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ABSTRACT

Naik, Pratik K. M.S.M.E., Purdue University, December 2018. History Matching of
Surfactant-polymer Flooding. Major Professor: Arezoo Ardekani.

This thesis presents a framework for history matching and model calibration of

surfactant-polymer (SP) flooding. At first, a high-fidelity mechanistic SP flood model

is constructed by performing extensive lab-scale experiments on Berea cores. Then,

incorporating Sobol based sensitivity analysis, polynomial chaos expansion based sur-

rogate modelling (PCE-proxy) and Genetic algorithm based inverse optimization, an

optimized model parameter set is determined by minimizing the miss-fit between

PCE-proxy response and experimental observations for quantities of interests such as

cumulative oil recovery and pressure profile. The epistemic uncertainty in PCE-proxy

is quantified using a Gaussian regression process called Kriging. The framework is

then extended to Bayesian calibration where the posterior of model parameters is

inferred by directly sampling from it using Markov chain Monte Carlo (MCMC). Fi-

nally, a stochastic multi-objective optimization problem is posed under uncertainties

in model parameters and oil price which is solved using a variant of Bayesian global

optimization routine.
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1. SURFACTANT-POLYMER FLOODING FOR

ENHANCED OIL RECOVERY

1.1 Enhanced oil recovery using chemical flooding

Enhanced oil recovery (EOR) aims at using different techniques such as chemi-

cal flooding, CO2 injection or thermal recovery to enhance mobilization of trapped

oil in reservoirs [1]. The methods available for recovering oil from reservoirs can be

broadly classified into three categories: 1) Primary recovery 2) Secondary recover

and 3) Tertiary recovery. During the primary recovery process, production wells are

drilled into the reservoir and using the natural pressure of the reservoir or gravity in

combination with the artificial lift generated by the pumps, the crude oil is driven

out to the surface. However, only about 10% of original oil in place (OOIP) could be

extracted using this method. During secondary recovery, injection wells are drilled at

suitable locations and water is injected through them to build up an artificial differ-

ential pressure sweeping the trapped oil. Secondary recovery leads to a production of

20-40% of OOIP. At such a low residual oil saturation, oil is immobile as the differen-

tial pressure alone cannot overcome the capillary pressure [2]. In an effort to recover

the remaining oil, gases such as CO2 or chemicals such as surfactant and polymer are

injected into the reservoir and their properties are exploited to increase the overall

sweeping efficiency. This is referred to as tertiary production process. The recovery

mechanism using surfactant and polymer, which is the focus of this thesis, works as

follow. Polymer increases the viscosity of water making the mobility difference be-

tween water and oil favourable to inhibit the growth of viscous fingers. Surfactant,

on the other hand, reduces the interfacial tension between water and oil interface in-

creasing the capillary number which is important for oil mobilization. This results in
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a production of 30-60% of OOIP. Interested readers may read more about enhanced

oil recovery using chemical flooding (cEOR) in the books and review articles [3–8].

1.2 Injection sequence in cEOR
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Fig. 1.1. Schematic of the injection sequence followed in a typical SP
flooding process with the boundary conditions used.

The schematic of injection sequence (from left to right) followed in a typical flood-

ing process is shown in figure 1.1. Laboratory scale coreflood experiments are often

performed to study the performance of the injection sequence as well as the mechanism

of oil recovery by surfactant and polymer flooding process. We use Berea sandstone

for conducting these coreflood experiments details of which are given in Chapter 2.

As seen from figure 1.1, at first, a brine solution (water + HTDS) is injected into the

coreflood which results in ≈ 30% recovery of original oil in placed for experiments. At

this point, the trapped oil can not be mobilized by simply water flooding and hence

EOR must start. Thus, a surfactant-polymer (SP) slug is injected where surfactant

and polymer work in synergy to reduce the interfacial tension as well as instabilities

at the water-oil interface. This is followed by a polymer slug which helps in maintain-

ing a favourable pressure gradient and high sweeping efficiency by creating a mobility

buffer. Finally, chase water (also known as extended water flooding) is injected to

flush out the chemicals as well as any trapped oil from the coreflood. In the next
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section, we discuss in detail the mechanism of oil recovery by surfactant and polymer

flooding.

1.3 Surfactants

Surfactants are amphiphilic in nature meaning they have both hydrophobic (water-

loving head) and hydrophilic (water-hating tail) groups. In our work, we use a combi-

nation of PETROSTEP R© S-13D HA (Alcohol Alkoxy Sulfate) and A6 (Alkyl Benzene

Sulfonate) and Huntsman SURFONIC R© L series co-solvent at total chemical concen-

tration of 8000 ppm for the SP slug. The structure of surfactant and their orientation

in water-oil system is given in figure 1.2. Surfactants are generally classified based

on the ionic nature of their head groups or hydrophilic groups [9, 10], critical micelle

concentration (CMC) [11] or solubilization ratio.

Water Zone Oil Zone

Polar hydrophilic
(water-loving head)

Polar hydrophobic
(water-hating tail)

Fig. 1.2. Structure of amphiphilic surfactant molecule with polar hy-
drophobic head and polar hydrophilic tail and its orientation in oil-water
system.

CMC is the critical concentration above which surfactant monomers aggregates to

form micelles [12]. Surfactant monomers concentrate at the interface when added to a

water-oil system. This releases the system free energy and lowers the interfacial ten-

sion (IFT) at the interface [13]. As the surfactant concentration is increased beyond

a critical value called CMC, the extra monomers group together to form micelles.

Increasing the concentration further results in just the increase of micelles concen-

tration. CMC mainly depends on salinity, temperature and electrolyte concentration
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among many other factors. Figure 1.3 show the progress of micelle formation as the

concentration is increased along with the reduction in IFT. After CMC, IFT remains

constant or increases slightly depending on the type of surfactant.

Water Zone Oil Zone

IF
T

Conc.

Conc.

Conc.

IF
T

IF
T

CMC

Fig. 1.3. Surfactant molecules saturate at the interface. Increase in surfac-
tant concentration results in reduction of IFT at the interface and micelles
start to aggregate. This continuous till the concentration reaches CMC
after which the IFT remains almost constant.

1.3.1 Microemulsion systems

Surfactant-water-oil system in the presence of micelles forms microemulsion which

is characterized as clear, thermodynamically stable and isotropic in nature [14]. The

phase behaviour of microemulsion system depends strongly on the salinity of brine

or water phase. At lower salinity, surfactant acts as water soluble aggregating mi-
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celles in the water phase, thus creating an oil/water-external system. This system

is known as oil-in-water or Winsor I microemulsion system. At higher salinity, sur-

factant solubilizes in oliec phase and forms a water-in-oil or Winsor II system [15].

At some intermediate salinity range, all the three phases (water-external, oil-external

and micro-emulsion) co-exists in the system. The salinity at which water and oil are

equally solubilized in microemulsion is called as optimum salinity. In EOR applica-

tions, efforts are made to maintain the salinity near the optimum value during the

surfactant injection. We will discuss this phase behavior modeling in more detail in

section 2.5. Figure 1.4 shows the effect of salinity on microemulsion phase behaviour

where monomers are seen to aggregate to form emulsions either in water phase or oil

phase depending on the salinity while bi-continuous microemulsion is present at some

intermediate salinity range.

Water Zone Oil Zone

High salinityLow  salinity

Polar hydrophilic
(water-loving head)

Polar hydrophobic
(water-hating tail)

Bi-continuous Microemulsions

IR

Fig. 1.4. Effect of salinity on microemulsion formation. At lower salinity,
surfactant solubilizes in water phase resulting in a Winsor type I system.
At some intermediate range (IR) of salinity, three phases exists in the
system. At high salinity, surfactant solubilizes in oil phase resulting in a
Winsor type II system.
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1.3.2 Surfactant flooding

Surfactant helps in the reduction of residual oil saturation either by reducing

the IFT of water-oil system or by wettability alteration. During the wettability

alteration, oil is driven out of the permeable rock by a spontaneous imbibition of

water which shifts the wettability of reservoir from a oil-wet to a water-wet system.

A comprehensive review on wettability is given in [16]. It has been observed that

the wettability alteration mechanism is more important when IFT is high. Also, it is

mainly considered in carbonate cores as they are oil-wet [3, 17]. Since the coreflood

under investigation in this work is water-wet Berea sandstone, modeling wettability

alteration process is out of the scope of this thesis.

On the other hand, IFT is important with or without the presence of wettability

alteration. Reduction in IFT results in lower capillary forces which drives the oil out

towards the surface. [18]. To understand the relation between residual oil saturation

and IFT, we need to first define Capillary number. Capillary number represents

the ratio of viscous drag forces and interfacial tension across the interface of two

immiscible fluids. It is a dimensionless quantity given as:

Ca =
µwuw
σow

(1.1)

where µw is viscosity of displacing fluid (water) and uw is characteristic Darcy ve-

locity of displacing fluid (water). σow is IFT between the displacing (water) and the

displaced fluid (oil). Experimental data shows that increase in capillary number re-

sults in decrease in residual oil saturation [19]. The resulting curve is called Capillary

Desaturation Curve (CDC) which is studied in more details in section 2.8.

Capillary number is in the range of 10−6 − 10−7 for a typical water flooding ap-

plication [9]. Surfactant can help reduce the IFT from 20-30 mN/m to as low as 0.01

mN/m (ultra-low IFT) [20, 21] which translates to an increase in capillary number

by 103 times. It has been found that residual oil saturation as high as 90% can be

achieved by increasing the capillary number to 10−3 − 10−4 [22].



7

1.4 Polymers

Polymers are long chain molecules that are made by chemically linking together

smaller blocks called monomers. In EOR, polymer performance depends on its molec-

ular weight, solvent quality, temperature and the degree of hydrolysis among many

other factors [23]. In our study, partially hydrolyzed poly-acrylamide polymer (SNF

Flopam 3330) which is commonly known as HPAM is used. This polymer has found

a great interest in EOR as it is relatively inexpensive and has good viscosifying prop-

erties [24, 25]. The addition of polymer increases the solvent (water) viscosity and

creates a mobility buffer that reduces the mobility contrast between the displacing

and the displaced fluid. However, polymer viscosity is a function of shear rate, salin-

ity and its concentration. Hence, accurate modeling of polymer flooding performance

needs understanding of dependence of each of these factors on the polymer viscosity.

We study this in detail in section 2.3.

1.5 Polymer flooding

The stability of an immiscible displacement process is governed by the mobility

ratio which is defined as the mobility of displacing or wetting fluid (λw) to the non-

wetting or displaced fluid (λn):

M =
λw
λn

=
krw/µw
krn/µn

(1.2)

where krw and krn is the relative permeability of wetting (water) and non-wetting (oil)

phases, respectively. The onset of instabilities at the interface of an immiscible dis-

placement process depends on the mobility ratio. A mobility ratio greater than unity

(M > 1) in deemed as unfavourable as it causes instability at the interface reducing

the volumetric sweeping efficiency [8, 25]. In this case, displacing fluid penetrates or

fingers into the displaced fluid resulting in viscous fingering [26]. Viscous fingering

is undesirable in EOR applications because it promotes itself and reduces the overall

production by early breakthrough. It is clear from Eq. (1.2) that one way to reduce
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the mobility ratio and thus prevent the growth of viscous fingers is to increase the

viscosity of displacing fluid (M < 1). Hence, polymer solutions are added to the

displacing fluid to promote stable displacement of the interface. Figure 1.5 shows the

mechanism of growth of viscous fingering and its prevention by polymer flooding.

The mixing in reservoir or coreflood is a result of heterogeneity of the medium as

well as physical dispersion. For highly heterogeneous cores, dispersion is dominated by

heterogeneity. However, when core is modeled as homogeneous, dispersivity must be

considered to model the right degree of mixing [27]. Understanding viscous fingering

and fluid mixing is important as in later chapters, for 1D corefloods, we will introduce

artificial dispersivity to take into account the heterogeneous nature of the core. Here,

we simulate two cases in section 1.8: with polymer and without polymer and show

that the polymer flooding can be used to prevent the onset of instabilities and hence

growth of viscous fingering.

Water 
Flooding

Oil 
Zone

M>1

Polymer 
Flooding

Oil 
Zone

M<1

Water 
Flooding

Viscous 
fingers

Fig. 1.5. Mobility ratio (M) > 1 results in instability at the interface and
onset of viscous fingers. Polymer flooding inhibits the growth of viscous
fingering by reducing the mobility of displacing fluid (M<1).
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1.6 Governing Equations

Our aim is to study the immiscible displacement of non-wetting phase by a wetting

phase in a porous media in the presence of solvents. In this thesis, we use UTCHEM

simulator, originally developed by Pope and Nelson [27], to model this multicompo-

nent two-phase imbibition process in porous media. The components (κ) that are

present are wetting phase (water), non-wetting phase (oil), and solvents (surfactant

and polymer). We start with the transport equation (mass balance equation) for the

wetting phase (neglecting adsorption) [28]:

φ
∂(SwCκw)

∂t
+∇ · (uwCκw − φSwD∇Cκw) = Rκ, κ = w, s, p (1.3)

where φ is the medium porosity, uw is the Darcy velocity of the wetting phase, Cκw

is the concentration of each component in the wetting phase (i.e. pure wetting phase

(w), surfactant (s), and polymer (p)) and Sw is the saturation of wetting phase. The

total saturation of wetting and non-wetting phase is always constrained as Sw+Sn = 1.

The phase flux ul for wetting (l = w) and non-wetting (l = n) phases with the relative

permeability krl, viscosity µl, and density ρl can be calculated from the Darcy’s law

as:

ul =
−krl
µl

K(∇pl + ρlg∇z), l = w, n (1.4)

where K is the absolute permeability tensor of medium. The gravity, pressure and

vertical depth are denoted by g, p and z respectively. We neglect any gravitational

effects. The phase pressure difference wetting pw and non-wetting phase pn is called

capillary pressure pc which is a function of saturation Sw and is given as:

pc(Sw) = pw − pn (1.5)

The relative permeability of each phase krl is modeled using Brooks and Corey equa-

tion as:

krl = k0
rl(Sl)

nl (1.6)
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where nl is the Corey exponent for lth phase and

Sl =
Sl − Slr

1− ∑
l=w,n

Slr
(1.7)

is the normalized saturation. More details are given in section 2.8. With such a

model, pc is given as:

pc(Sw) = pc,0(Sl)

−1

λb (1.8)

where λb is a fitting parameter which depends on pore size distribution and pc,o is

a model fitting parameter. The dispersion tensor D in Eq. (1.3) with molecular

diffusion coefficient Dm is given as [29]:

Dij = (Dm + (αT |uw|))δij + (αL − αT )
uwiuwj
|uw|

i = x, y (1.9)

where δij is the Kronecker delta function, αL and αT are the longitudinal and trans-

verse dispersivities of solvents in the wetting phase, respectively. Finally, Rκ in Eq.

(1.3) accounts for the injection or production of each component through injection

and production wells similar to a source or sink term. The well model used is based

on [30,31]. We maintain a constant flow rate from the injection well while the pressure

well is kept at a constant pressure. A no flow boundary condition is assumed for all

the boundaries (i.e. no flux through the transverse boundaries) (refer to figure 1.1).

We use the Implicit Pressure Explicit Saturation (IMPES) scheme [32–34] to solve

for the unknown pressure field pn and saturation field Sw. Recall that the solvents

are only soluble in the wetting phase, therefore the non-wetting phase saturation Sn

can be calculated as Sn = 1− Sw, once Sw is known. At first, the transport equation

over all the volume occupying components is summed together to derive the pressure

equation. The resulting linear system of equations is then implicitly solved using

the known saturation at the current time step to determine the pressure field. This

pressure field is substituted in Darcy’s equation (refer to Eq. (1.4)) and using the

capillary pressure relation (refer to Eq. (1.5)), the phase velocity field at the current

time step is derived. The velocity field is then used in Eq. (1.3) to explicitly solve for
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saturation at the next time step. A more detailed explanation on IMPES scheme is

available in [32,35,36]. It is clear that in IMPES scheme, the pressure and saturation

equations are decoupled by an explicit treatment of capillary pressure equation. In

heterogeneous media, the capillary forces may change the saturation field [32] and

hence very small time steps should be used. In all the problems studied in this

thesis, we maintain a maximum CFL of 0.01 using appropriate time steps [28]. Next,

we present the validation of IMPES with the analytical solution of Buckley-Leverett

equation where Total Variation Diminishing (TVD) scheme is used to capture the

sharper shocks with minimum numerical dispersion [37].

1.7 Validation with Buckley-Leverett equation

The saturation profile obtained by solving Eq. (1.3) in one-dimentional is a well-

known Buckley-Leverett profile which features a piston-like displacement of shock

front. Buckley and Leverett (BL) in 1942 proposed an equation to model immiscible

displacement process of oil recovery (non-wetting phase) by water flooding (wetting

phase) in one dimensional reservoir [38]. BL equation provides an analytical solution

to capture the advance of wetting and non-wetting phases displacement front using

conservation of mass for each phase under the assumption of incompressible and

immiscible flow, and neglecting the gravity and capillary forces (without dispersion):

∂Sw
∂t

+
∂

∂x

(
Q

φA
fw(Sw)

)
= 0, (1.10)

where φ is porosity of the reservoir, Sw(x, t) is the wetting phase saturation with

Sw(x, 0) = S0(x), Q is the total flow rate through the cross-sectional area A of the

reservoir. fw(Sw) is called the fractional flow function of wetting phase and is given

by:

fw(Sw) =
λw

λw + λnw
=

krw
µw

krw
µw

+
krn
µn

(1.11)
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where λl is the mobility of the lth phase as defined in Eq. (1.2) with l = w (wetting)

and l = n (non-wetting). The fractional flow curve given in Eq. (1.11) has a single

inflection point and can be used to determine the speed of the shock by constructing

a tangent through it in a particular fashion as first discussed in [39].

We use Corey’s equation to model relative permeability of each phase (refer to Eq.

(1.6)). Relative permeability curves with end point relative permeability k0
rl = 1.0,

Corey exponent nl = 2.0 and residual saturation Slr = 0.0 for both the phases are

given in figure 1.6(a). Here, we validate the simulation model with the analytical BL

equation for three cases of different relative viscosity ratios µr =
µn
µw

= 0.5, 1.0, 2.0.

Figure 1.6(b) shows the variation of fractional flow (water) with its saturation for the

three viscosity ratios considered here.
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Fig. 1.6. Left: Relative permeability curve modeled using Corey’s equa-
tion with the exponents for the wetting nw = 2 and non-wetting phase
nn = 2. Right: Fractional flow curve of the wetting phase for three differ-
ent relative viscosity ratios (µr = 0.5, 1.0, 2.0)

Figure 1.7 shows that the simulation model with TVD flux-limited higher-order

scheme accurately captures the onset of shock across the interface. The model can be

seen to accurately predict the advancement of shock for all the three viscosity ratios

(the results are plotted after one day).
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Fig. 1.7. Validation of simulation model with analytical Buckley-Leverett
equation for different values of viscosity ratios. The grid size used is 200
x 1 and the results are plotted after one day.

1.8 Case study: Viscous fingering

In this section, we simulate two cases of water flooding in 2D coreflood 1) with

no polymer 2) with polymer (0.25% wt.) to show the mechanism of viscous finger

suppression by polymer injection. The core is considered to be heterogeneous with

a constant porosity (φ = 0.21) and a constant initial water saturation (Sw = 30%).

The permeability field is generated using Kriging process where log-k variance of

0.1 and covariance lengths of 0.1 times the domain size are used [28]. The domain

is discretized into 400 x 80 grid blocks. The relative permeability curves used are

given in figure 1.8 where at low Ca, the end point relative permeability and Corey

exponent for Eq. (1.6) are obtained from water flooding Berea sandstone. Relative

permeability curves at high Ca are assumed to be linear with zero residual water

and oil saturation [40]. The shape of relative permeability curves (i.e. krw, krn)

greatly affects the mobility ratio [41]. It has been shown experimentally [42] as well
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as numerically [43] that the mobility ratio across the shock Ms should be considered

while assessing the onset of instability. In such studies, the shock mobility ratio is

determined from the fractional flow curve. However, in case of surfactant-polymer

flooding, it is not feasible to construct fractional flow curve as there is a spatio-

temporal change in relative permeability curves with an increase of capillary number.

Therefore, we use end-point relative permeability (i.e. k0
rw, k0

rn) to assess and predict

the onset of instability [28,44].
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Fig. 1.8. Relative permeability curves at low Ca and high Ca used for the
case study of polymer injection.

We use relative viscosity ratio µr = µo/µw 20.0 for both of these cases. Poly-

mer viscosity is assumed to be a function of concentration only and the salinity or

shear effects on polymer viscosity are neglected. Eq. (2.1) was used to model poly-

mer viscosity where the fitting parameters were obtained from the rheological tests

conducted on the polymer at different concentrations (refer to section 2.3). Figure

1.9 shows polymer flooding in action. For Case 1. with no polymer, the mobility

ratio calculated using the end point relative permeabilities is M = 2.5 (> 1). The

viscous fingers can be clearly seen to be penetrating through the oil phase. For Case

2. addition of polymer (0.25% wt.) reduces the mobility ratio to M = 0.5 (< 1)

which inhibits the growth of this viscous fingers. A piston-type displacement can be

observed for this case. An important observation is that for the case with no polymer,
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the water can be seen to breakthrough earlier than the case with polymer which is

deemed unfavourable as this results in reduced overall oil recovery.

(a) Case 1. No polymer (b) Case 2. 0.25% wt polymer

Fig. 1.9. Polymer flooding in action. On left: water flooding with no
polymer results in viscous fingering and hence early breakthrough. On
right: water flooding with polymer (0.25%) creates a mobility buffer and
results in a piston-like displacement.

1.9 Conclusion

This chapter presented a brief introduction to the different technologies available

for mobilization of trapped oil in reservoirs and the need for chemical EOR process.

Then we studied the injection sequence employed for a typical surfactant-polymer

flooding scenario. We also discussed the mechanism of oil recovery by surfactant and

polymer flooding. Surfactant flooding reduces the IFT and helps in easy mobilization

of trapped oil. Polymer flooding creates a mobility buffer between the oil and water

phase making the mobility ratio favourable. This prevents the growth of viscous

fingers and increases the sweeping efficiency. We also simulated this mechanism of
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viscous finger suppression for two cases of water flooding, with and without polymer,

in a 2D heterogeneous core. We presented a mathematical model for immiscible

displacement of two phase flow through a porous media. Finally, we validated the

simulation model with the benchmark one-dimensional Buckley-Leverett equation. In

the next chapter, we will discuss various physical models for surfactant and polymer

that govern the mechanism of oil recovery and the experiments that are carried out

to calibrate these models.
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2. PRIOR MODEL CALIBRATION USING COREFLOOD

EXPERIMENTS

A version of this chapter has been published as:

Soroush Aramideh, Rituraj Borgohain, Pratik Naik, Cliff T. Johnston, Pavlos P.

Vlachos, and Arezoo M. Ardekani.“Multi-objective history matching of surfactant-

polymer flooding.” Fuel 228 (2018): 418-428

2.1 Abstract

The problem of interest here is a process called surfactant-polymer (SP) flood-

ing [45]. SP flooding is one the most promising enhanced oil recovery technique and

involves injection of surfactant and polymer into an oil reservoir to boost the produc-

tion [5, 46]. Polymer is injected to improve the sweeping efficiency and hinder flow

instabilities [47] while surfactant is responsible for mobilizing the trapped oil in small

pores by reducing the interfacial tension between aqueous and oleic phases [48, 49].

Despite the elegant oil recovery mechanism in SP flooding and its high efficacy in

the controlled laboratory experiments, it has shown poor performance in field experi-

ments [50,51]. This is due to intrinsic complexity of SP flooding and large uncertainty

present in this process [52]. To design a successful SP flood, it is necessary to have

a reliable and accurate SP flood model. The first step towards constructing a reli-

able SP flood model that can be used for design and optimization purposes is model

calibration which is the focus of this chapter.

Accurately capturing this elegant mechanism of oil recovery by both surfactant

and polymer injection requires knowledge of various physical models imitating these

processes [53]. This can be obtained by performing separate experiments that ad-

dress each of these physical processes individually. These are referred to as support-
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experiments in this thesis. In this chapter, we discuss the details of these laboratory

scale experiments that were used to build a mechanistic model of SP flooding process.

We use these support-experiments in an initial calibration stage with an ultimate ob-

jective to history match surfactant-polymer flooding in Berea coreflood (BCF) exper-

iments, details of which are given in section 2.12. We model the surfactant-polymer

flooding process in corefloods using reservoir simulator UTCHEM v9.82 [27].

2.2 Support experiments for initial model calibration

In this section, we discuss different support-experiments that were preformed to

calibrate various physical models of SP flooding. All the experiments are carried out

on Berea sandstone at room temperature. Crude oil was obtained from the reservoir

field. Table 2.1 shows the properties of oil and synthetic brine solution used in the

experiments.

Table 2.1.
Properties of oil and brine used in the experiments.

Property Oil Brine

Viscosity (cP) 13.8 1.0

IFT (dyne/cm) 22 22

Anions (meq/ml) - 0.145

Divalent cations (meq/ml) - 0.0097

We develop the SP flood model by dividing the entire process of SP flooding

in three separate sub-processes 1) surfactant flooding 2) polymer flooding and 3)

displacement process. The physical models describing each of these processes are

calibrated individually by using different calibration methods as shown in figure 2.1.

The main purpose of performing these different experiments is to reduce the uncer-

tainty in the prior knowledge of the model parameters by using laboratory measured
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data. This is crucial as the parameter space of the different physical models (such

as polymer viscosity, surfactant phase behavior and IFT, multiphase displacement

models etc.) governing the SP flood process is of high dimensions which often results

in a non-unique solution [54]. Therefore, performing separate experiments help us

to gain a better prior understanding of each of these models. The remainder of the

chapter briefly explains these support experiments.

Phase Behaviour
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Viscosity

Perm. Reduction
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Cap Desaturation
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Rel. Perm.

Micro-emu. Visc.

Pipette Test

Chun-huh model

BCF Exp.
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Res. Resistance Exp.

BCF Exp.

Desaturation Data

Conductivity Exp.

BCF Exp.

Literature Review

Surfactant 
Flooding

Polymer
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Fig. 2.1. Classification of SP flooding process as surfactant flooding, poly-
mer flooding and displacement process. The sub-processes characterizing
each process is also shown with the adapted calibration method.

2.3 Modeling polymer flooding processes

The viscosity of a polymer solution depends on its concentration, salinity and

shear rate [27]. Therefore, each of these factors should be considered when model-
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ing polymer behavior in corefloods. We perform a series of rheology experiments on

HPAM 3230 and 3330 to quantify polymer dependence on these factors. The varia-

tion of polymer viscosity with its concentration and salinity is modeled using Flory

Huggins equation [55]:

µ0
p = µw(1 + (A1 + A2C

2
p + A3Cp

3)C
Sp
SEP ), (2.1)

where µ0
p is the viscosity of polymer when shear rate is zero, CSEP is the effective

salinity, A1, A2, A3 are the model parameters and Sp is the exponent used in Eq. (2.2).

(µ0
p − µw)

µw
∝ C

Sp
SEP . (2.2)

Effective salinity CSEP is modeled as:

CSEP =
C51 − (βp − 1)C61

C11

(2.3)

where C11, C51, C61 are water, anion and divalent cation concentrations in the aqueous

phase. βp models the impact of divalent cations on the polymer viscosity [27]. Finally,

the shear-thinning polymer viscosity is modeled via Eq. (2.4).

µp = µw +
µ0
p − µw

1 +
( γ̇1

γ̇1/2

)Pα−1
. (2.4)

where γ̇1/2 and Pα are fitting parameters. Pα models the curvature of the curve at

high shear rate. Figure 2.2 shows the model fitting for polymer viscosity where figure

2.2(a) shows the variation of polymer viscosity with the concentration given by the

corresponding model in Eq. (2.1) at 9400-22000 ppm salinity range. Figure 2.2(b)

shows polymer viscosity as a function of CSEP (in meq/ml) described by Eq. (2.2).

The exponent Sp is the fitting parameter. Figure 2.2(c) shows polymer viscosity as a

function of shear rate which is modeled using Eq. (2.4). Polymer and water viscosity

used here are measured at the same temperature.
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Fig. 2.2. Polymer viscosity is modeled as function of a) concentration
using Eq. (2.1) at different salinities b) effective salinity CSEP using Eq.
(2.2) at different concentrations and c) shear rate using Eq. (2.4) at
different concentrations.

We modify the existing model in UTCHEM to make γ̇1/2, a function of polymer

concentration and salinity (refer to Eq. (2.5)).

γ̇1/2 = (a1CSEP + a0)exp(a2Cp), (2.5)

where a0, a1 and a2 are fitting parameters. Figure 2.3 shows variation of ˙γ1/2 for

different salinity values which appear to be an exponential function of concentration

for HPAM 3330. The corresponding fit is obtained using Eq. (2.5).

2.4 Residual resistance factor (RRF) experiments

Polymer flooding results in mobility reduction of displacing fluid as well as re-

duction of permeability of porous medium. To model this permeability reduction

due to polymer flooding, we perform a separate single phase coreflood experiment

details of which are given in table 3.2. The core is initially flooded with water and

the absolute permeability is measured. This is then followed by a polymer slug till

the pressure reaches a steady state after which the core is again flooded with water

and the absolute permeability is measured.
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Fig. 2.3. Variation of ˙γ1/2 with polymer (HPAM 3330) concentration and
salinity and the corresponding model fit with Eq 2.5. Salinity is in ppm.

Table 2.2.
Details of the support experiment carried out to calibrate permeability
reduction.

Quantity Value

Length (inch) 6

Diameter (inch) 2

Flow rate (cc/min) 0.25

The permeability reduction factor (Rk) can be calculated as the ratio of effective

permeability of water to the effective permeability of polymer. The combined effect

of increase in viscosity as well as the reduction in permeability results in the decrease

in mobility which is termed as residual resistance (RF ) and modeled as:

RF = Rk
µw
µp
, (2.6)

where permeability reduction factor is given by Eq. (2.7)

Rk = 1 +
(Rk,max − 1)brkC4l

1 + brkC4l

, (2.7)
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Fig. 2.4. Validation of pressure profile for permeability reduction exper-
iment. Water flooding is followed by a polymer slug till the pressure
reaches a steady state value after which core is again flooded with water.

where Rk,max is modeled with Eq. (2.8)

Rk,max = max

[[
1− crk(A1C

Sp
SEP )1/3(√kxky

φ

)1/2

]−4

, 10

]
, (2.8)

where crk and brk are input fitting parameters and ki is the permeability in i direction.

This model assumes that the permeability reduction is irreversible i.e. permeability

reduction does not decrease with the decrease in polymer concentration. Figure 2.4

compares the pressure profile predicted by the model (refer to Eq. (2.7)) with the

experimental data.

2.5 Phase Behaviour Modeling

To study the phase behaviour of surfactant in water-oil system, we perform phase

behaviour equilibrium tests called pipette tests. In these tests, the surfactant solution

is added to water-oil system in a test tube at varying salinities and is allowed to

stagnate which results in emulsification. Then solubilization ratios are calculated for
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both water and oil by visual inspections. We perform these experiments with water

to oil ratio 1 and with 0.678 % surfactant concentration. It is worth noting that these

tests are done in static conditions and do not probe in-situ mixing [45,56].

Salinity has a strong influence on surfactant solution phase behaviour (refer to

figure 2.5). Depending on the salinity, the surfactant monomers aggregate to form

micelles either in the aqueous phase or oleic phase. Generally, the surfactant phase

behaviour can be categorized into three types depending on the solubilization of

microemulsion in aqueous phase or oleic phase, which are listed below.

2.5.1 Types of microemulsions

1. Lower Phase microemulsion (Type I): At low salinity, surfactant is primar-

ily solubilized in aqueous phase and so the oleic phase is relatively surfactant

free. Since, the aqueous phase is denser than the oleic phase (the aqueous phase

settles at the bottom of the pipette tube as shown in figure 2.5) and microemul-

sion resides in the lower aqueous phase, it is called lower phase microemulsion.

It is also referred to as Winsor Type I or Type II (-) microemulsion.

2. Upper Phase Microemulsion (Type II): At higher salinity, the surfactant

exhibits completely opposite characteristics as compared with low salinity. The

surfactant solubilizes in oleic phase forming two phases: oil-external microemul-

sion and an excess water phase. This is referred to as Winsor Type II or Type

II (+) microemulsion.

3. Middle Phase Microemulsion (Type III): There exists all the three phases

i.e. excess oil, microemulsion, and excess water at some intermediate salinity

range. In this system, the microemulsion is solubilized both in the oleic phase

as well as aqueous phase and forms a separate phase in the between water and

oil. This is referred to as Winsor Type III or simply Type III. From figure 2.5,

it is evident that the middle phase microemulsion onset at around 17.5k ppm

salinity
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We model the phase behaviour using tie lines, binodal curve and Hands Rule, the

details of which can be found in [27, 57, 58]. It is worth noting that the Hands Rule

is not able to capture the phase behaviour at higher salinity (refer to figure 2.5).

But this should not affect the modeling of BCF experiments in Chapter 3 as all the

coreflood experiments are conducted at lower salinity (≤ 17500 ppm).
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Fig. 2.5. a) Pipette tubes experimental data for salinities ranging from
RockHill (RH) to 20k ppm for S13D surfactant for 0.678% concentration.
b) Model calibration to the solubilization ratio using Hands Rule.

2.6 Interfacial tension model

We use Chun-Huh equation to model the relation between the interfacial tension

(IFT) and the solubilization ratio as:

σl3 = σow exp(−aRl3) +
cFl
R2
l3

(1− exp(−aR3
l3)), l = 1, 2 (2.9)

where σl3 is the interfacial tensions between the microemulsion phase and phase l. σow

denotes the interfacial tension between oil and water in the absence of surfactant. Rl3
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is the solubilization ratio for lth phase, a and c are fitting parameters. The Hirasaki’s

correction factor, Fl, is defined as :

Fl =
1− exp(−√conl)

1− exp(−
√

2)
(2.10)

where conl =
∑3

k=1(Ckl − Ck3)2 and Ckl denotes concentration of species k in phase

l. Figure 2.7 shows the fit for Chun-huh model with the fitting parameters c = 0.3

and a = 10.

0 40 80 120
Oil solubilization ratio

10 5

10 4

10 3

10 2

10 1

100

101

IF
T

Chun-Huh model

Fig. 2.6. IFT modeled using Chun-huh relation with the fitting parame-
ters: c = 0.3 and a = 10.

2.7 Microemulsion viscosity

The microemulsion viscosity is modeled using the following model:

µ3 = C13µw exp[αV 1(C23 + C33)] + C23µo exp[αV 2(C13 + C33)]

+ C33αV 3 exp[αV 4C13 + αV 5C33]
(2.11)

where αV 1, αV 2, αV 3, αV 4, αV 5 are fitting parameters. µw and µo are water and oil

viscosity and Ckl is concentration of kth component in lth phase where k = 1: water,

k = 2: oil, k = 3: surfactant, and l = 1: aqueous, l = 2: oleic, and l = 3: microemul-

sion. Figure 2.7 shows microemulsion viscosity variation with the oil solubilization
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ratio obtained using Eq. (2.11) where experimental stabilization ratios were used to

determine the microemulsion viscosity.
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Fig. 2.7. Microemulsion viscosity calculated using microemulsion viscosity
model with fitting parameters αV 1 = 1.0, αV 2 = 3.0, αV 3 = 0.0, αV 4 = 0.9,
αV 5 = 0.7.

2.8 Capillary desaturaton

Two-phase immiscible displacement at pore scale level is governed by dimension-

less capillary number Ca (refer to Eq. (1.1)). Capillary desaturation curve (CDC)

relates the residual oil saturation with Ca and describes the phase entrapment at

a given Ca [59]. To determine the CDC, we conduct a water-flooding experiment

on a Berea core of high permeability (Length: 6”, Diameter: 2”). The details of

experimental setup for the initial state is given Table 2.3.

The flow rate is controlled to change the capillary number Ca. Flow rate is varied

from 0.09 to 100 cc/min which resulted in Sor as low as ≈ 10%. This translates to a

reduction of 0.002 - 0.003 mN/m in IFT as shown in the Figure 2.8. This agrees well

with the literature [60].
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Table 2.3.
Details of the initial experimental setup for the capillary desaturation
experiment.

Property Value

Flow rate (cc/min) 0.09

Porosity 0.23

Permeability(mD) 700

Viscosity (cP) 2.14, 14.2

IFT (mN/m) 2.80

Capillary number 2.5E-06

Core age 2 weeks

Co-solvent 20% Vol/Vol

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

Ca

0.0
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0.4

0.6

0.8

1.0

S
or

Model (T=1100)

Experiment

Fig. 2.8. Capillary desaturation experimental results and its correspond-
ing model fit. An increase in capillary number can be seen to reduce the
residual oil saturation.

The residual saturation of phase l (Slr) in figure 2.8 is modeled based on the

capillary number as shown below:

Slr = min

(
Sl, S

high
lr +

Slowlr − Shighlr

1 + Tl(Cal)τl

)
(2.12)
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where Sl is the saturation of phase l. τl and Tl are fitting parameters for trapped

saturation data for phase l (l = 1: aqueous, l = 2: oleic, l = 3: microemulsion). Shighlr

and Slowlr are trapped saturation at high and low capillary numbers, respectively. We

use a value of one for τl. The endpoint relative permeability for each phase increases

in a very predictable way as the trapping number increases. The following equation

is used to modify the endpoint relative permeability based on residual saturation of

conjugate phase:

k0
rl = k0,low

rl +
Slowl′r − Sl′r
Slowl′r − Shighl′r

(
k0,high
rl − k0,low

rl

)
(2.13)

where Sl′r is the residual saturation of the conjugate phase. k0,high
rl and k0,low

rl are

endpoint relative permeability at high and low capillary numbers, respectively. Now,

using a simple function such as Corey-type relative permeability equation, we can

calculate relative permeability.

krl = k0
rl(Sl)

nl (2.14)

where Sl = Sl−Slr∑3
l=1 Slr

is the normalized saturation and nl is the Corey exponent for lth

phase.

2.9 Conductivity measurement

As stated in section 1.5, to account for the right degree of mixing in the het-

erogeneous reservoir, dispersivity must be considered when the core is modeled as

a homogeneous core. In literature, electrical conductivity (EC) is found to have a

linear relationship with the tracer concentrations (TDS) [61, 62], which is given as

TDS = A x EC. This can be confirmed from the figure 2.9(a), where the conductivity

can be seen to increase linearly with TDS in the range of 9400-20000 ppm salinity.

To obtain the right value of dispersivity, we perform a separate experiment where

the conductivity of the effluents in the extracted oil is measured during the initial

water flooding (IWF) and high TDS slug (HTDS) since the oil production is steady

during these injection stages. Figure 2.9 shows that using the same value of disper-

sivity (0.01ft) for all the three phases i.e. aqueous, oleic, and microemulsion, gives
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an excellent match with the experimental results. This is also in agreement with the

literature on Berea sandstones [63].
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Fig. 2.9. a) Linear relationship between conductivity and TDS solution.
b) Validation of conductivity calculated from the resulting linear relation-
ship for a coreflood experiment with dispersivity value 0.01 ft.

2.10 Adsorption model for surfactant and polymer

The effect of adsorption is assumed to be irreversible with concentration and

reversible with salinity. Figure 2.10 shows the mechanism of polymer or surfactant

adsorption on a rock surface where the residual adsorption increases with increase in

concentration and for a certain value of concentration reaches a maximum constant

value. In case of SP flooding, surfactant and polymer molecules are competitively

adsorbed [64]. We use a Langmuir type isotherm to model this adsorption curve for

both the surfactant and polymer:

Ĉ∗m =
am(C̃m − Ĉ∗m)

1 + bm(C̃m − Ĉ∗m)
, m = 1, 2 (2.15)

where

am = (am1 + am2CSE)(
kref
k

)1/2 (2.16)
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Fig. 2.10. Adsorption of surfactant and polymer in reservoir. Adsorption
increases with increase in concentration which then reaches a constant
maximum value. The resulting curve is modeled using Langmuir isotherm
equation.

where m = 1 is surfactant and m = 2 is polymer, am1, am2 and bm are fitting pa-

rameters, CSE is the effective salinity, Ĉ∗m is volume of adsorbed surfactant or poly-

mer/volume of water, and C̃m is adsorbed surfactant or polymer concentration/pore

volume.

2.11 Final model calibration

In this section, we present the final model calibration values obtained for different

models using extensive laboratory scale experiments (refer to table 2.4). Interested

readers may read [27] which explains in detail the significance of all parameters shown

in table 2.4.
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2.12 BCF experiments

As stated previously, as opposed to similar studies where only the overall oil

recovery is history matched [66], our aim is to history match all the BCF experiments

for two quantities of interests. Among many factors determining the fate of SP

flooding, chemical composition and specifically salinity plays a critical role as presence

of surfactant creates a complex phase behavior of oil/water/surfactant which is greatly

affected by the slug design and salinity [67]. Thus, the BCF experiments are all

performed at different salinities (TDS) and slug design (reported in pore volume

(PV)) to study these effects on oil recovery. Injection for all BCF experiments follows

Table 2.5.
Injection sequence and data of BCF experiments. Concentrations are in
ppm.

Slug Property BCF 1 BCF 2 BCF 3

IWF PV 1.45 1.60 1.60

TDS 9400 9400 9400

HTDS PV — 1.0 0.25

TDS — 17500 17500

SP PV 0.50 0.25 0.25

TDS 9400 17500 17500

Surf. conc. 6780 6780 6780

Poly. conc. 3300 2500 2500

P PV 1.01 0.50 0.51

TDS 9400 9400 9400

Poly. conc. 3300 2500 2500

EWF PV 1.27 1.59 1.49

TDS 9400 9400 9400

the same sequence including initial water flood (IWF) → high TDS (salt) preflush
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(HTDS) → surfactant-polymer flood (SP) → polymer flood (P) → extended water

flood (EWF). The details of these BCF experiments is given in Table 2.5 and can also

be found in [65]. Our aim is to determine a set of model input parameters that can

perfectly predict oil-cut profile, pressure drop profile (i.e. pressure difference between

injection and production well (|Pinj−Pprod|) and cumulative oil production profile for

all BCF experiments without any ad-hoc tuning.

In the next section, we quantify the uncertainty in BCF experiments due to un-

certainty in the model parameters. The intrinsic variability in the physical properties

governing the mechanism of oil recovery is an inherent characteristic of any geophys-

ical system. Successful design of any EOR strategy depends heavily on how well this

uncertainty due to parameter variability is captured. Therefore, we consider ±20%

uncertainty in every physical parameter as a prior. Then we perform 1000 simula-

tions for each BCF experiment and quantify the uncertainty in the output response of

our model due to uncertainty in these model parameters (refer to figures 2.11-2.13).

The results show a great uncertainty in the output response for all the BCF experi-

ments, therefore signifying a need for automatic history matching algorithm. In the

next chapter, we present a sequential algorithm that uses sensitivity analysis, proxy

modeling and inverse optimization to successfully history match all BCF experiments

without any ad-hoc tuning of these model parameters.
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Fig. 2.11. The resulting prior space for BCF1 obtained using initial model
parameter set provided in table 2.4 for a) pressure drop profile b) cumu-
lative recovery curve c) oilcut curve.
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Fig. 2.12. The resulting prior space for BCF2 obtained using initial model
parameter set provided in table 2.4 for a) pressure drop profile b) cumu-
lative recovery curve c) oilcut curve.
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Fig. 2.13. The resulting prior space for BCF3 obtained using initial model
parameter set provided in table 2.4 for a) pressure drop profile b) cumu-
lative recovery curve c) oilcut curve.

2.13 Conclusion

In this chapter, we presented a comprehensive review on the initial model calibra-

tion stage of SP flood process. We first constructed a mechanistic model of SP flood

process by dividing the SP flooding into three sub-processes. Then using extensive

laboratory experiments such as polymer rheology, surfactant phase behavior, poly-

mer permeability reduction, and capillary desaturation, we performed initial model

calibration. We improved the polymer shear-thinning viscosity model in UTCHEM
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to account for variation of half shear rate (γ̇1/2) with concentration and salinity and

showed that it results in a better agreement with the experimental results.

We then considered ±20% uncertainty in the calibrated parameters to quantify

uncertainty in BCF experiments. The results showed a great uncertainty in the

output response of simulation model for all our quantities of interests such as overall

oil recovery profile and pressure difference curve. In the next chapter, we aim at

quantifying this uncertainty in a systematic way and present a sequential assisted

history matching algorithm that calibrates all BCF experiments without any ad-hoc

tuning of model parameters.
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3. HISTORY MATCHING USING POLYNOMIAL

CHAOS-BASED PROXY

A version of this chapter has been published as:

Pratik Naik, Soroush Aramideh, and Arezoo M. Ardekani. ”History matching of

surfactant-polymer flooding using polynomial chaos expansion.” Journal of Petroleum

Science and Engineering (2018).

3.1 Abstract

In this chapter, we proposes a robust framework for history matching which em-

ploys a sequential execution of sensitivity analysis, proxy modeling and inverse op-

timization to determine the optimized parameter space of model parameters. The

mechanistic surfactant-polymer (SP) flood model developed in Chapter 2 is consid-

ered for history matching with an ultimate goal of accurately calibrating models that

describe physical subprocesses of surfactant flooding, polymer flooding and displace-

ment process. The employed model calibration algorithm starts with Sobol sensitivity

analysis which reduces the large uncertain space of model parameters to determine the

most important stochastic variables. The resulting low-dimensional parameter space

is then represented via appropriate orthonormal basis of polynomial chaos expansion

(PCE-proxy). An inverse optimization problem is then posed that minimizes the

miss-fit between PCE-proxy response and experimental observations by employing a

Genetic Algorithm. Finally, the epistemic uncertainty in PCE-proxy is quantified by

combining it with a Gaussian regression process called Kriging.

We use this framework to calibrate the SP flood model by history matching a

single coreflood experiment for quantities of interest such as pressure drop profile and

cumulative oil recovery curve. We then show that the calibrated model is success-
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fully able to predict all our quantities of interest for two other coreflood experiments

without any ad-hoc tuning of parameters. The proposed proxy-accelerated inverse

optimization framework shows significant promise for model calibration or to improve

the quality of history matched results.

3.2 Introduction

History matching is an inverse problem where reservoir properties and/or flow

physics models are calibrated by matching the predictions of mathematical models

to observed reservoir data. History matching problems, however, falls under the cat-

egory of ill-posed problems, meaning there exists many solutions that could predict

the observed reservoir history data equally well [?]. In the last two decades, ad-

vancement in computational capabilities [68] has led to a drastic shift from manual

history matching methods to automatic or assisted history matching methods. In

manual history matching methods, the reservoir parameters are tuned manually to

predict reservoir history [69, 70], while assisted history matching methods make use

of advance techniques such as stochastic optimization algorithms [71], probabilistic

approach [72] or proxy modeling [73] to determine the best model parameter set for

accurate prediction of the observed data. Assisted history matching methods have

given a new outlook to history matching process, where instead of obtaining a single

correct set of model parameters, the focus is on quantifying uncertainties in stochas-

tic model parameters by simultaneously matching multiple observed data [74, 75]. A

comprehensive review on different history matching methods is provided in [?,76–79].

Stochastic optimization algorithms such as Genetic Algorithm [71], Particle Swarm

Optimization [80] or Evolutionary Strategies [81] have been well-studied and success-

fully implemented for reservoir history matching. One of the main drawback of such

stochastic methods is a slow convergence rate which requires thousands of evaluation

of forward simulation model resulting in prohibitive computational cost. An alter-

native is to use a Bayesian inference which is a probabilistic approach for history
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matching [82]. In Chapter 4, we discuss the implementation of Bayesian approach

for history matching. Bayesian uses information on priors of model parameters to

maximize the likelihood of the observed data and quantifies uncertainties in these

model parameters with a posterior distribution. However, for a high dimensional

problem such as surfactant polymer flooding, the posterior distribution is generally

multi-mode non-Gaussian, requiring efficient sampling strategies [83]. One of the

most commonly used strategy to sample from posterior distribution is Markov Chain

Monte Carlo (MCMC). MCMC, however, surfers from high rejection rates and like any

other stochastic process requires forward reservoir model evaluations for every pro-

posed sample [84]. Even though various improvements have been proposed recently

to the traditional MCMC sampling methods such as hybrid MCMC [85], population

MCMC [86], or ensemble Kalman Filter [87], evaluating flow simulation models even

for few thousands of proposed MCMC samples are impractical for a full-scale reser-

voir model. This has warranted the use of surrogate models commonly referred to

as ‘proxy’, which approximates the non-linear response of forward simulation model

for selected input parameters and facilitates a significant reduction in computational

time.

There exists a number of successful implementation of proxy modeling for reservoir

history matching in the literature such as surface response modeling [88, 89], PCE

surrogate modeling [90] or artificial neural networks [91, 92]. A detailed comparison

of different proxy-modeling techniques in reservoir history matching applications can

be reviewed in [93, 94]. The choice of proxy model depends on the application and

understanding of the problem at hand. In this work, we have chosen Polynomial

Chaos Expansion (PCE) as our proxy model because of these reasons: i) it can be

efficiently constructed in a non-intrusive way by treating the simulation model as a

‘black-box’without any modification to the governing equations ii) there is no need of

efficient sampling algorithm to model the non-linear behavior of output response (as

in Bayesian) and most importantly iii) theoretically guarantees convergence of output

random variables as the degree of PCE is increased.
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PCE has been extensively applied as a proxy in the area of stability and con-

trol [95,96], solid mechanics [97,98], electronic circuits [99,100] or computational fluid

dynamics [101]. The origin of PCE theory dates to 1938 when Wiener first introduced

homogeneous chaos in his paper [102]. In this work, Wiener first extended Birkhoff

ergodic theorem from one-dimensional variable to multidimensional truncated Her-

mite functions and then showed that Brownian motion theory can be used to model

stochastic processes by describing random variables as Gaussian distributions. In

1946, Cameron and Martin [103] developed a theory to express any non-linear func-

tional as a series of Hermite-Fourier functional by introducing set of orthonormal

functionals on a Wiener process and showed that this resulting series converges in a

mean square (L2) way. Meechan in 1964 [104,105], expanded Wiener-Hermite expan-

sion theory on a one-dimensional Burgers turbulence model. Meechan argued that

the field variables of turbulence can be approximated as a series with first term as

Gaussian distribution and remaining terms as correction to Gaussian distribution.

However, Orszag in 1967 [106] showed that (2nd order) Wiener-Hermite truncation of

Burgers model suffers from closure problem mainly because of non-uniform conver-

gence of Wiener-Hermite expansion. They proved that inviscid equipartition solutions

fail in closure and hence, higher order terms are necessary to represent shocks in a high

Reynolds number turbulent flow which implies a slow convergence rate. Crow [107]

in 1970, resolved this issue by showing that time varying Lagrangian basis could be

adopted to speed up the convergence rate. However, limited development on the

applicability of Wiener-Hermite expansion to spectral stochastic methods resulted in

less popularity of this method in 1970s and 1980s. One noticeable work during this

period was of Ogura [108] who demonstrated the use of Charlie polynomial chaos for

orthogonal functional of Poisson process. Then, Ghanem and Spanos [97] in 1991, pre-

sented a formulation using truncated Hermite polynomials that could accommodate

random functions in the Galerkin framework of deterministic finite element methods.

They in a way revolutionized the use of polynomial chaos by introducing it to engi-

neering applications of solid mechanics for the first time. Xiu [109] extended the work
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of Ghanen and Spanos, and Ogura to propose Wiener-Askey polynomial chaos frame-

work for stochastic processes and showed that the use of optimal trial basis leads to

exponential convergence of error. Their work was pivotal in extension of polynomial

chaos theory to arbitrary random distribution of stochastic input variables [110].

In this chapter, we are particularly interested in the application of PCE tech-

nique for proxy modeling and history matching in reservoir simulations. Sharma‘s

work [73] was probably one of the first that implemented PCE for real time optimiza-

tion and uncertainty propagation in reservoir simulations. They proposed a closed

loop approach where Karhunen-Loeve (KL) expansion and Bayesian inversion were

used for real-time history matching. Since then, many studies have been published

where researchers have exploited the use of PCE as a proxy model for uncertainty

quantification [111], optimization [94] or global sensitivity analysis [112, 113]. Also,

many improvements have been proposed to the traditional PCE technique. Cama-

cho [111] first proposed Smolyak quadrature method to calculate PCE coefficients

and then compared the accuracy of this new method with regression method, while

Sarma [90] used a non-intrusive spectral projection method to calculate PCE coeffi-

cients. So far, the focus of all these studies has been to calibrate reservoir physical

parameters such as permeability, porosity, residual water saturation, etc. To the best

of our knowledge, there has not been an attempt to calibrate flow physics models

of surfactant-polymer flooding process in a systematic way using PCE-proxy. Some

of the major challenges in calibrating SP flooding process using a proxy-modeling

approach are i) lack of laboratory core flood experimental data to calibrate physical

models ii) high dimensionality of the input space because of many fitting parameters

associated with different models of each coreflood process iii) problems associated

with the accuracy, efficiency and uncertainty in proxy model.

In this work, we make an attempt to address all these problems. Here, we present

a framework for history matching and model calibration of surfactant-polymer (SP)

coreflood experiments where cumulative oil recovery curve and pressure drop profile

are history matched for three different coreflood experiments. The methodology pre-
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sented involves sequential execution of sensitivity analysis, surrogate modeling and

global optimization. At first, a mechanistic model of SP flood is developed by di-

viding the entire process into three sub-processes separately: i) surfactant flooding

ii) polymer flooding and iii) displacement process. Then, different models describing

each of these processes are calibrated using extensive laboratory experiments includ-

ing polymer rheology, surfactant phase behavior, polymer permeability reduction,

and capillary desaturation experiments. Refer to Chapter 3, to learn more about the

initial model calibration stage.

Initial model calibration results in a large set of input parameters (upto 19), if

used directly for proxy construction, reduces its efficiency. Hence, Sobol based global

sensitivity analysis (SA) is performed on these parameters to determine the most

important ones with respect to overall oil recovery factor (reported as original oil

in place or %OOIP) and maximum pressure drop (max(∆p)) which are the main

quantities of interest in real applications. A PCE-proxy is then constructed to map

these stochastic input parameters obtained from SA to stochastic output predictions.

Predictive capabilities of PCE-proxy are tested by performing rigorous validations

(with Ns = 50, 200, 500, 1000 evaluations of simulation model). The robustness of

PCE-proxy is also evaluated by comparing it with benchmark Monte Carlo simula-

tions (104 samples) performed with Latin Hyper Sampling (LHS). The accuracy of

PCE-proxy is quantified in terms of relative generalization error. Finally, an inverse

problem is formulated to find the optimized model parameters by minimizing the

misfit between observed and predicted data with a Genetic Optimization Algorithm

(GA). At last, the PCE model is extended to incorporate a Kriging model to capture

the uncertainty in the proxy-model itself. In other words, probable errors associated

with the predicted values of proxy are measured using PCE-Kriging (PCE-K).

This chapter is structured as follows. In section 3.3, we briefly describe SP core-

flood experimental setup used in this work and present the methodology that has been

adopted to calibrate its models. Section 3.4 presents sensitivity analysis framework

that facilitates an accurate and robust PCE-proxy construction. Section 3.5 provides
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the theory and details of PCE-proxy. This section also provides error estimates in

PCE-proxy posterior and its validation with LHS simulations. In section 3.6, we pose

an inverse optimization problem to minimize the miss-fit between observed data and

PCE-proxy output response. Finally, section 3.8 discusses implementation of Kriging

process to quantify epistemic uncertainty in PCE-proxy itself.

3.3 Framework for Model Calibration

We perform experiments on Berea corefloods (BCF) with an objective to study the

importance of chemical composition (salinity, surfactant and polymer concentration)

and slug sizes on overall oil recovery. The details of these BCF experiments are given

in Table 2.5 and can also be found in [65]. In this chapter, we aim to determine a

set of model input parameters that can perfectly predict oil-cut profile, pressure drop

profile (i.e. pressure difference between injection and production well (|Pinj − Pprod|)
and cumulative oil production profile for all BCF experiments without any ad-hoc

tuning.

We follow a sequential workflow for history matching process as depicted in figure

3.1. The methodology presented can be considered to be separated into three stages:

sensitivity analysis, proxy construction and an optimization, which are sequentially

executed. Their sequential execution allows us to use strengths of each of these stages

to overcome the drawbacks of the following stages.

The first stage, sensitivity analysis, is aimed at reducing the dimensions of stochas-

tic model input vector (X) to make the proxy-modeling efficient and robust. Algo-

rithm 1 (refer to Appendix A) explains the steps involved in sensitivity analysis

(SA), where the Sobol method is used to find the most important input parameters

(ξ) (X → ξ). This reduced parameter set is then used to construct an efficient

proxy model using PCE (P (ξ)) as explained by Algorithm 2 (refer to Appendix

A) (ξ → P (ξ)). Recently, Rohmer et al. [114] employed a similar approach us-

ing variance based global sensitivity to reduce the dimensionality of their response
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Fig. 3.1. Proposed workflow for history matching using PCE-proxy. The
workflow is divided into three stages which are executed sequentially as a)
dimensionality reduction b) surrogate modeling c) inverse optimization.

surface-based proxy model to study CO2 storage in reservoirs while Bazargan [68]

used Karhunen-Loeve expansion method as dimensionality reduction component to

construct a regression based PCE-proxy for quantifying uncertainty in their reservoir

permeability field. Also, Alejandra Camacho et al. [111] showed that the PCE-proxy

model constructed using optimal design based approach performs better as compared

to computationally intensive Monte Carlo simulations.

Next, we use the constructed proxy model with an optimization algorithm to

obtain an optimized parameter set (ξmin). In this optimization stage, we start with

a proposed set of initial solutions based on support-experiments and our physical

understanding of the problem, and use optimization to identify the optimized model
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parameters using BCF1 (P (ξ) → ξmin). This involves defining a multi-objective

inverse model calibration problem where the objective is to minimize the miss-fit

between observed values and PCE response for pressure drop profile and cumulative

oil recovery curve. Recently, Ampomah et al. [115] adopted a similar multi-objective

optimization approach using polynomial surface response proxy to optimize both

the oil production and CO2 storage in a mature oil reservoir. Such proxy-based

optimization methods have been extensively studied [116–118].

We then test the predictive capability of our approach by showing that the iden-

tified input parameters work equally well for BCF2 and BCF3. This is explained by

Algorithm 3 (refer to Appendix A) where a Genetic Algorithm (GA) is used to find

a set of perfect history matched models [119]. Finally, we quantify the uncertainty in

our proxy model by performing a Kriging process [120].

3.4 Parameterization and Sensitivity Analysis

Parametrization is the process of representing any high-dimensional model in

terms of physically interpretable quantities that greatly affects the output response

of the model [68]. We parameterize the problem at hand by dividing the SP flooding

process into three sub-processes (surfactant flooding, polymer flooding and displace-

ment process) and then modeling each of these sub-processes with different physical

models (refer to Chapter 2). Table 3.1 shows all the different models used in this

work corresponding to each core-flood process and their fitting parameters (upto 19

in total). For such high dimensional problems with non-linear response, it becomes

necessary to reduce the dimensions of uncertain input parameters for efficient proxy

model construction. This can be achieved through SA, where the emphasis is on

finding the most important input parameters with respect to output responses. Here,

we employ a Sobol based global sensitivity analysis [121,122].

In Sobol sensitivity analysis, a functional analysis of variance (V ) decomposition

method (ANOVA) is used to rank the parameters based on the effects of input vari-
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ability on the output variability of a model response. Suppose, we have a model

function f which maps:

f : X → Y, (3.1)

where X = (X1, X2...Xn)T is the model input vector and Y = f(X) is the model

output response. Sobol indices (rank) can then be calculated as:

Si =
VXi[EX∼i(Y |Xi)]

V (Y )
, (3.2)

where the terms of functional decomposition are expressed in terms of conditional

expected values (E). The sum of all Sobol indices, called total Sobol indices (STi ),

can then be estimated as follows:

STi =
∑
k 6=i

Sk =
EX∼i[VXi(Y |X∼i)]

V (Y )
. (3.3)

In this study, we separately analyze each model by quantifying the model out-

put response with respect to overall oil recovery factor and maximum pressure drop

(max(∆p)). Accurate prediction of max(∆p) is of practical importance as unwar-

ranted pressure changes may lead to stress changes in the reservoir, potentially af-

fecting the fracture permeability or often leaking fluids through the micro-fractures

[123,124]. Thus, max(∆p) is used as a second objective function in sensitivity analysis

in order to build a more comprehensive surrogate model and accurately predict pres-

sure drop. We perform 1000 simulations on each model to identify the most sensitive

parameters within each model. It has been tested that 1000 simulations are enough

to produce converged results. Figure 3.2 shows the results of sensitivity analysis on

the final overall oil recovery factor and max(∆p) with respect to total Sobol indices

given by Eq. (3.3).

A more detailed physical interpretation of all the variables characterizing the

models in Table 3.1 can be found in [27]. It can be seen from figure 3.2 that for

the surfactant phase behavior model, C33max0 and C33max1 are the most sensitive

variables. For the adsorption model, we use a Langmuir isotherms to describe the

adsorption level, where we assumed that the salinity has not effect on adsorption (i.e.
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Table 3.1.
Models used for Sensitivity Analysis and their model fitting parameters.

Sub-process Model Name Model Parameters

Surfactant Flooding Micro-emulsion Viscosity αV 1, αV 2, αV 3, αV 4, αV 5

Phase Behavior C33max0, C33max1, C33max2

Adsorption ad31, ad32, b3d

Polymer Flooding Viscosity and Shear Rate ˙γ1/2

Permeability Reduction crk, brk

Displacement Process Relative Perm. (Corey Model) nhigh, nlow

Dispersivity αL1, αL2, αL3

crk brk L1 L2 L3 C0 C1 C2 ad31 ad32 b3d V1 V2 V3 V4 V5
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Fig. 3.2. Sensitivity analysis on different models of SP flooding using the
Sobol technique. (Here, C0, C1, C2 represents C33max0, C33max1, C33max2

respectively).

ad32 is kept 0). The fitting parameter b3d controls the curvature of Langmuir isotherm

curve while the ratio (ad31/b3d) controls the peak of adsorbed surfactant. Here, ad31

shows the most sensitivity. For the displacement process, we include longitudinal

dispersivity in our 1D simulation model to capture the effects of heterogeneity. In

this dispersion model, the uncertainty in αL1 shows the most sensitivity which models

the dispersivity of aqueous phase. The selected fitting parameters from SA that are
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used to construct proxy-model are summarized in Table 3.2. We have performed

all the experiments at the room temperature which restricted the calibration of our

models to capture the effects of temperature variation. However, interested readers

may refer to [125,126] which study the effects of temperature variation on surfactant

and polymer flooding.

Table 3.2.
Range of the input parameters for polynomial chaos proxy model and
their sources.

Model Name Sensitive Par. Min Max Source

Micro-emulsion Viscosity αV 2 0 3 [127] [128] [4] [129]

Phase Behavior C33max0 0.02 0.05 Experiment [60]

C33max1 0.01 0.02 Experiment

Adsorption ad31 0 2 Experiment

Viscosity and Shear Rate ˙γ1/2 55 100 Experiment

Permeability Reduction crk 0.05 0.1 Experiment

Relative Perm. (Corey Model) nhigh, nlow 1.5 3 [130]

Dispersivity αL1 0.008 0.012 Experiment [131]

Before we begin our proxy-model design, a prior range needs to be defined on

all the model input parameters. Parametrization should honor the model-constraints

as well as any geological constrains and hence only a reasonable bound should be

used on these parameters. The prior ranges of these parameters are determined

either by conducting support-experiments [65] and by considering an uncertainty of

±20% on these model fitting parameters which is a reasonable assumption in reservoir

problems [132]. The priors on those parameters which are not possible to infer from

these experiments are determined after doing an extensive literature review (refer to

Table 3.2). It is worth noting that these same bounds on model parameters will be

used for the optimization problem in section 3.6.
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3.5 Polynomial Chaos Expansion

This section explains the construction of non-intrusive PCE-proxy model. Here,

we adopt the framework from UQLab [133]. Consider a reduced order vector of n di-

mensions of uncertain input variables (given in Table 3.2), denoted by ξ = (ξ1, ξ2...ξn).

Let the output response of our finite variance simulation model be denoted by Y.

Our quantities of interest (QoIs) are pressure drop profile and cumulative oil recovery

curve. We seek to approximate the output response Y of our simulation model with

a known polynomial function P (ξ). This can be approximated using the weighted

sum of orthonormal polynomials as [97,109]:

Y ≈ P (ξ) =
∑
α∈A

yαΨα(ξ) + ε, (3.4)

where Ψα(ξ) are a multivariate orthonormal basis functions with respect to joint

probability density (PDF) f(ξ) of input variables. These are denoted by multi-index

α ∈ A where (α1, α2...αp) are nodes on which the sum is approximated and A is

the truncation set of degree p. yα are the coefficients that we seek to determine by

evaluating the simulation model at these nodal points. The truncation error of PCE

is given by ε. Therefore, if the polynomial function P (ξ) is accurately constructed

with minimal truncation error ε, it can be used as a proxy model to approximates the

actual output response of simulation model.

The multivariate orthonormal basis functions Ψα(ξ) are obtained from tensor

product of univariate orthonormal polynomial φαi . We consider a uniform prob-

ability distribution f(ξ) ∼ U(
∏n

j=1[aj, bj]) for all the input variables for which the

set of orthonormal basis functions are Legendre polynomials. The lower bound aj

and upper bound bj of the distribution for each parameter is provided in table 3.2.

The polynomial function given by Eq. (3.4) is generally approximated upto p degree

by using different truncation schemes (An,p = [α ∈ Nn : |α|≤ p]). We disregard

the higher order interacting terms in the approximation using q-norm or hyperbolic

scheme, where 0 < q < 1 is a parameter that determines the hyperbolic truncation

surface and is given by |α|= (
∑n

i=1 α
q
i )

1/q ≤ p [134].
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The coefficients of the polynomial function given by Eq. (3.4) can be determined

with either an intrusive approach (such as Galerkin), where the equations governing

the physical model are modified, or with a more direct alternative called non-intrusive

approach, which requires evaluation of simulation model at experimental design points

(projection method [135], stochastic collocation method [136] or least square regres-

sion method [137]). Here, we use Least Square Minimization approach to determine

these coefficients. An advantage of this method is that any arbitrary set of points

that represents the true probability distribution (f(ξ)) of input variables can be used

to determine the coefficients.

3.5.1 Least Square Minimization to determine coefficients

In least square minimization, we seek to minimize the mean square truncation

error in Eq. (3.4) as [138]:

yα = arg min
y
α∈RPbasis

1

Ns

Ns∑
i=1

(
P (ξ(i))−

∑
α∈A

yαΨα(ξ(i))
)2

, (3.5)

where Ns are the total number of experimental design points generated from proba-

bility distribution of input variables and Ξ = (ξ(1), ξ(2)...ξNs) is the input vector. We

generate this sample points by using Latin Hypercube Sampling (LHS). Numerous

studies show that LHS has improved convergence rate over Monte Carlo Sampling

(MC) method especially in multidimensional cases [139–141]. The computational

model is evaluated on each of these points. An Ordinary Least Square (OLS) method,

which minimizes the squared residual sum, can be used to solve Eq. (3.5), which

reads [142]:

yα = (ATA)−1ATY. (3.6)

where Y = (y(1), y(2)...yNs) is output model response evaluated at Ns size of input

vector and A is called experimental design matrix that contains orthonormal bases

in all Ns and can be written as Aij = ψjξ
(i), i = 1...Ns, j = 1...p− 1
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Since Eq. (3.5) is a least square minimization problem, an increase in the number

of experimental design points (Ns) results in minimization of truncation error, which

inturn translates to a more robust and accurate PCE-proxy. However, evaluating the

simulation model at large number of experimental design points is computationally

expensive and hence it is important to estimate errors in PCE posterior predictions

to determine the optimum number of model evaluations.

3.5.2 PCE posterior error estimates

The error in posterior of PCE can be estimated quite accurately by the means of

least square minimization error also known as relative generalization εgen. One of its

variant known as normalized empirical error εemp quantifies the predictive ability of

PCE to reproduce the output response on experimental design points (Ξ) as [143]:

εemp =

∑Ns
i=1

(
P (ξ(i))− P PC(ξ(i))

)2

V ar(Y)
. (3.7)

where V ar(Y) =
∑Ns

i=1

(
P (ξ(i)) − 1

Ns

∑Ns
i=1 P (ξ(i))

)2

is variance of model output

response of Y. εemp, however, often leads to over-estimation of true error as it does not

evaluate or cross validate the performance of PCE on points other than experimental

design points [144]. One way to overcome this issue is dividing the experimental

design set into two random sets: building the PCE with one set and cross-validating

the PCE performance on the other set. One such measure of error is leave-one-

out error (εLOO), where PCE is constructed on all but one point (P PC∼i(ξ)), while

relative error in PCE is evaluated on that excluded point (i) [145]. This process is

then repeated for all points in the experimental design set Ns [146].

εLOO =

∑Ns
i=1

(
P (ξ(i))− P PC∼i(ξ(i))

)2

V ar(Y)
. (3.8)

It is important to note that, the output response of our simulation model (Y =

(y(1), y(2)...yNs)) is time dependent. So, y(i) is a vector response discretized at k steps
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and is given by y(i) = y
(i)
j = (y

(i)
1 , y

(i)
2 ...y

(i)
k ) where j = 1...k. So, we define εmeanLOO (or

εmeanemp ) as average of LOO error (or empirical error) at all k steps.

εmeanLOO =

∑k
i=1 ε

i
LOO

k
. (3.9)

εmeanemp =

∑k
i=1 ε

i
emp

k
. (3.10)

εmeanLOO or εmeanemp error captures the overall error in the PCE output response (y(i)).

In this work, we discretized the output response of our simulation model such that

y
(i)
k − y

(i)
k−1 = 0.1 PV.

3.5.3 Experimental design size selection and error estimates

We start by investigating the effect of increasing experimental design sample size

(Ns) on the accuracy of PCE prediction. We use ∆εmeanLOO = 5 × 10−4 as stop-

ping criteria in Algorithm 2 (line 2). The degree of polynomial is given a range

of 1 ≤ p ≤ 5 with hyperbolic truncation q-norm of q = 0.9. We consider a val-

idation set having NLHS = 104 sample points. The input vector is 9 dimensional

ξ = {αV 2, C33max0, C33max1, ad31, ˙γ1/2, crk, nhigh, nlow, αL1} with uniform marginal dis-

tribution (refer to Table 3.2) assumed on each variable. We use the same experiment

(BCF1) to construct our PCE-proxy, which we have used for senstivity analysis (refer

section 3.4). We start with Ns = 50, which are increased in each iteration step, if the

stopping criteria is not met. Figure 3.3 shows the evolution of εmeanLOO and εempemp error

with increase in Ns. It can be observed that εmeanemp error is a monotonically decreasing

function with PCE sample size. Also it often gives an optimistic estimates which

leads to overfitting of PCE (refer to section 3.5.2). Therefore, a cross-validation er-

ror estimate εmeanLOO is also plotted, which estmates how well PCE-proxy predicts on

points other than experimental design points. As expected, PCE-proxy constructed

with larger training sets estimates more accuartely than the ones constructed with

smaller. A sample size of 1000 was sufficient to achieve the desired accuracy (∆εmeanLOO ).
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The values of ∆εmeanLOO estimated in the final iteration step were 4.6×10−4 for pressure

drop profile and 4.1× 10−4 for cumulative oil recovery curve. It should also be noted

that the total time taken to evaluate simulation model at 1000 sample points was

≈ 20 hrs on a system with Intel(R) Xeon(R) CPU E-5 1650 v3 @3.5GHz CPU with

32 GB RAM.
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(b) Cumulative oil recovery curve

Fig. 3.3. Mean LOO error and mean empirical error for PCE-proxy con-
structed using Ns = {50, 100, 500, 1000} training samples.

We now investigate the predictive ability of PCE-proxy by validating it with simu-

lation results for overall oil recovery factor and max(∆p). This can be done either by

cross-validation of PCE-proxy response with simulation model response or by com-

paring their histogram. Figure 3.4 and 3.5 shows the effect of increasing the size

of experimental design set (Ns = {50, 200, 500, 1000}), on predictive capabilities of

PCE-proxy. It is clearly evident that increasing Ns results in increased accuracy (R2

→ 1). It is worth noting that even with Ns = 200, the PCE-proxy is able to accu-

rately predict the simulation model response for both the overall oil recovery factor

and max(∆p) with R2 ≈ 0.99. For max(∆p) response, the coefficient of determi-

nation (R2) improves significantly from 0.965 for Ns = 50 to 0.996 for Ns = 1000.

Figure 3.6 compares the histogram of max(∆p) and overall oil recovery factor for

PCE-proxy constructed with Ns = 1000 samples and simulation model for 104 LHS

points. There is an excellent agreement between simulation model response and PCE-
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Fig. 3.4. Cross-validation of PCE-proxy (Y PC) constructed with
Ns={50,200,500,1000} training sets with simulation model (Y sim) for
maximum pressure drop (max(∆p)).

Fig. 3.5. Cross-validation of PCE-proxy (Y PC) constructed with
Ns={50,200,500,1000} training sets with simulation model (Y sim) for
overall oil recovery factor.



55

proxy response indicating that the PCE-proxy can be used efficiently in inverse model

calibration and history matching.
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Fig. 3.6. Histogram of PCE-proxy predictions constructed with Ns=1000
vs simulation model for 104 LHS sample points.

3.5.4 Moments of PCE: Mean and Variance

Moments of stochastic expansion methods such as PCE are available analytically

which converge to true output model response. The first two moments of PCE, mean

and variance, are functions of only its coefficients. To compute mean (µPCE), we take

an expectation (E) of PCE and then use inner product with Ψ0 as shown below.

µPCE = E[Y ] = Ep[P (ξ)] = Ep[P (ξ) · 1] = 〈P,Ψ0〉 = y1. (3.11)

Therefore, mean of PCE is given by the first coefficient of constant basis term Ψ0=1.

The variance of PCE (V) can be computed using the common formula of variance:

V[Y ] = E[Y 2]− (E[Y ])2.

The first term is given by Eq. (3.11) and for the second term we have:

E[Y 2] = Ep[P 2(ξ)] =‖ P ‖2=
∞∑
α=1

y2
α.
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Combining everything, we get:

σ2
PCE = Vp[P (ξ)] =

∞∑
α=2

y2
α. (3.12)

Therefore, it can been seen that the variance of PCE is given by the sum of square

of all its coefficients except the first (y1).

3.5.5 Moments of stochastic approach (LHS) : Mean and Variance

Consider n independent and identically distributed (iid) samples (ξ = (ξ1, ξ2...ξn))

from any distribution. The mean of the distribution (In) can be approximated us-

ing Central Limit Theorem (CLT), if variance (Vn) of distribution exists. The CLT

states that as n → ∞, the empirical average of any distribution tends to a normal

distribution with mean:

In :=
1

n

n∑
j=1

P (ξj)→ N

(
E[P (ξ)],

1

n
V[P (ξ)]

)
, (3.13)

The variance of the distribution (Vn) can then be approximated as:

Vn =
1

n

n∑
j=1

(P (ξj)− In)2 . (3.14)

Here, we generate n = 104 of these iid samples using LHS which has a better conver-

gence rate than Monte-Carlo Sampling (MCS) [139].

We then check the accuracy of the PCE-proxy by looking at the relative error

in the PCE-proxy estimates. Let ytrue be the ground truth vector and ŷ be the

estimated vector. The relative L2 error is defined to be:

L2[ytrue, ŷ] =
‖ ytrue − ŷ ‖2

‖ ytrue ‖2

, (3.15)

where ‖ · ‖2 is the standard Euclidean norm. Here, we consider, ground truth vector

as ytrue = [In, Vn], where the mean (In) or variance (Vn) are obtained from 104 LHS

simulations (refer to section 3.5.5) and estimated vector as ŷ = [µPCE, σ
2
PCE], where

the mean (µPCE) or variance (σ2
PCE) are obtained from PCE-proxy (refer to section

3.5.4).
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Fig. 3.7. Relative L2 error in mean and variance of the PCE-proxy output
response which converges for all QoIs with increase in Ns. The ground
truth is established with 104 LHS simulations.

Figure 3.7 shows the relative error in mean and variance estimates of PCE-proxy

plotted as a function of Ns. A relative error L2 of 2.5 × 10−2 is considered to be

sufficient for convergence of both the mean and variance plot. It can be seen that PCE-

proxy approximates mean within this accuracy even for Ns = 50 for both pressure

drop profile and cumulative oil recovery curve (L2 ∼ O(10−3)). Even for variance, it

takes only about Ns = 50 for PCE-proxy to achieve this high accuracy for cumulative

oil recovery curve. However, for pressure drop profile it takes about Ns = 1000 to

achieve this convergence criteria. This is because of large variance or uncertainty

associated with pressure drop profile after surfactant-polymer flooding (after 1.45
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PV) as seen in figure 3.9. A more detailed discussion on this is provided in section

3.8 where we use PCE-Kriging technique to quantify this uncertainty.

In figures 3.8-3.9, we plot mean (µPCE) and standard deviation (σPCE) for our

QoIs to visualize how fast PCE converges to the same solution statistics (In and

σLHS) as estimated by 104 MC simulations performed using LHS sampling. As it

can be seen, even with Ns = 50, the mean and stand deviation are estimated very

accurately (refer to relative L2 error reported in figure 3.7), which shows the great

potential PCE offers for computational speed up. It is worth noting that it takes only

about few seconds to evaluate PCE at 104 experimental design points. This is very

important for inverse optimization problem which usually requires few thousands of

model evaluations in each iteration step (refer to section 3.6).
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Fig. 3.8. Comparison of mean and standard deviation of PCE-proxy con-
structed with Ns = 50 with 104 LHS evaluations for pressure drop profile
and cumulative oil recovery curve.

3.6 Inverse Model Calibration Problem

Let Ξ be an n-dimensional space of uncertain model parameters (here n = 9). Ξ

contains all the prior possible combinations of unknown parameter values ξ. Let the

experimental observations be denoted with y. Let P be a forward operator of the
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Fig. 3.9. Comparison of mean and standard deviation of PCE-proxy con-
structed with Ns = 1000 with 104 LHS evaluations for pressure drop
profile and cumulative oil recovery curve.

PCE-model, which is a polynomial function that maps the space of Ξ to the space of

y’s (Y ). These uncertain model parameters can be adjusted to achieve an acceptable

fit between the model and observations. The inverse problem, also known as the

model calibration problem is to find the best ξ̄min ∈ Ξ such that P (ξ̄min) ≈ y.

We define a loss metric `(P (ξ), y), to quantify how closely function P (ξ) approx-

imate our QoIs, y, viz. cumulative oil recovery curve and pressure drop profile (refer

to section 3.3). Therefore, we can setup a multi-objective optimization problem with

a separate loss metric defined for each one of these objectives. Here, we use a square

loss metric which is given as:

`(P (ξ), y) =
1

2
‖ P (ξ)− y ‖2

2=
1

2

k∑
j=1

(Pj(ξ)− yj)2 , (3.16)

Therefore, our optimization or model calibration problem is to find ξ̄min ∈ Ξ such

that it minimizes Q = [q1, q2], where

qs = min
ξ∈Ξ

1

2
‖ P (ξ)s − ys ‖2

2 . (3.17)

Here, s=1 is cumulative oil recovery curve and s=2 is pressure drop profile.
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3.6.1 Genetic Algorithm based Optimization

We pose the above inverse problem as an optimization problem (refer to section

3.6) and use Genetic Algorithm (GA) to solve it. GA is based on the principle of

survival of fittest (refer to Algorithm 3) that mimics natural selection. GA was first

proposed by Holland in 1975 [147] and later developed by Goldberg in 1989 [148].

Since then, GA has been extensively applied to a variety of applications such as

uncertainty quantification [149, 150], reservoir history matching [151, 152], optimiza-

tion [153,154] or model calibration [155,156].

The procedure starts with a generation of initial feasible random population, with

each member of this population known as chromosome. Fitness of each chromosome

is evaluated using an objective function called as fitness function. The fittest chro-

mosomes among them called as parents are evolved through mutation and alteration

(crossover) in subsequent iterations called as generations to reproduce off-springs.

If these off-springs perform better, the original chromosomes in the population are

replaced with them. This process is repeated for many generations till the solution

converges to the best set of chromosomes which is considered as the optimized set

based on natural selection.

3.6.2 Parent Selection

The randomly generated population (popsize = 120) is evolved by selecting only

those individuals from the population who has a better probability of surviving, find-

ing mate and reproducing fitter off-springs. This is achieved by defining a selection

function where these individuals are competed against each other based on their fit-

ness functions. Most common types of selection functions found in literature are

tournament selection [157], roulette wheel selection [158], steady state selection [159],

etc.

Here, we use a tournament selection function, where Ts = 4 individuals are ran-

domly chosen from the current population pool with probability Ps = 1. The fitness
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of these Ts individuals is compared and the one with the best fitness is selected. This

process is repeated till the population pool is complete. Ts is called tournament size

and can be used to control the selection pressure.

3.6.3 Reproduction

Off-springs are reproduced when two parents mate. At the molecular level, mat-

ing involves exchange of genetic information from both the parents. This is accom-

plished by splitting the chromosomes of both parents at a randomly selected point

(single-point crossover) or at multiple points (k-point crossover, uniform crossover)

and crossing them over. This crossover operation is carried with a crossover probabil-

ity Pc of 0.8 meaning 80% of the new population is reproduced by crossover operation.

Crossover improves the search of optimum solution by exploiting a larger parameter

space. However, only crossover results in premature convergence because of over-

exploitation of search space often resulting in a suboptimal convergence. Therefore,

these off-springs are mutated with a small mutation probability Pm by randomly al-

tering their genes. This ensures that genetic diversity is maintained among off-springs

and results in better exploration of the parameter search space. But a high mutation

probability could mean that the algorithm is randomly guessing the optimum solution

and hence, it may suffer from slow-convergence. We use 0.01 as mutation probability

Pm. More information on these operators can be found in [148,160,161].

3.6.4 Fitness function

We use Eq. (3.17) as fitness function, where the objective is to minimize the

square of difference between observations and PCE-proxy. We observe that these

two objectives are conflicting in nature with respect to the uncertain input vector

x. This means that a single optimum solution is not possible and a decrease in

one objective function results in increase in another objective function. Therefore,

a concept of Pareto dominance is used to define the trade-off between these multi-
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objective functions [162]. In Pareto dominance, we seek to find a set of all equally

dominant solutions called Pareto optimal that provides an optimum trade-off. ξ∗

is called as Pareto optimal S [163], if for all ξ, Ss(ξ
∗) ≥ Ss(ξ) for s = 1, 2 and

Ss(ξ
∗) > Ss(ξ) for at least one s. This implies that, for any feasible ξ, decrease in one

or more objective functions will result in increase in at least one objective function.

Therefore, we are expected to obtain a set of Pareto optimal solutions Ξ∗, which is a

subset of Ξ. The image of all ξ∗ ∈ Ξ∗ is called Pareto front, representing this trade-

off. Here, we consider Pareto optimal to be the optimized solution set (ξ̄min) (refer

to section 3.6) i.e. ξ̄min = ξ∗.

Figure 3.10 shows the Pareto front after Ngen = {1, 10, 50, 100} generations of

Genetic Optimization Algorithm. The algorithm is stopped after N end
gen generations

(in line 14 of Algorithm 3). The trade-off between the error for cumulative oil recovery

curve (horizontal-axis) and pressure drop profile (vertical-axis) can be clearly seen. It

can also be concluded that GA does a great job of minimizing both of the objective

functions since the Pareto front shifts towards the origin with increasing generations.
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Fig. 3.10. Pareto front showing the trade-off between the two objective
functions.
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3.7 Final model calibration results

The model calibration algorithm (refer to Appendix A) starts with minimizing

both of the objective functions (refer to Eq. (3.17)). This multi-objective optimization

ensures a simultaneous reduction of the misfit between the observed data and PCE-

proxy response of our QoIs for BCF1. Recall that the PCE-proxy is constructed

using injection sequence and slug design of BCF1. The stopping criteria used for this

stage is ncross = 50, where after every ncross generations the predicted optimum by

GA is cross-validated with BCF2 and BCF3 (in Algorithm 3 line 6). This is done by

calculating an average relative L2 misfit error (σloss) for BCF2 and BCF3 simulation

model for optimal points on the Pareto front. This cross-validation stage ensures

that the minima predicted with GA is actually a global minimum by predicting the

response of calibrated models on two different independent data sets BCF2 and BCF3.

The model calibration algorithm is stopped, when maximum generation limit exceeds

Nmax
gen =100 or σloss is reduced below an acceptable value.

Figures 3.11-3.13 show the model calibration algorithm in working, where the

simulation model is evaluated at all the points on the Pareto front after Ngen = 1

and Ngen = 100 generations and is compared with experimental observations. Note

that, here we use simulation model as the proxy model is constructed only for BCF1

but not for BCF2 and BCF3. The green shaded area represents the miss-fit between

observations and simulation model predictions after Ngen = 1. This miss-fit is clearly

seen to be reduced (red shaded area) after Ngen = 100 generations of GA optimization

for pressure drop, cumulative oil recovery curve as well as for oil-cut curve. The same

model parameters can be seen to accurately predict the QoIs for BCF2 and BCF3

without any further tuning indicating convergence to a global optimum. Figure 3.14

compares each of these calibrated models separately before and after optimization.

The original larger parameter space from uniform distribution (light shaded area) is

clearly reduced and converged to a much smaller parameter space represented by dark

shaded areas. Intersted readers can read more about these models in [27,65,128].



64

0 1 2 3 4
PV

0
1
2
3
4
5

P i
nj

P p
ro

d

Ngen=100
Ngen=1

(a) Pressure drop

0 1 2 3 4
PV

20

40

60

80

%
 O

O
IP

Ngen=100
Ngen=1

(b) Cumulative oil recovery

0 1 2 3 4
PV

0.0

0.2

0.4

0.6

0.8

1.0

O
il 

C
ut

Ngen=100
Ngen=1

(c) Oilcut

Fig. 3.11. History matching for BCF1 where the response is plotted for
the points on the pareto front after Ngen = 10 and Ngen = 100 for a)
pressure drop b) cumulative oil recovery c) oilcut curve. The parameter
space after Ngen = 10 can be seen to be reduced and converged well to
the experimental data after Ngen = 100.
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Fig. 3.12. Validation for BCF2 where the response is plotted for the
points on the pareto front after Ngen = 10 and Ngen = 100 for a) pressure
drop b) cumulative oil recovery c) oilcut curve. The parameter space
after Ngen = 10 can be seen to be reduced and converged well to the
experimental data after Ngen = 100
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Fig. 3.13. Validation for BCF3 where the response is plotted for the
points on the pareto front after Ngen = 10 and Ngen = 100 for a) pressure
drop b) cumulative oil recovery c) oilcut curve. The parameter space
after Ngen = 10 can be seen to be reduced and converged well to the
experimental data after Ngen = 100

3.8 Uncertainty quantification in PCE-proxy

In this section, we explain the formulation of PCE-Kriging method to quantify

epistemic uncertainty in PCE-proxy model [164, 165]. Kriging is based on stochastic

interpolation algorithm which uses weighted average method to interpolate value of

functions at unobserved points. Kriging is also known as Gaussian process regression.

It approximates model output as:

Y PCEK = f(ξ) ≈ βTP (ξ) + σ2Z(ξ, w). (3.18)

This Gaussian regression process has two main ingredients i) a mean function βTP (ξ)

and ii) a covariance function which is characterized by variance σ2 and a zero mean

and unit variance stationary Gaussian Z(ξ, w). When the mean is approximated

using a PCE trend, the Kriging method is known as PCE-Kriging or PCE-K in short.

Here, we adopt the framework of PCE-K from UQLab [133] which is based on [120].

Therefore, substituting Eq. (3.4) in Eq. (3.18), we get:

Y PCEK ≈
∑
α∈A

yαΨα(ξ) + σ2Z(ξ, w). (3.19)
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Fig. 3.14. Final calibrated models using a Genetic Algorithm: light shaded
area represents the parameter space before calibration, while dark shaded
area represents the optimized parameter space after calibration

This is a universal Kriging model, where the mean is obtained from weighted sum

of orthonormal polynomial basis. Therefore in PCE-K, PCE captures the global be-

havior of the trend while the Gaussian process captures the local variability. Eq.

(3.19) can be solved using sequential PCE-K approach as described in [120]. Station-

ary Gaussian Z(ξ, w) is characterized by its correlation function R(ξ, ξ′; θ), which

describes the nature of function space. In more simpler words, the choice of corre-

lation function depends on how similar are observations f(ξ) and new points f(ξ′)

in the function space depending on the distances between them. We use Squared

Exponential as correlation function or kernel R which is given as:
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R(ξ, ξ′, θ) = exp

(
−
(ξ − ξ′

θ

)2
)
, (3.20)

where θ is the correlation length, which is generally not known because of lack of

observations. However, an estimate for θ can be calculated by setting up a Maximum

Likelihood optimization problem which reads [166]:

θ = arg min
(1

2
log(det(R)) +

Ns

2
log(2πσ2) +

Ns

2

)
. (3.21)

The idea is to find θ that maximizes the likelihood of observations:

Y = {f(ξ1), f(ξ1), ...f(ξTNs)}.

The optimal value of θ can then be used to obtain other hyperparameters of Kriging

process (σ2, coefficients βT ).

Figure 3.15 shows uncertainty quantification in the proxy model using PCE-K,

which is trained using Ns = 200 LHS samples. Here, the mean of PCE-K proxy

model is also compared with PCE predictions (refer to section 3.5). Eq. (3.21) is

solved using a local optimization algorithm called L-BFGS Hessian. We use the same

input parameter space and design settings as used in PCE construction step (refer to

section 3.5).
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Fig. 3.15. Uncertainty quantification in proxy model using PCE-Kriging.
The uncertainty can be observed to be high during SP and P flooding be-
cause of the large uncertain parameter space describing their mechanism.
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It is interesting to see that most of the epistemic uncertainty (2σt) in PCE-K

model comes from surfactant-polymer injection (after 1.45 PV). As explained in sec-

tion 3.3, surfactant lowers the interfacial tension (IFT) between the oleic phase and

aqueous phase and can lead to the formation of a new phase called as micro-emulsion.

Modeling such a process requires many physical models or parameters (Table 3.1) and

hence involves a considerable uncertainty. This uncertainty is captured very well by a

PCE-K proxy model. On the contrary, there is little to no uncertainty during initial

water flooding (IWF) (0-1.45 PV) and extended water flooding (EWF) (2.96-4.3 PV)

phases, signifying that PCE mean captures the trend nicely.

3.9 Conclusion

Even though there exits an exhaustive literature on history matching processes,

there isn’t a single algorithm that works best for all problems. Rather, the choice of

algorithm depends solely on the problem at hand. Therefore, any new algorithm that

can overcome some of the drawbacks of already existing ones, finds a great interest

in the community [167]. Here, we propose an algorithm to construct a very fast and

an efficient emulator for history matching a surfactant-polymer (SP) flood process

by exploiting the characteristics of model response through sensitivity analysis and

proxy modeling.

At first, the uncertain model parameters necessary to model SP flood process are

defined (19 variables in total). The high-dimensionality of this stochastic parameter

space is reduced by implementing a Sobol SA. This low-dimensional parameter space

(9 variables in total) obtained from SA is then used to construct an efficient proxy

model based on Polynomial Chaos Expansion (PCE-proxy). PCE-proxy approximates

the highly non-linear response of simulation model and guarantees convergence in

distribution of output quantities of interest. The predictive capabilities of PCE-

proxy is cross-validated with simulation model for experimental design size of Ns =

{50, 200, 500, 1000} training samples for overall oil recovery factor and max ∆p. The
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analytical moments of PCE-proxy viz. mean and variance are also compared with

statistical moments derived from benchmark simulations of 104 LHS samples and it

is shown that even experimental design set of Ns = 50 points exhibit an acceptable

convergence. Then, an inverse optimization problem is proposed to minimize the

square loss metric or miss-fit between PCE-proxy and observations. This multi-

objective optimization problem is solved using a GA. Many local minima exits for this

optimization problem because of the non-linearity of the model response. Therefore,

GA is expected to perform better as it starts with multiple points in the search space.

Use of PCE-proxy in this optimization stage facilitates an accelerated approach to

determine an optimized parameter space and improve the quality of history matched

results.

The proposed framework has been successfully applied to history match three

different core-flood experiments for all quantities of interests such as pressure drop and

cumulative oil recovery curve. Finally, uncertainty arising in the proxy model itself

is quantified by constructing a PCE-Kriging proxy model. This PCE-K proxy model

uses PCE as basis to capture global variability or trend and a Gaussian regression

process to capture the local variability thus quantifying uncertainty in the proxy

model construction stage.

The main disadvantage of the presented framework is for higher order approx-

imations where an increase in PCE degree directly reflects to a drastic increase in

PCE terms which requires a large number of simulation runs for their computation.

However, recently many new methods have been proposed which exploit the sparsity-

of-effects principle to detect the main-effects and lower-order interaction terms that

greatly governs the model response, neglecting many terms in PCE-proxy expan-

sion [168–170]. One potential extension of the presented framework could be in the

Bayesian context where cheap PCE-proxy replaces the full-forward model in likeli-

hood function to obtain an analytical expression of posterior or to directly sample

from the posterior using MCMC methods [68]. We discuss this approach in the next

Chapter 4.
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In all, the methodology presented here can be extended to a class of more com-

plex model calibration problems, such as history matching of fractured reservoirs

[171, 172], history matching of alkaline-surfactant-polymer (ASP) flooding and opti-

mization [173] or CO2-EOR and storage [174,175]. The framework presented can also

be applied to solve problems outside the realm of reservoir engineering as it provides

a way to validate accuracy of surrogate model, quantify uncertainty in the surrogate

model and provides a probabilistic measure of model output on stochastic inputs

making model calibration task extremely efficient.
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4. BAYESIAN MODEL CALIBRATION AND

OPTIMIZATION

A version of this chapter is in preparation for submission as:

Pratik Naik, Piyush Pandita, Soroush Aramideh, Ilias Bilionis, & Arezoo Ardekani,

Bayesian model calibration and optimization of surfactant-polymer flooding. Com-

puters & Geosciences.

4.1 Abstract

The underlying physical models governing surfactant-polymer (SP) flooding pro-

cess are subject to parametric uncertainties, accurate quantification of which is cru-

cial for improved decision making. Moreover, history matching of SP flooding is an

ill-posed problem, typically characterized by a multi-modal posterior distribution of

these model parameters. This chapter presents a systematic approach for Bayesian

history matching and uncertainty quantification in the model calibration stage of SP

flooding using coreflood experimental data. The approach is as follows. First, we

construct a surrogate of the computationally expensive physics-based model using a

polynomial chaos expansion (PCE-proxy). Second, we formulate a Bayesian calibra-

tion problem for inferring the model parameters from a single coreflood experiment

that measures pressure drop and oilcut profiles. Third, we solve the Bayesian calibra-

tion problem by sampling directly from the posterior using Markov chain Monte Carlo

(MCMC). We validate the calibrated parameters by successfully predicting the result

of two other coreflood experiments. Then, we extend this framework to stochastic

multi-objective optimization of injection slug size design under uncertainties in model

parameters (captured by the posterior of Bayesian calibration problem) and oil price

(modeled as a geometric random walk with constant drift and volatility). To identify
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the Pareto frontier of the stochastic multi-objective optimization problem, we employ

a variant of Bayesian global optimization (BGO), a class of algorithms capable of

optimizing black-box, gradient free, computationally expensive functions. In partic-

ular, we use the extended expected improvement over the dominated hypervolume to

sequentially select simulations that seek to reveal the Pareto frontier. An addendum

of the implemented BGO is that it quantifies the epistemic uncertainty about the

Pareto frontier as induced by the limited number of simulations used to construct it.

4.2 Introduction

Surfactant-polymer (SP) flooding for chemically enhanced oil recovery (cEOR)

has been extensively studied over the past few decades [5,45,46]. In SP flooding, in-

jection of polymer to the oil-water system hinders the flow instabilities and results in

an improved sweeping efficiency [28, 47] whereas injection of surfactant results in re-

duced interfacial tension (IFT) which leads to mobilization of the trapped oil [48,49].

Conventionally, laboratory scale coreflood experiments are preformed to gain better

understanding of the characteristics of surfactant-polymer flooding processes. How-

ever, major technical challenges occur while transferring the SP flood technology from

laboratory scale to the reservoir scale [50]. This is mainly because of uncertainties

associated with the local reservoir properties such as porosity, permeability and sat-

urations [176, 177] or uncertainties in the parameters governing the surfactant and

polymer flooding process which is the focus of this chapter [178]. Therefore, stochas-

tic modeling techniques are often used to explicitly capture the variability in these

parameters and their associated uncertainty [50].

In the literature, various stochastic modeling techniques have been successfully ap-

plied to the reservoir history matching problem such as gradual deformation method

(GDM) [179], ensemble Kalman filter (EnKF) [180, 181] or randomized maximum

likelihood (RML) method [182]. GDM builds a stochastic process by generating

perturbations of prior model sample with an aim that the perturbed realization grad-



73

ually matches well with the observed data [183]. This perturbation is achieved using

trigonometric functions of Gaussian random variables [184]. Though the perturbation

method preserves the prior model statistics, Caers [185] showed that when the problem

is framed in Bayesian context, the sample drawn is not guaranteed to be from the true

posterior distribution. EnKF is a sequential assimilation method where an ensemble

of model realizations is updated based on deviation of the model response from the

measured data [82]. Though this method has been extensively studied for reservoir

history matching, it suffers from various limitations in case of non-Gaussian prior in-

formation, non-linearity of the forward model or scaling of the model to the field scale

application [186]. Also, EnKF, if it is not combined with suitable parameterization

method, results in extreme non-physical values for the model parameters [187].

To quantify the epistemic uncertainty in the model parameters, one has to pose

the model calibration problem in a Bayesian context. Bayesian inference is attractive

because it reduces the problem of history matching to just sampling the posterior

probability density function (PDF) of the model parameters conditioned on the field

data by building a probabilistic model of the process. RML is one such method that

can be used to sample this posterior PDF of the model parameters [188]. However,

RML has shown poor performance when the posterior is non-Gaussian or the forward

model is non-linear, which is the case in SP flooding [189]. Another appealing alter-

native to sample from the posterior is to use rigorous iterative sampling techniques

such as Markov chain Monte Carlo (MCMC). Even though MCMC is computation-

ally expensive, by the law of large numbers, it is theoretically guaranteed to provide

samples from the true posterior as the number of iterations goes to infinity.

MCMC has a long history in reservoir history matching applications [190]. Re-

cently, many new advances have been made to the traditional MCMC technique such

as hybrid MCMC [191], parallel interacting MCMC [192], population MCMC [193],

combining EnKF with MCMC [189] or two-stage MCMC [194]. The main focus of all

these improvements has been to address the prohibitively expensive cost of MCMC as

evaluating full scale reservoir model even for few thousands of proposed MCMC sam-
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ples is computationally unfeasible. In this chapter, we address this issue by construct-

ing a Polynomial Chaos Expansion-based proxy model (PCE-proxy) which replaces

the original expensive physics-based model in the likelihood function of Bayesian in-

ference. This PCE-proxy approximates the non-linear output response of simulation

model and facilitates a significant reduction in computational time [195]. Proxy-based

Bayesian history matching has been studied extensively in recent years using artifi-

cial neural networks (ANN) [196], K Nearest Neighbouring (KNN) [197,198], response

surface methodology (RSM) using polynomial regression design of experiments [199],

Gaussian process regression [200–202], PCE-proxy [203,204]. PCE-proxy is the choice

of surrogate model here because of the low-dimensionality of the calibrated parame-

ters (9 parameters are considered), it can be built easily in a non-intrusive manner

by treating the forward simulation model as a black-box, and, for smooth functions,

it converges exponentially fast as the number of model simulations and polynomial

PCE degree increases [195].

In this chapter, we present an assisted history matching framework using PCE-

proxy based MCMC strategy to calibrate models for SP flooding process in Berea

corefloods (BCF). We pose the problem in Bayesian context where at first, the prior

knowledge of various physical models imitating the process of SP flooding is obtained

by conducting separate experiments which are referred as support experiments. Then,

the uncertain parameter space of SP flood process is represented via appropriate or-

thonormal basis of PCE-proxy model. This PCE-proxy is used to approximate real-

izations of quantities of interest (QoIs) such as pressure drop and oilcut profile for the

proposed MCMC samples. We use this framework to estimate the posterior probabil-

ity density function of the uncertain model parameters by training the Bayesian model

on a single coreflood experiment. We then validate that the trained model accurately

predicts our QoIs for two other coreflood experiments with the same posterior. To

the best of our knowledge, this is the first study that implements PCE-proxy based

Bayesian inference algorithm for history matching of SP flooding.
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We then extend this framework to optimize the injection sequence of SP flooding

process under uncertainties in these calibrated model parameters by posing a two-

objectives optimization problem where these competing objectives are determined by

identifying a set of optimal solutions known as the Pareto frontier (PF). The noisy sim-

ulator outputs are not mathematically tractable and hence we need to resort to tech-

niques other than the conventional heuristic based optimization techniques [205,206].

Bayesian global optimization (BGO) [207–210] has been successful in dealing with the

above challenges in solving single-objective optimization problems and has recently

been extended to multi-objective optimization. BGO models the objectives via Gaus-

sian process surrogates [211] and uses epistemic uncertainty to define an information

acquisition function (IAF) that quantifies the merit of evaluating the objective at

untried designs. The expensive objective is evaluated at the design corresponding

to the maximum value of the IAF, and the latest observation is used to update the

surrogate. This iterative process continues until a stopping criterion is met. The

most commonly used IAF is the Expected Improvement [207, 208], which extends

to the Expected Improvement over the dominated Hyper Volume (EIHV) [212, 213]

when solving multi-objective optimization problems. Unfortunately, the current ver-

sions of EIHV are unable to deal with parametric uncertainties or stochasticity in

the objectives. In this work, we employ an extension of this known as extended

EIHV (EEIHV) [214] which filters out the noise due to parametric uncertainties.

An addendum of the probabilistic nature of this methodology is that it enables us

to characterize our confidence about the predicted PF. We study this optimization

problem for two cases of positive and negative drifts in the oil price time series by

incorporating a random walk stochastic model for oil price with an aim to capture

the influence of volatile oil price on injection strategy.

The chapter is organized as follow. Section 4.3 presents the framework incorpo-

rated for Bayesian history matching and optimization along with the details of the

BCF experiments. In section 4.4, we briefly discuss the uncertainties present in mod-

eling a typical SP coreflood process. Then in section 4.5, we provide the details of
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PCE-proxy model and its validation. Section 4.6 gives the theory of model calibration

using Bayesian inference. Finally, in section 4.7, we pose a multi-objective optimiza-

tion problem using BGO to design the optimum injection sequence for SP flooding

under uncertainties in model parameters and oil price.

4.3 Framework for Bayesian history matching

The framework proposed (refer to figure 4.1) involves the sequential execution

of initial parameterization, dimensionality reduction, proxy construction, Bayesian

model calibration and multi-objective optimization stages. We start by perform-

ing laboratory scale experiments to investigate the mechanism of oil recovery by SP

flooding. We carry out these experiments with an aim to study the effects of chemical

composition specifically salinity and concentration on the overall oil recovery. There-

fore, these experiments are performed at different salinity, slug sizes and polymer

concentrations as given in Table 2.5. More details on the experimental setup can be

found in [65]. We carry out the numerical modeling of SP flooding process with the

reservoir simulator UTCHEM v9.82 [27].

An initial model calibration of SP flooding is performed by dividing the entire flood

process into three separate sub-processes 1) surfactant flooding 2) polymer flooding

and 3) displacement process. The physical models describing each of these sub-

processes are calibrated by performing additional support experiments as described

in [65]. Table 4.1 shows the different models describing each of these sub-processes

along with their parameters. Interested readers may refer to [27] to read more about

these models.

Then, the resulting high-dimensional input parameter space (19 stochastic param-

eters in total) is reduced to 9 parameters by performing a Sobol sensitivity analysis

(SA) with output QoIs i.e. maximum pressure drop and overall oil recovery factor.

The details of SA are illustrated in our previous work [195] and are also summarized

in Table 4.1.
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Fig. 4.1. Framework for history matching using Bayesian inference.

Next, we construct a PCE-proxy model in a non-intrusive fashion. This is an

important pre-step for Bayesian inference as the posterior distribution of such a high

dimensional problem is generally multi-modal non-Gaussian necessitating thousands

of evaluations of the expensive simulator [83, 84]. Hence, the prohibitive cost of

such an expensive method can be greatly facilitated by using a proxy model that

approximates the simulator output response for QoIs. We employ Bayesian inference

as it estimates the posterior distribution of the model parameters in a probabilistic

sense conditioned on the field data. This is important as this posterior distribution

readily quantifies uncertainty in the output response due to the variability in model

parameters.
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Finally, we pose a multi-objective optimization problem to design an optimized

injection strategy for oil recovery using BGO. In BGO, a probabilistic belief is main-

tained about the objective functions and a surrogate of objective function is con-

structed using Gaussian processes. This belief is updated using a so-called IAF which

determines the next evaluation point for objective functions. In our case, design-

ing this optimized strategy requires consideration and quantification of uncertainty

in model parameters which is innate to BGO with extended EIHV IAF [214]. In

this work, we show that with only few evaluations of expensive objective functions,

implemented BGO is successful in learning the optimal region.

4.4 Uncertainty in SP flooding

The intrinsic variability in the physical properties governing the displacement

processes is an inherent characteristic of subsurface flows. This problem is even

more pronounced in cEOR due to presence of additional chemo-physical processes.

Therefore, successful design of any cEOR strategy depends heavily on how well this

uncertainty due to parameter variability is captured and quantified. In this regards,

various studies exist in the literature. The effects of variation in surfactant adsorption

(ad31) and its implications on the oil recovery have been studied in [50, 177]. The

sensitivity of micro-emulsion phase behavior (C33 max 0, C33 max 1) on the salinity have

been reviewed in [215–217]. Polymer viscosity (γ̇1/2) and permeability reduction (crk)

was shown to have dominant effect on the sweep efficiency by [132,218]. The impact

of micro-emulsion viscosity (αV 2) on oil recovery have been studied by [219, 220].

Here, we quantify uncertainty in these model parameters by considering a ±20%

uncertainty bound over the values calibrated from the support experiments which is

a reasonable assumption for reservoir problems [132]. For those parameters that were

not possible to be inferred from the experiments, we perform an extensive literature

review to define a prior range over them (refer to table 4.1).
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4.5 Polynomial chaos proxy construction

We adopt the framework from section 3.5 and construct the PCE-proxy in a non-

intrusive manner. We use oilcut curve as one of the QoIs in this chapter, as opposed to

cumulative oil profile in Chapter 3, since we collect measurement data for the oil-cut

curve while the cumulative oil recovery, which can be interpreted as the area under

the oilcut curve, is simply calculated from these measured data. This is important in

the Bayesian approach as it allows us to capture noise in the measurement process.

In this section, we provide the validation of PCE-proxy where the QoIs are oil-cut

and pressure profiles.

We first check the accuracy of the PCE-proxy model by plotting relative L2 error

in the mean and variance of its output response with the simulation model for our

QoIs [195]. The ground truth was established by running simulation model on 1000

LHS experimental design points. Figure 4.2 shows the relative error for pressure drop

and oilcut profiles plotted as a function of Ns. Experimental design size is increased

till a relative error of 5× 10−2 is achieved for both the mean and variance plot which

was considered to be sufficient for convergence. It is clear from the figures that

Ns = 1000 is enough to achieve L2 error within this accuracy for both QoIs.
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Fig. 4.2. L2 error in pressure drop and oilcut profiles for PCE-proxy
constructed using Ns = (50, 100, 500, 1000) training samples
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Figure 4.3 shows the cross-validation of PCE-proxy response with simulation re-

sponse for the maximum pressure difference and area under the oilcut curve (which

can be interpreted as cumulative oil produced) where PCE-proxy is constructed us-

ing Ns = 1000 experimental design points. It is clearly evident that PCE-proxy with

Ns = 1000 does an excellent job of approximating this expensive simulation model as

the coefficient of determination R2 ≈ 0.99 for both of these cases.
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Fig. 4.3. Cross-validation of PCE-proxy (Y PC) response with simulation
output (Y Sim) for the maximum pressure difference and area under the
oilcut curve

4.6 Bayesian history matching

Bayesian inference is used here for history matching as it provides a framework for

a probabilistic model construction for estimation of uncertain model parameters and

readily quantifies uncertainty in the model parameters in a probabilistic sense [82].

Bayesian inference requires two main ingredients: 1) a prior over model parameters

p(ξ) that captures the state of the knowledge about the model parameters before the

data is observed. 2) a likelihood function p(D|ξ,M) that models the measurement

processes; the probability of observing the data D, if the model M assumed is correct.

Then as per Bayes’ theorem, the posterior of the model parameters p(ξ|D,M) condi-
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tioned on the observed data can be inferred from the product of prior and likelihood

functions: [221,222]:

p(ξ|D,M) =
p(D|ξ,M)p(ξ)

p(D,M)
(4.1)

This posterior captures the state of the knowledge of the unknown model param-

eters after the data is observed. We assume a uniform priori distribution over all

the uncertain model parameters:

p(ξ) ∼ U(
d∏
j=1

[aj, bj]) (4.2)

The lower bound aj and upper bound bj of the distribution for each parameter ξj is

provided in table 4.1. We model the measurement process using Gaussian likelihood

model which can be stated as:

p(D|ξ,M) = N (Di|f(ξ), σ2
i ), (4.3)

where i = 1, 2 are QoIs i.e. pressure drop and oilcut profiles. σi is the noise parameter

associated with measurement process of each QoI. In other words, the likelihood

function is constructed such that there is a different noise parameter, σi associated

with the measurements obtained for each QoI. This noise parameter is modeled with

the non-informative Jeffreys’ prior which remains invariant under reparametrization

[223]. It is straight forward to derive Jeffreys’ prior for Gaussian likelihood function

as:

p(σ2
i ) ∝

1

σ2
i

. (4.4)

f(ξ) in Eq. (4.3) is the forward simulation model (M), which we approximate using

PCE-proxy (refer to Eq. (3.4)):

f(ξ) ≈ P (ξ) (4.5)

P (D|M) in Eq. (4.1), called normalization constant is given as:

P (D|M) =

∫
ξ

p(D|ξ,M)p(ξ)dξ (4.6)

The analytical expression for the posterior distribution of such high dimensional prob-

lem is not readily available and hence, we resort to the well-known MCMC sampling
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technique to sample from the posterior. Here, we use the standard Metropolis-

Hashtings (MH) sampler to generate Markov Chains (MC) [224]. In theory, MH

generates reversible and ergodic MC that converge to the stationary distribution of

uncertain parameters in the limits of infinity [190]. Other algorithms that can be

used to generate these MC include Gibbs Sampler [225], Adaptive Metropolis [226],

Random Walk Metropolis [227].

We use PyMC package to setup this inverse model calibration problem [228]. We

first train the Bayesian model on BCF1 (refer to table 2.5) for our QoIs by generating

105 MCMC samples. Appendix B shows the trace of MC samples generated using

MH algorithm for all the uncertain parameters. To ensure proper mixing of MC,

we burn the first 20k samples and then thin it out by keeping every 5th sample for

estimating the posterior distribution which appears to be sufficient for generating

Markov states with low degree of auto-correlation (refer to Appendix C). Appendix

D shows the posterior and prior distribution for all the uncertain parameters. An

interesting observation is that the posterior for parameters γ̇1/2, C33 max 1 and ad31

looks similar to their priors signifying the importance of initial model calibration

stage in the framework. Finally, Geweke [229] posterior diagnostic test ensures that

MC has properly convergence for all the parameters (refer to Appendix E).

It can be clearly seen from figure 4.4 that the mean of the posterior does a very

job of predicting BCF1 experimental data for all our QoI. The uncertainty observed

after PV ≈ 1.45 is due to the large uncertain parameter set describing mechanism

of SP and P flooding processes. To ensure that Bayesian model has been calibrated

accurately, we validate its response for two other experiments BCF2 and BCF3 (refer

to table 2.5). From the figure 4.5, prior response space for all QoIs can be clearly seen

to be reduced with the estimated posterior accurately predicting the observed data.

Next, we use these calibrated models for stochastic optimization under quantified

uncertainty in their parameters.
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Fig. 4.4. Prediction of output response for BCF1 (training set) using
Bayesian inference.

4.7 Stochastic optimization under uncertainty

The injection sequence for oil recovery using SP flooding is very well understood

[230] and follows IWF → HTDS → SP → P → EWF. However, determining the

optimum slug sizes of the injected chemicals is a subject of technical consideration as

they govern the physio-chemical processes. Moreover, the injection timing is a subject

of economic considerations due to stochastic nature of oil price [231]. To make it even

more complicated, the parametric uncertainty which we have quantified in section 4.6

should be taken into account while determining the slug sizes, as it is likely to affect

the flow physics. Therefore, we implement BGO to determine the optimum injection

slug sizes or timings of chemical slugs under the uncertainties in both the oil prices

and model parameters by posing a multi-objective optimization problem. Table 4.2

shows the range of slug sizes (shtds, ssp, sp) used in this optimization problem where

the injection of IWF slug is kept constant at 1.0 PV in all simulations which reduces

the residual oil saturation to Sor ≈ 0.4. After this, oil production ceases and cEOR

must start.

In reservoir applications, unwarranted pressure changes are unfavorable as they

result in stress changes affecting the fracture permeability, and damaging reservoir

and wells [123, 124]. Also from the economic perspective, a strategy that produces

same oil but requires less pumping power is desirable. Hence, it is important to have
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Fig. 4.5. Validation of calibrated Bayesian model with BCF2 and BCF3.
The prior and posterior is estimated using 200 simulations

an estimate of pressure change during a cEOR process. Therefore, we use pressure

difference between injection and the production well as our fist objective for the

optimization problem where the aim is to minimize the maximum pressure difference

max(∆p).
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As stated before, the financial aspect is the most important factor that needs to

be considered to gauge success of any cEOR project. Therefore, the second objective

we use for the optimization is Net Present Value (NPV) which is a direct measure of

the profitability [232,233]. NPV is computed as:

NPV =
Nt∑
j=1

[
CI(∆tj)

(1 + d)tj

]
− Co (4.7)

where Nt is the total duration of project, d is the annual discount rate, Co is the initial

capital investment and CI(∆tj) is the total cash inflow in time ∆tj (tj+1 − tj = 1

year). The total cash inflow is calculated as the difference of total revenue or earning

and total expenses for the overall duration of the project as [234]:

CI(∆tj) = R(∆tj)− I(∆tj)− T (∆tj) (4.8)

I(∆tj) is the total chemical injection cost given as

I(∆tj) = csalt(∆tj)Ssalt + csurf (∆tj)Ssurf + cpoly(∆tj)Spoly (4.9)

where csalt, csurf , cpoly are the mass concentrations of TDS, surfactant and polymer and

Ssalt, Ssurf , Spoly are the costs associated with them respectively. In our optimization,

we vary the slug sizes by keeping the total chemical mass concentration constant i.e.

ck = crefk
srefk
sk

, where k = surf, poly (4.10)

where crefk is the total mass concentration of injected chemicals at the reference slug

size srefk . This allows us to design an injection strategy that maximizes the profit

with a constant cost of chemical injection.

In Eq. (4.8), T (∆tj) is the total direct expenditure (TDE) which includes expen-

diture due to operation costs, taxes, water treatment costs and maintenance costs.

To simplify the model, T (∆tj) is kept constant as given in table 4.2. Finally, R(∆tj)

is the total revenue from oil production:

R(∆tj) = S(tj)Np(∆tj) (4.11)
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where Np(∆tj) is the net barrels of oil produced in ∆tj and S(tj) is the oil price at

time tj. Oil price is extremely volatile and fluctuations in oil price is natural over

long periods of time [234]. Hence, we model oil price using a stochastic oil price

model (SOPM) given as S(tj) = S(to)e
Wj where Wj is random walk with a drift

given by [235]:

Wj+1 = Wj + αoξo,j + µ. (4.12)

where ξo,j are independent identically distributed standard normal variables. We use

initial oil price S(to) = 75 $/bbl, αo = 10−4 and µ = ±10−5. µ models the drift in

the oil price. Here, we investigate the influence of both positive and negative drifts

in the oil price on the optimized injection sequence (refer to figure 4.6). Table 4.2

shows the details of the optimization problem and the reference values used in the

NPV model.
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Fig. 4.6. Random samples from the stochastic oil price model for a) pos-
itive drift, b) negative drift

A statistical design methodology [214] is applied to solve this two-objective stochas-

tic optimization problem. We formulate the problem as follows:

x̂ = arg ( max
x

E[O1(x; ξ)],min
x

E[O2(x; ξ)]), (4.13)

where x is the vector of design variables i.e. the slug sizes. We maximize the ex-

pectation E[·] over the noise for the first objective (i.e. O1(x) is NPV) and minimize
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Table 4.2.
Design of optimization problem. Note that the salt concentration is kept
constant irrespective of the slug size owing to its low cost.

Quantity Variable Value Range Units

HTDS Slug
Salt conc. csalt 17500 const. ppm

Slug size shtds - 0.1-1.0 PV

SP Slug

Salt conc. csalt 17500 const. ppm

Surf conc. crefsurf 0.68 Eq. (4.10) %

Poly conc. crefpoly 25000 Eq. (4.10) ppm

Slug size. srefsurf 0.25 0.1-1.0 PV

P Slug

Salt conc. csalt 9400 const. ppm

Poly conc. crefpoly 25000 Eq. (4.10) ppm

Slug size. srefpoly 0.25 0.1-1.0 PV

Cost

Capital Co 200000 - $

Salt price Ssalt 0.5 - $/lb

Surf price Ssurf 5 - $/lb

Poly price Spoly 2 - $/lb

TDE T (∆tj) 10000 - $/year

Misc.
Discount rate d 20 - %

Total time Nt 13 - years

for the second (i.e. O2(x) is max(∆p)). Due to the lack of an apriori preference

structure, the two objectives may be competing, i.e. choosing a process input that

increases NPV may result in an increased value of max(∆p). We say that a set of

designs x1 dominates a different set of designs x2 if x1 results in a higher NPV and

a lower max(∆p). For any dominated point on the PF, there is always another point

on the PF that results in a higher value of NPV and a lower value of max(∆p).

Since, we maximize NPV and minimize max(∆p), we aim to explore points in the
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bottom-right region of the hypervolume. The demonstration of the methodology can

be seen through the evolution of the PF and its uncertainty in Fig. 4.7 and Fig. 4.8.

For both the cases, positive and negative drifts, we start the methodology with 20

initial data points selected using LHS [236].

The state of the PF can be seen after the first, 50th and the 100th iteration

for positive and negative drifts in Fig. 4.7 and Fig. 4.8, respectively. The green

staircase-like line joining the diamonds that are Pareto-optimal represents the PF.

The red dot is the point selected by the algorithm at the given stage of the algorithm.

The uncertainty around the PF is represented by the shaded grey regions around the

PF. The intensity of the region is representative of how plausible it is to discover

a Pareto-optimal point in that region, as quantified by the colorbar accompanying

Fig. 4.7 and Fig. 4.8. It is intuitive that, as more BGO guided simulations points

are added, the shaded grey areas around the PF become thinner and collapse on

the PF. This means that the algorithm believes that there exists little chance of

discovering more Pareto-optimal points in regions further towards the bottom-right

part of the hypervolume. This visual inspection is one criterion that can be used to

stop sampling. More generally, a predetermined number of simulations is used as a

stopping criterion. For more details of the methodology, we refer interested readers

to [214].
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Fig. 4.7. Pareto front for positive drift stochastic oil price model after
iterations Nitr = 1, 50, 100
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Fig. 4.8. Pareto front for negative drift stochastic oil price model after
iterations Nitr = 1, 50, 100

Figures 4.9-4.10 shows the slug size design with parametric uncertainty for the

selected point (called as knee-design point) from PF using minimum distance selection

method (TMDSM) [237,238]. It is interesting to see that the algorithm quickly learns

that for the positive drift case, injection of chemicals should be as delayed as possible.

This is because as the oil price is always increasing for this case, the revenue generated

from oil production (refer to Eq. (4.11)) would be more if the same oil is produced

late (shtds = 1.0PV, ssurf = 0.3PV, spoly = 0.4PV). Whereas, for the negative drift

case where oil price is always diminishing, it is advisable to inject chemicals as early

as possible when the oil price is still high to maximize the profit (shtds = 0.1PV,

ssurf = 0.24PV, spoly = 0.88PV). We use 50 MC samples from the estimated posterior

in section 4.6 to quantify parametric uncertainty in figures 4.9-4.10.
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Fig. 4.9. Uncertainty quantification for the knee-design point selected
from the Pareto front of positive drift SOPM having the slug design as:
shtds = 1.0PV, ssurf = 0.3PV, spoly = 0.4PV.
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Fig. 4.10. Uncertainty quantification for the knee-design point selected
from the Pareto front of negative drift SOPM having the slug design as:
shtds = 0.1PV, ssurf = 0.24PV, spoly = 0.88PV.

4.8 Conclusions

In this chapter, we presented a Bayesian history matching framework for model

calibration of elegant yet complex mechanism of oil recovery through SP flooding.

At first, an effective parametrization of prior model parameters is inferred with the

help of support-experiments. The resulting high dimensional input parameter space

is then reduced with Sobol SA [195]. The forward simulation model response is

approximated using PCE-proxy which replaces the expensive physics-based model

in likelihood function. MCMC sampling technique is adapted to sample from the

resulting non-Gaussian multi-modal posterior distribution. This framework is first

implemented to infer the posterior by training the Bayesian model on a single core-

flood experiment. The resulting posterior is then tested and validated by accurately

predicting QoIs for two other coreflood experiments.

The framework is then extended to a multi-objective optimization problem of in-

jection slug design under uncertainty in the calibrated model parameters with the

objectives of minimizing maximum pressure drop and maximizing NPV. A stochas-

tic model for oil price is considered for two cases of positive and negative drifts in

the oil price. BGO is adapted to solve this multi-objective optimization problem

which builds a probabilistic surrogate of objectives to update the IAF using Gaus-
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sian processes. We use EEIHV as acquisition function as it filters out the parametric

uncertainties thus bypassing the need to learn surface response of high-dimensional

uncertain parameter space. We show that BGO successfully optimizes our objectives

by quantifying uncertainty about the predicted Pareto front.

A next step would be to apply this methodology for a more realistic and compu-

tationally demanding heterogeneous reservoir problem with an uncertainty in spatial

permeability or porosity field such as [193, 239, 240] given the fact that BGO with

EEIHV IAF has been solely developed for expensive function optimization. To sum-

marize, the methodology presented could be extended to optimize or calibrate mod-

els for more complex history matching problems for variety of applications such as

fractured reservoirs [171,172], CO2-EOR and storage [174,175] or alkaline-surfactant-

polymer (ASP) flooding [173].

4.9 Computer Code Availability

UQLab is an open source uncertainty quantification framework developed at ETH

Zurich (Switzerland) and can be freely downloaded with example data and user man-

ual from http://www.uqlab.com/download. The code for BGO with EEIHV IAF is

available as free software at https://github.com/piyushpandita92/pydes.
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5. SUMMARY

Surfactant-polymer (SP) flooding is an important enhanced oil recovery technique

which aims at improving mobilization of oil by injecting surfactant and polymer slugs

in oil reservoirs. In SP flood, surfactant reduces the interfacial tension between oleic

and aqueous phases while polymer enhances the mobility control by inhibiting the

viscous fingering instabilities thereby improving oil recovery. The underlying physical

models governing each of these sub-processes can be calibrated by performing lab-

scale coreflood experiments. The performance of SP flood on field-scale is conditioned

on predictive capabilities of these models which depends on how well these models are

calibrated. Moreover, model predictions are usually subject to epistemic uncertainty

in experimental measurements or parametric uncertainty in the model calibration

stage. Therefore, these uncertainties in high-dimensional space of model parameters

should be addressed in the model calibration stage.

In this regard, this thesis presents a comprehensive study on uncertainty quantifi-

cation and history matching of surfactant-polymer flooding. At first, we construct a

mechanistic SP flood simulation model by performing extensive lab-scale experiments.

We then introduce a framework for model calibration which involves sequential exe-

cution of sensitivity analysis, proxy modeling and inverse optimization to determine

the optimized parameter space of model parameters. The employed model calibra-

tion algorithm starts with Sobol sensitivity analysis which reduces the large uncertain

parameter space of model parameters to find the most important stochastic variables

that greatly affects the output response of simulation model. This low-dimensional

parameter space is then used to construct an efficient proxy model based on polyno-

mial chaos expansion (PCE-proxy). PCE-proxy approximates the highly non-linear

output response of simulation model and guarantees convergence in distribution of

output quantities of interest. The error in PCE-proxy posterior is estimated using
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empirical norm error and its variant leave-one-out error which is shown to converge

with an increase in the number of training data points. The moments of PCE-proxy

i.e. mean and variance is compared with the moments of stochastic approach with 104

LHS simulations. It is shown that even for the PCE-proxy constructed with 200 (Ns)

data points, the relative L2 error in the moments converge to an acceptable value.

We then posed a multi-objective inverse optimization problem using PCE-proxy

to history match experimental observations. This problem is solved using the Genetic

algorithm (GA) to obtain an optimized subspace of model parameters that minimizes

the miss-fit between PCE-proxy model response and observations. We use this frame-

work to first calibrate a single coreflood experiment for quantities of interest such as

pressure profile, cumulative oil recovery curve and oilcut curve. We then show that

the calibrated model is able to predict all our quantities of interest (QoIs) for two

other coreflood experiments without any further tuning of these model parameters.

Finally, we combine PCE-proxy with Gaussian regression process or Kriging to quan-

tify epistemic uncertainty in the proxy model.

Next, we extend this framework for Bayesian history matching where the proba-

bility distribution of the uncertain model parameters is inferred by directly sampling

from their posterior using MCMC, the acceptance criteria of which is tested using the

standard Metropolis-Hasting (MH) algorithm. To effectively sample using MCMC,

we replace the expensive physics based forward model in the Gaussian likelihood func-

tion with the cheap PCE-proxy. We use a single coreflood experiment to calibrate

the Bayesian model and validate its convergence by successfully predicting the QoIs

for two other coreflood experiments without any ad-hoc tuning of the posterior distri-

bution. We then perform a multi-objective optimization of injection slug size design

under uncertainties in model parameters and oil price. We implement Bayesian global

optimization (BGO) for this stochastic multi-objective optimization problem which is

a class of algorithms that has found immense use in designing computer simulations

that are expensive while remaining non-intrusive and gradient free. BGO models

the objectives via Gaussian process surrogates and uses the epistemic uncertainty to
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define an information acquisition function that quantifies the merit of evaluating the

objective at new design points. We employ the extended expected improvement over

the dominated hypervolume (EEIHV) as an information acquisition function as it

readily quantifies noise in the model parameters, bypassing the need of learning their

response on the objectives. We adapt random walk with a drift to model stochastic

oil price for two cases of positive and negative drift and show that the implemented

BGO successfully exploits the optimum regions of the objectives for both of these

cases characterizing confidence about the predicted Pareto front. It is concluded that

for the positive drift, when the oil price is always increasing, the algorithm predicts

a delayed slug size scenario to maximize the profit. However, for the case of nega-

tive drift, when the oil price is always decreasing, the algorithm predicts smaller slug

size scenario to minimize the loss. The presented proxy-accelerated history matching

and stochastic optimization approach could be extended to more complex problems

outside the realm of reservoir engineering.
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A. PSEUDO-CODE

This appendix provides the psuedo-code for sensitivity analysis, PCE-proxy modeling

and model calibration using Genetic Algorithm.

Algorithm 1 Pseudo code for sensitivity analysis

1: procedure Sensitivity analysis for dimension reduction

2: define models for each sub-process Tmodels = (M1,M2...Mt)

3: loop:

4: initial model calibration using experiments or literature (Mi)

5: consider ± 20% uncertainty and uniform distribution on input parameters

XMi = (X1Mi, X2Mi...XnMi)
T for Mi

6: generate Nsamples of XMi

7: perform Sobol sensitivity analysis

8: get the reduced input vector (here m≤n) ξMi = (ξ1Mi, ξ2Mi...ξmMi)
T

9: goto loop until Mt

10: Combine all ξ = (ξM1, ξM2...ξMn)T

11: end procedure
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Algorithm 2 Pseudo code for PCE-proxy modeling

procedure Pce Proxy Modeling

2: if ∆εmeangen > εaccept then increase training points (Ns)

define input design matrix ξ = (ξ1, ξ2...ξn)T

4: evaluate computational model Y = (Pξ1, Pξ2...Pξn)T

construct PCE-proxy

6: for p = pmin : pmax (degree)

solve least square problem

8: calculate ∆εmeangen

end if computational cost reached

10: get PCE-proxy P (ξ)

end procedure
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Algorithm 3 Pseudo code for model calibration

procedure Genetic Algorithm for Model Calibration

2: N = 0, Ncross = 0,

specify Nmax
gen

4: if σloss > error then increase generations (Nmax
gen )

specify popsize

6: evaluate PCE-proxy P (ξ) at popsize

Ncross=Ncross + ncross

8: while N < Ncross

calculate loss function and select : S(N) ∈ P (N)

10: generate offspring : O(N) ← by crossover, mutation(S(N))

new population : P (N + 1) = combine(P (N),O(N))

12: N = N + 1

get Pareto front (ξmin)

14: evaluate BCF2 and BCF3 at ξmin using simulation model

calculate σloss

16: end if N end
gen reached

get ξmin as final solution

18: end procedure
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B. TRACE OF MCMC SAMPLES
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Fig. B.1. Trace of MCMC samples generated using MH algorithm for all
the model calibration parameters given in table 4.1
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C. AUTO-CORRELATION PLOTS

The degree of auto-correlation can be calculated using the following equation:

ρk =
Cov(Xt, Xt+k)√
V(Xt)V(Xt+k)

(C.1)

where Cov(Xt, Xt+k) is the covariance between the traces of uncertain variables sep-

arated by k steps.
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Fig. C.1. Auto-correlation plots for all the uncertain model parameters
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D. POSTERIOR DISTRIBUTION

Figure D.1 shows the prior and posterior distribution of all the model parameters.
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Fig. D.1. Prior and posterior distribution of all the uncertain model pa-
rameters.
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E. POSTERIOR DIAGNOSTIC

We compare the mean (ξ̂) and variance (V(ξ)) of segments from the beginning and

end of a single chain as proposed by Geweke [229] and compute the z-score as:

z =
ξ̂a − ξ̂b√

V(ξa) + V(ξb)
(E.1)

where a = 10% of initial chain length and b = 50% of remaining chain. From figure

E.1 it is evident that MC has converged for all uncertain variables as the majority of

points (computed for various sub-chains) are within 2 standard deviations of zero.
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Fig. E.1. Geweke-plot for posterior diagnostic of all the model parameters.



REFERENCES



103

REFERENCES

[1] A. Gurgel, M. Moura, T. Dantas, E. B. Neto, and A. D. Neto, “A review on
chemical flooding methods applied in enhanced oil recovery,” Brazilian journal
of petroleum and gas, vol. 2, no. 2, 2008.

[2] C. Negin, S. Ali, and Q. Xie, “Most common surfactants employed in chemical
enhanced oil recovery,” Petroleum, vol. 3, no. 2, pp. 197–211, 2017.

[3] J. J. Sheng, “Surfactant enhanced oil recovery in carbonate reservoirs,” in En-
hanced Oil Recovery Field Case Studies. Elsevier, 2013, pp. 281–299.

[4] J. Sheng, Modern chemical enhanced oil recovery: theory and practice. Gulf
Professional, 2016.

[5] L. W. Lake, Fundamentals of enhanced oil recovery. Society of Petroleum
Engineers, 2014.

[6] D. W. Green, G. P. Willhite et al., Enhanced oil recovery. Henry L. Doherty
Memorial Fund of AIME, Society of Petroleum Engineers Richardson, TX, 1998,
vol. 6.

[7] V. Alvarado and E. Manrique, “Enhanced oil recovery: an update review,”
Energies, vol. 3, no. 9, pp. 1529–1575, 2010.

[8] A. A. Olajire, “Review of asp eor (alkaline surfactant polymer enhanced oil
recovery) technology in the petroleum industry: Prospects and challenges,”
Energy, vol. 77, pp. 963–982, 2014.

[9] M. S. Kamal, I. A. Hussein, and A. S. Sultan, “Review on surfactant flooding:
phase behavior, retention, ift, and field applications,” Energy & Fuels, vol. 31,
no. 8, pp. 7701–7720, 2017.

[10] S. B. Sandersen, E. H. Stenby, and N. von Solms, “Enhanced oil recovery with
surfactant flooding,” 2012.

[11] M. Bourrel and R. S. Schechter, Microemulsions and related systems: formula-
tion, solvency, and physical properties. Editions Technip, 2010.

[12] M. Bhattarai, “A numerical modeling study of surfactant enhanced mobilization
of residual lnapl using utchem.” 2006.

[13] J. J. Sheng, “Chapter 5 - surfactantpolymer flooding,” in Enhanced
Oil Recovery Field Case Studies, J. J. Sheng, Ed. Boston: Gulf
Professional Publishing, 2013, pp. 117 – 142. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/B9780123865458000051



104

[14] A. Kogan and N. Garti, “Microemulsions as transdermal drug delivery vehicles,”
Advances in colloid and interface science, vol. 123, pp. 369–385, 2006.

[15] K. Raney and C. Miller, “Diffusion path analysis of dynamic behavior of oil-
water-surfactant systems,” AIChE journal, vol. 33, no. 11, pp. 1791–1799, 1987.

[16] M. Mohammed and T. Babadagli, “Wettability alteration: A comprehensive
review of materials/methods and testing the selected ones on heavy-oil contain-
ing oil-wet systems,” Advances in colloid and interface science, vol. 220, pp.
54–77, 2015.

[17] J. J. Sheng, “Review of surfactant enhanced oil recovery in carbonate reser-
voirs,” Advances in Petroleum Exploration and Development, vol. 6, no. 1, pp.
1–10, 2013.

[18] ——, “Comparison of the effects of wettability alteration and ift reduction on
oil recovery in carbonate reservoirs,” Asia-Pacific Journal of Chemical Engi-
neering, vol. 8, no. 1, pp. 154–161, 2013.

[19] G. Stegemeier, “Mechanisms of entrapment and mobilization of oil in porous
media,” in Improved oil recovery by surfactant and polymer flooding. Elsevier,
1977, pp. 55–91.

[20] B. Song, X. Hu, X. Shui, Z. Cui, and Z. Wang, “A new type of renewable surfac-
tants for enhanced oil recovery: dialkylpolyoxyethylene ether methyl carboxyl
betaines,” Colloids and Surfaces A: Physicochemical and Engineering Aspects,
vol. 489, pp. 433–440, 2016.

[21] S. Kumar and A. Mandal, “Studies on interfacial behavior and wettability
change phenomena by ionic and nonionic surfactants in presence of alkalis and
salt for enhanced oil recovery,” Applied Surface Science, vol. 372, pp. 42–51,
2016.

[22] A. M. Howe, A. Clarke, J. Mitchell, J. Staniland, L. Hawkes, and C. Wha-
lan, “Visualising surfactant enhanced oil recovery,” Colloids and Surfaces A:
Physicochemical and Engineering Aspects, vol. 480, pp. 449–461, 2015.

[23] J. Sukpisan, J. Kanatharana, A. Sirivat, and S. Wang, “The specific viscosity of
partially hydrolyzed polyacrylamide solutions: Effects of degree of hydrolysis,
molecular weight, solvent quality and temperature,” Journal of Polymer Science
Part B: Polymer Physics, vol. 36, no. 5, pp. 743–753, 1998.

[24] D. Wever, F. Picchioni, and A. Broekhuis, “Polymers for enhanced oil recovery:
a paradigm for structure–property relationship in aqueous solution,” Progress
in Polymer Science, vol. 36, no. 11, pp. 1558–1628, 2011.

[25] A. Abidin, T. Puspasari, and W. Nugroho, “Polymers for enhanced oil recovery
technology,” Procedia Chemistry, vol. 4, pp. 11–16, 2012.

[26] G. Jerauld, H. Davis, L. Scriven et al., “Stability fronts of permanent form in
immiscible displacement,” in SPE Annual Technical Conference and Exhibition.
Society of Petroleum Engineers, 1984.

[27] K. S. M. Delshad, G. Pope, “Utchem version 9.82 technical documentation,”
Center for Petroleum and Geosystems Engineering, 2000.



105

[28] S. Aramideh, P. P. Vlachos, and A. M. Ardekani, “Unstable displacement of
non-aqueous phase liquids with surfactant and polymer,” Transport in Porous
Media, pp. 1–20, 2018.

[29] J. Bear, “Dynamics of fluids in porous materials,” Society of Petroleum Engi-
neers: Dallas, TX, USA, 1972.

[30] D. W. Peaceman et al., “Interpretation of well-block pressures in numerical
reservoir simulation with nonsquare grid blocks and anisotropic permeability,”
Society of Petroleum Engineers Journal, vol. 23, no. 03, pp. 531–543, 1983.

[31] D. Babu, A. Odeh, A. Al-Khalita, R. McCann et al., “Supplement to spe 20161,
the relation between wellblock and wellbore pressure in numerical simulation of
horizontal wells–general formulas for arbitrary well locations in grids,” 1991.

[32] J. Kou and S. Sun, “On iterative impes formulation for two phase flow with
capillarity in heterogeneous porous media,” International Journal of Numerical
Analysis and Modeling. Series B, vol. 1, no. 1, pp. 20–40, 2010.

[33] J. Franc, P. Horgue, R. Guibert, and G. Debenest, “Benchmark of different
cfl conditions for impes,” Comptes Rendus Mécanique, vol. 344, no. 10, pp.
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