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ABSTRACT

McCarthy, Brian P. MSAAE, Purdue University, December 2018. Characterization
of Quasi-Periodic Orbits for Applications in the Sun-Earth and Earth-Moon Systems.
Major Professor: Kathleen C. Howell.

As destinations of missions in both human and robotic spaceflight become more

exotic, a foundational understanding the dynamical structures in the gravitational

environments enable more informed mission trajectory designs. One particular type

of structure, quasi-periodic orbits, are examined in this investigation. Specifically,

efficient computation of quasi-periodic orbits and leveraging quasi-periodic orbits as

trajectory design alternatives in the Earth-Moon and Sun-Earth systems. First, pe-

riodic orbits and their associated center manifolds are discussed to provide the back-

ground for the existence of quasi-periodic motion on n-dimensional invariant tori,

where n corresponds to the number of fundamental frequencies that define the mo-

tion. Single and multiple shooting differential corrections strategies are summarized

to compute families 2-dimensional tori in the Circular Restricted Three-Body Problem

(CR3BP) using an stroboscopic mapping technique, originally developed by Howell

and Olikara [1]. Three types of quasi-periodic orbit families are presented: con-

stant energy, constant frequency ratio, and constant mapping time families. Stability

of quasi-periodic orbits is summarized and characterized with a single stability index

quantity. For unstable quasi-periodic orbits, hyperbolic manifolds are computed from

the differential of a discretized invariant curve. The use of quasi-periodic orbits is

also demonstrated for destination orbits and transfer trajectories. Quasi-DROs are

explored in the CR3BP and the Sun-Earth-Moon ephemeris model to achieve con-

stant line of sight with Earth and avoid lunar eclipsing by exploiting orbital resonance.

Arcs from quasi-periodic orbits are leveraged to provide an initial guess for transfer

trajectory design between a planar Lyapunov orbit and an unstable halo orbit in the



xv

Earth-Moon system. Additionally, quasi-periodic trajectory arcs are exploited for

transfer initial guesses between nearly stable periodic orbits in the Earth-Moon sys-

tem. Lastly, stable manifolds from a Sun-Earth L1 quasi-vertical orbit are employed

to design maneuver-free transfers from the LEO vicinity to a quasi-vertical orbit.
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1. INTRODUCTION

Mission design complexity has been growing in recent years as the scientific objec-

tives and destinations for missions become more exotic in both human and robotic

spaceflight. Consequently, the tools and capabilities required to enable these missions

from a design and analysis perspective should evolve and expand. Innovative design

strategies streamline the mission design process by improvements in the metrics and

analysis tools to evaluate potential spacecraft paths through space. Additionally, the

mission trajectories are increasingly leveraging multi-body dynamics to achieve mis-

sion objectives. However, to inform the design process, knowledge of the dynamical

structures available to a trajectory designer in multi-body regimes is required. In

2019, the proposed baseline concept for NASA’s Exploration Mission 1 (EM-1) in-

volves the transfer to a Distant Retrograde Orbit in the vicinity of the Moon to test

critical technologies in preparation for NASA’s first human-rated deep space vehicle

since the Apollo program [2]. Beginning in the 2020s, the lunar Gateway program is

scheduled to expand the human presence beyond Low Earth Orbit (LEO) and serve

as a proving ground for extended operations in the deep space environment by ex-

ploiting a southern L2 Near Rectilinear Halo Orbit [3]. Additionally, the James Webb

Space Telescope plans to launch in 2021 to the a libration point orbit near the Sun-

Earth L2 libration point [4]. The destination orbits for each of these missions are in

regimes where the significant influence of more than one gravitational body is present.

This investigation offers efficient methods for computing quasi-periodic orbits and

explores applications leveraging quasi-periodic orbits in both the Earth-Moon and

Sun-Earth regimes. The fundamental dynamical model for these applications is the

circular restricted three body problem, however, some of the design alternatives are

also examined within the context of a higher fidelity ephemeris force model. Stability
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properties and the characteristics of invariant tori are examined to enable specific

design concepts.

1.1 Previous Contributions

1.1.1 Multi-body Dynamics

In 1687, Sir Isaac Newton released his seminal work, Principia, with the laws

of motion and a framework for classical mechanics [5]. The three-volume Principia

sparked a search for the solution to the N -body problem. Shortly after, Leonhard

Euler introduced a formulation of the restricted three body problem using a rotating

reference frame. In Euler’s formuation, two massive bodies move in circular orbits

around their mutual barycenter and a third body possesses negligible mass. Euler

also demonstrated the locations of the collinear equilibrium solutions in the three

body problem. In 1772, Joseph Louis Lagrange identified the triangular equilibrium

solutions, located at one vertex of equilateral triangles with the two massive bodies

as the remaining vertices. A single integral of motion emerged in the three body

problem in 1836, recognized by Carl Gustav Jacob Jacobi, commonly denoted the

Jacobi Constant. American astronomer and mathematician George Hill focused the

search for periodic solutions and introduced the limiting regions of motion in the three

body problem, i.e.,the zero velocity surfaces. Inspired by Hill’s work, Henri Poincaré

proved the existence of an infinite number of periodic solutions in the three body

problem and acknowledged chaotic behavior, as published in Les Méthodes Nouvelles

de la Mécanique Céleste [6]. Furthermore, Poincaré is credited with framing the

foundations of modern dynamical systems theory. Emerging from Poincaré’s work,

dynamical systems theory evolved, with a direct link to the KAM theory associated

with quasi-periodic motion by Kolomogorov, Arnold and Moser between 1954 and

1963. In 1967, Szebehely published a modern, comprehesive treatment of the three

body problem, Theory of Orbits: The Restricted Problem of Three Bodies [7].
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1.1.2 Quasi-Periodic Orbits

Since the advent of the space age, researchers have developed both semi-analytical

and fully numerical methods to compute quasi-periodic orbits. In 1968, Farquhar

initially examined out of plane periodic solutions near the translunar L2 point in the

three body problem for use in lunar communications [8]. Five years later, Farquhar

and Kamel developed a third order approximation for quasi-periodic orbits using a

semi-analytical Lindstadt-Poincaré method [9]. Shortly after, in 1975, Richardson and

Cary developed third order approximations for quasi-periodic orbits in the elliptic

restricted three body problem in the Sun-Earth system [10]. Gómez, Masdemont,

and Simó explored the use of the Lindstedt-Poincaré method to compute quasi-halo

orbits in the close vicinity of periodic halo orbits [11]. In the same year, the method

of center manifold reduction was used to compute quasi-periodic orbits as a truncated

Fourier series by Jorba and Masdemont [12]. Both the Lindstedt-Poincaré method

and the center manifold reduction method proved to be useful, but due to the nature

of the approximations, the convergence regions are fairly limited. With the dawn

of modern computing power, fully numerical methods were explored by a number of

researchers as well. In 1988, Howell and Pernicka developed a numerical differential

corrections method to compute Lissajous trajectories in the three body problem [13].

Further developments concerning numerical methods focused on directly computing

a torus associated with quasi-periodic motion. Jorba and Olmedo exploited Poincaré

sections and a Fourier series to compute in a perturbed three body problem [14].

Similarly, Kolemen, Kasdin, and Gurfil outlined a similar method in the circular

restricted three body problem [15]. Schilder developed a method to compute the full

representation of the flow on a torus using partial differential equations, however,

solving the partial differential equations proves to be computationally expensive [16].

Gómez and Mondelo as well as Olikara and Scheeres exploited a stroboscopic mapping

technique, using a Fourier series to compute the invariant curve of a torus [17, 18].

While semi-analytical methods provide a computationally inexpensive procedure to
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compute quasi-periodic orbits, limitations exist when computing complete families of

solutions. Fully numerical methods have limitations as well, but a wider range of

solutions are accessible through numerical methods.

Quasi-periodic orbits have been exploited for various applications in the past,

both proposed and operational. In 1978, the ISEE-3 mission was the first mission

to leverage a quasi-halo orbit at the Sun-Earth L1 point [19]. Since then, the Sun-

Earth L1 point has served as an advantageous location for solar observatories due

to its constant line of sight with the Earth and the Sun. NASA’s ACE, WIND and

SOHO missions currently operate in quasi-periodic orbits at the Sun-Earth L1 point

and in 2015, NOAA’s DSCOVR mission launched to the same location to provide

improved solar event warnings [20, 21]. The ARTEMIS mission employed an Earth-

Moon Lissajous orbit as part of the transfer trajectory during the transit phase to the

lunar vicinity [22]. Beyond the Earth region, Restrepo, Russell and Lo explored the

use of Lissajous trajectories at Europa as a staging orbit for a lander in the Jupiter-

Europa system [23] and Baresi and Scheeres examined the use of 3-dimensional tori for

small body exploration [24]. Additionally, quasi-periodic orbits have been explored for

use in formation flying by Barden and Howell as well as Baresi and Scheeres [25,26].

Quasi-periodic orbits offer design alternatives for a wide range of applications.

1.2 Thesis Overview

• Chapter 2: In this chapter, the Circular Restricted Three Body problem equa-

tions of motion are derived. A single integral of motion, the equilibrium solu-

tions, and the zero velocity curves are discussed. From the equilibrium solutions,

first order, linear variations of periodic and quasi-periodic motion is examined.

Single and multiple shooting differential corrections schemes are outlined to

patch trajectory segments together and compute periodic orbits. Two periodic

orbit continuation methods are summarized, natural parameter continuation

and pseudo-arclength continuation. Periodic orbit stability is examined and a
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single stability index quantity is defined characterize the linear stability of a

periodic orbit. Lastly, invariant hyperbolic manifolds for periodic orbits are

discussed.

• Chapter 3: An invariance condition is summarized that forms the basis for

the corrections algorithm to compute quasi-periodic orbits. A single and mul-

tiple shooting corrections algorithm is outlined that is used in concert with

a pseudo-arclength continuation method to compute families of quasi-periodic

orbits. Three types of quasi-periodic orbit families are discussed, constant en-

ergy, constant frequency ratio, and constant mapping time families, and the

advantages associated with each family.

• Chapter 4: Similar to periodic orbits, stability is defined for quasi-periodic

orbits. Using the differential of the invariant curve, the eigenstructure is com-

puted. Using the reduceability of the CR3BP, a relationship between the eigen-

structure of the discretized invariant curve and the eigenstructure of the Floquet

matrix associated with a torus is outlined. From the concentric circle structure

of the eigenvalues of the differential of the invariant curve, a stability index

quantity is defined for quasi-periodic orbits. Unstable quasi-periodic orbits have

stable and unstable hyperbolic manifolds that asymptotically approach and de-

part the torus. Computation of quasi-periodic orbit hyperbolic manifolds is

summarized and examples of the surface evolution in configuration space are

rendered.

• Chapter 5: Numerical challenges arise when numerically integrating a single

trajectory arc from a quasi-periodic orbit. Using the properties of a torus,

a method to construct longer trajectory arcs, while minimizing the amount

of propagation time is introduced. Applications of quasi-periodic orbits also

appear in this chapter. Trajectory arcs from quasi-periodic orbits are leveraged

to generate transfers between nearly stable periodic orbits. Transfer trajectories

in the close proximity of P2 to a quasi-periodic orbit in the Sun-Earth system
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are demonstrated using the stable hyperbolic manifolds associated with a quasi-

periodic Lissajous orbit. Lastly, the framework for an eclipse avoidance strategy

is presented using a quasi-DRO in the Earth-Moon system. Ensuring a constant

line of sight with Earth in the CR3BP, quasi-DRO trajectory arcs are converged

in the ephemeris model and lunar eclipsing is avoided by exploiting a quasi-

DRO.

• Chapter 6: The investigation is summarized. The main contributions are

summarized from the applications. Lastly, recommendations for future work

are summarized.
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2. DYNAMICAL MODEL

Many preliminary trajectory designs within the context of the relative two-body

model are enabled due to the analytical, closed-form solution in the problem. In

the relative two-body model, the Keplerian motion of two bodies is defined rela-

tive to their mutual barycenter. This model is frequently successful for preliminary

mission design of low-Earth orbiting spacecraft. For interplanetary spacecraft, the

patch conics approach also offers insightful concepts for many missions; however, in

more complex mission scenarios, where spacecraft are significantly influenced, possi-

bly over long time intervals, by more than one massive body, the two-body model is

not sufficient. Perturbations from other bodies render a Keplerian approximation of

the motion inaccurate for practical applications and new types of structured motion

appear when more gravitational bodies are introduced. Inclusion of a third gravita-

tional body enhances the understanding of design options in a multi-body dynamical

environment.

2.1 Circular Restricted Three Body Problem

Although there is no known solution to the problem of three bodies, the simplified

Circular Restricted Three Body Problem (CR3BP) is introduced to understand the

fundamental environment. Assumptions in the CR3BP are defined first such that

the derivation of the equations of motion becomes straightforward. First, three cen-

trobaric bodies are defined in this model, denoted P1, P2, and P3, with masses m1,

m2, and m3, respectively. An inertial reference frame, I, denoted X̂-Ŷ -Ẑ, is defined

relative to the barycenter, B, of P1 and P2, as illustrated in Figure 2.1. Second, the

bodies P1 and P2 are assumed to be in circular orbits about their mutual barycenter

in the X̂-Ŷ plane. Conveniently, the angular momentum of P1 and P2 aligns with
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the Ẑ-direction in the inertial coordinate frame. The third body, P3, is free to move

anywhere in three-dimensional space. Third, the mass of P3 is considered to be sig-

nificantly less than the mass of P1 and P2 (m3 << m1,m2) and, subsequently, the

motion of P1 and P2 is not influenced by P3. Lastly, each of the bodies in the CR3BP

are modeled as point masses. While these assumptions simplify the dynamics in the

system, the results obtained in this model offer insight into more complex multi-body

regimes. Additionally, these assumptions allow the CR3BP to be derived in a rotating

reference frame and is, therefore, time invariant.

Figure 2.1. Geometry in the three body systems; definition of inertial
and rotating reference frames.

Given the assumptions, the associated equations of motion for the CR3BP are

formulated to model the behavior of the infinitesimal mass P3. From Newton’s Second
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Law, the motion of P3 is modeled in terms of the following second-order, vector

differential equation

m3

Id2~r3

dt2
= m3~r

′′
3 = −G̃m3m1

r3
13

~r13 −
G̃m3m2

r3
23

~r23 (2.1)

where ~rij is the location of body j relative to body i, ~r′′i is the inertial acceleration

vector for body i as viewed in the inertial reference frame, and G̃ is the universal grav-

itational constant. Since P1 and P2 move in circular orbits, they rotate at a constant

rate θ̇ about their mutual barycenter. Subsequently, a new rotating coordinate frame,

R, (x̂-ŷ-ẑ) is defined and appears in Figure 2.1. The position vectors are rewritten

in terms of the rotating frame. The location of the P3 relative to the barycenter is

defined as ~P , and the location of P3 relative to P1 and P2 in the rotating frame are

defined as ~D and ~R, respectively. Additionally, the distances from the barycenter to

P1 and P2 are denoted as the magnitudes D1 and D2, respectively. Consequently, the

vector differential equation in Equation (2.1) is rewritten as

~P ′′ = −G̃m1

D3
~D − G̃m2

R3
~R (2.2)

where this differential equation governs the three-dimensional motion.

Typically, in applications to spacecraft trajectory design and analysis, position

and velocity values differ significantly in terms of magnitude. When the state vari-

ables display wide variations in magnitude and rates of change, the implementation of

numerical processes is sometimes challenging. Nondimensionalization is an effective

strategy to mitigate some numerical difficulties and allows a broader range of applica-

tions. Nondimensionalization is based on the definition of characteristic quanitities.

For application to the CR3BP, the characteristic length, mass and time are defined

as

l∗ = D1 +D2 (2.3)

m∗ = m1 +m2 (2.4)

t∗ =

√
l∗3

G̃m∗
(2.5)
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where the characteristic time quantity is defined such that the nondimensional mean

motion, n, of P1 and P2 is equal to unity. The nondimensional mean motion is defined

n = Nt∗ =

√
G̃m∗

l∗3

√
l∗3

G̃m∗
= 1 (2.6)

where N is the dimensional mean motion of P1 and P2 in their Keplerian orbits. The

nondimensional mass of P2 or mass parameter, µ, is defined using the characteristic

mass

µ =
m2

m∗
(2.7)

Additionally, the nondimensional mass of P1 is defined

1− µ =
m1

m∗
(2.8)

The distances from the barycenter to the primaries are evaluated via the definition

of the center of mass

(m1 +m2)~r1,B = m2~r1,2 (2.9)

where ~r1,B is the location of P1 relative to the barycenter, and ~r1,2 is the location of

P1 relative to P2. Since l∗ is defined as the distance between the primaries and the

mass parameter is defined in Equation (2.7), Equation (2.9) is rewritten

r1,B = D1 = µl∗ (2.10)

where the distance D1 is the distance between P1 and the barycenter. Similarly,

by evaluating the center of mass relative to P2 yields the definition of the distance

between the barycenter and P2

r2,B = D2 = (1− µ)l∗ (2.11)

Using the characteristic quantities, the dimensional second order vector differential

equation in Equation (2.2) is rewritten

~̈ρ = −1− µ
d3

~d− µ

r3
~r (2.12)
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where ~ρ =
~P
l∗

, ~d =
~D
l∗

, ~r =
~R
l∗

. The variables d and r represent the magnitude of

the nondimensional vectors ~d and ~r, respectively. The vectors ~̇ρ and ~̈ρ represent the

first and second derivatives of the position vector as view by an inertial observer with

respect to nondimensional time, τ . The nondimensional position vector of P3 relative

to the barycenter, ρ, is defined in terms of components in the rotating frame, i.e.,

~ρ = xx̂+ yŷ + zẑ (2.13)

The derivatives of Equation (2.13) with respect to nondimensional time, τ , as seen

by an inertial observer, are expanded using the the basic kinematic equation

Id~ρ

dτ
= ~̇ρ =

Rd~ρ

dτ
+ I~ωR × ~ρ (2.14)

Id2~ρ

dτ 2
= ~̈ρ =

Rd~̇ρ

dτ
+ I~ωR × ~̇ρ (2.15)

where I~ωR represents nondimensional angular velocity of the rotating frame, R, rel-

ative to the inertial frame. Recall that the angular velocity of the rotating frame is

constant at the rate θ̇ with respect to the inertial frame. Furthermore, θ̇ = n, since

the primaries rotate in the circular orbits about their mutual barycenter. The angular

velocity vector of the rotating frame is in the ẑ-direction, aligned with the nondimen-

sional angular velocity vector of the rotating frame with respect to the inertial frame

and is defined

I~ωR = θ̇ẑ = nẑ (2.16)

By substituting Equation (2.13) and Equation (2.16) into Equation (2.14), the ex-

pression for ~̇ρ is obtained as expressed in terms of rotating coordinates,

~̇ρ = (ẋ− ny)x̂+ (ẏ + nx)ŷ + żẑ (2.17)

Similarly, the following kinematic expansion applies to the acceleration vector

~̈ρ = (ẍ− 2nẏ − n2x)x̂+ (ÿ + 2nẋ− n2y)ŷ + z̈ẑ (2.18)

Equation (2.18) supplies the kinematic expression for the left side of the vector Equa-

tion (2.12). The vector expressions for ~d and ~r are defined in terms of components

~d = (x+ µ)x̂+ yŷ + zẑ (2.19)
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~r = (x− 1 + µ)x̂+ yŷ + zẑ (2.20)

Substituting Equations (2.19), and (2.20) into the single vector differential equation

in Equation (2.12) and exploiting the kinematic expansion in Equation (2.18) yields

the three second order scalar differential equations of motion for the CR3BP

ẍ− 2nẏ − n2x = −(1− µ)(x+ µ)

d3
− µ(x− 1 + µ)

r3
(2.21)

ÿ + 2nẋ− n2y = −(1− µ)y

d3
− µy

r3
(2.22)

z̈ = −(1− µ)z

d3
− µz

r3
(2.23)

where ẍ, ÿ, and ÿ are the acceleration components in the rotating frame, and ẋ, ẏ,

and ż are the velocity components in the rotating frame, all derivatives with respect

to nondimensional time. Alternatively the equations of motion can be rewritten in

terms of a pseudo-potential, U∗,

ẍ− 2nẏ =
∂U∗

∂x
(2.24)

ÿ + 2nẋ =
∂U∗

∂y
(2.25)

z̈ =
∂U∗

∂z
(2.26)

where U∗ is defined

U∗ =
1− µ
d

+
µ

r
+
n2(x2 + y2)

2
(2.27)

No analytical solutions is known for the equations of motion in either form, Equa-

tions (2.21)-(2.23) or the differential equations (2.24)-(2.26). Numerical integration

of Equations (2.21)-(2.23) determines the time history of the path for a given set of

initial states.

2.2 Equilibrium Solutions

With no known analytical solutions to the equations of motion in the CR3BP, the

search for equilibrium solutions expands the understanding of the dynamical environ-

ment. Noting that the differential equations are formulated in terms of the rotating
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coordinate frame, the equilibrium solutions are sought by fixing the derivatives in the

equations of motion to zero. The locations of the equilibrium solutions are then the

solutions to the following scalar expressions,

0 =
(1− µ)z

d3
+
µz

r3
(2.28)

0 =
(1− µ)y

d3
+
µy

r3
− y (2.29)

0 =
(1− µ)(x+ µ)

d3
+
µ(x− 1 + µ)

r3
− x (2.30)

where the distance from the primaries are evaluated as

d =
√

(x+ µ)2 + y2 + z2 (2.31)

r =
√

(x− 1 + µ)2 + y2 + z2 (2.32)

such that d and r are the distances from P1 and P2, respectively. To satisfy Equation

(2.28), z must be equal to zero, implying that all equilibrium solutions remain in the x̂-

ŷ plane. Solving Equations (2.29)-(2.30) for equilibrium points such that y 6= 0 yields

analytical solutions for the locations of the L4 and L5 equilibrium points, located off

the x̂-axis. However, Equation (2.30) is also satisfied if y = 0, resulting in a quintic

polynomial. The roots are not available algebraically, so a numerical root finding

scheme is employed. An effective technique involves replacing x by defining distances

from the primaries, i.e., γ1, γ2, γ3, as illustrated in Figure 2.2. Such an approach

allows a more stable numerical algorithm. Three equilibrium solutions emerge along

the x-axis, denoted L1, L2, and L3. Thus, the five equilibrium solutions are defined

for any CR3BP system, defined by µ.

In any familiar system modeled as a CR3BP, there are five total equilibrium so-

lutions. The collinear libration points, L1, L2, and L3, reside along the x̂-axis in the

rotating frame. The triangular libration points, L4 and L5, are located off of the x̂

axis and are equidistant from P1 and P2. The triangular libration points form an

equilateral triangle with the two primaries in the x̂-ŷ plane. The representative loca-

tions of the equilibrium points in the rotating frame appear in Figure 2.3. While the
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Figure 2.2. Geometry to solve for locations of collinear libration points
in CR3BP using γ1, γ2, and γ3

collinear points require an iterative solution for any system, the analytical solutions to

the triangular points are (xL4, yL4) = (1
2
− µ,

√
3

2
), (xL5, yL5) = (1

2
− µ,−

√
3

2
). The ge-

ometry of the five equilibrium points are defined for any system in the CR3BP where

the collinear points exist along the x̂-axis and the triangular points exist equidistant

from the primaries in the x̂-ŷ plane.

Figure 2.3. Relative locations of the five libration points as viewed in
the rotating frame
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2.3 Integral of Motion

Although there is no analytical solution to the CR3BP, a single integral of motion

does exist. This term is labeled the Jacobi Integral or Jacobi Constant (JC) and

supplies significant insight into the problem by bounding the solution space [27]. The

Jacobi Constant is evaluated using the pseudo-potential function and the velocity

magnitude as viewed in the rotating frame

JC = 2U∗ − (ẋ2 + ẏ2 + ż2) (2.33)

The Jacobi Constant is frequently denoted an energy-like quantity because it is defined

using the pseudo-potential function. The pseudo-potential is not a potential in the

sense of mechanical energy as derived in an inertial frame; the sum of the forces in

the system do not equal the gradient of the pseudo-potential function. Rather, the

pseudo-potential is derived by operating on the equations of motion in Equations

(2.21)-(2.23). By defining the magnitude of the velocity as observed in the rotating

frame, v, Equation (2.33) is rewritten to define the square of the velocity magnitude

v2 = 2U∗ − JC (2.34)

It is apparent that the velocity squared term in Equation (2.34) must be positive. By

setting the velocity magnitude equal to zero, an inequality defines the condition that

must be satisfied for a real-valued velocity magnitude,

JC ≤ 2U∗ (2.35)

The boundary that defines the imaginary and real-valued velocity magnitude is de-

termined by setting the velocity squared term in Equation 2.34 equal to zero and,

for a given value of JC, solving for the corresponding position components in the

pseudo-potential function,

0 = 2U∗ − JC (2.36)

The position components in the rotating frame that satisfy Equation (2.36) bound

the region of the space where motion is allowed.
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First consider only planar motion, where z = 0. The solution to Equation (2.36)

yields a set of points representing a continuous curve that defines the boundary. The

curves in the x̂ŷ-plane in the rotating frame are labeled the Zero Velocity Curves

(ZVC) and are plotted in Figure 2.4. The “forbidden region” in Figure 2.4 defines

the region where velocity magnitude that solves Equation (2.36) is imaginary at a

given JC value and, thus, not a physically realizable location. It is notable that the

forbidden regions contract around the L1 and L2 gateways. By decreasing the JC

value to be less than the JC associated with L2 (JCL2), Figure 2.4(b) demonstrates

that the ZVCs now enclose the Earth-Moon region and there is no longer access to the

exterior region of the space. Increasing the Jacobi Constant such that JC > JCL1,

(a) (b)

Figure 2.4. Zero-Velocity Curves in the Earth-Moon system for (a)
JC = 3.16 and (b) JC = 3.18.

the gateway near L1 closes, restricting access between the Earth and Moon regions.

Similarly, decreasing the Jacobi constant such that JCL4,5 < JC < JCL3 will open the

L3 gateway. Under this condition, P3 is no longer restricted from traversing between

the interior and exterior regions through the L2 gateway, the L3 gateway provides

access to those regions as well. When JC < JCL4,5, the ZVCs vanish in the plane

and motion is permitted anywhere in the x̂ŷ plane. Considering the spatial scenario
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Figure 2.5. Zero-Velocity Surface (ZVS) in the Earth-Moon system, JC = 3.16.

satisfying Equation (2.36), a three-dimensional surface bounds the motion for a given

value of JC, denoted the Zero Velocity Surface (ZVS). An example of the ZVS in

the Earth-Moon system is rendered in Figure 2.5. In the three-dimensional spacial

problem, the forbidden region includes any position between the interior spherical

structure and the exterior cylindrical structure. In the image in Figure 2.5, note that

the L1 and L2 gateways are open. Figure 2.6 demonstrates the in-plane ZVCs for

different systems given the JC value JC = JCL2+JCL1

2
, a value consistently evaluated

across systems. This condition ensures that the Jacobi Constant is halfway between

the the Jacobi Constant value associated with L1 and L2, ensuring the L1 gateway

is open while the L2 gateway is closed. Note that the difference in the size of the

forbidden region as the µ value decreases. The ZVCs define the regions where motion

is permitted in the x̂ŷ-plane for a given value of the Jacobi Constant. As the Jacobi

Constant changes, regions of the space become available via the gateways defined by

the collinear libration points.
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(a) (b)

(c)

Figure 2.6. ZVCs for JC = JCL2+JCL1

2
in the (a) Earth-Moon system

(µ = 0.1215), (b) Saturn-Titan system (µ = 0.0002366), and (c) Sun-
Earth system(µ = 3.0035× 10−6)

2.4 First Order Linear Variations about Equilibrium Points

The differential equations that govern the behavior in the CR3BP are nonlinear,

but understanding the linear motion in the vicinity of the equilibrium points offers

some initial insight into the dynamical flow throughout the space. One approach to

organize the dynamical behavior in the CR3BP is collection of the solutions into four

types: equilibrium points, periodic orbits, quasi-periodic trajectories, and chaotic
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motion. Understanding all types of fundamental motion is necessary for successful

path planning in this regime.

2.4.1 First Order Linear Periodic Motion

The construction of periodic solutions originates with linear variational equations

in the vicinity of a particular solution. Consider the nonlinear vector differential

equations of motion expressed as ~̇x = ~f(~x, t), where ~x =

[
x y z ẋ ẏ ż

]T
and ~̇x =[

ẋ ẏ ż ẍ ÿ z̈

]T
and let a particular solution be defined as ~x∗. The particular,

or reference, solution satisfies the nonlinear differential equations. Let the variations

from the reference be defined

δ~x =

[
δx(t) δy(t) δz(t) δẋ(t) δẏ(t) δż(t)

]T
= ~x(t)− ~x∗(t) (2.37)

By substituting the above equations into ~f(~x, t) and expanding in a first-order Taylor

series about ~x∗(t) yields

~̇x∗(t) + δ~̇x = ~f(~x∗, t) +
∂ ~f

∂~x

∣∣∣∣∣
~x∗

δ~x+ Higher Order Terms (2.38)

Since ~̇x∗(t) = ~f(~x∗, t), and the higher order terms are neglected, then the Taylor series

reduces to

δ~̇x =
∂ ~f

∂~x

∣∣∣∣∣
~x∗

δ~x = A(t)δ~x (2.39)

where A(t) is a matrix, evaluated on the reference solution. Using the definition of

the variations with respect to a reference in Equation (2.39), the variational equations

of motion in the CR3BP are written in scalar form as

δẍ− 2δẏ =
∂U∗

∂x∂x
δx+

∂U∗

∂x∂y
δy +

∂U∗

∂x∂z
δz (2.40)

δÿ + 2δẋ =
∂U∗

∂y∂x
δx+

∂U∗

∂y∂y
δy +

∂U∗

∂y∂z
δz (2.41)

δz̈ =
∂U∗

∂z∂x
δx+

∂U∗

∂z∂y
δy +

∂U∗

∂z∂z
δz (2.42)
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Expressing the equations of motion in matrix form, δ~̇x = A(t)δ~x, yields

δẋ

δẏ

δż

δẍ

δÿ

δz̈


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

U∗xx U∗xy U∗xz 0 2 0

U∗yx U∗yy U∗yz −2 0 0

U∗zx U∗zy U∗zz 0 0 0





δx

δy

δz

δẋ

δẏ

δż


(2.43)

where the notation for the pseudo-potential partial derivatives is ∂U∗

∂i∂j
= U∗ij. If the

reference solution is defined as an equilibrium solution, the libration points are con-

stant solutions in the CR3BP. Thus, when the second order partial derivatives of the

pseudo-potential, U∗, are evaluated at any of the equilibrium points, with z = 0, the

variational equations of motion reduce to

δẍ− 2δẏ = U∗xx|eqδx+ U∗xy|eqδy (2.44)

δÿ + 2δẋ = U∗yx|eqδx+ U∗yy|eqδy (2.45)

δz̈ = U∗zz|eqδz (2.46)

where the second order partial derivatives of the pseudo-potential function is eval-

uated at the equilibrium point. Note that the motion in the x̂ŷ-plane is decoupled

from the out-of-plane motion. The out-of-plane motion is simple harmonic oscillatory

motion with a frequency sδz =
√
|Uzz|eq|. Considering the in-plane motion, Equation

(2.43) is rewritten in matrix form, δ~̇xplanar = Aplanarδ~xplanar,

δ~xplanar =

[
δx δy δẋ δẏ

]T
(2.47)

Aplanar =


0 0 1 0

0 0 0 1

U∗xx|eq U∗xy|eq 0 2

U∗yx|eq U∗yy|eq −2 0


(2.48)
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The Aplanar is constant for a given libration point and Aplanarδ~xplanar is assessed as a

linear system. The eigenvalues of the Aplanar matrix are determined to yield infor-

mation about the motion in the vicinity of the equilibrium points. Constructing the

characteristic polynomial of the Aplanar matrix results in a fourth order polynomial

λ4 + (4− U∗xx − U∗yy)λ2 + (−2U∗xy − 2U∗yx)λ+ (U∗xxU
∗
yy − U∗yxU∗xy) = 0 (2.49)

where λ is an eigenvalue of Aplanar. The type of planar motion in the vicinity of the

five equilibrium solutions is characterized by roots of the characteristic polynomial

in Equation (2.49). Consider the characteristic polynomial for the collinear points,

which lie on the x̂-axis of the rotating coordinate frame. Equation (2.49) is then

simplified to a quadratic polynomial

Λ2 + 2β1Λ− β2
2 = 0 (2.50)

since yeq = 0 and zeq = 0, making U∗xy = 0, U∗xx > 0, and U∗yy < 0, where

β1 = 2−
U∗xx + U∗yy

2
(2.51)

β2
2 = −U∗xxU∗yy (2.52)

λ = ±
√

Λ (2.53)

Using the quadratic equation, Equation (2.50) is solved,

Λ1 = −β1 +
√
β2

1 + β2
2 > 0 (2.54)

Λ2 = −β1 −
√
β2

1 + β2
2 < 0 (2.55)

where Λ1 and Λ2 are the two solutions to the quadratic polynomial in Equation

(2.50). Substituting Λ1 and Λ2 back into Equation (2.53), the four eigenvalues are

determined. Two real eigenvalues (λ1 and λ2) and two imaginary eigenvalues (λ3

and λ4) result and the general solution to δ~̇xplanar = Aplanarδ~xplanar near the collinear

equilibrium points becomes

δx(t)eq = A1e
λ1t + A2e

λ2t + A3e
λ3t + A4e

λ4t (2.56)
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δẋ(t)eq = λ1A1e
λ1t + λ2A2e

λ2t + λ3A3e
λ3t + λ4A4e

λ4t (2.57)

δy(t)eq = B1e
λ1t +B2e

λ2t +B3e
λ3t +B4e

λ4t (2.58)

δẏ(t)eq = λ1B1e
λ1t + λ2B2e

λ2t + λ3B3e
λ3t + λ4B4e

λ4t (2.59)

where Ai and Bi are coefficients of the general solution. The coefficients Ai and Bi

in Equations (2.56)-(2.59) are dependent on each other and are computed,

Bi =
λi − Uxx|eq

2λi
Ai (2.60)

Thus, the variational equations offer information concerning behavior in the vicinity

of the collinear equilibrium solutions. The eigenvalues associated with the collinear

points and the form of the linear solutions in Equations (2.56)-(2.59) reflect the ex-

istence of unstable (λ1), stable (λ1), and center (λ3 and λ4) modes in the vicinity of

these points.

Exciting only the modes associated with the imaginary eigenvalues results in pe-

riodic motion near the collinear equilibrium points. The modes associated with ex-

ponential increase and decay are removed in the differential equations by exploring

solutions that yield coefficient values A1 = 0 and A2 = 0, resulting purely in periodic

behavior

δy(t)eq = δy0,eq cos s(t− t0) +
δx0,eq

β3

sin s(t− t0) (2.61)

δẏ(t)eq = −sδy0,eq sin s(t− t0) +
sδx0,eq

β3

cos s(t− t0) (2.62)

δx(t)eq = δx0,eq cos s(t− t0)− β3δy0,eq sin s(t− t0) (2.63)

δẋ(t)eq = −sδx0,eq sin s(t− t0)− β3δy0,eqs cos s(t− t0) (2.64)

where s and β3 are defined

s =

√
β1 + (β2

2 + β1)
1
2 (2.65)

β3 =
s2 + Uxx

2s
(2.66)

A similar linear analysis demonstrates that two types of planar periodic motion exist

in the vicinity of the triangular equilibrium points as well. Examining the eigenvalues
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from the linear variations in the vicinity of the equilibrium solutions provides insight

into the nonlinear dynamics that region.

2.4.2 First Order Linear Quasi-Periodic Motion

In Section 2.4.1, the in-plane linear variations near the collinear equilibrium points

is decoupled from the out-of-plane variations. An example of the out-of-plane (blue)

and in-plane (red) linear variations from the L1 point are illustrated in Figure 2.7 in

the Earth-Moon system. However, introducing initial conditions that include both

the in-plane oscillatory motion coupled with the harmonic out-of-plane variations

yields a quasi-periodic Lissajous motion around the collinear equilibrium solutions.

By isolating and exciting the oscillatory out-of-plane motion, the linear variations for

a Lissajous path are defined

δy(t)eq = δy0,eq cos s(t− t0) +
δx0,eq

β3

sin s(t− t0) (2.67)

δẏ(t)eq = −sδy0,eq sin s(t− t0) +
sδx0,eq

β3

cos s(t− t0) (2.68)

δx(t)eq = δx0,eq cos s(t− t0)− β3δy0,eq sin s(t− t0) (2.69)

δẋ(t)eq = −sδx0,eq sin s(t− t0)− β3δy0,eqs cos s(t− t0) (2.70)

δz(t)eq = δz0,eq cos sδz(t− t0) + sδzδż0,eq sin sδz(t− t0) (2.71)

δż(t)eq = −δz0,eqsδz sin sδz(t− t0) + s2
δzδż0,eq cos sδz(t− t0) (2.72)

Note that Equations (2.67)-(2.70) are the same as Equations (2.61)-(2.64). The fre-

quency of the out-of-plane motion is defined as sδz =
√
|Uzz|eq|. The initial out-of-

plane position, δz0, initial out-of-plane velocity, δż0, in addition to the initial in-plane

positions, δx0 and δy0, are specified to define the Lissajous path. The quasi-periodic

Lissajous motion around L1 in the Earth-Moon system is depicted in Figure 2.8. The

linear periodic variations exist in both the planar case and the out-of-plane case,

however, the motion can be coupled to demonstrate quasi-periodic variations around

the collinear points as well.
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Figure 2.7. Decoupled out-of-plane (blue) and in-plane (red) varia-
tions from the L1 point in the Earth-Moon system

(a) (b) (c)

Figure 2.8. (a) 3D View, (b) x̂ŷ plane projection and (c) ŷẑ plane
projection of linearized Lissajous motion around the Earth-Moon L1

equilibrium point

2.5 Differential Corrections

Initial conditions for arbitrary trajectory arcs in the CR3BP are frequently se-

lected from the linear approximations. Rarely do the such initial conditions meet
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all constraints for a given design in the nonlinear problem, especially in multi-body

regimes. Numerical strategies, such as differential corrections, are required to de-

termine solutions that meet all for the constraints of a particular design. The state

transition matrix (STM) provides the basis for various differential corrections strate-

gies that are successful in this regime. Using the relationships based on the STM,

one type of multi-dimensional Newton differential corrections method is introduced

that is straightforward to apply in many scenarios.

Generally in trajectory design problems, a differential corrections algorithm is

employed to solve a two-point boundary value problem. While many methods exist to

solve two-point boundary value problems, a constraint/free variable Newton method

is employed in this investigation. The free variable vector ~X with n free variables is

defined

~X =


X1

...

Xn

 (2.73)

Within a trajectory design application, sample free variables might typically include

time-of-flight (TOF), state vector elements, epoch times, altitudes, as well as line-of-

sight angles and other physical parameters. For a given design, there are then a set

of m constraints to be satisfied, defined

~F ( ~X) =


F1( ~X)

...

Fm( ~X)

 = ~0 (2.74)

Constraints are always defined such that they are equal to zero for a satisfactory

solution, ~X∗. Given an initial free variable vector, ~X0, a first order Taylor series

expansion defines the constraint vector based on a final set of free variables ~Xf

~F ( ~Xf ) = ~F ( ~X0) + DF( ~X0)( ~Xf − ~X0) (2.75)
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where DF( ~X0) is the m× n Jacobian matrix of partial derivatives of the constraints

with respect to the free variables,

DF( ~X0) =
∂ ~F

∂ ~X0

=


∂F1

∂X1
. . . ∂F1

∂Xn

. . .
. . . . . .

∂Fm
∂X1

. . . ∂Fm
∂Xn

 (2.76)

When satisfied, the constraint vector is equal to zero, so Equation (2.75) is rewritten,

~F ( ~Xj) + DF( ~Xj)( ~Xj+1 − ~Xj) = ~0 (2.77)

where ~Xj and ~Xj+1 are the free variable vectors for the jth iteration and j + 1th

iteration, respectively. From linear algebra, the solution for Equation (2.77) depends

on the relative size of the vectors ~X and ~F ( ~X). First, the condition n = m is

considered, where the number of free variables is equal to the number of constraints.

An update equation for the iterative Newton scheme is defined for the free variables

by rearranging Equation (2.77) such that each iteration delivers an update to the

design variable vector, i.e.,

~Xj+1 = ~Xj − (DF( ~Xj))
−1 ~F ( ~Xj) (2.78)

The second condition, where the number of free variables is greater than the number

of constraints or n > m, the Jacobian is a non-square matrix. In this scenario, an

infinite number of solutions exist. While there are a number of methods to solve

for an underdetermined system, a minimum norm provides a solution that remains

closest to the initial guess, ~X0. The minimum norm solution to the underdetermined

system is formulated

~Xj+1 = ~Xj −DF( ~Xj)
T [DF( ~Xj)DF( ~Xj)

T ]−1 ~F ( ~Xj) (2.79)

where DF( ~Xj)
T is the transpose of the Jacobian matrix. The minimum norm solu-

tion provides an update to the next iteration of the free variable vector, ~Xj+1, that

minimizes the difference between the free variable vector of the current iteration, ~Xj.
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Keeping the minimum difference between iterations attempts to keep the solution as

close as possible to the initial guess provided differential corrections scheme. The

third scenario which is an overdetermined system, where the number of constraints

is greater than the number of free variables or n < m. For this condition, there are

no solutions to Equation (2.77). However, a least squares solution provides a free

variable vector that minimizes ~F ( ~Xj) + DF( ~Xj)( ~Xj+1− ~Xj) in Equation (2.77). The

least squares solution is computed

~Xj+1 = ~Xj − [DF( ~Xj)
TDF( ~Xj)]

−1DF( ~Xj)
T ~F ( ~Xj) (2.80)

Differential corrections is a numerical algorithm, so the solution to Equation (2.77)

cannot typically be solved to yield absolute zero. Therefore, a free variable vector is

computed such that the magnitude of the constraint vector is below a small tolerance,

ε,

||~F ( ~X∗)|| < ε (2.81)

where ~X∗ is the free variable vector that satisfies the constraints. While a solution is

not guaranteed, differential corrections reliably delivers a solution using a good initial

guess.

2.5.1 State Transition Matrix

The STM is an essential element of trajectory analysis. Not only is it useful in

differential corrections strategies, it crucial for many spacecraft guidance, navigation

and control strategies as well. For a given reference solution, the STM offers informa-

tion on the impact of the deviations of an initial state to the deviations in a final state

downstream. In the variational equations in Equation (2.43), the A matrix remains

constant for equilibrium solutions. However, in the general case, A is time varying

and is exploited to compute the differential equations associated with the STM. First

consider the variations from reference path at time t0, denoted δ~x(t0). Further con-

sider the variations from the same reference path at some time t, denoted δ~x(t). A

linear mapping between initial variations at t0 and the final variations at time t is
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defined by partial derivatives of the final state variations with respect to the initial

state variations,

δ~x(t) =
∂~x(t)

∂~x(t0)
δ~x(t0) = Φ(t, t0)δ~x(t0) (2.82)

where ∂~x(t)
∂~x(t0)

is the linear mapping and is equal to Φ(t, t0) or the STM from time t0

to t. This matrix supplies information on the sensitivity of the final state at time t

relative to the initial state at time t0. The equations of motion for the elements of

the STM are derived via the time derivative of the STM in Equation (2.82)

Φ̇ =
∂

∂t

∂~x(t)

∂~x(t0)
=

∂~̇x(t)

∂~x(t0)
(2.83)

Recall δ~̇x(t) = A(t)δ~x(t) from Equation (2.39), Equation (2.83) is rewritten

Φ̇ =
A(t)∂~x(t)

∂~x(t0)
= A(t)

∂~x(t)

∂~x(t0)
(2.84)

Noticing that ∂~x(t)
∂~x(t0)

is the definition of the STM, the equations of motion for the STM

become

Φ̇ = A(t)Φ (2.85)

The STM is a 6× 6 matrix, whose elements are evaluated as

Φ(t, t0) =



∂x(t)
∂x(t0)

∂x(t)
∂y(t0)

∂x(t)
∂z(t0)

∂x(t)
∂ẋ(t0)

∂x(t)
∂ẏ(t0)

∂x(t)
∂ż(t0)

∂y(t)
∂x(t0)

∂y(t)
∂y(t0)

∂y(t)
∂z(t0)

∂y(t)
∂ẋ(t0)

∂y(t)
∂ẏ(t0)

∂y(t)
∂ż(t0)

∂z(t)
∂x(t0)

∂z(t)
∂y(t0)

∂z(t)
∂z(t0)

∂z(t)
∂ẋ(t0)

∂z(t)
∂ẏ(t0)

∂z(t)
∂ż(t0)

∂ẋ(t)
∂x(t0)

∂ẋ(t)
∂y(t0)

∂ẋ(t)
∂z(t0)

∂ẋ(t)
∂ẋ(t0)

∂ẋ(t)
∂ẏ(t0)

∂ẋ(t)
∂ż(t0)

∂ẏ(t)
∂x(t0)

∂ẏ(t)
∂y(t0)

∂ẏ(t)
∂z(t0)

∂ẏ(t)
∂ẋ(t0)

∂ẏ(t)
∂ẏ(t0)

∂ẏ(t)
∂ż(t0)

∂ż(t)
∂x(t0)

∂ż(t)
∂y(t0)

∂ż(t)
∂z(t0)

∂ż(t)
∂ẋ(t0)

∂ż(t)
∂ẏ(t0)

∂ż(t)
∂ż(t0)


=

Φr,r Φr,v

Φv,r Φv,v

 (2.86)

Examining the submatrices of the STM, the upper left 3×3 quadrant is the sensitivity

of the final position to variations in the initial position; the upper right 3×3 quadrant

reflects the sensitivity of the final position to variations in the initial velocity; the

lower left and right quadrants 3× 3 represent the variations in the final velocity due

to perturbations in the initial position and initial velocity, respectively. Some useful

properties of the STM include

Φ(t0, t) = Φ−1(t, t0) (2.87)
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Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) (2.88)

Φ(t0, t0) = I6×6 (2.89)

det Φ(t, t0) = 1 (2.90)

In the CR3BP, no analytical solution exists for the elements of the STM. Along

with CR3BP state equations of motion, the equations of motion for the elements of

the STM are also numerically integrated. Generally, the STM supplies sensitivity

information for many applications in dynamical systems analysis as well as problems

in guidance and control. One type of design problem that exploits STMs are targeting

scenarios.

2.5.2 Single Shooting

A single shooting differential corrections scheme is a simple application of a

multi-dimensional Newton method for trajectory design. Consider a single trajec-

tory arc in Figure 2.9, whose initial condition is defined by the state vector ~x(t0) =[
x(t0) y(t0) z(t0) ẋ(t0) ẏ(t0) ż(t0)

]
where the initial time is defined t0. The

trajectory is propagated for a time, t = t0 + τ , such that the final state along the

arc is ~x(t) = ~x(t0 + τ). Further consider a desired location, ~r∗ =

[
x∗ y∗ z∗

]
, to

be achieved by modifying the time of flight and the initial velocity vector. A free

Figure 2.9. Single shooting differential corrections targeting scheme
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variable vector, ~X, is developed for this scenario, such that,

~X =


ẋ(t0)

ẏ(t0)

ż(t0)

τ


(2.91)

where ẋ(t0), ẏ(t0), and ż(t0) are the velocity components at the initial state, and τ is

the time of flight. The constraint vector is defined as

~F ( ~X) =


x(t0 + τ)− x∗

y(t0 + τ)− y∗

z(t0 + τ)− z∗

 (2.92)

such that the final position is achieved when ~F ( ~X) = ~0. The Jacobian matrix is

formulated using Equation (2.76):

DF( ~X) =


∂(x(t0+τ)−x∗)

∂ẋ(t0)
∂(x(t0+τ)−x∗)

∂ẏ(t0)
∂(x(t0+τ)−x∗)

∂ż(t0)
∂(x(t0+τ)−x∗)

∂τ

∂(y(t0+τ)−y∗)
∂ẋ(t0)

∂(y(t0+τ)−y∗)
∂ẏ(t0)

∂(y(t0+τ)−y∗)
∂ż(t0)

∂(y(t0+τ)−y∗)
∂τ

∂(z(t0+τ)−z∗)
∂ẋ(t0)

∂(z(t0+τ)−z∗)
∂ẏ(t0)

∂(z(t0+τ)−z∗)
∂ż(t0)

∂(z(t0+τ)−z∗)
∂τ

 (2.93)

Notice that the final desired position, ~r∗, is independent of the free variables. Then,

the Jacobian matrix is rewritten in terms of the elements of the STM and the time

derivative of position at the final state:

DF( ~X) =


∂x(t)
∂ẋ(t0)

∂x(t)
∂ẏ(t0)

∂x(t)
∂ż(t0)

∂x(t)
∂τ

∂y(t)
∂ẋ(t0)

∂y(t)
∂ẏ(t0)

∂y(t)
∂ż(t0)

∂y(t)
∂τ

∂z(t)
∂ẋ(t0)

∂z(t)
∂ẏ(t0)

∂z(t)
∂ż(t0)

∂z(t)
∂τ

 =


Φ1,4(t, t0) Φ1,5(t, t0) Φ1,6(t, t0) ẋ(t)

Φ2,4(t, t0) Φ2,5(t, t0) Φ2,6(t, t0) ẏ(t)

Φ3,4(t, t0) Φ3,5(t, t0) Φ3,6(t, t0) ż(t)


(2.94)

where t = t0 + τ , and Φi,j(t, t0) is element i, j of the STM, propagated from time t0

to time t. Infinitely many solutions exist since there are more free variables than con-

straints or n > m, making the system underdetermined. However, given a reasonable

initial guess, iterating using the mininmum norm formulation in Equation (2.79), a

solution, ~x∗(t0), is determined to within some acceptable tolerance.
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2.5.3 Multiple Shooting

The single shooting algorithm is straightfowardly extended to multiple shoot-

ing by linking several single shooting problems together using the same free vari-

able/constraint formulation. The multiple shooting algorithm is valuable for tra-

jectory design by linking trajectory segments for various applications including the

computation of periodic orbits. Consider a set of discontinuous trajectory arcs as

illustrated in Figure 2.10. Such a set of discontinuous arcs might serve as an initial

guess for some scenario. The initial state at the beginning of each arc, or patch point

state, is defined ~xi =

[
x(ti) y(ti) z(ti) ẋ(ti) ẏ(ti) ż(ti)

]T
, where i is the index

corresponding to the patch point. The ith patch point state, ~xi is propagated for time

τi and the final state at the end of the propagation arc, at time ti + τi, is defined

as ~xti+1. A free variable vector is developed using the state vectors corresponding to

Figure 2.10. Trajectory arcs in multiple shooting scheme
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each patch point, including the propagation time of each trajectory arc; the resulting

vector possesses a dimension 7N − 1

~X =



~x1

~x2

~x3

...

~xN−2

~xN−1

~xN

τ1

τ2

τ3

...

τN−2

τN−1



(2.95)

Thus, the initial conditions and the time of flight for each of the arcs are allowed

to vary within the differential corrections scheme. A continuous trajectory is the

specific goal, so the constraint vector is defined by state continuity between all of the

arcs. The continuity is mathematically represented in the form of patch points. The

constraint is expressed as the difference between the initial patch point and the final

state along the previous arc. The constraint vector includes 6N − 6 elements and is

written

~F ( ~X) =



~xt2 − ~x2

~xt3 − ~x3

...

~xtN−1 − ~xN−1

~xtN − ~xN


(2.96)
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The Jacobian is divided into two submatrices for organizational purposes during com-

putation. The first submatrix includes the partial derivatives of the constraints with

respect to the patch point state vectors

DF1 =


Φ(t1 + τ1, t1) −I6×6 06×6 . . . 06×6 06×6

06×6 Φ(t2 + τ2, t2) −I6×6 . . . 06×6 06×6
...

...
...

. . .

06×6 06×6 06×6 Φ(tN−1 + τN−1, tN−1) −I6×6


(2.97)

where Φ(ti+τi, ti) is the STM from time ti to ti+τi, I6×6 is a 6×6 identity matrix, and

06×6 is a 6× 6 matrix of zeros. The second submatrix contains the partial derivatives

of the constraints with respect to the times of flight

DF2 =


~̇xt2 ~06×1 . . . ~06×1

~06×1 ~̇xt3 . . . ~06×1

...
...

. . .

~06×1
~06×1 ~̇xtN


(2.98)

Combining the submatrices in Equation (2.97) and Equation (2.98) into one matrix

yields the final Jacobian,

DF( ~X) =

[
DF1 DF2

]
(2.99)

The minimum norm of the Jacobian is used to determine an update to the free variable

vector at every iteration. The process is converged when the norm of the constraint

vector is below a specified tolerance, ε. Given a reasonable initial guess, the multi-

ple shooting scheme provides a continuous trajectory from the initial discontinuous

trajectory segments.

2.5.4 Computing Periodic Solutions

As in the two-body model, an infinite number of periodic solutions also exists

within the CR3BP. A simple single shooting differential corrections strategy is de-

veloped to demonstrate the computation of periodic solutions about the collinear
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libration points given a reasonable initial guess. Consider a state vector that lies

along the x̂-axis, such that the only component of velocity is perpendicular to the

x̂ẑ-plane. Such a state vector is defined

~x0 =

[
x0 0 0 0 ẏ0 0

]T
(2.100)

Note that the initial state ~x0 has no ẑ-component of position or velocity, resutling

in purely planar motion when the state is propagated in the CR3BP. A differential

corrections strategy is developed that ensures that the next crossing of the x̂ẑ-plane

is perpendicular. By constraining a second perpendicular crossing, symmetry is guar-

anteed across the x̂ẑ-plane by the Mirror Theorem [28] and the trajectory returns to

the converged initial condition and produces a periodic trajectory. An initial guess

to deliver as input to the corrections strategy is determined from the linear varia-

tions near one of the libration points, outlined in Section 2.4.1. Figure 2.11 depicts

the initial guess (red) and the converged solution (blue) for a planar Lyapunov orbit

near L2 in the Earth-Moon system, using a perpendicular crossing differential cor-

rections strategy. Only two elements in the state vector are varied to guarantee a

Figure 2.11. Initial guess (red) and converged solution (blue) in a
perpendicular crossing differential corrections scheme for an Earth-
Moon L2 Lyapunov orbit
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perpendicular crossing. Consequently, the free variable vector is defined

~X =


x0

ẏ0

T

 (2.101)

where T is the time of flight to the plane crossing (note that the period of converged

orbit is 2T ). The constraint vector is defined for a perpendicular crossing as follows

~F ( ~X) =

yt
ẋt

 = ~0 (2.102)

where yt and ẋt are the ŷ-component of position and x̂-component of velocity at the

x̂ẑ-plane crossing at time t0 +T , respectively. The Jacobian matrix for the corrections

scheme is constructed from elements of the STM and the derivatives of the state vector

DF =

Φ2,1 Φ2,5 ẏt

Φ4,1 Φ4,5 ẍt

 (2.103)

where Φi,j is the (i, j) element of STM, propagated from the initial time, t0, to the final

time t0 + T . The elements in the last column of the Jacobian are from the derivative

of the state vector at time t0 + T . A half period of the converged orbit is depicted

in blue in Figure 2.11. A single shooting scheme is very effective when computing

simple periodic orbits, however a more robust strategy is typically required when it

is not possible to leverage symmetries or when the path involves more dynamically

sensitive regions.

Various types of periodic orbits exist in the CR3BP and some of these orbits

possess long periods or close encounters with one or both primaries. By incorporating

a multiple shooting strategy into the periodic orbit corrections scheme, a generally

more robust algorithm is available. By discretizing an initial guess for a periodic
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orbit into arcs bounded by patch points such that the equal integration times, the

free variable vector is defined

~X =



~x1

~x2

...

~xN−1

T


(2.104)

where ~xi is the state vector at patch point i and T is the integration time of each

trajectory arc. The constraint vector is defined

~F ( ~X) =



~xt2 − ~x2

~xt3 − ~x3

...

~xtN−1 − ~xN−1

xtN − x1

ytN − y1

ztN − z1

ẋtN − ẋ1

żtN − ż1

y1



(2.105)

The last continuity constraint is formulated differently since one of the dimensions

of the 6-dimensional state is implicitly defined by the Jacobi constant. In this for-

mulation, the difference between the ŷ-component of velocity at the end of the last

trajectory arc and the first patch point is unconstrained and the ŷ-component of the
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first patch points is constrained to be zero. Using the constraint and free variable

vectors, the Jacobian matrix is defined

DF =


Φ(t1 + T, t1) −I6×6 06×6 . . . 06×6 ~̇xt2

06×6 Φ(t2 + T, t2) −I6×6 . . . 06×6 ~̇xt3
...

...
...

. . .

H 06×6 06×6 R ~q


(2.106)

where the submatrices H and R are defined

H =



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 −1

0 1 0 0 0 0


(2.107)

R =



Φ1,1 Φ1,2 Φ1,3 Φ1,4 Φ1,5 Φ1,6

Φ2,1 Φ2,2 Φ2,3 Φ2,4 Φ2,5 Φ2,6

Φ3,1 Φ3,2 Φ3,3 Φ3,4 Φ3,5 Φ3,6

Φ4,1 Φ4,2 Φ4,3 Φ4,4 Φ4,5 Φ4,6

Φ6,1 Φ6,2 Φ6,3 Φ6,4 Φ6,5 Φ6,6

0 0 0 0 0 0


(2.108)

where Φi,j is the (i, j) element of the STM at time tN−1 + T from tN−1. The vector

~q is a six element vector, defined as the derivatives of the last six elements of the

constraint vector in Equation (2.105) with respect to time of flight

~q =

[
ẋ(tN + T ) ẏ(tN + T ) ż(tN + T ) ẍ(tN + T ) z̈(tN + T ) 0

]T
(2.109)

where ẋ(tN +T ), ẏ(tN +T ), and ż(tN +T ) are the velocity components of the state at

the end of the final patch point propagation, ẍ(tN + T ) and z̈(tN + T ) are the x̂- and

ẑ-components of acceleration at the end the final propagation arc. This differential
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corrections strategy is more complex than a single shooting algorithm, however it is

more robust for periodic solutions that exist in dynamically sensitive regions.

2.5.5 Continuation

The previous section included a summary of strategies to compute single peri-

odic orbits, but it is typically more beneficial to analyze a family of solutions during

any design process. A family of solutions supplies a broader understanding of the

dynamical environment. There are many different approaches to continuation, but

two common continuation methods are exploited frequently to compute families of

solutions in the CR3BP, i.e., natural parameter continuation and pseudo-arclength

continuation. A simple illustration comparing the basic concept in the two techniques

appears in Figure 2.12. Both natural parameter and pseudo-arclength continuation

methods supply initial guesses to the differential corrections procedure used to con-

verge each solution within the family. In natural parameter continuation, a physical

parameter characterizes the family, p, is selected to “continue” the family. By step-

ping some distance δp along the parameter p, the initial guess for the next member

of the family, represented as the black dot in Figure 2.12(a), is input to the Newton

algorithm to converge. This method is simple to implement, however, difficulties arise

when the slope of the p parameter curve, as represented in Figure 2.12, becomes steep

or reaches a cusp. The Newton method requires a close initial guess to converge on

a solution so, as the slope of the curve of p increases, smaller steps δp are required,

increasing the computation time. Furthermore, natural parameter continuation re-

quires some knowledge of the evolution of the elements in the free-variable vector

throughout the family. In contrast, a pseudo-arclength continuation scheme uses the

nullspace of the Jacobian matrix from the previously converged orbit in the family

to construct an initial guess in the direction tangent to the family. Figure 2.12(b),

adapted from Bosanac [29], depicts the initial guess delivered by the pseudo-arclength

scheme; observe that the initial guess is closer to the converged solution. The pseudo-
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(a) (b)

Figure 2.12. (a) Natural parameter continuation and (b) pseudo-
arclength continuation schemes

arclength strategy introduces an additional constraint to constrain the step δs to be

along the family in higher dimensional space. The Jacobian matrix, DF, is con-

structed such that it has a 1-dimensional nullspace. Consider a free-variable vector

from a previously converged orbit in the family, defined as ~X∗i−1. Additionally, con-

sider the 1-dimensional nullspace of the Jacobian matrix from the previous solution,

defined as ∆ ~X∗i−1. The new initial guess for the free variable vector representing the

next member of the family is defined

~Xi = ~X∗i−1 + δs(∆ ~X∗i−1) (2.110)

where ~Xi is the initial guess for the ith member of the family. The pseudo-arclength

constraint is then defined

( ~Xi − ~X∗i−1)T∆ ~X∗i−1 − δs = 0 (2.111)

where ~Xi is the free variable vector for the current iteration in the differential correc-

tions process and δs is the non-physical step size. Appending the pseudo-arclength

constraint to the end of the constraint vector yields an augmented constraint vector,

~G( ~Xi),

~G( ~Xi) =

 ~F ( ~Xi)

( ~Xi − ~X∗i−1)T∆ ~X∗i−1 − δs

 = ~0 (2.112)
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Subsequently, an augmented Jacobian is constructed using the partial derivatives

from the pseudo-arclength constraint with respect to the free variables. The par-

tial derivatives are equal to the nullspace of the previously converged solution. The

nullspace vector is appended to the last row of the Jacobian matrix, producing the

Jacobian square,

DG =
∂ ~G( ~Xi)

∂ ~Xi

=

 DF

∆ ~X∗i−1

T

 (2.113)

The augmented Jacobian matrix is now full-rank, so a unique periodic solution exists

if the constraints are satisfied. Representative orbits from three orbit families are

plotted in Figure 2.13 including the L2 Lyanpunov, northern Halo, and Vertical orbit

families in the Jupiter-Europa system. Pseudo-arclength continuation, while more

complex, requires no a priori knowledge of the family evolution. The strategy ensures

that the initial guess for each orbit in the family is in the direction tangent to the

family and that a unique solution emerges when all the constraints are met.

Figure 2.13. L2 Lyapunov, Halo and Vertical orbits in the Jupiter-
Europa system (µ = 2.528×10−5), constructed using pseudo-arclength
continuation
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2.6 Stability and Invariant Manifolds

Just as the stability evaluation of an equilibrium point is examined using linear

variations, stability of a periodic orbit is also quantified through linearization. The

stability of a periodic orbit is determined by reducing the periodic orbit to a fixed

point on a stroboscopic map. Reducing the periodic orbit to a fixed point allows the

characteristics of the orbit to be analyzed as a discrete time system. If a fixed point

is defined at any location along the path of a periodic orbit as ~x(t), the path returns

to the same location after one revolution of the orbit

~x(t+ T ) = ~x(t) (2.114)

where T is the time to complete one period of the orbit. Expanding this concept to

n revolutions, the periodic orbit is represented in terms of the state vector as

~x(nT ) = ~x((n+ 1)T ) = ~x∗ (2.115)

where ~x∗ is the fixed point. The differential of the variations on the stroboscopic map

relative to the fixed point are defined for each iteration of the map using the STM

δ~x(nT ) = Φ(nT, 0)δ~x(0) (2.116)

where n represents the number of revolutions around the orbit, Φ(nT, 0) is the STM

propagated from time t = 0 to time t = nT . From the properties of the STM in

Equation (2.88), Equation (2.116) is rewritten using the STM over one revolution,

also denoted the monodromy matrix, M, to the appropriate power, i.e.,

δ~x(nT ) = Mnδ~x(0) (2.117)

The system in Equation (2.117) is transformed into a discrete time system by defining

k as an integer iterate of the stroboscopic map. The continuous time system in

Equation (2.117) is rewritten as the continuous time system,

δ~x(k + 1) = Mδ~x(k) (2.118)
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where k an integer iterate of the map. The general solution of the discrete time

system in Equation (2.118) is defined with the eigenvalues and eigenvectors of M

δ~x(k) = A1λ
k
1~v1 + A2λ

k
2~v2 + A3λ

k
3~v3 + A4λ

k
4~v4 + A5λ

k
5~v5 + A6λ

k
6~v6 (2.119)

where λi is the ith eigenvalue of M, ~vi is the corresponding eigenvector, and Ai is a

coefficient of the general solution. It is apparent that variations from the fixed point

are governed by the magnitude of the λi relative to 1. However, information about the

eigenstructure of the monodromy matrix is gathered by exploiting some properties of

the monodromy matrix in the CR3BP. Since the CR3BP is a Hamiltonian system,

the eigenstructure is symmetric about the real and imaginary axes of the complex

plane. Therefore, the eigenvalues of the STM exist in reciprocal pairs. Furthermore,

the monodromy matrix for a periodic orbit in a Hamiltonian system requires that

two unity eigenvalues exist [30]. Stability information is obtained from the remaining

reciprocal pairs of eigenvalues.

For periodic orbits that possess stable and unstable subspaces, invariant mani-

folds exist that define asymptotically approaching and departing motion to the peri-

odic orbit. If the monodromy matrix has an eigenvalue associated with the unstable

subspace, i.e., Re(λU) > 1, then there exists a reciprocal eigenvalue associated with

the stable subspace, λS = 1
λU

. The eigenvectors associated with the stable (~vS) sub-

space and the unstable subspace (~vS) represent the local hyperbolic manifolds that

asymptotically approach and depart the periodic orbit, respectively. The global in-

variant hyperbolic manifolds are computed by perturbing by some small value ε at

locations on the periodic orbit in the stable/unstable direction and integrating back-

wards/forwards.

~x∗U = ~x∗ + ε
~vU
|~vU |

(2.120)

~x∗S = ~x∗ + ε
~vS
|~vS|

(2.121)

where ~x∗ is the location on the periodic orbit, and ~x∗U and ~x∗S are the perturbed

state in the unstable and stable direction, respectively. Eigenvectors do not have a
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unique direction, so to generate the full global manifold trajectory for a particular

location, the trajectory is perturbed in both positive and negative directions. Recall,

a fixed point of a periodic orbit is independent of the location around the orbit. To

obtain the stable and unstable directions at different locations around the periodic

orbit, the STM, Φ(t, 0), is used to transform the eigenvectors calculated from the

monodromy matrix, where t is the time since the location of the fixed point on the

periodic orbit. A set of trajectories that represent the stable (blue) and the unstable

(red) manifolds for an Earth-Moon L1 Lyapunov orbit is plotted in Figure 2.14. The

Figure 2.14. Stable (blue) and unstable (red) manifold trajectories
from an L1 Lyapunov orbit. The ZVCs for the Jacobi Constant (JC =
3.1827) of this orbit are defined by the black curve.

stable and unstable hyperbolic manifolds provide transfer trajectories into an out of

unstable periodic orbits without deterministic maneuvers.

A periodic orbit possesses a center subspace when reciprocal pairs of complex

eigenvalues of the monodromy matrix exist on the unit circle. The center manifold

indicates bounded, quasi-periodic motion in the vicinity of the periodic orbit. An
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infinite number of quasi-periodic orbits exist for periodic orbits that have center

modes. The following chapters will discuss quasi-periodic orbits and their existence

on higher dimensional invariant tori.

2.6.1 Stability Index

Stability of a periodic orbit is determined by the eigenvalues of the monodromy

matrix. However, a single value to quantify the stability is conveniently defined to

represent the stability. If a pair of eigenvalues exist that contain real parts, (λi,
1
λi

), the

orbit is unstable if the real part of one of the eigenvalues is greater than 1. The orbit

is considered stable if the real part of both eigenvalues are equal to 1. Subsequently,

a stability index is defined

ν =
1

2
(|λmax|+

1

|λmax|
) (2.122)

where λmax corresponds to the eigenvalue with the maximum real part. Stable orbits

have stability indices ν = 1, while unstable orbits have stability indices ν > 1. The

stability index for the Earth-Moon L2 halo family is plotted in Figure 2.15. Stability

index provides a single, convenient parameter to characterize stability of orbits along

a family.
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Figure 2.15. Stability index for a subset of the Earth-Moon L2 halo family
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3. QUASI-PERIODIC ORBIT COMPUTATION AND

CONTINUATION

Periodic orbits that have complex eigenvalues of unit magnitude possess a center

subspace associated with quasi-periodic motion in the vicinity of the periodic orbit.

An infinite number of quasi-periodic orbits exist in families of invariant tori. In-

variant tori are defined by their dimensionality, where an n-dimensional torus has

n fundamental frequencies that characterize the flow. Equilibrium points represent

0-dimensional tori since they are fixed points within the CR3BP. Periodic orbits are

defined as 1-dimensional tori, where a single fundamental frequency is associated with

the period of the orbit. Quasi-periodic orbits exist on tori where n > 1. This work

is predominantly focused on 2-dimensional tori, but the concepts extend to tori with

dimensions n > 2.

The two frequencies that define a 2-dimensional torus are called the longitudinal

frequency and the latitudinal frequency and are depicted in configuration space in a

simple example in Figure 3.1. The example torus plotted in Figure 3.1 is the product

of the red circle and the blue circle. The longitudinal frequency is associated with

the blue circle, while the latitudinal frequency corresponds to the red circle or the

transverse motion around the torus. A location on the torus is defined by two angles,

θ0 and θ1, that correspond to the longitudinal and latitudinal frequencies, respectively.

As discussed in Section 2.6, a periodic orbit is reduced to a fixed point using a

stroboscopic map. Quasi-periodic orbits are represented using a stroboscopic map as

well and are computed by exploiting an invariance condition and phase constraints on

the stroboscopic map. By exploiting these two constraints, a differential corrections

scheme is formulated to compute families of quasi-periodic orbits.
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Figure 3.1. 2-dimensional torus defined by the product of the red and blue circles

3.1 Invariance Condition

Quasi-periodic orbits are examined in the context of a stroboscopic map. However,

instead of a fixed point that is associated with a periodic orbit, quasi-periodic orbits

are examined as a curve, called an invariant curve or invariant circle. A simple

representation of an invariant curve is depicted in Figure 3.2. A single trajectory,

whose initial state is located on the invariant curve, is integrated for time T0 until

the path returns to the invariant curve, where T0 is defined

T0 =
2π

θ̇0

(3.1)

where θ̇0 corresponds to the longitudinal frequency of the 2-dimensional torus. The

final state along the path returns to the stroboscopic map on the invariant curve,

however the location of the first return is rotated by an angle ρ, defined

ρ =
2πθ̇1

θ̇0

= T0θ̇0 (3.2)

where θ̇1 is the latitudinal frequency. If a single trajectory is propagated to t→∞,
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Figure 3.2. 2-dimensional torus with the invariant curve (blue), the
rotation angle ρ, and a single trajectory (yellow) propagated to the
first return to the invariant curve

then the full invariant curve is represented on the map. However, for computation, the

invariant curve is discretized into N states, ~ui(t, θ0, θ1i), where i = 1, 2, ..., N , as shown

in Figure 3.3. By defining a location of the stroboscopic map at θ0, The locations

(a) (b)

Figure 3.3. A set of 7 discretized states (yellow) on the invariant curve,
represented by the blue circle. The invariant curve is associated with
the stroboscopic map defined at θ0. The initial location of the states
is represented in (a). The first return to the map, at time T0, is
represented in (b), where the states have rotated by ρ. The nearby
periodic orbit is represented by the fixed point on the map.
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of the states around the invariant curve are associated with a latitudinal angle, θ1i.

Propagating the states for the time associated with the longitudinal frequency, T0,

and the states rotate by ρ, such that

~ui(0, θ0, θ1i) = ~ui(T0, θ0, ρ+ θ1i) (3.3)

From the rotation around the invariant circle, a constraint is developed, called the

invariance constraint or invariance condition, for a 2-dimensional torus,

R(−ρ)~ui(T0, θ0, θ1i)− ~ui(0, θ0, θ1i) = ~0 (3.4)

where R(−ρ) is the rotation operator that removes the rotation around the invariant

curve at time T0. The states with the rotation removed match the initial state of the

trajectory on the invariant curve. By meeting this constraint, quasi-periodic motion

is ensured since the discretized final states return to the same invariant curve for every

iteration of the map. The invariance condition is the basis from which a corrections

algorithm is constructed to computed families of quasi-periodic orbits.

3.2 Corrections Algorithm

The invariance condition outlined in the previous section ensures that quasi-

periodic orbit behavior is achieved. Using a reasonable initial guess, a differential

corrections scheme is used to find families of 2-dimensional quasi-periodic orbits.

Olikara and Scheeres outline a general strategy for computing n-dimensional tori

in CR3BP [18]. The method presented here outlines a corrections scheme for 2-

dimensional tori, based on the general strategy presented by Olikara and Scheeres. A

single shooting formulation is first presented, then extended to a multiple shooting

scheme for tori that encounter more dynamically sensitive regions.

3.2.1 Single Shooting Torus Correction

Quasi-periodic motion exists in the vicinity of a periodic orbit whose monodromy

matrix has complex eigenvalues on the unit circle. To approximate quasi-periodic
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motion, the eigenvector associated with the center mode of a periodic orbit, ~vC , is

exploited. Perturbing in the direction of the center subspace yields states with nearly

quasi-periodic motion

~x0
i = ~x∗ + ε(Re[~vC ] cos(θ1i)− Im[~vC ] sin(θ1i)) (3.5)

where ~x∗ is the fixed point on the stroboscopic map associated with the nearby peri-

odic orbit, Re[~vC ] and Im[~vC ] are the real and imaginary parts of the center manifold

eigenvector, respectively. The states are transformed from barycenter coordinates to

coordinates relative to the nearby periodic orbit, defined

~u0
i = ~x0

i − ~x∗ (3.6)

The initial guess for the ith discretized state, ~u0
i , is located near the invariant curve,

parameterized by the location θ1i = 2π(i−1)
N

. Equation (3.6) converts from barycen-

tered coordinates to coordinates relative to the periodic orbit. Vectorizing the set of

parameterization angles yields

~θ1 =

[
0 2π

N
4π
N

6π
N

. . . 2π(N−2)
N

2π(N−1)
N

]
(3.7)

where N is the number of points used to discretize the invariant curve and the angles

are evenly spaced between zero and 2π. The initial guess for time associated with

the stroboscopic map is the orbital period of the central periodic orbit, T 0
0 ≈ T . The

rotation angle is approximated using the eigenvalue associated with the center mode

ρ0 = tan−1 Im[λC ]

Re[λC ]
(3.8)

where Re[λC ] and Im[λC ] are the real and imaginary parts of the center eigenvalue,

respectively. For small values of ε, the approximations ρ0, T 0
0 and the states ~u0

i provide

a sufficient initial guess for the elements of the free variable vector in the differential

corrections scheme.

A single shooting differential corrections scheme is formulated using the invariant

constraint and two phasing constraints. Given the approximations in Equations (3.6)
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and (3.8), and T 0
0 , the free variable vector for the differential corrections method is

defined

~X =



~u1

~u2

~u3

...

~uN−1

~uN

T0

ρ



(3.9)

where ~ui is the ith discretized state around the invariant curve, N represents the

number of discretized states around the invariant curve, T0 is the integration time

associated with the stroboscopic map, and ρ is the rotation angle at the first return to

the map. The constraint matrix is constructed such that the initial states discretized

on the invariant curve match the final states after time T0, with the rotation around

the invariant curve removed

~F =



~ut,R1 − ~u1

~ut,R2 − ~u2

~ut,R3 − ~u3

...

~ut,RN−1 − ~uN−1

~ut,RN − ~uN
JCavg − JCd


= ~0 (3.10)

where ~ut,Ri represents the ith discretized state around the invariant circle after propa-

gating to the first return of the map at time T0 and removing the rotation. JCavg is

the average Jacobi Constant of each of the discretized states on the invariant curve

JCavg =
1

N

N∑
i=1

JCi (3.11)
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where JCi is the Jacobi Constant of the ith state on the invariant curve. The JCd is

the desired Jacobi Constant of the torus. This formulation is for a constant Jacobi

Constant family of quasi-periodic orbits. Other types of families are computed by

changing the JC constraint to another parameter, such a constant frequency.

The invariance constraint in Equation (3.4) is formulated using a rotation oper-

ator, R(−ρ). The rotation operator removes the rotation about the invariant curve

after the first return to the stroboscopic map. First, a single state, located at θ1 on

the invariant curve, is defined using a truncated Fourier series

~u(θ1) = eiθ1~kC0 (3.12)

where i =
√
−1 and ~k is defined as

~k =


[
−N−1

2
. . . −1 0 1 . . . N−1

2

]
if N is odd[

−N
2

. . . −1 0 1 . . . N
2

]
if N is even

(3.13)

and the matrix C0 is composed of complex Fourier series coefficients and the matrix

is of size N × 6. To compute the coefficients in C0, a discrete Fourier transform, D,

is leveraged

C0 = Du (3.14)

where u is the matrix of state vectors on the invariant circle

u =



~uT1

~uT2

~uT3
...

~uTN


=



ux,1 uy,1 uz,1 uẋ,1 uẏ,1 uż,1

ux,2 uy,2 uz,2 uẋ,2 uẏ,2 uż,2

ux,3 uy,3 uz,3 uẋ,3 uẏ,3 uż,3
...

...
...

...
...

...

ux,N uy,N uz,N uẋ,N uẏ,N uż,N


(3.15)
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Each row of the u matrix is a 6-dimensional state on the invariant curve. The discrete

Fourier transform operator, D, is an N ×N matrix, defined

D =
1

N
e−i~kT ~θ1 (3.16)

=
1

N



e−i(−N−1
2

)0 e−i(−N−1
2

) 2π
N e−i(−N−1

2
) 4π
N . . . e−i(−N−1

2
)

2π(N−1)
N

...
...

...
...

e−i(−1)0 e−i(−1) 2π
N e−i(−1) 4π

N . . . e−i(−1)
2π(N−1)

N

e−i(0)0 e−i(0) 2π
N e−i(0) 4π

N . . . e−i(0)
2π(N−1)

N

e−i(1)0 e−i(1) 2π
N e−i(1) 4π

N . . . e−i(1)
2π(N−1)

N

...
...

...
...

e−i(N−1
2

)0 e−i(N−1
2

) 2π
N e−i(N−1

2
) 4π
N . . . e−i(N−1

2
)

2π(N−1)
N


where ~k is defined in Equation (3.13) for an odd number N and ~θ1 is defined in

Equation (3.7). The rotation matrix, R(−ρ), is defined using the matrix in Equation

(3.16)

R(−ρ) = D−1Q(−ρ)D (3.17)

where Q is an diagonal N ×N matrix defined using the rotation angle ρ

Q = diag[ei~kρ] (3.18)

=


ei(−N−1

2
)ρ 0 . . . 0

0 ei(−N−1
2
−1)ρ . . . 0

...
...

. . .
...

0 0 . . . ei(N−1
2

)ρ


The rotation operator removes the rotation around the invariant circle to obtain ~ut,Ri

in the constraint vector in Equation (3.10). The N × 6 matrix of states with the

rotation removed, ut,R, is defined

ut,R = R(−ρ)ut (3.19)
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where the vector ut is the matrix of state vectors as teh rows, defined

ut =



ux,1(T0) uy,1(T0) uz,1(T0) uẋ,1(T0) uẏ,1(T0) uż,1(T0)

ux,2(T0) uy,2(T0) uz,2(T0) uẋ,2(T0) uẏ,2(T0) uż,2(T0)

ux,3(T0) uy,3(T0) uz,3(T0) uẋ,3(T0) uẏ,3(T0) uż,3(T0)
...

...
...

...
...

...

ux,N(T0) uy,N(T0) uz,N(T0) uẋ,N(T0) uẏ,N(T0) uż,N(T0)


(3.20)

where T0 is the time of the first return to the stroboscopic map. The invariance con-

straint provides the basis for the torus corrections algorithm used in this formulation

of computing tori.

The Jacobian matrix is computed by taking the partial derivatives of the con-

straints with respect to the free variables. First, the partial derivatives of the invari-

ance constraint with respect to the initial states on the invariant circle are defined

∂(ut,R − u)

∂u
=
∂ut,R

∂u
− ∂u

∂u
= Φ̃(R(−ρ)⊗ I)− Ĩ = DG− Ĩ (3.21)

where R(−ρ) is the rotation operator defined in Equation (3.17), I is a 6× 6 identity

matrix, Ĩ is a 6N × 6N identity matrix, ⊗ is the Kronecker product operator, and

Φ̃ is a block diagonal matrix with the STMs from the initial states on the invariant

circle to the first return to the stroboscopic map that takes the form

Φ̃ =



Φ1(T0, 0) 06×6 06×6 . . . 06×6

06×6 Φ2(T0, 0) 06×6 . . . 06×6

06×6 06×6 Φ3(T0, 0) . . . 06×6
...

...
...

. . .
...

06×6 06×6 06×6 . . . ΦN(T0, 0)


(3.22)

where Φi(T0, 0) is the STM from the the ith initial state on the invariant circle to the

first return of the map at time T0. The invariance constraint with respect to time is

derived using the rotation operator on the first time derivative of the states at the

first return to the stroboscopic map

u̇t,R = R(−ρ)u̇t (3.23)
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The state derivatives with the rotation removed, u̇t,R, is rearranged to define a 6N×1

submatrix in the Jacobian

∂ut,R

∂T0

=



~̇ut,R1

~̇ut,R2

~̇ut,R3

...

~̇ut,RN


(3.24)

where ~̇ut,Ri =

[
uRẋ (T0) uRẏ (T0) uRż (T0) uRẍ (T0) uRÿ (T0) uRz̈ (T0)

]T
is the derivative

of the 6-dimensional state of the ith discretized point on the first return to the stro-

boscopic map. The partial derivatives of the final free variable, ρ, with respect to the

invariance constraint are defined

∂ut,R

∂ρ
=
∂(D−1QDut)

∂ρ
(3.25)

Since both D and ut are independent of ρ, the partial derivative is rewritten

∂(D−1QDut)

∂ρ
= D−1∂Q

∂ρ
Dut (3.26)

where D is defined in Equation (3.16) and ut is the matrix of states at time T0, defined

in Equation (3.20). The partial derivative of the matrix ∂Q
∂ρ

is defined

∂Q

∂ρ
= diag[~k]diag[iei~kρ] (3.27)

=


(−N−1

2
)iei(−N−1

2
)ρ 0 . . . 0

0 (−N−1
2
− 1)iei(−N−1

2
−1)ρ . . . 0

...
...

. . .
...

0 0 . . . (N−1
2

)iei(N−1
2

)ρ


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for an odd number N . The matrix D−1 ∂Q
∂ρ

Dut is dimension N × 6, however it is

rearranged as a 6N × 1 submatrix in the Jacobian for the corrections scheme

∂ut,R

∂ρ
=



(
∂~ut,R1

∂ρ

)T
(
∂~ut,R2

∂ρ

)T
...(

∂~ut,RN
∂ρ

)T


(3.28)

where
∂~ut,Ri
∂ρ

is the ith row of the D−1 ∂Q
∂ρ

Dut matrix. Finally, the partial derivatives of

the Jacobi Constant constraint with respect to initial states on the invariant curve are

defined. The Jacobi Constant constraint is not explicitly dependent on time or the

rotation angle ρ, therefore the partial derivatives of the Jacobi Constant constraint

are only defined with respect to the states on the invariant curve

∂JCavg
∂u

=
1

N

[
∂JC1

∂~u1

∂JC2

∂~u2

∂JC3

∂~u3
. . . ∂JCN

∂~uN

]
(3.29)

where ∂JCi
∂~ui

is defined

∂JCi
∂~ui

=

[
2Ux,i 2Uy,i 2Uz,i −2ẋi −2ẏi −2żi

]
(3.30)

where Ux,i, Uy,i, and Uz,i are the partial derivatives of the pseudo-potential function

with respect to x-, y-, and z-position in the barycentered rotating frame, respectively,

evaluated at the ith state on the invariant curve. The Jacobian matrix, DF, is con-

structed using the submatrices defined in Equations (3.21), (3.24), (3.28), and (3.29)

for single shooting torus correction scheme

DF =

∂(ut,R−u)
∂u

∂ut,R

∂T0

∂ut,R

∂ρ

∂JCavg
∂u

0 0

 (3.31)

resulting in (6N + 1)× (6N + 2) Jacobian matrix. The Jacobian is dense matrix and

a minimum norm update is used to compute the free variable vector each iteration

during each iteration of correction.
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The Jacobian matrix in Equation (3.31) is defined such that it has a 1-dimensional

nullspace. However, computing the family with pseudo-arclength continuation using

this formulation, the invariant circle can shift in longitudinal and latitudinal direc-

tions. The shifting phenomenon results in difficulties during continuation. Instead

of converging on a new member of the family, the algorithm converges on a different

invariant curve on the same torus as the previous member. Olikara and Scheeres

outline an additional set of phase constraints included in the corrections procedure

to ensure the invariant curve is representative of a new family member [18]. Using

the previously converged torus in the family, the phase constraints for latitudinal and

longitudinal frequencies are defined

Fθ0 = 〈u, ∂ũ

∂θ0

〉 = 0 (3.32)

Fθ1 = 〈u, ∂ũ

∂θ1

〉 = 0 (3.33)

where 〈•, •〉 is the inner product operator, ũ is the matrix of initial states on the invari-

ant circle of the previously converged member of the family. The partial derivatives of

the previously converged invariant curve states with respect to the latitudinal angle,

θ1, is first defined
∂ũ

∂θ1

= (ikde
i~kT ~θ1)T C̃0 (3.34)

where kd is anN×N matrix with the elements of ~k on the diagonal, C̃0 is the matrix of

Fourier coefficients of the invariant curve for the previously converged family member,

defined in Equation (3.14), and (ikde
i~kT ~θ1) written in matrix form

(ikde
i~kT ~θ1) =

i(−N−1
2

)ei(−
N−1

2 )0 i(−N−1
2

)ei(−
N−1

2 ) 2π
N i(−N−1

2
)ei(−

N−1
2 ) 4π

N ... i(−N−1
2

)ei(−
N−1

2 )
2π(N−1)

N

...
...

...
...

−ie−i0 −ie−i 2π
N −ie−i 4π

N ... −ie−i
2π(N−1)

N

0 0 0 ... 0

iei0 iei
2π
N iei

4π
N ... iei

2π(N−1)
N

...
...

...
...

i(N−1
2

)ei(
N−1

2 )0 i(N−1
2

)ei(
N−1

2 ) 2π
N i(N−1

2
)ei(

N−1
2 ) 4π

N ... i(N−1
2

)ei(
N−1

2 )
2π(N−1)

N


(3.35)

when N is odd valued. The inner product is calculated by rearranging both Equation

(3.34) and (3.15) into vectors and computing the dot product. The phase constraint
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associated with the longitudinal angle, θ0, is defined by a similar inner product. The

right side of the inner product is computed

∂ũ

∂θ0

=
1

ω0

(
∂ũ

∂t
− ω1

∂ũ

∂θ1

)
(3.36)

=
T̃0

2π




ũẋ,1 ũẏ,1 ũż,1 ũẍ,1 ũÿ,1 ũz̈,1

ũẋ,2 ũẏ,2 ũż,2 ũẍ,2 ũÿ,2 ũz̈,2
...

...
...

...
...

...

ũẋ,N ũẏ,N ũż,N ũẍ,N ũÿ,N ũz̈,N


− ρ̃

T̃0

∂ũ

∂θ1


(3.37)

where T̃0 is the integration time for the stroboscopic map of the previously converged

family member and ρ̃ is the rotation angle of the previously converged family member.

The partial derivative ∂ũ
∂θ1

is obtained from Equation (3.34). Similar to latitudinal

constraint matrix, the longitudinal constraint matrix is rearranged to be a vector to

perform the inner product with the vector of states around the invariant circle of

the previously converged family member. The vectorized partial derivatives of the

longitudinal and latitudinal frequencies take the form

∂ũ

∂θ0

=



∂~̃u1

θ0

∂~̃u2

θ0
...

∂~̃uN
θ0


,
∂ũ

∂θ1

=



∂~̃u1

θ1

∂~̃u2

θ1
...

∂~̃uN
θ1


(3.38)

where ∂~̃ui
θ0

=

[
∂ũx
θ0

∂ũy
θ0

∂ũz
θ0

∂ũẋ
θ0

∂ũẏ
θ0

∂ũż
θ0

]T
corresponding to the ith row of ∂ũ

∂θ0
,

resulting in 6N elements. The vector of partial derivatives with respect to the latitu-
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dinal angle, θ1, is defined in a similar manner. The states on the left side of the inner

product

~u =



ux,1

uy,1

uz,1

uẋ,1

uẏ,1

uż,1
...

ux,N

uy,N

uz,N

uẋ,N

uẏ,N

uż,N



(3.39)

making the vector ~u length 6N . The matrix inner products in Equations (3.32) and

(3.33) are rewritten as a vector dot products

Fθ0 = ~u •
∂ũ

∂θ0

(3.40)

Fθ1 = ~u •
∂ũ

∂θ1

(3.41)

resulting in scalar values when the constraints are calculated during each iteration

of the corrections process. The phase constraints for the longitudinal and latitudinal

angles are appended on the end of the constraint matrix in Equation (3.10). The

Jacobian is also modified to include elements that define the partial derivatives of

the phase constraints with respect to the free variables. The phase constraints with

respect to the initial states on the invariant circle are first defined

∂
(
~u • ∂ũ

∂θ0

)
∂~u

=
∂ũ

∂θ0

(3.42)
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∂
(
~u • ∂ũ

∂θ1

)
∂~u

=
∂ũ

∂θ1

(3.43)

Both of the phase constraints are independent of T0 and ρ, so the partial derivatives

of the phase constraints with respect to T0 and ρ are equal to zero,

∂
(
~u • ∂ũ

∂θ0

)
∂T0

= 0,
∂
(
~u • ∂ũ

∂θ0

)
∂ρ

= 0 (3.44)

∂
(
~u • ∂ũ

∂θ1

)
∂T0

= 0,
∂
(
~u • ∂ũ

∂θ1

)
∂ρ

= 0 (3.45)

The partial derivatives of the phase constraints are appended to the Jacobian matrix

in Equation (3.31), yielding

DF =



∂(ut,R−u)
∂u

∂ut,R

∂T0

∂ut,R

∂ρ

∂JCavg
∂u

0 0

∂ũ
∂θ0

0 0

∂ũ
∂θ1

0 0


(3.46)

The phase constraints are appended to the constraint matrix from Equation (3.10)

to form an augmented constraint matrix

~F =



~ut,R1 − ~u1

~ut,R2 − ~u2

~ut,R3 − ~u3

...

~ut,RN−1 − ~uN−1

~ut,RN − ~uN
JCavg − JCd

Fθ0

Fθ1



= ~0 (3.47)

where Fθ0 and Fθ1 are defined in Equations (3.40) and (3.41). The phase constraints

do not change the rank of the DF matrix. Consequently, the nullspace of the DF
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matrix is still 1-dimensional and pseudo-arclength continuation is implemented to

compute families of 2-dimensional tori, ensuring that the invariant curve is unique

during the corrections process.

3.2.2 Multiple Shooting Torus Correction

A multiple shooting corrections scheme is developed combining concepts from

Sections 2.5.3 and 3.2.1. Similar to the multiple shooting procedure developed for

periodic orbits, the scheme for quasi-periodic orbits is generally more robust for orbits

with long mapping times or close encounters with the primaries. Figure 3.4 depicts

how the torus is split into multiple invariant curves, or patch curves, in the multiple

shooting correction scheme. Continuity constraints are enforced between the states

that represent the patch curves, similar to continuity constraints outlined in Section

2.5.3. The invariance constraints are imposed between the initial invariant patch

curve and the states from the last patch curve integrated to the first return of the

stroboscopic map. The free variable vector is defined, using M discretized patch

Figure 3.4. Representation of a patch curves along a torus used for a
multiple shooting torus correction scheme
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curves

~X =



~uI1

~uI2

~uI3
...

~uIN

~uII1

~uII2
...

~uMN

Tseg

ρ



(3.48)

where ~uji =

[
ujx,i ujy,i ujz,i ujẋ,i ujẏ,i ujż,i

]
and i = 1, 2, ..., N represents the index

of the point on the invariant curve and j = I, II, III, ...,M represents the index of



64

the patch curve on the torus, and Tseg is the propagation time for the states on each

invariant curve, such that Tseg = T0

M
. The constraint matrix is defined

~F =



~ut,II1 − ~uII1
~ut,II2 − ~uII2
~ut,II3 − ~uII3

...

~ut,IIN − ~uIIN
~ut,III1 − ~uIII1

...

~ut,MN − ~uMN
~ut,I,R1 − ~uI1
~ut,I,R2 − ~uI2

...

~ut,I,RN−1 − ~uIN−1

~ut,I,RN − ~uIN
JCavg − JCd

Fθ0

Fθ1



= ~0 (3.49)
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where the ~ut,ji is the end of the path associated with the ith state on the (j − 1)th

invariant curve. The Jacobian matrix for the multiple shooting formulation is defined

by including continuity constraints

DF =



 DFΦ

[
−Ĩ

] [
0N×N(6M−2)

] [
∂(~ut,I,R−~uI)

∂~uM

]

 ∂~ut

∂Tseg

[
∂~ut,I,R

∂Tseg

]

06N(M−1)×1

[
∂~ut,I,R

∂ρ

]
[

∂JCavg
∂~uI

]
[
∂
(
~uI • ∂̄ũ

∂θ0

)
∂~uI

]
[
∂
(
~uI • ∂̄ũ

∂θ1

)
∂~uI

]


03×N(6M−1)+2




(3.50)

where the submatrix

[
DFΦ

]
is defined

DFΦ =


Φ̃I(Tseg, 0) −Ĩ 0N×N . . . 0N×N 0N×N

0N×N Φ̃II(Tseg, 0) −Ĩ . . . 0N×N 0N×N
...

...
...

. . .
...

...

0N×N 0N×N 0N×N . . . Φ̃M−1(Tseg, 0) −Ĩ


(3.51)

and Φ̃j(Tseg, 0) represents a block diagonal matrix of the STMs from the discretized

states on the jth patch curve, integrated from time t = 0 to t = Tseg,

Φ̃j =



Φ1
j(Tseg, 0) 06×6 06×6 . . . 06×6

06×6 Φ2
j(Tseg, 0) 06×6 . . . 06×6

06×6 06×6 Φ3
j(Tseg, 0) . . . 06×6

...
...

...
. . .

...

06×6 06×6 06×6 . . . ΦN
j(Tseg, 0)


(3.52)
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The submatrix

[
∂~ut

∂Tseg

]
is defined as the invariant curve state partial derivatives with

respect time along each arc

[
∂~ut

∂Tseg

]
=

1

M



~̇ut,II1

~̇ut,II2

...

~̇ut,IIN

~̇ut,III1

...

~̇ut,MN


(3.53)

The submatrices

[
∂~ut,I,R

∂Tseg

]
and

[
∂~ut,I,R

∂ρ

]
are computed from Equations (3.24) and

(3.28), respectively. However, the partial derivatives are evaluated at the end of

the integration of the discretized states on patch curve M . The submatrix for the

invariance condition paritial derivatives with respect to the states on patch curve M

is defined [
∂(~ut,I,R−~uI)

∂~uM

]
= Φ̃M(Tseg, 0)(R(−ρ)⊗ I) (3.54)

where Φ̃M(Tseg, 0) is defined in Equation (3.52) for j = M . Finally, the submatri-

ces

[
∂JCavg
∂~uI

]
,

[
∂
(
~uI • ∂̄ũ

∂θ0

)
∂~uI

]
, and

[
∂
(
~uI • ∂̄ũ

∂θ1

)
∂~uI

]
are defined in Equations (3.29), (3.40), and

(3.41), evaluated at the states on the initial invariant curve. The remaining three sub-

matrices consist of zero elements, where the dimension of the matrix is in the subscript

in Equation (3.50). The multiple shooting formulation is more robust when encoun-

tering quasi-periodic orbits that have long propagation times or close approaches to

primaries. Furthermore, the multiple shooting formulation is implemented with a

pseudo-arclength continuation method to compute families of quasi-periodic orbits.

The DF has a 1-dimensional null-space, and the pseudo-arclength constraint is ap-

pended to the end of the constraint vector.
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3.3 Quasi-Periodic Orbit Families

An infinite number of quasi-periodic orbits appear in families in the vicinity of

periodic solutions in the CR3BP. To demonstrate the torus targeting scheme presented

in the previous section, various types of quasi-periodic orbit families are generated.

There are three types of families examined. First, constant energy (constant JC)

families are examined. The JC of the constant energy families is constrained to

be equal to the JC of the central periodic orbit. Second, constant frequency ratio

families are examined which are characterized by a constant ratio of fundamental

frequencies each torus in the family. Lastly, constant mapping time families are

examined. Constant mapping time families are defined such that the stroboscopic

mapping time is equal to the period of the central periodic orbit.

3.3.1 Constant Energy Families

Constant energy families use Jacobi Constant as the continuation parameter by

fixing JCd to be equal to the Jacobi Constant of the periodic orbit associated with

initial guess of the family. Members of an Earth-Moon quasi-halo orbit family for

JC = 3.1389 are shown in Figure 3.5. The periodic halo orbit at the Jacobi Constant

associated with the family is rendered in blue. Each of the quasi-halo members grow

in thickness around the central, periodic halo orbit. The periodic halo orbit has

a ŷ-amplitude of 32,084 km and a ẑ-amplitude of 25,893 km. Comparatively, the

ŷ- and ẑ-amplitudes for the quasi-halos are 34,466 km and 28,547 km, respectively,

in Figure 3.5(a), 37,593 km and 31,843 km, respectively, in Figure 3.5(b), 40,940

km and 35,028 km, respectively, in Figure 3.5(c), and 41,815 km and 35,783 km,

respectively in Figure 3.5(d). Figure 3.6(a) shows the ŷ- and ẑ-amplitudes for the

constant energy family of quasi-halo orbits as a function of the stroboscopic mapping

time. As the mapping time increases, the amplitudes reach critical values where

the family terminates. The critical values for ŷ- and ẑ-amplitude are approximately

41,860 km 35,830 km, respectively. Additionally, the plot in Figure 3.6(b) shows that
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(a) (b)

(c) (d)

Figure 3.5. Four quasi-halo tori projected into configuration space
in a constant energy family (JC = 3.1389) with the central periodic
orbit in blue. The stroboscopic mapping times for each orbit are (a)
12.03 days, (b) 12.09 days, (c) 12.26 days, and (d) 12.40 days

the ŷ- and ẑ-amplitudes have a nearly linear relationship for the quasi-halo family at

JC = 3.1389. Similarly, the torus projection in configuration space of four members
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(a) (b)

Figure 3.6. (a) y- and z-amplitude of the constant energy quasi-halo
family for JC = 3.1389 in the Earth-Moon system as a function of the
stroboscopic mapping time. (b) The amplitude ratio of the family.

of an L1 Earth-Moon Lissajous, or quasi-vertical, orbit family are rendered in Figure

3.7. The quasi-vertical family members are computed at the same Jacobi Constant

as the quasi-halo family in Figure 3.5. While the stroboscopic mapping time of the

quasi-halo orbits at this energy increases compared to the period of the associated

halo orbit, the mapping time decreases compared to the period of the associated

periodic vertical orbit at this Jacobi Constant. The quasi-verticals reach critical ŷ-

and ẑ-amplitudes near 41,700 km and 35,850 km, respectively, as seen on the left

side of Figure 3.8(a). The amplitude ratio for the quasi-vertical family is plotted in

Figure 3.8(b). Compared to the quasi-halo family, the ẑ-amplitude does not grow

as rapidly as a function of ŷ-amplitude for the quasi-vertical family. The evolution

of the two fundamental frequencies, ω0 and ω1, shown in Figure 3.9. At this Jacobi

Constant, both families exhibit high frequency ratios. However, challenges are known

to exist when low integer frequency ratios are encountered during continuation, as

discussed by Schilder, et al. [16]. When integer frequency ratios are encountered,

the family of tori collapse to a period-q orbit, where q is the integer frequency ratio

and the continuation scheme halts. Figure 3.10 shows examples of various period-

q halo orbits in the Earth-Moon system. By changing the continuation parameter,
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(a) (b)

(c) (d)

Figure 3.7. Four quasi-vertical tori projected into configuration space
in a constant energy family (JC = 3.1389) with the central periodic
orbit in blue. The stroboscopic mapping times for each orbit are (a)
12.87 days, (b) 12.85 days, (c) 12.78 days, and (d) 12.66 days

integer resonances are avoided, as noted by Bosanac [31]. The relationship between

the quasi-vertical family and quasi-halo family is examined through the use of a
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(a) (b)

Figure 3.8. (a) y- and z-amplitude of the constant energy quasi-
vertical family for JC = 3.1389 in the Earth-Moon system as a func-
tion of the stroboscopic mapping time. (b) The amplitude ratio of
the family.

(a) (b)

Figure 3.9. Frequency ratio as a function of stroboscopic mapping
time for a constant energy (a) quasi-halo family and (b) quasi-vertical
family.

Poincaré map similar to Haapala, et al. [32]. By using a surface of section z = 0,

individual trajectories associated with tori of each family member are recorded at

every return through the map. Figure 3.11 shows both the quasi-vertical and quasi-

halo families for JC = 3.1389. Additionally, the planar Lyapunov orbit at the same
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(a) (b)

(c)

Figure 3.10. Example of (a) a period-2 halo orbit, (b) a period-3 halo
orbit, and (c) a period-8 halo orbit.

energy is displayed in Figure 3.11 that shows the boundary for both the quasi-halo

and quasi-vertical families. The periodic halo and vertical orbits associated with each

quasi-periodic orbit family are represented as single points on the the Poincaré map.

The constant energy families are generated by fixing the Jacobi Constant to match

the Jacobi Constant of the underlying periodic orbit. Poincaré maps illustrate the

bounding region for quasi-periodic and quasi-halo orbit families at the same energy.

Unfortunately, as noted by Bosanac, difficulties arise when low integer ratios of the
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(a) (b)

Figure 3.11. (a) Poincaré map at z = 0 for constant energy (JC =
3.1389) quasi-halo and quasi-vertical families. (b) 3D view of central
periodic orbits and Poincaé map of associated quasi-periodic orbit
families.

fundamental frequencies are encountered during the continuation process for constant

energy families.
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3.3.2 Constant Frequency Ratio Families

Continuation of quasi-periodic orbit families using a constant frequency ratio in-

stead of a constant energy prevents the continuation scheme from halting due to low

integer frequency ratios encounters. To perform continuation with a different con-

stant parameter, the corrections scheme is modified to ensure each new member of

the family being targeted remains at the same frequency. Rearranging Equation (3.2),

the frequency ratio is solved for in terms of ρ

ω0

ω1

=
2π

ρ
(3.55)

where ω0 is the longitudinal frequency and ω1 is the latitudinal frequency. Equation

(3.55) indicates that the frequency ratio is only a function of ρ. Thus, the con-

stant frequency ratio families are constant rotation angle families and the corrections

scheme can be initialized with ρ0 defined in Equation (3.8). The Jacobi Constant

constraint in the differential corrections scheme is replaced with ρ constraint. The

modified constraint vector becomes

~F =



~ut,R1 − ~u1

~ut,R2 − ~u2

~ut,R3 − ~u3

...

~ut,RN−1 − ~uN−1

~ut,RN − ~uN
ρ− ρd
Fθ0

Fθ1



= ~0 (3.56)

where ρd is the desired rotation angle that defines the family. The free variable vector

remains the same, but the Jacobian is modified to include the partial derivatives as-

sociated with the new rotation angle constraint. The rotation angle is a characteristic

of the desired torus, and independent of the discretized states and the stroboscopic
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mapping time. Therefore, the only non-zero partial derivative for the rotation angle

constraint is defined
∂(ρ− ρd)

∂ρ
= 1 (3.57)

The resulting DF matrix for the single shooting torus correction scheme is modified

such that,

DF =



∂(ut,R−u)
∂u

∂ut,R

∂T0

∂ut,R

∂ρ

01×N 0 1

∂ũ
∂θ0

0 0

∂ũ
∂θ1

0 0


(3.58)

The constraint vector and Jacobian matrix for the multiple shooting scheme are

modified in a similar manner to include the ρ constraint. The constraint vector in

Equation (3.56) and the Jacobian matrix (3.58) are implemented in the differential

corrections process to generate constant frequency ratio families of quasi-periodic

orbits.

A subset of orbits from a Earth-Moon L2 quasi-halo constant frequency ratio

family are rendered in Figure 3.12. The frequency ratio for this family is ω0

ω1
= 9.441.

Note that the thickness of the torus projection into configuration space increases

significantly as the family grows, to the point where the opening in the center of

the surface nearly closes. The ŷ- and ẑ-amplitudes as a function of the stroboscopic

mapping time are plotted in Figure 3.13(a). The stroboscopic mapping time and the

energy increase (JC decreases) over the family, as plotted in Figure 3.13(b).

Similarly, a quasi-vertical family is generated at the same frequency ratio as the

quasi-halo family from Figure 3.12. Figure 3.14 shows four members of the quasi-

vertical family at the frequency ratio of ω0

ω1
= 9.441. The quasi-vertical family stays

bounded near the associated periodic vertical orbit and as the family evolves, it col-

lapses back to different periodic vertical orbit in the family, where the quasi-periodic

family terminates. Examining the Jacobi Constant and mapping time for the quasi-

vertical family shows that the two quantities have a proportional relationship. Figure

3.15 shows plots of the JC and mapping time as a function of the orbit index. There
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(a) (b)

(c) (d)

Figure 3.12. Four quasi-halo tori projected into configuration space
in a constant frequency ratio family (ω0

ω1
= 9.441) with the central

periodic orbit in blue. The Jacobi Constants for each of these family
members are (a) JC = 3.1182, (b) JC = 3.0876, (c) JC = 3.0364,
and (d) JC = 3.0011

is a critical value of JC near 3.02868 and mapping time near 17.256 days where the

family collapses to a periodic orbit that possesses the same JC and period. Continu-



77

(a) (b)

Figure 3.13. (a) y- and z-amplitude of the frequency ratio family
(ω0

ω1
= 9.441) quasi-halo family in the Earth-Moon system as a function

of the stroboscopic mapping time. (b) The Jacobi Constant of the
family as a function of the mapping time.

ation using frequency ratio as the continuation parameter avoids challenges that are

associated with encountering low integer frequency ratios. It is apparent that con-

stant frequency families evolve differently than constant energy families, as exhibited

by the quasi-vertical family in Figure 3.14, which collapses to a different periodic

vertical orbit.
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(a) (b)

(c) (d)

Figure 3.14. Four quasi-vertical tori projected into configuration space
in a constant frequency ratio family (ω0

ω1
= 9.441) with the central

periodic orbit in blue. The Jacobi Constants for each of these family
members are (a) JC = 3.0433, (b) JC = 3.0387, (c) JC = 3.0305,
and (d) JC = 3.0291
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(a) (b)

Figure 3.15. (a) Jacobi Constant and (b) mapping time as a function
of orbit index of the constant frequency ratio quasi-vertical family
(ω0

ω1
= 9.441)
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3.3.3 Constant Mapping Time Families

A third type of continuation scheme uses the mapping time as a the continuation

parameter. The corrections scheme is modified in a similar manner to the constant

frequency family by removing the constraint on ρ and including a constraint for the

mapping time, T0. Thus, the constraint vector is defined

~F =



~ut,R1 − ~u1

~ut,R2 − ~u2

~ut,R3 − ~u3

...

~ut,RN−1 − ~uN−1

~ut,RN − ~uN
T0 − Td
Fθ0

Fθ1



= ~0 (3.59)

where Td is the desired stroboscopic mapping time for the family. The free variable

vector remains the same, but the Jacobian matrix includes a new partial derivative

of the constraint with respect to the mapping time

∂(T0 − Td)
∂T0

= 1 (3.60)

Including the mapping time constraint partial derivative into the Jacobian yields

DF =



∂(ut,R−u)
∂u

∂ut,R

∂T0

∂ut,R

∂ρ

01×N 1 0

∂ũ
∂θ0

0 0

∂ũ
∂θ1

0 0


(3.61)

The constraint vector and the Jacobian matrix for the multiple shooting scheme is

modified similarly. A family of constant mapping time quasi-Distant Retrograde

Orbits (DRO) is rendered in Figure 3.16. The mapping time for this family is T0 =
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14.74 days. The family originates from a planar periodic DRO, but evolves to have

significant out-of-plane motion. Figure 3.17(a) shows the ẑ-amplitude of member of

the family as a function of ρ, where ρ increases as the family evolves. Additionally, a

strong linear relationships exists between the rotation angle and the Jacobi Constant

through the family, plotted in Figure 3.17(b). Constant mapping time families are

computing by fixing the mapping time, resulting in a third type of quasi-periodic

orbit family associated with periodic orbit. Using mapping time as the continuation

parameter is useful when finding quasi-periodic orbits whose mapping times match

that of a particular periodic orbit or an orbital resonance.
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(a) (b)

(c) (d)

Figure 3.16. Four quasi-DRO tori projected into configuration space
in a constant mapping time family (T0 = 14.74 days) with the central
periodic orbit in blue. The Jacobi Constants for each of these family
members are (a) JC = 2.9225, (b) JC = 2.9221, (c) JC = 2.9215,
and (d) JC = 2.9212
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(a) (b)

Figure 3.17. (a) Z-amplitude and (b) Jacobi Constant as a function
of rotation angle, ρ, of the constant mapping time quasi-DRO family
in the Earth-Moon system (T0 = 14.74 days)
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4. STABILITY AND INVARIANT MANIFOLDS OF

QUASI-PERIODIC ORBITS

Stability properties of quasi-periodic orbits are obtained from the differential of the

variations on the stroboscopic map. However, instead of assessing a fixed point,

as is done for a periodic orbit, deviations from the invariant curve are examined.

Additionally, due to the reduceability of the CR3BP, a stability index is characterized

for quasi-periodic orbits. For unstable quasi-periodic orbits, hyperbolic stable and

unstable invariant manifolds are computed that asymptotically approach and depart

the associated torus. Olikara and Scheeres and Baresi and Scheeres have examined

stability and hyperbolic manifolds associated with quasi-periodic orbits [18,24].

4.1 Stability

Stability for quasi-periodic orbits is assessed through variations from the invariant

curve. The invariance condition, outlined in Section 3.1, ensures that the initial states

used to discretize an invariant curve are equal to the states at the first return to map,

after removing the rotation angle ρ. By taken the partial derivative of the invariance

condition, yields a discretized differential of the invariant curve on the stroboscopic

map. The discretized differential is defined using the STMs

DG = Φ̃(R(−ρ)⊗ I) (4.1)

where R(−ρ) is the rotation operator, I is a 6 × 6 identity matrix, ⊗ is the Kro-

necker product operator, and Φ̃ a block diagonal of STMs, defined in Equation (3.22).

The resulting dense matrix is of dimension 6N × 6N , representing the differential of

variations of the discretized invariant curve. The eigenstructure of DG provides in-

formation on the stability of the quasi-periodic orbit. As Jorba notes, tori in the
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CR3BP are reduceable [33]. Consequently, the eigenvalues of the DG are related to

the eigenvalues of the Floquet matrix through the relationship

λ = Λre
−i~kρ (4.2)

where ~k is defined in Equation (3.13), ρ is the rotation angle defined in Section

3.2.1, Λr is the rth eigenvalue of the Floquet matrix, where r = 1, 2, ..., 6, and λ

is a vector of eigenvalues associated with the rth eigenvalue of the Floquet matrix.

The eigenstructure of a quasi-halo orbit is plotted on the complex plane in Figure

4.1(b). The eigenvalues exist on concentric circles about the origin of the complex

plane. A circle with a radius greater than 1 is associated with the unstable mode of

the torus, while a circle with a radius less than 1 is associated with the stable mode.

Furthermore, the stable mode radius is the reciprocal of the unstable mode radius

since eigenvalues of the Floquet matrix exist in reciprocal pairs in a Hamiltonian

system [30]. Given the concentric circle structure of the eigenvalues, a stability index

is defined

ν =
1

2
(Ru +

1

Ru

) (4.3)

(a) (b)

Figure 4.1. (a) Earth-Moon L2 quasi-halo orbit (JC = 3.044) (b)
Eigenstructure of DG matrix computed with N = 25.
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where Ru is the radius of the circle associated with the unstable mode. Quasi-periodic

orbits that possess a stability index equal to 1 are considered stable, while stability

indices greater than 1 indicate that the orbit is unstable. The stability index of

this quasi-halo orbit ν = 1.3837, which indicates that it is unstable. The stability

index of the family of constant energy quasi-halo orbits from Figure 3.5 is plotted

as a function of mapping time in Figure 4.2. The stability index characterizes to

Figure 4.2. Stability index as a function of mapping time for an
Earth-Moon L1 constant energy quasi-halo family (JC = 3.1389).
The red point represents the stability index of the periodic halo orbit
associated with this quasi-halo orbit family.

stability of a quasi-periodic orbit in a single, convenient metric. Stable and unstable

quasi-periodic orbits are easily identified and the stability evolution for a family is

represented as a single curve.

4.2 Hyperbolic Manifolds

Hyperbolic invariant manifolds exist for quasi-periodic orbits that are considered

unstable. The stable and unstable hyperbolic manifolds asymptotically approach

and depart the torus, respectively. To compute stable/unstable manifolds, the eigen-
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vectors associated with the stable and unstable eigenvalues of the DG matrix are

exploited. Selecting the purely stable/unstable eigenvalue ensures that the associ-

ated eigenvector also has no imaginary components. Consider the purely real stable

and unstable eigenvalue, λs,r and λu,r, respectively, of the DG matrix. The stable

and unstable eigenvectors associated with the purely real stable and unstable eigen-

values are denoted ~vs,r and ~vu,r, respectively. The eigenvectors have 6N elements,

corresponding to the all N discretized states that represent the invariant curve. The

elements of the eigenvectors are divided, such that

~vs,r =


~v1,s,r

~v2,s,r

...

~vN,s,r


, ~vu,r =


~v1,u,r

~v2,u,r

...

~vN,u,r


, (4.4)

where ~vi,s,r and ~vi,u,r correspond to the 6 element stable and unstable directions,

respectively, for the ith state on the invariant curve. Subsequently, the states on the

invariant curve are perturbed by a small value ε in the stable/unstable directions and

integrated backwards/forwards to generate the global stable/unstable manifolds

~xi,s = ~xi + ε
~vi,s,r
|~vi,s,r|

(4.5)

~xi,u = ~xi + ε
~vi,u,r
|~vi,u,r|

(4.6)

where ~xi,s and ~xi,u represent the stable and unstable initial state, respectively, of

the ith state on the invariant curve in non-dimensional barycentered coordinates,

~xi represents the ith state on the invariant curve with non-dimensional barycentered

coordinates. Similarly, the stable and unstable deviations are transformed to locations

around the torus using the STM, Φ(t, 0), where t is the time since the location of the

initial state on the invariant curve. Figure 4.3 depicts the projection of a torus in

configuration space for an unstable quasi-halo orbit along with snapshots at various

times of the unstable manifold trajectory states as they depart the quasi-periodic

orbit. The torus projection in configuration space of the unstable manifolds morphs
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as it is propagated forward in time towards the Moon. Similarly, the projection of the

other half of the unstable manifold in the direction of the Earth is rendered in Figure

4.4. The quasi-halo stable manifolds follow a path that is mirrored across the xz-

(a) (b)

(c) (d)

Figure 4.3. Unstable manifold in the +x-direction for an Earth-Moon
L1 quasi-halo orbit (JC = 3.1389). Trajectories associated with one
invariant curve are shown in black. A snap shot of the points are
recorded after (a) 7.79 days, (b) 9.75 days, (c) 11.39 days and (d)
13.02 days.

plane when states on the torus are perturbed in the stable direction and propagated

in reverse time. Similarly, the unstable manifolds for a quasi-vertical orbit are shown

in Figure 4.5. The torus projected into configuration space changes shape as the
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(a) (b)

(c) (d)

Figure 4.4. Unstable manifold in the -x-direction for an Earth-Moon
L1 quasi-halo orbit (JC = 3.1389). Trajectories associated with one
invariant curve are shown in black. A snap shot of the points are
recorded after (a) 7.79 days, (b) 9.75 days, (c) 11.39 days and (d)
13.02 days.

states that represent the surface are integrated forward after being perturbed in the

unstable direction toward the Moon. The other half of the unstable manifolds that

depart in the -x-direction are rendered in Figure 4.6. The quasi-periodic manifolds

are initialized by perturbing each invariant curve in the stable/unstable direction,

which produces a tube in configuration space. If manifold trajectories are propagated

from the periodic orbit associated with the quasi-periodic orbit, those periodic orbit

manifold trajectories appear to lie inside of the manifold tubes from the quasi-periodic
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(a) (b)

(c) (d)

Figure 4.5. Unstable manifold in the +x-direction for an Earth-Moon
L1 quasi-vertical orbit (JC = 3.1389). Trajectories associated with
one invariant curve are shown in black. A snap shot of the points are
recorded after (a) 8.05 days, (b) 10.08 days, (c) 11.77 days and (d)
13.46 days.

orbit in configuration space. Figure 4.7 shows a comparison of the unstable hyperbolic

manifolds from a quasi-halo orbit to those of the underlying periodic halo orbit. A

similar scenario is rendered for a quasi-vertical orbit and the associated periodic

vertical orbit in Figure 4.8.

Hyperbolic invariant manifolds exist for unstable quasi-periodic orbits. The hy-

perbolic manifolds asymptotically approach/depart the associated quasi-periodic or-
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(a) (b)

(c) (d)

Figure 4.6. Unstable manifold in the -x-direction for an Earth-Moon
L1 quasi-vertical orbit (JC = 3.1389). Trajectories associated with
one invariant curve are shown in black. A snap shot of the points are
recorded after (a) 8.05 days, (b) 10.08 days, (c) 11.77 days and (d)
13.46 days.

bit, providing options for transfer trajectories to/from quasi-periodic orbits without

deterministic maneuvers.
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Figure 4.7. Unstable manifold trajectories from an L1 quasi-halo orbit
(red) and the unstable trajectories from the associated periodic halo
orbit (black) in the Earth-Moon system.

Figure 4.8. Unstable manifold trajectories from an L1 quasi-vertical
orbit (red) and the unstable trajectories from the associated periodic
halo orbit (black) in the Earth-Moon system.
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5. APPLICATIONS AND RESULTS

There has been a growing interest in the exploitation of libration point orbits in space

exploration, in both robotic and human spaceflight. In 2010, ARTEMIS became the

first mission to orbit the Earth-Moon L1 and L2 libration points [22]. In 2015, the

DSCOVR mission was launched into a quasi-periodic Lissajous orbit about the Sun-

Earth L1 point as the first deep space mission for NOAA [21]. NASA plans to launch

the Orion spacecraft into a lunar DRO for Exploration Mission 1 (EM-1) in 2019 and

to operate the lunar Gateway in a southern L2 Near Rectilinear Halo Orbit (NRHO) in

the 2020s [2,3]. While multi-body environments present challenges during trajectory

design, exploiting the underlying structures within those environments can streamline

the design process. Quasi-periodic orbits provide alternatives for operational orbits

to meet a variety of constraints as well as suitable initial guesses transfer trajectories

by exploiting arcs on quasi-periodic orbits and hyperbolic manifolds associated with

unstable quasi-periodic orbits.

5.1 Quasi-Periodic Orbit Trajectory Arcs

Comparing the torus surface projections in configuration space is valuable when

assessing the shape and family evolution of quasi-periodic orbits. However, for mission

applications, understanding the motion of individual trajectories that reside on the

torus ultimately provides potential paths through space. Figure 5.1 depicts a single

trajectory, residing on a torus projected in configuration space of a Sun-Earth L1

quasi-vertical orbit. The trajectory remains the surface as the propagation time

increases. Simply numerically integrating an initial state to create a time history of a

trajectory along a quasi-periodic orbit causes the trajectory to considerably deviate

from the torus due to the build up of numerical error during the propagation. Using
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(a) (b)

(c)

Figure 5.1. Single Sun-Earth L1 quasi-vertical trajectory propagated
for (a) 325 days, (b) 1,068 days, and (c) 2,182 days.

the rotation angle ρ, and the stroboscopic mapping time T0, a strategy is developed

to circumvent the numerical error build up over long propagation times. Consider an

initial state, ~u(t), which is located on an invariant curve associated with converged

quasi-periodic orbit. The angles θ0 and θ1 correspond to longitudinal and latitudinal

locations of the initial state on the torus at time t. As outlined in Section 3.1,

the initial state returns to the invariant curve after propagating for the stroboscopic

mapping time T0, but that state at the first return rotates by the rotation angle, ρ,



97

around the invariant curve. If n represents the iterate of the map, the state on the

nth return to the map is defined

~u(t+ nT0) = ~u(θ0, θ1 + nρ) = ei(θ1+nρ)~kC0 (5.1)

where θ1 is the location of the initial state on the invariant curve, C0 is the ma-

trix of Fourier coefficients defined in Equation (3.14), and ~k is defined in Equation

(3.13). Subsequently, individual numerical integration durations are limited to the

stroboscopic mapping time. A single state is rotated around the invariant curve and

integrated for the stroboscopic mapping time to obtain a time history of states for a

desired number of passes through the map.

5.2 Eclipse Avoidance

While there are numerous constraints that drive a particular design, the impact

of eclipsing is considered in almost all scenarios. For an operational orbit, eclipse

avoidance is a common driver of a trajectory design, as many spacecraft rely on the

solar exposure to meet thermal and power requirements. These requirements limit the

amount of time a spacecraft is allowed to be within the shadow of an occulting body.

In the EM-1 mission plan, eclipse avoidance is an important aspect of the mission due

to the 90 minute maximum eclipse duration constraint for Orion [2]. Additionally,

the target 70, 000 km rp DRO is planar in the Earth-Moon rotating frame, causing a

disruption in the line of sight with the Earth when the trajectory passes behind the

far side of the Moon.

First, eclipsing geometry is defined to detect whether a particular trajectory passes

through the shadow of an occulting body. For the purposes of the eclipsing definition,

the Moon is used as the occulting body, but it can be replaced with any other body.

Consider the Sun-Moon geometry in Figure 5.2, adapted from [34]. The Sun is ren-

dered as the yellow circle with radius R and the Moon is illustrated as a grey circle

with radius r. The spacecraft appears as black dot in Figure 5.2 at some instant in

time. There are three types of shadowing a spacecraft experiences: umbra, penum-
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bra, and antumbra. Umbral shadow is denoted as the orange region, where the Sun

is completely occulted by the Moon, or 100% shadow. Penumbral shadow, which is

denoted as the blue region in Figure 5.2, is partial shadowing by the Earth. Antum-

bral shadow is the depicted as the green region in Figure 5.2. When the spacecraft

is in antumbral shadow, the Moon is directly between the Sun and the spacecraft,

however, due to the distance of the spacecraft from the Moon, the relative size of

the Earth is too small to completely occult the Sun. The eclipsing type is defined

Figure 5.2. Eclipsing geometry of the Sun and the Moon.

geometrically. The radius of the Sun, defined as R, the radius of the Moon, r, and the

instantaneous distance between the Sun and the Moon, d, define how far the umbral

cone extends beyond the Earth

l =
rd

R− r
(5.2)

where l is the height of the orange cone in Figure 5.2. The umbral cone height for the

Moon is approximately 375,000 km and approximately 1.4 million km for the Earth.

The height of the cone that extends from the Earth toward the Sun is computed

x =
rd

R + r
(5.3)

With the distances l and x defined, the angle of the umbral cone and the cone that

extends from the Moon toward the Sun are defined

α = tan−1

(
r

x

)
(5.4)
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θ = tan−1

(
r

l

)
(5.5)

The angle between the spacecraft, denoted S/C, position vector relative to Moon and

the Sun-Moon line, is defined

ζ = tan−1

(
|~rS,M × ~rM,S/C |
~rS,M • ~rM,S/C

)
(5.6)

where the vector ~rS,M is the position of the Moon, relative to the Sun, and ~rM,S/C is the

location of the spacecraft relative to the Moon. The spacecraft is within penumbral

shadow if the following conditions are met

|~rM,S/C | sin(ζ) ≤ (x+ ~̂rS,M • ~rM,S/C) tan(α) (5.7)

and

|~rS,S/C | > |~rS,M | (5.8)

where ~̂rS,M is the unit vector of the position of the Earth relative to the Sun. Similarly,

the spacecraft is within umbral shadow if

|~rM,S/C | sin(ζ) ≤ (l − ~̂rS,M • ~rM,S/C) tan(θ) (5.9)

and

|~rS,S/C | > |~rS,M | (5.10)

The conditions in Equations (5.7)-(5.10) are evaluated along the entire spacecraft

path to detect eclipsing events. The same geometry is extended for the Earth as well

to determine when Earth eclipses occur.

Line of sight disruption is similarly defined using geometry of the spacecraft,

Earth and disrupting body. Consider line of sight geometry depicted in Figure 5.3.

For this investigation, a simplified line of sight model is leveraged such that, when

the vector from center of the Earth to the spacecraft is unobstructed by the Moon,

the spacecraft is considered to be within line of sight of the Earth. The red region

in Figure 5.3 is where the spacecraft line of sight with the Earth is interrupted. The

angle η corresponds to the angle between the position vector of the spacecraft, relative
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Figure 5.3. Earth-Moon-spacecraft line of sight geometry.

to Earth, and the Earth-Moon line. The angle β is defined as the angle between the

vector from the Earth to the limb of the Moon and the position vector of the spacecraft

relative to Earth. The angles are defined

η = tan−1

(
|~rE,M × ~rE,S/C |
~rE,M • ~rE,S/C

)
(5.11)

where the vector ~rE,M is the position vector of the Moon, relative to the Earth. The

angle β is defined

β = tan−1

(
RM

L

)
(5.12)

where RM is the radius of the Moon and L is the distance between the Earth and

the Moon. The spacecraft is no longer in line of sight contact with the Earth if the

following conditions are met

η < β (5.13)

and

|~rE,S/C | > |~rE,M | (5.14)

Assuming the spacecraft remains in cislunar space, line of sight conditions are evalu-

ated in the Earth-Moon rotating frame, subsequently making the line of sight problem

independent of the location of the Sun. While more complex models exist to incor-

porate ground station locations on the surface of the Earth, the simplified model is

sufficient for preliminary analysis.
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To help mitigate potential eclipsing while maintaining a constant line of sight with

Earth, synodic resonance is leveraged. A P :Q synodic resonance is defined such that

P periods of the spacecraft orbit are completed for every Q synodic periods of the

Moon, where the synodic period of the Moon is approximately 29.5 days. Figure

5.4 illustrates how the location of Sun, Earth, and Moon geometry repeat over a

synodic period of the Moon, Tsyn. The repeatable geometry of the Moon relative

to the Sun leads to repeatable eclipsing geometry as well. Subsequently, a 2:1 lunar

Figure 5.4. Sun-Earth-Moon geometry over two lunar synodic periods

synodic resonant DRO has a period equal to half of the synodic period of the Moon,

or approximately 14.75 days. Since the Moon is a major occulting body, exploiting

a synodic resonance ensures repeatability of the trajectory path with respect to the

Moon’s location relative to the Sun. The family of constant mapping time quasi-

DROs associated with the 2:1 lunar synodic resonant periodic DRO (rp = 73, 800 km)

is computed, introducing an out of plane component. The constant mapping time is

chosen such that the resonance is preserved in the mapping time of the quasi-DRO

family relative to the 2:1 resonant planar, periodic DRO. All members of the quasi-

DRO constant mapping family are stable, as the stability index is equal to 1 across

the family. Figure 5.5 depicts the planar, periodic 2:1 resonant DRO in green and a
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member of the associated constant mapping time family in configuration space as the

grey transparent surface. The line of sight disruption for the planar periodic DRO is

approximately 2.3 hours for every revolution of the orbit. By choosing a quasi-DRO

that has a ẑ-component in the Earth-Moon rotating frame greater than the radius of

the Moon, the trajectory maintains a constant line of sight for the duration of the

simulation. An insertion location (red) is selected on the invariant curve (black) at

a location of θ1 = 0◦ such that a constant line of sight with Earth is achieved after

10 returns through the stroboscopic map. To visualize lunar eclipsing, the trajectory

Figure 5.5. Quasi-DRO with a mapping time of 14.75 days (grey) and
the associated planar periodic DRO (green). A trajectory segment
(blue) is propagated for 10 returns through the stroboscopic map,
or 147.5 days, where the red circle indicates the beginning of the
trajectory. The initial invariant curve is plotted in black

is viewed in the Sun-Moon rotating frame. When viewed in the Sun-Moon rotating

frame, if the path passes on the far side of the Moon, an eclipsing event occurs. In

the Sun-Moon rotating frame, there are distinct gaps in the trajectory that, when

phased properly, allow a spacecraft to avoid lunar eclipsing. The phasing is adjusted

by inserting at different locations on the invariant curve. Figure 5.6 depicts four

trajectories, converged in the Sun-Earth-Moon ephemeris model using differential

correction, plotted in Sun-Moon rotating frame, each with an initial epoch of Jun
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15, 2020. The JPL DE421 ephemerides were used to obtain state information of

Sun, Earth and Moon in the ephemeris model [35]. While the insertion location on

(a) (b)

(c) (d)

Figure 5.6. Quasi-DRO trajectories converged in the Sun-Earth-Moon
ephemeris model, where the insertion condition is in denoted by the
red circle for (a) θ1 = 0◦, (b) θ1 = 24◦, (c) θ1 = 80◦, and (d) θ1 = 120◦.
The lunar shadow is rendered in grey.

the invariant curve is changed to adjust the phasing of the gaps in the trajectory

in the Sun-Moon rotating frame, the insertion epoch changes the orientation of the

trajectory. Since the lunar synodic period is approximately 29.5 days, the geometry

of the trajectory repeats at this interval as well. Figure 5.7 depicts four trajectories,

converged in the Sun-Earth-Moon ephemeris model, in the Sun-Moon rotating frame,

each at different insertion epochs. The insertion location on the invariant circle is
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selected as θ1 = 0◦. As depicted in Figure 5.7, the geometry of the trajectory in

the Sun-Moon rotating frame rotates counterclockwise as the epoch changes forward

in time between June 1, 2020 to June 15, 2020. Additionally, the location of the

gaps on the trajectory rotate with the changing epoch. By choosing the insertion

epoch and the insertion location on the invariant circle such that the lunar shadow

passes through gaps in the trajectory, lunar eclipse avoidance is achieved for long

term duration in the quasi-DRO.

(a) (b)

(c) (d)

Figure 5.7. Quasi-DRO trajectories converged in the Sun-Earth-Moon
ephemeris model, where the insertion condition is in denoted by the
red circle. The insertion epochs for each trajectory are (a) June 1,
2020, (b) June 4, 2020, (c) June 10, 2020, and (d) June 15, 2020. The
lunar shadow is rendered in grey.
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5.3 Transfers Using Quasi-Periodic Trajectory Arcs

Any transfer between two periodic orbits requires that either the periodic orbits

intersect, or a transfer path must intersect the originating and destination orbits

in position space. Maneuvers are performed to change the path of a spacecraft to

achieve desired destination orbit or transfer trajectory characteristics. In a two-

body model, there are various types of numerical and analytical methods to compute

transfer trajectories that minimize time of flight, required energy, or maneuver size

[36]. However, in regimes where multiple bodies have a significant influence on the

path of a spacecraft, the dynamics are more complex, necessitating new techniques

to compute transfer trajectoies. Moreover, there are no known analytical solutions

to periodic orbits in multi-body regimes. Various methods have been developed to

compute transfer trajectories between periodic orbits in multi-body regimes, however

using quasi-periodic trajectory arcs to as transfer trajectories between periodic orbits

has not been widely explored [37–45]. Consider two periodic orbits in the Earth-Moon

system, plotted in Figure 5.8(a). The originating orbit in blue is an unstable northern

L2 halo orbit and the destination orbit is a planar L2 Lyapunov orbit. Further consider

an L2 quasi-halo orbit in the vicinity of both periodic orbits. A trajectory arc from the

quasi-periodic orbit provides a good initial guess for a differential corrections scheme

that converges on a continuous solution. Maneuvers permitted at the departure and

arrival locations and are modeled as impulsive maneuvers. A final transfer trajectory

is converged and plotted in Figure 5.8(b). Exploiting a trajectory arc on the quasi-

periodic orbit provides a significant plane change required to arrive on the Lyapunov

orbit. The departure ∆V1 = 139.4 m/s and the arrival ∆V2 = 4.0 m/s, for a total

∆Vtot = 143.4 m/s. The time of flight required to complete the transfer is 186.9 days,

where most of the transfer time is spent approaching the x̂ŷ-plane to minimize the

ẑ-component of velocity. The example demonstrates that trajectory arcs from quasi-

periodic orbits serve as good initial guesses for transfers between periodic orbits.
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(a) (b)

Figure 5.8. (a) Originating unstable halo orbit (blue), quasi-halo orbit
torus used for a transfer initial guess (grey), and the destination planar
Lyapunov orbit. (b) Converged transfer from an unstable halo orbit
to a planar Lyapunov orbit in the Earth-Moon system.

During the Gemini, Apollo, and space shuttle programs, and currently for In-

ternational Space Station visiting vehicles, rendezvous strategies were developed for

regimes under the influence of a single gravitational body. However, the lunar Gate-

way plans to operate in an L2 NRHO, which exists in a regime where the influence

of a second gravitational body cannot be neglected. Not only are difficulties are

known to exist when generating transfers between stable and nearly stable periodic or-

bits [45,46], rendezvous increases the complexity further. Quasi-periodic trajectories

provide alternatives for transfers between nearly stable periodic NRHOs, similar to

those considered for the lunar Gateway [47,48]. Consider two northern L2 NRHOs in

the Earth-Moon system with periapsis radii of rp = 4, 800 km (blue) and rp = 12, 610

km (red), depicted in Figure 5.9. Both of these orbits are nearly stable and the

stability indices are 1.5425 and 1.1762 for the departure and destination NRHOs,

respectively. Also, consider a quasi-NRHO, whose torus projection in configuration

space is rendered as a grey surface in Figure 5.9. Both periodic NRHOs intersect

the quasi-NRHO surface at multiple points and by choosing an quasi-periodic arc
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that is near the intersection of both periodic orbits on the torus, an initial guess is

generated. The light blue circles on the departure NRHO are two locations where

the orbit intersects the quasi-NRHO surface projection. By allowing maneuvers at

Figure 5.9. Departure (blue) and destination (red) NRHOs, with
two potential departure locations (light blue) that intersect the torus
projection (grey).

the departure and arrival locations and allowing the time of flight to vary, transfer

trajectories are computed for both of the departure locations in Figure 5.9. The con-

verged solution to departure location 1 is plotted in Figure 5.10(a). The departure

maneuver ∆V1 = 48.3 m/s and the arrival maneuver ∆V2 = 32.2 m/s, for a total

∆Vtot = 80.5 m/s. The converge transfer trajectory is plotted in green with a time

of flight of 23 days. The transfer trajectory associated with departure location 2 is

rendered in Figure 5.10(b). The transfer for departure location 2 has a shorter time of

flight, equal to 12.4 days, however the total maneuver size is higher than the transfer

from departure location 1. For departure location 2, the ∆Vtot = 86.6 m/s, where

∆V1 = 51.3 m/s and ∆V2 = 35.3 m/s. Furthermore, due to the symmetry of the

CR3BP, transfer trajectories from the larger NRHO (rp = 12, 610 km) to the smaller
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NRHO are demonstrated in Figure 5.11. Mission anomalies and contingencies can

(a) (b)

Figure 5.10. Converged transfer trajectories for (a) departure location
1 and (b) departure location 2.

typically change rendezvous locations, and subsequently, the maneuver size required

for rendezvous. Consider the transfer trajectory in Figure 5.10(a). By varying the

rendezvous location +/-1 day along the destination orbit and fixing the time of flight

of the transfer, the maneuver size is compared to the baseline total maneuver size of

80.5 m/s in Figure 5.12. The total maneuver cost reaches a minimum approximately

6.5 hours prior to the baseline arrival time. Trajectory arcs from quasi-periodic orbits

provide sufficient initial guesses for transfers between nearly stable periodic NRHOs

and a preliminary rendezvous analysis demonstrates that maneuver sizes change when

arrival time is shifted for a given transfer geometry.
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(a) (b)

Figure 5.11. Converged transfer trajectories from an rp = 12, 610 km
NRHO to an rp = 4, 800 km NRHO.

Figure 5.12. Rendezvous maneuver size as a function of the time
relative to the baseline arrival time.

5.4 Hyperbolic Manifolds for P2 Access

Unstable quasi-periodic orbits have associated stable and unstable hyperbolic

manifolds which asypmtotically approach and depart a quasi-periodic orbit, as dis-
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cussed in Section 4.2. Stable and unstable manifolds also provide transfer options

in the vicinity of P2 without deterministic maneuvers to insert and depart a quasi-

periodic orbit, respectively. Some quasi-periodic orbits in the vicinity of L1 and L2

have stable and unstable manifolds that pass within close proximity of the second

primary. Consequently, hyperbolic manifolds provide design alternatives to access

P2.

5.4.1 Sun-Earth Lissajous Orbit Access from Earth

The Sun-Earth L1 libration point has proven to be a useful location for operations

for solar observatory missions in recent years. Currently, NASA’s ACE, WIND, and

SOHO and NOAA’s DSCOVR spacecraft operate in quasi-periodic orbits in the vicin-

ity of the Sun-Earth L1 point [20, 21]. Additionally, the vicinity near the Sun-Earth

L2 point is of interest to space telescopes. For example, the James Webb Space Tele-

scope is projected to operate in a quasi-periodic orbit about the Sun-Earth L2 point

at the beginning of the 2020s [49]. Minimizing fuel costs helps to maximize the size of

the science payload on the spacecraft, so efficient transfer trajectories are method to

reduce propellant usage during the mission. Consider a Lissajous orbit in the vicinity

of the Sun-Earth L1 point with a ẑ-amplitude of 940,000 km and a ŷ-amplitude of

660,000 km in the Sun-Earth rotating frame. By sampling 3500 points on the torus,

steps in the stable manifold direction are computed using the procedure outlined in

Section 4.2. The steps are propagated in reverse time and the minimum periapsis

radius relative to Earth is recorded for a each trajectory arc. A heat map is created

with the results in Figure 5.13, where the x-axis is the longitudinal location, θ0, of the

initial condition on the torus and the y-axis is the latitudinal location. Color on the

heat map corresponds to the minimum periapsis radius encountered along the trajec-

tory, where warm colors indicate higher periapsis radii and cool colors indicate lower

periapsis radii. Selecting a point on the map with a perigee radius near a Low Earth

Orbit (LEO) perigee radius yields a stable manifold trajectory that serves as an initial
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Figure 5.13. Periapsis heat map from the stable manifolds of a Sun-
Earth L1 Lissajous orbit

guess to a final trajectory at the desired LEO perigee radius. The red dot on the map

in Figure 5.13 corresponds to a periapsis radius of approximately 7,033 km. However,

a perigee radius of 6,563 km is desired to match the radius of a 185 km altitude LEO

parking orbit. A differential corrections scheme is employed that constrains a 185 km

altitude perigee at the Earth and a second constraint that ensures the trajectory is a

manifold of the torus. Using this corrections scheme, a parking orbit departure ma-

neuver to insert on to a stable manifold is the only deterministic maneuver required.

The final converged trajectory is rendered in Figure 5.14. Stable manifolds provide

transfer trajectory options to quasi-periodic orbits from the vicinity of P2, where no

deterministic maneuver is required to insert. Similarly, unstable manifolds provide

access to other regions of the space, where no deterministic maneuver is required to

depart on an unstable manifold trajectory.
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(a)

(b)

Figure 5.14. (a) 3D view and (b) x̂ŷ projection of a transfer from
LEO to quasi-periodic Sun-Earth L1 Lissajous orbit.
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6. CONCLUSIONS

6.1 Summary

The objectives of this investigation are to efficiently compute quasi-periodic orbits

and to explore leveraging quasi-periodic orbits as trajectory design alternatives in the

Earth-Moon and Sun-Earth systems. First, the CR3BP is defined, which serves as

the preliminary dynamical model in this investigation. Periodic orbits and their as-

sociated center manifolds are discussed to provide the background for the existence

of quasi-periodic orbits on n-dimensional invariant tori. An invariance condition for

2-dimensional tori is outlined into a constraint for a differential corrections scheme

to compute tori using a stroboscopic mapping technique developed by Scheeres and

Olikara [18]. Single and multiple shooting strategies are summarized to compute fam-

ilies 2-dimensional tori in the CR3BP. For quasi-periodic orbit family continuation,

two phase constraints are included in the differential corrections process to ensure

uniqueness of each member in the family. Three types of quasi-periodic orbit families

are presented: constant energy, constant frequency ratio, and constant mapping time

families. Constant energy families use a fixed Jacobi Constant as the continuation

parameter. Constant mapping time families fix the stroboscopic mapping time as the

continuation parameter, which is initially determined as the period of the periodic

orbit used to initiate the family. Constant frequency ratio families are developed

to mitigate issues that exist when integer ratios of the fundamental frequencies are

encountered in constant Jacobi Constant and constant mapping time families. Sta-

bility of quasi-periodic orbits is characterized with a single stability index quantity.

For unstable quasi-periodic orbits, hyperbolic manifolds are computed from the dif-

ferential of the discretized invariant curve. The use of quasi-periodic orbits is also

demonstrated for destination orbits and transfer trajectories. First, a method is de-
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termined to compute quasi-periodic trajectory arcs to minimize numerical error build

up. Quasi-DROs are explored in the CR3BP and the Sun-Earth-Moon ephemeris

model to achieve constant line of sight with Earth and avoid lunar eclipsing by ex-

ploiting orbital resonance. Arcs from quasi-periodic orbits are leveraged to provide

an initial guess for transfer trajectory design between a planar Lyapunov orbit and an

unstable halo orbit in the Earth-Moon system. Additionally, initial guesses for trans-

fer trajectories are constructed using arcs from quasi-periodic orbits between nearly

stable periodic orbits in the Earth-Moon system. Lastly, stable manifolds from a Sun-

Earth L1 quasi-vertical orbit are employed to design maneuver-free transfers from the

LEO vicinity to a quasi-vertical orbit, with no deterministic insertion maneuver. The

findings of this investigation are summarized

1. Three types of families of quasi-periodic orbits are generated using continuation

parameters associated with different characteristics of tori. Constant energy

families fix the Jacobi Constant of each family member to match the Jacobi

Constant of the central periodic orbit and provides insight into the solution

space at that energy. Constant mapping time families are useful when examining

trajectories with orbital resonance. By fixing the mapping time, the geometry of

the orbit is repeatable relative to the resonant body. Finally, constant frequency

families avoid challenges when integer frequency resonance are encountered.

2. Lunar eclipse avoidance and constant line of sight is achieved by exploiting

constant mapping time quasi-DRO families, where the mapping time is in reso-

nance with the lunar synodic period. Ensuring constant line of sight is achieved,

the trajectory is converged in the Sun-Earth-Moon ephemeris model. Eclipse

avoidance geometry is retained in the ephemeris model and repeatability of the

trajectories are visually apparent in the Sun-Moon rotating frame. Both the in-

sertion epoch and the phasing of the insertion state around the invariant curve

are leveraged to orient gaps in the trajectory such that the lunar shadow passes

through them in the Sun-Moon rotating frame.
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3. Initial guesses for transfer trajectories are computed using quasi-periodic arcs.

Two scenarios are presented in the Earth-Moon system. Significant maneuver

cost savings are achieved by exploiting a quasi-periodic orbit compared to direct

plane change when transferring between a planar Lyapunov orbit and a unstable

halo orbit. Secondly, a quasi-periodic orbit in the vicinity of two nearly stable

periodic orbits of the same family serves as a good initial guess for a transfer

trajectory. Two different transfer geometries are examined and both result in a

total ∆V cost below 90 m/s.

4. Stable hyperbolic manifolds provide direct insertion alternatives to an L1 quasi-

vertical orbit in the Sun-Earth system. The periapsis heat map provides a visual

design tool to generate initial guesses for manifold trajectories that approach

the vicinity of LEO. From the initial guess chosen via the map, a differential

correction scheme constrains a desired initial altitude and periapsis, while en-

suring the transfer arc is a manifold trajectory of the torus. An example transfer

is generated that departs from a 185 km altitude LEO orbit and inserts on a

quasi-veritcal orbit with no deterministic maneuver after Earth departure.

Subsequently, quasi-periodic orbits provide a variety of solutions to design challenges

in the Earth-Moon and Sun-Earth problems. While these design strategies are imple-

mented in the Earth vicinity, the techniques presented in this investigation are not

limited to the region near the Earth.

6.2 Future Work Recommendations

There are numerous avenues for future work involving quasi-periodic orbits. First,

understanding stationkeeping in the context of the torus formulation could provide

insight into how to efficiently maintain a quasi-periodic orbit for extended operations.

By exploiting the stability properties of a torus, stationkeeping maneuver size could

be minimized by directing the maneuver in the stable manifold direction to ensure

spacecraft stays within the vicinity of the baseline quasi-periodic orbit. Secondly, un-
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derstanding the computation and assessment n > 2 dimension tori could offer more

design alternatives than those currently available with 2-dimensional tori. Higher

dimensional tori could provide better initial guesses for transfer trajectories if the

torus geometries are more advantageous. In a similar vein, more complex transfer

itineraries could be explored by ”chaining” multiple arcs together. Non-intuitive de-

sign alternatives may arise through the chaining method that could further reduce

maneuver costs between destinations. Third, transfer trajectories or transitions from

quasi-periodic orbits to their underlying periodic orbit and vice versa have not been

widely explored. The transition from a quasi-periodic orbit to the underlying periodic

orbit could prove to be useful for rendezvous problems where more that one gravi-

tational body significantly affects the motion of the spacecraft. Lastly, transitioning

quasi-periodic orbits from the CR3BP to the ephemeris model using non-homogeneous

stacking techniques could be valuable to meet mission constraints that are otherwise

challenging to achieve through homogeneous methods.
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