
SECURITY AND VERIFICATION OF UNMANNED VEHICLES

A Dissertation

Submitted to the Faculty

of

Purdue University

by

James M. Goppert

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Inseok Hwang, Chair

School of Aeronautics and Astronautics

Dr. Dengfeng Sun

School of Aeronautics and Astronautics

Dr. Martin Corless

School of Aeronautics and Astronautics

Dr. Eric Matson

School of Computer and Information Technology

Approved by:

Dr. Wayne Chen

Head of the School Graduate Program

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

SYMBOLS . x

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 Verification and Validation (V&V) of Unmanned Vehicles 3

1.2 Polyhedral Invariant Hybrid Automaton (PIHA) based Model Checking 4

1.2.1 Approximate Quotient Transition Systems (AQTS) 5

1.2.2 Computation of Flow Pipes . 6

1.3 Structure of Dissertation . 7

2 NUMERICAL CYBERATTACK ANALYSIS 9

2.1 Cyberattack Measures . 11

2.1.1 Attack Intent Classification . 11

2.1.2 Failure Criteria . 13

2.2 System Model . 14

2.2.1 Aircraft . 15

2.2.2 Controller . 16

2.2.3 Navigation System . 17

2.2.4 Fault Detection . 24

2.2.5 ADS-B Modeling . 25

2.2.6 Subsystem Integration . 27

2.2.7 Cyberattack Models . 28

2.3 Software-in-the-Loop Analysis of Cyberattacks 29

2.3.1 Software Model . 30

iv

Page

2.3.2 Simulation Results . 31

2.4 Hardware-in-the-loop (HIL) Analysis of Cyberattacks 37

2.4.1 Background . 37

2.4.2 PX4 Autopilot . 38

2.4.3 Simulation . 39

2.4.4 Selected Results . 40

2.5 Conclusion . 41

3 CASE STUDY: INSECT-LIKE FLAPPING WING MAV (MICRO-AIR-
VEHICLE) . 43

3.1 H∞ Norm Flow Pipe Augmentation . 44

3.2 Flapping Wing Dynamics and Dynamic Inversion Based Control Law . 45

3.3 Flapping Wing Controller Model Checking 49

3.4 Conclusion . 53

4 CASE STUDY: TWO-WHEEL SELF-BALANCING ROBOT 56

4.1 Motor Dynamics . 57

4.2 Overall Dynamics . 58

4.2.1 Motor Test: No external torque 59

4.2.2 Motor Test: Gravity torque . 59

4.3 Closed Loop System Identification . 61

4.4 Lyapunov based Approach to PIHA Model Checking 64

4.5 Simplified Analysis of Inverted Pendulum Dynamics 65

4.6 Invariant Set Calculation via Lyapunov Method 67

4.7 Conclusion . 71

5 CASE STUDY: QUADROTOR WITH OPTICAL FLOW BASED VISUAL
ODOMETRY . 72

5.1 Related Work . 74

5.2 Estimation . 75

5.3 Simulation . 86

5.3.1 Asphalt World . 87

v

Page

5.3.2 Forest World . 87

5.4 Continuous Kalman Filter Invariant Set via LMI 93

5.5 Conclusion . 97

6 COUNTER UNMANNED AERIAL SYSTEM 99

6.1 Controller Design . 100

6.2 Experiments and Results . 102

6.2.1 Test Setup . 104

6.2.2 Results . 104

6.3 Conclusion . 107

7 SUMMARY . 110

7.1 Acknowledgments . 110

REFERENCES . 111

VITA . 117

vi

LIST OF TABLES

Table Page

2.1 Mission Envelope Parameters . 14

2.2 ADS-B Packet Information . 25

2.3 Collision Variables . 26

2.4 Single Attacks Considered . 29

4.1 Linear matrix inequality solution for the Lyapunov bounding problem us-
ing the PICOS solver with CVXOPT back-end. 68

5.1 Estimator performance summary. 93

vii

LIST OF FIGURES

Figure Page

1.1 The generation of an AQTS from computed flow pipes. Note that the green
line is the nominal trajectory, the blue lines are Monte-Carlo simulations
starting from the initial set X0, and the red bounds are constructed using
the H∞ norm which we discuss in Section 3.1. 7

2.1 Typical UAS components. 15

2.2 The MultiPlex Easy Star airframe in the Boeing Wind Tunnel at Purdue
University. 16

2.3 The digital controller model in ScicosLab. 17

2.4 The magnetometer model in ScicosLab. 21

2.5 The EKF based navigation system. 24

2.6 The Purdue Hybrid Systems Lab simulation testbed. 28

2.7 The block diagram of the UAS autopilot in ScicosLab. 31

2.8 Down Velocity Gain and IMU Gyro Noise Deviation Attack 33

2.9 Down Velocity Gain and Throttle Actuator Effectiveness Attack 34

2.10 The effect of GPS altitude noise and initial down velocity error on failure
time with the processor running at 20% nominal speed. The detection
ellipsoids for 1, 3 and 9 sigma (covariance ellipsoids) are plotted. 36

2.11 Hardware-in-the-loop attack injection setup for PX4 Autopilot. 39

2.12 IMU Gyroscope Noise and X Accelerometer Gain Attack 40

2.13 X Accelerometer Gain and None Attack 41

3.1 Flapping Wing MAV vehicle used in joint project between Purdue and
Wright State University [45] . 43

3.2 The initial starting triangular set X0 is propagated using standard reach-
ability techniques to create the inner flow pipe with boundaries indicated
by circles. The H∞ norm augments the existing flow pipe to account for
disturbances. 44

3.3 The flapping wing vehicle analyzed in this chapter. 45

viii

Figure Page

3.4 Flapping wing cycle modulation through variation of the trough position
of the stroke. 46

3.5 Motor Inversion . 50

3.6 Nominal Monte-Carlo simulation . 51

3.7 Radius Transition . 52

3.8 The AQTSs representing the flapping wing system with the original radius
based waypoint guard and the along track based waypoint guard. 53

3.9 Along track Monte-Carlo simulation . 54

4.1 Two-wheel self-balancing robot (see video) 56

4.2 Open loop system identification of wheel-motor (validation data). 60

4.3 Gravity torque experiment in progress (see video) 60

4.4 Open loop system identification validation data for gravity torque experiment.61

4.5 Recursive system identification of robot mass using EKF algorithm. 63

4.6 A comparison of H∞ and LMI (Lyapunov) bounding for a linear system. . 64

4.7 Lyapunov level sets for dynamic inversion regulated system. 66

4.8 Construction of Lyapunov based flow pipe 69

4.9 Bisimulations for pendulum dynamics switching between 3 operating points
θ = (−0.1, 0, 0.1) rad. 70

4.10 Flow pipes are constructed from a series of convex hulls and can be effi-
ciently expanded to account for unexpected disturbances. 71

5.1 Tarot Peeper quadrotor with custom 3D printed onboard computer canopy,
prop guards, and optical flow sensor. 72

5.2 A diagram of the vehicle, shown in the simple asphalt world. 78

5.3 Rotation uncertainty standard deviation, sample from PX4 EKF2 estima-
tor (LPE cannot be compared since it had a separate attitude estimator). . 80

5.4 Rotation uncertainty standard deviation for invariant (IEKF) filter. Note
that the response is primarily a function of time and approaches a steady-
state independent of the trajectory. 80

5.5 Position estimation performance of LPE in asphalt world. 88

5.6 Position estimation performance of IEKF in asphalt world. 89

5.7 The randomly generated forest environment as seen from above. 89

https://www.youtube.com/watch?v=-X39EjAWEeM
https://www.youtube.com/watch?v=WPDO7KbXEj0

ix

Figure Page

5.8 The randomly generated forest environment as seen near ground. (see video)90

5.9 Position estimation performance of LPE in forest world. 91

5.10 Position estimation performance of IEKF in forest world. 92

5.11 Kalman Filter Monte Carlo Simulation - Error Trajectories 96

5.12 Kalman Filter Monte Carlo Simulation - Error Lyapunov Function 97

6.1 Overview of the CUAS . 100

6.2 Engagement of target by hunter . 103

6.3 Aerial view of the test site . 104

6.4 Interception of target by hunter with RADAR based tracking 105

6.5 Position tracking . 106

6.6 Altitude tracking . 106

6.7 Measured IMU accelerations of the hunter 107

6.8 Velocity magnitude (xy components) of the hunter 108

https://www.youtube.com/watch?v=fx5MeMG-DM0

x

SYMBOLS

Scalars

g acceleration of gravity

Vectors

ROP
b vector from point O to point P , expressed in frame b

bV OP
c derivative of vector from point O to point P ,

w.r.t. frame b, expressed in frame c

nV P
b generic velocity (base point fixed in derivative frame)

of point P , w.r.t. frame n, expressed in frame b

Ṙ
OP

b derivative of ROP
b , w.r.t. the expressed coordinate

frame (frame b)

nωbc angular velocity of frame b, w.r.t. frame n,

expressed in frame c

Rotations

qnb quaternion representing rotation

ROP
n = qnb ⊗ ROP

b ⊗ q−1nb
Cnb direction cosine matrix representing rotation

ROP
n = CnbROP

b

Coordinate Frames

b body fixed frame, Forward-Right-Down, right-handed

n navigation frame, fixed in earth at local tangent plane

(North-East-Down), assumed inertial

xi

Points

O origin of local (North-East-Down) frame, frame n

P origin of body fixed frame, frame b, assumed

to be the location of the IMU

Overbars

v true vector

v̂ estimate of v

Operators and Functions

a ◦ b dot product of a and b

a× b cross product of a and b

a⊗ b quaternion product of a and b

N (µ, σ2) normal distribution with mean µ and variance σ2

xii

ABSTRACT

Goppert, James M. Ph.D., Purdue University, December 2018. Security and Verifi-
cation of Unmanned Vehicles. Major Professor: Inseok Hwang.

This dissertation investigates vulnerabilities in unmanned vehicles and how to

successfully detect and counteract them. As we entrust unmanned vehicles with

more responsibilities (e.g. fire-fighting, search and rescue, package delivery), it is

crucial to ensure their safe operation. These systems often have not been designed

to protect against an intelligent attacker or considering all possible interactions be-

tween the physical dynamics and the internal logic. Robust control strategies can

verify that the system behaves normally under bounded disturbances, and formal

verification methods can check that the system logic operates normally under ideal

conditions. However, critical vulnerabilities exist in the intersection of these fields

that are addressed in this work. Due to the complex nature of this interaction, only

trivial examples have previously been pursued. This work focuses on efficient real-

time methods for verification and validation of unmanned vehicles under disturbances

and cyberattacks. The efficiency of the verification and validation algorithm is neces-

sary to run it onboard an unmanned vehicle, where it can be used for self diagnosis.

We begin with simple linear systems and step to more complex examples with non-

linearities. During this progression, new methods are developed to cope with the

challenges introduced. We also address how to counter the threat of unmanned aerial

systems (UASs) under hostile control by developing and testing an estimation and

control scheme for an air-to-air counter UAS system.

1

1. INTRODUCTION

Unmanned vehicles are susceptible to cyberattacks and logic errors, and yet these

vulnerabilities have not been thoroughly investigated. Many unmanned vehicles,

including unmanned aerial systems (UASs), rely solely on the encryption of data

channels to prevent cyberattacks [1]. While data encryption is a key component of

multi-layered security strategy, relying on it as the sole defense against a cyberattack is

misguided [2]. The successful cyberattacks in the last decade demonstrate that data

encryption is not sufficient. In September of 2011, a malware key-logger program

infected UAS command and control at Creech Air Force Base [3]. In a report to

Congress in 2011, the U.S.-China Economic and Security Review Commission revealed

that the Landsat-7 and Terra EOS AM-1 satellites were controlled by foreign agents

through internet connect ground stations [4]. Since the attacker has command and

control of the system in these scenarios, communication encryption and authentication

do not protect the UAS. Additionally, there are multiple sensor attacks that can be

employed by an adversary to corrupt the state of a UAS without needing to break

encryption. Examples of these attacks include spoofing GPS or Automatic Dependent

Surveillance-Broadcast (ADS-B) signals [5–7]. As commercial UASs become more

prevalent, it is also beneficial to guarantee their safe operation. A Russian postal

UAS recently crashed during a demonstration and could have harmed those observing

the flight [8].

If an attacker were to compromise an unmanned vehicle, the consequences could

be disastrous. When an individual unmanned vehicle is compromised, it may fail to

complete a potentially vital mission, such as active combat, combat support, mili-

tary or law enforcement surveillance, fire fighting, or wilderness search and rescue.

A compromised unmanned vehicle may also leak intelligence information, as was the

case in 2009 when Iraqi militants gained access to live video feeds from US military

2

UASs [9]. Finally, a compromised unmanned vehicle poses a significant threat to hu-

man life and property if the attacker accesses any onboard weapon systems or uses the

vehicle itself as a kinetic weapon. These dangers are amplified when multiple vehicles

are formed into a network. As more vehicles are added to the network, the number

of vulnerabilities that an attacker can exploit increases and the communication links

formed between the nodes of this network provide new avenues of attack. With the

ability to compromise more vehicles, the attacker can cause more damage than with

a single vehicle [10].

Given the many avenues of attack and the high cost of failure, it is important that

the security and verification of unmanned vehicles is considered in the design process.

However, attempting to analyze unmanned vehicle vulnerabilities is a daunting task.

An unmanned vehicle is a cyber-physical system, which is a system characterized by

a tight coupling of the logical behavior of a computing system and an underlying

physical processes [1, 11]. Ensuring the security of a cyber-physical system requires

analysis of the interactions between these digital and physical components. Addi-

tionally, each unmanned vehicle design is physically distinct. The mass properties,

propulsion system, sensors, actuators, control system, and aerodynamics of the ve-

hicle all contribute to the system dynamics. These unique dynamics determine the

system’s vulnerabilities to cyberattack, which makes a generalized protection system

difficult to implement. A detailed study of unmanned vehicle cyberattack vulnerabil-

ities has not been conducted previously due to the scope of the problem and the lack

of a well-defined measure of attack severity. In this work, we address these vulnera-

bilities of unmanned vehicles by systematically studying their behavior, identifying a

measure of attack severity, studying particularly severe attacks, and developing meth-

ods of verifying system performance under severe disturbances such as cyberattacks

or severe weather.

3

1.1 Verification and Validation (V&V) of Unmanned Vehicles

Verification and Validation (V&V) of an unmanned vehicle is not a trivial task

due to the coupled discrete and continuous dynamics. The interacting discrete state

(or mode) transitions and continuous dynamics can be modeled as a hybrid system

and thus a hybrid model checker can be used for V&V of an unmanned vehicle. If the

system is fully autonomous and the mode transitions are state dependent, then the

hybrid system model can be approximated using an approximate quotient transition

system (AQTS) that partitions the state space. In AQTSs, the continuous states are

handled by computing invariant sets (or flow pipes) for each discrete mode. The tran-

sition between flow pipes is governed by state dependent guards. The AQTS creates

a finite state machine representation of the original hybrid system so that standard

model checkers can be used to verify its properties [12]. If the invariant partitions are

represented using convex polyhedrons, then the approximation is called a polyhedral

invariant hybrid automaton (PIHA) [13]. The CheckMate tool implements a PIHA

based model checker and is integrated with the Matlab Simulink development environ-

ment [14]. Unfortunately, CheckMate cannot be efficiently extended to systems with

unknown disturbances [15]. The d/dt model checker uses the concept of orthogonal

polyhedra and is capable of handling unknown input/disturbances that are bounded

by a convex polyhedron but at an increased computational cost [15, 16]. HyTech is

one of the first hybrid model checkers but only applies to systems that can be repre-

sented by ẋ = Ax < b, where x is the state vector, A is a time invariant matrix, and

b is a constant vector, which does not account for unknown disturbances [17].

We choose to employ the PIHA model due to its speed and the popularity of

CheckMate; however, for the problem of an unmanned vehicle system there are sev-

eral significant differences between systems typically modeled by PIHAs. First, an

unmanned vehicle is typically regulated around a nominal trajectory. Second, the

vehicle is subject to disturbances. If we naively apply the PIHA analysis without

accounting for disturbances, the problem rapidly becomes trivial since the trajectory

4

approaches the nominal trajectory. Ignoring the disturbances therefore dramatically

underestimates the reachable set of the system, and model checking does not identify

errors that may exist in the control software.

In this dissertation, we propose augmenting the computed flow pipes of existing

PIHA methods for linear systems with the H∞ norm of the disturbance to the output

transfer function or constructing flow pipes using invariant sets from Lyapunov theory.

The H∞ norm is often used in robust control to account for system disturbances and

represents the steady-state bound of the worst case sinusoidal disturbance to the

system. While this method is not strictly conservative, since transients and non-

sinusoidal inputs could exceed the H∞ norm, the H∞ norm still gives an adequate

bound for practical disturbances and can be used to identify previously undetected

errors in hybrid systems. When more computational power is available, a linear

matrix inequality (LMI) can be constructed to find a Lyapunov based invariant set

for the system. This invariant set can be used to construct a flow pipe that is strictly

conservative given the disturbances are bounded. These two approaches are aligned

with our objective of developing an efficient real time model checking algorithm for

adaptive systems. For example, if a UAS is damaged in flight and still has adequate

data to conduct system identification on itself, it could apply this computationally

efficient model checking method to ensure it can still complete its mission.

1.2 Polyhedral Invariant Hybrid Automaton (PIHA) based Model Check-

ing

In the section, we discuss the existing methods for V&V of PIHAs [12, 13]. This

knowledge is fundamental for understanding the usefulness of the method and how

we extended the existing methods to account for disturbances in Section 3.1. The

main distinguishing property of a PIHA is that it uses convex polyhedra to describe

the invariant sets and transitions. We use the definition of a PIHA from [12]:

Definition 1.2.1 A PIHA is a tuple H = (X,X0, F, E, I,G) where

5

• X = XC×XD, where XC ⊆ Rn is the continuous state space and XD is a finite

set of discrete locations.

• F is a function that assigns to each discrete location u ∈ XD a vector field fu(·)

on XC.

• I : XD 7→ 2XC assigns u ∈ XD an invariant set of the form I(u) ⊆ XC where

I(u) is a non degenerate convex polyhedron.

• E ⊆ XD ×XD is a set of discrete transitions.

• G : E 7→ 2XC assigns to e = (u, u′) ∈ E a guard set that is a union of faces of

I(u).

• X0 ⊆ X is the set of initial states of the form X0 = ∪i(Pi, ui) where each

Pi ⊆ I(ui) is a polytope and ui ∈ U ; here, the notation (P, u) means the set

{(x, u) ∈ X | x ∈ P}.

• I, G, and E must satisfy the following covariance requirements:

1. for each u, ∂I(u) = ∪e∈E | e=(u,u′)G(e) for some u′ ∈ XD, that is the guards

for u cover the faces of the invariant for u.

2. for all e = (u, u′) ∈ E, G(e) ⊆ I(u′), that is events do not lead to transi-

tions that violate invariants.

1.2.1 Approximate Quotient Transition Systems (AQTS)

A standard approach for V&V of hybrid systems is to create a finite state bisimu-

lation [12]. Bisimulations simulate the original system (have the same state histories

given the same input) and can be simulated by the original system. Bisimulations

can be created through partitioning the continuous state space into discrete regions

and this is known as a quotient transition system (QTS). Unfortunately, it has been

shown that finite state bisimulations only exist for hybrid systems with trivial con-

tinuous dynamics [18]. However, a QTS is a simulation of the system, meaning that

6

any universal specifications (i.e., specifications that must be true for all possible tra-

jectories) that are true for the QTS are also true for the hybrid system. Universal

specifications include specifications such as safety and reachability [12].

In order to construct a QTS, for all partitions the reachable set of the continuous

states must be computed. Consequently constructing a precise QTS is only possible

for simple systems such as those with clock dynamics [18]. For more complicated

continuous dynamics, it is only possible to construct an approximate quotient transi-

tion system (AQTS). An AQTS can either over-approximate the reachable set of the

continuous system and be used to show that certain states are not reachable (safety),

or under-approximate the reachable set and show that certain states are reachable

(reachability).

1.2.2 Computation of Flow Pipes

The reachable set for a convex partition of an autonomous nonlinear systems

can be computed by propagating the boundaries of the convex partition. For linear

systems, this can be accomplished more efficiently by using a cached propagation

shape for the reachable set that can be scaled as time progresses [12].

In Figure 1.1, we show how the hybrid system can be converted to an AQTS

that is capable of verifying safety and reachability specifications. A flapping wing

system moves from the square initial set X0 at waypoint 1, W1, to flow pipe 1, T1,

to waypoint 2, W2, to flow pipe 2, T2, to waypoint 3, W3, to flow pipe 3, T3, and

finally to waypoint 4, W4. From the initial set, several trajectories are propagated

using Monte-Carlo simulation (shown in blue). The existing flow pipe computation

would enclose the trajectories originating from X0. As can be seen, for the tracking

problem shown in Figure 1.1(a), the blue trajectories rapidly collapse to the green

reference trajectory. The red outer bounds shown in the plot are computed by our

method and represent the bounds considering unknown disturbances which we discuss

in Section 3.1 in detail.

7

(a) Nominal Trajectory (b) Radius Boundary

Fig. 1.1. The generation of an AQTS from computed flow pipes. Note
that the green line is the nominal trajectory, the blue lines are Monte-
Carlo simulations starting from the initial set X0, and the red bounds are
constructed using the H∞ norm which we discuss in Section 3.1.

1.3 Structure of Dissertation

In Chapter 2, we investigate vulnerabilities of an autopilot system for UAS. In

Chapter 3, an H∞ norm verification method is applied to an insect-size flapping wing

robot whose dynamics are simple and can be approximated as linear after dynamic

inversion. This is followed by Chapter 4, where a more sophisticated Lyapunov based

method is applied to a non-linear two-wheel self-balancing robot. Finally, Chapter 5

discusses design of autopilot estimation algorithms for Verification and Validation.

Due to the inherent non-linearities in rigid body rotation, we leverage Lie group theory

to construct an invariant set in the Lie algebra. The invariant set in the Lie algebra

is then used to construct a flow pipe in the Lie Group and allow application of the

PIHA method for model checking as discussed in Chapter 3. Finally in Chapter 6, we

address the scenario of a UAS under hostile control. We develop a simple estimation

8

and control scheme for a hunter UAS that successfully intercepts a hostile UAS during

flight testing.

9

2. NUMERICAL CYBERATTACK ANALYSIS

Unmanned Aerial Systems (UASs) currently assist in many applications, including

surveillance, law enforcement, and military missions. The unmanned nature of these

systems and the subsequent lack of direct monitoring leaves them vulnerable to cyber-

attacks that can jeopardize the mission, the vehicle, and potentially lives and property.

Given the severity of such attacks, it is important to assess the vulnerabilities inher-

ent in these cyber-physical systems, complex systems composed of both a monitoring

computer (e.g. autopilot of a UAS) and physical components. In this chapter, we

propose a method for identifying cyberattack vulnerabilities in a UAS, assuming that

the attacker has full access to the system in order to identify worst-case scenarios.

We establish the time till failure metric of the system as a measure of attack severity.

We categorize intents and outcomes for typical attacks and perform simulations to

estimate the severity of attack combinations. This resulting vulnerability analysis can

be utilized in the UAS design process to address weaknesses. When combined with

traditional cybersecurity analysis, this comprises a comprehensive computer science

and control systems approach to the security of cyber-physical systems. This chapter

is based on the journal article [19].

A traditional computer science approach to UAS cybersecurity focuses on iden-

tifying ways in which an attacker can gain access to the system. In this chapter,

we consider the problem of UAS cybersecurity from a control systems perspective.

We presume that an attacker has already compromised the system and has the abil-

ity to make arbitrary modifications. We seek to identify which modifications this

privileged attacker would make in order to have the greatest negative impact on the

UAS. Identifying these vulnerabilities allows designers to create a more robust sys-

tem. Applying this strategy along with the traditional cybersecurity analysis results

in a system that both denies attackers access and restricts what they can accomplish

10

with that access should they obtain it. This comprehensive approach represents a

coupling of computer safety and control system safety in much the same way that

cyber-physical systems couple the discrete dynamics of computing systems with the

continuous dynamics of a physical system.

This controls domain approach to securing UASs complements other methodolo-

gies, including robust control approaches to identifying system sensitivities [20]. The

benefit of our numerical approach is that it allows easy and rapid analysis of different

attacks that may be difficult to model or may violate key assumptions, e.g. that

noise is Gaussian. The assumptions required in analytical approaches, e.g. that the

attacked system is linear and time invariant, limit the analysis to a subset of possible

attacks on idealized systems. [21–27] Accordingly, these approaches do not extend

well to the high complexity and non-linearity of full UAS models. The proposed ap-

proach does not require simplifying assumptions, and is rather designed to analyze the

complete system, allowing the effective and efficient analysis of UAS vulnerabilities

to a wide range of cyberattacks. Hardware testing also allows for the system to be

simulated as implemented, incorporating all of the underlying discrete dynamics of

the system that may be lost in the abstractions of the system used in other analysis.

Due to variation in cyber-physical systems, the results of a single analysis will not

generalize well. Accordingly, we have designed our testbed to easily accommodate

new UAS models.

The contributions of this chapter are as follows:

• In Section 2.1, we propose a metric for attack severity. This metric, time till

failure, is the amount of time the system operates until the failure criteria are

met.

• In Section 2.2, we introduce the UAS subsystem models we created. These

models were chosen to be representative of a typical UAS.

• In Section 2.3, we perform the integration of UAS subsystems into a complete

software model of a typical UAS cyber-physical system. This model employs

11

JSBSim, a C++ flight dynamics model library, to model the aircraft dynamics.

It utilizes the Scicos block diagram environment to model the control, guidance,

and navigation systems as well as cyberattacks. We also show the response of

the system to selected cyberattacks.

• In Section 2.4, we describe the hardware-in-the-loop (HIL) UAS testbed we

created. This testbed uses an open source hardware and software autopilot

that implements the UAS subsystems along with an open source ground control

station with JSBSim modeling the aircraft dynamics. This allows for simulation

of cyberattacks using the actual UAS hardware and software. The response of

the system to selected cyberattacks is shown, along with a comparison to the

software-in-the-loop (SIL) results.

The methodology and tools presented are easily adaptable to a variety of system

models, and represent a suitable means of identifying cybersecurity vulnerabilities

in a control system. The analysis presented can be combined with traditional cy-

bersecurity analysis [28–32] to give a comprehensive vehicle vulnerability analysis

encompassing both the computer science and control systems domain.

2.1 Cyberattack Measures

2.1.1 Attack Intent Classification

In this analysis, we investigate vulnerabilities of typical UASs. We classify poten-

tial cyberattacks by the attacker’s intent in order to design the parameters used to

quantify the severity of the attack. The three intents we discuss are mission obstruc-

tion, control acquisition, and vehicle destruction. Modeling and extensively testing

a representative system allow us to draw conclusions on the relative effectiveness of

these attacks.

• Mission Obstruction

12

In a mission obstruction attack, the attacker aims to prevent the UAS from

completing the assigned mission objectives. This can be accomplished using

several methods. For example, the vehicle can be delayed such that the time

requirement of the mission is not met, or the vehicle can be forced to waste

fuel or battery power so that the mission objectives are no longer feasible. Un-

predictable errors could also be inserted into the navigation system in order

to degrade the state awareness of the vehicle. Another possibility is that the

control system could be corrupted to the point that its sensors begin to per-

form poorly, introducing issues such as highly oscillatory motion. One example

we consider leverages the vehicle’s collision avoidance system to obstruct the

vehicle. By inserting a phantom vehicle in the path of the target vehicle, an

attacker can cause the target vehicle to perturb its flight path in order to avoid

collision. It should be noted that in a mission obstruction attack, the attacker

does not have the ability to control the vehicle directly or does not attempt to

do so. If the attacker can control the system directly, it would be considered a

control acquisition attack.

• Control Acquisition

In a control acquisition attack, the objective of the attacker is to assume direct

control of the vehicle. An example of this would be the use of GPS spoofing to

shift the flight path of the UAS to suit the purposes of an attacker. For this type

of attack, it may be possible for an attacker to have differing levels of control,

e.g. an attacker may be able to gain control of vehicle subsystems without

gaining control of the entire vehicle. If the attacker is able to gain complete

control of a vehicle, there is a possibility of a man-in-the-middle attack. In

this attack, the attacker would send falsified data to the original controller to

make it appear that the vehicle is behaving normally, when it is actually being

controlled by the attacker. Such an undetectable attack is especially dangerous.

• Vehicle Destruction

13

In some cases, the attacker’s intent may be simply to destroy the vehicle. It

is possible for an attacker to have sufficiently limited control over one state

that they cannot perform a meaningful control acquisition attack, but still have

the capability to destroy the vehicle. For instance, if the attacker has control

of the altitude of the vehicle they may command the aircraft to fly into the

ground. However, the primary area of danger, and thus the focus of this analysis

for vehicle destruction attacks, will be the introduction of instability into the

control and navigation system of the vehicle. An instability in these critical

systems will result in a crash.

2.1.2 Failure Criteria

To evaluate whether a cyberattack has been successful, we must establish a crite-

rion for failure. Based on the attack intents described above, we identify two failure

modes, described below. In order to quantify the severity of an attack, we use the

time elapsed when any of these failure criteria were met, referred to as time till failure.

• Flight Envelope Failure

Flight envelope failure is defined as failure of the vehicle airframe, which typi-

cally leads to destruction of the vehicle. The failure criteria is quantified using

the angular rates of the vehicle, which are a rough approximation of the wing

loading that would cause structural failure. Currently, 33% of all UAS system

failures are caused by the UAS exceeding its designed flight envelope [33]. UAS

flight envelope enforcement is a strategy for fail-safe recovery that can be used

to mitigate such attacks [33–35].

• Mission Envelope Failure

Mission envelope failure is defined as violating the stated mission requirements

of the UAS. The UAS state can be compared to the mission requirements to

determine if the mission envelope has been violated. For this study, we selected

14

mission requirements representative of a UAS reconnaissance mission, which

should be similar to the requirements for other mission types. The mission

envelope parameters identified in this study are summarized in Table 2.1.

Table 2.1.
Mission Envelope Parameters

Mission theater Geographic region to which the UAS is confined

Altitude window Range of acceptable vehicle altitudes

Battery/fuel level Required reserve battery power and fuel

Target window Area vehicle must reach

Target time window Duration vehicle must be inside the target window

Flight envelope Flight envelope to avoid airframe failure

2.2 System Model

A typical UAS is composed of many interconnected components as shown in Fig-

ure 2.1. The complex nature of these interconnections makes the system difficult to

model. Analytical approaches to analyzing UASs often require abstractions, such as

no jitter or latency in system events and timing or Gaussian noise, in order to make

the problem tractable. While these approaches can provide valuable insight, these

abstractions limit the accuracy of the analysis and they only protect against attacks

that can be included in the model. In our numerical approach, we do not restrict

the complexity of the system, and the effects of all types of cyberattacks can be de-

termined through the careful observation of the output of the system in response to

different stimuli. In this section, we create a model of an example UAS to better

illustrate the proposed method. However, the proposed cyberattack analysis method

is general enough to be applied to various types of UASs. This section focuses on

the systems specific to the Purdue Hybrid Systems Lab software simulation testbed

15

and there are commonalities with the hardware-in-the-loop configuration presented

in Section 2.4.

Communication

Protocol

ADS-B
Mission Plan

Vision RADAR

Guidance/

Path Planning

Controller Actuators
Aircraft

Dynamics
Navigation

GPS

IMU

Parameters

Aircraft

State

Fig. 2.1. Typical UAS components.

2.2.1 Aircraft

For this chapter, we chose to analyze the MultiPlex Easy Star, shown in Figure 2.2,

which is widely used for UAS research. It is stable, inexpensive, and durable. For

control surfaces, it has an elevator and rudder on the tail but no ailerons on the

wing. Although we selected the Easy Star as an example in this chapter, other UASs

can be evaluated using the same approach presented in this chapter. We created a

model of the vehicle dynamics using a combination of data from the Boeing wind

tunnel at Purdue and the USAF Digital DATCOM software [36, 37]. We simulate

this model using JSBSim,1 which is an open source flight dynamics model written

in C++. It uses XML descriptions of an aircraft, complete with look-up tables for

aerodynamic and propulsion data, in order to accurately simulate flight. JSBSim

1“JSBSim Open Source Flight Dynamics Model,” http://jsbsim.sourceforge.net/index.html

16

is utilized by various open source flight simulators, such as FlightGear,2 and is also

used to drive the motion-based research simulators at the University of Naples, Italy,

and in the Institute of Flight System Dynamics and the Institute of Aeronautics and

Astronautics at RWTH Aachen University, Germany.

Fig. 2.2. The MultiPlex Easy Star airframe in the Boeing Wind Tunnel
at Purdue University.

2.2.2 Controller

A digital PID controller is used to generate the control signals for the actuators.

This vehicle uses a backside control strategy, in which the elevator is used to control

the velocity and the throttle is used to control the altitude. The elevator controls

velocity by controlling angle of attack, allowing this strategy to work at both high and

low flight speeds. In contrast, a frontside control strategy uses the throttle for velocity

and the elevator for altitude. This approach is more complicated to implement in a

control system due to a gain reversal on the back side of the power required curve,

requiring more throttle to go slower [38].

The controller model is shown in Figure 2.3. In this model, the altitude, velocity,

yaw rate, bearing, and bank angle command error are fed into a bank of digital

2“FlightGear Flight Simulator,” http://www.flightgear.org

17
Backside Controller

u0

+
+

0

+
+

Demux Mux

+
+

1

1

Mux

thro..

aile..

elev..

rudd..

Demux

"eC.. w/ d/dt
Discrete
PID

r

v e

y

Pass Filt.
Low

h

0

[c..

w/ d/dt
Discrete
PID

r

v e

y

Pass Filt.
Low

vt

w/ d/dt
Discrete
PID

r

v e

y

Pass Filt.
Low

r

w/ d/dt
Discrete
PID

r

v e

y

Pass Filt.
Low

psi

0

0

w/ d/dt
Discrete
PID

r

v e

y

Pass Filt.
Low

phi

0

0

den(s)
num(s)

0

Fig. 2.3. The digital controller model in ScicosLab.

PID controllers. Because there are no ailerons on the Easystar, the output of the

PID controller for the yaw rate, bearing, and bank angle are multiplexed into the

single rudder input. The controller outputs are then added to the trim values for

each actuator to give the commanded position for each actuator. These commanded

positions are then passed through saturation blocks to limit their value to within the

acceptable range for the design before being sent to the actuators.

2.2.3 Navigation System

The navigation system is responsible for using noisy sensor measurements to gen-

erate an estimate of the UAS’s current state, including position, velocity, and attitude.

This is done using the integration of accelerometer and gyroscope measurements to

provide a state estimate that is periodically corrected using GPS and magnetometer

measurements. The navigation system must interface with external sensors and the

environment, creating potential avenues of attack. Additionally, it can be difficult to

validate the measurements that are made due to the high cost of redundant sensors

18

and the noise present in those measurements, creating the possibility of an attack that

cannot be detected. The degraded state awareness that would result from a successful

attack on the navigation system can also have serious ramifications for mission objec-

tives and vehicle safety. Accordingly, ensuring that the navigation system is resilient

to cyberattack is of particular importance.

In order to evaluate the effects of malicious states changes in the navigation sys-

tem, it is necessary to carefully construct a typical GPS/INS navigation system model.

The dynamics of the inertial navigation system have to be derived as well as the mod-

els for sensor measurements. These nonlinear models must then be linearized in order

to apply the typical Extended Kalman Filter (EKF) navigation methods.

Navigator Dynamics

The navigator state consists of the quaternions, the velocity in the navigation

frame, and the global position. Here we denote the quaternions as a, b, c, d, the

north velocity as VN , the east velocity as VE, the downward velocity as VD, the

latitude as L, the longitude as l, and the altitude as h. The full navigation state is

given by x := [a b c d VN VE VD L l h]T . The navigator input vector consists of the

measured body angular rates, ωx, ωy, ωz, and the measured accelerations, fx, fy, fz.

Here x, y, z, represent a right handed coordinate frame fixed in the body with the

x axis pointing forward and the y axis pointing out the right wing. Thus, the input

to the navigator is given by: zIMU := [ωx ωy ωz fx fy fz]
T . Taking into account the

rotational velocity of the Earth, Ω, and the distance from the center of the Earth R,

the dynamics of the navigator are given by:

ẋ(t) = f(x(t), zIMU(t)) (2.1)

The non-linear function f is defined in (2.2), where Cnb is the direction cosine matrix

from the body to the navigation frame, qnb is the attitude quaternion from the body

to the navigation frame, ωnb := [P Q R]T is the angular velocity of the body frame

with respect to the navigation frame, αb is the acceleration measured in the body

19

frame, ωie is the angular velocity of the earth with respect to the inertial frame, ωen

is the angular velocity of the navigation frame with respect to the earth frame, gn

is the acceleration of gravity expressed in the navigation frame, RE is the radius of

earth, × is the vector cross product, and VN VE VD are the components of the velocity

in the navigation frame [39].

f(x(t), zIMU(t)) =



1
2


0 −P −Q −R

P 0 R −Q

Q −R 0 P

R Q −P 0

qnb

Cnbαb − (2ωie + ωen)× vn + gn

VN
RE

VE
cos(L)RE

−VD



(2.2)

GPS measurements

The GPS sensor measures the velocity and position related to the navigator’s

states. Let zGPS be the GPS measurement:

zGPS = hGPS(x) + vGPS =
[
VN VE VD L l h

]T
+ vGPS (2.3)

where vGPS is the zero-mean white Gaussian measurement noise with determinis-

tic covariance. Usually, the GPS performance is given by the estimation errors of

velocity, position and altitude measurement, which are denoted by the variance of

Gaussian distributions: σ2
V , σ2

P and σ2
A. Then, the covariance of the white noise can

be calculated via:

E[vGPS vTGPS] := RGPS = diag

(
σ2
V , σ

2
V , σ

2
V ,
σ2
P

R2
,

σ2
P

cos(L)2R2
, σ2

A

)
(2.4)

20

IMU measurements

The IMU provides noisy measurements for the input U to the navigator dynamics.

Let zIMU be the IMU measurement:

zIMU =
[
ωx ωy ωz fx fy fz

]T
+ vIMU (2.5)

where vIMU is the zero-mean white Gaussian noise whose covariance RIMU is given

by the product data-sheet of the IMU.

Magnetometer measurements

To derive the non-linear observation model for the magnetometer, we need to com-

pute the local magnetic field. The National Oceanic and Atmospheric Administration

(NOAA) provides a software library that gives the magnetic inclination MI , and the

declination MD of the magnetic field lines at the current location.3 Expressed in the

north-east-down frame the magnetic field vector [BN BE BD]T is given by:
BN

BE

BD

 =


cos (MI) cos (MD)

sin (MI) cos (MD)

sin (MD)

 (2.6)

Using the quaternion rotation to rotate this magnetic field unit vector into the frame

of the aircraft, the non-linear observation model of the magnetometer is given by:

zmag = hmag(x) + vmag (2.7)

where

hmag(x) :=


BN (−d2 − c2 + b2 + a2) +BD (2 b d− 2 a c) +BE (2 a d+ 2 b c)

BE (−d2 + c2 − b2 + a2) +BD (2 c d+ 2 a b) +BN (2 b c− 2 a d)

BD (d2 − c2 − b2 + a2) +BE (2 c d− 2 a b) +BN (2 b d+ 2 a c)


(2.8)

3NOAA, ”The World Magnetic Model”, http://www.ngdc.gov/geomag/WMM/soft.shtml

21

and vmag is the zero-mean white Gaussian noise with covariance Rmag specified by

the magnetometer manufacturer.

The block diagram of the magnetometer is shown in Figure 2.4. This block uses the

true UAS position and the NOAA library contained in the geoMag block to compute

MI and MD with additive noise. The quaternion representation of the true UAS

attitude, converted to a direction cosine matrix in the euler2DCM block, is then used

to rotate the calculated magnetic field line into the frame of the aircraft to provide

simulated measurements.

1

generator
random

11

1
x

Extra..

Extra..

mag field u_vec

MAT..

+
+

Mux

Extra..

Extra.. ft2m

geoMag

euler2Dcm

"s..

Goto

Fig. 2.4. The magnetometer model in ScicosLab.

Extended Kalman Filter (EKF)

Equations (2.1), (2.3), (2.5) and (2.7) yield the navigator system model:

ẋ(t) = f (x(t), zIMU(t))

z =

zGPS

zmag

 = h (x) + v
(2.9)

where h (x) = [hGPS (x) hmag (x)]T and v = [vGPS vmag]
T with the covariance matrix

R = diag (RGPS,Rmag). With this model, the EKF can be applied to perform state

22

estimation for the navigator. Let x̂ be the state estimation and P be the estimate

covariance. The algorithm consists of two steps: propagation and correction which

are detailed as follows:

• Propagation: The propagation involves computing the evolution of the prior

estimate x̂(tk−1) = x̂k−1|k−1 and P(tk−1) = Pk−1|k−1 when there is no arrival of

new observations. Let ∆t be the interpolation time interval of the continuous

dynamics in Equation (2.9). The navigator’s state estimate and its covariance

can be updated using Equations (2.10) and (2.11) during the time interval from

(k − 1)∆t till k∆t [40]:

˙̂x(t) = f
(
x̂(t), zk−1IMU

)
(2.10)

Ṗ(t) = FP(t) + P(t)FT + GRIMUGT (2.11)

where zk−1IMU is the last measurement from the IMU and F ≡ ∂f
∂x

∣∣∣
x=x̂k−1|k−1,zIMU=zk−1

IMU

is the Jacobian matrix of f(x, zIMU) evaluated at x̂k−1|k−1, zk−1IMU and G ≡
∂f

∂zIMU

∣∣∣
x=x̂k−1|k−1,zIMU=zk−1

IMU

is the Jacobian matrix of f(x, zIMU) evaluated at

x̂k−1|k−1, zk−1IMU .

• Correction: The correction step computes the posterior estimate x̂k|k and Pk|k

from the prior estimate x̂k|k−1 = x̂(tk) and Pk|k−1 = P(tk) by using the measure-

ments from the GPS and the magnetometer. Since the GPS and magnetometer

measurements are updated at different frequencies (GPS: 10 Hz, magnetome-

ter: 50 Hz), the correction steps may happen at different times. If the cross-

correlation between the position and attitude states is neglected, a more com-

putationally efficient algorithm is obtained. This requires two separate EKFs

where x := [xatt xpos] and P ≈ diag(Patt,Ppos). Here xatt := [a b c d]T and

xpos := [VN VE VD L l h]T . This is a typical approximation in UASs [41]. Under

23

this decomposition, the following equations can be used for GPS measurement

correction:

SGPS = HGPSPk−1|k−1
pos HT

GPS + RGPS

KGPS = Pk−1|k−1
pos HT

GPSS−1GPS

yGPS = zGPS −HGPSx̂k−1|k−1pos

x̂k|kpos = x̂k−1|k−1pos + KGPSyGPS

Pk|k
pos = [I−KGPSHGPS] Pk−1|k−1

pos

(2.12)

where HGPS = ∂hGPS
∂x

∣∣∣
x̂k−1|k−1

is the Jacobian matrix of hGPS evaluated at

x̂k−1|k−1.

During the arrival of magnetometer measurements, the following equations can

be used for correction:

Smag = HmagP
k−1|k−1
att HT

mag + Rmag

Kmag = P
k−1|k−1
att HmagS

−1
mag

ymag = zmag −Hmagx̂
k−1|k−1
att

x̂
k|k
att = x̂

k−1|k−1
att + Kmagymag

P
k|k−1
att = [I−KmagHmag] P

k−1|k−1
att

(2.13)

where Hmag = ∂hmag
∂x

∣∣∣
x̂k−1|k−1

is the Jacobian matrix of hmag evaluated at

x̂k−1|k−1.

In the navigation system used for this analysis, one EKF is nested within another

as shown in Figure 2.5. The inner EKF fuses the attitude measurement data from

the magnetometer with the integrated gyroscope rates from the inertial measurement

unit (IMU). Outside this loop, the other EKF fuses the GPS position and velocity

information with the integrated accelerations from the IMU. Note that the directions

of these accelerations strongly depend on the attitude estimate of the inner loop.

24Navigation System

Covariance Integration

F
G
Pu
P

P

update
reset

P..

Inertial Navigator

x

imu
x

update
reset

1
imu

[i..

[mag]

2
mag

"imu"

["imu"]

Aux

x

imu

xC

C_bn
1
x

Select

xMag

xGps
x

["xNav"]

"xNav"

"Pvp"

"C_bn"

"xEst"

insErrorDynam..

[g..

Magnetometer Update

z_mag
x
P

x
P

GPS Update

z
x
P

x
P

3
gps

["imu"]

insErrorDynam..

["imu"]

Covariance Integration

F
G
Pu
P

P

update
reset

P..

[i..
[mag]

[i.. [g..

"Patt"

P..

Fig. 2.5. The EKF based navigation system.

2.2.4 Fault Detection

Fault detection systems are used on UASs to determine when a failure has oc-

curred so that corrective action can be attempted. While many of these systems

were designed to detect hardware failures, they can also be used to detect abnormal

behavior caused by a cyberattack. For this system, fault detection is performed by

testing the assumption that the Kalman filter residuals, yGPS and ymag, are normally

distributed with a known covariance. Specifically, a fault can be detected by testing

the contradictory hypothesis shown in Equations (2.14) and (2.15).

H0 : ymag ∼ N (0,Smag) and H1 : ymag /∼N (0,Smag) (2.14)

H2 : yGPS ∼ N (0,SGPS) and H3 : yGPS /∼N (0,SGPS) (2.15)

If H0 and H2 are true, then the residual powers, yTmagS
−1
magymag and yTGPSS−1GPSyGPS,

will have a χ2 distribution. These hypotheses can therefore be tested by comparing

the value of these residual powers to a threshold value, τ , which can be calculated

25

to provide an acceptable accuracy or can be determined experimentally. If either of

these hypotheses is rejected, then the corresponding opposing hypothesis, H1 or H3,

is accepted. This indicates that the measured state evolution does not conform to

expectations, and a fault state is detected [42,43]. For this system, there are limited

resources for fault identification or mitigation, so when a fault state is triggered, the

system reverts to the constant, open-loop trim inputs in an attempt to maintain

normal flight. At that point, the operator can be signaled to intervene and attempt

to restore operations.

2.2.5 ADS-B Modeling

ADS-B stands for Automatic Dependent Surveillance-Broadcast. This is a method

of sharing data among aircraft in a vicinity through mutual information broadcasts [6].

A major use of ADS-B is the broadcast of navigation information so that neighbor-

ing aircraft are able to maintain safety, including minimum separation distances, in

crowded airspace. ADS-B is not used in the hardware-in-the-loop testing.

Data Packet

In this analysis, we focus on the navigation information in the ADS-B broadcast.

This includes the position and velocity of the aircraft. In the future, aircraft intent

will also be included. Other services exist for weather, terrain, and general flight

information.

Table 2.2.
ADS-B Packet Information

Position latitude, longitude, altitude

Velocity north, east and down velocities

Time Stamp date and time of broadcast

26

Collision Avoidance Algorithm

Simple collision avoidance was achieved using the velocity of the vehicle relative

to the obstacle to move the obstacle into a static reference frame. Then the only

requirement for avoiding collision is that the relative velocity be shifted such that it

will not violate the separation distance [44]. The variables used for these calculations

are defined in Table 2.3.

Table 2.3.
Collision Variables

Variable Physical Meaning Units

Ψc Bearing to obstacle from vehicle rad

Ψv/o Bearing of vehicle commanded velocity relative to obsta-

cle

rad

Ψr Required Ψv/o to maintain separation rad

rc Distance to obstacle ft

rs Separation distance ft

α Difference between Ψv/o and Ψc rad

β Magnitude difference in bearing between a collision

course and a course tangent to the separation window

rad

γ Change in Ψv/o required for vehicle path to be tangent

to separation window

rad

The initial commanded bearing, Ψv will always be chosen to point directly to-

wards the commanded waypoint. If this bearing will cause the vehicle to violate the

27

separation distance at any point in the future, a desired vehicle velocity relative to

the obstacle will be calculated as:

α = Ψv/o −Ψc (2.16)

β = arcsin
rs
rc

(2.17)

γ = sgn(α)(β − α) (2.18)

Ψr =



−Ψc if rc ≤ rs, |α| ≥ π
2

Ψc − π
2

if rc ≤ rs, |α| < π
2
, α < 0

Ψc + π
2

if rc ≤ rs, |α| < π
2
, α ≥ 0

Ψv/o + γ if rc > rs, |α| < β

Ψv/o otherwise

(2.19)

β is calculated using trigonometric operations on a right triangle formed with the

distance to the obstacle, rc, as the hypotenuse and the radius of the circle and vehicle

path tangent to the separation window forming the legs. If the vehicle is within the

separation window, this triangle cannot be formed and β is undefined. In this case,

the relative velocity vector is chosen to be orthogonal to a collision course vector if

the vehicle is in front of the obstacle and inside the separation window, and is chosen

to point directly away from the obstacle if the vehicle is behind the obstacle and

inside the separation window. If the separation distance is not violated, the direction

of the relative velocity vector will be rotated such that it is tangent to the separation

window in the case that the current relative velocity intersects the separation window.

Collision avoidance is not implemented on the hardware-in-the-loop model.

2.2.6 Subsystem Integration

These system components are then integrated together to give a complete vehi-

cle autopilot. Figure 2.6 illustrates the typical analysis process for the unmanned

vehicles in the lab. The hardware-in-the-loop (HIL) and software-in-the-loop (SIL)

components of this process are presented in Sections 2.3 and 2.4.

28

Fig. 2.6. The Purdue Hybrid Systems Lab simulation testbed.

2.2.7 Cyberattack Models

Single mode attacks are attacks in which only one attack avenue is pursued. The

different types of identified single mode attacks are categorized in Table 2.4.

29

Table 2.4.
Single Attacks Considered

fuzzing attack Introduction of extra noise to sensor data.

actuator attack Physical modification of actuators (rudders, ailerons, etc.).

digital update rate attack Slowing the processing rate of the controller/navigator.

navigator state attack Modification of the on-board navigator state.

sensor spoofing attack Providing false sensor data.

disguised attack An attack masquerading as another attack.

undetectable attack An attack that can’t be detected.

When multiple single mode attacks are used on a target simultaneously, it is

considered a combined attack. Successful combined attacks are especially dangerous

because they give an attacker additional degrees of freedom with which to achieve

their objective. If an attack can be intelligently designed, these additional freedoms

can be used to amplify the effect of the attack, reduce the detectability of the attack,

and/or achieve a result that is not possible with a single attack. The time till failure

metric presented above and the fault detection time will be used to determine the

effectiveness of the attack, which is function of how effectively failures are introduced,

how easily the attack is detected by the fault detection system, and how effective the

fault detection system is at preventing failures by reverting to the trim inputs.

2.3 Software-in-the-Loop Analysis of Cyberattacks

In this section, the configuration of the UAS software testbed is presented. The

power of this environment is the ability to simulate high-fidelity models using a proven

C++ library while interfacing to a block diagram environment. A block diagram envi-

ronment is very useful for the rapid prototyping and analysis of guidance, navigation

and control systems. The current testbed has been utilized by the Purdue Hybrid

30

Systems Lab for the analysis of autonomous quadrotors, rovers, and fixed wing air-

craft.

2.3.1 Software Model

For the software simulation, the navigator and controller shown previously were

implemented in ScicosLab, an open source block diagram simulation environment

similar to Simulink from MathWorks that provides a mechanism for rapid analysis.

The complete Scicos block diagram used for this analysis is shown in Figure 2.7. In

this diagram, the commands block provides the commanded waypoint and velocity

to the vehicle, and the waypoint guidance block then uses this information combined

with information about nearby obstacles to compute a desired bearing and speed

for the aircraft. The backside controller block implements digital PID controllers

to regulate the error in the control surfaces. The controller in this analysis was

updated at 50 Hz, which is the typical update rate for hobby servos commonly used

on research UASs. The servos block models the lag in the actuators using a first

order approximation. The JSBSimComm block sends the actuator signals to JSBSim

where the aircraft state derivative is computed. The ScicosLab block then uses a

variable step size integration scheme for propagating the state. The computed state

and outputs from the JSBSimComm block are then sent to the sensor models. The

sensor models use the state of the aircraft and random noise generation to simulate

realistic data from the sensors. This data is then fed into the navigation system,

which uses this information to estimate the state of the aircraft.

31JSBSimCombinedAttack

JSBSimComm

Models
Sensors x

y
imu
mag
gps

Commands

waypointGuidance

System
Navigation imu

mag
gps

x

controller
backside

Analy..

Obstacle

x
Servos

Timing
Envel..
Mission

Envel..
Flight

Fault Detection Failsafe

TK Scale

[da..

"gyroG..

Envel..
Flight

Fig. 2.7. The block diagram of the UAS autopilot in ScicosLab.

2.3.2 Simulation Results

Cyberattacks were inserted into the block diagram model of the system in Fig-

ure 2.7 and vehicle flight was then simulated with attacks of varying magnitude and

in different combinations. The flight and mission envelope failure times were recorded

for each test, as well as the fault detection time. Each attack was simulated twice,

once when the fault detection system reverted to the open-loop trim inputs on a fault

state and again when a fault did not change vehicle operations. In the SIL analy-

sis, 37 different attacks were introduced, including sensor gain modifications, sensor

fuzzing, navigator state modification, reducing actuator effectiveness, and slowing the

controller and navigator update rate. Every two-attack combination from this set was

simulated and the failure times analyzed. Of these combinations, approximately one

third were unable to introduce a failure or trigger a fault state, indicating no vul-

nerabilities. Several attacks were particularly effective, including velocity sensor gain

modifications, combinations of accelerometer and gyroscope gain and noise modifica-

tions, direct manipulation of attitude states, and changing controller and navigator

update rates. Selected results are shown below. However, due to the variability of

vehicle and autopilot systems, these results may not be applicable in general. The

process of identifying the vulnerabilities of a specific vehicle is therefore of greater

32

importance than the results. Due to the large number of results, we will focus our

discussion on two specific attack combinations.

Figure 2.8 shows the result of a combined attack that modifies the down velocity

gain and varies the deviation of the gyroscope noise. The flight envelope and mission

envelope failure times are shown for the case in which fault detection is used and

when it is not. The time at which the fault is detected is also shown. The region of

relative stability at unity down velocity gain in Figures 2.8(a) to 2.8(d) shows that

the gyroscope noise attack is not especially effective as it is unable to induce failure

without being combined with another attack. Similarly, reducing the down velocity

gain below unity is unable to introduce a flight envelope failure without the addition

of gyroscope noise, although it is able to introduce a mission envelope failure. The

fact that these attacks are more effective at inducing flight envelope failure when used

together demonstrates the benefit to the attacker of coupling these two attacks.

The results also show that the fault detection system is clearly unable to mitigate

these attacks, as shown by the identical responses of the system to the attacks for

the case when fault detection is used and when it is not. While the system may not

be able to automatically mitigate the attack, it does detect the fault for most attack

values, as shown in Figure 2.8(e), and will alert the operator to the presence of the

attack. There is one isolated region in the fault detection plot in Figure 2.8(e) in

which no fault is detected before the flight envelope is violated. Given that most of

the other combinations of these two attacks that cause failure are detectable within

ten seconds, this attack is particularly effective in that no fault is detected within

the approximately 30 seconds it takes to induce failure. The flight envelope of the

vehicle will therefore have already been violated by the time the automatic monitor

can trigger operator intervention. It is unclear if this result will hold under Monte

Carlo analysis.

33

0 5 10 15
Down Velocity Gain (%)

0

1

2

3

4

5

IM
U

Gy
ro

 N
oi

se
 D

ev
ia

tio
n

(d
eg

/s
)

15
.00

0

30.000

30
.0

00

45.00045
.0

00

45.000

60.00060
.0

00

75.000

Flight Envelope Failure Time (no Fault Detection)

0

8

16

24

32

40

48

56

64

72

80

Ti
m

e
(s

)

(a) Flight envelope failure time without fault de-

tection

0 5 10 15
Down Velocity Gain (%)

0

1

2

3

4

5

IM
U

Gy
ro

 N
oi

se
 D

ev
ia

tio
n

(d
eg

/s
)

15
.00

0

30.000

30
.0

00

45.00045
.0

00

45.000

60.00060
.0

00

75.000

Mission Envelope Failure Time (no Fault Detection)

0

8

16

24

32

40

48

56

64

72

80

Ti
m

e
(s

)

(b) Mission envelope failure time without fault de-

tection

0 5 10 15
Down Velocity Gain (%)

0

1

2

3

4

5

IM
U

Gy
ro

 N
oi

se
 D

ev
ia

tio
n

(d
eg

/s
)

15
.00

0

30.000

30
.0

00

45.00045
.0

00

45.000

60.00060
.0

00

75.000

Flight Envelope Failure Time (with Fault Detection)

0

8

16

24

32

40

48

56

64

72

80
Ti

m
e

(s
)

(c) Flight envelope failure time with fault detec-

tion

0 5 10 15
Down Velocity Gain (%)

0

1

2

3

4

5

IM
U

Gy
ro

 N
oi

se
 D

ev
ia

tio
n

(d
eg

/s
)

15
.00

0

30.000

30
.0

00

45.00045
.0

00

45.000

60.00060
.0

00

75.000

Mission Envelope Failure Time (with Fault Detection)

0

8

16

24

32

40

48

56

64

72

80

Ti
m

e
(s

)

(d) Mission envelope failure time with fault detec-

tion

0 5 10 15
Down Velocity Gain (%)

0

1

2

3

4

5

IM
U

Gy
ro

 N
oi

se
 D

ev
ia

tio
n

(d
eg

/s
)

15.000
30.000

45.000

45
.0

00

60.000

60
.0

00

Fault Detection Time

0

8

16

24

32

40

48

56

64

72

80

Ti
m

e
(s

)

(e) Fault detection time

Fig. 2.8. Down Velocity Gain and IMU Gyro Noise Deviation Attack

34

0 5 10 15
Down Velocity Gain (%)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ttl
e

Ac
tu

at
or

 E
ffe

ct
iv

en
es

s
(%

)

15.000

30.000

30
.0

00
30.000

30
.0

00

30.000

45.000

45
.0

00

45
.0

00

60.000

60
.0

00

75.000

75
.0

00

Flight Envelope Failure Time (no Fault Detection)

0

8

16

24

32

40

48

56

64

72

80

Ti
m

e
(s

)

(a) Flight envelope failure time without fault de-

tection

0 5 10 15
Down Velocity Gain (%)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ttl
e

Ac
tu

at
or

 E
ffe

ct
iv

en
es

s
(%

)

20
.0

00

20.000

30.000

30
.0

00

30.000

30
.0

00

30.000

40.000

40
.0

00

40
.0

00

50.000

50
.0

00

50
.0

00

60.000

60
.0

00

Mission Envelope Failure Time (no Fault Detection)

0

8

16

24

32

40

48

56

64

72

80

Ti
m

e
(s

)

(b) Mission envelope failure time without fault de-

tection

0 5 10 15
Down Velocity Gain (%)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ttl
e

Ac
tu

at
or

 E
ffe

ct
iv

en
es

s
(%

)

Flight Envelope Failure Time (with Fault Detection)
80

Ti
m

e
(s

)

(c) Flight envelope failure time with fault detec-

tion

0 5 10 15
Down Velocity Gain (%)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ttl
e

Ac
tu

at
or

 E
ffe

ct
iv

en
es

s
(%

)
70.00070

.0
00

72.000

72
.0

00

74.000

74
.0

00

76.000

76
.0

00

78.000
78

.0
00

Mission Envelope Failure Time (with Fault Detection)

0

8

16

24

32

40

48

56

64

72

80

Ti
m

e
(s

)

(d) Mission envelope failure time with fault detec-

tion

0 5 10 15
Down Velocity Gain (%)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ttl
e

Ac
tu

at
or

 E
ffe

ct
iv

en
es

s
(%

)

15
.0

00

30.000 30
.0

00

45.000 45
.0

00

60.000 60
.0

00

75.000 75
.0

00

Fault Detection Time

0

8

16

24

32

40

48

56

64

72

80

Ti
m

e
(s

)

(e) Fault detection time

Fig. 2.9. Down Velocity Gain and Throttle Actuator Effectiveness Attack

35

Figure 2.9 shows an attack that modifies the down velocity gain and reduces

the effectiveness of the throttle actuator. While this attack includes the same down

velocity gain modifications as in Figure 2.8, it can be seen from the plots that combin-

ing this attack with a throttle effectiveness attack is less effective than combining it

with the gyroscope noise insertion attack. In particular, this attack is not successful

against systems that revert to the trim input in a fault state. Comparing the flight

and mission envelope failures in the no fault detection case, shown in Figures 2.9(a)

and 2.9(b), to those of the fault detection case, shown in Figures 2.9(c) and 2.9(d),

shows that the fault detection that reverts to the trim inputs during a fault completely

removes the ability of the system to induce flight envelope failures in the vehicle. The

mission envelope failures that it induces occur at 70 seconds, which is the time at

which the vehicle is required to be at the destination waypoint. This would indicate

that the mission failures are due to an inability of the vehicle to correctly guide it-

self to the waypoint, which is expected since the vehicle does not attempt waypoint

guidance when a fault has been detected. This is therefore an example of an attack

that, while able to compromise an unprotected system, is fairly easily detected and

mitigated, and thus not particularly relevant.

Undetectable and Disguised Attacks

An undetectable attack is an attack that is not discovered by the fault monitoring

systems, as in Figure 2.9, an attack that targets an unmonitored subsystem, or an

attack that is able to induce an irrecoverable instability before being discovered by

the monitoring systems. In Figure 2.10, the GPS altitude noise is plotted against

initial error in the navigator down velocity and the processor is running at 20% of

the nominal speed. The 1 sigma, 3 sigma, and 9 sigma measurement ellipsoids are

plotted. These ellipsoids represent the ability of the fault detection system to detect

an attack. As the attack moves farther from the nominal point, the probability of the

attack being detected increases.

36

 13.7

 13.7

 15.2

 15.2

 15.2

 16.7 16.7

 16.7

 18.2 18.2

 18.2

1 3 9

0 10 20 30 40 50 60 70 80 90 100

−10

−8

−6

−4

−2

0

2

4

6

8

10

Time till failure, Processor speed 20%

GPS Altitude Noise, ft

D
o
w

n
 V

e
lo

c
it
y
,
ft
/s

 0

 4.9

 9.9

 15

 20

Fig. 2.10. The effect of GPS altitude noise and initial down velocity error
on failure time with the processor running at 20% nominal speed. The
detection ellipsoids for 1, 3 and 9 sigma (covariance ellipsoids) are plotted.

Conversely, a disguised attack is an attack that is designed to be detected but

identifies as a different type of attack. This false identification could cause the vehicle

to perform fault mitigation actions that, while effective against the type of attack that

was identified, can be leveraged by the actual attack to further its objectives. In this

way, the vehicle’s defense systems are themselves a vulnerability that can be exploited

by an attacker. This type of attack requires a more detailed fault detection scheme

for analysis and is a topic for future work.

37

2.4 Hardware-in-the-loop (HIL) Analysis of Cyberattacks

2.4.1 Background

While conducting software-in-the-loop (SIL) testing is beneficial for rapid proto-

typing and algorithm development, it is important to verify the functionality of the

autopilot on the hardware and software that will be used in the final system as well.

In hardware-in-the-loop (HIL) testing, the autopilot hardware is connected to a sim-

ulator that sends simulated data to the autopilot in real-time, allowing verification of

timing deadlines. The simulator then reacts to the control output of the autopilot. In

analyzing cyberattacks, HIL testing is an effective way to discover vulnerabilities in

the design and implementation of the system as a supplement to the design analysis

provided by SIL testing.

However, transmitting the sensor data from the simulator to the autopilot requires

considerable data bandwidth and processing the messages at a high frequency can

consume a large portion of the processing power of typical embedded processors.

When these resources are not available to conduct sensor-level HIL testing, a lower

fidelity simulation, state-level HIL can be conducted (see definitions below).

HIL Testing Type Definitions

• sensor-level: A flight dynamics model simulator (e.g. JSBSim) is used to

provide simulated sensor data. The sensor data is sent to the autopilot, which

processes all of the sensor data messages and sends the data to the navigation

computer. The navigation computer then computes the state of the vehicle,

which is used in turn to compute the control output of the autopilot.

• state-level: A flight dynamics model simulator (e.g. JSBSim) is used to pro-

vide the simulated state of the vehicle, which is sent to the autopilot. The

autopilot then processes all of the vehicle state messages and uses the data to

compute the control output of the autopilot, bypassing the navigation computer.

38

Because state-level HIL testing does not verify the correct operation of the naviga-

tion system, it is preferable to use sensor-level HIL testing when the data bandwidth

and processing resources are available.

2.4.2 PX4 Autopilot

We use the PX4 4 autopilot for the cyberattack analysis in this chapter. This

autopilot is the most recent iteration of open source/open hardware autopilots. The

PX4 utilizes a 168 MHz Cortex M4F ARM processor and has 196 KB RAM and 1 MB

Flash. The onboard sensors include a 3D accelerometer, 3D gyro, 3D magnetometer,

and a barometer. A microSD card is also available for onboard data logging.

The PX4 autopilot software is built upon the open source NuttX real-time op-

erating system (RTOS)5. It is fully preemptible, has FIFO or round-robin schedul-

ing, and supports priority inheritance, task controls, named message queues, count-

ing semaphores, clocks/timers, signals, and pthreads similar to those defined by the

POSIX 6 standards. It has a task management system and watchdog timers similar

to VxWorks 7.

The PX4 autopilot supports the MAVLink air vehicle communication protocol8.

This protocol allows the PX4 to communicate with all MAVLink compatible ground

stations including QGroundControl 9. The MAVLink protocol has built-in support

for both sensor-level and state-level HIL testing. Previously, PX4 only supported

state-level HIL, but we have developed support for sensor-level HIL. For the analysis

in this chapter, sensor-level HIL will be used. If state-level is used, the interactions

of cyberattacks with the hardware navigation system will not be analyzed.

4“PX4 Autopilot Platform,” https://pixhawk.ethz.ch/px4
5“NuttX Real-Time Operating System,” http://nuttx.org
6“POSIX Standard,” http://standards.ieee.org/develop/wg/POSIX.html
7“VxWorks RTOS,” http://www.windriver.com/products/vxworks
8“MAVLink Micro Air Vehicle Communication Protocol,” http://qgroundcontrol.org/mavlink/start
9“QGroundControl GCS,” http://qgroundcontrol.org

39

The PX4 autopilot and the data flow for sensor-level HIL are shown in Figure 2.11.

The cyberattack is injected between the JSBSim flight dynamics simulator and the

QGroundControl ground station via a Python script. QGroundControl sends both

the command and control messages and the sensor data to the PX4 autopilot using the

MAVLink protocol. The autopilot then computes a control response and sends this

data back to QGroundControl via the MAVLink protocol. QGroundControl forwards

the control packets to the JSBSim simulator.

(a) PX4 Autopilot (b) Data flow

Fig. 2.11. Hardware-in-the-loop attack injection setup for PX4 Autopilot.

2.4.3 Simulation

Sensor-level hardware validation of selected SIL results was performed, and the

results are shown below. While HIL testing provides a more accurate view of the

system response to an attack, the added complexity of using the autopilot software

instead of a block diagram model makes the modeling of cyberattack inputs more diffi-

cult. Additionally, the test must be performed in real-time and cannot be parallelized

without using additional hardware, resulting in an increased simulation run time. The

required coordination of multiple computers and the corresponding communication

channels also makes the automation of long-running simulation difficult. Accordingly,

40

the HIL testing performed in this analysis is used only to validate interesting results

from the SIL simulation. This serves to verify that the vulnerabilities discovered in

the system model are present in the implementation of the system. However, without

exhaustive hardware testing vulnerabilities that are not present in the model of the

system but are introduced in the implementation are not found. Our analysis can be

extended to that case as needed.

2.4.4 Selected Results

Figure 2.12 shows the flight envelope and mission envelope failure times for the

software simulation of a cyberattack that inserts Gaussian noise into the IMU gy-

roscope measurements and adds a gain to the x accelerometer. The results of the

hardware simulation for the same attack are shown in Figure 2.13.

0.2 0.4 0.6 0.8 1.0
X Accelerometer Gain

0

1

2

3

4

5

IM
U

Gy
ro

 N
oi

se
 S

td
. D

ev
ia

tio
n

(r
ad

/s
)

66.000
69.000
72.000
75.000

75.000

78.000

78.000

Flight Envelope Failure Time (no Fault Detection)

0

8

16

24

32

40

48

56

64

72

80

Ti
m

e
(s

)

(a) Flight envelope failure time without fault

detection

0.2 0.4 0.6 0.8 1.0
X Accelerometer Gain

0

1

2

3

4

5

IM
U

Gy
ro

 N
oi

se
 S

td
. D

ev
ia

tio
n

(r
ad

/s
)

66.000
69.000

72.000

72
.0

00

72
.0

00

75.000

75.000

78.000

78.000

78.000

Mission Envelope Failure Time (no Fault Detection)

0

8

16

24

32

40

48

56

64

72

80

Ti
m

e
(s

)
(b) Mission envelope failure time without fault

detection

Fig. 2.12. IMU Gyroscope Noise and X Accelerometer Gain Attack

41

0.2 0.4 0.6 0.8 1.0
X Accelerometer Gain (%)

0

1

2

3

4

5

IM
U

Gy
ro

 N
oi

se
 D

ev
ia

tio
n

(r
ad

/s
)

15.000

30.000

30.000

45.000

45.000

60.000

75.000 75
.0

00

75.000

Flight Envelope Failure Time (without Fault Detection)

0

8

16

24

32

40

48

56

64

72

80

Ti
m

e
(s

)

(a) Flight envelope failure time without fault

detection

0.2 0.4 0.6 0.8 1.0
X Accelerometer Gain (%)

0

1

2

3

4

5

IM
U

Gy
ro

 N
oi

se
 D

ev
ia

tio
n

(r
ad

/s
)

15.000

30.000

30.000

45.000

45.000

60.000

60
.0

00

75.000 75.000

75
.0

00

Mission Envelope Failure Time (without Fault Detection)

0

8

16

24

32

40

48

56

64

72

80

Ti
m

e
(s

)

(b) Mission envelope failure time without fault

detection

Fig. 2.13. X Accelerometer Gain and None Attack

While these two simulations have some pronounced differences, there are also some

significant similarities. The successful attack regions take the same general shape for

both simulations, with a failure region at accelerometer gains close to nominal and

large gyroscope noise in the corner of the plot, and a separate failure region towards

the center of the plot that is a combination of both attacks. The exact location of

these regions is different for both simulations, and the failure occurred much faster

in the hardware simulation. The differences between these simulations are difficult

to explain analytically, given the complexity of the systems, but that we were able to

use the SIL results to correctly identify which attack pairings were likely to produce a

failure in the HIL analysis and the overall similarities in the results serves to validate

the approach.

2.5 Conclusion

In this chapter, we have presented a numerical cyber security analysis method

for UASs, using both hardware and software simulation, designed to test the robust-

ness of UASs subject to cyberattack and identify their vulnerabilities. A high-fidelity

42

model of the vehicle dynamics was created and interfaced with a proven flight sim-

ulation software package, enabling the accurate simulation of UAS flight. For the

software simulation, an autopilot model was created in a block diagram environment

and interfaced to the flight dynamics software to provide high fidelity simulation of

UAS operations as designed. For the hardware simulation, the autopilot hardware

and accompanying software are interfaced with the flight dynamics software running

on a desktop PC via the ground control software, giving a high fidelity simulation

of UAS operations as implemented. This capability was leveraged to simulate the

response of a UAS to several identified cyberattacks and combinations of cyberat-

tacks, including sensor noise injection, changing the system update rate, modifying

sensor gains, and modifying the navigator state. These attacks were shown through

simulation to be capable of impeding mission objectives and introducing instability

into the vehicle, resulting in airframe failure. This analysis represents a methodol-

ogy by which control system vulnerabilities can be discovered and mitigated. This

approach is particularly useful for complex cyber-physical systems such as UASs and

gives insight complimentary to that provided by analytical methods. The use of this

analysis enables a comprehensive security approach that incorporates traditional cy-

bersecurity solutions that attempt to deny an attacker access to the system with a

secure control approach that reduces the efficacy of tampering if an attacker does

gain access.

43

3. CASE STUDY: INSECT-LIKE FLAPPING WING MAV

(MICRO-AIR-VEHICLE)

Fig. 3.1. Flapping Wing MAV vehicle used in joint project between Pur-
due and Wright State University [45]

This chapter proposes a model checking method for a trajectory tracking controller

for a flapping wing micro-air-vehicle (MAV) under disturbance. Due to the coupling

of the continuous vehicle dynamics and the discrete guidance laws, the system is a

hybrid system. Existing hybrid model checkers approximate the model by partitioning

the continuous state space into invariant regions (flow pipes) through the use of

reachable set computations. There are currently no efficient methods for accounting

for unknown disturbances to the system. Neglecting disturbances for the trajectory

tracking problem underestimates the reachable set and can fail to detect when the

system would reach an unsafe condition. For linear systems, we propose the use of

44

the H∞ norm to augment the flow pipes and account for disturbances. We show that

dynamic inversion can be coupled with our method to address the nonlinearities in

the flapping-wing control system. This chapter is based on the book chapter [46].

3.1 H∞ Norm Flow Pipe Augmentation

The H∞ norm is the maximum singular value of a linear system. It can be

computed rapidly and can be precomputed for each mode of a linear hybrid system

before computing the reachable set of the system. The core idea of this chapter is

to use the H∞ norm to augment the computed flow pipe for the AQTS. We have

not yet implemented a model checker with this modification, but we do verify the

concept through Monte-Carlo simulation. For linear systems, the computation of the

flow pipes can also be done efficiently, so computation of the H∞ norm augmented

flow pipes in real time for adapting systems is feasible.

In Figure 3.2, a computational flow pipe is shown for the set X0. The H∞ norm is

used to augment the bound based upon the magnitude of the H∞norm for the current

face of the flow pipe.

X0

H∞ norm

Fig. 3.2. The initial starting triangular set X0 is propagated using stan-
dard reachability techniques to create the inner flow pipe with boundaries
indicated by circles. The H∞ norm augments the existing flow pipe to
account for disturbances.

45

3.2 Flapping Wing Dynamics and Dynamic Inversion Based Control Law

In this section, our goal is to formulate the trajectory tracking control problem so

that it can be verified through the use of the H∞ augmented flow pipe based model

checking method described in Section 3.1. A precise model of the flapping wing

aerodynamics would be difficult to analyze. Therefore, we analyze a cycle average

force and moment model [47]. The vehicle analyzed in this chapter is shown in Figure

3.3. The flapping wing vehicle is mounted rigidly on top of a disc that is hovering

on an air table. In this way, we can design the control system without concern for

lifting the weight of the vehicle. The air table also limits the motion of the vehicle

by keeping it level on the surface of the table.

Fig. 3.3. The flapping wing vehicle analyzed in this chapter.

For this flapping wing system, control is obtained through modulation of the

flapping cycle. The flapping cycle has two parameters for each wing, the flapping

frequency and the flapping delta shift which moves the trough of the function. The

effect of the delta shift parameter on the flapping cycle is shown in Figure 3.4.

We assume that a wing flap cycle produces:

46

Fig. 3.4. Flapping wing cycle modulation through variation of the trough
position of the stroke.

• A force in the body x direction proportional to the average dynamic pressure of

the wing (dependent on the flapping frequency and the distance from the axis

of rotation to the center of the wing).

• A force in the body y direction proportional to the average dynamic pressure of

the wing (dependent on the flapping frequency and the distance from the axis

of rotation to the center of the wing). It is assumed that this force has less

magnitude since it is not aligned with the lifting direction of the wing.

• A force in the body z direction proportional to the product of the delta-shift of

the flapping cycle and the average dynamic pressure of the wing.

Therefore we can derive the following aerodynamic force and moment model.

Faero = ρl2fs/2


Cx(ω

2
R + ω2

L)

Cy(ω
2
R − ω2

L)

Cz(δRω
2
R + δLω

2
L)

 (3.1)

47

Maero = ρl2f lws/2


Cz(δRω

2
R − δLω2

L)

0

Cx(ω
2
R − ω2

L)

 (3.2)

where ρ is the air density, lf is the distance from the flapping axis of rotation to

the center of the wings, lm is the moment arm of the wings, s is the reference area

of the wing, (ωR, ωL) are the angular velocity of the (right,left) wings, (δR, δL) are

the flapping cycle shift parameters for the (right,left) wings, and (Cx, Cy, Cz) are the

(x, y, z) aerodynamic force coefficients.

Due to the air table, there are reaction moments in y and z that keep the flapping

wing vehicle level and a reaction force in x, the normal force from the air table. We

neglect friction forces and aerodynamic drag due to the low speed of the vehicle. We

obtain the following equations of motion for the system:

m


ẍ

ÿ

z̈

 =


0 sin(φ) cos(φ)

0 − cos(φ) sin(φ)

1 0 0


Faero +


RFx −mg

0

0


+


dx

dy

dz

 (3.3)

J


φ̈

θ̈

ψ̈

 =


0 sin(φ) cos(φ)

0 − cos(φ) sin(φ)

1 0 0


Maero +


0

RMy

RMz


+


dφ

dθ

dψ

 (3.4)

where φ is the roll angle of the MAV (here, the roll angle is about the vertical axis

on the air table), RFx is the reaction force in the body x direction (the vertical axis

on the table), RMy is the reaction moment about the y axis (side axis on the table),

RMz is the reaction moment about the z axis (forward axis on the table), dx, dy, dz

are force disturbances, and dφ, dθ, dψ are moment disturbances.

For the trajectory tracking controller we need a model to track. We choose a

simple system where the reference trajectory is specified by the velocity commands

as shown in (3.5). The heading of the vehicle on the air table, φ, is chosen so that the

vehicle regulates its heading in the direction of its velocity vector. This choice was

48

made to keep the primary accelerations in the direction of the body z axis, pointing

forward on the air table, where the wings have the most control authority since they

are most aligned with the direction of the lift force from the wings. The ability of

the wings to generate a side force through disparity of flapping frequency has less

control authority than variation of the delta shifts in the flapping pattern to generate

a forward force. This enables the model to match the desired linear system dynamics

over a wider range of the flight envelope.


ẋr

ẏr

φ̇r

 =


Vrx

Vry

atan2(Vry, Vrx)

 (3.5)

where atan2 is the quadrant accurate inverse tangent function, (xr, yr) are the Carte-

sian coordinates of the reference trajectory, (Vrx, Vry) are the reference trajectory’s

velocities, and φr is roll angle in body or heading on the air table.

We now set the trajectory tracking error dynamics through dynamic inversion. We

are only concerned with the states that are not constrained by the air table (x, y, z, φ).

We invert the dynamics so that they match the model:
ëx

ëy

ëz

ëφ

+ 2ζωn


ėx

ėy

ėz

ėφ

+ ω2
n


ex

ey

ez

eφ

 =


dx

dy

dz

dφ

 (3.6)

where ex = xr−x, ey = yr−y, ez = zr−z, wn is the natural frequency of the 2ndorder

system and ζ is the damping ratio. The dynamics for each state are not coupled, so it

is not necessary to have the same natural frequency or damping ratio, but we choose

this for simplicity.

We now can compute the force and moments as a function of the tracking errors

in order to match the above model. We can neglect Fx because the flapping wing

vehicle is constrained to remain on the surface of the air table since the lift is less than

the weight. In the equations, the value Fx sets the steady state flapping frequencies.

49


Mbx

Fby

Fbz

 =


0 0 1

sin(φ) − cos(φ) 0

cos(φ) sin(φ) 0



−ω2

nex − 2ζωnėx

−ω2
ney − 2ζωnėy

−ω2
neφ − 2ζωnėφ

 (3.7)

Because there are 4 control variables and 4 degrees of freedom, there is a unique

mapping of the controls to the desired forces and moments.
ω2
R

ω2
L

δR

δL

 =
1

ρl2f



Fbx
Cx

+
Fby
Cy

Fbx
Cx
− Fby

Cy

1
ω2
R

(
Fbz
Cz

+ Mbx

Czlw

)
1
ω2
L

(
Fbz
Cz
− Mbx

Czlw

)

 (3.8)

Note in (3.8) that the ω2
R and ω2

L used in computation of δR and δL could be expressed

instead as explicit functions of the desired forces and moments as given by the first

two elements of (3.8).

In Figure 3.5, we plot the delta shifts and flapping frequencies required to generate

the forces and moments experienced during a simulation of the flapping wing trajec-

tory tracking control system for both the nominal and expected disturbance case.

Both the delta shift and flapping frequencies are in reasonable ranges. The spikes in

delta shift and flapping frequency occur when the vehicle is at a new waypoint and

beginning to move in a new direction. Dynamic inversion based control is susceptible

to modeling error, but these modeling errors can also be included as unknown distur-

bances to the system. Therefore, dynamic inversion integrates well with the proposed

H∞ based flow pipe augmentation model checking method we propose.

3.3 Flapping Wing Controller Model Checking

Now that we have successfully inverted the dynamics of the flapping wing trajec-

tory tracking control system, we can use a PIHA model of the system with the H∞

norm augmented flow pipes to check the control system in the presence of bounded

disturbances. We will use Computational Tree Logic (CTL) to express the universal

50

(a) Nominal flapping delta shift (b) Nominal flapping frequency

(c) Disturbance flapping delta shift (d) Disturbance flapping frequency

Fig. 3.5. The time history of the delta shift and flapping frequency re-
quired for the dynamic inversion based control for both the nominal and
uniform random disturbance case. Uniform random noise was used since
it is bounded. Bounded Gaussian noise could also be used.

properties we wish to verify [48]. CTL is a branching time logic which can represent

non-deterministic transitions and is used by model checkers such as NuSMV [49]. For

example, we wish to verify the property AF AG W1 (always end at waypoint 1)

in the presence of bounded disturbances of magnitude 0.4 Newtons of force and 0.4

Newton-meters of torque. Disturbances that are H∞ worst case frequency sinusoids

and disturbances that are uniform random numbers sampled at 20 Hz will be tested

51

with the given magnitudes. For the Monte-Carlo test, the phase of the H∞ sinusoids

will be sampled from a uniform distribution.

In Figure 3.6, the nominal trajectory of the vehicle is shown. The H∞ norm

augmented flow pipes are shown as the red lines in both the trajectory and position

error plots. Note that the H∞ norm is a constant that is added to the reachable

set from the initial state (the blue region). For these plots both the x and y errors

are plotted on the position error plot and that is why there are two sets of bounds.

At the beginning of the simulation, the trajectories are widely dispersed but they

quickly converge to the reference trajectory due to the tracking control system. The

bounds could be improved by recomputing the flow pipes with no disturbance given

the initial set from the previous flow pipe with disturbance.

(a) Nominal trajectory (b) Nominal position error

Fig. 3.6. A Monte-Carlo simulation with no disturbance propagated from
initial set x0 (the square at (0,0))

For the existing AQTS representing the trajectory tracking control system as

shown in Figure 1.1, we plot Monte-Carlo simulations in Figure 3.7. The uniform

and H∞ disturbances are both able to cause the system to violate the specification.

This occurs because the MAV transitions to the next flow pipe only if the current

state is within a set radius of the waypoint. When the disturbance level is large

52

enough, it becomes possible for the vehicle not to pass inside this radius and the

vehicle fails to return to W1.

(a) Uniform random disturbance (b) H∞ disturbance

Fig. 3.7. A Monte-Carlo simulation showing failures of the radius based
waypoint transition guard.

If we no longer use a transition guard that depends on the distance of the vehicle

from the waypoint, and we now use the along track distance of the vehicle, a more

robust control system can be obtained. The along track distance is the distance

between the previous waypoint and the projection of the current vehicle position

onto the line between the waypoints. The new guidance law will transition to the

next waypoint when the along track distance is greater than the distance between

the waypoints, meaning the vehicle has passed the waypoint. In Figure 3.8, the

modification to the AQTS is shown. Note that in the modified system it is possible

that the vehicle will not be within the defined radius, but it will always reach W1.

Finally, we check the new modified AQTS with the along track guidance law using

Monte-Carlo simulations with H∞ and uniform random disturbances in Figure 3.9.

We see that there are no trajectories that enter the boundary and all trajectories

return to W1. We see that for the new guidance law the specfication AF AG W1

(always end at waypoint 1) is satisfied.

53

(a) Radius waypoint guard (b) Along track waypoint guard

Fig. 3.8. The AQTSs representing the flapping wing system with the
original radius based waypoint guard and the along track based waypoint
guard.

The guidance logic that we have improved in this simple example would be obvious

to any autopilot designer, but the complications that disturbances have on more

intricate components of a guidance system can be more difficult to discover and

having an automated model checking program to verify these systems in the presence

of large disturbances will improve the safety of such systems.

3.4 Conclusion

We have proposed a method for verification and validation (V&V) of a flapping-

wing micro air vehicle controller (MAV). We have extended the existing algorithms for

V&V of Polyhedral Invariant Hybrid Automatons (PIHAs) to account for bounded

disturbances in linear hybrid systems using the H∞ norm. While the H∞ norm does

not strictly bound all possible disturbances, because it only bounds the worst case

steady state sinusoidal disturbance, it does successfully bound disturbances expected

54

(a) H-infinity trajectory (b) H-infinity position error

(c) Uniform random disturbance trajectory (d) Uniform random position error

Fig. 3.9. A Monte-Carlo simulation showing that the along track based
waypoint transition guard is resilient in the presence of disturbances.

55

in practice. If large unbounded disturbances are expected, it will be necessary to

consider probabilistic model checking and the probability density function of the reg-

ulated system around the nominal trajectory. In order for the H∞ norm bound to be

applicable, the system dynamics must be linear over the flight envelope; however, we

have shown how our method can be coupled with dynamic inversion based controllers

to extend our method to nonlinear hybrid systems. The H∞ norm of the system can

be computed efficiently and only requires updating when the linear system model

changes. Coupled with the efficient reachable set computations for linear systems,

this makes our approach attractive for runtime-assurance of adaptive systems.

56

4. CASE STUDY: TWO-WHEEL SELF-BALANCING

ROBOT

Fig. 4.1. Two-wheel self-balancing robot (see video)

In this chapter, we focus on a two-wheel self-balancing robot. This robot has

relatively simple dynamics compared to robots in later chapters but introduces the

complexity of under-actuated dynamics, that can’t be easily linearized. There are

two degrees of freedom, the pitch of the robot, θ, and the position of the robot x, but

only one control input, the motor voltage. One approach to deal with under-actuated

dynamics is to use dynamic inversion to linearize the output of interest and show

that the other internal dynamics, referred to as zero dynamics, are bounded using

https://www.youtube.com/watch?v=-X39EjAWEeM

57

Lyapunov functions. This approach is difficult since there is no mechanical way to

find the required Lyapunov function. The other approach is to use time constant

separation or cascaded dynamic inversion, where an inner loop is linearized, and the

outer loop is linearized using the reference command for the inner loop but at a slower

speed.

We will first analyze the dynamics and use system identification to fit the param-

eters of our dynamic model to the data. We will attempt to make the dynamic model

as simple as possible while still fitting the data well so that application of PIHA based

model checking is feasible.

4.1 Motor Dynamics

A simplified model of a DC motor neglecting electrical inductance is given by:

Jα̈ + τ +

(
ν +

kbkτ
R

)
α̇− kτV

R
= 0

where α is the shaft angle, J is the moment of inertia, V is the voltage, τ is the

externally applied torque, R is the resistance of the motor, kb is the back electromotive

force constant, kτ is the torque coefficient, and ν is the viscous damping.

Manufacture specifications are typically given in terms of no load and stall condi-

tions. These conditions can be used with the motor equation of motion to derive the

relationship to the previously defined motor parameters.

R =
Vs
Is
, kb =

1

Isωnl
(−InlVs + IsVnl) , kτ =

τs
Is
, ν =

Inlτs
Isωnl

where V is the voltage, I is the current, and ω is the angular velocity for stall (s), and

no load (nl) conditions, R is the resistance of the motor, kb is the back electromotive

force constant, kτ is the torque coefficient, and ν is the viscous damping.

We can simplify this by defining two new coefficients:

α̈ + τ/J + α̇kdamp/J − V kemf/J = 0

58

where kdamp =
(
ν + kbkτ

R

)
and kemf = kτ

R
.

4.2 Overall Dynamics

The overall dynamics of the self-balancing robot (neglecting the yaw degree of free-

dom, and assuming no wheel slip) can be found by solving 5 simultaneous equations

(the no slip condition, the derivative of the no slip condition, the motor equation, the

translation equation of motion, and the rotational equation of motion). The equations

of interest, the two degrees of freedom (θ, x) and are given by:

θ̈ =
2Jmlmr2w sin(θ)(θ̇)

2
−4Jmr2wv+rw(glm sin(θ)−2w)(2Jm−2Jw+mr2w+2mwr2w)+2(−2Jw+mr2w+2mwr2w)(V kemf rw+kdamprw θ̇−kdampẋ)

rw(2JJm−2JJw+Jmr2w+2Jmwr2w+4JmJw+2Jmlmrw cos(θ)−2Jmmr2w−4Jmmwr2w)

ẍ =
−lmr2w(J−2Jm) sin(θ)(θ̇)

2
+2r2wv(J−2Jm)+rw(2Jm+lmrw cos(θ))(glm sin(θ)−2w)+2(J+lmrw cos(θ))(V kemf rw+kdamprw θ̇−kdampẋ)
2JJm−2JJw+Jmr2w+2Jmwr2w+4JmJw+2Jmlmrw cos(θ)−2Jmmr2w−4Jmmwr2w

where rw is the radius of the wheel, Jw is the moment of inertia of the wheel, mw is

the mass of the wheel, Jm is the moment of inertia of the motor, l, is the distance

of the center of mass above the axle, w is a disturbance torque on the robot, v is a

disturbance force on the axle, x is the position of the robot, and θ is the pitch of the

robot.

The mass and moment of inertia of the vehicle structure (m, J) are much larger

than the mass and moment of inertia of the motor and wheels; therefore, we can

greatly simplify the above expression using the approximation Jw = 0,mw = 0, Jm =

0. When fitting the model, the existing parameters will accommodate for the total

mass and inertia properties.

Jrwθ̈ = 2V kemfrw + 2kdamprwθ̇ − 2kdampẋ+ rw (glm sin (θ)− 2w)

Jmr2wẍ =− Jlmr2w sin (θ)
(
θ̇
)2

+ 2Jr2wv + lmr2w (glm sin (θ)− 2w) cos (θ) + . . .

2 (J + lmrw cos (θ))
(
V kemfrw + kdamprwθ̇ − kdampẋ

)

59

4.2.1 Motor Test: No external torque

In this test, we are identifying the rise time and the amplitude of the response to

voltage input for the motors. This corresponds to the parameters kdamp/J and kemf/J

in the motor equation of motion. We isolate this response by lifting the vehicle off

the ground so that there is no external torque applied.

When the external torque, τ , is zero, the differential equation can be written in

the form:

Y = XΘ

Θ = X+Y

where

Y =


α̈0

α̈1

...

X =


−α̇0 V0

−α̇1 V1
...

...

 Θ =

kdamp/J
kemf/J

 (4.1)

The pseudo-inverse can be then used to obtain the least squares solution of the pa-

rameters. This method was chosen for its simplicity and speed.

Θ = (XTX)−1XTY

In Figure 4.2, we see that the fit matches the validation data set well. This

test can only reveal two parameters, the relative damping and torque response to

voltage, but it cannot at the same time determine the coefficient for the response to

an external torque. This is clear since both of the identified parameters are divided

by Jm. In order to find Jm, we need to apply an external torque, we do this in the

next experiment using the gravity torque of the vehicle.

4.2.2 Motor Test: Gravity torque

To identify the motor moment of inertia, Jm, we mount the vehicle so that it is

above the ground with the wheels clamped in place and can rotate freely about the

60

0 5 10 15 20 25 30 35
t, sec

1500

1000

500

0

500

1000

1500

θ,
de

g/
s

scaled duty cycle
α̇ measured
α̇ predicted

Fig. 4.2. Open loop system identification of wheel-motor (validation data).

Fig. 4.3. Gravity torque experiment in progress (see video)

wheels without ever touching the ground. We then can let the vehicle act as a simple

pendulum. The measured pitch angle is then used to compute the applied gravity

torque at each time instant.

https://www.youtube.com/watch?v=WPDO7KbXEj0

61

0 2 4 6 8 10 12 14 16
t, sec

400

300

200

100

0

100

200

300

θ̇,
de

g/
s

measured
estimated

Fig. 4.4. Open loop system identification validation data for gravity torque
experiment.

4.3 Closed Loop System Identification

Now that the vehicle parameters have been identified, we can use the model of the

vehicle to detect damage or a cyberattack. We use the data from the available sensor

coupled with the mathematical model to obtain pseudo-measurements for unmeasur-

able model parameters such as the mass of the robot. This algorithm is mechanized

using an extended kalman filter, (EKF), where an additional state is added for each

parameter that is expected to change. Estimating all of the vehicle parameters simul-

taneously is not practical with the measurements available. The EKF was mentioned

in Chapter 2 so we only give the relevant vectors to describe the filting algorithm

below:

x =
[
θ θ̇ x ẋ m

]T
u = V y =

[
θ θ̇ x ẋ

]T
The results of the closed loop system identification of the mass of the vehicle are

shown in Figure 4.3. Due to the non-linearity of the EKF algorithm, it is essential for

it to have reasonable starting estimates for the parameters, measurement noise, and

62

process noise. If the process noise is too high, then the model will gain no information

from the data. If the measurement noise is too high, then the filter will not converge

to the true value. Note that the velocity, ẋ, measurement is very noisy but the filter

smooths the estimate out using the process model. The value of the pitch, θ, is also

initially incorrect but converges after the mass parameter converges to the known

value.

63

0 2 4 6 8 10 12 14
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0

x
, m

estimated
measured

0 2 4 6 8 10 12 14
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

ẋ
, m

/s

0 2 4 6 8 10 12 14
10

5

0

5

10

15

θ,
de

g

0 2 4 6 8 10 12 14
80
60
40
20
0

20
40
60
80

θ̇,
de

g/
s

0 2 4 6 8 10 12 14
t, sec

2

4

6

8

10

12

m
, k

g

estimated
known

Fig. 4.5. Recursive system identification of robot mass using EKF algo-
rithm.

64

4.4 Lyapunov based Approach to PIHA Model Checking

An alternative to the H∞ approach for constructing a polyhedral invariant hybrid

automaton, PIHA, is to use Lyapunov functions to construct invariant sets. The

advantages of this method is that it can be applied to non-linear systems with bounded

disturbances. The disadvantage is that it is often difficult to find a Lyapunov function

for a given system and it is more computationally expensive. In Figure 4.6 it is clear

0 2 4 6 8 10
1.0

0.5

0.0

0.5

1.0

u

0 2 4 6 8 10
t, sec

0
1
2
3
4
5
6
7
8

y

H∞ bound
LMI bound

(a) sine input

0 2 4 6 8 10
1.0

0.5

0.0

0.5

1.0

u

0 2 4 6 8 10
t, sec

0
1
2
3
4
5
6
7
8

y

H∞ bound exceeded

H∞ bound
LMI bound

(b) square input

Fig. 4.6. A comparison of H∞ and LMI (Lyapunov) bounding for a linear
system.

that the LMI based Lyapunov bound out performs the H∞ bound. The assumptions

of the H∞ bound (steady state conditions, and sinusoidal input) are revealed in the

results. The sinusoidal input is well bounded, but the bound is over-approximated

initially. The H∞ norm is not able to bound the square wave input.

65

4.5 Simplified Analysis of Inverted Pendulum Dynamics

In order to make the analysis more tractable, we will limit our analysis to the

(x =
[
θ θ̇

]T
) subspace to demonstrate application of PIHA based model checking.

This is also a reasonable approximation for slow speed. In addition, when dynamic

inversion is applied, it will be possible to cancel the effects of the vehicle velocity on

the pitch dynamics.

ẋ =

 θ̇

1
l2m

(glm sin (θ) + u)


Since this is a mechanical system, the total energy is a Lyapunov function if we

also consider energy storage in the controller:

V = glm cos (θ) +
k1
2

(−θ0 + θ)2 +
l2m

2

(
θ̇
)2

The regulated dynamics are stable for any k2 > 0. Depending on the relative

magnitude of k1, the gravity torque, and the initial conditions, the equilibrium will

either be at θ = 0 or at θ = kπ, where k is an integer.

V̇ =
∂V

∂x

∂x

∂t
= −k2

(
θ̇
)2

The system is linearized by adding a term that cancels the gravity torque to the

input:

u = −glm sin (θ(t))− k1 (−θ0 + θ(t))− k2
d

dt
θ(t)

ẋ =

 θ̇

− k1
l2m

(θ(t)− θ0)− k2
l2m

θ̇(t)


The resulting dynamics and Lyapunov levels set are shown in Figure 4.7. Note

that for the LQR gains the quadratic approximation of the non-linear total energy

Lyapunov function is closer than the case where the gains are limited.

66

1.0 0.5 0.0 0.5 1.0
θ, rad

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ̇,
ra

d/
se

c

total energy
quadratic
trajectories

(a) LQR controller k1=11.5, k2=5.7)

1.0 0.5 0.0 0.5 1.0
θ, radians

1.5

1.0

0.5

0.0

0.5

1.0

1.5

θ̇,
ra

d/
se

c

total energy
quadratic
trajectories

(b) Underpowered controller k1=10, k2=2)

Fig. 4.7. Lyapunov level sets for dynamic inversion regulated system.

67

4.6 Invariant Set Calculation via Lyapunov Method

The Lyapunov function can be used to find an attractive and invariant set. Once

a state enters and invariant set it does not leave by definition. The invariant set

can then be used to construct flow pipes and verify system safety as discussed in

Chapter 3. The following theorem is from the AAE 666 class notes [50].

Theorem 4.6.1 Consider a disturbed linear system:

ẋ = Ax+Bw

z = Cx+Dw

where all eigenvalues of A have negative real part and w is a bounded input. Suppose

there exists a positive real scalar α such that:PA+ ATP + 2αP PB

BTP −2αµ1I

 < 0 (4.2)

CTC − P CTD

DTC DTD − µ2I

 < 0 (4.3)

then

||y(t)||∞ ≤ βe−αt + γ||u(t)||∞ ≤ β + γ||u(t)||∞ (4.4)

where

β = xT0 Px0 (4.5)

γ =
√
µ1 + µ2 (4.6)

Since α and P cannot both be a variable in the LMI in order for it to be linear,

a line search must be performed to minimize γ by changing α. It is beneficial to

68

minimize γ since it is the bound at steady state while α represents the transient

behavior.

The solution of the LMI problem was found using the PICOS python toolbox.

This is a toolbox that interfaces to cvxopt. See Table 4.1 for the input and output

to the program for the Lyapunov bounding problem..

Table 4.1.
Linear matrix inequality solution for the Lyapunov bounding problem
using the PICOS solver with CVXOPT back-end.

line search

Optimization terminated successfully.

Current function value: 1.687567

Iterations: 19

Function evaluations: 38

optimization problem (SDP):

5 variables, 0 affine constraints, 17 vars in 5 SD cones

P : (2, 2), symmetric

mu_2 : (1, 1), continuous

mu_1 : (1, 1), continuous

minimize mu_1 + mu_2

such that

[P*A + A.T*P + 2.0*alpha*P,P*B;B.T*P,(((-2.0)*alpha)*mu_1)*I] <= |-1e-10|

[C.T*C -P,C.T*D;D.T*C,D.T*D -mu_2*I] <= |-1e-10|

P >= (1e-10)*I

mu_1 >= 1e-10

mu_2 >= 1e-10

optimal alpha: [0.20525]

gamma: 1.68756728435

mu_1: 2.84788333291

mu_2: 6.30723574201e-09

P: [1.21e+00 2.83e-01]

[2.83e-01 1.38e+00]

69

Now that we have tools to bound the output of linear systems with bounded inputs,

we can develop a generic algorithm to calculate flow pipes for linear systems and

create a PIHA to facilitate model checking for a system switching between different

operating conditions. See Algorithm1 below.

Fig. 4.8. Construction of Lyapunov based flow pipe

Algorithm 1 Lyapunov flow pipe computation

1. Find the invariant set for a linear system with bounded input using the LMI

given in Theorem 4.6.1.

2. Propagate the reference trajectory for the system for a fixed time interval.

3. Compute the interval hull (smallest box enclosing the set) of the reference tra-

jectory for the propagation duration.

4. Compute the convex hull for the flow pipe segment as the Minkowski sum of

the interval hull and the invariant set.

5. Move to the next time interval and repeat the process.

The output of this algorithm for our simple system is shown in Figure 4.9. Note

for the LQR gains the flow pipes are small. For the underpowered case, the flow pipes

70

swirl into the new operating point after the mode change. Also the invariant sets at

each operating point are larger due to the increased ratio of disturbance to control

input.

0.15 0.10 0.05 0.00 0.05 0.10 0.15
θ, rad

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

θ̇,
ra

d/
s

(a) LQR Gains K=(11.5, 5.7)

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
θ, rad

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

θ̇,
ra

d/
s

(b) Underpowered Controller K=(10,2)

Fig. 4.9. Bisimulations for pendulum dynamics switching between 3 op-
erating points θ = (−0.1, 0, 0.1) rad.

71

One advantage of constructing the flow pipes as a series of convex hulls is that it

is efficient to check if a point is inside or outside the flow pipe. This is accomplished

by checking if the point is inside any of the convex hulls or not. In addition, the

flow pipes can be efficiently expanded by changing the offset coefficient in the convex

hulls. This allows expanding the convex hull to account for unknown disturbances.

The system could then recheck the safety of the internal logic and dynamics with the

new disturbance level and react accordingly.

0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12
θ, rad

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

θ̇,
ra
d
/s

Fig. 4.10. Flow pipes are constructed from a series of convex hulls and
can be efficiently expanded to account for unexpected disturbances.

4.7 Conclusion

In this chapter, we have developed the concept of Lyapunov based flow pipes to

address the non-linearities in the two-wheel self-balancing robot. This method was

used to create a PIHA based model of the system. In addition, an EKF online system

identification algorithm was created that can be coupled with PIHA model checking

as discussed in Chapter 3 for adaptive planning.

72

5. CASE STUDY: QUADROTOR WITH OPTICAL FLOW

BASED VISUAL ODOMETRY

Fig. 5.1. Tarot Peeper quadrotor with custom 3D printed onboard com-
puter canopy, prop guards, and optical flow sensor.

Many UASs have limited payload capacity due to their small size. Because of these

payload restrictions, the sensing and computational payload must be lightweight, and

sensors for such systems are generally limited to Inertial Measurement Units (IMUs)

and GPS receivers, sometimes with the addition of altimeters and cameras. Increased

UAS diversity and usage has seen the potential applications of UASs expand into

varied tasks such as search and rescue, infrastructure inspection, and agriculture [51–

53] . In many UAS use cases, increased accuracy for state estimation is desirable or

required for autonomous or semi-autonomous operation. Some results of this chapter

were published in the paper [54].

The standard set of sensors used to gather state information (IMU, GPS, magne-

tometer and barometer), is an effective combination and is accurate to within a few

73

centimeters when GPS is available. In many environments and situations, however,

GPS signals can be unreliable or absent. In GPS-denied situations, the standard sets

of sensors will accumulate error over time due mainly to drift in IMU that goes uncor-

rected by the ground truth position and velocity from the now-absent GPS. Because

UASs operate in a range of different environments with varied GPS availability, it is

sometimes necessary to have an accurate estimation of the state from an information

source outside this usual set of sensors that can function when GPS is unavailable.

Optical flow measurements have been used for some situations where GPS is un-

available for a UAS, especially indoors. In a confined indoor environment, practically

attainable speeds are generally much slower than in more open outdoor areas. This is

acceptable because aircraft must fly closer to the ground indoors, and ground-facing

optical flow sensors necessitate slower velocities the closer a UAS is to the ground.

Ground-facing optical flow measurements require speed to be below a certain thresh-

old depending on altitude so that features on the ground do not leave the field of

view between successive images. Indoor flying also has the advantage of more uni-

form surfaces and less shadow in general than outdoor flying, so the error of optical

flow measurements will generally be more consistent inside than outside.

The motivation for this work stems from a need for accurate navigation of a UAS

in the absence of GPS measurements. This position is used to prevent errors in

IMU acceleration measurements from accumulating over the course of the mission.

Without such measurements, the UAS’s estimate of its position diverges from the

actual position, which can cause increasingly degraded navigation performance.

Optical flow based UAS navigation systems have not flown outdoors with sufficient

accuracy to replace GPS over the duration of a typical mission (several minutes to

tens of minutes). We improve optical flow based outdoor navigation performance by

improving the estimation algorithms used in an optical flow based UAS navigation

system, allowing the UAS to operate outdoors and at higher speeds because it can

obtain a more accurate state estimate than similar systems in the absence of GPS

data.

74

The contributions of this work are a robust, light-weight, and low cost optical flow

based navigation solution that features an Invariant Extended Kalman Filter (IEKF)

and enables flying outdoor missions without GPS. Our system can also be used as a

backup layer in more complex systems with active visual odometry, given that the

computational demand of this layer can be scaled for processors from the STM32F4

(as on the PX4Flow) up to high-end systems such as multi-core ARM processors.

We demonstrate the improved accuracy of the optical flow based navigation tech-

niques through the simulation of two outdoor flight scenarios of a quadrotor equipped

with an optical flow unit, laser altimeter, and updated software with IEKF, without

using GPS data. We also compare the performance of the system running our es-

timation algorithms to the performance of the same system running our previous

estimation algorithm that was able to first achieve optical flow based mission flight,

LPE. LPE is a local position estimator that is coupled with a non-linear and inde-

pendent quaternion based attitude estimator.

The rest of the chapter is organized as follows. Section 5.1 discusses past work

related to the work we present. Section 5.2 gives details about the estimation and fil-

tering techniques used in this work. Section 5.3 describes the experimental setup and

provides a discussion of the experimental results. Section 5.4 analyzes the stability

properties. Lastly, Section 5.5 presents conclusions and future work.

5.1 Related Work

This work combines IEKF estimation and optical flow based navigation tech-

niques, and this section gives an overview of past work related to both of these areas.

An invariant extended Kalman filter takes advantage of the symmetries of a system

so that the estimation error follows a stochastic differential equation independent of

the system’s trajectory as long as the system is group affine [55,56]. Due to the bias

states, our system is not group affine, but the small magnitude of the bias error make

this approach useful in practice [57].

75

For a nonlinear system with symmetries, the IEKF uses a geometrically adapted

correction term based on invariant output error instead of a linear correction term

based on linear output error [58]. Similarly, the gain matrix is updated using an

invariant state error rather than a linear state error. The gain of the covariance matrix

converges to constant values in a much larger set of trajectories in the invariant case

than in the case of the EKF, where convergence is guaranteed for the equilibrium

points only. This larger domain of convergence results in more accurate estimation

in general. The IEKF has been applied to an attitude estimation problem for a

moving rigid body, which is an analog for a UAS, with GPS, inertial, and magnetic

measurements [58].

Ground-facing optical flow navigation uses images from a ground-facing camera

to track the relative motion of the UAS and the surrounding environment. Combined

with rotation information and the distance to the ground, optical flow measurements

can be used to calculate the velocity of the vehicle. Some of the earliest optical flow

sensors took advantage of the sensors from optical computer mice [59], but more ad-

vanced hardware exists that can be implemented in an optical flow sensor to reduce

the drift present in the early systems [60]. To deal with the high computational de-

mands of optical flow computations for mobile robotic systems, specialized standalone

optical flow systems have been developed and optimized for robotic navigation using

improved sensors and processors [61,62].

5.2 Estimation

The estimation algorithm we employ considers the kinematics, including the ro-

tation and translation of the UAS, without considering the forces acting on it. The

rotational kinematics are described by the first order differential equation for the time

derivative of the quaternion, q̇nb, representing the rotation from the body frame to

the navigation frame. The translational kinematics are expressed in the navigation

76

frame, with the acceleration given as a function of the acceleration due to gravity,

−gn̂z, and the acceleration in the body frame, ab.

q̇nb =
1

2
qnb ⊗ nωbb (5.1)

n
V̇

P

n = −gn̂z + qnb ⊗ ab ⊗ q −1nb (5.2)

Ṙ
OP

n = nV P
n (5.3)

The gyroscope measurement, yg, consists of the actual angular velocity of the

body frame relative to the navigation frame, yg, plus a bias term, bg. The bias term

is modeled as a first order differential equation where the time derivative of the bias is

composed of a deterministic and a stochastic component. the stochastic component

is assumed to be zero mean Gaussian, N (0, σ2
g).

yg = nωb + bg (5.4)

ḃ
g

= −τgbg + vg (5.5)

vg ∼ N (0, σ2
g) (5.6)

The accelerometer is modeled in a similar manner to the gyroscope. The measure-

ment, ya, is composed of the actual acceleration of the UAS relative to the navigation

frame, ab, plus a bias term. The bias term is modeled as having its time derivative

equal to the sum of a deterministic and stochastic term, where the stochastic compo-

nent is assumed to be zero mean Gaussian, N (0, σ2
a).

ya = ab + ba (5.7)

ḃ
a

= −τaba + wa (5.8)

wa ∼ N (0, σ2
a) (5.9)

The optical image is centered at a point distance d below the vehicle camera,

aligned with the camera direction b̂z. If we compute the velocity of this vector in the

77

body frame we can derive an approximate equation for the optical flow of the image

assuming a small image field of view, see Figure 5.2.

RPG = db̂z (5.10)

nV PG = bV PG + nωb × RPG (5.11)

nV PG = nV G − nV P (5.12)

We note that ground velocity is zero in the navigation frame.

nV G = 0 (5.13)

This yields:

bV PG = −nV P − nωb × db̂z (5.14)

which is used to compute the measurement equations for optical flow below where we

take the dot product of the velocity with b̂x and b̂y, assuming the camera is aligned

with the body:

yfb =

bV PG
b ◦ b̂x

bV PG
b ◦ b̂y

 (5.15)

The state vector is composed of the quaternion describing the rotation from the

body frame to the navigation frame (4 states), the velocity in the navigation frame

(3 states), the position in the navigation frame (3 states), the gyroscope bias in the

body frame (3 states), and the accelerometer bias in the body frame (3 states). The

input vector consists of the accelerometer and gyroscope measurements in the body

frame. These measurements are treated as input to the kinematic model and used for

prediction. This is a typical approach in strap-down inertial navigation and is widely

used since it doesn’t require a dynamic model of the vehicle for prediction.

x =
[
qnb

nV P
n ROP

n bgb bab

]T
(5.16)

u =
[
yab ygb

]T
(5.17)

78

Fig. 5.2. A diagram of the vehicle, shown in the simple asphalt world.

79

ẋ = f(x, u) + w (5.18)

f(x, u) =



1
2
q̂nb ⊗ (ygb − b

g
b)

−gn̂z + q̂nb ⊗ (yab − b
a
b)⊗ q̂

−1
nb

n
V̂

P

n

−τgbgb
−τabab


(5.19)

w ∼ N (0, Q) (5.20)

The functions f(x, u) and g(x, u)) can be expressed in terms of an error state

from a reference state. This simplifies the Jacobian matrices, allowing them to be

constant along permanent trajectories if the frame of linearization is chosen wisely, as

described in [55]. Note that γ̂ is incremental rotation angle error from the navigation

frame. The benefit of this can be seen clearly in the difference between linearization in

the body frame in Figure 5.3 and linearization in the navigation frame in Figure 5.4.

e =



γ̂ − γ
n
V̂

P

n − nV P
n

R̂
OP

n − ROP
n

b̂
g

b − b
g
b

b̂
a

b − bab



T

(5.21)

The error dynamics are then linearized to produce the required matrices for the

continuous prediction and discrete update Kalman filter. The continuous predic-

tion step is implemented on a digital compute, so it is not truly continuous, but

is considered as such as it is run at 250 Hz while most of the measurements arrive

asynchronously and at a much lower rate. When the measurements arrive, zk, the

standard discrete time Kalman filter correction is used.

80

Fig. 5.3. Rotation uncertainty standard deviation, sample from PX4
EKF2 estimator (LPE cannot be compared since it had a separate at-
titude estimator).

Fig. 5.4. Rotation uncertainty standard deviation for invariant (IEKF) fil-
ter. Note that the response is primarily a function of time and approaches
a steady-state independent of the trajectory.

81

F =
∂f(ê, u))

∂x̂
B =

∂f(ê, u))

∂u
(5.22)

H =
∂g(ê, u))

∂x̂
D =

∂g(ê, u))

∂x̂
(5.23)

˙̂x(t) = f(x̂(t), u(t)) (5.24)

x̂k|k−1 = x̂k−1|k−1 +

t2∫
t1

f(x̂(t), u(t))dt (5.25)

Ṗ (t) = FP (t) + P (t)F T +Q(t) (5.26)

Pk|k−1 = Pk−1|k−1 +

t2∫
t1

Ṗ (t)dt (5.27)

Sk = HkPk|k−1H
T
k +Rk (5.28)

Kk = PkH
T
k S
−1
k (5.29)

Pk|k = (I −KkHk)Pk|k−1 (5.30)

x̂k|k = x̂k|k−1 +Kk(zk − h(x̂k|k−1)) (5.31)

The system is given as:

ẋ = f(x, u,+)M(x)w (5.32)

y = h(x, u,+)N(x)v (5.33)

We consider the following non-linear stochastic dynamic system:

82

ẋ = f(x, u) +M(x)w

y = h(x, u) +N(x)v

w ∼ N (0, 1)

v ∼ N (0, 1)

Consider a Lie group (g ∈ G) with local transformation groups ϕg, ψg, ρg and identity

element Ig, such that X = ϕg(x), U = ψg(u), and Y = ρg(y). The non-linear

stochastic system above is said to be invariant if it is unchanged by the transformation

groups and the following transformed system of equations is valid.

Ẋ = f(X ,U) +M(X)w

Y = h(X ,U) +N(X)v

The continuous-discrete form of the IEKF prediction step is given below. Note

that the covariance propagation is only dependent on the estimated invariant Ĵ (x̂, u),

which is the main reason that convergence properties are improved over a standard

EKF.

x̂k|k−1 = x̂k−1|k−1 +

tk∫
tk−1

f(x̂, u)dt

F (Ĵ) =
∂f(x̂, u)

∂x̂

Pk|k−1 = Pk−1|k−1 +

tk∫
tk−1

(
F (Ĵ)P + PF T (Ĵ) +M(Ig)M(Ig)

T
)
dt

83

The continuous-discrete form of the IEKF correction step is then given below.

Note also that the correction step is only dependent on the estimated invariant

Ĵ (x̂, u) and the estimated invariant error Ê .

Hk(Ĵ) =
∂h(x̂, u)

∂x̂

Sk = HkPk|k−1H
T
k +N(Ig)N

T (Ig)

Kk = Pk|k−1H
T
k S
−1
k

Pk|k = (I −KkHk)Pk|k−1

Ê = ρx̂−1(y)− ρx̂−1(h(x̂, u))

xk|k = xk|k−1 +Dϕg(Ig)KkÊ

q̇nb =
1

2
qnb ⊗ nωbb

n
V̇

P

n = −gn̂z + qnb ⊗ ab ⊗ q −1nb

x =
[
qnb

nV P
n bgb bab

]T
(5.34)

u =
[
yab ygb

]T
(5.35)

The state space can be considered a group with the operator. Note that this can

be considered at rotation in the earth frame, translation in the body frame, angular

velocity in the body frame, and the acceleration in the body frame.

ϕ(q0, V0, ω0, a0)


q

V

ωb

ab

 =


q ⊗ q0
V + V0

q−10 ωbq0 + ω0

q−10 abq0 + a0



84

The following transformation groups may also be defined. Note we define an ac-

celerometer bias instead of accelerometer scale factor as this was more appropriate

for our sensor error model.

Ψ(q0,V0,ω0,a0)

ωm
am

 =

q−10 ⊗ ωm ⊗ q0 + ω0

q−10 ⊗ am ⊗ q0 + a0



ρ(q0,V0,ω0,a0)

yV
yB

 =

 yV + V0

q−10 ⊗ yB ⊗ q0


The invariants are given by Ψx̂−1(u), where x̂−1 = (q̂ −1nb ,−

n
V̂

P

n ,−
nω̂bn,−q̂

−1
nb ⊗ b̂

g

b ⊗

q̂nb,−b̂
a

b) J̃w
J̃a

 =

q̂nb ⊗ (ygb − b̂
g

b)⊗ q̂
−1
nb

q̂nb ⊗ (yab − b̂
a

b)⊗ q̂
−1
nb


The invariant output error is given by:

E = ρx̂−1

 ŷfb
ŷmb

− ρx̂−1

yfb
ymb

 =

 ŷfb − y
f
b

Bn − q̂nb ⊗ ymb ⊗ q̂nb


The invariant state error η = x−1x̂ is given by:

µ

ν

β

α

 =


q̂nb ⊗ q −1nb

n
V̂

P

b − nV P
b

qnb ⊗ (b̂
g

b − b
g
b)⊗ q

−1
nb

qnb ⊗ (b̂
a

b − bab)⊗ q −1nb



85

When linearized about the group identity, (1, 0, 0, 1) and dropping all quadratic

terms, we obtain the following state space representation:

F =


033 033 −1

2
I3 033

−2J̃a× 033 033 −1
2
I3

033 033 J̃ω× 033

033 033 033 J̃ω×


H =

 033 I33 033 033

2Bn× 033 033 033


M = Diag(Mq,MV ,Mω,Ma)

N = Diag(Nf , Nm)

K = −(Kq, KV , Kω, Ka)
T

x =
[
qnb

nV P
n bgb bab

]T
(5.36)

u =
[
yab ygb

]T
(5.37)

ẋ = f(x, u) +M(x)w (5.38)

f(x, u) =


1
2
q̂nb ⊗ (ygb − b

g
b)

−gn̂z + q̂nb ⊗ (yab − b
a
b)⊗ q̂

−1
nb

0

0

 (5.39)

w ∼ N (0, 1) (5.40)

(5.41)

86

5.3 Simulation

In this section we investigate the performance of the IEKF in two simulation

scenarios: flying over asphalt and flying over a forest. First, we give an overview

of the UAS used in this simulation and its various components. The airframe is

the IRIS+ quadcopter from 3D Robotics modified with a PX4flow optical flow unit

and SF10-A laser altimeter, both mounted on the bottom of the airframe facing the

ground. The IRIS+ has a Pixhawk autopilot running the PX4 autopilot software,

and a GPS receiver. The open source autopilot software is modified to include our

implementation of the IEKF.

The Pixhawk’s integrated sensors include a 3-axis combination accelerometer and

gyroscope, an additional gyroscope, a combination accelerometer and magnetometer,

and a barometer. For ground-facing optical flow measurements we use the PX4Flow

[62], an open source software and hardware optical flow camera and computation

system. The sensor combines a sonar range finder, a machine vision CMOS sensor,

and a gyroscope. The optical flow processing is performed on a 4x4 binned image

at 400 Hz. The increased light sensitivity aids in outdoor performance as well as

performance in lower light indoor environments.

Using data from the gyro to account for rotation and data from the altimeter

to give distance from the ground, the PX4Flow performs optical flow calculations

which result in velocities in the forward and rightward directions. Specifically, the

PX4Flow calculates rotation compensated ground velocities, non rotation compen-

sated flow measurements, the altitude measurement and a measure of quality of the

measurements.

For accurate altitude measurements we use the Lightware SF10-A laser altimeter,

which works by emitting a laser pulse and measuring the time it takes the pulse to

reach the ground and bounce back. It is effective from 0 to 25 meters with a resolution

of 1 cm at 32 Hz. It can be directly integrated into the Pixhawk via serial connection.

87

The software in the loop (SITL) simulation environment reproduces this configura-

tion with high fidelity, incorporating realistic aircraft and sensor models and running

the same PX4 firmware that runs on the actual Pixhawk hardware.

In both scenarios we compare the results of the default PX4 estimator to the IEKF

described in this chapter. The PX4’s default estimator is called the Local Position

Estimator (LPE), which is an implementation of the Extended Kalman filter.

5.3.1 Asphalt World

The asphalt world consists of a flat, level, square piece of ground with an asphalt-

like texture. Figure 5.2 shows the quad rotor model flying above the asphalt plane

with a gray background. The scenario for this environment is a flight through five

waypoints, which is depicted in Figures 5.5 and 5.6 for the LPE estimator and IEFK

estimator, respectively. We note that from comparing the figures, the IEKF follows

the desired trajectory more closely than LPE. Table 5.1 compares the errors and

standard deviations of the state estimates form the LPE and IEKF, showing the

IEKF has superior performance to the LPE overall.

5.3.2 Forest World

The forest world consists of a randomly generated lightly-hilled terrain with

patches of dirt and grass, and several types of trees. Figure 5.7 shows a top-down

view of the forest simulation environment, and Figure 5.8 shows a view of the same

environment from closer to the ground. Similarly to the asphalt scenario, the scenario

for the forest environment is a flight through five waypoints, depicted in Figures 5.9

and 5.10 for the LPE estimator and IEFK estimator, respectively. As in the asphalt

case, we note that from comparing the figures the IEKF performs much more closely

to the desired trajectory than the LPE. Table 5.1 compares the errors and standard

deviations of the state estimates form the LPE and IEKF, showing the IEKF has

superior performance to the LPE overall.

88

Fig. 5.5. Position estimation performance of LPE in asphalt world.

89

Fig. 5.6. Position estimation performance of IEKF in asphalt world.

Fig. 5.7. The randomly generated forest environment as seen from above.

90

Fig. 5.8. The randomly generated forest environment as seen near ground.
(see video)

https://www.youtube.com/watch?v=fx5MeMG-DM0

91

Fig. 5.9. Position estimation performance of LPE in forest world.

92

Fig. 5.10. Position estimation performance of IEKF in forest world.

93

Table 5.1.
Estimator performance summary.

iekf-forest iekf asphalt lpe-asphalt lpe-forest

roll error mean (deg) -0.579716 -0.804876 -0.666432 -0.858474

roll error std (deg) 0.948943 1.350552 1.557641 1.294216

pitch error mean (deg) -1.574314 -1.063777 -1.023135 -0.415455

pitch error std (deg) 1.521558 1.676162 1.441003 2.294992

yaw error mean (deg) 4.218197 2.935080 4.132194 4.546224

yaw error std (deg) 1.974698 1.053764 3.179310 2.493628

vx error mean (m/s) 0.029789 0.033832 0.076343 0.089883

vx error std (m/s) 0.108827 0.119753 0.361049 0.861364

vy error mean (m/s) 0.035905 -0.000781 -0.080879 -0.113024

vy error std (m/s) 0.104390 0.073591 0.447757 0.504294

vz error mean (m/s) -0.014053 -0.052192 -0.068068 -0.082464

vz error std (m/s) 0.064945 0.038756 0.076836 0.139088

x error mean (m) 0.284757 0.278491 0.215694 2.256762

x error std (m) 0.790395 0.414855 0.791383 3.217910

y error mean (m) 0.579137 -0.008913 0.297288 0.709045

y error std (m) 0.789139 0.189227 0.683715 1.068405

z error mean (m) 0.481207 0.072513 0.054236 0.623590

z error std (m) 0.088114 0.019158 0.029134 0.288893

A summary table of the performance of the two estimators in both environments

in shown in Table 5.1. Note that in general the IEKF estimator outperforms the

LPE estimator. Also, the forest environment is more challenging for both algorithms

due to the uneven terrain, multiple textures, and varying commanded height above

ground, but the IEKF is more robust to these problems and still performs well.

5.4 Continuous Kalman Filter Invariant Set via LMI

We selected the IEKF due to the local asymptotic stability for group affine systems

proven in [56]. Unfortunately, this proof requires the system to be group affine. A

group affine system’s dynamics are log-linear, meaning the system evolution can be

represented exactly by a differential equation on the Lie algebra. The Lie exponential

map can then be used to transform the Lie algebra back to the Lie group representing

the state. The sensor bias in our estimator prevents the system from being group

affine. In practice, it has been noted that the bias errors are small and the system

possesses good convergence properties [57].

94

We can approximate the attitude estimation of the UAS as a steady-state con-

tinuous Kalman filter on the lie group with bounded disturbances, and a bounded

model error representing the effect of the bias. The high sampling rate of the IMU

makes the continuous approximation feasible. If the measurement and process noise

matrices are constant, the covariance matrix will converge in steady-state, regardless

of the measurements.

For the continuous time steady-state Kalman filter, we construct a linear matrix

inequality (LMI) which can be used to calculate an invariant set for the error in

the Kalman filter when the Gaussian measurement and process noise are replaced

with bounded disturbances. This is a practical assumption as truncated normal

distributions are more representative of the true system. In addition, we may increase

the disturbance levels to represent cyberattacks or environmental conditions such as

extreme weather. Bounded modeling errors such as bias, can be accounted for by

incorporation into the disturbance magnitude or using polytopic Lyapunov functions

to bound errors in the A matrix [50].

We consider the linear observer dynamics with matrices M and N to shape the

disturbance. This allows us to simplify the LMI by settings ||w||∞ < 1 and ||v||∞ < 1

to represent the bounded disturbances while their magnitude may be embedded in

M and N .

ẋ = Ax+Mw

y = Cx+Nv

ŷ = Cx̂

˙̂x = Ax̂+ L(y − ŷ)

= Ax̂+ LCe+ LNv

e := x− x̂

ė := (A− LC)e+Mw − LNv

95

The time derivative of the Lyapunov function can be found using the system dynamics

and the product rule.

V := eTPe

Ao := A− LC

V̇ = ėTPe+ eTP ė

= (eTATo + wTMT − vTNTLT)Pe+ eTP (Aoe+Mw − LNv)

= eT (ATo P + PAo)e+ wTMTPe− vTNTLTPe+ eTPMw − eTPLNv

The inequality we wish to represent is:

V̇ + V − γv||v||2 + γw||w||2 < 0 (5.42)

If (5.42) is true, then if V > γw||w||2 + γv||v||2, then V̇ < 0. This is the condition for

an attractive invariant set, given by V ≤ γw||w||2 + γv||v||2.

We consider a simple yet illustrative example:

A =

 0 1

−2 1

 C =
(

0 1
)

M =

1 0

0 1

 N =
(

1
)

L =

−0.41421356

0.91229032


The LMI can be constructed as follows:

minimize: γv + γw

subject to the constraints:


ATo P + PAo + P PM −PLN

MTP −γwI 0

−NTLTP 0 −γvI

 < 0 (5.43)

P > 0 (5.44)

96

3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

y

Trajectory
invariant set

Fig. 5.11. Kalman Filter Monte Carlo Simulation - Error Trajectories

97

In Figure 5.11 it is clear that all trajectories are attracted to the invariant set

in the monte carlo simulation and eventually they remain within the invariant set.

Figure 5.12 shows this more clearly by plotting the evolution of the Lyapunov function

found by the LMI for each trajectory. It is clear that the Lyapunov function eventually

converges below gamma, representing the value of the Lyapunov function at the

boundary of the invariant set. Note that since the invariant sets exist in the Lie

0 2 4 6 8 10
t, sec

0

10

20

30

40

V

Lyapunov Function
gamma

Fig. 5.12. Kalman Filter Monte Carlo Simulation - Error Lyapunov Func-
tion

algebra, the exponential map must be used to transform them back to the Lie group

before creation of a flow pipe.

5.5 Conclusion

In this chapter we have derived an IEKF based estimation algorithm for a quadro-

tor with ground-facing optical flow measurements which improves position estimation

over the EKF. We compared the results for simulated flights over asphalt and for-

est environments, demonstrating that the IEKF’s performance was superior to the

98

EKF’s. This increased performance allows for outdoor autonomous missions to be

flown in the absence of GPS data. Finally, we have constructed a linear matrix in-

equality (LMI) to compute an invariant set of the IEKF for application of PIHA based

model checking as discussed in Chapter 3.

99

6. COUNTER UNMANNED AERIAL SYSTEM

In the last few years, several high profile events have been interrupted by small scale

UASs, commonly referred to as drones. In September of 2013, a man flew a UAS in

front of the German chancellor during a campaign event [63]. Two years later, in Jan-

uary 2015, a hobbyist accidentally piloted his DJI Phantom over the highly restricted

airspace near the White House and crashed it on the ground [64]. Fortunately, there

were no personal injuries or damage in either of those cases. However, as a direct

result of those incidents and more, world governments realized that there are a lack

of security protocols in place for such small, yet potentially dangerous, threats. In

both of the aforementioned cases, the UAS operators had no ill-intent. Yet, as UASs

become more innovative, so too might the threats. The fear that UASs will be used

for more nefarious purposes, causing severe risk to life and property, is legitimate.

This chapter is based on a conference paper [65].

Most of the threat of UASs being used for malicious purposes stems from the

fact that these small systems are very difficult to detect. Small UASs are nearly

impossible to see with a naked eye from long distances. Anti-aircraft systems that

are built specifically for detecting objects in the sky are typically specialized to detect

much larger objects or smaller objects moving at much faster speeds. These detection

systems, similar to the ones used by the White House, cannot detect small, slow

moving UASs [66]. Smaller detection systems have difficulty distinguishing UASs

from small birds or other small, slow moving objects in the sky. Furthermore, small

UASs are typically flown at much lower altitudes than standard aircraft. Anti-aircraft

weaponry pointed at such low altitudes is not only ineffective at countering very small

UASs, but also becomes an immediate danger to any people in the area. Similarly, if

the UAS has a volatile payload, any destructive counter-measure may cause the UAS

and its payload to drop into an undesirable area. An ideal solution to the threat of

100

GCS Detection / Tracking

Station

Border of

No Fly Zone

Target UAS

Hunter UAS

Countermeasure

Real-time Position

of Target UAS

!
Protected

Object

Fig. 6.1. Overview of the CUAS

UASs must be low-regret, meaning that as few people as possible are alarmed or put

in harm’s way when taking down the threat.

6.1 Controller Design

For estimation of the target UAS state, x, we assume a constant velocity model,

as defined below, and employ a hybrid Kalman filter with a continuous prediction

step and a discrete update step. RADAR measurements, zk, are used to correct the

estimate and are received at 10 Hz.

101

x =
[
px py pz vx vy vz

]T
(6.1)

f(x) =
[
vx vy vz 0 0 0

]T
(6.2)

dx(t)

dt
= f(x(t)) + w(t) (6.3)

g(x) =
[
px py pz

]T
(6.4)

zk = g(xk) + vk (6.5)

where pi are the position components in the north-east-down frame, vi are the velocity

components in the north-east-down frame, the state at step k is defined as xk = x(tk),

the RADAR measurement at step k is defined as zk = z(tk), the process noise at

time t, w(t), is normally distributed with mean 0 and covariance matrix Q, w(t) ∼

N (0, Q), and the RADAR measurement noise at step k, vk, is normally distributed

with mean 0 and covariance matrix R, vk ∼ N (0, R).

In order to increase the rate of successful engagement, we command the hunter

position set-point xsp to lead the trajectory of the target by ∆l = 0.6 seconds. This

accounts for both the net trailing the hunter UAS, due to drag at high velocities, as

well as latencies in the system. This prediction is achieved using the constant velocity

model defined below.

xsp = x̂(t) + f(x̂(t))∆l (6.6)

A PID controller is then used to regulate the error (xe = xsp − x̂) in the system

and send a velocity command to the lower level control laws. This velocity command

must be saturated using the norm of the velocity, instead of component-wise for the

x and y components, to ensure that the heading to the target is preserved. Since the

target vehicle is approaching from a distance, the velocity command will be saturated

during a significant portion of the flight. It is therefore important that the saturated

velocity vector point toward the target. This simple approach proved effective. If

the hunter overshoots the target on the first pass, it turns around and then continues

102

trying to intercept while following where the relative speed is reduced and the tracking

is more accurate.

If the commanded velocity in the x-y plane exceeds the maximum, Vxy, it is

saturated by:

satxy(vx) = Vxy

(
vx/
√
v2x + v2y

)
(6.7)

satxy(vy) = Vxy

(
vy/
√
v2x + v2y

)
(6.8)

Similarly, if the commanded z velocity exceeds the maximum, Vz, it is saturated by:

satz(vz) = Vz

(
vz/
√
v2z

)
(6.9)

The original PX4 firmware did not employ saturation for the local position setpoint

command sent via MAVLink [67], so a modification to the firmware was required. The

hunter UAS reached speeds of 20 m/s without velocity saturation, which reached the

target quickly, but lead to excessive overshoot.

6.2 Experiments and Results

Field testing was conducted over a five day period in June 2015, due to limited

availability of the RADAR equipment, to evaluate the performance of the prototype

CUAS. The experiments revealed issues with the control of the system, as discussed

previously, but finally concluded with a successful engagement of the target UAS

by the hunter. As a result of our limited test time, we were only able to conduct

five test flights with the final software configuration, and we were successful on the

5th attempt. A photo of the engagement is shown in Fig. 6.2. After the successful

engagement with the RADAR-based system, we repeated the experiment with LIDAR

in place of RADAR. LIDAR was less successful since the UAS had to be close before

it was visible.

103

Fig. 6.2. Engagement of target by hunter

104

!

"

#

Aerial View

Initial Position of

Hunter UAS Initial Position of

Target UAS

Protected

Object

Engagement Area

$

GCS

Fig. 6.3. Aerial view of the test site

6.2.1 Test Setup

The tests were performed at an abandoned airport with a 500 meter asphalt

runway. The aerial view of the airport is shown in Fig. 6.3. To make the test as

realistic as possible, we used a DJI Phantom 2 as the target UAS, due to its popularity

in the market. The target UAS flew in a straight line from the end of the runway

toward the protected area at 4 m/s.

6.2.2 Results

The overall results are plotted in Fig. 6.4. Notice that when RADAR data is not

present, the prediction of the target UAS continues in a straight line. The hunter

UAS approaches the target and makes the first pass around 100 meters from the

protected location. The hunter then continues engagement attempts over the next

105

0 20 40 60 80 100 120 140
E, m

20

0

20

40

60

80

N,
 m

hunter
target

runway
capture

Fig. 6.4. Interception of target by hunter with RADAR based tracking

13 seconds and 52 meters. The final engagement occurs at approximately 40 meters

from the protected location.

The time history of the target and hunter trajectories can be seen in Fig. 6.5. The

initial pass of the target by the hunter occurs at 15 seconds. As the measurements

become more accurate, the hunter continues making engagement attempts with the

net until it captures the target UAS at 28 seconds.

The altitude time history is shown in Fig. 6.6. The RADAR elevation angle data

is degraded when compared to the azimuth, so we compensated by having the hunter

vehicle fly at a set height of 17 meters and increasing the length of the net to account

for the uncertainty in the target altitude. The hunter altitude tracking performance

error remains below 1 meter from the estimated altitude during the entire flight.

The engagement is visible on the plot of the measured IMU data at 28 seconds.

There is a 1 g spike in the z acceleration as the vehicle stops after the engagement,

but in this case, the target UAS was a DJI Phantom 2 and the props stopped after

hitting the carbon fiber supports on the net, which caused it to fall to the ground

106

0 5 10 15 20 25 30
t, sec

0

20

40

60

80

100

120

140

po
si

tio
n,

 m

target x
target y
hunter x
hunter y
capture

Fig. 6.5. Position tracking

0 5 10 15 20 25 30
t, sec

12

13

14

15

16

17

18

19

20

AG
L,

 m

target
hunter

capture

Fig. 6.6. Altitude tracking

107

0 5 10 15 20 25 30
t, sec

20

15

10

5

0

5

10

15

Ac
ce

le
ra

tio
n
m
/
s

2

x
y

z capture

Fig. 6.7. Measured IMU accelerations of the hunter

instead of becoming tangled. This caused little disturbance to the hunter as shown

in Fig. 6.7.

Fig. 6.8 shows the two phases of flight where the hunter approaches the target UAS

and reaches the commanded velocity of 7m/s. After missing the first high velocity

pass, the hunter turns around to pursue the target with the net and engages it at 28

seconds. The ability of this system to continue engagement attempts makes it more

robust than single-fire systems, such as net guns, where you cannot retry after the

first attempt.

6.3 Conclusion

Our experiment has shown that RADAR-based, fully autonomous, air-to-air Counter

Unmanned Aerial Systems (CUASs) are possible with existing technologies. The ma-

jor challenges were distinguishing between the target and hunter UASs when they

were near each other and the altitude accuracy of the RADAR measurements. The

cylindrical net design that enabled a single hunter UAS to make repeated engagement

108

0 5 10 15 20 25 30 35
t, sec

0

2

4

6

8

10

ve
lo

ci
ty

, m
/s

XY norm
XY cmd norm

capture

Fig. 6.8. Velocity magnitude (xy components) of the hunter

109

attempts at various angles and with full autonomy greatly improved the reliability

of the system. To improve the reliability of the system, the size of both the net and

the hunter UAS can be increased. Also, the commanded approach trajectory could

employ game theory, instead of saturated PID control.

110

7. SUMMARY

In this dissertation, we have discussed the vulnerabilities inherent in current un-

manned vehicles to both malicious attacks and system logic errors. We have then

stepped through a series of progressively complex case studies and developed algo-

rithms for verification of each vehicle. We have focused on creation of flow pipes

for each case which are the fundamental building block of Polyhedral Invariant Hy-

brid Automatons (PIHAs). We have demonstrated application of PIHA based model

checking by hand in Chatper 3. This work can be used for reachable set analysis,

or model checking when combined with a finite state machine representation of the

control system. Finally to address the threat of a UAS under hostile control, we have

developed and tested a control system for a hunter UAS coupled with ground based

RADAR.

7.1 Acknowledgments

We would like to thank Sypris Electronics for supporting the work in Chapter 2.

Chapter 3 was supported by the National Science Foundation under Grant Numbers

CNS-1239196, CNS-1239171, and CNS-1239229. Additional support was provided by

the AFRL SFFP program.

REFERENCES

111

REFERENCES

[1] A. Banerjee, K. K. Venkatasubramanian, T. Mukherjee, and S. K. S. Gupta,
“Ensuring Safety, Security, and Sustainability of Mission-Critical Cyber–Physical
Systems,” Proceedings of the IEEE, vol. PP, no. 99, pp. 1–17, 2011.

[2] D. K. Nilsson and U. E. Larson, “A Defense-in-Depth Approach to Securing
the Wireless Vehicle Infrastructure,” Journal of Networks, vol. 4, no. 7, pp.
552–564, sep 2009. [Online]. Available: http://www.academypublisher.com/
jnw/vol04/no07/jnw0407552564.pdf

[3] DefenseWeb, “Flying operations of remotely piloted aircraft un-
affected by malware - USAF — defenceWeb,” 2011. [Online].
Available: http://www.defenceweb.co.za/index.php?option=com{ }content{&}
view=article{&}id=20084

[4] J. Wolf, “China key suspect in U.S. satellite hacks: commission
— Reuters,” 2011. [Online]. Available: https://www.reuters.com/article/
us-china-usa-satellite-idUSTRE79R4O320111028

[5] J. S. Warner and R. G. Johnston, “GPS spoofing countermeasures,”
Los Alamos National Laboratory, Tech. Rep., 2003. [Online]. Available:
http://library.lanl.gov/cgi-bin/getfile?00852243.pdf

[6] J. Krozel and D. Andrisani II, “Independent ADS-B verification and
validation,” in AIAA 5th ATIO, sep 2005. [Online]. Available: http:
//arc.aiaa.org/doi/abs/10.2514/6.2005-7351

[7] J. Goppert, N. Wenyao, and I. Hwang, “ArduPilotOne: Extending the capabil-
ities of the open-source ArduPilotMega autopilot system,” in AIAA Infotech at
Aerospace Conference and Exhibit 2012, 2012.

[8] G. Tétrault-Farber, “Russian postal drone pro-
gram hits wall in debut,” 2018. [Online].
Available: https://www.reuters.com/article/us-russia-post-drone-crash/
russian-postal-drone-program-hits-wall-in-debut-idUSKCN1H91B4

[9] S. Gorman, Y. J. Dreazen, and A. Cole, “Insurgents Hack U.S.
Drones - WSJ,” 2009. [Online]. Available: https://www.wsj.com/articles/
SB126102247889095011

[10] R. Mitchell and I.-R. Chen, “Survivability analysis of mobile cyber physical sys-
tems with voting-based intrusion detection,” in Proc. 7th Int. Wireless Commu-
nications and Mobile Computing Conf. (IWCMC), 2011, pp. 2256–2261.

[11] Q. Zhu, C. Rieger, and T. Basar, “A hierarchical security architecture for cyber-
physical systems,” in Proc. 4th Int Resilient Control Systems (ISRCS) Symp,
2011, pp. 15–20.

http://www.academypublisher.com/jnw/vol04/no07/jnw0407552564.pdf
http://www.academypublisher.com/jnw/vol04/no07/jnw0407552564.pdf
http://www.defenceweb.co.za/index.php?option=com{_}content{&}view=article{&}id=20084
http://www.defenceweb.co.za/index.php?option=com{_}content{&}view=article{&}id=20084
https://www.reuters.com/article/us-china-usa-satellite-idUSTRE79R4O320111028
https://www.reuters.com/article/us-china-usa-satellite-idUSTRE79R4O320111028
http://library.lanl.gov/cgi-bin/getfile?00852243.pdf
http://arc.aiaa.org/doi/abs/10.2514/6.2005-7351
http://arc.aiaa.org/doi/abs/10.2514/6.2005-7351
https://www.reuters.com/article/us-russia-post-drone-crash/russian-postal-drone-program-hits-wall-in-debut-idUSKCN1H91B4
https://www.reuters.com/article/us-russia-post-drone-crash/russian-postal-drone-program-hits-wall-in-debut-idUSKCN1H91B4
https://www.wsj.com/articles/SB126102247889095011
https://www.wsj.com/articles/SB126102247889095011

112

[12] A. Chutinan and B. H. Krogh, “Computational techniques for hybrid system
verification,” Automatic Control, IEEE Transactions on, vol. 48, no. 1, pp.
64–75, 2003. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs{ }all.jsp?
arnumber=1166525

[13] ——, “Verification of polyhedral-invariant hybrid automata using polygonal flow
pipe approximations,” in Hybrid Systems: Computation and Control. Springer,
1999, pp. 76–90. [Online]. Available: http://link.springer.com/chapter/10.1007/
3-540-48983-5{ }10

[14] B. I. Silva, K. Richeson, B. Krogh, and A. Chutinan, “Modeling and verifying
hybrid dynamic systems using CheckMate,” in Proceedings of 4th International
Conference on Automation of Mixed Processes, 2000, pp. 323–328.

[15] E. Asarin, T. Dang, and O. Maler, “The d/dt tool for verification of hybrid
systems,” in Computer Aided Verification. Springer, 2002, pp. 365–370. [Online].
Available: http://link.springer.com/chapter/10.1007/3-540-45657-0{ }30

[16] B. I. Silva, O. Stursberg, B. H. Krogh, and S. Engell, “An assessment of
the current status of algorithmic approaches to the verification of hybrid
systems,” in Decision and Control, 2001. Proceedings of the 40th IEEE
Conference on, vol. 3. IEEE, 2001, pp. 2867–2874. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs{ }all.jsp?arnumber=980711

[17] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: A model
checker for hybrid systems,” in Computer aided verification. Springer, 1997,
pp. 460–463. [Online]. Available: http://link.springer.com/chapter/10.1007/
3-540-63166-6{ }48

[18] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic analysis of hybrid sys-
tems,” Theoretical computer science, vol. 138, no. 1, pp. 3–34, 1995.

[19] J. Goppert, A. Shull, N. Sathyamoorthy, W. Liu, I. Hwang, and H. Aldridge,
“Software/hardware-in-the-loop analysis of cyberattacks on unmanned aerial sys-
tems,” Journal of Aerospace Information Systems, vol. 11, no. 5, 2014.

[20] G. Looye, A. Varga, S. Bennani, D. Moormann, and G. Grubel, “Robustness
Analysis Applied to Autopilot Design Part 1: mu-Analysis of Design Entries to
a Robust Flight Control Benchmark,” 1998.

[21] O. Kosut, L. Jia, R. J. Thomas, and L. Tong, “Malicious data attacks on smart
grid state estimation: Attack strategies and countermeasures,” in Smart Grid
Communications (SmartGridComm), 2010 First IEEE International Conference
on. IEEE, 2010, pp. 220–225.

[22] Y. Liu, P. Ning, and M. Reiter, “False data injection attacks against state
estimation in electric power grids,” ACM Transactions on Information and
System Security, vol. 14, no. 1, pp. 13:1—-13:33, may 2011. [Online]. Available:
http://discovery.csc.ncsu.edu/pubs/ccs09-PowerGrids.pdf

[23] W. Liu, C. Kwon, I. Aljanabi, and I. Hwang, “Cyber Security Analysis
for State Estimators in Air Traffic Control Systems,” in Guidance,
Navigation, and Control and Co-located Conferences. American Institute
of Aeronautics and Astronautics, aug 2012. [Online]. Available: http:
//dx.doi.org/10.2514/6.2012-4929

http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=1166525
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=1166525
http://link.springer.com/chapter/10.1007/3-540-48983-5{_}10
http://link.springer.com/chapter/10.1007/3-540-48983-5{_}10
http://link.springer.com/chapter/10.1007/3-540-45657-0{_}30
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=980711
http://link.springer.com/chapter/10.1007/3-540-63166-6{_}48
http://link.springer.com/chapter/10.1007/3-540-63166-6{_}48
http://discovery.csc.ncsu.edu/pubs/ccs09-PowerGrids.pdf
http://dx.doi.org/10.2514/6.2012-4929
http://dx.doi.org/10.2514/6.2012-4929

113

[24] Y. Mo and B. Sinopoli, “Secure control against replay attacks,” in Commu-
nication, Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton
Conference on. IEEE, 2009, pp. 911–918.

[25] ——, “False data injection attacks in control systems,” in First Workshop on
Secure Control Systems, 2010.

[26] Y. Mo, E. Garone, A. Casavola, and B. Sinopoli, “False data injection attacks
against state estimation in wireless sensor networks,” in Decision and Control
(CDC), 2010 49th IEEE Conference on. IEEE, 2010, pp. 5967–5972.

[27] A. Teixeira, S. Amin, H. Sandberg, K. H. Johansson, and S. Sastry, “Cyber
security analysis of state estimators in electric power systems,” in 49th IEEE
Conference on Decision and Control, 2010, pp. 5991–5998.

[28] H. Li, L. Lai, and W. Zhang, “Communication Requirement for Reliable and
Secure State Estimation and Control in Smart Grid,” Smart Grid, IEEE Trans-
actions on, vol. 2, no. 3, pp. 476–486, 2011.

[29] T. Baumeister, “Literature review on smart grid cyber security,” University
of Hawaii, Tech. Rep., 2010. [Online]. Available: https://csdl-techreports.
googlecode.com/svn/trunk/techreports/2010/10-11/10-11.pdf

[30] S. Amin, A. A. Cárdenas, and S. S. Sastry, “Safe and Secure Networked
Control Systems under Denial-of-Service Attacks,” in Proceedings of the 12th
International Conference on Hybrid Systems: Computation and Control, ser.
HSCC ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 31–45. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-00602-9{ }3

[31] S. Amin, “Security Interdependencies for Networked Control Systems with
Identical Agents,” nov 2010. [Online]. Available: http://www.truststc.org/
pubs/756.html

[32] D. Kundur, X. Feng, S. Liu, T. Zourntos, and K. L. Butler-Purry, “Towards
a Framework for Cyber Attack Impact Analysis of the Electric Smart Grid,” in
Smart Grid Communications (SmartGridComm), 2010 First IEEE International
Conference on, 2010, pp. 244–249.

[33] R. D. Colgren and T. L. Johnson, “Flight mishap prevention for UAVs,” in Proc.
Aerospace Conf. IEEE, vol. 2, 2001.

[34] J. M. Wilson and M. E. Peters, “Automatic flight envelope protection for light
general aviation aircraft,” in Proc. IEEE/AIAA 28th Digital Avionics Systems
Conf. DASC ’09, 2009.

[35] H. Shin, Y. Kim, E. T. Kim, and K. J. Seong, “Flight envelope protection con-
troller using dynamic trim algorithm,” in Proc. ICCAS-SICE, 2009, pp. 3228–
3232.

[36] J. E. Williams and S. R. Vukelich, The USAF Stability and Control Digital DAT-
COM Users Manual, USAF, nov 1979.

[37] W. B. Blake, “Prediction of Fighter Aircraft Dynamic Derivatives Using Digital
Datcom,” in AIAA 3rd Applied Aerodynamics Conference, 1985.

https://csdl-techreports.googlecode.com/svn/trunk/techreports/2010/10-11/10-11.pdf
https://csdl-techreports.googlecode.com/svn/trunk/techreports/2010/10-11/10-11.pdf
http://dx.doi.org/10.1007/978-3-642-00602-9{_}3
http://www.truststc.org/pubs/756.html
http://www.truststc.org/pubs/756.html

114

[38] B. Stevens and F. Lewis, Aircraft control and simulation. New York, NY: Wiley,
2003. [Online]. Available: http://books.google.com/books/about/Aircraft{ }
control{ }and{ }simulation.html?id=T0Ux6av4btIC

[39] D. Titterton and J. Weston, Strapdown Inertial Navigation Technology, 2, Ed.
The Institute of Electrical Engineers, 2004.

[40] S. Julier and J. Uhlmann, “Unscented Filtering and Nonlinear Estimation,”
Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, mar 2004. [Online].
Available: http://ieeexplore.ieee.org/document/1271397/

[41] D. Du, L. Liu, and X. Du, “A low-cost attitude estimation system for UAV
application,” in Proc. Chinese Control and Decision Conf. (CCDC), 2010, pp.
4489–4492.

[42] A. Willsky and H. Jones, “A generalized likelihood ratio approach to the de-
tection and estimation of jumps in linear systems,” Automatic Control, IEEE
Transactions on, vol. 21, no. 1, pp. 108–112, feb 1976.

[43] S. X. Ding, Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms
and Tools. Springer, 2008. [Online]. Available: http://www.amazon.com/
Model-based-Fault-Diagnosis-Techniques-ebook/dp/B001BTLVQ6

[44] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using the
relative velocity paradigm,” in Robotics and Automation, 1993. Proceedings.,
1993 IEEE International Conference on, may 1993, pp. 560 –565 vol.1.

[45] H. V. N. Botha, “A Closed Loop Research Platform That Enables Dynamic
Control Of Wing Gait Patterns In A Vertically Constrained Flapping Wing -
Micro Air Vehicle,” 2016. [Online]. Available: https://etd.ohiolink.edu/pg{ }
10?0::NO:10:P10{ }ACCESSION{ }NUM:wright1462801627

[46] J. Goppert, J. Gallagher, I. Hwang, and E. Matson, “Model Checking of
a Flapping-Wing Mirco-Air-Vehicle Trajectory Tracking Controller Subject
to Disturbances,” in Advances in Intelligent Systems and Computing, vol.
274. Springer, Cham, 2014, pp. 531–543. [Online]. Available: http:
//link.springer.com/10.1007/978-3-319-05582-4{ }46

[47] D. B. Doman, M. W. Oppenheimer, and D. O. Sigthorsson, “Wingbeat shape
modulation for flapping-wing micro-air-vehicle control during hover,” Journal
of guidance, control, and dynamics, vol. 33, no. 3, pp. 724–739, 2010. [Online].
Available: http://arc.aiaa.org/doi/pdf/10.2514/1.47146

[48] C. Baier, J.-P. Katoen, and Others, Principles of model checking. MIT press
Cambridge, 2008, vol. 26202649.

[49] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella, “Nusmv 2: An opensource tool for
symbolic model checking,” in Computer Aided Verification. Springer, 2002,
pp. 359–364. [Online]. Available: http://link.springer.com/chapter/10.1007/
3-540-45657-0{ }29

[50] M. Corless, “AAE 666 Notes,” Purdue University, Tech. Rep., 2013.

http://books.google.com/books/about/Aircraft{_}control{_}and{_}simulation.html?id=T0Ux6av4btIC
http://books.google.com/books/about/Aircraft{_}control{_}and{_}simulation.html?id=T0Ux6av4btIC
http://ieeexplore.ieee.org/document/1271397/
http://www.amazon.com/Model-based-Fault-Diagnosis-Techniques-ebook/dp/B001BTLVQ6
http://www.amazon.com/Model-based-Fault-Diagnosis-Techniques-ebook/dp/B001BTLVQ6
https://etd.ohiolink.edu/pg{_}10?0::NO:10:P10{_}ACCESSION{_}NUM:wright1462801627
https://etd.ohiolink.edu/pg{_}10?0::NO:10:P10{_}ACCESSION{_}NUM:wright1462801627
http://link.springer.com/10.1007/978-3-319-05582-4{_}46
http://link.springer.com/10.1007/978-3-319-05582-4{_}46
http://arc.aiaa.org/doi/pdf/10.2514/1.47146
http://link.springer.com/chapter/10.1007/3-540-45657-0{_}29
http://link.springer.com/chapter/10.1007/3-540-45657-0{_}29

115

[51] H. Xiang and L. Tian, “Development of a low-cost agricultural remote sensing
system based on an autonomous unmanned aerial vehicle (UAV),” Biosystems
Engineering, vol. 108, no. 2, pp. 174–190, feb 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1537511010002436

[52] C. A. F. Ezequiel, M. Cua, N. C. Libatique, G. L. Tangonan, R. Alampay,
R. T. Labuguen, C. M. Favila, J. L. E. Honrado, V. Canos, C. Devaney,
A. B. Loreto, J. Bacusmo, and B. Palma, “UAV aerial imaging applications
for post-disaster assessment, environmental management and infrastructure
development,” in 2014 International Conference on Unmanned Aircraft
Systems (ICUAS). IEEE, may 2014, pp. 274–283. [Online]. Available:
http://ieeexplore.ieee.org/document/6842266/

[53] P. Doherty and P. Rudol, “A UAV Search and Rescue Scenario with Human
Body Detection and Geolocalization,” in AI 2007: Advances in Artificial
Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 1–13.
[Online]. Available: http://link.springer.com/10.1007/978-3-540-76928-6{ }1

[54] J. Goppert, S. Yantek, and I. Hwang, “Invariant Kalman filter application to
optical flow based visual odometry for UAVs,” in International Conference on
Ubiquitous and Future Networks, ICUFN, 2017.

[55] S. Bonnabel, “Left-invariant extended {Kalman} filter and attitude estimation,”
in Decision and {Control}, 2007 46th {IEEE} {Conference} on. IEEE,
2007, pp. 1027–1032. [Online]. Available: http://ieeexplore.ieee.org/abstract/
document/4434662/

[56] A. Barrau and S. Bonnabel, “The invariant extended Kalman filter as a stable
observer,” IEEE Transactions on Automatic Control, 2017.

[57] ——, “Invariant Kalman Filtering,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 1, pp. 237–257, 2017.

[58] S. Bonnabel, P. Martin, and E. Salaun, “Invariant Extended Kalman Filter:
theory and application to a velocity-aided attitude estimation problem,” in
Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held
jointly with 2009 28th Chinese Control Conference. IEEE, dec 2009, pp.
1297–1304. [Online]. Available: http://ieeexplore.ieee.org/document/5400372/

[59] M. Dille, B. Grocholsky, and S. Singh, “Outdoor Downward-Facing
Optical Flow Odometry with Commodity Sensors,” in Field and Service
Robotics. Springer, Berlin, Heidelberg, 2010, pp. 183–193. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-13408-1{ }17

[60] J. Campbell, R. Sukthankar, and I. Nourbakhsh, “Techniques for evaluating
optical flow for visual odometry in extreme terrain,” in 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE
Cat. No.04CH37566), vol. 4. IEEE, 2004, pp. 3704–3711. [Online]. Available:
http://ieeexplore.ieee.org/document/1389991/

[61] D. Honegger, P. Greisen, L. Meier, and P. Tanskanen, “Real-time velocity
estimation based on optical flow and disparity matching.” in IROS, 2012.
[Online]. Available: https://www.researchgate.net/profile/Marc{ }Pollefeys/
publication/261353635{ }Real-time{ }velocity{ }estimation{ }based{ }on{ }

http://www.sciencedirect.com/science/article/pii/S1537511010002436
http://ieeexplore.ieee.org/document/6842266/
http://link.springer.com/10.1007/978-3-540-76928-6{_}1
http://ieeexplore.ieee.org/abstract/document/4434662/
http://ieeexplore.ieee.org/abstract/document/4434662/
http://ieeexplore.ieee.org/document/5400372/
http://link.springer.com/10.1007/978-3-642-13408-1{_}17
http://ieeexplore.ieee.org/document/1389991/
https://www.researchgate.net/profile/Marc{_}Pollefeys/publication/261353635{_}Real-time{_}velocity{_}estimation{_}based{_}on{_}optical{_}flow{_}and{_}disparity{_}matching/links/5458a6f40cf2cf5164828b0d/Real-time-velocity-estimation-based-on-optical-flow-and-disparity-matching.
https://www.researchgate.net/profile/Marc{_}Pollefeys/publication/261353635{_}Real-time{_}velocity{_}estimation{_}based{_}on{_}optical{_}flow{_}and{_}disparity{_}matching/links/5458a6f40cf2cf5164828b0d/Real-time-velocity-estimation-based-on-optical-flow-and-disparity-matching.

116

optical{ }flow{ }and{ }disparity{ }matching/links/5458a6f40cf2cf5164828b0d/
Real-time-velocity-estimation-based-on-optical-flow-and-disparity-matching.

[62] D. Honegger, L. Meier, P. Tanskanen, and M. Pollefeys, “An open source
and open hardware embedded metric optical flow CMOS camera for indoor
and outdoor applications,” in 2013 IEEE International Conference on Robotics
and Automation. IEEE, may 2013, pp. 1736–1741. [Online]. Available:
http://ieeexplore.ieee.org/document/6630805/

[63] S. Gallagher, “German chancellor’s drone attack shows
the threat of weaponized UAVs,” 2013. [Online].
Available: http://arstechnica.com/information-technology/2013/
09/german-chancellors-drone-attack-shows-the-threat-of{%}5C{%}
5C-weaponized-uavs/

[64] H. Abdullah, “Man Detained for Flying Drone Near White
House,” 2015. [Online]. Available: http://www.nbcnews.com/news/us-news/
man-detained-trying-fly-drone-near-white-house-n359011

[65] J. M. Goppert, A. R. Wagoner, D. K. Schrader, S. Ghose, Y. Kim,
S. Park, M. Gomez, E. T. Matson, and M. J. Hopmeier, “Realization
of an autonomous, air-to-air Counter Unmanned Aerial System (CUAS),”
in Proceedings - 2017 1st IEEE International Conference on Robotic
Computing, IRC 2017. IEEE, apr 2017, pp. 235–240. [Online]. Available:
http://ieeexplore.ieee.org/document/7926544/

[66] M. S. Schmidt and M. D. Shear, “A Drone, Too Small for Radar
to Detect, Rattles the White House,” 2015. [Online]. Available: http:
//www.nytimes.com/2015/01/27/us/white-house-drone.html

[67] L. Meier, J. Camacho, B. Godbolt, J. Goppert, L. Heng, M. Lizarraga, Others,
and MAVLink, “Mavlink: Micro air vehicle communication protocol,” jan 2013.
[Online]. Available: http://qgroundcontrol.org/mavlink/start

https://www.researchgate.net/profile/Marc{_}Pollefeys/publication/261353635{_}Real-time{_}velocity{_}estimation{_}based{_}on{_}optical{_}flow{_}and{_}disparity{_}matching/links/5458a6f40cf2cf5164828b0d/Real-time-velocity-estimation-based-on-optical-flow-and-disparity-matching.
https://www.researchgate.net/profile/Marc{_}Pollefeys/publication/261353635{_}Real-time{_}velocity{_}estimation{_}based{_}on{_}optical{_}flow{_}and{_}disparity{_}matching/links/5458a6f40cf2cf5164828b0d/Real-time-velocity-estimation-based-on-optical-flow-and-disparity-matching.
https://www.researchgate.net/profile/Marc{_}Pollefeys/publication/261353635{_}Real-time{_}velocity{_}estimation{_}based{_}on{_}optical{_}flow{_}and{_}disparity{_}matching/links/5458a6f40cf2cf5164828b0d/Real-time-velocity-estimation-based-on-optical-flow-and-disparity-matching.
http://ieeexplore.ieee.org/document/6630805/
http://arstechnica.com/information-technology/2013/09/german-chancellors-drone-attack-shows-the-threat-of{%}5C{%}5C-weaponized-uavs/
http://arstechnica.com/information-technology/2013/09/german-chancellors-drone-attack-shows-the-threat-of{%}5C{%}5C-weaponized-uavs/
http://arstechnica.com/information-technology/2013/09/german-chancellors-drone-attack-shows-the-threat-of{%}5C{%}5C-weaponized-uavs/
http://www.nbcnews.com/news/us-news/man-detained-trying-fly-drone-near-white-house-n359011
http://www.nbcnews.com/news/us-news/man-detained-trying-fly-drone-near-white-house-n359011
http://ieeexplore.ieee.org/document/7926544/
http://www.nytimes.com/2015/01/27/us/white-house-drone.html
http://www.nytimes.com/2015/01/27/us/white-house-drone.html
http://qgroundcontrol.org/mavlink/start

VITA

117

VITA

James Goppert received his Bachelor and Master’s Degree in Aerospace Engi-

neering from Purdue University. He has contributed to many open source aerospace

software projects including the PX4 autopilot, the APM autopilot, and the JSBSim

flight simulator. He is also CEO of a robotics consulting company specializing in

autopilot software and computer vision.

	LIST OF TABLES
	LIST OF FIGURES
	SYMBOLS
	ABSTRACT
	INTRODUCTION
	Verification and Validation (V&V) of Unmanned Vehicles
	Polyhedral Invariant Hybrid Automaton (PIHA) based Model Checking
	Approximate Quotient Transition Systems (AQTS)
	Computation of Flow Pipes

	Structure of Dissertation

	NUMERICAL CYBERATTACK ANALYSIS
	Cyberattack Measures
	Attack Intent Classification
	Failure Criteria

	System Model
	Aircraft
	Controller
	Navigation System
	Fault Detection
	ADS-B Modeling
	Subsystem Integration
	Cyberattack Models

	Software-in-the-Loop Analysis of Cyberattacks
	Software Model
	Simulation Results

	Hardware-in-the-loop (HIL) Analysis of Cyberattacks
	Background
	PX4 Autopilot
	Simulation
	Selected Results

	Conclusion

	CASE STUDY: INSECT-LIKE FLAPPING WING MAV (MICRO-AIR-VEHICLE)
	H Norm Flow Pipe Augmentation
	Flapping Wing Dynamics and Dynamic Inversion Based Control Law
	Flapping Wing Controller Model Checking
	Conclusion

	CASE STUDY: TWO-WHEEL SELF-BALANCING ROBOT
	Motor Dynamics
	Overall Dynamics
	Motor Test: No external torque
	Motor Test: Gravity torque

	Closed Loop System Identification
	Lyapunov based Approach to PIHA Model Checking
	Simplified Analysis of Inverted Pendulum Dynamics
	Invariant Set Calculation via Lyapunov Method
	Conclusion

	CASE STUDY: QUADROTOR WITH OPTICAL FLOW BASED VISUAL ODOMETRY
	Related Work
	Estimation
	Simulation
	Asphalt World
	Forest World

	Continuous Kalman Filter Invariant Set via LMI
	Conclusion

	COUNTER UNMANNED AERIAL SYSTEM
	Controller Design
	Experiments and Results
	Test Setup
	Results

	Conclusion

	SUMMARY
	Acknowledgments

	REFERENCES
	VITA

