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ABSTRACT

Boudad, Kenza Katiane MSc, Purdue University, December 2018. Disposal Dynamics
from the Vicinity of Near Rectilinear Halo Orbits in the Earth-Moon-Sun System.
Major Professor: Kathleen C. Howell.

After completion of a resupply mission to NASA’s proposed Lunar Orbital Plat-

form - Gateway, safe disposal of the Logistics Module is required. One potential

option is disposal to heliocentric space. This investigation includes an exploration of

the trajectory escape dynamics from an Earth-Moon L2 Near Rectilinear Halo Orbit

(NRHO). The effects of the solar gravitational perturbations are assessed in the Bicir-

cular Restricted 4-Body Problem (BCR4BP), as defined in the Earth-Moon rotating

frame and in the Sun-B1 rotating frame, where B1 is the Earth-Moon barycenter.

Disposal trajectories candidates are classified in three outcomes: direct escape, in-

direct escapes and captures. Characteristics of each outcome is defined in terms of

three parameters: the location of the apoapses within to the Sun-B1 rotating frame,

a characteristic Hamiltonian value, and the osculating eccentricity with respect to

the Earth-Moon barycenter. Sample trajectories are presented for each outcome.

Low-cost disposal options are introduced.
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1. INTRODUCTION

The solar gravitational force is a key component in several types of missions in the

Earth-Moon vicinity. The performance and capabilities of spacecraft supporting such

missions rely on the incorporation of this force early in the design process. This focus

of this analysis is an in-depth analysis of the escape dynamics from the vicinity of

a Near Rectilinear Halo Orbit, in the Earth-Moon system, under the gravitational

influence of the Sun.

The Earth-Moon L2 9:2 synodic Near Rectilinear Halo Orbit (NRHO) is a can-

didate location for the location of the long-term space-based facility, termed the

Gateway, NASA’s current framework to develop a space facility near the Moon. Lo-

gistics modules are intented to support the Gateway via resupply missions. After

completion of the resupply mission, safe disposal of the logistic module is required.

Disposal to heliocentric space is one option for the removal. To protect other assets

in the vicinity, a disposal to the region beyond the Earth-Moon system, heliocentric

space, is investigated. Characterization of the disposal dynamics from the NRHO is

based on the Bicircular 4-Body Problem (BCR4BP) to model the Earth-Moon-Sun

system dynamical environment.

1.1 Problem Definition

The Lunar Orbital Platform, or ‘Gateway’, is the current framework [1] for the

development of a space facility near the Moon, with an option to return to the lunar

surface. The Gateway is intented to be a flexible, reusable and sustainable structure,

where deep space technologies can be tested and from which missions beyond the

cislunar space, including destinations such as Mars, can step off. The Orion spacecraft

is intended to transport the crew from Earth to the Gateway. Resupply missions are
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planned to be executed by one or more logistics modules (LM). After completion of

the resupply mission, safe disposal of the LM is required. The empty logistics module

must not be a threat to the Gateway, the Moon, the Earth, or any other assets in

the Earth-Moon vicinity. One option is to dispose the logistics module to heliocentric

space, i.e., beyond the Earth-Moon region.

In the disposal scenario, one maneuver is performed by the logistics module, in the

NRHO, at perilune, in the direction of the velocity. Depending on the magnitude of

the maneuver, the LM may or may not complete additional post-maneuver revolutions

along the NRHO. After departure from the NRHO, the logistics module is located in

the Earth-Moon vicinity. Escape to heliocentric space occurs if the LM crosses the

portals that are the Sun-Earth libration points L1 or L2. Prior to the eventual escape

from the Earth-Moon vicinity, the logistics module must not approach the Earth, to

minimize the risk of encounters with other satellites or spacecrafts in the region. For

the same reason, the duration of the disposal mission is limited to one year. As the

end of mission approaches for the logistics module, the disposal scenario is bounded

by multiple constraints.

The perturbing effects of the Sun on the LM orbit as it escapes from the Earth-

Moon NRHO are critical to the heliocentric disposal design. Simulations of potential

disposal trajectories in the higher-fidelity, ephemeris force model, offer a number of

observations. For the same disposal maneuver, but different epochs, i.e., different

positions of the Sun relative to the Earth-Moon system, only a part of the tested

disposal trajectories are successes. Therefore, the Sun position at the time of the

disposal maneuver is critical to the fate of the logistics module. A dynamical model

including the gravitational fields of the Earth, the Moon and the Sun is, thus, re-

quired in this investigation. The Bicircular Restricted 4-Body Problem (BCR4BP)

includes the effects of these three bodies, while avoiding the increased complexity

of the ephemeris model. The disposal dynamics are explored using the BCR4BP,

and the information is leveraged to design a low-∆V disposal option for the logistics

module.
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1.2 Previous Contributions

The Bicircular Restricted 4-Body Problem is an active area of research. In 1960,

Huang [2] derived the equations of motion in a problem now termed the bicircular

restricted 4-body model, and published them in a technical note titled The Very Re-

stricted Four-Body Problem. Since then, bicircular 4-body models have been defined

and investigated by a number of researchers [3–5]. The 4-body models are not limited

to the Planet-Moon-Sun configuration in the BCR4BP. Scheeres et al. [6] describe the

motion of a spacecraft under the influence of the Sun and a binary system of aster-

oids. The assumptions of the BCR4BP is modified to account for the eccentricity of

the celestial bodies [7] or the coherence of the model [8, 9].

Applications of the BCR4BP are multiple and diverse. The design of low-energy

Earth-Moon transfers, currently an active area of research, leverages the BCR4BP in

many applications [10, 11]. Pérez-Palau and Epenoy [12] have incorporated the low-

thrust propulsion model in the BCR4BP to design fuel-optimal Earth-Moon transfers.

Before them, Mingotti et al. described a method to optimize low-thurst, low-energy

transfers in the BCR4BP. Another current area of interest is lunar gravity assists

within the context of 4-body models [7,13,14]. Recently, as the applications of NRHO

increase, the escape dynamics [15] and the disposal dynamics [16] from such orbits

are a significant concern.

1.3 Document Overview

A method to characterize the dynamics in disposals from the vicinity of Near Rec-

tilinear Halo Orbit (NRHO) is developed. The disposal scenario is decomposed into

three phases; metrics and criteria for each phase are introduced. Multiple outcomes

for the disposal trajectories are identified and sample paths for each outcome are pre-

sented. Factors influencing the fate of the trajectory are explored, and characterized

for each of the outcomes. The Earth-Moon-Sun Bicircular Restricted 4-Body Problem
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(BCR4BP) is defined as the dynamical model. The organization of this investigation

is presented as follow:

� Chapter 2: The equations of motion are derived in the Circular Restricted 3-

Body Problem (CR3BP). An integral of the motion, the Jacobi constant, is

derived. Equilibrium points and a dynamically forbidden region, delimited by

Zero Velocity Curves (ZVCs) in the planar problem are determined. The equa-

tions of motion in the BCR4BP are derived and formulated in two frames: the

Planet-Moon rotating frame and the Sun-{Planet-Moon barycenter} rotating

frame. Instantaneous equilibrium points and instantaneous ZVCs are deter-

mined in both formulations of the BCR4BP. Hamiltonian plots are introduced

as a visual representation of the energy level along a given trajectory in the

BCR4BP.

� Chapter 3: Multiple tools from the field of dynamical system theory are intro-

duced. The state-transition matrix (STM) relates variations between a reference

trajectory and a perturbed trajectory. Differential corrections schemes leverag-

ing information from the STM, are employed to yield a specific solution. Contin-

uation schemes, expanding a solution into a family of solutions sharing similar

characteristics, are introduced. The Finite-Time Lyapunov Exponent (FTLE),

and the Lagrangian coherent structures associated to the FTLE field, are ef-

fective tools to reveal the structures in the dynamical flow of time-dependent

systems, such as the BCR4BP. Finally, stability and its multiple definitions are

examined.

� Chapter 4: The disposal dynamics from the vicinity of the NRHO are the focus

of this investigation. The baseline trajectory, the 9:2 synodic resonant NRHO,

is computed in the CR3BP and transitioned to the BCR4BP. The phases of

the disposal scenario are formally defined. The tidal effects from the Sun are

characterized. Three outcomes for a disposal trajectory are identified: direct

escape, indirect escape and capture. Sample trajectories are determined for
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each outcome. Potential return of a disposed logistics module is demonstrated

as a potential long-term outcome. Predictions in the BCR4BP are confirmed

by propagation in the higher-fidelity, ephemeris force model.

� Chapter 6: A summary of the results is presented. Recommendations for future

work are offered.



6
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2. SYSTEM MODELS

A body moves through space under the gravitational influence of infinitely many

other bodies. To predict the behavior, a mathematical framework of differential

equations of motion is required to represent the dynamical environment. The first

general approach to modeling the behavior via equations of motion was introduced by

Newton the in PhilosophiæNaturalis Principia Mathematica [17], published in 1687.

As expressed in modern terminology, Newton’s second law, in particular, relates the

vector sum of forces acting on a particle in an inertial frame to its rate of change of

momentum. Newton’s laws serve as the foundations of classical mechanics and are

be used to describe the motions of objects throughout the Solar System.

2.1 Multi-Body Regimes

If the number of bodies is limited to N , the motion of any of these bodies through

space is subjected to the action of the remaining N − 1 bodies; such a scenario

is termed the N -Body problem. A vector definition of the problem is depicted on

Figure 2.1. The position vectors R̄i are all defined with respect to an inertially fixed

basepoint O. If each body Pi, of mass mi, is assumed centrobaric, Newton’s second

law yields

miR̄
′′
i = −G

N∑
j=1
j 6=i

mimj

R3
ji

R̄ji (2.1)

where

R̄ji = R̄i − R̄j (2.2)

and time is the independent variable. Here, a prime indicates a derivative with respect

to the time as viewed by an inertial observer. Then, G, the gravitation constant,

is approximately 6.674 · 10−11 N·kg-2·m2. Vectors are indicated by an overbar and
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Figure 2.1. N -body problem

dimensonal quantites are expressed with upper case letters or symbols. The N -body

problem does not admit a closed-form solution. Equation (2.1) is equivalent to six

first-order differential equations: three for position and three for velocity. Because the

motion of the particle Pi influences the motion of all the other particles, the 6N first-

order differential equations are solved simultaneously. Since only ten integrals of the

motion are available as formulated in the inertial frame, a closed-form solution of the

N -body problem does not exist, even for N = 2. However, the two-body problem does

possess an analytic solution when formulated in terms of relative motion. Because the

number of variables generally exceeds the number of known integrals of the motion,

additional simplifications allow an improved understanding of the motion of a particle

in space.

The N -body problem is not solvable analytically, and the relative two-body prob-

lem does not capture the fundamental motions that are the focus in this investigation.

For motion in the Earth-Moon-Sun system, a three-body or a four-body problem for-

mulation is necessary. Thus, two models are used in this investigation. The Circular

Restricted Three-Body Problem (CR3BP) models the motion of an infinitesimal par-

ticle under the influence of two point masses. In the Bicircular Restricted Four-Body

Problem (BCR4BP), an additional point mass is added to the model in the CR3BP.
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Although the mass of the fourth body is significant, it is assumed to be quite distant

from the other particles. The CR3BP reflects the advantages of an autonomous sys-

tem. The BCR4BP is time-dependent but periodic, revealing more dynamical struc-

tures than the higher-fidelity ephemeris force model (time-dependent, non-periodic).

For scenarios where the gravitational influence from the Sun is not a major factor, the

CR3BP effectively captures the significant dynamics. The BCR4BP demonstrates its

capabilities in scenarios where the orientation of the trajectory with respect to the

Sun is a key component.

2.2 Circular Restricted Three-Body Problem

In the Circular Restricted Three-Body Problem (CR3BP), the motion of a cen-

trobaric body P3 is subjected to the influence of two other centrobaric and massives

bodies P1 and P2. It is assumed that the mass P3 is negligeable when compared to

the masses m1 of P1 and m2 of P2. This assumption is reasonable when the body P3

is a spacecraft moving under the influence of a Sun and a planet; or a planet and its

moon. The two larger bodies, termed the primaries, are assumed to move in circular

orbits relative to their common barycenter. It is also assumed that the motions of

P1 and P2 are not influenced by the infinitesimal mass of P3. If the masses of the

primaries are different (m1 6= m2), P1 is arbitrarily defined to be the larger of the two

primaries.

2.2.1 Equations of Motion in the Inertial Frame

The derivation of the CR3BP equations of motion is based on the N -Body Equa-

tion (2.1) for N = 3. Thus, the motion of interest is the motion of P3, the infinitesimal

mass, under the gravitational influence of P1 and P2, the massive, centrobaric pri-
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maries. The vector R̄i3 is defined as the relative position of P3 with respect to Pi, as

defined in Equation (2.2) and

m3R̄
′′
3 = −Gm1m3

R3
13

R̄13 −G
m3m2

R3
23

R̄23 (2.3)

The relative motion of P1 and P2 admits a conic solution. An inertially fixed frame

is defined such that the orbital plane of the primaries is spanned by the unit vectors

X̂ and Ŷ , and Ẑ is along the direction of the angular momentum, as apparent in

Figure 2.2. The origin is placed at the common barycenter B of the primaries. In

such inertial frame, the motion of the primaries is be written as

R̄1 = R1(− cos(θ̇t) X̂ − sin(θ̇t) Ŷ )

R̄2 = R2(cos(θ̇t) X̂ + sin(θ̇t) Ŷ )
(2.4)

where θ̇ is the constant, angular velocity of the primaries around their common

barycenter, t is the dimensional independent time variable, and Ri is the magni-

tude of the R̄i vector. The position vector of P3 is defined in inertial components as

R̄3 = XX̄ + Y Ȳ + ZZ̄. The relative position of P3 with respect to the primaries P1

and P2 is expressed in terms of inertial components as

R̄13 = (X +R1 cos (θ̇t))X̂ + (Y +R1 sin (θ̇t))Ŷ + ZẐ

R̄23 = (X −R2 cos (θ̇t))X̂ + (Y −R2 sin (θ̇t))Ŷ + ZẐ
(2.5)

The equations of motion for P3 as formulated in the inertial frame are obtained by

substituting Equations (2.5) into in Equation (2.1) and noting the second-order sclar

differential equations

X ′′ = −
G m1

(
X +R1 cos (θ̇t)

)
R2

13

−
G m2

(
X −R2 cos (θ̇t)

)
R2

23

Y ′′ = −
G m1

(
Y +R1 sin (θ̇t)

)
R2

13

−
G m2

(
Y −R2 sin (θ̇t)

)
R2

23

Z ′′ =

(
− G m1

R2
13

− G m2

R2
23

)
Z

(2.6)

The equations of motion for P3 in the inertial frame do not admit an analytical

solution. Thus, numerical approaches are typically employed for analyses of the state

evolution of P3.
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2.2.2 Equations of Motion in the Rotating Frame

It is convenient and insightful to define a rotating frame for investigation within

the context of the CR3BP. The two primaries are fixed in this frame, labeled the

P1 − P2 rotating frame as illustrated in Figure 2.2. In this investigation, lowercase

vectors with a hat refer to rotating unit vectors, whereas uppercase vectors with a hat

refer to inertial unit vectors. Various dynamical structures become apparent when

represented in this particular rotating frame. In the P1 − P2 rotating frame, the x̂

direction is defined from the larger primary to the smaller, the ẑ vector is along the

direction of the angular velocity of the primary system with respect to the inertial

frame. The ŷ is the normalized cross product of ẑ by x̂, so the triplet (x̂, ŷ, ẑ) forms

a dextral, orthonormal triad.

Figure 2.2. Relationship between the inertial and the rotating frames

Nondimensionalization removes the dependencies on system characteristics in the

differential equations; it also improves the properties of a numerical formulation,

including accuracy. The characteristic quantities are defined as follows.

� The distance between the two primaries is l∗ = R1 + R2. Because of the as-

sumptions of circular orbits for the primaries, l∗ is constant.
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� The total mass of the system is m∗ = m1 +m2.

� The characteristic time t∗ is defined as the inverse of the mean motion N .

The system nondimensional mass parameter is equal to the mass of the second pri-

mary over the total mass µ = m2

m∗
. It is also equal to the nondimensional distance

from the system center of mass to the larger primary: l∗m2

m∗
1
l∗

= µ. The dimensional

quantities and the nondimensional mass parameters are sufficient to uniquely describe

a three-body system. The characteristic values for the Earth-Moon system are sum-

marized in Table 2.1. The nondimensional mean motion n is defined such that the

nondimensional gravitational parameter G̃ is equal to one.

n = N t∗ =

(
G̃ m∗

l∗3

)1/2(
l∗3

G̃ m∗

)1/2

= 1 (2.7)

The position of the primaries relative to the barycenter in the rotating frame are

represented in Figure 2.3. The position of P3 with respect to the system barycenter

is expressed

p̄ = x x̂+ y ŷ + z ẑ (2.8)

and the derivation of p̄ as viewed by a rotating observer is:

˙̄p = ẋ x̂+ ẏ ŷ + ż ẑ (2.9)

The six-dimensional state vector x̄ is then defined by combining Equations (2.8) and

(2.9)

x̄ =
[
p̄ ˙̄p

]
=
[
x y z ẋ ẏ ż

]
(2.10)

Table 2.1. Characteristic quantities of the Earth-Moon system

Quantity Value Unitca

l∗E-M 3.8440 · 105 km

m∗E-M 4.0350 · 105 kg3·s-2

t∗E-M 4.3425 days
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Figure 2.3. Nondimensional 3-body problem in the rotating frame

The nondimensional position vectors of P3 relative to the primaries are

r̄13 = r̄3 − r̄1 = (x+ µ) x̂+ y ŷ + z ẑ (2.11)

r̄23 = r̄3 − r̄2 = (x− 1 + µ) x̂+ y ŷ + z ẑ (2.12)

Equation (2.3) is rewritten in nondimensional form

p̄′′ = −1− µ
r3

13

r̄13 −
µ

r3
23

r̄23 (2.13)

Note that the prime indicates derivative with respect to the nondimensional time

variable in the inertial frame while dotted quantities are derivative with respect to

the nondimensional time variable in the rotating frame. Derivatives relative to the

rotating frame emerge from a kinematic expansion. Since the angular velocity is

constant and the center of mass of the system is not accelerated in the rotating

frame, the relationship between p̄′′ and ¨̄p results in the form

p̄′′ = ẑ × (ẑ × ˙̄p) + 2ẑ × ˙̄p+ ¨̄p (2.14)
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Then, Equation (2.14) becomes

p̄′′ = (ẍ− 2ẏ − x) x̂+ (ÿ + 2ẋ− y) ŷ + z̈ ẑ (2.15)

Combining Equations (2.15) and (2.13) and projecting on each of the three axes of the

rotating frame, the scalar equations of motions of the Circular Restricted Three-Body

Problem are obtained

ẍ = 2ẏ + x− (1− µ)(x+ µ)

r3
13

− µ(x− 1 + µ)

r3
23

ÿ = −2ẋ+ y − (1− µ)y

r3
13

− µy

r3
23

z̈ =
(1− µ)z

r3
13

− µz

r3
23

(2.16)

The inertial relative equation of motion (2.3) is rewritten in term of a potential

function U

m3R̄
′′
3 = ∇̄U

where

U = G
m1

R13

+G
m2

R23

(2.17)

In the rotating frame, a similar quantity, usually called the pseudo-potential function

is defined.

Λ =
(1− µ)

r13

+
µ

r23

+
1

2
(x2 + y2) (2.18)

The pseudo-potential is useful to simplify the CR3BP equations of the motions, as

presented below

ẍ = 2ẏ + Λx

ÿ = −2ẋ+ Λy

z̈ = Λz

(2.19)

where Λα is the first partial derivative of Λ with respect to the variable α. Since the

gradient of Λ does not yield the acceleration vector, i.e., ∇̄ 6= ¨̄p, the quantity Λ is

termed pseudo-potential.
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2.2.3 Integral of the Motion

The CR3BP as formulated in the rotating frame admits one and only one integral

of the motion. This integral is denoted the Jacobi constant or C and a derivation of

the Jacobi constant appears in Szebehely [18]. To seek a scalar integral, operations

on the differential equations are performed. The dot product of the velocity vector

˙̄ρ =
[
ẋ ẏ ẏ

]
and the acceleration vector ¨̄ρ =

[
ẍ ÿ ÿ

]
yields a scalar expression

ẋẍ+ ẏÿ + żz̈ = ẋ Λx + ẏ Λy + ż Λz (2.20)

This expression is now in a form that is integrable, that is,

d

dt

(
ẋ2 + ẏ2 + ż2

)
= 2

(
dx

dt
Λx +

dy

dt
Λy +

dz

dt
Λz

)
d
(
ẋ2 + ẏ2 + ż2

)
= 2

(
dx Λx + dy Λy + dz Λz

)
v2 = 2 Λ− C

(2.21)

where C is an integration constant, arbitrarily defined with a minus sign. A succinct

form to evaluate the Jacobi constant appears as

C = 2 Λ− v2 (2.22)

In the two-body problem, the orbital energy is defined as the sum of the potential

energy and the kinetic energy. In the CR3BP, the equivalent of this orbital energy is

the Jacobi constant, and it is also termed ‘energy-like quantity’, since it leverages a

pseudo-potential function rather than a potential function. For future comparisons,

observe that the Jacobi constant decreases as the energy increases.

2.2.4 Equilibrium Solutions

Although an analytic solution to the CR3BP is not available, insight into the

system dynamics is obtained from the equilibrium solutions. When all the time
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derivatives relative to the rotating frame are set equal to zero (ẋ = ẏ = ż = ẍ = ÿ =

z̈ = 0), the equations of motion in Equations (2.16) become

x =
(1− µ)(x+ µ)

r3
13

+
µ(x− 1 + µ)

r3
23

(2.23)

y =
(1− µ)y

r3
13

+
µy

r3
23

(2.24)

0 =
(1− µ)z

r3
13

+
µz

r3
23

(2.25)

From Equation (2.25), it is apparent that z = 0, that is, all the equilibrium solutions

lie in the x − y plane. The equilibrium solutions lying along the line joining the

two primaries admit, by definition, y = 0. Therefore, such an equilibrium solution

satisfies the following equation

x = −(1− µ)(x+ µ)

(x+ µ)3
− µ(x− 1 + µ)

(x− 1 + µ)3
(2.26)

Leveraging the signum sgn function notation, Equation (2.26) becomes:

x = − (1− µ)

sgn(x+ µ)(x+ µ)2
− µ

sgn(x− 1 + µ)(x− 1 + µ)2
(2.27)

This equations admits three different solutions, depending on the signs of x+ µ and

x−1+µ. The equilibrium equations as a function of the signs are summarized in Table

2.2. These equilibrium solutions lie along the rotating x̂ axis so they are labeled the

collinear equilibrium solutions. The remaining equilibrium solutions satisfy y 6= 0.

The off-axis equilibrium solutions satisfy, from Equation (2.24),

Table 2.2. Collinear equilibrium points of the CR3BP

Range of x sgn(x+ µ) sgn(x− 1 + µ) Equilibrium Equation Name

x < −µ − − x = (1−µ)
(x+µ)2 + µ

(x−1+µ)2 L3

−µ < x < 1− µ + − x = − (1−µ)
(x+µ)2 + µ

(x−1+µ)2 L1

1− µ < x + + x = − (1−µ)
(x+µ)2 − µ

(x−1+µ)2 L2
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y − (1− µ)y

r3
13

− µy

r3
23

= 0

y

[
1− (1− µ)

r3
13

− µ

r3
23

]
= 0

1− (1− µ)

r3
13

− µ

r3
23

= 0 (2.28)

Reordering Equation (2.23):

x

[
1− (1− µ)

r3
13

− µ

r3
23

]
− µ

[
1− µ
r3

13

− 1− µ
r3

23

]
= 0

x

[
1− (1− µ)

r3
13

− µ

r3
23

]
− µ

[
1− µ
r3

13

+
µ

r3
23

]
+

µ

r3
23

= 0

x

[
0

]
− µ

[
1

]
+

µ

r3
23

= 0

r3
23 = 1 → r23 = 1 (2.29)

Using Equation (2.29) in Equation (2.28)

1− (1− µ)

r3
13

− µ

r3
23

= 0

1− (1− µ)

r3
13

− µ = 0

r3
13 = 1 → r13 = 1 (2.30)

From Equations (2.29) and (2.30), the off-axis equilibrium solutions are located at

the intersections of two circles centered at the primaries and of radius equal to one.

Because these equilibrium points form two equilateral triangles with the primaries,

they are labeled the triangular equilibrium points. The positions of the five equilib-

rium points of the CR3BP (also called the Lagrange points or the libration points)

are summarized in Figure 2.4.

2.2.5 Symmetry Properties

The symmetric nature of the equations of motion in Equation (2.16) yield solu-

tions mirrored across the x − z plane in reverse time. This symmetry emerges from

the mirror theorem.
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Figure 2.4. General location of the five CR3BP equilibrium points

The Mirror Theorem: If n point masses are acted upon by their mutual gravita-

tional forces only, and at certain epoch each radius vector from the center of mass of

the system is perpendicular to every velocity vector, then the orbit of each mass after

that epoch is a mirror of its orbit prior to that epoch. Such a configuration of radius

and velocity vectors is called a mirror configuration. [19]

A corollary of the mirror theorem is: If n point masses are moving under their mutual

gravitational forces only, their orbits are periodic if at two separate epochs a mirror

configuration occurs.

This corollary is leveraged for locating periodic solutions in the CR3BP.

2.2.6 Zero Velocity Surfaces

From the Jacobi constant expression in Equation (2.22): C = 2 Λ − v2, some

boundaries on the motion of the particle P3 are obtained. The Jacobi constant ex-

pression is rewritten as v2 = 2 Λ − C. Since the velocity cannot be imaginary, the

inequality (2 Λ ≥ C) defines boundaries on the motion. All the points not satisfying

this inequality and, therefore, yielding an imaginary position, are labeled the forbid-

den region. The collection of points satisfying the equality equation (2 Λ = C) form

a surface and therefore yielding a velocity relative to the rotating frame that is equal
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to zero, is labeled the set of zero velocity surfaces. The zero velocity surfaces offer

great insight on the possible motion of P3, given a certain energy level. Planar cross

sections of the zero velocity surfaces over a range of values for the Jacobi constant in

the Earth-Moon CR3BP are plotted on Figure 2.5. The primaries, the Earth and the

Moon, are represented by black dots. The grey area is the forbidden region and the

solid black lines are the cross section of the zero velocity surfaces in the x− y plane

and reflect the boundaries for motion in the plane of the primaries.

By definition, the libration points are points on the ZVCs at specific values of

the Jacobi constant. For Jacobi constant values higher than that corresponding to

L1, no opening exits between P1 and P2, that is, no path passes near both primaries.

A gateway, or portal, linking regions surrounding the two primaries opens when the

energy is evaluated such that C < CL1. As the energy increases, two more gateways

open: first at L2 when C < CL2; then an opening occurs at L3 when C < CL3. When

C ≤ CL4 , CL5 the zero velocity surfaces do not exist in the x−y plane but boundaries

remain out-of-plane. The three-dimensional evolution of the zero velocity surfaces

with the Jacobi constant is evident on Figure 2.6. In Figure 2.6(f), the in-plane zero

velocity surfaces for a Jacobi constant value lower than the one correspond to the

libration points L4, L5 do not exist at z = 0. A particle at this energy level can exit

the Earth-Moon vicinity through all direction in the x − y plane, but a boundary

restricting its motion out-of-plane still exists.
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(a) C > CL1 (b) C = CL1 (c) CL1 > C > CL2

(d) C = CL2 (e) CL2 > C > CL3 (f) C = CL3

(g) CL3 > C > CL4, CL5 (h) C = CL4, CL5

Figure 2.5. Cross-sections of the zero velocity surfaces and forbidden regions (in grey)

at z = 0 in the Earth-Moon CR3BP
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(a) C > CL1 (b) C = CL1

(c) C = CL2 (d) C = CL3

(e) C = CL4, CL5 (f) C < CL4, CL5

Figure 2.6. 3D view of zero velocity surfaces in the Earth-Moon CR3BP
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2.3 Bicircular Restricted Four-Body Problem — Planet-Moon

The Bicircular Restricted Four-Body Problem (BCR4BP) incorporates the influ-

ence of solar gravity on the three-body Earth-Moon system. Thus, the BCR4BP

offers an increase in fidelity over the CR3BP. This increased fidelity is especially use-

ful in the Sun-Earth-Moon environment, where the Sun has a major impact on many

trajectories. For certain applications, the inclusion of the solar gravity is critical.

2.3.1 Equations of Motion - Sun Out Of Plane

In the Bircircular Restricted Four-Body Problem (BCR4BP), the motion of a

centrobaric body P3 is subjected to the influence of three other bodies, all assumed

to be spherically symmetric: a planet P1, its moon P2 and the Sun S. The following

assumptions are incorporated:

� P1 and P2 move in circular orbits relative to their common barycenter B1.

� The Sun and B1 move in circular orbits around the system {P1 − P2 − S}

barycenter B2. The nested circular orbits suggest the name “bicircular” to this

four-body model.

� The perturbing acceleration from the Sun does not influence the motion of P1

and P2. The motion of P2 is not a dynamical solution of the S − P1 CR3BP.

Therefore, this model is not coherent. Coherent bicircular models have been

investigated previously [8] but are not necessary in this analysis.

� The restricted assumption from the CR3BP still applies: ms > m1 > m2 > m3

� The Sun orbit is not assumed to be in the same plane as P1−P2, as is apparent

in Figure 2.7. If the Sun orbital plane is not the P1 − P2 plane, the longitude

of the descending node Ω is defined.

The BCR4BP is time-dependent but periodic: one period corresponds to the one

complete revolution of the Sun around the Planet-Moon barycenterB1. For the Earth-

Moon-Sun BCR4BP, this period corresponds to the synodic period of the Moon (the

time between two Sun-Earth-Moon alignment), equal to 29.48 days. Some parameters
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Figure 2.7. Sample Sun orbit as seen in the Planet-Moon frame, for i = 15◦ and

Ω = 120◦

defined in the CR3BP are again employed in the BCR4BP while retaining their

meaning: m∗, l∗, µ. Specific additional parameters defined for the BCR4BP are

presented in Table 2.3. The positions of the primaries in a B1 reference frame is

Table 2.3. Nondimensional parameters of the BCR4BP

Parameter Expression Comment

mS
Ms

m∗

Nondimensional mass of the

Sun in terms of the mass

of the Earth-Moon system.

aS
lB1→Sun

l∗

Nondimensional distance

from B1 to the Sun in terms

of the Earth-Moon distance

defined on Figure 2.8. Note that B1, the barycenter of the Planet-Moon system

is not an inertially fixed point. However, the barycenter of the Sun-Planet-Moon

system, B2, is an inertially fixed point by definition. The positions of the primaries

with respect to B1 expressed in the P1 − P2 rotating frame are derived as
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r̄B1→P1 =


−µ cos(t))

−µ sin(t)

0

 (2.31)

r̄B1→P2 =


(1− µ) cos(t)

(1− µ) sin(t)

0

 (2.32)

r̄B1→S =


as

(
cos(ns t− Ω) cos(Ω) − sin(ns t− Ω) sin(Ω) cos(i)

)
as

(
cos(ns t− Ω) sin(Ω) + sin(ns t− Ω) cos(Ω) cos(i)

)
as sin(ns t− Ω) sin(i)

 =


XS

YS

ZS


(2.33)

where nS is the constant nondimensional mean motion of the Sun in the inertial frame

nS =

√
1 +mS

a3
S

(2.34)

The coordinates of P3 with respect with respect to B1 are denoted X, Y, Z, as inertial

components. Because of the presence of the Sun, B1 is not an inertially fixed point

Figure 2.8. Nondimensional BCR4BP in the P1 − P2 rotating frame
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in the BCR4BP. However, the Sun-Planet-Moon barycenter B2 is an inertially fixed

point and the coordinates of P3 with respect to B2 are denoted Xi, Yi, Zi, such that

Xi = X − ms

ms + 1
Xs

Yi = Y − ms

ms + 1
Ys

Zi = Z − ms

ms + 1
Zs

(2.35)

The second time derivative yields

Ẍi = Ẍ − ms

ms + 1
Ẍs

Ÿi = Ÿ − ms

ms + 1
Ÿs

Z̈i = Z̈ − ms

ms + 1
Z̈s

(2.36)

The position of the Sun in inertial coordinates,
[
XS YS ZS

]
, is a combination of

sine and cosine functions, such that

Ẍs = −n2
s Xs

Ÿs = −n2
s Ys

Z̈s = −n2
s Zs

(2.37)

Kepler’s Law allows a useful rearrangement of the constant multiplying of XS, YS, ZS

ms n
2
s

1 +ms

=
ms

1 +ms

1 +ms

a3
s

=
ms

a3
s

(2.38)

Then, combining Equations (2.36) and Equation (2.38) yields

Ẍ = Ẍi −
ms

a3
s

Xs

Ÿ = Ÿi −
ms

a3
s

Ys

Z̈ = Z̈i −
ms

a3
s

Zs

(2.39)
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The inertial accelerations Ẍi, Ẍi, Z̈i, from the N -body Equation (2.1) is used again,

and nondimensionalized to yield,

Ẍi = −
(1− µ)

(
X + µ cos(t)

)
r3

13

−
µ
(
X − (1− µ) cos(t)

)
r3

23

− mS(X −Xs)

rs3

Ÿi = −
(1− µ)

(
Y + µ sin(t)

)
r3

13

−
µ
(
Y − (1− µ) sin(t)

)
r3

23

− mS(Y − Ys)
rs3

Z̈i = −(1− µ)Z

r3
13

− µZ

r3
23

− mS(Z − Zs)
rs3

(2.40)

Then, the Bicircular Restricted Four-Body inertial equations of motion are summa-

rized below

Ẍ = −
(1− µ)

(
X + µ cos(t)

)
r3

13

−
µ
(
X − (1− µ) cos(t)

)
r3

23

− mS(X −Xs)

rs3
− ms

a3
s

Xs

Ÿ = −
(1− µ)

(
Y + µ sin(t)

)
r3

13

−
µ
(
Y − (1− µ) sin(t)

)
r3

23

− mS(Y − Ys)
rs3

− ms

a3
s

Ys

Z̈ = −(1− µ)Z

r3
13

− µZ

r3
23

− mS(Z − Zs)
rs3

− ms

a3
s

Zs

(2.41)

Observe that the scalar expressions in Equation 2.41 are components in the (X̂, Ŷ , Ẑ)

set of unit vectors, as defined in Figure 2.2. Similar to the CR3BP, the synodic

coordinates x = X cos(t) + Y sin(t) and y = −X sin(t) + Y cos(t) are defined

as rotating coordinates. Using the kinematic expansion from Equation (2.14), the

Bircular Restricted Sun-Out-Of-Plane (SOOP) equations of motion as expressed in

components in the Planet-Moon rotating frame are obtained, i.e.,

ẍ = 2ẏ + x− (1− µ)(x+ µ)

r3
13

− µ(x− 1 + µ)

r3
23

− ms(x− xs)
r3
s3

− ms

a3
s

xs

ÿ = −2ẋ+ y − (1− µ)y

r3
13

− µy

r3
23

− ms(y − ys)
r3
s3

− ms

a3
s

ys

z̈ = −(1− µ)z

r3
13

− µz

r3
23

− ms(z − zs)
r3
s3

− ms

a3
s

zs

(2.42)

where θS = ωS t is the angle between the Sun position vector and the x-axis of

the Planet-Moon rotating frame, and ωS is a constant. The angular velocity of the
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Sun in the Planet-Moon frame is the difference between the nondimensional Planet

and Moon angular velocities in their circular orbits around B1 and the Sun angular

velocity in its circular orbit around B1, i.e.,

ωS = ns − 1 (2.43)

The circular assumption for the Sun, Planet and Moon orbits yields constant angular

velocities both in the inertial and the rotating frame. Viewed from Earth, the angular

velocity of the Moon is higher than the angular velocity of the Sun. Therefore, in

the Earth-Moon rotating frame as defined in the Earth-Moon-Sun system, the Sun

rotates clockwise around the Earth-Moon barycenter and ωS,EMS = −0.9253. The

Sun position in the Planet-Moon rotating frame, i.e., the (x̂, ŷ, ẑ) basis, is then such

r̄s =


xS

yS

zS

 =


as

(
cos(θs − Ω) cos(Ω) − sin(θs − Ω) sin(Ω) cos(i)

)
as

(
cos(θs − Ω) sin(Ω) + sin(θs − Ω) cos(Ω) cos(i)

)
as sin(θs − Ω) sin(i)

 (2.44)

and the vector from the Sun to the spacecraft is defined by

r̄s3 =


x

y

z

−

xS

yS

zS

 (2.45)

Thus, the motion of a spacecraft P3 under the gravitational influence of a Sun, a

Planet and its Moon within th context of the BCR4BP assumptions is fully described

by Equations (2.42) to (2.45).

2.3.2 Equations of Motion - Sun In Plane

In the Earth-Moon-Sun system, the inclination of the Sun with respect to the

Earth-Moon x−y plane is approximately evaluated as iEMS = −5.16◦. However, it is

sometimes assumed that the inclination between the Sun orbital plane and the Planet-

Moon orbital plane is equal to zero, i.e., the i = 0◦. In that case, the Equations of
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Motion (2.42) are simplified and the Bircular Restricted Sun-In-Plane (SIP) equations

of motion in the Planet-Moon rotating frame are obtained,

ẍ = 2ẏ + x− (1− µ)(x+ µ)

r3
13

− µ(x− 1 + µ)

r3
23

− ms(x− as cos(θs))

r3
s3

− ms

a2
s

cos θs

ÿ = −2ẋ+ y − (1− µ)y

r3
13

− µy

r3
23

− ms(y − as sin(θs))

r3
s3

− ms

a2
s

sin θs

z̈ = −(1− µ)z

r3
13

− µz

r3
23

− msz

r3
s3

(2.46)

In this investigation, except when mentioned otherwise, the model used is the Bicir-

cular Restricted Bicircular Four-Body Model with Sun-Out-of-Plane (SOOP).

2.3.3 Epoch Definition

By definition, the Sun orbit relative to the Planet-Moon barycenter is circular.

The instantaneous location of the Sun is, therefore, completely described by three

parameters: the solar orbit radius aS, the Sun angle θS and the solar orbit longitude

of descending Node Ω. Each is described as follows.

2.3.3.1 Sun Orbit Radius aS

Multiple choices exist when selecting aS. An average value of the Sun distance to

the barycenter is easily extracted from an ephemeris model. For additional fidelity,

an average near a specific epoch (corresponding, for instance, to mission dates) can

also be selected.

2.3.3.2 Sun Angle θS

The Sun angle θS is the angle between the projection of the x axis on the Sun

plane and the Sun position vector in the Planet-Moon rotating frame. From the
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derivation of the BCR4BP equations of motion, the Sun angle is linearly decreasing,

as ωS is negative, i.e.,

θS = ωS t+ ωS0 (2.47)

When θS = 0◦, a ”Planet-Moon-Sun” (in this specific order) configuration occurs.

From the Planet, this scenario corresponds to a new Moon. When θS = 180◦, the

configuration is ”Sun-Planet-Moon” and from the perspective of the Planet a full

Moon is observed. The two types of Moon configurations (not to scale) appear in the

BCR4BP Earth-Moon-Sun model, as observed in the Earth-Moon rotating frame, on

Figure 2.9. In this system, the time between two full Moons (or equivalently two new

Moons) is 29.5 days, a synodic month.

Figure 2.9. Moon configurations in the BCR4BP Earth-Moon-Sun model, viewed in

the Earth-Moon rotating frame

2.3.3.3 Sun Longitude of the Descending Node Ω

The longitude of the descending node Ω for the solar orbit is the angle between the

Planet-Moon rotating x axis and the position vector of the Sun as it crosses the Planet-

Moon x − y plane with a positive rotating z velocity. The epoch Ω = 0◦, θS = 0◦
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corresponds to a combination of a new moon and the Sun crossing its descending node;

such an occurence is a solar eclipse. The epoch Ω = 180◦, θS = 180◦ corresponds to

a combination of a full moon and the Sun crossing its descending node; i.e., a lunar

eclipse.

The time between two total solar eclipses (or, equivalently, two lunar eclipses) is

termed the eclipse year. The corresponding duration is Planet-Moon dependent. In

the Earth-Moon-Sun system, an eclipse year lasts 346.62 days. In an eclipse year,

there are two eclipse seasons: a lunar eclipse season and a solar eclipse season. The

interval for each season is about a month and they are separated by approximately

half of the eclipse year.

In the BCR4BP, it is assumed that the solar longitude of the descending node pre-

cesses linearly over one eclipse year. In the Earth-Moon-Sun system, the solar eclipse

dates are retrievable from NASA Five Millennium Catalog of Solar Eclipses [20].

Then, Ω corresponding to a particular epoch is constructed by linear interpolation.

Although multiple factors are involved in the eclipse cycles, the linear approximation

yields very good results. From a particular eclipse epoch, the next eclipse epoch is

predicted with a maximum error of only a couple of days.

2.3.4 Hamiltonian in Planet-Moon Frame

The differential equations governing the BCR4BP are written in terms of a pseudo-

potential function, Υ. In contrast to the CR3BP, the pseudo-potential is time-

dependent because time appears explicitly in the quantities rs3, xS, yS and zS. There-

fore, the time derivative ∂Υ
∂t

is nonzero and an integral of the motion does not exist.

The expression for the pseudo-potential function is written

Υ =
x2 + y2

2
+

1− µ
r13

+
µ

r23

+
mS

rs3
− mS

a3
S

(
xS x+ yS y + zS z

)
(2.48)
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such that:

ẍ = 2ẏ + Υx

ÿ = −2ẋ+ Υy

z̈ = Υz

(2.49)

where Υα is the partial derivative of Υ with respect to α. However, the Hamiltonian,

the total energy of the system remains useful. In this model, a scaled version of the

Hamiltonian is defined and is consistent with the Jacobi constant definition in the

CR3BP. Then,

H = 2Υ− (ẋ2 + ẏ2 + ż2)− % (2.50)

where % is a constant scaling term. This scaling term counterbalances the large

magnitude of mS
a3
S

. In the Earth-Moon-Sun BCR4BP model, % = 1690.

2.3.5 Instantaneous Equilibrium Solutions

The time-dependent nature of the bicircular model yields time-dependent, or in-

stantaneous, equilibrium solutions. To determine the locations of these equilibrium

points, the velocity and acceleration terms in the equations of motion in Equation

(2.49) are set to zero, that is,

Υx = 0

Υy = 0

Υz = 0

(2.51)

which yields the following

x− (1− µ)(x+ µ)

r3
13

− µ(x− 1 + µ)

r3
23

− ms(x− xs)
r3
s3

− ms

a3
s

xs = 0 (2.52)

y − (1− µ)y

r3
13

− µy

r3
23

− ms(y − ys)
r3
s3

− ms

a3
s

ys = 0 (2.53)

−(1− µ)z

r3
13

− µz

r3
23

− ms(z − zs)
r3
s3

− ms

a3
s

zs = 0 (2.54)



32

In Equations (2.52) to (2.54) an obvious analytical solution is not apparent. There-

fore, a Newton-Raphson algorithm is implemented to iteratively solve Equations

(2.52) to (2.54) until satisfying a specified tolerance. The CR3BP equilibrium point

is employed as the initial guess for locating the BCR4BP equilibrium points when

θS = 0◦. A continuation scheme in θS is then used to solve for the equilibrium points

at different times, employing the previously converged point as the initial guess.

For clarity, the notation introduced by Cox [21] is leveraged to label the equilibria

of the BCR4BP and to avoid repetition of the word ‘instantaneous’. From this point

forward,

� Li refers to the i th CR3BP equilibrium, or Lagrange point.

� Ej
i (θS) denotes to the BCR4BP instantaneous equilibrium point, where:

– The subscript i refers to the corresponding Li.

– The argument θS is the Sun angle corresponding to this instantaneous

equilibrium point.

– The superscript j is used when multiple equilibrium solutions exist for

specific values of Ei and θS. In the Earth-Moon-Sun, this case occurs for

E3 and certain Sun angle values. When multiples solutions exist, they are

numbered from lowest energy (highest H) to higher energy (lowest H).

For instance, E1(45◦) reflects the instantaneous equilibrium point for a Sun angle of

45◦ corresponding to the CR3BP L1. The notation Ei without an argument denotes

to the complete set of equilibrium solutions over the range of θS values from 0◦ to

359◦.

2.3.5.1 E1 and E2 Equilibria

The location of the E1 and E2 equilibrium points in the Earth-Moon-Sun BCR4BP

over one synodic period of the Sun (about 29.5 days) is plotted in Figure 2.10 and

Figure 2.11. Note that these curves are not trajectories but a collection of the points



33

that satisfy Equations (2.52) to (2.54) at different times (meaning, at different values

of θS).

Figure 2.10. Earth-Moon-Sun set of equilibria E1 in the BCR4BP SOOP model

Figure 2.11. Earth-Moon-Sun set of equilibria E2 in the BCR4BP SOOP model

2.3.5.2 E3 Equilibrium

In the CR3BP, the third equilibrium point L3 is located on the Planet-Moon

rotating x axis, on the opposite side of the Moon from the Planet. Due to the Sun

perturbation, the E3 equilibrium curve is shifted in the BCR4BP and extends away

from the rotating x-axis, as plotted in Figure 2.12. For certain orientations of the

Sun position, the E3(θS) equilibrium solution splits into three equilibrium points, thus

labeled E1
3(θS), E2

3(θS) and E3
3(θS). A natural parameter continuation procedure, over
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the parameter θS, struggles with multiple solutions and tends to ‘jump’ from one to

the other. Therefore, the scheme is switched to a pseudo-arc length continuation

strategy for smoother evolutions of the E3 curve.

Figure 2.12. Instantaneous Earth-Moon-Sun E3 in the BCR4BP SOOP Model over

one synodic month for Ω = 90◦. At θS = −74◦, multiple solutions for E3(θS) exist

and are indicated by the orange markers. The grey line on the right plot indicates

the Sun location at that instant.

Similarly to E1 and E2, E3 includes a nonzero z component for certain values of

θS. Since the z amplitude is multiple orders of magnitude smaller than the amplitudes

in the directions of x and y, the out-of-plane nature of E3 does not appear clearly

on a 3D plot. From Figures 2.10 and 2.11, it is apparent that the z amplitude of

the equilibrium solutions is also a function of Ω. The maximum z amplitude for E1

through E5 and Ω = 45◦ is summarized on Table 2.4.

2.3.5.3 E4 and E5 Equilibria

In the BCR4BP, due to the influence exerted by the Sun, the equilateral equilib-

rium points are generally not symmetric across the rotating x axis. An example of

the E4 and E5 curves in the Earth-Moon-Sun system is plotted in Figure 2.13. For
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reference, the CR3BP equilateral equilibrium points are displayed in the figure by

the dark yellow dots. Recall that the blue line does not represent a trajectory, but a

collection of points that each satisfy the equilibrium equations (2.52) to (2.54) at a

certain epoch Ω.

Figure 2.13. Instantaneous Earth-Moon-Sun E4 (left) and E5 (right) in the BCR4BP

SOOP Model over one synodic month for Ω = 90◦

Table 2.4. Minimum and maximum z amplitudes of the instantaneous equilibrium

solutions over one synodic month in the Earth-Moon-Sun BRC4BP for Ω = 45◦

Li Minimum zLi [km] Maximum zLi [km]

L1 −13.8165 80.8881

L2 −31.1812 175.3716

L3 −541.8267 340.0104

L4 −297.1821 123.6837

L5 −6.8775 546.684

2.3.6 Instantaneous Zero Velocity Surfaces

Since the Hamiltonian is time-dependent in the BCR4BP, the Zero-Velocity Sur-

faces (ZVS) are oscillating. In the CR3BP, the ZVC are symmetric with respect to
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the x− y plane. Again, because of the perturbing action from the Sun, symmetry ex-

ists only at specific instances, that is, Ω = j 180◦ and θS = k 180◦, with j, k integers.

Consider a trajectory simulated from a given inital state and initial Sun orientation

—which results in a specific initial H value. This trajectory is propagated for 27 days.

In Figure 2.14, this same trajectory (in blue) is plotted on every subplot. At different

times, identified along the path by the purple diamonds, the Hamiltonian and the

Sun angle are evaluated. In each case, the instantaneous forbidden region are plotted

in grey, the instantaneous equilibrium solutions appear as the red dots and the black

arrow is directed toward the Sun. Recall that in the BCR4BP, the Hamiltonian, H, is

not constant and the ZVSs are oscillating. The black circles represent the primaries,

in this case the Earth and the Moon. In Figure 2.14(a), the spacecraft is on the E3

side of Earth. Because θS = 0◦ and Ω = 0◦, the Sun direction is perfectly aligned

with the x axis. The Sun’s influence is symmetric across the x− y plane, so the ZVS

intersection with the x− y plane is symmetric with respect to the x axis. The same

applies to E4 and E5: these equilateral points are symmetric with respect to the x

axis. In Figures 2.14(b) and 2.14(c), the Sun is not aligned with any particular axis.

The energy H also decreased relative to the initial time in Figure 2.14(a). The non-

symmetric nature of the ZVS and the ‘triangular’ equilibrium points appear clearly.

In Figure 2.14(d), for this value of θS, three solutions exist for E3; thus, there are a

total of seven instantaneous equilibrium solutions. The energy is again increased, so

the ZVSs only exist in the plane near E4. Note that a lunar flyby occurred between

the time of Figure 2.14(c) and the time of Figure 2.14(d). Close encounters with

the primaries affect the Hamiltonian value and, therefore, the instantaneous ZVSs,

observed in Figure 2.14(d).
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(a) H = 3.2734 θS = 0◦ (b) H = 3.2663 θS = −44.655◦

(c) H = 3.2626 θS = −147.0143◦ (d) H = 3.2488 θS = −257.4531◦

Figure 2.14. Earth-Moon-Sun Instantaneous ZVC over a trajectory with Ω = 0◦

2.3.7 Hamiltonian Plots

Hamiltonian plots illustrate the value of the Hamiltonian corresponding to the

instantaneous equilibrium solutions at a specific Sun orientation angle, θS. Collecting

these values over all solar angles θS for a specific Ω yields the plot in Figure 2.15.

Since θS and the nondimensional time t are linearly related, the Hamiltonian plot for

a specific time interval
[
t0 t0 + T

]
is easily constructed as well. Hamiltonian plots

are useful to assess the Ei(θS) gateway access, i.e., a binary check to record whether

a gateway is open at a certain time along the trajectory. An example appears in
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Figure 2.15. Earth-Moon-Sun Hamiltonian plot with Ω = 0◦

Figure 2.16. At the instant marked by the orange X, the spacecraft is in located

near the L1 gateway. For this position, velocity and the Sun location parameters, the

gateway between the Earth and the Moon is open, as demonstrated both in the top

left plot and the bottom Hamiltonian plot. At a later time, marked by the the yellow

cross, the spacecraft location is near the Earth vicinity. For this position, velocity

and Sun location, all the gateways are closed. Also observe that the energy of the

spacecraft, H, and the energy corresponding to the gateways are both higher than

at the earlier time. However, the Hamiltonian corresponding to the spacecraft at the

time associated with the yellow mark is not greater than the E1 Hamiltonian at the

same time. When the spacecraft is located at the purple mark, apparent in the third

plot in the top row, the E1 and E2 gateways are both open. In the Hamiltonian

plot of Figure 2.16, the Hamiltonian associated with the spacecraft trajectory at that

instant is lower than the value corresponding to E2.
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Figure 2.16. Earth-Moon-Sun Hamiltonian plot (bottom) and instantaneous ZVC

(top) along a propagated trajectory, with Ω = 0◦
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2.4 Bicircular Restricted Four-Body Problem — Sun-Barycenter

2.4.1 Transformation between frames

It is often necessary to transform a vector from one coordinate frame to another.

The BCR4BP equations of the motion in Equation (2.42) describe the motion of

the particle P in the Planet-Moon rotating frame, where the vector components are

nondimensional values with respect to the Planet-Moon parameters. This informa-

tion is also represented in the rotating Sun-B1 frame (where B1 is the Planet-Moon

barycenter), using dimensional or nondimensional quantities with respect to the Sun-

B1 system. The Sun-B1 system is a CR3BP system where the first primary is the Sun

and the second primary is a fictitious body of the mass of the Planet and the Moon,

located at the Planet-Moon barycenter. The characteristic quantities for the Sun-B1

system in the Earth-Moon case are summarized in Table 2.5.

Table 2.5. Characteristic quantities of the Sun-B1 system

Quantity Value Unit Comment

l∗S-B1
1.4960 · 108 km aS · l∗E-M

m∗S-B1
1.3271 · 1011 kg3·s-2 —

t∗S-B1
58.1324 days —

The state vector x̄ =
[
x y z ẋ ẏ ż θS

]
contains the position and velocity

components of P in the Earth-Moon rotating frame, with respect to B1, expressed in

terms of the Earth-Moon nondimensional values. In the Sun-B1 rotating frame, the

vector x̄′ =
[
x′ y′ z′ ẋ′ ẏ′ ż′ θM

]
includes the position and velocity components

of P with respect to B2 (the Sun-Earth-Moon barycenter), expressed in terms of the

Sun-B1 nondimensional values. Note that the second order differential equation for

θS and θM is θ̈S = θ̈M = 0, since both angles are linear functions of the independent

time variable. An intermediate vector κ̄ =
[
κx κy κz κẋ κẏ κż

]
supports for the



41

intermediate calculations for the transformation from x̄ to x̄′. The steps are detailed

below:

1. Obtain θM using θS. The angle θS is measured from the rotating Earth-Moon

x-axis to the projection of the Sun position vector onto the Earth-Moon plane,

as defined in Figure 2.17(a). The angle θM is measured from the rotating Sun-

B1 x-axis to the projection of the Moon position vector onto the Sun-B1 plane,

as apparent in Figure 2.17(b). The angle θS = 0◦ corresponds to the proximity

of an Earth-Moon-Sun alignment (proximity because, when the longitude of

the descending node is non-zero, the alignment is not perfect), while the angle

θM = 0◦ corresponds to the proximity of the alignment Sun-Earth-Moon. Thus,

the phasing needs to be considered, i.e.,

θM = θS − π (2.55)

2. Three rotations are then performed in sequence:

(a) The first rotation is θM − Ω about the Earth-Moon rotating z-axis.

C1 =


cos(θM − Ω) − sin(θM − Ω) 0

sin(θM − Ω) cos(θM − Ω) 0

0 0 1

 (2.56)

(b) The second rotation is i, the inclination of the Sun orbital plane with

respect to the Earth-Moon plane, about the intermediate ỹ-axis.

C2 =


cos(i) 0 sin(i)

0 1 0

− sin(i) 0 cos(i)

 (2.57)

(c) The third and final rotation is Ω, the Sun’s longitude of the descending

node, about the intermediate ˜̃z-axis.

C3 =


cos(Ω) − sin(Ω) 0

sin(Ω) cos(Ω) 0

0 0 1

 (2.58)
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The three rotations involving the given matrices yield,

C = C1 · C2 · C3 (2.59)

The position components are transformed as follows,[
κx κy κz

]
=
[
x y z

]
· C (2.60)

while the velocity components are evaluated as[
κẋ κẏ κż

]
=
[
ẋ ẏ ż

]
· C +

[
x y z

]
· Ċ (2.61)

where Ċ is the derivative of C with respect to time. Note that because the

Earth-Moon barycenter B1 is fixed both in the Earth-Moon rotating frame and

in the Sun-B1 frame, the basepoint remains the same in this frame transfor-

mation. Position and velocity components are then transformed in a single

step [22] as

κ̄ = x̄ · C̃ = x̄ ·

 C Ċ

03x3 C

 (2.62)

3. The intermediate vector κ̄ contains the position and velocity information for

P with respect to B1 in the rotating Sun-B1 rotating frame in Earth-Moon

nondimensional quantities. While this information is valid, it is also useful

to represent it in an alternate frame, that is, with respect to B2, in Sun-B1

nondimensional quantities. The procedure to transform κ̄ to x̄′ follows.

(a) First, κ̄ is expressed in dimensional units: km for the position components

and m/s for velocity components,

κ̄ = κ̄

l∗E-M I3x3 03x3

03x3
l∗E-M

t∗E-M
I3x3

 (2.63)

(b) The position and velocity components are then transformed to S-B1 nondi-

mensional quantities.

κ̄ = κ̄

 1
l∗S-B1

I3x3 03x3

03x3

t∗S-B1

l∗S-B1

I3x3

 (2.64)
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Transformations from Equations (2.63) and (2.64) are accomplished in a single

step; however, dimensional quantities are also insightful.

4. The final step then shifts the reference point. In the Sun-B1 CR3BP, the vectors

are expressed with respect to the system barycenter, B2. To stay consistent with

the CR3BP, the reference point is shifted from B1 to B2.

x̄′ =
[
κx + 1− µS-B1 κy κz κẋ κẏ κż θM

]
(2.65)

Transitioning between the coordinate frames of interest, i.e., the Earth-Moon rotating

frame and the Sun-B1 rotating frame, is achieved by employing a combination of

direction cosines matrices.

(a) Planet-Moon Frame: Definition of the

Sun angle θS

(b) Sun-B1 Frame: Definition of the

Planet-Mooon angle θM

Figure 2.17. Definition of the Sun angle θS and the Planet-Moon angle θM

2.4.2 Hamiltonian in Sun-B1 frame

The trajectory energy is defined in the Sun-B1 rotating frame by using the position

and velocity information consistent with the frame. This energy quantity is the Sun-
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B1 equivalent of the Hamiltonian for the trajectory in the rotating Planet-Moon. The

pseudo-potential in the Sun-B1 frame is defined:

H ′ = −
(
ẋ′2 + ẏ′2 + ż′2

)
+

(
x′2 + y′2

)
+ 2

1− µS-B1

r′S3

+ 2
µS-B1(1− µE-M)

r′13

+ 2
µS-B1 µE-M

r′23

(2.66)

where r′S3 (respectively, r′13, r′23) is the distance from the Sun (respectively, the Planet,

the Moon) to the spacecraft in the Sun-B1 system, expressed in terms of Sun-B1

nondimensional quantities. The position of the Sun in the Sun-B1 rotating frame

with respect to the system barycenter, B2, is denoted r̄′S =
[
−µS-B1 0 0

]
. The

positions of the Planet and the Moon in this frame are expressed analytically or

constructed by transforming their fixed positions in the Planet-Moon rotating frame

using Equations (2.56) to (2.65). Recall that in the Planet-Moon rotating frame, the

velocities of the Planet and the Moon are zero. Similar to the Hamiltonian defined

in the Planet-Moon frame (Equation (2.50)), the energy-like quantity in the Sun-B1

frame, the Hamiltonian, H ′, is time-varying. A pseudo-potential function, similar

to Λ in the CR3BP (Equation (2.18)) or to Υ in the BCR4BP Planet-Moon frame

(Equation (2.48)) is defined,

Υ′ =
1

2
(x′2 + y′2) +

1− µS-B1

r′S3

+
µS-B1(1− µE-M)

r′13

+
µS-B1 µE-M

r′23

(2.67)

The Hamiltonian H ′ defined in Equation (2.66) is rewritten as

H ′ = 2Υ′ − (ẋ′2 + ẏ′2 + ż′2) (2.68)

The equations of the motion in the rotating Sun-B1 frame, using Sun-B1 nondimen-

sional quantities, are easily expressed using the pseudopotential Υ′.

ẍ′ = 2ẏ′ + Υ′x

ÿ′ = −2ẋ′ + Υ′y

z̈′ = Υ′z

(2.69)

where Υα is the partial derivative of Υ′ with respect to the variable α. Numerically

integrating the Equations (2.69) or numerically integrating the Equations (2.49) and
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Figure 2.18. Comparison of the Hamiltonian and Jacobi constant in the Earth-Moon-

Sun BCR4BP

transforming the states to the Sun-B1 frame using Equations (2.56) to (2.65) yields

the same trajectory, to within the numerical accuracy of each numerical integration

algorithm.

For the analysis, an additional observation is very useful. The Hamiltonian in

Sun-B1 frame is well approximated by the Sun-B1 CR3BP Jacobi constant, especially

away from the Planet-Moon vicinity, as illustrated in Figure 2.18. The two energy-like

quantities are defined similarly; the sole difference is that the Hamiltonian incorpo-

rates the orbital motions of both the Planet and the Moon, while the Jacobi constant

is computed under the assumption of a fixed fictitious body located at the common

barycenter of the Planet and the Moon. The same observation does not apply to

the Planet-Moon Hamiltonian and the Planet-Moon CR3BP Jacobi constant. The

perturbation due to the Sun gravity is not well estimated by the Planet-Moon Jacobi

constant.

2.4.3 Instantaneous Equilibrium Solutions

Instantaneous equilibrium solutions exist in the Sun-B1 rotating frame. While

the instantaneous equilibrium solutions in the Planet-Moon frame correspond to the
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Planet-Moon CR3BP Lagrange points as perturbed by the Sun, the instantaneous

equilibrium points in the Sun-B1 frame are the Sun-B1 CR3BP Lagrange points per-

turbed by the orbital motions of the Planet and the Moon. For consistency with

the previous notation, the instantaneous equilibrium points in the Sun-B1 frame are

labeled E ′i(θM). The notation E ′i corresponds to the set of instantaneous equilibrium

points over a synodic month, i.e., for values of θM ranging from 0 to 2π. The steps to

solve for the Sun-B1 instantaneous equilibrium points are similar to the steps used to

compute the Planet-Moon equilibria. The instantaneous equilibrium solutions satisfy

the following equations

Υ′x = 0

Υ′y = 0

Υ′z = 0

(2.70)

The Lagrange points in the Sun-B1 CR3BP are employed as the initial guess when

solving for the Sun-B1 BCR4BP equilibrium instantaneous points. A Newton-

Raphson algorithm iteratively corrects the initial guess until Equations (2.70) are

satisfied to a specified tolerance. The instantaneous equilibrium solutions for the

Sun-Earth-Moon system are plotted in Figure 2.19, with the CR3BP Lagrange points

indicated in orange for reference.

The Sun-B1 E
′
1 and E ′2 curves represent instantaneous points that oscillate around

their CR3BP counterpart. In Figures 2.19(a) and 2.19(b) is represented the collec-

tion of points that each satisfy Equations (2.70) at a specific time (or, equivalently,

at a certain θM angle). In Figures 2.19(c), 2.19(d) and 2.19(e), the BCR4BP equilib-

rium point perfectly matches its CR3BP counterpart. For a numerical solution in the

BCR4BP for the instantaneous equilibrium solutions, a tolerance of 10−14 is incorpo-

rated; the points along the BCR3BP E ′3 equilibrium curve (respectively, E ′4, E ′5) and

the CR3BP L3 (respectively, L4, L5) equilibrium points are at the same location up

to the centimeter.
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(a) E′1 (b) E′2

(c) E′3 (d) E′4 (e) E′5

Figure 2.19. Instantaneous equilibrium solutions in the Sun-Earth-Moon BCR4BP

system with Ω = 45◦

2.4.4 Instantaneous Zero Velocity Surfaces

Instantaneous zero velocity surfaces also exist in the Sun-B1 rotating frame. They

correspond to the Sun-B1 zero velocity surfaces, instantaneously perturbed by the

orbital motions of the Planet and the Moon. In the Earth-Moon-Sun BCR4BP, the

cross-section of the instantaneous ZVS with the x′ − y′ plane appears in Figure 2.20.

Similar to the instantaneous ZVCs in the Planet-Moon frame, the instantaneous ZVCs

in the Sun-B1 frame are generally not symmetric with respect to the rotating x′ axis.

The instantaneous ZVCs are generated by solving for the collection of points that

satisfy 2 Υ′ = H ′ at a particular instant.
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(a) Earth-Moon-Sun BCR4BP ZVCs for

H ′ = 3.0007

(b) Zoomed view of the Earth-Moon Vicinity

Figure 2.20. Instantaneous zero velocity curves in the Sun-B1 frame

2.4.5 Hamiltonian Plots

Hamiltonian plots are straightforwardly produced in the Sun-B1 frame. They cor-

respond to the instantaneous energy level, that is, the Sun-B1 Hamiltonian, H ′, cor-

responding to the E ′i gateways. The Sun-B1 Hamiltonian plot in the Sun-Earth-Moon

BCR4BP system for Ω = 45◦ is plotted in Figure 2.21. The blue line (respectively,

the orange line) indicates the Hamiltonian of the E ′1 (respectively, the E ′2) gateway

as it evolves as a function of θM = 0. The Hamiltonian, whether it is defined in

the Planet-Moon frame (H) or the Sun-B1 frame (H ′) is consistent with the Jacobi

constant standard: a decrease in the Hamiltonian corresponds to an increase in the

value of energy. The energy corresponding the E ′3 gateway does not appear in Fig-

ure 2.21. Due to their large separation from the Planet-Moon vicinity, the E ′3, E ′4

and E ′5 curves are only marginally perturbed by the individual orbital motions of

the Planet and the Moon, as apparent in Figure 2.19. Thus, the H ′ Hamiltonian
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Figure 2.21. Sun-Earth-Moon Sun-B1 Hamiltonian plot with Ω = 0◦

for these equilibrium is essentially constant for any value of θM and equal to their

analogous CR3BP Jacobi constant value. Hamiltonian plots, instantaneous Sun-B1

Hamiltonian and zero velocity plots can be combined to provide extensive informa-

tion about the dynamics of a region; for an example, consider the scenario in Figure

2.22. For a given epoch (Ω, θM), the BCR4BP equilibrium E ′i(θM) equilibrium points

are obtained. The E ′1(0◦) and E ′2(0◦) equilibrium points are represented in Figure

2.22 by black asterisks. For a given instantaneous Hamiltonian value H ′, informa-

tion about the flow passing through the gateways is available from either the zero

velocity surfaces or the corresponding point in the Hamiltonian plot. For instance,

for a Hamiltonian value H ′ = 3.0007 and θM = 0◦, passage through either the E ′1(0◦)

or E ′2(0◦) gateway is possible. This conclusion emerges from the instantaneous zero

velocity surfaces in Figure 2.21. Alternatively, the point {0, 3.0007} in Figure 2.21

lies below the curve of the Hamiltonian of E ′2; thus the E ′1 and E ′2 gateways are open.
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Figure 2.22. Sun-Earth-Moon Sun-B1 Hamiltonian plot with Ω = 0◦
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3. DYNAMICAL SYSTEMS THEORY

Nonlinear dynamical systems, such as the CR3BP or the BCR4BP are complex and

analysis can be challenging. Methods from dynamical systems theory facilitate the

investigation of these complex systems. In contrast to linear systems, nonlinear sys-

tems cannot be decomposed into parts, solved separately and recombined to deliver a

final assessment; the superposition principle does not apply to nonlinear systems [23].

Thus, the goal of any application of dynamical systems theory is not to supply a solu-

tion to this complex, nonlinear problem, but to offer insight concerning the dynamical

space in the vicinity of a specific trajectory. First, linear behavior characteristics are

obtained through the state-transition matrix. Differential corrections schemes then

leverage this information to adjust the characteristics of a certain trajectory. Contin-

uation schemes then expand this solution into a family of trajectories sharing similar

features. Lagrangian coherent structures, extracted from the field of finite-time Lya-

punov exponents are a powerful tool to understand the dynamical structures in the

flow of nonlinear, non-autonomous systems such as the BCR4BP. Finally, stability,

specifically in the linear sense, of solutions is explored.

3.1 State-Transition Matrix

The equations of motion for the CR3BP in Equation (2.16) and the differential

equations governing the BCR4BP in Equation (2.42) are nonlinear. Nonlinear systems

of equations are expressed in terms of a vector differential equation in the form

˙̄x(t) = f̄
(
x̄(t)

)
(3.1)
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where x̄(t) =
[
x y z ẋ ẏ ż θS

]T
is the state vector for the BCR4BP1 and

x̄(t) =
[
x y z ẋ ẏ ż

]T
is the state vector as derived in the CR3BP. The pertur-

bation along a given trajectory, x̄N(t) is defined

δx̄(t) = x̄(t)− x̄N(t) (3.2)

where x̄N(t) is the reference state and x̄(t) is the actual state at any time along the

path. Using the perturbation defined in Equation (3.2), Equation (3.1) is rewritten

as a function of a reference state x̄N(t) and a perturbation δx̄(t).

˙̄xN(t) + δ ˙̄x(t) = f̄
(
x̄N(t) + δx̄(t)

)
(3.3)

Then, a first order Taylor series expansion yields

˙̄xN(t) + δ ˙̄x(t) ≈ f̄
(
x̄N(t)

)
+
∂f̄

∂x̄

∣∣∣∣
x̄N (t)

δx̄(t) + H.O.T. (3.4)

The terms of order 2 or higher are denoted as Higher Order Terms, or H.O.T.. Equa-

tion (3.4) is reducted to a linear relationship between δ ˙̄x(t) and δx̄(t) is obtained by

recognizing that δ ˙̄xN(t) = f̄
(
x̄N(t)

)
and ignoring the H.O.T. Thus, Equation (3.4) is

reduced to

δ ˙̄x(t) ≈ ∂f̄

∂x̄

∣∣∣∣
x̄N (t)

δx̄(t) = A δx̄(t) (3.5)

The A matrix is the Jacobian matrix for the vector differential equation f̄ evaluated

at x̄N(t). By defining δx̄ =
[
δx δy δz δẋ δẏ δż

]
in the CR3BP, the linear

variational equations of motion are constructed in a matrix form

δx

δy

δz

δẋ

δẏ

δż


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Λxx Λxy Λxz 0 2 0

Λyx Λyy Λyz −2 0 0

Λzx Λzy Λzz 0 0 0





δẋ

δẏ

δż

δẍ

δÿ

δz̈


(3.6)

1The second-order differential equation for θS is θ̈S = 0, since θS is a linear function of the indepen-
dent time variable.
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where Λ is the pseudo-potential function in the CR3BP, as defined in Equation (2.18).

Similarly, in the BCR4BP, the first-order variational equations of motion are reduced

into the matrix form

δẋ

δẏ

δż

δẍ

δÿ

δz̈

δθ̇S


=



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

Υxx Υxy Υxz 0 2 0 ΥxθS

Υyx Υyy Υyz −2 0 0 ΥyθS

Υzx Υzy Υzz 0 0 0 ΥzθS

0 0 0 0 0 0 0





δx

δy

δz

δẋ

δẏ

δż

δθS


(3.7)

where δx̄ =
[
δx δy δz δẋ δẏ δż δθS

]
and Υ is the pseudo-potential function for the

BCR4BP in the Planet-Moon frame, as defined in Equation (2.48). The linear vari-

ational equations of motion in Equation (3.7) are derived for the BCR4BP Sun-B1

frame, by replacing the Sun angle θS by the Planet-Moon angle θM , and the Planet-

Moon pseudo-potential Υ by the Sun-B1pseudo-potential Υ′, as defined in Equation

(2.67). Then, the general solution to Equation (3.5) is

δx̄(t) = Φ(t, t0) δx̄(t0) (3.8)

where Φ(t, t0) is the state-transition Matrix (STM). The State-Transition Matrix or

sensitivity matrix relates perturbations in an initial state x̄(t0) to the perturbations

in a state downstream x̄(t1). This matrix is essentially a linear map between the

initial perturbation δx̄(t0) and the perturbation at a later time δx̄(t1). For the seven
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states in the BCR4BP x̄ =
[
x y z ẋ ẏ ż θS

]T
, the elements of the STM are

defined as follow

Φ(t, t0) =



∂x
∂x0

∂y
∂x0

∂z
∂x0

∂ẋ
∂x0

∂ẏ
∂x0

∂ż
∂x0

∂θS
∂x0

∂x
∂y0

∂y
∂y0

∂z
∂y0

∂ẋ
∂y0

∂ẏ
∂y0

∂ż
∂y0

∂θS
∂y0

∂x
∂z0

∂y
∂z0

∂z
∂z0

∂ẋ
∂z0

∂ẏ
∂z0

∂ż
∂z0

∂θS
∂z0

∂x
∂ẋ0

∂y
∂ẋ0

∂z
∂ẋ0

∂ẋ
∂ẋ0

∂ẏ
∂ẋ0

∂ż
∂ẋ0

∂θS
∂ẏ0

∂x
∂ẏ0

∂y
∂ẏ0

∂z
∂ẏ0

∂ẋ
∂ẏ0

∂ẏ
∂ẏ0

∂ż
∂ẏ0

∂θS
∂ẏ0

∂x
∂ż0

∂y
∂ż0

∂z
∂ż0

∂ẋ
∂ż0

∂ẏ
∂ż0

∂ż
∂ż0

∂θS
∂ż0

∂x
∂θS

∂y
∂θS

∂z
∂θS

∂ẋ
∂θS

∂ẏ
∂θS

∂ż
∂θS

∂θS
∂θS


(3.9)

In the CR3BP, the dimension is reduced as there is no θS state, thus the STM is

reduced to the first 6 rows and columns of Equation (3.9). The STM possesses many

useful properties

Φ(t0, t0) = I (3.10)

Φ(t2, t0) = Φ(t2, t1) Φ(t1, t0) (3.11)

Φ(t0, t1) = Φ−1(t1, t0) (3.12)

Substituting the general solution from Equation (3.8) into the differential equation

in Equation (3.5) yields the following system of differential equations, here presented

in matrix form, for Φ(t, t0):

Φ̇(t, t0) = A Φ(t, t0) (3.13)

This system of differential equations is numerically integrated along with the equa-

tions of the motion, where Equation (3.10) identifies the initial conditions, i.e.,

Φ(t0, t0). In regimes that admit no closed-form solution, such as the CR3BP or

the BCR4BP, the sensitivity information from the STM offers useful predictions (in

the linear sense) of the dynamical behavior.
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3.2 Differential Corrections

The goal of the differential corrections process is a set of variables, collected into

the design variable vector X̄, such that a set of scalar and/or constraints, in a con-

straint vector F̄ , is satisfied. The n elements in the design variable vector, X̄, can

be states, angles (for instance, Sun angle or Planet-Moon angle), time-of-flight or

another variable of interest. The design variable vector is then formed as

X̄ =
[
X1 X2 . . . Xn

]T
(3.14)

The m elements of the constraint vector, F̄ , are functions of one or more variables

F̄ =
[
F1 F2 . . . Fm

]T
(3.15)

The constraints are satisfied when a desired final state x̄∗f is computed such that

evaluating the design variable variable vector at x̄∗f , i.e., X̄∗ = X̄(x̄∗f ) yields zero over

all the constraints, that is, a numerical value less than a specified tolerance,

||F̄ (X̄∗)|| < e (3.16)

The elements of the design variable vector are not independent. Thus, a relationship

between them exists and the determination of X̄∗ is an iterative process. A multi-

dimensional Newton-Raphson scheme [24] is the basis for the update equation for its

versatility and easy implementation. Let X̄i be the initial design variable vector. The

constraint vector, F̄ (X̄), is expanded about X̄i in a Taylor series such that,

F̄ (X̄∗) = F̄ (X̄i) + DF̄ (X̄i)(X̄
∗ − X̄i) + H.O.T. (3.17)

where DF̄ (X̄i) is the m×n Jacobian matrix such that the term in the ith row and the

jth column is defined as ∂Fi
∂Xj

and evaluated at X̄i. For speed and efficiency, the higher

order terms are ignored. Recognizing that X̄∗ satisfies the constraints, Equation

(3.17) is rewritten as

F̄ (X̄i) + DF̄ (X̄i)(X̄
∗ − X̄i) = 0̄ (3.18)
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Since the role of X̄ is essentially to ‘control’ the values in the constraint vector, X̄ is

also termed the control variables vector. The change in the control variable vector,

X̄∗− X̄i = δX̄, is produced by inverting and rearranging Equation (3.18). When the

number of design variables n is equal to the number of constraints m, the Jacobian

matrix DF̄ is square. If DF̄ is nonsingular, the change in the design variables is

evaluated as

δX̄i = −
(

DF̄ (X̄i)
)−1

F̄ (X̄i) (3.19)

If the number of design variables exceeds the number of constraints (n > m), an

infinite number of solutions X̄∗ to Equation (3.16) exists. From among many options,

the solutions in this work employ a solution closest to the reference X̄i, and leverage

the minimum-norm solution as the update equation

δX̄i = −
(

DF̄ (X̄i)
)T (

DF̄ (X̄i)
(

DF̄ (X̄i)
)T)−1

F̄ (X̄i) (3.20)

In Equation (3.20), the Jacobian matrix is a non-square matrix. The higher order

terms are ignored the Taylor expansion in Equation (3.17), and the update equations

are approximations. Thus, a solution X̄∗ is computed by iterating on Equation (3.19)

or on Equation (3.20), until reaching a selected tolerance. If the number of constraints

exceeds the number of control variables (n < m), the system is said to be ‘overdeter-

mined’ and, in general, admits no solution2. In this scenario, an approximate solution

that minimizes the square of the error of each scalar constraint is obtained using the

method of least squares [25].

A note on the convergence rate is relevant. The rate of convergence for the

Newton-Raphson algorithm is quadratic. The proof for the one-dimensional Newton-

Raphson rate of convergence follows; it is extendable to the multi-dimensional case

as well [26]. For any scalar function f(x) with a continuous second derivative, the

second order Taylor expansion about the point xn near a root υ of f(x) yields

f(υ) = f(xn) + f ′(xn)(υ − xn) +
1

2
f ′′(υ)(xn − υ)2 (3.21)

2Overdetermined systems have a solution if some of the constraints are linear functions of the others.
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Recall that, since υ is a root, f(υ) = 0 and rearranging the terms,

f(xn)

f ′(xn)
+ (υ − xn) = − f ′′(υ)

2f ′(xn)
(υ − xn)2 (3.22)

Thus, the update equation for a one-dimensional Newton-Raphson method is

x̄n+1 = x̄n −
f(xn)

f ′(xn)
(3.23)

Combining Equations (3.21) and (3.23) yields:

υ − xn+1 = − f ′′(υ)

2f ′(xn)
(υ − xn)2

εn+1 = − f ′′(υ)

2f ′(xn)
εn

2

(3.24)

where εi is the error at iteration i. From Equation (3.24), the error decreases quadrat-

ically when xn is in the vicinity of υ.

3.2.1 Single Shooting Method

A straightforward application of a Newton-Raphson procedure is path planning

and targeting. The simplest implementation for targeting is a single shooting scheme.

Consider an initial state x̄0 for a particle in the BCR4BP defined at t0 as x̄0 =[
x0 y0 z0 ẋ0 ẏ0 ż0 θS0

]
. After propagation for a given time, T , the final state

is x̄f =
[
xf yf zf ẋf ẏf żf θSf

]
and is achieved at t = t0 + T . Assume a

scenario where the target is a pre-determined position, defined as
[
xt yt zt

]
which is

different from the position components of x̄f . Assume that, in this scenario, the initial

position is fixed but the velocity components are to be modified in both magnitude

and direction. This scenario corresponds to a spacecraft at an initial location in

space that would instantaneously implement a ∆V̄ maneuver at t0 to change its final

position at t0 + T . Thus, the design variable vector is

X̄ =
[
ẋ0 ẏ0 ż0

]
(3.25)
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The constraints include position components and the variations are all equal to zero

when the final state matches the desired final position. Then, the constraint vector

is

F̄ X̄ =
[
xf − xt yf − yt zf − zt

]
(3.26)

In this example, the time of flight is not a design variable. In the BCR4BP, note that

the Sun angle θS and the time-of-flight T are linearly related. For instance, if the

Sun angle corresponding to the final solar position θSf requires adjustment, either

the time-of-flight or the Sun angle at the intial time θS0 (or both) is incorporated

as one of the design variables. The Jacobian matrix DF̄ relating the change in the

initial values of the position design variables to the desired change in final states is

evaluated such that,

DF̄ (X̄) =
∂F̄ (X̄)

∂X̄
=


∂(xf−xt)
∂ẋ0

∂(xf−xt)
∂ẏ0

∂(xf−xt)
∂ẋ0

∂(yf−yt)
∂ẋ0

∂(yf−yt)
∂ẏ0

∂(yf−yt)
∂ż0

∂(zf−zt)
∂ẋ0

∂(zf−zt)
∂ẏ0

∂(zf−zt)
∂ż0

 (3.27)

Since the target states
[
xt yt zt

]
are given and not an explicit function of the initial

velocity
[
ẋ0 ẏ0 ż0

]
, all the partials corresponding to the target state with respect

to the initial velocity components are zero. Thus, Equation (3.27) simplifies to

DF̄ (X̄) =
∂F̄ (X̄)

∂X̄
=


∂(xf )

∂ẋ0

∂(xf )

∂ẏ0

∂(xf )

∂ẋ0

∂(yf )

∂ẋ0

∂(yf )

∂ẏ0

∂(yf )

∂ż0

∂(zf )

∂ẋ0

∂(zf )

∂ẏ0

∂(zf )

∂ż0

 =


Φ41 Φ42 Φ43

Φ51 Φ52 Φ53

Φ61 Φ62 Φ63

 (3.28)

where Φij is the element on the ith row and the jth column of the state transition

matrix Φ(tf , t0), as defined in Equation (3.9). The Jacobian matrix DF̄ (X̄) is square,

therefore, a unique solution to this targeting problem exists. The initial velocity

is updated using Equation (3.19) until the final state position matches the target

position to the required tolerance, i.e., until Equation (3.16) is satisfied.



59

3.2.2 Multiple Shooting Method

The single shooting approach to targeting is very powerful. However, for more

complex path planning applications, e.g., an array of nonlinear constraints or, simply,

a longer time interval, a more sophisticated targeting concept is warranted. For

example, correcting trajectories in the vicinity of the primaries (the Sun, the Planet

or the Moon) is generally challenging. Terms in the equations of motion, in the

CR3BP or the BCR4BP, are inversely proportional to the distance to the primaries,

for example, 1
r3
i3

where ri3 is the distance from the primary, Pi, to the spacecraft,

P3. Whenever the spacecraft is close to a primary, this term grows extremely large.

Thus, the sensitivities in the region near the primaries are high; small changes in

the initial state result in large differences in the final, propagated state. A single

shooting algorithm, based on the linear variational equations of motion, can struggle

to reach convergence in this regime. To mitigate these convergence issues, extending

the single shooting strategy to a multiple shooting scheme is often successful. In a

multiple shooting strategy, the trajectory is decomposed into segments, or discretized,

as illustrated schematically in Figure 3.1(a). The initial state along the segment k at

time tk, x̄k,i, is propagated for a time Tk, and the final time at tk + Tk is defined as

x̄k,f . A differential corrections scheme then corrects the discontinuities in position,

velocity and time between consecutive segments, as apparent in Figure 3.1(b). The

design variable vector, X̄, can be defined in many different ways. A patch point is

a break point between two consecutive segments of the trajectory. In the schematic

representation in Figure 3.1, the patch points are x̄1,i, x̄2,i, . . . , x̄n−1,i, x̄n,i. In this

investigation, the design variable vector is defined as the collection of patch points

and times-of-flight, as follows

X̄ =
[
x̄1,i x̄2,i . . . x̄β−1,i . . . T1 T2 . . . Tβ−1

]T
(3.29)

The minimum number of constraints to produce a continuous trajectory between x̄1,i

and x̄β,i is 6β in the CR3BP, where β is the number of patch points. Each propagated
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(a) Discretized segments before the correction

(b) Discretized segments after the correction

Figure 3.1. Definition of the segments in the multiple shooting algorithm

arc endpoint, x̄k,f , must be continuous with the consecutive patch point state x̄k+1,i

in the three position components and the three velocity components, e.g.,

x∗k,f = xk+1,i

y∗k,f = yk+1,i

z∗k,f = zk+1,i

ẋ∗k,f = ẋk+1,i

ẏ∗k,f = ẏk+1,i

ż∗k,f = żk+1,i

(3.30)

In the BCR4BP, the continuity in epoch, i.e., the continuity in the Sun angle must also

be maintained. Thus, the minimum number of constraints is 7β. The 6β continuity

in position and velocity constraints from Equation (3.30) are still enforced, and the

β additional epoch constraints are expressed as

θ∗S|k,f = θS|k+1,i (3.31)
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From Equation (3.29), the design variable vector possesses up to 8(β − 1) elements.

If the number of design variables is —at least— equal to the number of constraints,

the targeting problem admits at least one solution. If the number of design variables

is less than the number of constraints, the system is over-determined and no solution

exists. Recall that, in this case, an approximate solution minimizing the square of

the error on each constraint can be achieved using the least squares method. From

Equation (3.30) and Equation (3.31), the continuity constraint vector in the multiple

shooting problem is

F̄ (X̄) =


x̄2,i − x̄1,f

x̄3,i − x̄2,f

...

x̄β,i − x̄β−1,f

 (3.32)

and the Jacobian matrix is evaluated as

DF̄ (X̄) =


∂(x̄2,i−x̄1,f )

∂x̄1,i

∂(x̄2,i−x̄1,f )

∂x̄2,i
. . .

∂(x̄2,i−x̄1,f )

∂x̄n−1,i

∂(x̄2,i−x̄1,f )

∂T1
. . .

∂(x̄2,i−x̄1,f )

∂Tn−1
∂(x̄3,i−x̄2,f )

∂x̄1,i

∂(x̄3,i−x̄2,f )

∂x̄2,i
. . .

∂(x̄3,i−x̄2,f )

∂x̄n−1,i

∂(x̄3,i−x̄2,f )

∂T1
. . .

∂(x̄3,i−x̄2,f )

∂Tn−1

...
...

...
...

...
...

...
∂(x̄n,i−x̄n−1,f )

∂x̄1,i

∂(x̄n,i−x̄n−1,f )

∂x̄2,i
. . .

∂(x̄n,i−x̄n−1,f )

∂x̄n−1,i

∂(x̄n,i−x̄n−1,f )

∂T1
. . .

∂(x̄n,i−x̄n−1,f )

∂Tn−1


(3.33)

Recognizing that the state x̄k,f is only a function of x̄k,i and Tk, and that
∂x̄k,i
∂x̄k,i

is equal

to the identity matrix I, Equation (3.33) simplifies to

DF̄ (X̄) =
[
DF̄pv(X̄) DF̄t(X̄)

]
(3.34)

where the first element is the Jacobian matrix relating the change in the initial posi-

tion or velocity to the change at the final state

DF̄pv(X̄) =


−Φ1(t1 + T1, t1) I 0 0 0

0 −Φ2(t2 + T2, t2) I 0 0
...

...
...

...
...

0 0 0 −Φn−1(tn−1 + Tn−1, tn−1) I]


(3.35)
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and the second element is the Jacobian matrix relating the change in propagation

time to the change at the final state,

DF̄t(X̄) =


−∂x̄1,f

∂T1
0 0 . . . 0

0 −∂x̄2,f

∂T2
0 . . . 0

...
...

...
...

...

0 0 0 . . . −∂x̄n−1,f

∂Tn−1

 (3.36)

The elements that appear as −∂x̄i,f
∂Ti

are simply to first derivative of the state vector,

x̄i,f , with respect to the nondimensional time variables and are obtained with Equa-

tion (2.42). Note that 0 indicates an array or a matrix of zeros. Additional constraints

can be included in the constraint vector, for instance, a target state in position and/or

velocity or an energy constraint. Similar to the single shooting method, the design

variables are updated using Equation (3.19) or Equation (3.20) until the desired tol-

erance is reached. Both single and multiple shooting strategies are also very effective

in producing periodic orbits.

3.3 Continuation Schemes

Once a trajectory is constructed, a continuation scheme delivers a set, or family,

of trajectories or arcs that reflect the solutions over a variation of some system pa-

rameter. Families of periodic orbits, quasi-periodic orbits, trajectories, or equilibrium

solutions can all be constructed using a continuation scheme. Although many types

of continuation approaches are available, two specific continuation schemes are em-

ployed in this analysis. Natural parameter continuation (NPC) steps along a physical

parameter to produce new arcs or orbits. As an alternative, pseudo-arclength continu-

ation (PALC), steps along a nonphysical parameter. Natural parameter continuation

is very insightful to clarify the impact of a change in a physical parameter. Pseudo-

arclength can evolve a family when physical insight is lacking.
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3.3.1 Natural Parameter Continuation

Natural parameter continuation is a scheme where a variation in a physical param-

eter is employed to step a long a family of solutions. This physical parameter is, for

instance, a position, a velocity, a time-of-flight, an energy level or a mass parameter.

First, a reference solution is converged using a single shooting or multiple shooting

algorithm. Then, the variation in some physical parameter is introduced. This per-

turbed state does not satisfy the set of constraints or characteristics as defined for

the reference solution. However, if the variation in a physical parameter is sufficiently

small, a new solution is obtained by correcting the perturbed solution. This new con-

verged solution satisfies the constraints/characteristics requirements and is, therefore,

a viable option and a member of the family of solutions. The same process is repeated

by perturbing the last member of the family.

3.3.2 NPC Example: BCR4BP Periodic Orbits

Construction of period orbits is generally nontrivial and particularly challenging in

time-dependent dynamical systems, such as the BCR4BP. Gómez et al. [5] introduced

a method to determine planar periodic orbits of the Sun-Earth-Moon BCR4BP, with

a period equal to the synodic period of the Moon. This sample scenario is extended

to nonplanar orbits in the Sun-Earth-Moon BCR4BP Sun-out-of-plane model.

An orbit with period Tsyn, the synodic period of the Moon, is constructed by

continuing a CR3BP Tsyn-periodic solution and using the mass of the perturbing

third body as the continuation parameter. The continuation parameter, labeled ε, is
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used to transition between the CR3BP equation of motion (Equation (2.16)) and the

BCR4BP equations of motion (Equation (2.42)).

ẍ = 2ẏ + x− (1− µ)(x+ µ)

r3
13

− ε
(
µ(x− 1 + µ)

r3
23

− ms(x− xs)
r3
s3

− ms

a3
s

xs

)
ÿ = −2ẋ+ y − (1− µ)y

r3
13

− µy

r3
23

− ε
(
ms(y − ys)

r3
s3

− ms

a3
s

ys

)
z̈ = −(1− µ)z

r3
13

− µz

r3
23

− ε
(
ms(z − zs)

r3
s3

− ms

a3
s

zs

) (3.37)

When ε = 0, the equations of motion in Equation (3.37) are the CR3BP equations

of motion. Increasing ε from zero to one increases the mass of the perturbing third

body. Equations (3.37) are the BCR4BP final set of equations of motion when ε = 1.

The first critical step in a continuation process is the determination of the first

member of the family. In this example, select a Tsyn-periodic solution in the CR3BP.

One option is a periodic orbit with this exact period in the CR3BP. Alternatively,

an equilibrium point of the CR3BP might also serve as starting point. The CR3BP

equilibrium points are time-independent; thus, any arbitrary period is a period corre-

sponding to a CR3BP equilibrium solution. For instance, the period of the equilibrium

point can be set equal to Tsyn. The mass continuation parameter ε is then incremented

and the perturbed state is propagated for Tsyn. A differential corrections process also

ensures that the new solution is periodic, i.e., the final state matches the initial state

in position and velocity, i.e., x̄(t0) = x̄(t0 + Tsyn). The Sun angle evolves along a Tsyn

period such that θS(t0 +Tsyn) = θS(t0)±2π. The process is then repeated (i.e., incre-

ment the Sun mass, then again converge a correction process) until the continuation

parameter ε reaches a value of one and a Sun-Planet-Moon BCR4BP Tsyn-periodic

solution is produced.

An example of this process is the family of L4 periodic orbits in Figure 3.2. For

ε = 0, the system corresponds to the Earth-Moon CR3BP system. As ε increases,

i.e., as the third body is introduced, the periodic solution evolves from the fixed point

at L4 to a periodic orbit. When ε = 1, the system is the Sun-Earth-Moon BCR4BP

model. The periodic solution corresponding to ε = 0, the solution corresponding to

ε = 1 and all the solutions in between these bounding values of ε form the family of



65

Figure 3.2. Tsyn-periodic family evolving over the parameter mS

L4 periodic orbits. Of course, the solutions between ε = 0 and ε = 1, while being

perfectly valid and numerically correct, do not necessarily correspond to an existing

multi-body system. Since the continuation parameter ε increments the mass of the

Sun, ε mS, this type of family is labeled a periodic family for parameter mS. Natural

parameter continuation is effective to transition a solution from the CR3BP to the

BCR4BP.

The process to compute the Tsyn-periodic family is an iterative continuation pro-

cedure in ε. The first member of the family, for ε = 0. is the Earth-Moon L4 point.

This starting point is determined by solving for the CR3BP equiliteral equilibrium

solution from Equation (2.29) and Equation (2.30). A step is implemented in the

continuation parameter ε such that ε = ε + δε, where δε is a small quantity. The

state obtained at the initial step is propagated for Tsyn using Equation (3.37) and
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the updated value of ε. Because of the variation in ε, propagation of the state does

not return exactly to the initial state. Thus, a corrections process is implemented to

produce a periodic orbit. The design variables vector is the initial state at t0,

X̄ = x̄i =
[
xi yi zi ẋi ẏi żi

]T
(3.38)

And the periodicity constraint vector is

F̄ (X̄) = x̄f − x̄i =



xf − xi
yf − yi
zf − zi
ẋf − ẋi
ẏf − ẏi
żf − żi


(3.39)

where x̄f is the state at t0 + Tsyn. The partial derivatives of Equation (3.39) with

respect to the design variables in Equation (3.38) are evaluated at x̄i,

DF̄ (X̄) =



Φ11 − 1 Φ12 Φ13 Φ14 Φ15 Φ16

Φ21 Φ22 − 1 Φ23 Φ24 Φ25 Φ26

Φ31 Φ32 Φ33 − 1 Φ34 Φ35 Φ36

Φ41 Φ42 Φ43 Φ44 − 1 Φ45 Φ46

Φ51 Φ52 Φ53 Φ54 Φ55 − 1 Φ56

Φ61 Φ62 Φ63 Φ64 Φ65 Φ66 − 1


= Φ(t0 + Tsyn, t0)− I

(3.40)

In this application, the number of constraints is equal to the number of design vari-

ables. Thus, the Jacobian matrix DF̄ (X̄) is square and a unique solution X̄∗ exists,

assuming DF̄ (X̄) is nonsingular. This solution is computed by iteratively updating

the design variables vector with Equation (3.19). Once the constraints vector is sat-

isfied, i.e., when the norm of F̄ (X̄) passes below a certain tolerance, the periodic

orbit for a specific mass continuation parameter ε is obtained. This orbit is then a

member of the Tsyn-periodic family and is available as an initial guess for the next

family member, which is computed by stepping again in ε, such that ε = ε+ δε.
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3.3.3 Pseudo-Arclength Continuation

Natural parameter continuation is simple to implement and is an efficient con-

tinuation scheme for many problems. However, limitations do exist. At fold points

that occur during the continuation scheme, a Newton-Raphson process does not con-

sistently converge [27]. Difficulties in convergence can also occur if the physical pa-

rameter or the step size is poorly chosen, for example. To mitigate such convergence

issues, prior knowledge of the family evolution is often required. Thus, a more robust

continuation scheme under such conditions is required for certain applications.

The pseudo-arclength continuation (PALC) strategy employs steps along a non-

physical direction to construct a family. This scheme requires no prior knowledge

of the family evolution and is more flexible for complex continuation paths. The

illustration in Figure 3.3, adapted from Bosanac [28], schematically demonstrates

the difference between the NPC and PALC algorithms. Figure 3.3(a) represents the

natural parameter continuation process in p − X̄ space, with p as the continuation

parameter and X̄ in its role as the design variable vector (a scalar in this schematic).

The blue line is X̄∗, the design variable vector for the members of the family over

(a) NPC (b) PALC

Figure 3.3. Comparison between (a) the natural parameter continuation and (b) the

pseudo-arclength continuation in p− X̄ space
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the range of the continuation parameter. From an initial, converged family member

at p∗, a step of size δp is introduced, resulting in an initial guess for the continuation

p∗+ δp, marked by a red dot. The quality of the initial guess is a function of the step

size, δp, and the slope of X̄∗ at the previous family member.

In the pseudo-arclength continuation scheme, the continuation parameter is not

a physical parameter associated with the system. Rather, the step δs leverages the

tangent slope at p∗, as apparent in Figure 3.3(b). Thus, for some applications, the

quality of the step is generally better than the initial guess supplied by a step in a

natural parameter. The tangential direction to X̄ at p∗ is the nullspace of the DF̄

matrix. Since this family is evolving along one degree of freedom, p, the nullspace

must be one-dimensional. Thus, the DF̄ matrix must possess one more column than

rows, i.e., if there is n design variables, there must be n − 1 constraints. A PALC

algorithm typically proceeds using the following procedure:

1. Compute the first family member. Its design variable vector is X̄∗0 .

2. Compute the nullspace ∆X̄∗0 of the matrix DF̄ evaluated at X̄∗0 .

3. The initial guess for the next member of the family, X̄k, is constructed by

stepping in the direction of ∆X̄∗k

X̄k = X̄∗k−1 + s ∆X̄∗k−1 (3.41)

where s is a scaling term that determines the size of the step along the nullspace.

4. Differentially correct this initial guess:

(a) To ensure that the update for the design variable vector projects onto

the nullspace direction, an additional constraint is added. The augmented

constraint vector is

Ḡ(X̄k) =

 F̄ (X̄k)

(X̄k − X̄∗k−1)T∆X̄∗k−1 − s

 (3.42)

where F̄ (X̄k) is the n− 1 constraints vector that includes the constraints

necessary for the design variable vector to be defined as a member of the

family.
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(b) The augmented Jacobian matrix DḠ(X̄k) is evaluated at X̄k. The partial

derivative of the additional constraint with respect to X̄k simplifies to the

nullspace vector, ∆X̄∗k−1

DḠ(X̄k) =

 DF̄ (X̄k)(
∆X̄∗k−1

)T
 (3.43)

The Jacobian matrix, DF̄ is a (n − 1 × n) matrix. With the additional

row, ∆X̄∗k−1, with n elements, the augmented Jacobian matrix DḠ(X̄k) is a

square (n×n) matrix. Thus, Equation (3.19) for square matrices is applied

to update the design variable vector, using the augmented constraint vector

and the augmented Jacobian matrix.

δX̄k = −
(

DḠ(X̄k)
)−1

Ḡ(X̄k) (3.44)

(c) Iterations on Equation (3.44) are repeated until the constraints are satis-

fied, i.e., until ||Ḡ(X̄k)|| < e, where e is the specified tolerance.

5. The new member of the family is characterized by a design variables vector X̄∗k .

The nullspace ∆X̄∗k of the (non-augmented) Jacobian matrix DF̄ is evaluated

at X̄∗k . To compute the next family member, the process is restarted at step 3.

Pseudo-arclength continuation is a robust continuation process that steps in a non-

physical direction to move along a family of solutions. While comparatively more

versatile than the natural parameter scheme, its implementation is not as straightfor-

ward as the NPC implementation, and the nonphysical step direction is not usually

as insightful as a physical step. Thus, the pseudo-arclength continuation is a powerful

alternative for problems where the natural parameter continuation process struggles.

3.3.4 PALC Example: BCR4BP E1
3, E2

3 and E3
3

Natural parameter continuation is employed in this analysis to compute the curves

of instantaneous equilibrium points E1(θS), E2(θS), E4(θS) and E5(θS) in the Sun-

Earth-Moon BCR4BP. The collections corresponding to these equilibrium points over
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various Sun angles are represented in Figure 2.10, Figure 2.11 and Figure 2.13. How-

ever, natural parameter continuation fails to produce all the solutions corresponding

to E3 as observed in Section 2.3.5.2. Thus, the continuation scheme is switched from

NCP to PALC.

To determine the set of constraints satisfied by an equilibrium point in the

BCR4BP, the acceleration and velocity terms in the equations of motion in Equa-

tion (2.49) are set to zero. The equations of motion simplify to

Υx = 0

Υy = 0

Υz = 0

(3.45)

or, equivalently,

F1 = x− (1− µ)(x+ µ)

r3
13

− µ(x− 1 + µ)

r3
23

− ms(x− xs)
r3
s3

− ms

a3
s

xs = 0

F2 = y − (1− µ)y

r3
13

− µy

r3
23

− ms(y − ys)
r3
s3

− ms

a3
s

ys = 0

F3 = −(1− µ)z

r3
13

− µz

r3
23

− ms(z − zs)
r3
s3

− ms

a3
s

zs = 0

(3.46)

Thus, the constraint vector for the continuation scheme is

F̄ (X̄) =


Υx

Υy

Υz

 =


F1

F2

F3

 (3.47)

The variables for this example include the position of the equilibrium point and the

Sun angle θS. Thus, the design variable vector is defined as

X̄ =


x

y

z

θS

 (3.48)

In the NPC scheme to compute the curves corresponding to E1, E2, E4 and E5 origi-

nating from the other equilibrium points, the Sun angle θS is the physical parameter
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to step along the family of equilibrium points. For E3, the PALC strategy is imple-

mented and a nonphysical step is mathematically constructed along x, y, z and θS.

The Jacobian matrix DF̄ matrix is

DF̄ (X̄) =


∂Υx
∂x

∂Υx
∂y

∂Υx
∂z

∂Υx
∂θS

∂Υy
∂x

∂Υy
∂y

∂Υy
∂z

∂Υy
∂θS

∂Υz
∂x

∂Υz
∂y

∂Υz
∂z

∂Υz
∂θS

 =


Υxx Υxy Υxz Υxθ

Υyx Υyy Υyz Υyθ

Υzx Υzy Υzz Υzθ

 (3.49)

The first member of the family is computed using the CR3BP L3 equilibrium point as

an initial guess and arbitrarily fixing the Sun angle to be θS = 0◦. This assumption

reduces the dimension of X̄ and DF̄ and allows the use of the update equation (3.19)

for a square DF̄ matrix. The first member of the family is E3(0), with the design

variable vector X̄∗0 . The nullspace of DF̄ (X̄) is evaluated at X̄∗0 and is labeled ∆X̄∗0 .

A step of size δs along ∆X̄∗0 yields the initial guess for the second member of the

family

X̄1 = X̄∗0 + δs ∆X̄∗0 (3.50)

The constraints evaluated at X̄1 are not satisfied, i.e., ||F̄ (X̄1)|| > e. Thus, a dif-

ferential corrections scheme is employed. The constraints that define the E3 family

of solutions are identified by Equation (3.47). An additional constraint enforces the

inner product X̄1− X̄∗0 with ∆X̄∗0 , then to be projected onto X̄0 + δs∆X̄∗0 . Thus, the

augmented constraints vector is

Ḡ(X̄) =



Υx

Υy

Υz(
X̄1 − X̄∗0

)T
∆X̄∗0 − δs


(3.51)



72

The augmented Jacobian matrix is constructed from the partials of Ḡ(X̄) with respect

to X̄, evaluated at X̄1, i.e,

DḠ(X̄1) =


Υxx(X̄1) Υxy(X̄1) Υxz(X̄1) Υxθ(X̄1)

Υyx(X̄1) Υyy(X̄1) Υyz(X̄1) Υyθ(X̄1)

Υzx(X̄1) Υzy(X̄1) Υzz(X̄1) Υzθ(X̄1)

∆X̄∗0 (1) ∆X̄∗0 (2) ∆X̄∗0 (3) ∆X̄∗0 (4)

 (3.52)

where ∆X̄∗0 (i) is the ith element of the nullspace vector ∆X̄∗0 . The design variable

vector is updated using Equation (3.44) until it satisfies the desired tolerance. Using

the previously converged E3(θ) equilibrium point as the initial guess, the process is

repeated to compute the subsequent members of the family. The E3 family in the

Earth-Moon-Sun BCR4BP is plotted in Figure 2.12. Because of the periodicity in the

BCR4BP, the family repeats over every interval of
[
θS θS ± 2π

]
. The evolution of

the x component corresponding to the equilibrium point that comprise the E3 family

between θS = 0◦ and θS = −128◦ appears in Figure 3.4. Due to folds and cusps

along the xE3 = f(θS) function, the natural parameter continuation process struggles

to locate some of the solutions. The NPC steps along in the physical parameter θS.

Near θS = 106◦, the solution ‘jumps’ to the next equilibrium solution for θS + δθS, as

apparent in Figure 3.4(a). In Figure 3.4(b), with PALC, the step as determined in

a nonphysical direction occurs along the nullspace of DF̄ , thus, additional solutions

are produced for θS between 58◦ and 114◦. Thus, the PALC strategy reveals more

solutions and, thus, more structures than the NPC scheme.

3.4 Finite-Time Lyapunov Exponent

The Finite-Time Lyapunov Exponent (FTLE) is a powerful analysis tool for ex-

ploring the dynamics in time-dependent systems, such as the BCR4BP. Recent in-

vestigations apply the FTLE and the BCR4BP to a number of astrodynamics prob-

lems [11, 29, 30]. The FTLE, denoted σt0+T
t0 (x̄), quantifies the stretching [31] relative

to a reference trajectory represented by the state x̄ over the time interval [t0, t0 + T ].
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(a) NPC (b) PALC

Figure 3.4. Comparison between the evolution of solutions using the natural param-

eter continuation (a) and the pseudo-arclength continuation (b)

Stretching between two nearby trajectories is quantified in various ways. Instanta-

neous separation measures, such as the Okubo-Weiss criterion [32], are not insightful

in the BCR4BP problem because the instantaneous velocity field is not intuitively in-

dicative of the actual trajectories. Thus, an average, or integrated, separation metric

such as the FTLE is more representative of the dynamics in the system.

Intuitively, the state transition matrix (STM), also denoted the flow map, is re-

lated to the stretching between nearby trajectories. The right Cauchy-Green tensor,

Ϛ, is the matrix product of the transpose of the STM with itself,

Ϛ(t, t0) = Φ(t, t0)T Φ(t, t0) (3.53)

Thus, the Cauchy-Green tensor is the normalized STM and linearly relates the per-

turbation at a time t0 to the squared variation at time t. For a nonsingular STM, Ϛ is

symmetric, positive definite, and all its eigenvalues are real. The maximum stretch-

ing at t occurs if the perturbation at t0 is selected along the eigenvector direction
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Figure 3.5. Evolution of the ellipse defined by the Lyapunov exponents

corresponding to the largest eigenvalue of Ϛ. For instance, for a four-dimensional

phase space (two positions x and y, two velocities ẋ and ẏ), the Lyapunov exponents

define — projected into configuration space — an ellipse stretching, contracting, as

well as reorienting as a function of time, as illustrated in Figure 3.5. The blue and red

arrows define the directions of the eigenvectors of the right Cauchy-Green tensor Ϛ. If

the same perturbation is introduced in the direction aligned with these eigenvectors,

the propagated deformation is either contracting or stretching. In Figure 3.5, the

deformation along the red eigenvector, when propagated from t0 to t, is contracting,

while the deformation along the blue eigenvector is stretching. Comparing the mag-

nitude of the propagated perturbations, the maximum eigenvalue of Ϛ corresponds to

the blue eigenvector, since a perturbation along that direction results in the largest

stretching at time t. In the BCR4BP, the phase-space is 6-dimensional (since θS is a

linear function of t), and the ellipse becomes a hyper-ellipsoid of dimension 6. If the

eigenvalues of Ϛ(t0, t0 + T ) are labeled λi, the largest eigenvalue is defined as

λmax = max
i=1,2,...,l

(λi) (3.54)
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where l is the dimension of the phase space. The characteristic finite-time Lyapunov

Exponent, σ, often denoted the FTLE, is the normalized maximum eigenvalue of the

Cauchy-Green tensor Ϛ(t0, t0 + T ) and is evaluated as

σ =
1

|T |
ln

(√
λmax

)
(3.55)

The FTLE is computed in positive time when T > 0, which yields the forward FTLE.

Propagating in negative time, with T < 0, results in the backward FTLE.

Computing the FTLE over a specified region of the phase space and for different

dynamical characteristics yields the FTLE field. The various values of σ over the

region are frequently envisioned in terms of colors or heights. The flow is examined

within the context of the Lagrangian Coherent Structures (LCS).

Figure 3.6. Example of FTLE field in the BCR4BP (3D view)
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3.5 Lagrangian Coherent Structures

Given the field of the FTLE values, σ, over a region in phase space, observations

over the full range of values offer insights into the flow. The Lagrangian Coherent

Structures (LCS) are relatively high σ values, or ridges [31], in the FTLE field. In

configuration space, a LCS is the locally strongest repelling or attracting material

surface (set of trajectories) over a time interval T . [33]. Thus, an LCS ridge sepa-

rates two region of the flow with distinct dynamical behaviors. A FTLE field in the

BCR4BP is represented in Figure 3.6. The x and y axes are two physical parameters,

here the x component of both position and velocity. The third direction, the z axis,

represents the FTLE value, σ(x, ẋ), colored in grayscale to facilitate the interpreta-

tion. Valleys, or low points, are relatively darker, while ridges, the LCS, are colored

in lighter hues. From Figure 3.6, the different regions of the FTLE field are clearly

separated by the LCS.

Extracting the LCS from the FTLE values is a nontrivial process. As observed

in Figure 3.6, the LCS ridges are relatively ‘sharp’ and uneven, always high relative

to the points in the near vicinity, depending on the area of the FTLE field that

is being investigated. Thus, selecting a cutoff value for the value of σ to identify

the LCS does not accurately expose the different dynamical regions of the flow. A

post-processing effort, termed ridge detection, is frequently employed to identify the

LCS. Ridge detection is a discipline at the intersection of mathematics and computer

visualization that aims to locate the ridges in an image. The ridge detection scheme in

this investigation leverages information from the gradient and the Hessian of the flow

map Φ(t, t0). A simple analogy is described as a hiker walking along the ridge of a

mountain. If the hiker were to take a step left or right, she/he would be stepping down

the mountain. Therefore, the direction perpendicular to the trail (left or right) is the

direction where the variation in altitude for one step is maximal. Mathematically,

this hiking observation is translated as : “On a ridge, the gradient of the field and

the eigenvector associated with the eigenvalue of largest magnitude of the Hessian of
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the field are aligned”. Further details of the LCS detection algorithm, as well as

implementation approaches, are also examined.

3.5.1 Numerical Computation

The FLTE field is evaluated by computing the largest eigenvalue of the Cauchy-

Green tensor, Ϛ, for each point on a planar grid formulated as d points by d points3.

Recall that Ϛ is obtained by normalizing the state-transition matrix Φ(t, t0). One

obvious approach to produce the characteristic FTLE σ at the point (i, j) is, thus,

to integrate the STM differential equations along with the equations of motion. In

the BCR4BP, the process implies integrating 55 differential equations (6 equations

of motion and 49 differential equations for the STM) for each point in the grid.

Thus, 55d2 integrations are required to construct the FTLE field. While valid, this

approach is computationally intensive. Alternatively, leveraging the integration of

3The grid is arbitrarily selected to be square, but it is not required.

Figure 3.7. Schematic representation of the grid used for the STM finite-difference

approximation
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the equations of motion at the adjacent points, is implemented in this investigation.

The state-transition matrix for the point i, j is approximated using a finite-difference

scheme. The discretized grid of points is schematically represented in Figure 3.7. The

six-dimensional phase space in the problem is reduced to a two-dimensional projection

of components ξ and η, selected to be two position components (from the options x,

y, z), two velocity components (from the components ẋ, ẏ, ż), or some mix.

A finite-difference procedure is a discretization method which approximates the so-

lution to a partial differential equations system, q, by a difference equations evaluated

at selected grid points [34]. Many difference formulas are available to compute the

approximated solution. In this investigation, the central difference quotient method is

implemented. Thus, the STM at the point ȳi,j is estimated as the stretching between

adjacent points that are propagated forward if T > 0 and backward if T < 0,

Φi,j(t0 + T, t0) =

 ξi+1,j(t0+T )−ξi−1,j(t0+T )

2 δξ

ξi,j+1(t0+T )−ξi,j−1(t0+T )

2 δη

ηi+1,j(t0+T )−ηi−1,j(t0+T )

2 δξ

ηi,j+1(t0+T )−ηi,j−1(t0+T )

2 δη

 (3.56)

Although an approximation for the integrated STM, the finite-difference STM is a di-

rect estimate measuring the stretching induced by the flow. The integrated STM is an

indirect estimate from a system of linear differential equations. The main advantage

of a finite-difference approach is the opportunity to leverage the numerically inte-

grated results from the adjacent points, thereby reducing the computational burden

by a requirement for only 6d2 numerical propagations to compute the entire FTLE

field. A comparison between the BCR4BP FTLE field constructed from (a) integra-

tion and (b) finite-difference appears in Figure 3.8. Lower FTLE value are indicated

by darker shades of gray, while lighter shades represent high FTLE values. Black re-

gions correspond to initial conditions that result in an impact with one of the primary

(in this case, the Moon). The Hamiltonian at t0 is identical for all the points in the

grid in this example. The white regions near the corners in Figure 3.8 correspond to

points where the Hamiltonian equation (2.50) yields an imaginary x or ẋ, therefore,

these regions reflect the forbidden regions in x−ẋ space at the initial time t0. Observe

that finite-difference and integrated STMs yield similar FTLE fields. The Lagrangian
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coherent structures are more pronounced in the figure using the finite-difference STM

(Figure 3.7), because the stretching is computed by propagating the nonlinear equa-

tions of motion rather than the linear variational differential equations. However, the

noise present in the propagation is also amplified by the central differencing process.

A low-pass filter, such as Gaussian blurring [29], can be employed to mitigate this

noise.

The Lagrangian coherent structures are extracted from the FTLE by using two

additional layers of central differencing. Recall that the characteristic FTLE value

at the (i, j) point in the grid is labeled σ(i, j). The gradient, ḡ(i, j), of the FTLE

field at this point, using the characteristic FTLE value corresponding to the adjacent

points, is evaluated as

ḡ(i, j) =

σξ(i, j)
ση(i, j)

 =

∂σ(i,j)
∂ξ

∂σ(i,j)
∂η

 =

σ(i+1,j)−σ(i−1,j)
2δξ

σ(i,j−1)−σ(i,j−1)
2δη

 (3.57)

(a) Integrated STM (b) Finite-Difference STM

Figure 3.8. Comparison between FTLE field constructed from (a) integration of the

STM and (b) a finite-difference method in the BCR4BP
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The partial derivative of the gradient with respect to ξ and η is the second derivative,

or Hessian, of the FTLE field. At the point of coordinate (i, j) in the grid, the Hessian

tensor is evaluated as

H(i, j) =
[
∂ḡ(i,j)
∂ξ

∂ḡ(i,j)
∂η

]
=

σξ(i+1,j)−σξ(i−1,j)

2δξ

σξ(i,j+1)−σξ(i,j−1)

2δη

ση(i+1,j)−σξ(i−1,j)

2δξ

ση(i,j+1)−σξ(i,j−1)

2δη

 (3.58)

As illustrated in the hiking analogy in Section 3.5, the maximum slope of the field

along a ridge and the direction of maximum variation in altitude are aligned. Thus,

if the gradient at the point (i, j) is normalized such that

ĝ(i, j) =
ḡ(i, j)

||ḡ(i, j)||
(3.59)

and the eigenvector, v̄1, associated with the eigenvalue of largest magnitude from

H(i, j) is also normalized

v̂1 =
v̄1

||v̄1||
(3.60)

Then, along the LCS, the magnitude of the inner product between Equation (3.59)

and Equation (3.60) is equal to one

|ĝLCS · v̂1,LCS| = 1 (3.61)

An example of Lagrangian coherent structures appears in Figure 3.9. The FTLE field

is computed for a certain initial Hamiltonian value in the Earth-Moon BCR4BP, for

a range of x and ẋ values. The initial state is assumed to be in-plane, that is, z = 0,

ż = 0. The y position is arbitrarily set equal to zero and the final state, the ẏ velocity,

is obtained from the Hamiltonian expression in Equation (2.50). The FTLE field for

this grid of initial conditions is plotted in Figure 3.9(a). The Lagrangian coherent

structure is then extracted from the FTLE field and appears in Figure 3.9(b). A set of

points, rather than a closed contour, satisfying Equation (3.61) is obtained. Filtering

the FTLE before computing the LCS, or incorporating interpolation around the set

of points, generally improves the quality of the LCS.
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3.5.2 LCS Example: Flow near the Moon in the BCR4BP

A sample application of the LCS and the FTLE field involves exploring the flow

near the instantaneous E2 portal in the Earth-Moon-Sun BCR4BP system. A hyper-

plane defined on the Earth-Moon rotating x axis at y = z = 0 and ż = 0 is selected

such that the Hamiltonian at the initial time is equal to 3.35. For this Hamiltonian

value, the E1(t = 0) and E2(t = 0) portals are open, and the E3(t = 0) portal is

closed. A grid of points is selected in the x − ẋ space and the remaining state, ẏ,

is computed from the Hamiltonian equation in the Planet-Moon frame (Equation

(2.50)). Additionally, the solar longitude of descending node, Ω, is equal to 0◦ and

the Sun angle at the initial time is selected to be θS0 = 0◦. This example serves to

illustrate the FTLE field as well as the LCS, and to identify initial conditions that

result in escape through the E1 portal and, alternatively, the initial conditions that

yield escape through the E2 portal.

The forward FTLE field is computed for a propagation interval equal to the Earth-

Moon period, i.e., about 27 days, as demonstrated in Figure 3.10. Relatively lower

FTLE values are indicated by dark shades of gray, while high values are denoted by

(a) FTLE Field (b) LCS

Figure 3.9. Sample of LCS extraction in the BCR4BP
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Figure 3.10. Flow near the Moon: FTLE field

light shades of gray. Impacts with one of the primaries are denoted by black points.

The white areas in the corners of Figure 3.10 represent the forbidden region, i.e.,

initial conditions where the Hamiltonian equation yields an imaginary ẏ value. Many

structures appear in the FTLE field. The two black stripes near x = 1 correspond to

regions close to the Moon where most of the initial conditions at the initial Hamil-

tonian value, H = 3.35, result in a lunar impact within 27 days. Separatrices in the

dynamical flow are identified by light lines in the FTLE field. The separatrices in the

region between the E1 portal and the Moon are specifically investigated, with three

initial states identified by colored crosses in Figures 3.10 and 3.11. The region under

examination also focuses on initial ẋ velocities close to zero.

Multiple LCS are visually apparent in Figure 3.11. Note that the lighter lines

are adjacent to dark areas, that represent impacts with one of the primaries. This

combination of separatrices and impacts is a function of the integration time: if the

FTLE field is computed for a shorter time, some of the impacts would appear as LCS

points. Conversely, if the propagation time is computed for a longer time, the regions

of darker shades could increase, as a trajectory that did not encounter a primary in a
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Figure 3.11. Flow near the Moon: close-up of the FTLE field in the region between

E1 and the Moon where ẋ ≈ 0

time T could impact it at time T + δT . Recall that the primaries are incorporated in

the CR3BP and the BCR4BP as point masses. Thus, information about the radii of

the primary bodies is not included in the equations of motion. The FTLE in Figures

3.10 and 3.11 and, therefore the LCS, are associated with a specific propagation time.

Initial conditions that include a velocity component in the rotating x direction

that is nearly zero are selected on each side of a separatrix, and are denoted by ‘X’

marks in Figures 3.10 and 3.11. Since the initial conditions are located on different

side of the LCS, they fall into regions of space with different dynamical character-

istics. The initial conditions corresponding to each X mark are propagated using

the BCR4BP equations of motion in Equation(2.42), as plotted in Figure 3.12. The

initial conditions indicated by the yellow X mark correspond to a trajectory escaping

the Earth-Moon system through the E2 portal. The orange X mark, corresponding

to initial conditions on the opposite side of the LCS, corresponds to a propagated

trajectory leaving the lunar vicinity through the E1 portal. The forbidden region

delimited by the instantaneous zero velocity surfaces (ZVS) corresponding to this

value of the Hamiltonian are represented by the gray area in Figure 3.12. Recall that

the Hamiltonian, the energy-like quantity in the BCR4BP, is not constant along a
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Figure 3.12. Flow near the Moon: configuration space

trajectory. Thus, the ZVS are pulsating, or evolving, with respect to the Hamilto-

nian of the trajectory. The ZVS in Figure 3.12 correspond to the Hamiltonian at the

initial time, hence, the trajectories represented in the figure appear to bounce inside

the forbidden region (recall the discussion in Section 2.3.6). Finally, a set of initial

conditions is selected on the separatrice, as marked by the blue X mark in Figures

3.10 and 3.11. The blue trajectory is propagated and plotted in Figure 3.12. This

trajectory corresponds to the Lagrangian coherent structure and separates the flow

in two distinct regions: the flow of trajectories escaping the cislunar space through

the E1 portal, illustrated by the orange trajectory, and the flow of trajectories leaving

the Earth-Moon system through the E2 portal, as illustrated by the yellow trajectory.

Part of the LCS contour corresponding to the blue X mark is apparent in the FTLE

field in Figure 3.10. All trajectories escaping the system through L2 at the initial
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value of the Hamiltonian, H = 3.35, correspond to initial conditions inside the LCS

contour, similarly to the yellow X mark. In configuration space, all these trajectories

escape the system through tubes structures similar to the blue trajectory. Thus, the

LCS is a time-dependent equivalent flow structure to the manifold structures widely

used in time-invariant systems, such as the CR3BP. As illustrated in this example,

the LCS are employed to gain insight into the dynamical behavior over a specific

region of phase space. The LCS aided indirectly to investigate the escape dynamics

from the lunar vicinity. Preliminary analysis of the multi-body dynamics near the

Moon was conducted in the BCR4BP regime through the FTLE field and the LCS

structures.
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4. MISSION APPLICATION: DISPOSAL FROM

A NEAR RECTILINEAR HALO ORBIT

TO HELIOCENTRIC SPACE

4.1 Mission Definition

NASA, along with fourteen other space agencies, have agreed in the 2017 Inter-

national Space Exploration Coordination Group (ISECG) annual report [35] that:

“An international deep space Gateway around the Moon [ . . . ] is consid-

ered the next important step in human exploration beyond LEO.”

The Lunar Orbital Platform, or ‘Gateway’, is the current framework [1] for the de-

velopment of a space facility near the Moon, with an option to return to the lunar

surface. The Gateway is intented to be a flexible, reusable and sustainable space-

based facility, where deep space technologies are tested and from which missions with

destinations beyond the cislunar space, including Mars, can originate. The Orion

spacecraft is intended to transport the crew from Earth to the Gateway. Resupply

missions are enabled by one or more logistics modules (LM). After completion of the

resupply mission, safe disposal of the LM is required. The empty LM must not be a

threat to the Gateway, the Moon, the Earth, or any other assets in the Earth-Moon

vicinity.

One option for safe disposal of the LM is removal to heliocentric space, that is, the

region of space beyond the Earth-Moon region [16]. The proposed disposal mission

concept is defined in four phases.

Phase 0: Prior to the disposal maneuver, the logistics module is located in the

NRHO. The disposal maneuver, of magnitude ∆V , is executed at perilune in
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the direction of the Earth-Moon rotating velocity vector. Phase 0 ends at the

instant the maneuver is implemented.

Phase 1: After the maneuver, the LM may or may not complete additional rev-

olutions in the NRHO, depending on the magnitude of the disposal maneuver.

In Phase 1, the logistics module remains on the NRHO and, thus, potentially

still in the vicinity of the Gateway. Phase 1 ends when the LM departs the

NRHO. A metric for departure from the orbit is defined.

Phase 2: During this phase, the logistics module has shifted off the NRHO, but

remains in the Earth-Moon vicinity. Phase 2 ends when the LM departs the

Earth-Moon vicinity and enters heliocentric space.

Phase 3: The logistics module is in heliocentric space and is considered ‘dis-

posed’. Note that there is no guarantee that the logistics module will not

return to the Earth-Moon vicinity at some time in the future.

There are multiple variables in this disposal problem. The goal in this investigation is

the identification of the key factors in the disposal problem, and use this information

to design a low-cost disposal option.

The analysis is addressed in multiple sections. First, the baseline trajectory can-

didate for the Gateway, the Earth-Moon 9:2 synodic resonant Near Rectilinear Halo

Orbit (NRHO) is defined in the CR3BP, and reconverged in the BCR4BP. Two strate-

gies are explored to maintain the geometry and the characteristics of the 9:2 NRHO

in the BCR4BP: homogeneous stacking and non-homogeneous stacking. Second, the

boundaries for each Phase are defined: the departure from the NRHO criterion and

the escape criterion. Third, the solar gravitational effect on the trajectory, i.e., the

tidal effect, is investigated. A set of quadrants in the Sun-B1 frame is defined to fa-

cilitate the investigation. Three types of disposal dynamical behaviors are identified:

direct escape, indirect escape, and capture. The key factors for each of these cate-

gories are defined. The long-term behavior of a disposal trajectory is investigated.

First, the possibility that the escaped trajectory returns to the Earth-Moon vicinity is

considered. Then, by exploring the benefits of an additional maneuver in heliocentric
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space, a strategy to negate these potential returns is introduced. Finally, the validity

of the analysis is evaluated by comparing results in the BCR4BP with results from

the higher-fidelity ephemeris force model.

4.2 Near Rectinilinar Halo Orbits — CR3BP

The halo family and its subset, the near rectilinear halo orbits (NRHOs), are

three-dimensional precisely periodic orbits in the CR3BP. The halo family of orbits

bifurcates from the planar Lyapunov family in the vicinity of collinear libration point.

Part of the Earth-Moon L2 Lyapunov and the related halo families are plotted in

Figure 4.1. The halo family originates in the x− y plane, at the bifurcation orbit in

the Lyapunov family, and evolves out of plane as the members of the family approach

the Moon. Note that the halo family is mirrored across the x− y plane: the northern

family members possess a positive z component over the majority of their orbit,

while the southern family members are defined by a negative z component. Thus,

the family members in Figure 4.1 belong to the northern L2 halo family. In Figure

4.1, the orbits are colored by period: the Lyapunov members all are characterized

by periods between 14 and 16 days. The period of the orbits in the halo family is

approximately 15 days for the members nearly in the x − y plane and decreases as

the family evolves out of plane and closer to the Moon. In the close vicinity of the

Moon, the halo orbital period ranges between 4.5 and 6.5 days. Some of these family

members, colored in dark blue, also intersect the lunar surface, as seen in Figure

4.1(a). The primaries are assumed to be point masses in the formulation of the

CR3BP, therefore, no information about their radii is incorporated into the equations

of motion. Trajectories and periodic orbits that pass beneath the Moon surface are

easily filtered out, if required, by terminating the propagation when the trajectory

encounters the lunar radius.

The near rectilinear halo (NRHO) subsets of the L1 and L2 families are defined

by their linear stability properties [36]. The stability indices of the L2 halo family



90

(a) 3D view
(b) x− z view

Figure 4.1. Earth-Moon CR3BP L2 Lyapunov family and halo family as viewed in

the Earth-Moon rotating frame

Figure 4.2. Stability indices along the L2 halo family
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are plotted as a function of the period in Figure 4.2.A periodic orbit in the CR3BP

is linearly stable if both its stability indices are between −1 and 11. Thus, only two

subsets of the halo family are stable in the linear sense: the subset with a period

between 4.5 and 6 days and an additional subset with a period between 9.4 and 10.3

days. These linearly stable members of the halo family are colored in red in Figure

4.2. The NRHO subset is comprised of the two linear stable subsets of the halo family,

and of the linearly unstable subset of the halo family with periods between 6 and 9.4

days. Note that the stability index for this subset corresponding to the unstable mode

ranges between 1 and −1.65. The instability, in the linear sense, of the members of

this subset is therefore limited. The NRHO subset of the L2 halo family is colored in

orange in Figure 4.3.

One potential location for the Gateway is the 9:2 synodic resonant NRHO [37].

Synodic resonance is associated with conjunctions between three celestial bodies [38].

A synodic period in the Earth-Moon system is the time between two consecutive

1For additional details on the stability of periodic orbits, refer to Appendix 5.2.

(a) 3D view
(b) x− z view

Figure 4.3. Earth-Moon CR3BP L2 halo family, as seen in the Earth-Moon rotating

frame
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Earth, Moon and Sun (in this order) alignment, as presented in Figure 2.9. Nine

revolutions along the 9:2 synodic resonant NRHO corresponds to two synodic periods

of the system, or about 59 days. The characteristics of the Earth-Moon 9:2 synodic

resonant NRHO are summarized in Table 4.1.

Table 4.1. Characteristic of the Earth-Moon 9:2 synodic resonant NRHO

Quantity Value Unit

Period 6.5284 days

Perilune radius 3, 157 km

Perilune altitude 1, 420 km

Apolune radius 71, 025 km

Maximum stability index (absolute) 1.3065 —

4.3 Near Rectinilinar Halo Orbits — BCR4BP

The 9:2 synodic resonant NRHO is straightforwardly transitioned from the CR3BP

to the BCR4BP. Different strategies are employed depending on the characteristics

to be maintained in the BCR4BP. The periodicity is maintained in the BCR4BP

when correcting for a period equal to a multiple of two synodic periods. Using a

non-homogeneous stacking strategy without the periodicity constraint allows better

control over the periapse altitude.

4.3.1 Homogeneous 9-revolution Stacking Method

The 9:2 synodic resonant NRHO in the CR3BP corresponds to the 2 Tsyn-periodic

orbit in the BCR4BP. Thus, stacking nine revolutions of the 9:2 NRHO and cor-

recting for periodicity yields a continuous, periodic trajectory in the BCR4BP. A

sample 2 Tsyn-periodic orbit with the initial Sun angle θS0 = 0 is plotted in Figure
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(a) 3D view (b) x− z view

Figure 4.4. An orbit of period 2 Tsyn in the Sun-Earth-Moon BCR4BP (blue) corre-

sponding to the Earth-Moon CR3BP 9:2 synodic resonant NRHO (orange), as seen

in the Earth-Moon rotating frame; Ω = 0, θS0 = 0

4.4. The 9:2 synodic resonant NRHO in the CR3BP is plotted in an orange dashed

line for reference. The geometry of the 2 Tsyn-periodic orbit is a function of the initial

Sun angle. The different geometries are constructed by fixing the phasing of one the

patchpoints and varying θS0. For instance, the y coordinate for the first patchpoint

can be set to zero. This phasing constraint prevents the first patchpoint from ‘sliding

back’ to a previously obtained periodic solution. Sample trajectories for four different

initial Sun angles appear in Figure 4.5. Each trajectory corresponds to a different

2 Tsyn-periodic orbit of the BCR4BP, colored by initial Sun angle θS0. The charac-

teristics of the 2Tsyn-periodic orbit plotted in Figure 4.4 are presented in Table 4.2.

Since nine revolutions around the Moon represent one period of the BCR4BP 2Tsyn-

periodic orbit, there are nine perilunes and nine apolunes. The largest magnitude
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Table 4.2. Characteristic of the Earth-Moon-Sun 9:2 2 Tsyn-perodic orbit for θS0 = 0

Quantity Value Unit

Period 58.7556 days

Min. perilune radius 3, 120 km

Max. perilune radius 3, 887 km

Min. apolune radius 69, 891 km

Max. apolune radius 71, 708 km

Max. stability index (absolute) 524.65 —

of the stability indices for the orbit is about 524, the same order as the maximum

magnitude of stability index for 9 revolutions of the 9:2 synodic resonant NRHO in

the CR3BP.

Figure 4.5. Family of 2 Tsyn-periodic orbits of the BCR4BP for different initial Sun

angles θS0
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4.3.2 Non-Homogeneous Stacking Method

When the periodicity of the BCR4BP solution is not required, a non-homogeneous

stacking method is employed. Trajectories determined by correcting the stack of

CR3BP orbits only for continuity are of interest when designing transfers to and

from the NRHO. The stacking method is labeled non-homogeneous because the orbits

in the stack are different members of a family. Vutukuri [39] demonstrated that a

non-homogeneous stacking scheme can be employed to control the periapse epoch of

a solution in the higher-fidelity ephemeris force model. In this investigation, non-

homogeneous stacking is used to maintain the perilune altitude within a specified

range over multiple revolutions. An example of non-homogeneous stacking delivers

the required characteristics. The goal is three revolutions of NRHO-like motion in

the BCR4BP, each perilune altitude within the range from 3, 250 to 3, 575 kilometers,

for Ω = 0◦ and θS0 = 0◦. The periodicity of the solution is not strictly required in

this scenario. Three orbits, not to include the 9:2 synodic resonant NRHO, are

(a) CR3BP propagation (b) BCR4BP propagation

Figure 4.6. Stack of three orbits of an NRHO in the CR3BP (a) and the BCR4BP

(b)
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selected from the CR3BP NRHOs subset, as viewed in Figure 4.6(a). The process

to select the NRHOs is very dependent on the initial Sun angle. For instance, for

θS = 0◦, the Sun influence tends to decrease the altitude of the next perilune. Thus,

to counterbalance this effect, the second NRHO in the stack is selected such that

its periapse altitude is higher than the altitude of the first orbit in the stack. The

process is repeated for the subsequent orbits in the stack. The three selected orbits

are then discretized and each arc is propagated in the BCR4BP, as apparent in Figure

4.6(b). Note that the propagated trajectory does not return to the same initial state,

as expected in the BCR4BP. A differential correction process reduces position and

velocity discontinuities between consecutive arcs to within an acceptable tolerance.

The resulting, converged trajectory is plotted in Figure 4.7. The initial and end points

along the trajectory are not co-incident, since the periodicity is not constrained. Thus,

transfers from and to the solution are enabled by linking the trajectory to other arcs.

The acceptable periapsis radius region, colored in blue, is defined in Figure 4.8 by

the range of periapse radii from 3, 250 and 3, 575 kilometers. Then, the distances of

the periapses, relative to the Moon, over the converged solution are noted in Figure

4.8. Using an homogeneous stack, i.e., a stack of three identical NRHOs, results in

lunar periapsis radii outside of the acceptable region, as in Figure 4.8(a). However,

this information is useful to help select the NRHOs in the non-homogeneous stack.

The converged solution, using the non-homogeneous stack, results in three periapses

within the acceptable region, as seen in Figure 4.8(b). Non-homogeneous stacking is,

thus, a convenient method to produce NRHO-like motion with specific characteristics

in the BCR4BP.

4.4 Mission Success Criteria

The goal of the current disposal analysis is the escape of the logistics module

from the Earth-Moon vicinity such that the vehicle enters and remains in heliocentric

space. Formal definitions are required to bound Phase 1, where the LM is completing
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Figure 4.7. Converged trajectory in the Earth-Moon-Sun BCR4BP for Ω = 0◦ and

θS0 = 0◦

(a) Homogeneous stacking (b) Non-homogeneous stacking

Figure 4.8. Radius from the Moon for the periapses of the converged trajectory using

an homogeneous stacking method (a) and a non-homogeneous stacking method (b)

one or more post-maneuver revolution in the NRHO and Phase 2, where the LM

moves off the NRHO but remains the Earth-Moon region. The momentum integral
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serves as the criterion for the departure from the NRHO, which marks the end of

Phase 1. A formal definition of the Earth-Moon vicinity is also introduced.

4.4.1 NRHO Departure Criterion

The momentum integral [40] is a suitable metric to detect departure of the logistics

module from the NRHO. The momentum integral, MI, is evaluated as a line integral

for the position vector between the initial time t0 and the current time t, along a

trajectory Γ

MIΓ(t) =

∫ t

t0

x(τ)ẋ(τ) + y(τ)ẏ(τ) + z(τ)ż(τ) dτ (4.1)

where x, y, and z (respectively, ẋ, ẏ and ż) are the position (respectively, the velocity)

components in the Earth-Moon rotating frame, and τ is an independent time variable.

The momentum integral is one of many metrics that can be employed to detect

departure; including osculating eccentricity with respect to the Moon, as well as the

distance from the Moon. The momentum integral over one period along a periodic

orbit in the CR3BP is zero. In time-dependent models, such as the BCR4BP and the

ephemeris model, the trajectory is not likely to return to the initial state (that is, if

periodicity is not constrained in the BCR4BP). Therefore, the momentume integral

is not expected to be zero, but it remains bounded if the motion is bounded. To

determine if the spacecraft has departed the NRHO, the momentum integral of the

perturbed trajectory, Γ̃, is evaluated and compared to the momentum integral for

the reference trajectory Γ. In the current analysis, the reference trajectory, Γ, is

selected as the converged NRHO-like trajectory in the BCR4BP, and the perturbed

trajectory is defined as the spacecraft trajectory with the disposal maneuver applied.

The instantaneous difference between their momentum integral is defined as

∆MI(t) = |MIΓ(t)−MIΓ̃(t)| (4.2)

The perturbed trajectory remains in the vicinity of the reference trajectory for small

values of ∆MI. An example of the application of the momentum integral metric

appears in Figure 4.9. In the three plots in the figure, the baseline trajectory is
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Figure 4.9. Example of momentum integral application to detect departure in the

Earth-Moon-Sun BCR4BP

plotted in black and the perturbed trajectory, with a disposal maneuver of ∆ = 12

m/s in the direction of velocity and implemented at perilune, is plotted in blue and

pink, respectivelly. In the left plot, the reference and the perturbed trajectories are

plotted in the Earth-Moon rotating frame. The momentum integral for the reference,

MIΓ, and the momentum integral for the perturbed trajectory, MIΓ̃ are represented

as a function of the nondimensional Earth-Moon time in the middle plot. On the

right, the difference metric defined in Equation (4.2) is plotted with respect to the

same time variable. Each application of the momentum integral employs a unique

value for the metric that signals departure. For instance, Guzzetti [40] employs a

departure warning threshold of |∆MIthreshold| = 10−7 in an NRHO stationkeeping

application. In this investigation, since the goal is detection of a departure such that

the spacecraft is off the NRHO and not merrily about to depart the NRHO, thus,

the threshold is defined to be much higher: |∆MIthreshold| = 10−1. This threshold

value is indicated by the dashed line in the right plot in Figure 4.9. For values of

|∆MI| < |∆MIthreshold|, the logistics module remains in the NRHO corresponding to
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the pink line in each plot. For values of the metric above the threshold, the LM is

considered to be departed from the NRHO, and the line is colored blue. Note that

the momentum integral corresponding the baseline, represented in black in Figure

4.9, is bounded since the motion of the baseline in configuration space is bounded.

Departure from a bounded structure, such as the BCR4BP 2 Tsyn-periodic orbit, is

identified by detecting divergence in the momentum integral.

4.4.2 Escape Criterion

The goal of the disposal analysis is escape of the spacecraft from the Earth-Moon

region such that the vehicle enters and remains in heliocentric space. The Earth-

Moon vicinity is defined as the region inside the CR3BP Sun-B1 Hill region, that

is, the sphere centered at the Earth-Moon barycenter (B1) of radius approximately

equal to the L1 distance defined in the Sun-B1 CR3BP. The Earth vicinity is the

Figure 4.10. Definition of the region of space in the disposal problem, as seen in

the Earth-Moon rotating frame (left) and in the Sun-B1 rotating frame (right), both

centered at B1
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region centered at the Earth, with a radius approximately equal to the L1 distance as

defined in the Earth-Moon CR3BP. The different regions for the disposal problem are

defined in Figure 4.10. In the Earth-Moon rotating frame, the Earth-Moon libration

points, represented by colored asterisks in Figure 4.10, are fixed while the Sun-B1

equilibria, the black asterisks, are rotating around the Earth-Moon system. In the

Sun-B1 rotating frame, both the Earth and the Moon are rotating around their com-

mon barycenter B1. Thus, the Earth-Moon equilibrium points are also rotating and

the Sun-B1 equilibria are fixed. Note that Figure 4.10 is a two-dimensional view of

the three-dimensional space, for z = 0. Each region is, in three-dimensional space, a

sphere. Heliocentric space is defined as all the space beyond the Earth-Moon vicinity.

Similar to Figure 4.10, the different regions in the problem are represented also in

Figure 4.11, in the Sun-B1 rotating frame, centered at the Earth-Moon-Sun barycen-

ter, B2. The cross-section of the forbidden region, for z = 0 and at some arbitrary

Hamiltonian and Sun angle is represented by the gray area in the figure. Therefore,

the Sun-B1 forbidden region can be inside the Earth-Moon vicinity, depending on the

energy level.
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Figure 4.11. Definition of the significant regions of space in the disposal problem as

seen in the Sun-B1 rotating frame centered at B2

The success criteria of the disposal are defined. An escape, also denoted a ‘success’,

is a trajectory that meets the following conditions after propagation for 365 days:

� Remains beyond the Earth vicinity.

� Crosses the boundary identifying the Earth-Moon vicinity only once (to exit

and not return).

A capture (also labeled a ‘failure’ in this investigation) occurs when a trajectory does

not satisfy at least one of these conditions.

4.5 Tidal Effects from the Sun

In the Sun-B1 rotating frame, the direction of the net perturbing acceleration due

to the Sun, denoted the tidal acceleration, on a spacecraft in an orbit about B1, the

Earth-Moon barycenter, depends on the orientation of the orbit relative to the Sun

and the Earth-Moon system. A set of quadrants, centered at B1, is defined in the

Sun-B1 rotating frame, to facilitate the investigation of the tidal acceleration [41,42],

as illustrated in Figure 4.12. When the spacecraft orbit is viewed in the Sun-B1
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rotating frame, its orientation is defined by the quadrant that includes the apoapsis

along a given revolution in a prograde orbit. The effects of the tidal acceleration are

greatest near apoapsis, and when the orbit lies in the Sun-B1 plane [43]. The tidal

effect from the Sun can produce a major effect in orbits in the Earth-Moon vicinity.

In the BCR4BP model, the assessment of the tidal effect is further challenging due

to the Earth and the Moon circular motions in the Sun-B1 rotating frame. Consider

a prograde orbit, i.e., with a clockwise direction of motion, around the Earth-Moon

barycenter, B1, as viewed in the Sun-B1 rotating frame.

� In quadrants I and III, the perturbation from the Sun generally opposes the

direction of the motion. As a result, solar effects tend to elongate the orbit and

decrease the periapse radius.

� In quadrants II and IV, the tidal perturbation are generally along the direction

of the motion. The orbit tends to circularize and the periapse tends to increase.

Elongating and circularizing as a result of the tidal effect is quantified as an

osculating eccentricity with respect to B1. This eccentricity, labeled e, as well as

Figure 4.12. Quadrants as defined in the Sun-B1 rotating frame
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other parameters such as the periapse radius, are computed instantaneously in the

BCR4BP. The process to compute the osculating eccentricity, e(x̄′) associated with

the state vector x̄′ =
[
x′ y′ z′ ẋ′ ẏ′ ż′ θM

]
, expressed in the Sun-B1 rotating

frame, is described.

1. The reference point is shifted from the system barycenter, B2, to the Earth-

Moon barycenter, B1, such that

x̄′B1
=
[
x′ y′ z′ ẋ′ ẏ′ ż′ θM

]
−
[

1
mS

0 0 0 0 0 0
]

(4.3)

2. The state vector, x̄′B1
, is dimensionalized, as detailed in Section 2.4.1. The

dimensional vector is

X̄ ′B1
=
[
X ′B1

Y ′B1
Z ′B1

Ẋ ′B1
Ẏ ′B1

Ż ′B1
θM

]
(4.4)

3. The specific orbital energy, ε, is computed,

ε(x̄′) =

(
Ẋ ′B1

)2
+
(
Ẏ ′B1

)2
+
(
Ż ′B1

)2

2
− G m∗√(

X ′B1

)2
+
(
Y ′B1

)2
+
(
Z ′B1

)2
(4.5)

where G is the gravitational constant. The norm of specific angular momentum,

h, is then computed,

h(x̄′) =
∣∣∣∣∣∣ [X ′B1

Y ′B1
Z ′B1

]
×
[
Ẋ ′B1

Ẏ ′B1
Ż ′B1

] ∣∣∣∣∣∣ (4.6)

4. Finally, the osculating eccentricity with respect to B1, e(x̄′), is computed

e(x̄′) =

√
1 +

2εh2

(Gm∗)2
(4.7)

Note that, since the trajectory, is not Keplerian relative to B1, the specific orbital

energy, the specific angular momentum and the eccentricity are all instantaneous

values. These orbital quantities are constant for a state propagated using the two-

body model. For an osculating eccentricity value less than one, the spacecraft is in

an orbit around the Earth-Moon barycenter, B1. The spacecraft is instantaneously

moving along a trajectory with respect to B1 when the osculating eccentricity is
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greater than one. Instantaneous parameters, such as the osculating eccentricity with

respect to B1, yields information concerning the disposal trajectory in the Sun-B1

frame.

4.6 Results and Analysis

Multiple factors influence the disposal trajectory and its assessment as a suc-

cess, i.e., an escape, or a failure. These effects include the location of the trajectory

apoapses within the Sun-B1 quadrants, the energy along the trajectory, and the trajec-

tory’s osculating eccentricity with respect to B1. To escape the Earth-Moon vicinity,

the portals at E ′1 and E ′2 must be open. Therefore, the value of the energy-like quan-

tity, the Hamiltonian H ′, must be below the value corresponding to E ′1 (if escaping

through E ′1), or E ′2 (if escaping through E ′1 or E ′2). The same reasoning applies to the

osculating eccentricity with respect to B1, that is, e. If the eccentricity is less than

one, the trajectory is captured around B1; if the eccentricity drifts above one, the

trajectory is hyperbolic with respect with respect to B1 in the Keplerian sense. Fac-

tors that do not significantly influence the espace include the altitude of the NRHO

perilune or the magnitude of the ∆V̄ maneuver. While increasing the ∆V̄ tends to

decrease the time to depart the NRHO, it does not guarantee an escape: escapes exist

for ∆V̄ of magnitude of 1 m/s and captures occur at ∆V̄ of magnitude larger than

100 m/s. These elements reaffirm that the disposal problem is a Sun-B1 problem.

The analysis and assessment for the disposal is framed in terms of the trajectory

evolution. The disposal ∆V̄ maneuver is implemented at perilune on the NRHO in the

direction of the velocity as expressed in the Earth-Moon rotating frame. Depending

on the magnitude of the maneuver, the spacecraft may or may not complete post-

maneuver revolutions along the NRHO. Once departed from the NRHO, i.e., once the

difference in momentum integral along the trajectory exceeds the defined tolerance,

the spacecraft is in the Earth-Moon vicinity. Depending on the previously identified

factors, the fate of the trajectory is labeled as one of the following:
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� Direct Espace: the LM directly catches the departing flow.

� Indirect Escape: The trajectory includes additional apoapses with respect to

B1, but eventually catches the departing flow.

� Capture: The trajectory possesses additional apoapses with respect to B1, but

does not catch the departing flow in the allocated time, or the LM impacts one

of the primaries, that is, the Earth or the Moon.

Each outcome is detailed in the next sections.

Figure 4.13. Sample direct escape in the Earth-Moon rotating frame, for ||∆V̄ || = 1

m/s; in the vicinity of the Moon
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4.6.1 Direct Escapes

Direct escape trajectories directly leave the Earth-Moon vicinity after departing

the NRHO. These direct espace emerge as a consequence of attaining the correct

energy level once departed from the NRHO, that is, the E ′1 and E ′2 portals are open.

A sample of a direct escape trajectory appears in Figures 4.13 to 4.16. A maneuver

∆V̄ of magnitude equal to 1 m/s is implemented at perilune in the rotating velocity

direction. The Sun angle at the time of the maneuver, θS0, is 7◦ in this scenario, and

the Sun longitude of descending node, Ω, is equal to 8◦. The different phases of the

direct escape case are explored.

4.6.1.1 Example: Direct Escape

Phase 1

The LM performs 4 additional revolutions along the NRHO after the disposal

maneuver, as plotted in Figure 4.13. The apoapses with respect to the Earth-Moon

center, B1 are indicated by red dots. The trajectory is colored in pink when the

LM is still in the NRHO, that is, |∆MI(t)| < |∆MIthreshold|. The line colored in blue

indicates motion off the NRHO, but still in the Earth-Moon vicinity. Note that this

color scheme applies to all the following figures.

Phase 2

After departing the NRHO, the logistics module is in the Earth-Moon vicinity.

The trajectory is viewed in the Earth-Moon rotating frame, in Figure 4.14(a), and

observed in the Sun-B1 rotating frame, in Figure 4.14(b). The evolution of the Hamil-

tonian and the osculating eccentricity during this phase are decisive for the outcome

of the disposal trajectory. Note that all four apoapses with respect to B1 occur before

the LM departs the NRHO. Thus, there are no additional apoapses with respect to

B1 while the LM is in the Earth-Moon vicinity. These apoapses are labelled 1 to 4

in Figure 4.13 to 4.15. While the post-maneuver NRHO certainly is perturbed by
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(a) Earth-Moon rotating frame (b) Sun-B1 rotating frame, centered at B1

Figure 4.14. Sample direct escape for ||∆V̄ || = 1 m/s

the Sun, the structures underlying the orbit are Earth-Moon structures, i.e., they are

part of the NRHO subset of the Earth-Moon halo family. Therefore, the quadrant

in which they are located does not relate as closely to the tidal effect as it does for

apoapses located off the NRHO, in the Earth-Moon vicinity.

Instantaneous parameters along the trajectory, such as the Sun-B1 Hamiltonian,

H ′, and the osculating eccentricity, e, are recorded for a year following the disposal

maneuver, as noted in Figure 4.15. Notice the spikes in the Sun-B1 Hamiltonian

plot in Figure 4.15(a) and in the plot of osculating eccentricity with respect to B1 in

Figure 4.15(b), when the logistics module is still in the NRHO, i.e., the pink line. They

correspond to periapses with respect to the Moon. Recall that the quantities H ′ and e

are defined in the Sun-B1 frame. Therefore, they are perturbed by close passes of the

Moon. The Hamiltonian for the instantaneous portal E ′1 (respectively, E ′2) is plotted

by a blue line (respectively, a dashed red line) in Figure 4.15(a). The Hamiltonian plot

corresponds to Figure 2.21, although the x-axis is time rather than the Earth-Moon

angle, θM (recall that they are linearly related). Note that the oscillations in the
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Hamiltonian corresponding to E ′1 and E ′2 portals are indistinguishable at this scale.

The Sun-B1 Hamiltonian along the LM trajectory is below the Hamiltonian for the

instantaneous portals after it departs the NRHO. Thus, the portals are open when

the LM is in the Earth-Moon vicinity: transit through the instantaneous portals is

allowed. The instantaneous eccentricity with respect to B1, plotted in Figure 4.15(b),

while oscillating, is generally increasing while in the Earth-Moon vicinity. Thus, the

trajectory is elongating, as observed in Figure 4.14(b).

(a) Sun-B1 Hamiltonian

(b) Osculating eccentricity

Figure 4.15. Instantaneous parameter of the sample direct escape for ||∆V̄ || = 1 m/s
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Phase 3

The logistics module exits the Earth-Moon vicinity through the instantaneous E ′2

portal, as plotted in the example in Figure 4.14(b). Lines colored in green indicate

the LM is beyond of the Earth-Moon vicinity. The osculating eccentricity, e, plotted

in Figure 4.15(b), crosses the value of one shortly after exiting through the E2 portal.

Note that the Sun-B1 Hamiltonian reaches a plateau around H ′ = 3.0007. At a

sufficiently large distance from the Earth and the Moon, the terms in Equation 2.67

involving the distances to the Earth and to the Moon are comparatively smaller than

the others terms in the pseudo-potential equation.

A wider view of the trajectory evolution in the Sun-B1 rotating frame appears in

Figure 4.16. Note that this plot is centered at the Earth-Moon-Sun barycenter, B2,

and is expressed in Sun-B1 nondimensional units, while the plot in Figure 4.14(b)

has its origin at the Earth-Moon barycenter, B1, and is expressed in Earth-Moon

nondimensional quantities. The instantaneous forbidden region for the Hamiltonian

level at H ′ = 3.0007 is represented by the gray region in Figure 4.16. The LM may

reenter the Earth-Moon vicinity at a later time, since flow through the instantaneous

E ′2 portal is allowed. This possibility is further investigated later.
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Figure 4.16. Sample direct escape for ||∆V̄ || = 1 m/s as viewed in the Sun-B1 rotating

frame, centered at the Earth-Moon-Sun barycenter, B2

4.6.1.2 Geometries

The sample escape presented in Figures 4.14 to 4.16 corresponds to a specific

initial Sun angle, θS0 = 7◦ and a specific ∆V̄ magnitude of 1 m/s. Different direct

escape geometries exist at different epochs, i.e., at different Sun angles, for this same

specific magnitude of the ∆V̄ . For example, at the Sun angle range θS0 = 0 − 40◦,

various escape options are plotted in the Earth-Moon frame in Figure 4.17. In Figure

4.17(b), the escape trajectories exiting the Earth-Moon vicinity via the E ′1 portal

exit through the left side of the plot, while exits on the side correspond to the flow
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through the E ′2 opening. Note that all these different geometries are indistinguishable

when plotted in the Earth-Moon rotating frame, in Figure 4.17(a). The range of the

Hamiltonian values, plotted in Figure 4.17(c), reflect values between the Hamiltonian

of the E ′2 portal and the E ′3 portal. Finally, the osculating eccentricity of the various

escape options exhibit the same increasing trend when the LM is off the NRHO, as

illustrated by the blue lines in Figure 4.17(d). Figure 4.17 illustrates that multiple

direct disposal geometries exist, for a disposal maneuver magnitude as low as 1 m/s.

(a) Earth-Moon rotating frame view (b) Sun-B1 rotating frame view, B1-centered

(c) Sun-B1 Hamiltonian (d) Osculating eccentricity

Figure 4.17. Direct disposal options for ||∆V̄ || = 1 m/s; θS0 = 0− 40◦
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4.6.2 Indirect Escapes

Indirect escapes possess at least one additional apoapse with respect the Earth-

Moon barycenter, B1, before escaping the Earth-Moon vicinity. The location of these

additional apses within the Sun-B1 quadrants determine the tidal effect characteris-

tics. If the apoapses are located in quadrant I or III, the perturbing effects from the

Sun tend to elongate the trajectory which, if the energy level allows it, may catch

the departing flow escaping the Earth-Moon system through the instantaneous E ′1 or

E ′2 portal. Thus, indirect escapes are characterized by a combination of the apoapses

location with respect to the Sun-B1 quadrants, the energy level as represented by

the Hamiltonian, H ′, and the osculating eccentricity with respect to B1 along the

trajectory.

Indirect escape trajectories, similar to direct escapes, exist for a variety of ∆V̄

magnitudes. A sample of an indirect escape trajectory, for a disposal maneuver of

7 m/s and the initial Sun angle θS0 = 35◦, is presented in Figures 4.18 to 4.21.

The analysis of the time evolution of the indirect escape sample trajectory is again

analyzed in terms of the phases of the disposal scenario.

4.6.2.1 Example: Indirect Escape

Phase 1

Phase 1 originates at the instant of the disposal maneuver. The trajectory in the

vicinity of the Moon is plotted in Figure 4.18. Two post-maneuver revolutions occur

along the NRHO, as plotted in pink in the figure. Note that the ∆V̄magnitude, 7

m/s, is higher in this scenario than in the direct escape example (1 m/s). The number

of revolutions along the NRHO tends to decrease as the magnitude of the disposal

maneuver increases [16]. The periapse labeled 1 in Figure 4.18 occurs while the LM is

still in the NRHO; thus, it is excluded from the tidal effect analysis. In this scenario,

the LM departs the NRHO about 13 days after the time of the maneuver.
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Figure 4.18. Sample indirect escape in the Earth-Moon rotating frame, for ||∆V̄ || = 7

m/s, in the vicinity of the Moon

(a) Earth-Moon rotating frame (b) Sun-B1 rotating frame, B1-centered

Figure 4.19. Sample indirect escape for ||∆V̄ || = 6 m/s
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Phase 2

Phase 2 is critical in the indirect escape configuration. The LM is now in the

Earth-Moon vicinity, as plotted in Figure 4.19. The Sun-B1 Hamiltonian and the

osculating eccentricity, instantaneously recorded and plotted in Figure 4.20, yield

critical information about the evolution of the trajectory with respect to B1. First,

note that the Hamiltonian value along the trajectory is higher than the values at

the instantaneous portals after the LM departs the NRHO. Thus, flow through the

portals is not possible: the LM remains in the Earth-Moon vicinity.

The tidal effects from the Sun modify the trajectory properties. In Figure 4.19(b),

observe that apoapse 3 is in Quadrant I, and that apoapse 4 is located in Quadrant

III. The Sun’s perturbing effects are similar in Quadrant I and III: prograde orbits

tend to elongate. This elongating effect between apoapse 3 and apoapse 4 is visually

apparent in Figure 4.19(b), and is also quantifiable in term of osculating eccentricity,

as plotted in Figure 4.20(b). The Hamiltonian plot, in Figure 4.20(a), reveals the

impact of the tidal effects from the Sun on the flow in and out of the Earth-Moon

vicinity. The energy along the disposal trajectory increases (the Hamiltonian value

decreases) between apoapse 3 and 4. Flow through the instantaneous E ′1 and E ′2

portals is possible after apoapse 3, although the portals are barely open. There is

another energy change, after periapse 4; the portals open further. After periapse

4, the trajectory is sufficiently elongated and at a sufficient Hamiltonian level to

catch the departing flow; the LM escapes the Earth-Moon vicinity through the E ′1

instantaneous portal.

Close passes of the Moon impact the Hamiltonian value. One of these flybys

occurs after apoapse 4 and is identifiable by the ‘loop’ below the Moon in Figure

4.19(a). Flybys appear as spikes in the Hamiltonian plot. The close approach to the

Moon in the sample indirect escape is the also identified spike in the blue line, in

Figure 4.20(a), prior to 100 days. In this scenario, the Hamiltonian decreases after

the close lunar pass, thus, the energy along the path increases and the instantaneous

portals further open.
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(a) Sun-B1 Hamiltonian

(b) Osculating eccentricity

Figure 4.20. Instantaneous parameter of the sample indirect escape for ||∆V̄ || = 7

m/s

Phase 3

The logistics module escapes the Earth-Moon vicinity through the instantaneous

E ′1 portal. Therefore, after escape, the LM is captured in the interior region of

the instantaneous ZVCs, as plotted in Figure 4.21. The gray region in the figure



117

represents the forbidden region corresponding the Hamiltonian value of 3.0008, the

value at which the Hamiltonian plateaus after escaping the Earth-Moon vicinity.

Recall that return the LM to the Earth-Moon vicinity remains possible at a time

beyond the one-year propagation of the scenario.

Figure 4.21. Sample direct escape for ||∆V̄ || = 6 m/s as viewed in the Sun-B1 rotating

frame, centered at the Earth-Moon-Sun barycenter, B2

4.6.2.2 Precession of the apopapses

In the sample indirect escape trajectory presented previously, the tidal effects

tend to elongate the trajectory, since the apoapses are located in Quadrant I and III.

However, indirect escapes also occur at times despite the circularizing effect of the

Sun. An example of such indirect escape configuration appears in Figure 4.22. The

disposal maneuver magnitude in the sample trajectory in Figure 4.22 is 2 m/s and

the initial Sun angle is θS0 is 5◦. First, note that the Sun-B1 Hamiltonian along the

trajectory, plotted in Figure 4.22(c), is too high after departure from the NRHO to

allow escape from the Earth-Moon vicinity. The LM, therefore, exhibits additional

revolutions around B1, as seen in Figures 4.22(a) and 4.22(b). From Figure 4.22(b),
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(a) Earth-Moon rotating frame view (b) Sun-B1 rotating frame view, B1-centered

(c) Sun-B1 Hamiltonian (d) Osculating eccentricity

Figure 4.22. Indirect disposal trajectory example for ||∆V̄ || = 2 m/s

the apoapses 5 and 6 occur in Quadrant I, and the trajectory elongates. However,

since the apoapse location precesses, the trajectory circularizes, because the apoapses

7 and 8 are in Quadrant IV. Although the apoapses labeled 5 to 9 seem evenly spaced

in time in Figure 4.22(c), the precession rate is not constant. The 9th apoapse occurs in

Quadrant I: the periapse is lowered, the trajectory elongates and catches the departing

flow. The LM escapes the Earth-Moon vicinity from the E ′2 instantaneous portal, as

plotted in Figure 4.22(b). Two close passes of Moon, one between apoapses 6 and

7, and one between apoapses 7 and 8, clearly affect the Hamiltonian value along the

trajectory. After apoapse 7, departing flow through the portals is possible. However,
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note that the osculating eccentricity, plotted in Figure 4.22(d), is not sufficiently high,

only about 0.5: the LM is captured around the Earth-Moon barycenter. After the

9th apoapse, the eccentricity is raised and crosses though a value of one; the LM

escapes the Earth-Moon system. The time between the disposal maneuver and the

escape is about 350 days in this scenario; in contrast to the 124 days in the previous

indirect escape example. The time to depart the Earth-Moon system is a function of

the number of apoapses and thus, a function of the number of revolutions around B1.

Thus, the time interval to dispose the logistics module can be large in the indirect

escape case.

4.6.3 Captures

Capture trajectories do not escape the Earth-Moon vicinity within the one-year

time interval, or they enter the vicinity of the Earth, the sphere centered at B1 of

radius approximately equal to the Earth-Moon CR3BP L1 distance. This disposal

category does not reach the correct combination of Hamiltonian value and osculating

eccentricity in the specified time interval, despite the tidal effects from the Sun. A

sample capture trajectory, for a disposal maneuver of 3 m/s and the Sun angle at an

initial angle equal to 9◦ is presented in Figures 4.24 to 4.26.

A subset of the capture trajectories impact the Earth or the Moon. While these

impacts are undesirable for a disposal, they could be of interest for return options to

Earth, or for applications to reach the lunar surface. Examples of impact trajectories

with the Earth and the Moon are presented in Figures 4.27 to 4.30.

4.6.3.1 Example: Capture

Phase 1

In this scenario, the LM completes three post-maneuver revolutions along the

NRHO, as plotted in Figure 4.23. The logistics module then follows with two addi-

tional revolutions around the Moon. Note that these revolutions are not along the
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baseline NRHO, since the threshold in momentum integral is exceeded; they corre-

spond to motion along a NRHO-like structure of a different size. The momentum

integral threshold can be varied to accommodate different types of motion in the

vicinity of the baseline NRHO.

Phase 2

The subsequent evolution of the trajectory over one year is plotted in the Earth-

Moon rotating frame in Figure 4.24(a), and in the Sun-B1 rotating frame in Figure

4.24(b). From these two plots, the LM clearly exhibits an orbit around B1. The

osculating eccentricity, instantaneously recorded in Figure 4.25(b), never exceeds a

value of 0.6 over the one-year time span. Alternating between elongation and circu-

larization, apparent in Figure 4.24(b), is due to the apoapses repartition in the Sun

Figure 4.23. Sample capture in the Earth-Moon rotating frame, for ||∆V̄ || = 3 m/s,

in the vicinity of the Moon
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B1 quadrant: apoapse 6 in Quadrant III, apoapses 7 and 8 in Quadrant II, apoapse

9 in Quadrant I, apoase 10 in Quadrant IV.

(a) Earth-Moon rotating frame (b) Sun-B1 rotating frame, B1-centered

Figure 4.24. Sample capture for ||∆V̄ || = 3 m/s

When departing the NRHO, the captures possess an energy level, H ′, such that

the instantaneous E ′1 and E ′2 portals are closed, as apparent in Figure 4.25(a). Note

that no close lunar passes occur after the LM departs the NRHO. Therefore, there

are no spikes in the Sun-B1 Hamiltonian plot, in Figure 4.25(a), once the LM departs

the lunar vicinity. In the one-year time span, the Hamiltonian value along the tra-

jectory never crosses the Hamiltonian curves of the instantaneous E ′1 and E ′2 portals.

Escaping flow through the portals is, thus, not possible. As an illustration, the for-

bidden region, as computed for the state at the end of the one-year propagation is

represented by the gray area in Figure 4.26.

A one-year time span to escape the Earth-Moon system is selected in this investi-

gation. As defined in Section 4.4.2, trajectories that do not enter the Earth vicinity,

do not impact the Moon, but do not escape the Earth-Moon vicinity in this time

interval are considered captures, or failures, for the purposes of a disposal option.

However, such a trajectory might escape at a later time. The sample capture trajec-

tory in Figure 4.24 escapes the Earth-Moon vicinity in about 2.6 years, after multiple
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lunar close approaches and entering the Earth vicinity. Therefore, this trajectory

does not qualify as a safe disposal option.

(a) Sun-B1 Hamiltonian

(b) Osculating eccentricity

Figure 4.25. Instantaneous parameter of the sample capture for ||∆V̄ || = 3 m/s
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Figure 4.26. Sample capture for ||∆V̄ || = 3 m/s as viewed in the Sun-B1 rotating

frame, centered at the Earth-Moon-Sun barycenter, B2

(a) Earth-Moon rotating frame (b) Sun-B1 rotating frame, B1-centered

Figure 4.27. Earth impact for ||∆V̄ || = 3 m/s

4.6.3.2 Impact

Disposal maneuvers applied at perilune may result in an impact with the Earth or

the Moon. An example of impact with the Moon, for a ∆V̄ magnitude of 3 m/s and
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Figure 4.28. Earth impact for ||∆V̄ || = 3 m/s, y − z view

an initial Sun angle of 35◦ is plotted in Figure 4.27. When plotted in the Earth-Moon

rotating frame, the trajectory consists of two revolutions around the Earth-Moon

barycenter, B1. In the Sun-B1rotating frame, the LM seems to escape the Earth-

Moon vicinity, but then complete a large loop and enters the Earth vicinity. Note

that this geometry is similar to the ballistic lunar transfer geometry [44–46], but in the

reverse direction, i.e., from the NRHO to the near-Earth vicinity. For convenience,

most of the plots in configuration space represented in the x− y view, if represented

in the Earth-Moon rotating frame, or in the x′ − y′ view, if plotted in the Sun-B1

rotating frame. However, the trajectories, such as the Earth impact in Figure 4.27,

generally possess a non-zero z (or z′) components, as illustrated in Figure 4.28. In

this scenario, the time between the disposal maneuver of the impact is approximating

116 days.

Lunar impacts can occur prior to the departure from the vicinity of the Moon or,

at later time, if the LM re-enters the Moon vicinity and impact. An example of the

latter case is plotted in Figure 4.29, for a ∆V̄ maneuver of magnitude of 7 m/s and

an initial Sun angle of 123◦. The LM performs multiple revolutions with respect to
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the Earth-Moon barycenter, B1, before re-entering the lunar vicinity. A close-view of

the lunar vicinity appears in Figure 4.30.

(a) Earth-Moon rotating frame (b) Sun-B1 rotating frame, B1-centered

Figure 4.29. Lunar impact for ||∆V̄ || = 7 m/s

Figure 4.30. Sun-B1 rotating frame, B1-centered
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4.7 Long-Term Behavior of the Disposal Trajectories

Successful disposals are propagated beyond the one-year time span to assess the

risk of return to the Earth-Moon vicinity. The extended propagation time is set to

equal to 100 years. Natural behavior, i.e., without any maneuver beyond the initial

disposal maneuver is explored. To prevent a potential return to the Earth-Moon

vicinity, a second maneuver, in heliocentric space, is investigated.

4.7.1 Natural Propagation

The motion of the logistics in heliocentric space is bounded by the instantaneous

ZVCs, delimiting the instantaneous forbidden region. Recall that the dynamical envi-

ronment in heliocentric space, is well approximated by the Sun-B1 model and Jacobi

constant. Therefore, the instantaneous ZVCs at the time of escape are maintained

throughout the 100-year propagation, if the LM is not the vicinity of the Earth-Moon

system. A ‘bouncing’ motion on the ZVCs occurs, as plotted in Figure 4.31 and in

Figure 4.32. Since the instantaneous portals are open at the time of escape, and the

Hamiltonian value stays approximately constant in heliocentric space, a risk of return

to the Earth-Moon system exists.

Two types of return are introduced: interior-to-exterior transits and exterior-to-

interior transits. Interior-to-exterior transits are characterized by an escape from the

Earth-Moon vicinity through the E ′1 portal, a tour (or more) of the interior region

and a return to the Earth-Moon vicinity resulting in a secondary escape through the

E ′2 portal. A sample interior-to-exterior transit, for a disposal maneuver of 4 m/s and

the initial Sun angle of −179◦, is plotted in Figure 4.31. The LM directly escapes

the Earth-Moon vicinity through the E ′1 opening, as plotted in Figure 4.31(b). It

then completes one tour of the interior region of the ZVCs, before re-entering the

Earth-Moon vicinity. The structure surrounding the instantaneous E ′2 equilibrium

point, in Figure 4.31, resembles a Lyapunov-type of motion, but out-of-plane. Recall

that Figures 4.31(a) and 4.31(b) are the x and y components of a 3D trajectory.
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After the secondary escape, the LM continues through multiple exterior tours of

the Sun-B1 ZVCs, without re-entering the Earth-Moon vicinity. The second type of

return, exterior-to-interior transit, is characterized by an escape from the Earth-Moon

vicinity through the E ′2 portal, a tour (or more) of the exterior region and a return

to the Earth-Moon vicinity resulting in a secondary escape through the E ′1 portal.

An example of such return is plotted in Figure 4.32. The ∆V̄ disposal maneuver

magnitude is 4 m/s and the Sun angle at the disposal time is 0◦. Similar to the

previous example, this sample escape is a direct escape, but through the E ′2 portal.

The LM ‘bounces’ around the exterior region of the ZVC, as noted in Figure 4.32(a),

and re-enters the Earth-Moon on its first close return. The secondary escape occurs

through the E ′1 portal and the LM remains in the interior region for the rest of the

100-year propagation, despite multiple close approaches to the Earth-Moon vicinity,

that are apparent in Figure 4.32(b).

(a) Sun-B1rotating frame view, B2-centered (b) Zoom of the Earth-Moon vicinity

Figure 4.31. Interior-to-exterior transit, for a disposal maneuver of 4 m/s and θS0 =

−179◦
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Variations and combinations of interior-to-exterior and exterior-to-interior transits

exist. First, the LM may complete multiple revolutions in the Earth-Moon vicinity,

between the Earth-Moon re-entry and the secondary escape. The LM can also impact

one of the primaries when re-entering the system. Interior-to -interior and exterior-to-

exterior transits, i.e., re-entry and re-escape through the same instantaneous portal,

are possible. Finally, combinations of transits, such as interior-to-exterior-to-interior

transits for instance, can also occur if the LM does not impact the Earth or the Moon,

or is not get captured around the Earth-Moon barycenter, B1.

4.7.2 Additional Maneuver in Heliocentric Space

For a disposal mission, returns to the Earth-Moon vicinity could be undesirable,

since recontact is a threat to the Gateway, the Earth, the Moon, or any other asset

in this region of space. A strategy to prevent such returns is, therefore, needed.

From the plots in Figures 4.31(a) and 4.32(a), some sort of frequency to the bouncing

(a) Sun-B1rotating frame view, B2-centered (b) Zoom of the Earth-Moon vicinity

Figure 4.32. Exterior-to-interior transit, for a disposal maneuver of 4 m/s and θS0 =

0◦
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(a) Sun-B1rotating frame view, B2-centered

(b) Zoom of the Earth-Moon vicinity

Figure 4.33. Exterior-to-exterior transit, for a disposal maneuver of 4 m/s and θS0 =

0◦

motion exists. By analyzing this frequency and the precession of the close approaches

to the Earth-Moon vicinity, a maneuver time could be phased to prevent return over

a specific time span. However, since the timing of the maneuver already requires

some phasing with the Sun; the complexity of the problem increases when combining

these two phases. Therefore, a simpler method to estimate the requirement to prevent

returns to the Earth-Moon system is sought. Recall that the Sun-B1 Hamiltonian is

approximately constant for a state in heliocentric space. A maneuver implemented in

heliocentric space shifts this Hamiltonian value. By correctly selecting the location,

the direction and the magnitude, a maneuver performed in heliocentric space modifies

the Hamiltonian value, such that the instantaneous portals close and no return to the

Earth-Moon vicinity is allowed.

To select the parameters, i.e., the location, the direction and the magnitude,

of the maneuver in heliocentric space, a sample example is introduced. A sample

scenario of undesired return is plotted in Figure 4.33. This trajectory is a direct
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escape, for a disposal maneuver of 1 m/s and an initial Sun angle of 4◦, but one that

includes a an exterior-to-exterior transit after its first exterior tour. Recall that the

Sun-B1Hamiltonian along the trajectory is defined as

H ′ = 2Υ′ − V ′2 (4.8)

where Υ′ is the Sun-B1 pseudo-potential and V ′2 = ẋ′
2
+ = ẏ′

2
+ = ż′

2
. The objective

is the closure of the E ′2 portal, therefore, the desired Hamiltonian value after the

maneuver, H ′d is set as equal to the maximum Hamiltonian value of E ′2 over one

synodic month. The desired velocity, V ′d , is defined such that

H ′d = 2Υ′ − V ′2d (4.9)

The instantaneous change in velocity, for a maneuver along the velocity or the anti-

velocity direction, is defined as ∆V ′ = V ′d − V ′2. Rearranging Equations (4.8) and

(4.9), the theoretical minimum δV ′ to sufficiently modify the Hamiltonian value from

H ′ to H ′d is

∆V ′ =
√

2Υ′ −H ′d −
√

2Υ′ −H ′ (4.10)

In this scenario, since the desired Hamiltonian value is greater than the current Hamil-

tonian value, ∆V ′ < 0; thus, the maneuver is implemented in the anti-velocity direc-

tion. However, the magnitude of the maneuver is a function of the pseudo-potential,

Υ′, which depends only on the position. By appropriately selecting the maneuver

location, the magnitude of the maneuver is minimized. Locations, sampled along

the first tour of the ZVCs, are plotted in Figure 4.34. The time interval between

the escape and the first return to the Earth-Moon vicinity, i.e., the duration of the

exterior tour, is approximately 15 years. For each of the locations in Figure 4.34, the

minimum theoretical ∆V̄ maneuver is computed and plotted in Figure 4.35.
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Figure 4.34. Sample locations for the maneuver in heliocentric space, as viewed in

the Sun-B1 B2-centered rotating frame

A clear pattern exists between the location and the magnitude of the maneuver.

The peaks and troughs in Figure 4.35 are related to the distance of the trajectory

from the ZVCs. Peaks correspond to sample points away from the ZVC; thus, the

magnitude of the maneuver is as low as 28 m/s per second is implemented further

from the ZVCs. Asymptotes in Figure 4.35 are present when the logistics module is

in the close vicinity to the ZVCs. Finally, some sample points, very close or on the

ZVC, do not yield a real solution. For these points, if a ∆V̄ maneuver yielding the

correct desired Hamiltonian, H ′d, existed, the logistics module would be inside the

ZVC after the maneuver. The Hamiltonian equation elegantly forbids maneuvers at

these points.

A sample maneuver is implemented in the anti-velocity direction at a point close to

the minimum ∆V̄ , as noted in Figure 4.37. The blue-to-yellow transition denotes the
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Figure 4.35.
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(a) Heliocentric maneuver location, in the

Sun-B1 B2-centered rotating frame

(b) Zoom on the Earth-Moon ZVC after the

maneuver

Figure 4.36. Example of maneuver of magnitude 30 m/s in heliocentric space that

closes the instantaneous E ′2 portal

(a) H ′ (b) Zoom on the maneuver time

Figure 4.37. Sun-B1 Hamiltonian evolution before the maneuver (blue) and after the

maneuver (orange)
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maneuver location. The maneuver instantaneously changes the Hamiltonian value,

plotted in Figure 4.36, to be larger than the largest Hamiltonian value at the in-

stantaneous E ′2 value. The forbidden region corresponding to the post-maneuver

Hamiltonian is plotted in grey in Figure 4.36(b). Note that the blue trajectory, the

pre-maneuver condition is at the lower Hamiltonian, or, equivalently, at a higher

energy. Therefore, the forbidden region in Figure 4.36(b) does not correspond to

the blue part of trajectory. This forbidden region corresponds to the post-maneuver

Hamiltonian, H ′d, plotted in orange in Figure 4.37(b). Finally, the maneuver not

affects the Hamiltonian value, the geometry of the trajectory is also modified. The

post-maneuver trajectory, plotted in orange in Figure 4.36(a), differs from the nat-

urally propagated trajectory, plotted previously in Figure 4.34. In this scenario, the

logistics module has been successfully disposed from the Earth-Moon vicinity and is

isolated in heliocentric space with a disposal maneuver of 1 m/s and an additional

maneuver in heliocentric space, approximately 3 years after the first maneuver, of

magnitude 30 m/s.

4.8 Ephemeris Model Validation

Predictions from the BCR4BP effectively describe trajectory behavior and trends

in the ephemeris force model [16]. These predictions are applied to Gateway mission

scenarios in the higher-fidelity ephemeris model to generate specific examples for

successful LM disposals. The higher-fidelity ephemeris force model is employed. In

this model, N -body differential equations, along with planetary ephemerides from

NAIF SPICE [47], describe the motion of the logistics module. The Earth and the

Moon are included as point masses, and the Moon’s gravity is modeled using the

GRAIL (GRGM660PRIM) model truncated to degree and order 8. Solar radiation

pressure (SRP) is also incorporated in the force model. To further model the disposal

conditions, operations errors are considered. Navigation errors (both low navigation

errors of 1 km in position and 1 cm/s in velocity as well as larger navigation errors of
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10 km in position and 10 cm/s in velocity), and SRP errors (15% error in area and

30% error in coefficient of reflectivity) are considered, and an error-free disposal is

applied.

The two types of escapes, direct and indirect, both identified in the BCR4BP are

consistent with geometries that emerge in the higher-fidelity, ephemeris force model

propagations. Ten direct escapes propagated in this ephemeris force model are plotted

in Figure 4.38(a), for a disposal maneuver of 1 m/s in the rotating velocity direction.

Similarly, ten indirect escapes appear in Figure 4.38(b), for the disposal maneuver

magnitude of 4 m/s. The Sun-B1 Hamiltonian value along these trajectories, plotted

on the bottom right corner of Figure 4.38(a) and Figure 4.38(b), illustrates a con-

sistent pattern with the results in the BCR4BP. At the time of departure from the

NRHO, the Hamiltonian value along the direct escapes is below the value for the

Hamiltonian of the instantaneous gateways, allowing escape. For indirect escapes,

the Hamiltonian value at the departure from the NRHO is larger the Hamiltonian

range of the instantaneous portals, forbidding any flow through either the E ′1 portal

and E ′2 portal. Geometries and patterns observed in the BCR4BP effectively describe

the trajectory behavior in the higher-fidelity force model.

4.9 Summary of Results

Three outcomes for the disposal mission have been identified. Direct escapes are

characterized by a minimal amount of time spent in the Earth-Moon system. Indirect

escapes occur due to the tidal effects from the Sun. Capture trajectories do not escape

the Earth-Moon vicinity in the imparted one-year time, or enter the Earth vicinity,

and/or impact one of the primaries. Any trajectory that implements a disposal

maneuver at perilune in the direction of the rotating velocity can be categorized as

one of these three outcomes.

Multiple factors influence the fate of the disposal trajectory. The Sun-B1 Hamil-

tonian, H ′, is a metric for the energy in the Sun-B1 rotating frame. Similarly to
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(a) Direct escape for a disposal maneuver of 1 m/s

(b) Indirect escapes for a disposal maneuver of 4 m/s

Figure 4.38. Disposal trajectories in the ephemeris force model, from [16]
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the CR3BP Jacobi constant, the Hamiltonian value provides information on whether

flow through the instantaneous portals is possible. The osculating eccentricity, e,

with respect the Earth-Moon barycenter, B1, instantaneously indicates if the logistics

module is captured around B1 (e < 1) or if it is in an hyperbolic path with respect

to B1 (e ≤ 1). Finally, the location of the eventual apopases along the trajectory

with respect to B1 predicts the effect from the perturbing gravitational force of the

Sun. For apoapses located in quadrants I and III, the tidal effects from the Sun

tend to elongate the trajectory, which may result in indirect escapes. Conversely, in

quadrants II and IV, the trajectory circularizes due the perturbing effect from the

Sun. The relationship between each outcome, i.e., direct escape, indirect escape and

capture, and the influencing factors is summarized in Table 4.3. Note that the three

factors influencing the disposal trajectory identified in this investigation may not be

the only ones that exist. The Sun-B1 Hamiltonian, the osculating eccentricity with

respect to B1 and the location of the apoapses within the Sun-B1 quadrants help

predict the fate of a disposal trajectory.

Disposal options have been identified in the BCR4BP and confirmed in the higher-

fidelity, ephemeris force model. Direct escape trajectories are candidate end-of-

mission paths for logistics modules [16]. Such disposal trajectories have been obtained

in both the BCR4BP and the ephemeris force model for ∆V̄ maneuver of magnitude

as low as 1 m/s. Finally, a preliminary analysis to prevent the return of the logistics

module to the Earth-Moon vicinity, by performing a second maneuver in heliocentric

space, has been conducted.
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Table 4.3. Relationship between the disposal outcome and the influencing factors

Outcome H ′ at NRHO departure
e at NRHO

departure

Quadrant of

post-NRHO apoapses

Direct escape > H ′E′1
or > H ′E′2

> 0.5 none

Indirect escape < H ′E′1
and < H ′E′2

< 0.5 I and/or III

Capture < H ′E′1
and < H ′E′2

< 0.5 II and/or IV
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5. SUMMARY AND FUTURE WORK

5.1 Summary

The present investigation is focused on trajectories in the Earth-Moon vicinity

that are significantly influenced by the gravitational effect of the Sun. The trajectory

dynamics of an empty logistics module to be disposed to heliocentric space, from

the proposed lunar Gateway located in an Earth-Moon 9:2 synodic resonant NRHO,

are explored. After consideration of various dynamical models, the familiar Circular

Restricted 3-body Problem is extended to the Bicircular Restricted 4-Body Problem

(BCR4BP). The BCR4BP is powerful dynamical model to define the motion of a

body in space under the influence of a planet (in this investigation, the Earth), its

Moon, and the Sun. One of the advantages of the BCR4BP is that relevant infor-

mation about the trajectory evolution is available in two frames, the Planet-Moon

rotating frame and the Sun-{Planet-Moon barycenter} rotating frame, employing a

single dynamical model. Instantaneous structures, such as the zero velocity curves

and the equilibrium points, are leveraged to reveal dynamical characteristics of the

system. Tools from dynamical systems theory are implemented to obtain specific

solutions in the BCR4BP and to expand a particular solution into a family of solu-

tions. Dynamical separatrices in the flow are uncovered using Lagrangian coherent

structures. The main conclusions of this study include:

1. Modeling in the BCR4BP is critical in solar-influenced environments. Lever-

aging the model in the BRC4BP overcomes difficulties associated with system

blending, since it uses a single set of differential equations to model the trajec-

tory. With the supporting assumptions, the BCR4BP also avoids to the added

complexity of the higher-fidelity, ephemeris force model, while still accurately
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describing the dynamics of the system. An analysis using the BCR4BP offers

new insights into a dynamically complex environment.

2. Tidal effects from the Sun affect the disposal trajectories. The phasing of the

disposal maneuver within the Sun-B1 quadrants, a set of quadrants defined rel-

ative to the Earth-Moon barycenter, determines the orientation and the mag-

nitude of the perturbing effect due to the solar gravity. The impact of the tidal

effects are measured using two parameters, the Sun-B1 Hamiltonian, H ′, which

quantifies the energy along the trajectory in the Sun-B1 rotating frame, and

the osculating eccentricity , e, in terms of an orbit with an instantaneous focus

at B1. A successful disposal is achieved when the combination of three factors

is satisfied. First, the Hamiltonian value along the departure trajectory must

be sufficiently low to allow escape through the E ′1 or E ′2 instantaneous equilib-

rium points in the Sun-B1 system. Second, orienting the departing trajectory

appropriately within the quadrants allows the spacecraft to catch the escaping

flow and achieve heliocentric escape. Finally, osculating eccentricity along the

trajectory must be greater than one, signifying escape from the Earth-Moon

vicinity.

3. Disposal of the logistics module to heliocentric space is possible for ∆V̄ maneu-

ver magnitudes as low as 1 m/s. Direct escapes, those disposals with a minimal

time in the Earth-Moon vicinity, are candidate trajectories for the logistics

module end-of-mission. Indirect escapes are alternative outcome, in which the

logistics module completes multiple revolutions in the Earth-Moon vicinity be-

fore escaping. The third possibility, capture or impact, is not a desired outcome

for a disposal mission.

Exploring the dynamics involved in an escape from the vicinity of a NRHO yields

tools and techniques for applications in the BCR4BP.
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5.2 Future Work

The development of the model in the BCR4BP and the strategies that allow anal-

ysis in the disposal problem are applicable to other disposal scenarios. For instance,

this analysis could be extended to a different orbit in the Earth-Moon system. The 4:1

synodic resonant NRHO is also an orbit of interest for the Gateway location. Vary-

ing the location of the disposal maneuver along the baseline trajectory and/or the

direction of the maneuver could offer additional insights into the disposal dynamics.

Further characterization of the disposal dynamics is also a longer term objective.

The region where the dominating effect shifts from the Planet-Moon influence to the

Sun’s influence has yet not been fully assessed. The variations in the tidal effects due

to the out-of-plane component should also be investigated.

The bicircular restricted 4-body problem is a powerful and versatile model for ex-

ploring problems dominated by three gravitational fields. For instance, transitioning

solutions from the circular restricted 3-body model to the higher-fidelity, ephemeris

force model, could benefit from an intermediate convergence step in the BCR4BP.

Transfers between two planetary system, i.e., coupling a disposal problem in one sys-

tem to a capture problem in a different system, could be enhanced using the BCR4BP.
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Appendix A

Stability

Although the dynamical ‘stability’ is intuitive, many formal different definitions exist.

Therefore, the type of stability to be assessed is carefully specified. In general, stabil-

ity of a solution is evaluated by comparing this solution, also termed the reference, to

a perturbed trajectory. Let the reference trajectory be labeled R and the perturbed

trajectory be denoted as R′. When comparing a point P along the reference trajec-

tory to a point identified on the perturbed trajectory, two types of correspondence

exist [18], as schematically represented in Figure 1. First, if the point P is evaluated

at t0 + T on R, the point evaluated on R′ at the same time t0 + T is the point P ′.

There is a isochronous correspondence between P , the black dot in Figure 1, and P ′,

the green dot. The concept of isochronous correspondence leads to the Lyapunov

stability. The solution P is Lyapunov stable [18] if, given any ε > 0, there exists a

ψ > 0 such that any solution P (t) satisfying

|P (t0)− P ′(t0)| < ψ (1)

also satisfies for t > t0,

|P (t)− P ′(t)| < ε (2)

The second type of correspondence, the normal correspondence, relates the normal

deviation from P to the perturbed trajectory R′. The normal direction n̂ is defined to

be normal to the velocity vector along the trajectory at P . The point P ′′ is the point

at the intersection with the perturbed trajectory R′ and the P − n̂ line. Thus, P ′′

point is in normal correspondence with P . The normal correspondence is associated

with the orbital stability. A periodic solution P (t) is orbitally stable [18] if, given any

ε > 0, there exists a ψ > 0 such that any solution P ′(t) for which

|P (t1)− P ′(t0)| < ψ (3)



148

Figure 1. Isochronous and normal correspondence between points along a reference

trajectory and a perturbed trajectory

satisfies for t > t0,

|P (t)− P ′(t+ c)| < ε (4)

Note that the orbital stability only applies to periodic solutions, while any type of

solution, periodic or not, can be evaluated for Lyapunov stability. The P−P ′ distance

and the P − P ′′ distance are generally not equal, as observed in Figure 1. Thus, the

stability definitions associated with the isochronous and the normal correspondence

are different. Lyapunov stability and orbital stability are two definitions of the term

‘stability’ but many others exist; for instance, Poisson’s stability, Hill stability and

Laplace stability.

Linear Definition

The linear stability of a solution is evaluated consistent with the Lyapunov defi-

nition of stability. The Lyapunov stability, in the linear sense, of a solution leverages

the roots of the characteristic equation, or eigenvalues, of the A matrix. Recall, from

section 3.1, that the A matrix is the Jacobian matrix of the equations of the motion
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of the system. For an equilibrium solution, the A matrix is constant. The stability

properties, in the linear sense, of the equilibrium points are defined as follow

� If the eigenvalues of A are real, the equilibrium solution is stable if all the roots

are negative. If any of the root is stable, the equilibrium point is unstable. Note

that this is valid even if certain roots are repeated.

� If the eigenvalues of A are purely imaginary, the equilibrium point is stable

and oscillatory motion in its vicinity exists. However, if any of the eigenvalues

is repeated, the linearized motion in the vicinity of the equilibrium point has

periodic and secular terms, and the equilibrium solution is unstable.

� If the eigenvalues are complex, the stability is a function of a sign of the real

part.

– If all the eigenvalues have negative real parts, the equilibrium solution is

stable.

– If one or more eigenvalue has a positive real part, the equilibrium solution

is unstable.

Note that for the complex eigenvalues, these statements are still valid if any of

the roots is repeated.

To evaluate the stability of a periodic solution, the state transition matrix, Φ(t, t0),

is evaluated stroboscopically, after the precise period of the orbit. For a solution of

period P, the state-transition matrix after one revolution, Φ(t0 +P, t0), is labeled the

monodromy matrix. The requirement for the stability of the solution is summarized

as follows [48]: A periodic solution is stable in the linear sense if and only if all the

eigenvalues of the monodromy matrix have a magnitude smaller or equal to one. From

Lyapunov’s theorem [49], if λ is an eigenvalue of the monodromy matrix Φ(t0 +P, t0),

then λ−1 is also an eigenvalue. Thus, the real eigenvalues occur in reciprocal pairs, and

the complex and purely imaginary occur in conjugate pairs. The stability requirement

is rephrased as: A periodic solution is stable in the linear sense if and only if all the

eigenvalues of the monodromy matrix lie on the unit circle in the complex plane. The
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stability of a periodic orbit is, thus, determined by the location of the eigenvalues of

the monodromy matrix, Φ(t0 + P, t0) in the complex plane, as noted in Figure 2.

Figure 2. Stability of periodic solutions and location of the eigenvalues in the complex

plane

If the system possesses an integral of the motion, a pair of eigenvalues from the

monodromy matrix is equal to one [18]. The CR3BP admits an integral of the motion,

the Jacobi constant. Thus, the monodromy matrix of periodic orbit in the CR3BP

admits at least one pair of unity eigenvalues. This statement is proven by evaluating

the first-order Taylor series expansion of the Jacobi constant Equation (2.22) about

a particular reference x̄N(t),

x̄N(t) + δx̄(t) = x̄N(t) + Φ(t0 + P, t0) δx̄(t0) (5)

Since both sides of Equation (5) represent the same trajectory, the Jacobi constant

is conserved. Thus,

h
(
x̄N(t) + δx̄(t)

)
= h

(
x̄N(t)(t) + Φ(t0 + P, t0) δx̄(t0)

)
(6)
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where h(w̄) is the Jacobi constant evaluated at the state vector w̄, as defined in

Equation (2.22). The first-order Taylor series expansion on both sides of Equation

(6) yields

h
(
x̄(t)

)
+
∂h

∂x̄

∣∣∣∣
x̄N (t)

δx̄(t) = h
(
x̄(t)

)
+
∂h

∂x̄

∣∣∣∣
x̄N (t)

Φ(t0 + P, t0) δx̄(t) (7)

Equation (7) simplifies to

∂h

∂x̄

∣∣∣∣
x̄N (t)

=
∂h

∂x̄

∣∣∣∣
x̄N (t)

Φ(t, t0) (8)

and rearranging the terms yields

∂h

∂x̄

∣∣∣∣
x̄N (t)

(
I −Φ(t0 + P, t0)

)
= 0 (9)

Equation (9) is the left eigenvector definition of Φ(t0 +P, t0), the monodromy matrix

for the solution x̄N(t). Thus, the partial derivatives of the Jacobi constant evaluated

on the periodic solution define the left eigenvector of the monodromy associated

with the unit eigenvalue. Recall that the BCR4BP does not possess an integral of

the motion. Therefore, periodic solutions of BCR4BP, such as the one presented in

Figure 3.2, do not necessarily possess a pair of unity eigenvalues of the monodromy

matrix.

Stability Index

The stability index is a convenient metric to assess the stability of a periodic

solution. The phase space in the CR3BP is six-dimensional, thus, the monodromy

matrix corresponding to the periodic solution admits 6 eigenvalues. Recall that from

the Lyapunov Theorem, eigenvalues occur in reciprocal pairs if they are real or in

conjugate pairs if they are complex. Thus, each pair i of eigenvalues is combined to

form three stability indices labeled νi

νi =
λi + 1

λi

2
(10)
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A periodic solution in the CR3BP possesses a pair of eigenvalues equal to one due to

the Jacobi constant. Therefore, the periodic orbit possesses two nontrivial stability

indices ν1 and ν2. If both stability indices produce an absolute value less than one,

the orbit is stable in the linear sense. Otherwise, the solution is linearly unstable.

For a periodic orbit in the CR3BP, evaluating two stability indices offers important

information concerning linear stability.

In the BCR4BP, the phase space is seven-dimensional: the Sun angle, θS, is

the additional state. The state-transition matrix, as presented in Equation (3.7),

is a seven by seven matrix that admits seven eigenvalues. Six of these eigenvalues

occur in pairs, similar to the CR3BP. The additional eigenvalue, corresponding to

the modal component of θS is equal to unity for any trajectory, periodic or not. The

partial derivatives of the Sun angle differential equation θ̇S = ωS are all equal to

zero, as the Sun angle is a linear function of the time. However, since there is no

integral of the motion in the BCR4BP, periodic solutions do not have a pair of unit

eigenvalues. Thus, three stability indices represent the variational behavior and the

linear stability of a periodic solution. An example of Tsyn-periodic orbit of the Earth-

Moon-Sun BCR4BP is plotted in Figure 3. The CR3BP L5 equilibrium is indicated

by a black X mark for reference. Recall that E5, the instantaneous equilibrium point

in the BCR4BP corresponding to L5 is a function of θS; its instantaneous location

over a synodic period of the Sun, Tsyn, appears in Figure 2.13. The monodromy

matrix for this periodic orbit is produced numerically. The seven eigenvalues are

computed, also numerically, and are indicated in the complex plane in Figure 4.

There are two pairs of complex eigenvalues, in blue and yellow, that lie on the unit

circle. One pair of eigenvalues is real and corresponds to the orange asterisks on the

x axis. Finally, the unit eigenvalue lies at the intersection of the unit circle and the

positive x axis, and is marked by the purple asterisk. Since one pair of eigenvalues,

the orange pair, does not lie on the unit circle, the periodic orbit in Figure 3 is

unstable in the linear sense. The stability information from Figure 4 is summarized

using the stability index metric. The stability indices ν1, ν2 and ν3, are computed
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Figure 3. Tsyn-periodic orbit in the Earth-Moon-Sun BCR4BP

using Equation (10) and the eigenvalues of the monodromy matrix. The stability

region corresponds to stability indices all with values between one and negative one,

while the second pair of eigenvalues corresponds to a stability index slightly above

one (ν2 = 1.0044). The eigenvalues of the monodromy matrix serve as an analog to

Lyapunov stability properties for an equilibrium solution.

Figure 4. Eigenvalues of the monodromy matrix of the Tsyn-periodic orbit
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Figure 5. Stability indices of the Tsyn-periodic orbit
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