures were 66.7, and 66.9. The previous best was 66.3. 

Similarly, in MSCOCO, the proposed soft and hard attention neural network architectures got 

BLEU-1 scores of 70.7 and 71.8 compared to the previous best – 70.8. 

 

Lu, Xiong, Parikh and Socher (2016) proposed another novel approach using attention. They 

proposed the use of a “visual sentinel”, which the decoder network can use when generating non-

visual words. This is because the decoder doesn’t require any visual cues while generating non-

visual words like “on”, “of”. So, the neural network decides whether to attend to the image, and 

where to attend, while extracting meaningful information. If the visual cues aren’t required, it uses 

the sentinel instead. This visual sentinel is a new long short-term memory (LSTM) extension, 

which provides the fall back option for the decoder. Hence, the authors (Lu, Xiong, Parikh & 

Socher, 2016) a new encoder-decoder framework that can decide automatically when to look at 

the image, and when to look at the language model (sentinel) while generating the next word. The 

authors proposed a newer attention model and built upon it for making the visual sentinel. Their 

proposed neural network architecture improves the BLEU 1, 2, 3, 4, METEOR and CIDer scores 

on Flickr30k and MSCOCO datasets compared to previous architectures. 

 

Further improvements to attention mechanism was the use of Global-Local attention (Li et al., 

2017). Here, the authors propose the use of two image encoding networks – one for extracting 

global features, and one for local features. Then,  global features are fused with the local features 

using an attention mechanism. This is used by the decoder network to generate the captions for an 

image. Global-Local attention architecture (Li et al., 2017) uses VGG-16 (Simonyan & Zisserman, 

2014) for the global feature extraction, and a Faster R-CNN (Ren, He, Girshick & Sun, 2015) for 

the local features. The proposed attention mechanism then dynamically weights each feature along 

with the sentence generation procedure. The decoding layer employed a two-layer LSTM, which 

generates the caption for the input image. The authors report state-of-the-art performance on the 

MSCOCO dataset. 

 

The task of generating a narrative, given a set of related images, was tackled by Let Your Photos 

Talk (Liu, Fu, Mei, & Chen, 2017). For this task, the network has to remember the previously read 
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photos, as well as the generated text while generating the words in a sentence. Here, the authors 

use Bi-directional attention based RNNs (BARNN). They argue that a cross-modal embedding 

model can handle the inherent visual variance in a stream of pictures, hence can represent the 

underlying story. The authors propose a BARNN framework which includes their new kind of 

GRU called skip-GRU (Liu, Fu, Mei & Chen, 2017). It is able to handle the implicit semantic 

relations, so as to enforce coherence in the generated sentences. The proposed neural network 

architecture has a CNN which was extracted from the popular VGG-16 network (Simonyan & 

Zisserman, 2014). It is followed by a classic feed forward/fully connected network. The output of 

this feed forward network is fed to the BARNN to generate the corresponding sentence vectors. 

The outputs of both the feed forward network and BARNN are then matched in an embedding 

space, from which output is generated. The authors posit that there are two-fold benefits from the 

new skip-GRU cell: coherence between states and addition of a non-linearity. As non-linear 

functions are extremely useful for complicated mappings, it helps immensely in learning (Liu, Fu, 

Mei, & Chen, 2017).The authors report that their model scores METEOR scores above their 

assumed baseline.  

2.7 Molding the Attention Models 

The attention models described were dependent on the features learned by the network – which 

means there is still a certain degree of lack of control. On the other hand, there might be a need to 

modify or mold the attention models to better suit the needs. This leaves the existing attention 

models wanting. This particular area is being dealt with in this study. The current section describes 

a few approaches taken in this direction. 

 

There are a few notable studies dealing with correcting or guiding the attention. They provide a 

good base to start, and employ for this study. Before looking at the aforementioned works, 

exemplar learning has to be described.  

 

When employing a deep neural network, large dataset is assumed to be available. However, this 

might not be the case all the time. Exemplar learning helps with this problem by learning the 

similarity of data with existing knowledge (Bautista, Sanakoyeu, Tikhoncheva & Ommer, 2016). 

CliqueCNN (Bautista, Sanakoyeu, Tikhoncheva & Ommer, 2016) is an example, where the 
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authors employ unsupervised exemplar learning for deep neural networks – CNNs in particular. 

Exemplar learning deals with learning the similarity with existing knowledge, which the authors 

use for training CNNs with smaller datasets. The unsupervised exemplar learning proposed 

handles these limitations by updating the similarities and CNNs (Bautista, Sanakoyeu, 

Tikhoncheva & Ommer, 2016).  

 

Another exemplar approach was employed as a sampling scheme in the paper titled Text-Guided 

attention model for Image Captioning (Mun, Cho & Han, 2017). Here, the authors propose a new 

attention model – where the text is used to guide the attention to get better performance. The 

authors used exemplar approach with captions, and hence the  captions used in training are reused 

for inferencing. The neural network consists of a CNN layer for extracting feature maps, a Skip-

Thought Vector (STV) model (Kiros et al., 2015) for pulling the guidance caption, which is then 

followed by the text-attention model. Finally, an LSTM layer is employed to generate the text. 

Once the CNN is fed the input image, an STV model fetches candidate captions from the training 

dataset. The candidate captions are dependent on the visual similarity of the candidate image, as 

well as the caption consensus scores. Out of these fetched captions, a random caption is sampled 

using the means described in the previous paper, and used as a guidance caption. The query image 

is also fed to the CNN layer, which extracts the feature maps, and feeds it to the text-guided 

attention model along with the guidance caption from the STV. These inputs are weighted (using 

an attention weight map) and then summed before applying a softmax. Finally, the output of 

attention is fed as the initial hidden state to the LSTM layer, which generates the caption for the 

image. The authors report that this network outperforms all the compared models in most, if not 

all metrics. The authors switch between VGG (Simonyan & Zisserman, 2014), and ResNet (He, 

Zhang, Ren & Sun, 2016) as the CNN for performance comparisons, of which the ResNet version 

performs the best. 

 

Yet another approach for ensuring correct attention was proposed by Liu, Mao, Sha and Yuille 

(2017). Their work, titled Attention Correctness in Neural Image Captioning involves a 

quantitative metric for measuring the correctness of the attention map. A supervised attention 

model requires ground truth attention annotations, which are difficult to obtain. Instead, the authors 

use bounding boxes for each detected object as a general area within which the attention can be 
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applied. Hence, datasets which contained the bounding box information – Flickr30K (Young at al., 

2014) and MSCOCO (Mathews et al., 2016) were used. The authors put forth two kinds of 

supervised attention models – strong, and weak. The strong supervised attention model requires 

precise knowledge of the bounding box, and the associated word. Hence, while generating 

attention maps, the authors (Liu, Mao, Sha & Yuille, 2017) make the weights 0 if the region is not 

within the expected bounding box. This forces the attention to be within the expected bounding 

box – thereby giving more accurate results. The weak supervised attention model tackles the case 

when there isn’t a ground truth mapping between bounding boxes, and their associated words. 

Here, the authors approximate image to language similarity with language to language similarity. 

The current word, and the class label similarity is used, and the best bounding box is picked. It 

then follows the same procedure as the strong supervised attention model. For evaluating whether 

the attention model is within the bounding box, they employ a simple technique. The authors add 

all the weights within the bounding box, and normalize the value between 0 and 1. Then the 

attention map which gives the maximum value of the said sum is picked. The authors used the 

BLEU, and METEOR metrics to evaluate their proposed neural network architecture. The non-

supervised attention model (called implicit attention model) is used as baseline, and the authors 

report that the scores increase consistently after the introduction of the supervised attention model. 

The authors mention BLEU-4 in particular, citing a 0.9% and 0.7% increase on Flickr30K, and 

MSCOCO datasets. 

 

Guided attention was another approach worked on by Li, Wu, Peng, Ernst and Fu (2018). The 

authors created an end-to-end architecture which generated accurate attention maps unlike the 

usual approaches which result in coarse maps. The aim of the authors for this research was to 

create as architecture which can generate improved attention maps all the while operating within 

the constraints of weakly supervised learning. The usual approaches, according to the authors, are 

not end-to-end, and involve extra work after training the neural network. Then, random parts of 

the image are hidden while training, thereby forcing the network to learn various different areas of 

attention for the object. The resulting attention maps are combined later to create the final maps. 

Another approach the authors mention is the use of two networks. First network used to generate 

rather coarse attention maps, which are then used to hide those parts in the image. This new 

composite image is fed to the second network, forcing it to learn to attend on the remaining parts 
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of the image. Instead of these usual approaches, the authors propose an end-to-end architecture, 

which consists of two parts, each sharing the same shared weights. For each object class, the first 

part of the neural network generates the attention map, which are used to get the gradients 

corresponding to each class. These are used to calculate the inputs to the second part of the network. 

This input is a mask on the input image, hiding the coarse class. The second network has to now 

identify the same class using the remnants of the image. The uniqueness however is due to both 

parts using the same shared weights, and hence trained jointly. Each part contributes to a loss, 

which are added and then used for the weight updates. This proposed join neural network 

architecture (Li, Wu, Peng, Ernst & Fu, 2018) outperformed the state of the art, getting accurate 

segmentation areas. 

2.8 Evaluation Metrics 

There are 7 metrics which are typically seen in image captioning studies: BLEU 1, BLEU 2, BLEU 

3, BLEU 4, ROGUE, METEOR and CIDEr, all described in this section. 

 

BLEU (Bilingual evaluation understudy) was created to measure the quality of text generated by 

machines when translating text from one language to another. It is a precision metric, reported to 

correlate highly with human evaluation (Papineni, Roukos, Ward & Zhu, 2002). Hence it has been 

used to evaluate almost all efforts made in this field. The score is dependent on the n in the n-gram 

being considered. Hence, usually, BLEU-1, BLEU-2, BLEU-3, and BLEU-4 are reported. The 

higher n-gram scores correspond to grammatical well-formedness (Banerjee & Lavie, 2005). The 

scores are generated by comparing the model generated text, and the dataset’s captions. However, 

there has been criticism of the BLEU metric (Callison-Burch, Osborne & Koehn, 2006) – where 

the authors report that permuting the words according to the bigram gets good scores for sentences 

with no grammatical sense. Further, Callison-Nurch, Orborne and Koehn (2006) mention that the 

BLEU metric cannot be guaranteed to correlate with human judgements, and provide evidence 

where BLEU ranked a poor phrase-based MT system a higher score compared to a good rule-based 

system (Callison-Burch, Osborne & Koehn, 2006). Hence, few more metrics – ROUGE (Lin, 

2004), METEOR (Banerjee & Lavie, 2005) and CIDer (Vedantam, Lawrence & Parikh, 2015) will 

be used for evaluation as well. All the mentioned metrics are bundled in the MSCOCO evaluation 

script, and hence can be run simultaneously.  
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The author of ROUGE (Recall-Oriented Understudy for Gisting Evaluation) package (Lin, 2004) 

mentions that BLEU was made with evaluation of machine translation in mind, and hence ROUGE 

was made for better comparison and evaluation of summaries. ROUGE-L, which is used for this 

task, is a part of the MSCOCO evaluation script. It is used for evaluating how similar sentences 

are, by considering the Longest Common Subsequence (LCS). It doesn’t require consecutive 

matches, but rather, in-sequence matches. If two sentences are same, the score is 1, and if there is 

no similarity, the score is 0. One disadvantage put forth by the author (Lin, 2004) is that the metric 

doesn’t consider alternative same length LCSs or shorter LCSs. It should be noted that synonyms 

are not considered either.  

 

METEOR – Metric for Evaluation of Translation with Explicit Ordering was proposed by Banerjee 

and Lavie (2005). The authors mention the weakness of the BLEU metric, which depends on n-

gram precision. They posit that BLEU doesn’t take recall into consideration, which is important 

when evaluating translations. Apart from the lack of recall, authors mention the use of higher order 

n-grams, being an indirect measure, when a more direct measure would be better. METEOR metric 

was made explicitly to address the weaknesses in BLEU, and it can evaluate a translation by 

computing a score based on word-to-word matches between the translation and the reference 

(Banerjee & Lavie, 2005).  

 

Finally, CIDer – Consensus based Image Description evaluation (Vedantam, Lawrence & Parikh, 

2015) is a relatively newer metric which was made purposefully for evaluating image 

captions/descriptions. The authors mention that the widely used metrics such as BLEU and 

ROGUE do not effectively capture human judgement, and have low correlation with it. CIDer uses 

a consensus mechanism for evaluation, where a number of reference sentences are used to evaluate 

the candidate sentence. It considers the n-grams which are present in the reference sentences, as 

well as n-grams which aren’t present in the sentences. It also assigns lower weight to n-grams 

which appear commonly across all the images. Then, TF-IDF (Robertson, 2004) is used to weight 

the n-grams – both for the occurrence as well as rarity. Finally, cosine similarity of the reference 

sentences and the candidate sentence is calculated, accounting for both precision and recall. Higher 

order n-grams are employed to capture richer semantics and grammatical properties. 
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2.9 Summary 

The literature review covers the most relevant scholarly work done in the previous decade which 

are related to Image captioning. It goes through the datasets which were created, the various 

advances in image analysis and text generation. Then moving on to combining both and finally 

application of attention mechanisms and finishing with the evaluation metrics used.  

 

However, none of the work done concentrates on forcing the models to pay attention to a focus 

object, but rather let the algorithm determine the relevancy. This is what this thesis aims to do – 

let the researcher specify the focus object on which the algorithm will attend to. 

CHAPTER 3. FRAMEWORK AND METHODOLOGY 

As mentioned before, current implementations of image captioning neural networks get a free hand 

at selecting what parts of the image to attend to. This study aims to devise a mechanism to enable 

researchers to specify which parts of the image to attend and which parts of the said image to 

ignore. This chapter covers the research framework, the datasets being used, and the evaluation 

methodology used for this thesis. 

3.1 Research framework 

For this research study, the datasets and evaluation metrics used in prior work are reused. The 

training, test, and validation sets were prepared to cater to the updated attention mechanism, as 

using the datasets as a whole would defeat the point of this study. The baseline was assumed to be 

the performance of the Show, Attend and Tell (Xu et al., 2015) model, referred to as the implic it 

soft attention network on the 7 metrics – BLEU 1, BLEU 2, BLEU 3, BLEU 4, METEOR, ROGUE 

and CIDer. 

3.1.1 Network architecture 

The network architecture was similar to the Show, Attend and Tell (Xu et al., 2015), where an 

encoding layer is followed by a decoding layer, with attention in between. This architecture of 

encoding layer followed by a decoding layer can be considered an archetype of image captioning 

networks. Google (Sharma, Ding, Goodman & Soricut, 2018) used the Show and Tell (Vinyals et 
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al., 2015) – which is similar to the Show, Attend and Tell (Xu et al., 2015) (but removes the 

attention) for benchmarking their new dataset, along with a transformer architecture (Vaswani et 

al., 2017). 

 

The modification was in the attention mechanism, which forces the attention on the focus object. 

This modification is explained subsequently. 

 

Figure 1: Overall architecture of the neural network. 

 

For this study, the encoding network would be a Convolutional Neural Network (CNN). CNNs 

have become synonymous with image classification and detection tasks, and they can be modified  

for use with image captioning. Usually, a CNN consists of a few layers of convolutional layers – 

each of which have a convolving kernel, followed by a maxpool and a non-linearity. These 

convolutional layers are then followed by fully connected layers – the plain neural networks. The 

last layer of these fully connected layers is fed to a soft-max function to get the class prediction. 
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Figure 2: Encoder network - Convolutional Neural Network. 

 

This meant the final output of the network was a fixed length vector – generated by the fully 

connected layer. These fixed length vectors contained all the information about the detected 

objects in the image – which may be any number. Image captioning networks without attention 

typically use this as the input for decoding networks, where the single fixed length vector is used 

as the context for the text generation. This means that the decoding network has to look at the 

entirety of the encoding network’s output at once, and generate text, resulting in lower emphasis 

on the individual objects which convey most of the information about the image. However, for this 

study, the class predictions served no purpose. Hence, the last softmax layer could be trimmed. 

 

There is a second component (referred to as focus object identifier) which is primarily used for 

identifying the focus object. It is fed to the attention. The output of this network is used for forcing 

the network to attend to the focus object. 
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Figure 3: Attention Mechanism 

 

For this study, soft attention was employed, which negated the aforementioned disadvantage. The 

fully connected layers of the encoder were also trimmed, leaving just the convolutional layers 

intact. Now, the outputs of the convolutional layers were multiple annotation vectors – each 

denoting a feature map. With multiple vectors at hand, the decoding network could “look”, or 

“concentrate” on individual vectors, and generate the caption accordingly. Therefore, the output 

of the convolutional layer was used as the input for the subsequent sections of the network. 

 

Next, these annotation vectors were fed to the attention mechanism. The attention mechanism took 

the annotation vectors along with a hidden state (part of the decoding layer) to generate the 

particular region where the network would concentrate. The hidden state vector from the decoder 

contained information of the previously generated words in the captions, and was constantly 

updated with each word. Hence, the attention mechanism was constantly generating new regions 

to concentrate on. 

 

For this study, the attention mechanism was modified – so that the focus object was included in 

the generated attention regions. To the output of the soft attention, and extracted attention map for 

a focus object is added. However, this extracted attention map is weighted, so that the output of 
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the attention does not get saturated. The weighting of the extracted attention map can be static or 

gradually increased/decreased – giving static and gradual forced attention. 

  

Figure 4: LSTM cells - a set of these comprise the decoder network. 

Finally, the decoder network was fed the output of the attention mechanism – which contained the 

regions to concentrate on. The decoding network was comprised of Recurrent Neural Network 

(RNN) for this study. The Show, Attend, and Tell architecture uses Long-Short Term Memory 

(LSTM) cells. The LSTM cells are known for having the ability to “remember” the previously 

generated words or characters, which is useful for sentence generation. The ability to “remember” 

is important as sentences are a sequence of words, and hence capturing the essence of the sequence 

is required. LSTM cells use a hidden state, which is updated with every generated word. The 

hidden state was also fed to the attention mechanism, so that it could understand how much of the 

sentence has already been generated. The attention mechanism used the hidden state to creating 

appropriate attention regions, instead of generating the same region every time. The same 

configuration of LSTM layers as seen in Show, Attend and Tell (Xu et al., 2015) was used for this 

study. 
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Once the network architecture was modelled, and the network was built, it was trained, and then 

evaluated on the datasets. The metrics chosen for evaluation were employed to measure the 

performance. For the encoding network, a pre-trained network was used – Resnet50 (He, Zhang, 

Ren & Sun, 2016). While training, the decoding network was trained, leaving the encoding 

network as-is. 

 

The Show, Attend, and Tell architecture was chosen as it was an archetype of the encoder-decoder 

pattern. Studies published recently still use it for benchmarks and baselines (Sharma, Ding, 

Goodman & Soricut, 2018). Another benefit is the soft attention mechanism, which is simple 

enough for additions and modifications to be made. 

3.1.2 Modification of Attention 

The attention mechanism must be able to force the attention on to the selected focus object. This 

was implemented by the following steps: 

1. Extracting the attention map for the corresponding focus object. 

2. Using the extracted attention map to force attention while inference. 

 

The first step, extraction of the attention map, involved running the trained baseline model on an 

image containing a target object. During the inference, the attention maps were sampled, and the 

map corresponding to the focus object was saved to the disk. This could be done by reading the 

output of the LSTM network, which generated a word vector. When the generated word vector 

was referring to the focus object, the corresponding attention map was extracted. Then, the 

modified architecture, which contains the forced attention was employed for inferencing. 

 

The second step could be implemented in either of the following methods: 

 Weighting the extracted attention map, and then adding it to the attention mechanism’s 

output. This is referred to as Static Forced Attention. 

o Here, the extracted attention map cannot be directly added to the attention 

mechanism’s output, as the pixels can saturate (reach maximum value) quickly. 

This can result in worse performance compared to baseline, as the attention 

mechanism can no longer attend to specific regions of the image. 
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 Weighting the extracted attention map, and gradually increasing or decreasing the weights 

with each time step. This is referred to as Gradual Forced Attention. 

 

Both of these methods were employed and compared during evaluation. The initializing weights 

for both methods, and the gradual increment or decrement factors were  determined empirically. 

The gradual increment or decrement factor was multiplied to the weights with each time step. 

 

A benefit of this attention modification is that the model does not need to be trained on any of the 

pruned datasets, no matter what focus object is picked. The baseline model, which was trained on 

the entirety of the MSCOCO dataset was used. The forcing of the attention happens entirely during 

inference. 

3.2 Dataset 

The study used the MSCOCO dataset (Lin et al., 2014) for evaluation. The dataset contained over 

328k images with 91 different object categories. Unique objects from top six categories (by 

number) are used as the focus objects. Each image has five descriptive captions, on which the 

model was trained. For evaluation, the dataset was split, creating a pruned dataset for each focus 

object. The network was trained on the entirety of the dataset, but was evaluated on each of the 

pruned datasets.  

 

For pruning the dataset, the images which contained the focus object label, and its captions which 

contained the focus object were extracted. This process was done for each of the focus object, 

thereby resulting in six pruned datasets. 

 

The previous model – Show, Attend and Tell (Xu et al., 2015) used the entire dataset for training 

and validation. However, for this study, the model was evaluated on the pruned dataset, which was 

set as the baseline. 
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3.3 Evaluation 

The trained models generated sentences which attempted to describe/caption the image. To 

evaluate the performance, text-based metrics were used. 

 

As mentioned before, six objects, each from different categories would be used as focus objects, 

and the network’s performance would be measured. 

3.4 Testing Methodology 

The MSCOCO dataset contains a wide variety of images and their respective captions. It is split 

into three sets – training, testing and validation. The proposed model however was trained to attend 

to a specified focus object. Hence, for the evaluation, the MSCOCO dataset had to be pre-

processed to remove all instances of images which did not have the selected focus objects. 

3.4.1 Pruning the Dataset 

The dataset provided the object classes present in each image, along with their captions. Hence the 

dataset is pruned by searching for images reported to contain the focus object along with the 

respective captions. 

3.4.2 Training the neural network 

The baseline neural network architecture used was Show, Attend and Tell (Xu et al., 2015) – which 

consisted of the classic encoder – decoder network configuration along with attention mechanism. 

Its encoder network can be either VGG 16 or Resnet 50, of which a pretrained Resnet50 was 

chosen for this study. Resnet50 (He, Zhang, Ren & Sun, 2016), is a newer convolutiona l 

architecture compared to VGG 16 being both better performing as well as less computationally 

expensive (He, Zhang, Ren & Sun, 2016). The attention mechanism sits between the encoder and 

decoder, and helps the neural network attend to objects in the image. The outputs of the encoder – 

the feature maps are extracted and fed to the attention mechanism along with a vector 

corresponding to the previously generated word by the decoder. Its output, an attention map is then 

fed to the decoder. The decoder takes the attention map, and a hidden state to generate the word.  
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While training, only the decoder network with LSTMs is trained, while the pretrained encoder 

network is left as-is.  

 

The training is done with the following settings: 

 Encoder: Resnet50. 

 Optimizer: Adam. 

 No. of LSTM cells: 512. 

 Max. Caption length: 20. 

 Attention layers: 2. 

 Vocabulary size: 5000 

 Beam width: 1 

 Epochs: 80. 

 

The neural network was trained on an Intel Xeon Silver 4110 server with dual Nvidia GTX 1080Ti 

GPUs. 

3.4.3 Generation of the caption 

This output of the attention mechanism is fed to the decoder network as the context, along with its 

hidden state. The hidden state contains information about previously generated words, giving the 

decoder memory, helping it to generate better sentences. 

3.4.4 Selecting the Focus Objects 

The dataset groups objects into categories – animals, vehicles, sports, etc. However, selecting the 

unique object with the highest occurrence from each of the categories did not create a good 

evaluation set as some of the unique items listed are a catch-all. For example, sports-ball is the 

highest occurring object in the sports category, however, its dataset included tennis balls, footballs, 

gold balls, etc. Further pruning the dataset yielded much smaller size. Hence, the next largest object 

was picked – frisbee. Upon further classification and pruning, the following objects were picked: 

dog, train, clock, frisbee, toilet and pizza. 
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3.4.5 Establishing the baselines 

The model is trained on the training set for multiple epochs, and its performance is measured with 

respect to the validation set after each epoch. The test set is used for validating the performance of 

the model after going through all epochs.  

 

Once the training is finished, the pruned dataset corresponding to each focus object is used as the 

evaluation set, and the metrics are calculated. The MSCOCO dataset provides a script for 

calculating BLEU 1, BLEU 2, BLEU 3, BLEU 4, METEOR, ROUGE-L and CIDer. Hence, all 

the mentioned metrics are calculated with each evaluation set to establish the baselines. 

3.4.6 Extracting attention map for the Focus Object 

Once the baselines are established, the next component is the focus object identifier. This provides 

the means for the attention mechanism to attend to the specified focus object. Here, the attention 

map for the focus object is extracted from the pre-trained network. 

 

For extracting the attention map for the focus object, each word vector generated is compared to 

the focus object’s word. The attention map corresponding to the focus object’s word is extracted 

when the correct word is generated and saved. As multiple attention maps are saved for each object, 

they are averaged to get a single attention map for each focus object. 

3.4.7 Feeding the attention map to the Attention mechanism 

The attention mechanism is modified to take an additional input. Along with the usual inputs 

(feature maps from encoder, previously generated word vector from decoder), the attention map 

which was saved is also fed to the mechanism. This attention map helps select the feature map 

corresponding to the focus object, resulting in the new output which attends to the focus object.  

 

The attention map is added to the output of the attention mechanism. This addition is weighted, 

allowing the attention map to have less or more effect on the attention mechanism. Having large 

weights for the attention map can result in malformed outputs as the matrix can get saturated. Here, 

both the methods of implementing forced attention and employed. 
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The weights for both static and gradual forced attention were manually selected. For static attention, 

any weight below 1.0 is selected, and the neural network architecture is evaluated on the dataset. 

Then, the value is either increased or decreased in steps of 0.05 until a maximum value is reached 

for all metrics. This is used for static forced attention. For gradual forced attention, the static weight 

is weighted down at each time step. Any weight above 1.0 will saturate the attention map, which 

decreases the performance on all metrics.  

3.4.8 Evaluating the forced attention neural network 

The new neural network with the modified attention mechanism is evaluated on the pruned dataset 

corresponding to each focus object. Using the MSCOCO evaluation script, the BLEU 1, BLEU 2, 

BLEU 3, BLEU 4, METEOR, ROUGE-L and CIDer scores are calculated, and compared with the 

baselines. 

 

The six datasets created for each of the focus objects are further randomly split into five equal 

parts. Then, both the baseline and the gradual attention architectures are run, and evaluated on the 

seven metrics. The difference of the evaluation metrics between baseline and proposed neural 

network architecture are assumed to be normal, and hence Paired T-Test are employed to calculate 

the statistical significance. 

3.5 Summary 

This section describes the research framework and methodology used for this study. This includes 

the hypothesis, the datasets being used, the evaluation metrics used, and the testing methodology. 

Each of the datasets used are briefly described. The seven metrics employed are also described, 

after which the testing methodology is expanded upon. 
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CHAPTER 4. RESULTS AND DISCUSSIONS 

The six metrics – BLEU-1, 2, 3, and 4, METEOR, ROUGE and CIDer are calculated for all the 

focus objects, and compared with the corresponding baselines. Given the encoder and decoder 

architecture being followed, the performance depended on how and what objects were detected in 

the images by the encoder. If the focus object was prominent or appeared often, it would be 

included in the generated caption without needing forced attention. In such cases, depending on 

the type of forced attention, performance might fall. As the captions generally have more than one 

object, the objects which have the highest occurrences were easy to focus on. Results for each of 

the focus object are detailed below, along with their occurrences of the labels in each dataset.  

 

The weights and step value for static and gradual forced attention are determined empirically. 

Weights are initialized to 0.25 for static forced attention, and varied by 0.1 to get the optimal value 

(maximum scores in metrics). Then, the optimal value of static forced attention is used for 

initializing gradual forced attention, along with a step size of 0.5. Here too, both the weights and 

step size are varied by 0.1 and 0.05 to get the optimal value (maximum scores in metrics).  

4.1 Focus Object: Dog 

When pruning the dataset for images and captions containing a dog (which had the highest unique 

occurrences among animals), the dataset was left with 4562 results.  

4.1.1 Results for Focus Object: Dog with Static Forced Attention 

On running the baseline metrics using the unmodified Show, Attend and Tell (Xu et al., 2015) 

network, and then the forced attention network, all seven metrics saw improvement.  

 

The results for static weight of 0.25 are as follows: 

Table 1: Metrics for focus object - dog with static forced attention 

Metric Baseline scores Static Forced Attn. scores 

BLEU - 1 0.582 0.586 

BLEU – 2 0.409 0.413 
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Table 1 continued 

BLEU – 3 0.271 0.276 

BLEU – 4 0.178 0.182 

METEOR 0.184 0.186 

ROGUE 0.445 0.451 

CIDer 0.491 0.506 

4.1.2 Results for Focus Object: Dog with Gradual Forced Attention 

Using gradual forced attention further improves the scores compared to static forced attention.  

The results for gradual forced attention starting with 0.45 decreasing with a step size of 0.9 are as 

follows (statistically significant results are marked with a *): 

Table 2: Metrics for focus object – dog with gradual forced attention 

Metric Baseline scores Grd. Forced Attn. scores 

BLEU – 1 0.582 0.587* 

BLEU – 2 0.409 0.415* 

BLEU – 3 0.271 0.278* 

BLEU – 4 0.178 0.184* 

METEOR 0.184 0.186* 

ROGUE 0.445 0.453* 

CIDer 0.491 0.508* 

 

For the gradual forced attention, Paired T-Test is run to test for statistical significance. The dog 

dataset is split randomly into 5 equal parts, on which both the baseline and the gradual attention 

architecture is ran. The results are as recorded below: 

Table 3: BLEU - 1 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.581 0.584 0.574 0.585 0.586 

Grad. Frc. 0.582 0.587 0.583 0.589 0.594 
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For the BLEU – 1 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.03, and the improvements seen are statistically significant. 

Table 4: BLEU - 2 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.406 0.411 0.399 0.421 0.408 

Grad. Frc. 0.411 0.413 0.409 0.422 0.419 

 

For the BLEU – 2 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.046, and the improvements seen are statistically significant. 

Table 5: BLEU - 3 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.267 0.269 0.264 0.283 0.273 

Grad. Frc. 0.273 0.274 0.272 0.284 0.284 

 

For the BLEU – 3 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.02, and the improvements seen are statistically significant. 

Table 6: BLEU - 4 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.177 0.170 0.171 0.189 0.184 

Grad. Frc. 0.182 0.176 0.178 0.191 0.192 

 

For the BLEU – 4 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.005, and the improvements seen are statistically significant. 

Table 7: METEOR metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.183 0.184 0.184 0.186 0.181 

Grad. Frc. 0.187 0.186 0.185 0.188 0.183 

 

For the METEOR metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.01, and the improvements seen are statistically significant. 



53 
 

Table 8: ROGUE L metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.451 0.446 0.441 0.447 0.442 

Grad. Frc. 0.457 0.455 0.451 0.449 0.449 

 

For the ROGUE L metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.008, and the improvements seen are statistically significant. 

Table 9: CIDer metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.501 0.534 0.505 0.514 0.509 

Grad. Frc. 0.533 0.540 0.521 0.536 0.524 

 

For the CIDer metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.013, and the improvements seen are statistically significant. 

 

Statistically Significant Metrics: BLEU – 1, BLEU – 2, BLEU – 3, BLEU -4, METEOR, ROGUE 

L, and CIDer. 

Statistically Insignificant Metrics: None. 

4.2 Focus Object: Pizza 

When pruning the dataset for images and captions containing a pizza (which had the highest unique 

occurrences among food), the dataset was left with 3319 results. 

4.2.1 Results for Focus Object: Pizza with Static Forced Attention 

On running the baseline metrics using the unmodified Show, attend and tell (Xu et al., 2015) 

network, and then the forced attention network, all but one metric saw improvement.  
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The results for static weight of 0.8 are as follows: 

Table 10: Metrics for focus object – pizza with static forced attention 

Metric Baseline scores Static Forced Attn. scores 

BLEU - 1 0.632 0.633 

BLEU – 2 0.458 0.460 

BLEU – 3 0.314 0.316 

BLEU – 4 0.213 0.214 

METEOR 0.198 0.198 

ROGUE 0.469 0.473 

CIDer 0.362 0.366 

 

4.2.2 Results for Focus Object: Pizza with Gradual Forced Attention 

Using gradual forced attention further improves the scores compared to static forced attention. 

Here, all 7 metrics see improvement compared to baseline. 

The results for gradual forced attention starting with 0.75 decreasing with a step size of 0.25 are 

as follows (statistically significant results are marked with a *): 

Table 11: Metrics for focus object – pizza with gradual forced attention 

Metric Baseline scores Grd. Forced Attn. scores 

BLEU - 1 0.632 0.633 

BLEU – 2 0.458 0.462* 

BLEU – 3 0.314 0.319* 

BLEU – 4 0.213 0.219* 

METEOR 0.198 0.200 

ROGUE 0.469 0.475* 

CIDer 0.362 0.368* 

 

For the gradual forced attention, Paired T-Test is run to test for statistical significance. The pizza 

dataset is now split randomly into 5 equal parts, on which both the baseline and the gradual 

attention architecture is ran. The results are as recorded below: 
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Table 12: BLEU - 1 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.655 0.626 0.614 0.636 0.629 

Grad. Frc. 0.661 0.627 0.612 0.637 0.638 

 

For the BLEU – 1 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.2, and the improvements seen are not statistically significant. 

Table 13: BLEU - 2 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.478 0.449 0.440 0.468 0.457 

Grad. Frc. 0.494 0.461 0.451 0.481 0.471 

 

For the BLEU – 2 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.0001, and the improvements seen are statistically significant. 

Table 14: BLEU - 3 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.327 0.303 0.299 0.327 0.313 

Grad. Frc. 0.349 0.320 0.318 0.346 0.330 

 

For the BLEU – 3 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.00003, and the improvements seen are statistically significant. 

Table 15: BLEU - 4 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.221 0.205 0.202 0.229 0.209 

Grad. Frc. 0.238 0.218 0.221 0.245 0.222 

 

For the BLEU – 4 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.0001, and the improvements seen are statistically significant. 
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Table 16: METEOR metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.205 0.194 0.192 0.203 0.195 

Grad. Frc. 0.209 0.193 0.189 0.205 0.199 

 

For the METEOR metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.4, and the improvements seen are not statistically significant. 

Table 17: ROGUE L metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.477 0.465 0.461 0.478 0.466 

Grad. Frc. 0.489 0.477 0.468 0.495 0.482 

 

For the ROGUE L metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.0019, and the improvements seen are statistically significant. 

Table 18: CIDer metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.379 0.349 0.338 0.457 0.400 

Grad. Frc. 0.432 0.373 0.381 0.522 0.423 

 

For the CIDer metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.007, and the improvements seen are statistically significant. 

 

Statistically Significant Metrics: BLEU – 2, BLEU – 3, BLEU – 4, ROGUE L, and CIDer. 

Statistically Insignificant Metrics: BLEU – 1, and METEOR. 

4.3 Focus Object: Frisbee 

When pruning the dataset for images and captions containing a frisbee, the dataset was left with 

2268 results. The frisbee images usually had a person or multiple people in the picture. 
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4.3.1 Results for Focus Object: Frisbee with Static Forced Attention 

On running the baseline metrics using the unmodified Show, attend and tell (Xu et al., 2015) 

network, and then the forced attention network, 4 metrics saw improvement, while the remaining 

remained the same.  

 

The results for static weight of 0.75 are as follows:  

Table 19: Metrics for focus object – frisbee with static forced attention 

Metric Baseline scores Static Forced Attn. scores 

BLEU - 1 0.564 0.564 

BLEU – 2 0.385 0.387 

BLEU – 3 0.256 0.260 

BLEU – 4 0.174 0.176 

METEOR 0.204 0.204 

ROGUE 0.451 0.454 

CIDer 0.463 0.473 

4.3.2 Results for Focus Object: Frisbee with Gradual Forced Attention 

Using gradual forced attention further improves the scores compared to static forced attention. 

Again, all 7 metrics see improvement compared to baseline. 

 

The results for gradual forced attention starting with 0.8 decreasing with a step size of 0.33 are as 

follows: (statistically significant results are marked with a *) 

Table 20: Metrics for focus object – frisbee with gradual forced attention 

Metric Baseline scores Grd. Forced Attn. scores 

BLEU - 1 0.564 0.566 

BLEU – 2 0.385 0.388 

BLEU – 3 0.256 0.262 

BLEU – 4 0.174 0.179* 

METEOR 0.204 0.206 

ROGUE 0.451 0.457* 
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Table 20 continued 

CIDer 0.463 0.484* 

 

For the gradual forced attention, Paired T-Test is run to test for statistical significance. The frisbee 

dataset is now split randomly into 5 equal parts, on which both the baseline and the gradual 

attention architecture is ran. The results are as recorded below: 

 

Table 21: BLEU - 1 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.553 0.573 0.580 0.563 0.550 

Grad. Frc. 0.556 0.573 0.593 0.559 0.548 

 

For the BLEU – 1 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.539, and the improvements seen are not statistically significant. 

Table 22: BLEU - 2 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.375 0.384 0.409 0.384 0.375 

Grad. Frc. 0.376 0.386 0.425 0.381 0.373 

 

For the BLEU – 2 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.459, and the improvements seen are not statistically significant. 

Table 23: BLEU - 3 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.247 0.245 0.288 0.250 0.251 

Grad. Frc. 0.254 0.253 0.301 0.252 0.251 

 

For the BLEU – 3 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.059, and the improvements seen are not statistically significant. 
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Table 24: BLEU - 4 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.168 0.164 0.202 0.167 0.170 

Grad. Frc. 0.174 0.172 0.210 0.171 0.170 

 

For the BLEU – 4 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.025, and the improvements seen are statistically significant. 

Table 25: METEOR metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.202 0.208 0.207 0.207 0.197 

Grad. Frc. 0.203 0.209 0.212 0.205 0.200 

 

For the METEOR metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.241, and the improvements seen are not statistically significant. 

Table 26: ROGUE L metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.450 0.453 0.456 0.457 0.438 

Grad. Frc. 0.456 0.459 0.468 0.459 0.441 

 

For the ROGUE L metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.029, and the improvements seen are statistically significant. 

Table 27: CIDer metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.499 0.505 0.501 0.495 0.521 

Grad. Frc. 0.507 0.534 0.548 0.517 0.532 

 

For the CIDer metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.028, and the improvements seen are statistically significant. 

 

Statistically Significant Metrics: BLEU – 4, ROGUE L, and CIDer. 
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Statistically Insignificant Metrics: BLEU – 1, BLEU – 2, BLEU – 3, and METEOR. 

4.4 Focus Object: Clock 

When pruning the dataset for images and captions containing a clock , the dataset was left with 

4863 results. 

4.4.1 Results for Focus Object: Clock with Static Forced Attention 

On running the baseline metrics using the unmodified Show, attend and tell (Xu et al., 2015) 

network, and then the forced attention network, 3 metrics saw improvement, 3 had decrement, and 

one metric had the no change in performance.  

 

The results for static weight of 0.85 are as follows: 

Table 28: Metrics for focus object – clock with static forced attention 

Metric Baseline scores Static Forced Attn. scores 

BLEU - 1 0.608 0.605 

BLEU – 2 0.463 0.463 

BLEU – 3 0.351 0.352 

BLEU – 4 0.254 0.256 

METEOR 0.195 0.193 

ROGUE 0.485 0.484 

CIDer 0.370 0.372 

 

4.4.2 Results for Focus Object: Clock with Gradual Forced Attention 

Using gradual forced attention further improves the scores compared to static forced attention. 

Again, all 7 metrics see improvement compared to baseline. 

 

The results for gradual forced attention starting with 1 decreasing with a step size of 0.2 are as 

follows (statistically significant results are marked with a *): 
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Table 29: Metrics for focus object – clock with gradual forced attention 

Metric Baseline scores Grd. Forced Attn. scores 

BLEU - 1 0.608 0.611 

BLEU – 2 0.463 0.469 

BLEU – 3 0.351 0.356* 

BLEU – 4 0.254 0.259 

METEOR 0.195 0.198* 

ROGUE 0.485 0.489 

CIDer 0.370 0.380 

 

For the gradual forced attention, Paired T-Test is run to test for statistical significance. The clock 

dataset is now split randomly into 5 equal parts, on which both the baseline and the gradual 

attention architecture is ran. The results are as recorded below: 

 

Table 30: BLEU - 1 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.600 0.600 0.626 0.607 0.606 

Grad. Frc. 0.600 0.606 0.623 0.609 0.616 

 

For the BLEU – 1 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.25, and the improvements seen are not statistically significant. 

Table 31: BLEU - 2 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.452 0.461 0.478 0.469 0.456 

Grad. Frc. 0.456 0.468 0.478 0.474 0.469 

 

For the BLEU – 2 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.052, and the improvements seen are not statistically significant. 
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Table 32: BLEU - 3 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.341 0.354 0.360 0.357 0.342 

Grad. Frc. 0.344 0.362 0.361 0.361 0.354 

 

For the BLEU – 3 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.046, and the improvements seen are statistically significant. 

Table 33: BLEU - 4 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.248 0.259 0.259 0.259 0.244 

Grad. Frc. 0.249 0.266 0.259 0.264 0.257 

 

For the BLEU – 4 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.089, and the improvements seen are not statistically significant. 

Table 34: METEOR metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.195 0.193 0.196 0.196 0.193 

Grad. Frc. 0.199 0.195 0.197 0.198 0.199 

 

For the METEOR metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.028, and the improvements seen are statistically significant. 

Table 35: ROGUE L metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.484 0.483 0.488 0.484 0.488 

Grad. Frc. 0.484 0.490 0.490 0.487 0.496 

 

For the ROGUE L metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.057, and the improvements seen are not statistically significant. 
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Table 36: CIDer metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.427 0.419 0.395 0.365 0.361 

Grad. Frc. 0.431 0.436 0.399 0.355 0.395 

 

For the CIDer metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.25, and the improvements seen are not statistically significant. 

 

BLEU – 1, Meteor and ROGUE see decrease in scores, while BLEU – 3, 4, and CIDer see 

improvement on this dataset when static forced attention is used. Using gradual forced attention 

improves these results, so there is no decrease in the seven metrics.  

 

Statistically Significant Metrics: BLEU – 3, METEOR. 

Statistically Insignificant Metrics: BLEU – 1, BLEU – 2, BLEU – 4, ROGUE L, and CIDer. 

 

4.4.3 Discussion for Focus Object: Clock 

 

This is the last object which shows improvements in all metrics when using gradual forced 

attention, and the last object in which more than one metrics show statistically significant 

improvements. However, the margin of improvements of five metrics fall short of being 

statistically significant. To understand this, a few images from the clock dataset are randomly 

sampled, and their captions are extracted.  
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Figure 5: Randomly sampled image from clock dataset (MSCOCO (Lin at al., 2014)) 

 

Captions in the training dataset for the sampled figure: 

 a kitchen with white cupboards, a bowl of bananas, cookbooks, a blue teakettle and other 

sundries. 

 a kitchen filled with lots of pots, pans and dishes. 

 shelves in the kitchen filled with books, cups, glasses and a clock 

 an area of a kitchen with the stove, oven and shelves with books 

 a kitchen counter top with many different appliances. 

While training the forced attention model, the entire dataset is used, and clock appears in fewer 

captions, and hence the overall score is reduced due to fewer matching n-grams.  

 

Similar occurrence on yet another randomly sampled image: 
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Figure 6: Randomly sampled image from clock dataset (MSCOCO (Lin at al., 2014)) 

 

The reference captions for this image are: 

 woman sitting beside table posing for picture with a smile. 

 woman in big hoop dress sitting down at a chair with a clock.  

 a woman is sitting in her chair posing. 

 a very old picture of a women posing. 

 an old photo showing a woman near a clock. 

 

Here too, the number of matching n-grams is reduced due to more captions not having the focus 

object. 
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4.5 Focus Object: Train 

When pruning the dataset for images and captions containing a train, the dataset was left with 

3745 results. 

4.5.1 Results for Focus Object: Train with Static Forced Attention 

On running the baseline metrics using the unmodified Show, attend and tell (Xu et al., 2015) 

network, and then the forced attention network, 4 metrics saw a decrease in performance. Two 

stayed the same, while one increased. 

 

The results for static weight of 0.75 are as follows: 

Table 37: Metrics for focus object – train with Static Forced Attention 

Metric Baseline scores Static Forced Attn. scores 

BLEU - 1 0.587 0.585 

BLEU – 2 0.392 0.391 

BLEU – 3 0.235 0.234 

BLEU – 4 0.135 0.135 

METEOR 0.199 0.198 

ROGUE 0.445 0.445 

CIDer 0.301 0.303 

 

4.5.2 Results for Focus Object: Train with Gradual Forced Attention 

Using gradual forced attention further improves the scores compared to static forced attention. The 

decrement in scores seen with static forced attention is eliminated. Further, 4 metrics see 

improvement compared to baselines. 

 

The results for gradual forced attention starting with 0.7 decreasing with a step size of 0.25 are as 

follows (statistically significant results are marked with a *): 
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Table 38: Metrics for focus object – train with gradual forced attention 

Metric Baseline scores Grd. Forced Attn. scores 

BLEU - 1 0.587 0.587 

BLEU – 2 0.392 0.393 

BLEU – 3 0.235 0.237 

BLEU – 4 0.135 0.138* 

METEOR 0.199 0.199 

ROGUE 0.445 0.445 

CIDer 0.301 0.304 

 

For the gradual forced attention, Paired T-Test is run to test for statistical significance. The train 

dataset is now split randomly into 5 equal parts, on which both the baseline and the gradual 

attention architecture is ran. The results are as recorded below: 

Table 39: BLEU - 1 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.582 0.592 0.604 0.595 0.562 

Grad. Frc. 0.578 0.589 0.606 0.596 0.564 

 

For the BLEU – 1 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.771, and the improvements seen are not statistically significant. 

Table 40: BLEU - 2 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.396 0.396 0.404 0.397 0.367 

Grad. Frc. 0.395 0.395 0.410 0.398 0.369 

 

For the BLEU – 2 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.338, and the improvements seen are not statistically significant. 
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Table 41: BLEU - 3 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.246 0.238 0.235 0.238 0.215 

Grad. Frc. 0.248 0.236 0.242 0.239 0.217 

 

For the BLEU – 3 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.239, and the improvements seen are not statistically significant. 

Table 42: BLEU - 4 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.147 0.139 0.133 0.132 0.124 

Grad. Frc. 0.150 0.142 0.136 0.135 0.125 

 

For the BLEU – 4 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.002, and the improvements seen are statistically significant. 

Table 43: METEOR metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.201 0.200 0.205 0.203 0.188 

Grad. Frc. 0.200 0.196 0.207 0.203 0.188 

 

For the METEOR metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.573, and the improvements seen are not statistically significant. 

Table 44: ROGUE L metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.451 0.439 0.451 0.448 0.435 

Grad. Frc. 0.450 0.438 0.454 0.449 0.434 

 

For the ROGUE L metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.814, and the improvements seen are not statistically significant. 
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Table 45: CIDer metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.346 0.309 0.294 0.300 0.329 

Grad. Frc. 0.347 0.210 0.299 0.318 0.324 

 

For the CIDer metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.357, and the improvements seen are not statistically significant. 

 

When using static forced attention, BLEU – 1, 2, 3, and Meteor see decrease in scores, while 

BLEU-4 and ROGUE stay the same. Only CIDer sees improvement on this dataset. On switching 

to gradual forced attention, there is no decrement in performance, and BLEU – 2, 3, 4, and CIDer 

metrics see improvements.  

 

Statistically Significant Metrics: BLEU – 4. 

Statistically Insignificant Metrics: BLEU – 1, BLEU – 2, BLEU – 3, METEOR, ROGUE L, and 

CIDer. 

 

4.5.3 Discussion for Focus Object: Train 

By randomly sampling images from the train dataset, it is possible to understand the poor 

performance of the forced attention architecture. 
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Figure 7: Randomly sampled image from train dataset (MSCOCO (Lin at al., 2014)) 

 

Generated caption: A group of people sitting on a table. 

 

The above image is included in the train dataset as it is a picture from within the train. However, 

none of the typical features when looking from outside are seen, and hence, the architecture isn’t  

able to mention train even when forced. As forcing attention involves modifying the attention 

maps themselves, decrement in performance is seen when static forced attention is employed.  

 

Another kind of issue can be explained with this image 

 

Figure 8: Randomly sampled image from train dataset (MSCOCO (Lin at al., 2014)) 
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The dataset’s caption for this image included: A steam engine that is travelling down some track .  

 

Here, a steam engine can mean the train object itself. However, information is not provided to the 

neural network during the training procedure. Hence, this can prove to be another source of 

decrement of performance.  

4.6 Focus Object: Toilet 

When pruning the dataset for images and captions containing a toilet, the dataset was left with 

3502 results. 

4.6.1 Results for Focus Object: Toilet with Static Forced Attention 

On running the baseline metrics using the unmodified Show, attend and tell (Xu et al., 2015) 

network, and then the forced attention network, all metrics saw a decrease in performance. 

 

The results for static weight of 0.25 are as follows: 

Table 46: Metrics for focus object – toilet with static forced attention 

Metric Baseline scores Static Forced Attn. scores 

BLEU - 1 0.670 0.668 

BLEU – 2 0.540 0.537 

BLEU – 3 0.412 0.408 

BLEU – 4 0.313 0.309 

METEOR 0.228 0.227 

ROGUE 0.552 0.551 

CIDer 0.453 0.442 

 

4.6.2 Results for Focus Object: Toilet with Gradual Forced Attention 

Using gradual forced attention further improves the scores compared to static forced attention. The 

decrement in scores seen with static forced attention is eliminated. Further, 2 metrics see 

improvement compared to baselines.  
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The results for gradual forced attention starting with 0.15 decreasing with a step size of 0.15 are 

as follows (statistically significant results are marked with a *): 

Table 47: Metrics for focus object – toilet with gradual forced attention 

Metric Baseline scores Grd. Forced Attn. scores 

BLEU - 1 0.670 0.670 

BLEU – 2 0.540 0.540 

BLEU – 3 0.412 0.412 

BLEU – 4 0.313 0.314 

METEOR 0.228 0.228 

ROGUE 0.552 0.552 

CIDer 0.453 0.454 

 

For the gradual forced attention, Paired T-Test is run to test for statistical significance. The toilet 

dataset is now split randomly into 5 equal parts, on which both the baseline and the gradual 

attention architecture is ran. The results are as recorded below: 

 

Table 48: BLEU - 1 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.664 0.651 0.689 0.677 0.668 

Grad. Frc. 0.664 0.651 0.688 0.678 0.669 

 

For the BLEU – 1 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.621, and the improvements seen are not statistically significant. 

Table 49: BLEU - 2 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.531 0.509 0.566 0.552 0.540 

Grad. Frc. 0.530 0.509 0.565 0.553 0.542 
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For the BLEU – 2 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.748, and the improvements seen are not statistically significant. 

Table 50: BLEU - 3 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.404 0.372 0.441 0.428 0.413 

Grad. Frc. 0.403 0.372 0.440 0.429 0.413 

 

For the BLEU – 3 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.621, and the improvements seen are not statistically significant. 

Table 51: BLEU - 4 metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.306 0.267 0.346 0.329 0.316 

Grad. Frc. 0.306 0.267 0.346 0.330 0.317 

 

For the BLEU – 4 metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.177, and the improvements seen are not statistically significant. 

Table 52: METEOR metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.224 0.218 0.239 0.235 0.226 

Grad. Frc. 0.224 0.218 0.239 0.236 0.227 

 

For the METEOR metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.177, and the improvements seen are not statistically significant. 

Table 53: ROGUE L metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.546 0.530 0.571 0.563 0.549 

Grad. Frc. 0.545 0.530 0.571 0.564 0.550 

 

For the ROGUE L metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.621, and the improvements seen are not statistically significant. 
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Table 54: CIDer metric for baseline and gradual forced attention arch. 

 Split 1 Split 2 Split 3 Split 4 Split 5 

Baseline 0.465 0.486 0.513 0.474 0.463 

Grad. Frc. 0.465 0.486 0.512 0.479 0.464 

 

For the CIDer metric, on running the Paired T test with significance set to 0.05, the p value is 

calculated to be 0.394, and the improvements seen are not statistically significant. 

As seen above, all metrics saw a decrease in performance when using static forced attention. On 

switching to gradual forced attention, there is no decrement in performance, and the BLEU – 4 

and CIDer scores show minor improvements.  

 

Statistically Significant Metrics: None. 

Statistically Insignificant Metrics: BLEU – 1, BLEU – 2, BLEU – 3, BLEU – 4, METEOR, 

ROGUE L, and CIDer. 

 

4.6.3 Discussion for Focus Object: Toilet 

To understand the lack of significant improvements for this particular focus object, the few images 

from this dataset are randomly sampled.  

 

Figure 9: Randomly sampled image from toilet dataset (MSCOCO (Lin at al., 2014)) 
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Figure 10: Randomly sampled image from toilet dataset (MSCOCO (Lin at al., 2014)) 
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Figure 11: Randomly sampled image from toilet dataset (MSCOCO (Lin at al., 2014)) 

 

Figures 9 and 10 show the first issue with the dataset – visually and textually distinct objects within 

the toilet dataset. Microsoft categorized this into the toilets section, though the captions use urinal 

to refer to the toilets. As the neural network was trained on the entire dataset, the attention map 

used for forcing toilet did not correspond to the objects seen here. 

 

Another issue is seen in Figure 11, where the toilet is barely visible, and is does not contain visually 

distinct features seen in a toilet, whose typical example is seen in Figure 10. 
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Figure 12: Randomly sampled image from toilet dataset (MSCOCO (Lin at al., 2014)) 

 

Apart from images, this dataset contains urinals, restrooms, sink  and bathrooms as reference to 

toilet instead of the word toilet itself. This too presents another problem for the forced attention 

architecture. 

4.7 Significance of the improvements 

Though the improvements and regressions in the metrics seem insignificant given the low margin, 

this is seen in quite a few studies published in the space. Text-Guided attention model for Image 

Captioning (Mun, Cho & Han, 2017) in AAAI - 2017 reports improvements of similar margin. 

Their new approach results in 0.012, 0.010, 0.007, 0.005, 0.001, 0.044 increase in BLEU – 1, 2, 3, 

4, METEOR and CIDer metrics. Similarly, knowing when to look (Lu, Xiong, Parikh & Socher, 

2016) in CVPR - 2017 reports similar improvements of 0.009, 0.009, 0.008, 0.006, 0.008, 0.008, 

0.058 in BLEU – 1, 2, 3, 4, METEOR, ROGUE-L and CIDer metrics. 
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

Adding the focus object’s attention map to the attention mechanism’s output is able to force the 

attention of the neural network. However, the results seen for the selected focus objects are not 

consistent. For the first two objects – dog and pizza, more than half the metrics show statistically 

significant improvements. For the frisbee, and clock, the number of metrics which show 

statistically significant improvements fall. For the train, only one metric has statistically significant 

improvement, while toilet sees no statistically significant improvements. 

 

Four of the focus objects (dog, pizza, frisbee and the clock) show improvements in all seven 

evaluation metrics, although not all are statistically significant. The remaining two objects – train 

and toilet show improvements in fewer metrics. The train shows improvements in four out of the 

seven metrics, while the toilet shows improvements in two out of the seven metrics. 

 

The proposed neural network architecture does not perform consistently over the six selected focus 

objects. Hence, focus objects on which the proposed neural network architecture performs poorly 

are further investigated. For three of the focus objects, few images and their captions are randomly 

sampled and examined. Various potential causes are looked at. 

 

The issues identified with the approach taken in this study can be summarized as follows: 

 Unequal number of reference captions which contain, and do not contain the focus object.  

 Visually and textually distinct focus objects in the datasets. 

 Use of synonyms in the datasets while referring to the focus object. 

 Visually ambiguous focus objects in the dataset. 

 

5.1 Future Work 

Fixing each of the identified issues can improve the results further and might get statistically 

significant results. 
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To fix the first problem, the dataset pruning has to be improved. While preparing the dataset, the 

number of captions which contain the focus object, and those which do not contain the focus object 

have to be normalized. This may result in discarding captions, but it will help balance the dataset. 

 

The second issue is the presence of visually and textually distinct focus objects. In this case, the 

visually distinct objects can be handled by keeping track of multiple attention maps for the selected 

focus objects. The procedure to do this can be automated as well, by measuring the visual similarity 

between each attention map. 

 

The textually distinct focus objects and synonyms are a related issue, where a single focus object 

is referred to by different words in the dataset. This can be fixed during the preparation of the 

dataset, where the synonyms are swapped with the focus object’s name.  

 

Finally, to handle visually ambiguous focus objects, newer image encoding networks can be used. 

For this study, the Resnet50 (He, Zhang, Ren & Sun, 2016) is employed. Newer networks such as 

capsule networks are view-point invariant (Sabour, Frosst, and Hinton, 2017) might be able to 

tackle this particular issue and improve the performance. 

5.2 Final Words 

The proposed forced attention model has a few benefits, such as  

 Not needing retraining of the Image encoder or Caption Generator for each focus object. 

 Able to be completely automated for a focus object. 

 Use pre-trained publicly available encoder networks. 

 

However, there is much scope for improvement. This is seen with the lack of improvement of the 

seven metrics for all focus objects. Various potential causes are explained, and means to address 

them are mentioned. The neural network architectures seen in this space can be reused in other 

applications. Hence, improvements to this architecture to make it perform better on any focus 

object would help in not just image captioning, but in video analysis, image tagging, extracting 

context of objects, etc.  
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