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ABSTRACT

Almansouri, Hani A. PhD, Purdue University, December 2018. Model-Based Iterative
Reconstruction and Direct Deep Learning for One-Sided Ultrasonic Non-Destructive
Evaluation. Major Professor: Charles A. Bouman.

One-sided ultrasonic non-destructive evaluation (UNDE) is extensively used to

characterize structures that need to be inspected and maintained from defects and

flaws that could affect the performance of power plants, such as nuclear power plants.

Most UNDE systems send acoustic pulses into the structure of interest, measure the

received waveform and use an algorithm to reconstruct the quantity of interest. The

most widely used algorithm in UNDE systems is the synthetic aperture focusing tech-

nique (SAFT) because it produces acceptable results in real time. A few regularized

inversion techniques with linear models have been proposed which can improve on

SAFT, but they tend to make simplifying assumptions that show artifacts and do

not address how to obtain reconstructions from large real data sets. In this thesis, we

present two studies. The first study covers the model-based iterative reconstruction

(MBIR) technique which is used to resolve some of the issues in SAFT and the current

linear regularized inversion techniques, and the second study covers the direct deep

learning (DDL) technique which is used to further resolve issues related to non-linear

interactions between the ultrasound signal and the specimen.

In the first study, we propose a model-based iterative reconstruction (MBIR) al-

gorithm designed for scanning UNDE systems. MBIR reconstructs the image by

optimizing a cost function that contains two terms: the forward model that mod-

els the measurements and the prior model that models the object. To further reduce

some of the artifacts in the results, we enhance the forward model of MBIR to account

for the direct arrival artifacts and the isotropic artifacts. The direct arrival signals
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are the signals received directly from the transmitter without being reflected. These

signals contain no useful information about the specimen and produce high amplitude

artifacts in regions close to the transducers. We resolve this issue by modeling these

direct arrival signals in the forward model to reduce their artifacts while maintaining

information from reflections of other objects. Next, the isotropic artifacts appear

when the transmitted signal is assumed to propagate in all directions equally. There-

fore, we modify our forward model to resolve this issue by modeling the anisotropic

propagation. Next, because of the significant attenuation of the transmitted signal as

it propagates through deeper regions, the reconstruction of deeper regions tends to

be much dimmer than closer regions. Therefore, we combine the forward model with

a spatially variant prior model to account for the attenuation by reducing the regu-

larization as the pixel gets deeper. Next, for scanning large structures, multiple scans

are required to cover the whole field of view. Typically, these scans are performed

in raster order which makes adjacent scans share some useful correlations. Recon-

structing each scan individually and performing a conventional stitching method is

not an efficient way because this could produce stitching artifacts and ignore extra

information from adjacent scans. We present an algorithm to jointly reconstruct mea-

surements from large data sets that reduces the stitching artifacts and exploits useful

information from adjacent scans. Next, using simulated and extensive experimental

data, we show MBIR results and demonstrate how we can improve over SAFT as

well as existing regularized inversion techniques. However, even with this improve-

ment, MBIR still results in some artifacts caused by the inherent non-linearity of the

interaction between the ultrasound signal and the specimen.

In the second study, we propose DDL, a non-iterative model-based reconstruc-

tion method for inverting measurements that are based on non-linear forward models

for ultrasound imaging. Our approach involves obtaining an approximate estimate

of the reconstruction using a simple linear back-projection and training a deep neu-

ral network to refine this to the actual reconstruction. While the technique we are

proposing can show significant enhancement compared to the current techniques with
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simulated data, one issue appears with the performance of this technique when ap-

plied to experimental data. The issue is a modeling mismatch between the simulated

training data and the real data. We propose an effective solution that can reduce

the effect of this modeling mismatch by adding noise to the simulation input of the

training set before simulation. This solution trains the neural network on the general

features of the system rather than specific features of the simulator and can act as

a regularization to the neural network. Another issue appears similar to the issue

in MBIR caused by the attenuation of deeper reflections. Therefore, we propose a

spatially variant amplification technique applied to the back-projection to amplify

deeper regions. Next, to reconstruct from a large field of view that requires multiple

scans, we propose a joint deep neural network technique to jointly reconstruct an im-

age from these multiple scans. Finally, we apply DDL to simulated and experimental

ultrasound data to demonstrate significant improvements in image quality compared

to the delay-and-sum approach and the linear model-based reconstruction approach.
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1. MODEL-BASED ITERATIVE RECONSTRUCTION

FOR ONE-SIDED ULTRASONIC NON-DESTRUCTIVE

EVALUATION

1.1 Introduction

One-sided ultrasonic non-destructive evaluation (UNDE) is widely used in many

applications to characterize and detect flaws in materials, such as concrete structures

in nuclear power plants (NPP), because of its low cost, high penetration, portability,

and safety compared with other NDE methods [1–3]. A typical one-sided UNDE

system consists of a sensor that transmits sound waves into the structures of interest

and an array of receivers that measures the reflected signals (see Fig. 1.1). Such a

set up is scanned across a large surface in a rectangular grid pattern and the reflected

signals from each position are processed to reconstruct the underlying structure. The

ability to easily probe structures that can only be accessed from a single side combined

along with the ability of ultrasound signals to penetrate deep into structures make

one-sided UNDE a powerful tool for the analysis of structures across a variety of

applications [4, 5].

Reconstruction of structures from one-sided UNDE systems are challenging be-

cause of the complex interaction of ultrasound waves with matter, the geometry of

the experimental set-up, the trade-off between resolution and penetration, and the

potentially low signal-to-noise ratio of the received signals [6, 7]. The most widely

used reconstruction method for UNDE is the synthetic aperture focusing technique

(SAFT) [4, 8–12]. SAFT uses a delay-and-sum (DAS) approach to reconstruct ul-

trasound images. Fig. 1.2 shows an example of a SAFT reconstruction from real

data. Notice that SAFT reconstructions tend to have significant artifacts due to

the fact that SAFT assumes a simple propagation model and does not account for
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a variety of effects such as noise and image statistics, direct arrival signal artifacts,

reverberation, and shadowing [11, 12]. In summary, while SAFT is computationally

inexpensive to implement, it can result in significant artifacts in the one-sided UNDE

reconstructions.

In order to overcome some of the short-comings of the SAFT method, regularized

iterative reconstruction methods that use linear models (due to their low computa-

tional complexity) have recently been proposed for various ultrasound inverse prob-

lems. These methods formulate the reconstruction as minimizing a cost-function that

balances a data fidelity term with a regularization applied to the image/volume to be

reconstructed. The data fidelity term encodes a physics based model to reduce the

error between the measurements and the projected reconstruction while the regular-

izer forces certain constraints on the reconstruction itself. For the data fidelity term,

regularized iterative techniques for one-sided UNDE, such as [13, 14], use a simple

linear model that models the propagation of the ultrasonic wave to reconstruct the

reflectance B-mode images. A technique that uses the same forward model, but shows

2D images for a fixed depth (c-mode), is shown in [15]. The forward model in [15]

has been upgraded to account for the beam profile as in [16] which can help in reduc-

ing some artifacts. However, this forward model does not account for direct arrival

signals caused by coupling the ultrasonic device to the surface of the structure which

can cause artifacts and interference with reflections. Furthermore, the reconstruction

algorithm of [16] is not designed to exploit correlations between adjacent scans for

systems with large field-of-view.

In [14, 16–18], the authors used a simple regularization terms, such as l1 or l2.

This regularization is suitable for imaging point scatters or sparse regions. However,

for more complex medium where edge preservation is needed, other techniques use a

more sophisticated regularization, such as total variation, where they showed signif-

icant enhancement over SAFT [13, 15]. The method in [13] uses total variation with

variety of a regularization terms that are depth dependent to resolve the attenuation

and blurring for deeper reflections. However, the depth-dependent regularization is
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linear with depth which might not be the best modeling for the depth attenuation.

Therefore, while regularized inversion methods that use a linear forward model have

shown promise in certain applications, they do not deal with the direct arrival sig-

nal artifacts in a principled manner, they have not been designed to jointly handle

large data sets that require multiple scanning for one-sided UNDE systems, and they

do not fully account for the depth-dependent blurring that can occur by the use of

certain regularizers.

In this thesis, we propose an ultrasonic model-based iterative reconstruction (MBIR)

algorithm designed specifically for one-sided UNDE systems of large structures. We

resolve the issues discussed above by enhancing the forward and prior models used in

the current regularized iterative techniques. The enhancements to the forward model

include a direct arrival signal model with varying acoustic speed and an anisotropic

model of the transmitted signal propagation to reduce artifacts in the reconstruction.

Also, we repopulate the system matrix of the forward model to generate a larger sys-

tem matrix for larger field of views to share more information about adjacent scans

which can help in reducing noise and artifacts and enhancing the reconstruction. Fur-

thermore, the prior model is enhanced by increasing and conveniently controlling the

regularization for deeper regions to reduce the attenuation to these regions. In pre-

vious work, we have demonstrated the performance of MBIR compared with SAFT

using different combinations of these enhancements [19–21]. We introduce four major

contributions in this thesis:

1) A physics-based linear forward model that models the direct arrival signal with

varying acoustic speed, absorption attenuation, and anisotropic propagation;

2) A non-linear spatially-variant regularization to enhance the reconstruction for

deeper regions;

3) A systematic way to reconstruct the volume from all the measured data simul-

taneously rather than individual reconstruction using joint-MAP stitching and 2.5D

MBIR;
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Fig. 1.1. An illustration of a typical one-sided UNDE problem where
s(t) is the transmitted signal, ν is a point in the field-of-view, yi,j(ν, t)
is the received signal reflected from ν, θt is the angle between ri and
ν, and θr is the angle between rj and ν.

4) Qualitative and quantitative results from simulated and extensive experimental

data.

The thesis is organized as follows. In section 1.2 we cover the design for the

forward model of the ultrasonic MBIR for one-sided NDE applications. In section 1.3

we cover the prior model used for MBIR. In section 1.4 we cover the optimization of

the MAP cost function using the ICD method. In section 1.5 we cover simulated and

experimental results from MBIR and other techniques. In section 1.6 we cover the

conclusion.

1.2 Forward Model of One-Sided UNDE

The reconstruction in an MBIR setting is given by the following minimization

problem,

xMAP = arg min
(x)

{− log p(y|x)− log p(x)} ,
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(a) (b) (c)

Fig. 1.2. Example of a SAFT reconstruction from real data of a
concrete structure. (a) shows the defect diagram containing steel re-
bars (dotted circles), defects (marked D#), and the back wall (dotted
line). (b) shows SAFT reconstruction for a single scan of the large
field-of-view in (a). (c) shows the SAFT reconstruction for the entire
field-of-view after stitching the results from each individual scan.
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where x is the image to be reconstructed, y is the measured data, xMAP is the re-

constructed image, p(y|x) is the forward model and the probability distribution of y

given x, p(x) is the prior model and the probability distribution of x. The forward

model is designed in the following way. We will consider a one-sided UNDE for a

concrete structure where the transducers are coupled to the surface as shown in Fig.

1.1. We will consider a pressure signal (Pascal) transmitted from transducer i located

at position ri ∈ R3, reflected by a point located at ν ∈ R3, and received by trans-

ducer j located at rj ∈ R3. We assume the Fourier transform of the temporal impulse

response of a system sending a signal from ri and receiving from ν to be

G(ri, ν, f) = λe−(α(f)+jβ(f))‖ν−ri‖

where λ is a transmittance coefficient,

α(f) = α0|f | (m−1)

is the rate of attenuation,

β(f) =
2πf

c
(m−1)

is the phase delay due to propagation through the specimen, and c is the speed of

sound [22–28]. Similarly, we assume the Fourier transform of the impulse response of

a system sending a signal from ν and receiving from rj to be

G(ν, rj, f) = λe−(α(f)+jβ(f))‖rj−ν‖ .

Assuming s(t) (Pascal) is the input to the system and x̃(ν) (m−3) is the reflectivity

coefficient for ν, then the output Ỹi,j(ν, f) (Pascal ·m−3 ·Hz−1) at the receiver due to

ν is

Ỹi,j(ν, f) = −S(f)G(ri, ν, f)x̃(ν)G(ν, rj, f)

= −λ2x̃(ν)S(f)e−(α0c|f |+j2πf)τi,j(ν),

where

τi,j(ν) =
‖ν − ri‖+‖ν − rj‖

c
(s).
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By defining

h̃(τi,j(ν), t) = F−1
{
−λ2S(f)e−α0c|f |τi,j(ν)

}
, (1.1)

where F−1 is the inverse Fourier transform, the time domain output signal, ỹi,j(ν, t)

(Pascal ·m−3), is given by

ỹi,j(ν, t) = h̃(τi,j(ν), t− τi,j(ν)) x̃(ν).

Note that h̃(τi,j(ν), t) is a function of τi,j and t, i.e. not directly a function of ν. This

is a very useful property that can reduce the computational cost of evaluating h̃. In

many cases, h̃(τ, t) for any τ is close to zero after a certain time t0. In this case, it is

very helpful to modify the previous equation to

ỹi,j(ν, t) = h(τi,j(ν), t− τi,j(ν)) x̃(ν).

where

h(τ, t) = h̃(τ, t) rect

(
t

t0
− 1

2

)
,

rect(x) = 1 for |x|< 1

2
and 0 for |x|≥ 1

2
,

and t0 is a constant where we assume h(τ, t) is equal to zero for t > t0. Applying

the rect function is very helpful in increasing the sparsity of the system matrix which

leads to a dramatic decrease in memory and processing time. To get the overall

output ỹi,j(t) (Pascal) from all points in R3, we need to integrate over all ν:

ỹi,j(t) =

∫
R3

ỹi,j(ν, t)dν (1.2)

=

∫
R3

Ãi,j(τi,j(ν), t)x̃(ν)dν , (1.3)

where

Ãi,j(τi,j(ν), t) = h(τi,j(ν), t− τi,j(ν)). (1.4)
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For simplicity, the set of all transducer pairs, {i, j}, is mapped to the ordered set

{1, ..., K} , where K is the total number of transducer pairs. Hence, Eq. 1.3 becomes

ỹk(t) =

∫
R3

Ãk(τk(ν), t)x̃(ν)dν . (1.5)

Finally, we assume the noise associated with the measurements to be i.i.d. Gaussian.

1.2.1 Direct Arrival Signal Artifacts

When the ultrasonic device is attached or coupled to the surface of the concrete, a

direct arrival signal is generated along with the transmitted signal. This direct arrival

signal produces artifacts on the reconstructed image in regions closer to the transducer

and it might interfere with some of the reflected signals (see Fig. 1.2). Eq. 1.5 models

the output from the reflection of all points. However, the equation does not account

for the direct arrival signal. Locating and deleting the direct arrival signal from the

received signal eliminates the artifacts, but might lead to deleting reflection signals

for closer objects. We propose a modification to the forward model that models the

direct arrival signal and attenuates the artifact while preserving information from

reflected signals. The modification adds the following term to the forward model in

Eq. 1.5 that corresponds to the direct arrival signal,

ỹk(t) =

∫
R3

Ãk(τk(ν), t)x̃(ν)dν + d̃k(t) gk, (1.6)

where d̃k(t) is an additional term used to model the direct arrival signal given by

d̃k(t) = −Ãk(τk, t),

τk =
‖ri − rj‖

c
,

and gk is an unknown scaling coefficient for the direct arrival signal.

The above model works efficiently when the acoustic speed is constant. For a

non-homogeneous material, such as concrete, the acoustic speed is not constant. This

change in acoustic speed changes the location of the direct arrival signal and causes

a mismatch with MBIR’s direct arrival signal modeling. We can estimate the shift
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error by searching for the delay that produces the maximum autocorrelation of the

direct arrival signal,

l̂ = arg max
−τ̃≤l≤τ̃

{∫
ỹk(t)d̃k(t− l)dt

}
d̃k(t) ← d̃k(t− l̂),

where τ̃ is chosen to be small, e.g. 3 sampling periods, to insure the shift is within

the integral boundaries and to avoid interfering with later reflections. This estimate

finds the shift error with the assumption that reflections do not interfere with the

direct arrival signal. Therefore, for homogeneous medium, our approach is able to

reduce direct arrival signal artifacts and detect reflections close to the transducers.

However, for non-homogonous medium, our approach is able to reduce direct arrival

signal artifacts that do not interfere with reflections.

1.2.2 Anisotropic Propagation

Many models used in UNDE assume that the profile of the transmitted beam is

isotropic [15,29]. However, this assumption is not valid for many systems and it can

produce artifacts. While it would be ideal to know the precise profile especially of

the transmitted beam, in one-sided systems that we deal with, this is not known.

However, we were able to measure a transmitter-receiver profile obtained from the

reflections of one point scatter from different angles. Fig. 1.3 shows the normalized

transmitter-receiver profile projected from a 3D to a 2D plot for a better visualization.

The transmitter-receiver profile was measured by measuring the angle between the

transmitter and the point scatter, θt(ν), the angle between the receiver and the point

scatter, θr(ν), and the amplitude of the reflection from the point scatter. Fig. 1.1

shows illustration of θt(ν) and θr(ν). To model this transmitter-receiver profile, we

adopted a similar apodization function as in [4] for the anisotropic model. However,

the apodization function used in [4] has a slow attenuating window. In our application,

a faster attenuating window is needed. We use an anisotropic beam pattern model

as shown in Fig. 1.4. We define a function, φk(ν), that has a value ranging from
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Fig. 1.3. A plot of the measured transmitter-receiver profile obtained
from reflections from a point scatter from experimental data. The
variable T (v) is defined as T (ν) =

√
θ(ν)2

t + θ(ν)2
r to project the 3D

plot to a 2D plot for a better visualization.

0 to 1. This function depends on the angles from the transmitter to ν and from ν

to the receiver. φk(ν) is monotonically decreasing with respect to those two angles.

φk(ν) can act as an attenuating window, such as cosine or Gaussian windows, to the

output. The function φk(ν) is added to Eq. 1.4 as follows:

Ãk(τk(ν), t) = h(τk(ν), t− τk(ν))φk(ν). (1.7)

Note that the beam pattern is assumed to be reciprocal, i.e. the receiver will also

have the same beam pattern. In this thesis, we chose φk(ν) to be

φk(ν) = a cosb(θt(ν)) cosb(θr(ν)) ,

where a and b are constants. We performed a least square fit to calculate the value

of a and b based on the measured transmitter-receiver profile. The calculated values

were a = 0.75 and b = 1.65 . Fig. 1.5 shows a plot of the measured transmitter-

receiver profile and the anisotropic model with the least square fit of a and b. In

this thesis, the value of a is set to 1 since it is a scalar applied to all pixels, and b is

rounded up to the nearest integer, i.e b = 2.
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Fig. 1.4. Beam pattern model for an ultrasound transducer placed
at (0,0) for isotropic propagation (left) and anisotropic propagation
(right). Left image shows equal propagation in all direction. Right
image shows more attenuation as the angle between the transmitter
and the pixel increases.

0 20 40 60 80 100 120 140

T(v)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
m

p
lit

u
d
e
 o

f 
re

fl
e
c
ti
o
n

measured profile

anisotropic model

Fig. 1.5. A plot showing both the measured transmitter-receiver
profile and the anisotropic model. The variable T (v) is defined as
T (ν) =

√
θ(ν)2

t + θ(ν)2
r to project the 3D plot to a 2D plot.
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Finally, the discretized version of the forward model can be used in the MAP

estimate as shown below,

− log p(y|x) =
1

2σ2
‖y − Ax−Dg‖2 + constant,

where y ∈ RMK×1 is the measurement, σ2 is the variance of the measurement, A ∈

RMK×N is the forward model (system matrix), x ∈ RN×1 is the image, D ∈ RMK×K

is the direct arrival signal modeling matrix, g ∈ RK×1 is a vector containing scaling

coefficients for the direct arrival signals, M is the number of measurement samples,

and N is the number of pixels. The columns of D, dk, are the discretized version of

d̃k. The vector g is used to scale each column of D independently.

1.2.3 Joint-MAP Stitching

In order to scan large regions, the sensor assembly is typically moved from one

region to another on the surface in raster order to build up a 3D profile of the structure.

Typically each scan is individually processed and placed together to present the overall

3D reconstruction, Fig. 1.6. However, this method results in sharp discontinuities at

the boundaries and inefficient use of the data collected, Fig. 1.2. We design a joint-

MAP technique to solve these issues by modifying the forward model to perform

the stitching internally as part of the estimation. This technique is able to remove

discontinuities between the sections and make use of any additional information from

adjacent scans. Furthermore, the system matrix used in the proposed joint-MAP

technique is designed to arrange the small system matrices of single scans in an

efficient way to increase the sparsity and reduce the required memory. We assume

that adjacent scans share some columns of pixels and have some useful correlations

that can be exploited to produce better images. Therefore, the forward model will

account for those shared columns differently than the rest of the pixels or columns.

For L measurements, we let the system matrix for each measurement be A and the

image for each measurement be xl. We let the order of the pixels in xl be from top

to bottom for each column starting from the far left column to the far right column.
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Hence, the term associated with the modified forward model in the MAP estimate

will be

1

2σ2

∥∥y
JMAP

− A
JMAP

x
JMAP

−D
JMAP

g
JMAP

∥∥2
, (1.8)

where

A
JMAP

=


[ A ] 0 0 . . .

0 [ A ] 0 . . .

0 0 [ A ] . . .
...

...
...

. . .

 ,

D
JMAP

=


D 0 . . . 0

0 D . . . 0
...

...
. . .

...

0 0 . . . D

 ,

y
JMAP

=



y1

...

yl
...

yL


, g

JMAP
=



g1

...

gl
...

gL


,

and x
JMAP

is the image of the large field-of-view. A
JMAP

is designed so that if a

pixel is shared in more than one image, then its corresponding column in the system

matrix for one image will be aligned with its corresponding columns in the system

matrix for other images. For the example shown in Fig. 1.6, we can accomplish this

alignment by shifting each system matrix A left or right until the required alignment

is achieved.
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Fig. 1.6. An illustration of multiple measurements needed to scan a
large field-of-view. Images from each scan share some pixels with its
neighbor images. Proper stitching technique is needed to account for
this shared areas in the field-of-view.
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1.3 Prior Model Of The Image

We design the prior model of the image to be a combination of a Gibbs distribution

and an exponential distribution, i.e.

− log p(x) =
∑
{s,r}∈C

bs,r ρ(xs − xr, σg) +
∑
s∈S

xs
σe

+ constant,

where C is the set of all pair-wise cliques, S is the set of all pixels in the field of view,

bs,r is a scaling coefficient, ρ is the potential function, σg is the regularization con-

stant for the Gibbs distribution, σe is the regularization constants for the exponential

distribution, and xs ≥ 0 ∀s ∈ S . We chose the q-generalized Gaussian Markov ran-

dom field (QGGMRF) as the potential function for the Gibbs distribution [30]. The

equation for the QGGMRF is

ρ(∆, σg) =
|∆|p

pσpg

(
| ∆
Tσg
|q−p

1 + | ∆
Tσg
|q−p

)
, (1.9)

where 1 ≤ p < q = 2 insures convexity and continuity of first and second derivatives,

and T controls the edge threshold. The Gibbs distribution is used to preserve edges

while the exponential distribution is used to force the background toward zero.

The neighbors of a pixel s are arranged as
r1 r2 r3

r4 r5 r6

r7 r8 r9

 ,

r10 r11 r12

r13 s r14

r15 r16 r17

 ,

r18 r19 r20

r21 r22 r23

r24 r25 r26

 . (1.10)
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where the neighbors with index 10 to 17 are from the same layer, and the rest of the

neighbors are from the next and previous layers. With this arrangement, the scaling

coefficients bs,r are chosen to be
bs,r1 bs,r2 bs,r3

bs,r4 bs,r5 bs,r6

bs,r7 bs,r8 bs,r9

 =


0 0 0

0 2 0

0 0 0

 · γ

4γ + 12
,


bs,r10 bs,r11 bs,r12

bs,r13 0 bs,r14

bs,r15 bs,r16 bs,r17

 =


1 2 1

2 0 2

1 2 1

 · 1

4γ + 12
,


bs,r18 bs,r19 bs,r20

bs,r21 bs,r22 bs,r23

bs,r24 bs,r25 bs,r26

 =


0 0 0

0 2 0

0 0 0

 · γ

4γ + 12
,

with a free boundary condition. The parameter γ is set to zero when 2D MBIR is

needed, or greater than zero when a 3D regularization (2.5D MBIR) is needed. 2.5D

MBIR can be used to gain more information from neighbors of different layers to

reduce noise and increase resolution.

1.3.1 Non-linear Spatially-Variant Regularization

The standard form of the regularization introduced above uses constant σg and

σe for all voxels. This can result in reconstruction artifacts because there are few

pixels that could have contributed to the signal for closer reflections. However, for

deeper reflections, there are many more pixels that could have caused the reflection,

i.e. the deeper the reflection the less lateral resolution it has. Fig. 1.7 shows the

back-projection of two point scatters of different depth. The closer reflection has less

overlapping and higher lateral resolution. The deeper reflection has larger overlapping

and lower lateral resolution. This is an issue because MBIR spreads the energy

over the intersection area, which attenuates the intensity dramatically for deeper

reflections. This smoothing and attenuation appear to increase more rapidly for
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deeper reflection. Therefore, a linear spatially-variant regularization as in [13] is not

sufficient, and a more generalized model is needed. Hence, we adapt a non-linear

spatially-variant regularization technique designed for the UNDE system. We can

solve the attenuation problem by assigning less regularization as the pixel gets deeper.

The disadvantage of this method is that it will amplify both the reflection and the

noise for deeper pixels.

We replace σg and σe with σgs,r and σes , respectively, where these new parameters

are monotone increasing with respect to depth. We assign a new scaling parameter

cs that varies between two values, 1 and cmax, as follows:

cs = 1 + (cmax − 1) ∗
(

depth of pixel s

maximum depth

)a
(1.11)

where a > 0 and cmax > 1. Then, σgs,r and σes are calculated as follows:

σgs,r = σg
√
cscr,

σes = σecs ,

where cr has the same equation as in cs, but for pixel r.

1.3.2 Selection of Prior Model Parameters

The selection of the prior model parameters is an open area of research. In this

thesis, we select the regularization parameters σg, σe and γ (which control edge preser-

vation, background sparsity, and contribution from neighbors of adjacent layers, re-

spectively) to produce the best results visually. The parameters p, q, T , and a (which

controls the transitioning from high to low regularization as the pixels get deeper)

are unitless parameters and the values used for them in this thesis are considered

standard and seem to be consistent with the applications we are working on. The

parameter cmax is a unitless parameter and is used to amplify reflections for deeper

regions as needed.



18

Fig. 1.7. Back-projection of two point scatters, one that is closer to
the transducers (17cm deep) and one that is far from the transducers
(105 cm deep). As the reflection gets deeper, the lateral resolution
decreases.
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1.4 Optimization of MAP Cost Function

After designing the forward model and the prior model, the MAP estimate be-

comes

(x, g, σ2)MAP = arg min
x≥0,g,σ2

{
1

2σ2
‖y − Ax−Dg‖2

+
MK

2
log(σ2) +

∑
{s,r}∈C

bs,r ρ(xs − xr, σgs,r)

+
∑
s∈S

xs
σes

}
.

(1.12)

The shifting of the direct arrival signal matrix D mentioned in section 1.2.1 is per-

formed once before estimating g, x and σ2. The solution for g is straightforward:

0 = 5g

{
1

2σ2
‖y − Ax−Dg‖2 +

MK

2
log(σ2)

+
∑
{s,r}∈C

bs,r ρ(xs − xr, σgs,r) +
∑
s∈S

xs
σes

}
=⇒ 0 = 2DtDg + 2DtAx− 2Dty

=⇒ g = (DtD)−1Dt(y − Ax).

Given x, the evaluation of g is computationally inexpensive because DtD is a diagonal

matrix, i.e.

(DtD) =


dt1d1 0 . . . 0

0 dt2d2 . . . 0
...

...
. . .

...

0 0 . . . dtKdK

 ,

where dk is the discretized version of d̃k(t) for transducer pair k. However, g requires

the knowledge of x which is the image we would like to reconstruct. This issue can
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be resolved by updating the value of g from the updated image in each iteration.

Furthermore, for each iteration, we update g, x, and σ2 in the following steps:

g ← (DtD)−1Dt(y − Ax)

y ← y −Dg

x ← arg min
x≥0

{
− log p(y|x)− log p(x)

}
σ2 ← 1

MK
‖y − Ax‖2

We adopt the iterative coordinate descent (ICD) technique to optimize the cost func-

tion with respect to x [31]. Since the prior model term is non-quadratic, optimizing

the cost function will be computationally expensive. Therefore, we use the surrogate

function (majorization) approach with ICD to resolve this issue [30]. This ICD op-

timization algorithm is guaranteed to converge to the global minimum because the

function being minimized is continuously differentiable and strictly convex [30]. Fig.

1.8 shows the complete algorithm for ICD using the majorization approach. The

algorithm is stopped either if

‖xn−1 − xn‖
‖xn−1‖

< ε, (1.13)

where xn is the current image update and ε is a stopping threshold, or if the number

of iterations exceeds a specified number, e.g. 100 iterations. Empirically, we have

found that a value of ε = 0.01 is a sufficient value to declare convergence with zero

initialization.

1.5 Results

In this section we compare MBIR with two different techniques qualitatively and

quantitatively.
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Fig. 1.8. ICD algorithm using the majorization technique with shift
error estimation (top red box) and direct arrival modeling (bottom
red box) [30,31].
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1.5.1 Algorithms for Comparison

We compare MBIR with the SAFT and l1-norm techniques. The l1-norm is a

regularized iterative technique with the same forward model as in Eq. 1.5 with an

exponential distribution prior. The prior model is exactly equal to an l1 regularization

term with a positivity constraint. The MAP estimate for the l1-norm technique is

(x, σ2)MAP = arg min
x≥0,σ2

{
1

2σ2
‖y − Ax‖2

+
MK

2
log(σ2) +

∑
s∈S

xs
σes

}
.

(1.14)

A pixel-wise precision-recall (PR) plot is used for the simulated data to compare

the performance of the techniques qualitatively. A pixel-wise PR test calculates the

number of true positive (TP), false positive (FP), and false negative (FN) for each

technique. These values are used to plot the precision vs. recall (PR) curves where

recall =
TP

TP + FN

and

precision =
TP

TP + FP
.

This detection test compares the performance of each technique by the area under the

PR curve. The larger the area the better the technique. Next, for each technique, all

the images are normalized by dividing them with their maximum value. Thresholds

from 1 to 0 with step 0.001 are applied to all images. For each threshold, a TP is

declared if the defect diagram (ground truth) pixel is 1 and the reconstructed pixel

is 1. A FP is declared if the defect diagram pixel is 0 and the reconstructed pixel is

1. A FN is declared if the defect diagram pixel is 1 and the reconstructed pixel is 0.

The techniques performance for the simulated data will be compared with mea-

surements of different signal-to-noise ratio (SNR). The SNR is defined as

SNR =
‖y‖2

‖w‖2
,

where y is the noiseless simulated output from k-wave, and w is the added noise to y.
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A component-wise PR plot is used for the experimental data to compare the

performance of each technique. Each image is segmented into connected components

using the standard Matlab functions “edge” and “imfill”. Next, the maximum value

and weighted centroid for each connected component is stored. Next, a search is

performed pairing targets from the defect diagram to connected components from

the reconstruction in the following way: A connected component is mapped to a

particular target if its centroid is both the closest among all detected components to

the target’s centroid, and it is within 10 cm of the target’s centroid. Next, for each

technique, all the images are normalized by dividing them with the maximum value

of them all. Thresholds from 1 to 0 with step 0.001 are applied to all images. For each

threshold, a TP is declared if the maximum value of a paired connected component

is equal or greater than the threshold. A FP is declared if the maximum value of

an unpaired connected component is equal or greater than the threshold. The FN is

calculated by subtracting the number of TP’s from the number of targets.

A normalized root mean square error (NRMSE) plot will be used to compare

MBIR convergence with different initializations. The NRMSE is defined as

NRMSE(n) =
‖Xn −Xtrue‖
‖Xtrue‖

, (1.15)

where n is the iteration number, and Xtrue is the true solution. We define Xtrue to

be iteration 1500 of the zero initialization.

1.5.2 K-wave Simulated Results

The k-wave simulator has been used to simulate acoustic propagation through

concrete medium [32]. The concrete structure was embedded with steel of different

shapes. The width and depth of the structure is 40cm and 30cm , respectively. 10

transducers were used to transmit and receive. For each simulation, the simulator

produces 90 outputs from all pairs of transducers where only distinct pairs are used,

i.e. 45 distinct pairs. The transducers are placed at the top center of the field-of-view

and separated by 4cm from each other. To simulate the acoustic propagation using
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k-wave, we provided three images of speed, density, and attenuation as inputs to k-

wave. Each pixel in the three input images corresponds to the characteristics of either

steel or cement. The output of k-wave is then used as input to the reconstruction

methods. Fig. 1.9 shows reconstruction results for four different tests. The voxel

spacing for 2D reconstructions is 1 cm for all reconstruction techniques. The left

column shows the designed defect diagram that was used for simulation where the

white pixels corresponds to cement and the black pixels corresponds to steel. The

next column shows the instantaneous envelope of SAFT reconstruction. The next

column is l1-norm. The right column shows the MBIR reconstruction. Both l1-norm

and MBIR were initialized to zero. Note that SAFT does not share the same unit

with MBIR or L1-norm. That is why it shows different scaling.

Fig. 1.11 shows the pixel-wise PR curve for each technique over all 4 tests. Table

1.4 shows values of the area under the PR curves in Fig. 1.11. Table 1.1 shows the

parameters which are used for k-wave simulation, and some of them are used as input

parameters in all techniques. Table 1.3 shows the parameters used for l1-norm and

MBIR in Eq. 1.1, 1.9, and 1.11, and the stopping threshold.

Fig. 1.10 shows a comparison between the methods with noise added to the

simulated signal of the defect diagram of Test 1 in Fig. 1.9.

Discussion

In Fig 1.9, MBIR and l1-norm were able to show significant enhancement over

SAFT in reducing noise. MBIR showed remarkable performance in identifying, elim-

inating, and distinguishing the direct arrival signal artifacts from the steel objects.

For example, in test 1, two steel plates where placed at depth 2cm. The plates where

overshadowed by the direct arrival signal artifacts in SAFT and l1-norm, but appear

very clearly in MBIR. Test 2 and 3 also show similar direct arrival signal overshadow-

ing effects for SAFT and l1-norm, that are reduced for MBIR. In addition, the steel

objects are more easily observed and recognized in l1-norm and MBIR. In Fig. 1.11
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Fig. 1.9. Comparison between MBIR and SAFT reconstruction from
the k-wave simulated data. The far left column is the position of the
defects. The next column is SAFT reconstruction. The next column is
l1-norm reconstruction. The far right column is MBIR reconstruction.
MBIR tends to produce results with less noise and artifacts compared
to SAFT and l1-norm.
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Fig. 1.10. Comparison between SAFT, l1-norm, MBIR reconstruc-
tions from the k-wave simulated data with different SNR. The defect
diagram is the same as the defect diagram in Test 1 in Fig. 1.9. The
left column is SAFT reconstruction. The next column is l1-norm re-
construction. The right column is MBIR reconstruction. Each row
correspond to different SNR value where the SNR values from top to
bottom are 3, 1, and 0.33, repectively. MBIR tends to produce results
with less noise and artifacts compared to SAFT and l1-norm.
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Table 1.1.
Parameter settings for k-wave simulation.

Parameters Value Unit

Carrier frequency 52 kHz

Sampling frequency 1 MHz

Cement speed 3680 m/s

Cement density 1970 Kg/m3

Cement attenuation 1.46e-6 dB/((MHz)ycm)

Steel speed 5660 m/s

Steel density 8027 Kg/m3

Steel attenuation 4.85e-8 dB/((MHz)ycm)

Spatial resolution 1 mm

Number of columns 400 -

Number of rows 300 -

Number of transducers 10 -

Fig. 1.11. PR curves for each technique over all 4 tests in Fig.1.9.
MBIR outperforms the other techniques by having the highest PR
area.
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and Table 1.4, MBIR shows better performance in the detection test with the highest

PR area.

Notice that in test 4, none of the techniques were able to show the complete struc-

ture of the steel object. They were able to show only one side of it. This is because

all three reconstruction methods reconstruct the reflections caused by discontinuous

boundaries rather than recovering the actual material property at each voxel location.

Fig. 1.10 shows the reconstruction of test 1 in Fig. 1.9 with varying signal-to-

noise ratio (SNR). As the SNR decreases, the reconstruction becomes noisier for all

techniques. However, the results show better performance in MBIR than the other

techniques in reducing noise and artifacts.

1.5.3 MIRA Experimental Results

Experimental results have been obtained from a designed thick concrete specimen

[33]. The height and width of the specimen is 213.36 cm (84 inches), Fig. 1.12. The

depth of the specimen is 101.6 cm (40 inches). Each side of the block is gridded

with 10.16 cm squares producing 21 rows and columns. The specimen has been

heavily reinforced with steel rebars horizontally and vertically with 1 ft separation

in both sides. One side is “smooth” and the other is “rough” which refer to the

physical characteristic of the concrete surface due to pouring. Also, Fig. 1.14 and

Fig. 1.15 show diagrams of the steel rebars in green color with more details. The

specimen has been embedded with designed defects placed in specific locations. The

type and location of the defects are shown in Figs. 1.13, 1.14, 1.15, and 1.16 [33].

The specified location of the defects might be different from the real location due to

possible displacement while pouring the cement.

The defects are designed to simulate real defects that can occur due to construc-

tion process, cumulative deterioration, or degradation of concrete. Four datasets

were obtained by scanning both sides horizontally and vertically: smooth-horizontal,

smooth-vertical, rough-horizontal, and rough-vertical. Each dataset contains 17 to



29

19 cross-sections or slices of the specimen which adds up to 73 cross-sections. Each

cross-section is scanned 18 times from different positions to cover the entire field of

view. The first and last scans are centered at 20.32 cm (8 inches) from the edge. The

rest of the scans are spread evenly by a 10.16-cm (4-inch) separation, hence the 18

scans.

The MIRA system has been used to collect the data [34]. The MIRA device,

Fig. 1.12, contains 10 columns or channels separated by 40 mm where each channel

contains 4 dry contact points with 2 mm radius that act as transmitters or receivers.

Only the 45 distinct pairs are used in the reconstruction results for all techniques.

The transmitter emits a signal with a carrier frequency of 52 kHz, and the sampling

frequency of the receiver is 1 MHz. The acoustic speed is assumed to be 2620m
s

. Each

distinct pair produces 2048 samples of data where the first 27 samples are ignored

due to trigger synchronization. The data is then down-sampled to 200 kHz and 409

samples and reconstructed using all techniques.

Four different techniques were used to reconstruct the data: SAFT, l1-norm, 2D

MBIR, and 2.5D MBIR. Zero initialization was used for l1-norm, 2D MBIR, and

2.5D MBIR. For SAFT, the multiple scans are jointly reconstructed to avoid stitching

artifacts. For l1-norm, all scans for each cross-section are reconstructed individually

and then stitched together. For 2D MBIR and 2.5D MBIR, the joint-MAP stitching

is used to reconstruct the entire cross-section.

Fig. 1.17 shows the reconstruction results. The field of view of each cross-section

is 120 × 210 cm and the reconstruction resolution is 1 cm for all techniques. The

first row shows the defect diagram and the position of the defects. The second row

is the instantaneous envelope of SAFT reconstruction. The third row is l1-norm

reconstruction. The fourth row is 2D MBIR reconstruction. The fifth row is 2.5D

MBIR reconstruction. Note that the defect diagram shows the steel rebars as dotted

circles or dotted rectangles. The steel rebars might appear in all reconstructions as

small horizontal dots or a horizontal line at the top, but the bottom steel rebars

barely appear in all techniques due to their weak reflection. Table 1.2 shows the
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common parameter settings for all techniques. Table 1.3 shows the l1-norm and

MBIR parameter settings for Eq. 1.1, 1.9, and 1.11, γ in section 1.3, and the stopping

threshold.

Fig. 1.18 shows the PR curve for each technique over the four datasets. Since

the position of the targets in the defect diagram is not precise, the detection test was

done using the component wise approach rather than the pixel-wise approach used

for the k-wave data. To make a fair comparison, the parameter σg for MBIR, the

parameter σe for l1-norm, and the parameters σg and γ for 2.5D MBIR were chosen

using a grid search to maximize the area under the PR curves. Table 1.4 shows the

value of the area under the PR curves in Fig. 1.18.

All the techniques were implemented in Linux using a 2.60GHz Sky Lake CPU.

SAFT, l1-norm, 2D MBIR, and 2.5D MBIR processed the four datasets which consist

of 73 slices of size 120 × 210 pixels in approximately 1, 28, 23, and 30 minutes,

respectively.

Discussion

In Fig. 1.17, MBIR shows significant enhancement in reducing artifacts and re-

ducing noise compared with SAFT and l1-norm. SAFT and MBIR techniques were

able to show the back wall of the specimen. The back wall is located at depth 100

cm. The detection test showed better performance of 2.5D and 2D MBIR over all

techniques with 2.5D MBIR being slightly better than 2D MBIR.

Since all three algorithms are based on a linear forward model, they all exhibit

certain reconstruction artifacts such as multiple reflection echos of a single defect. For

example, multiple echos appeared of defect 13 in smooth-ver-slice8 for all techniques.
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Fig. 1.12. The concrete specimen and the MIRA device used for the
experimental data [33]. 20 defects are embedded in the specimen.

Table 1.2.
Parameter settings used for all techniques to reconstruct the experi-
mental MIRA data.

Parameters Value Unit

Carrier frequency 52 kHz

Sampling frequency 200 kHz

Cement p-wave speed 2620 m/s

Reconstruction resolution 1 cm

Number of columns 210 -

Number of rows 120 -
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Fig. 1.13. Type and legend for each defect [33]. These defects are
embedded in the concrete specimen.
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Fig. 1.14. Smooth side view of defects [33]. The location of the
defects is approximated due to possible displacement while pouring
the cement.

Fig. 1.15. Depth view of defects, smooth side on the right and rough
side on the left, [33]. The location of the defects is approximated due
to possible displacement while pouring the cement.
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Fig. 1.16. A picture of defect 12 before embedding it in the specimen,
[33]. It is made of dissolving styrofoam.

Table 1.3.
The l1-norm, 2D MBIR, and 2.5D MBIR parameter settings used in
the simulated K-wave and the experimental MIRA data.

Parameters l1-norm 2D MBIR 2.5D MBIR Unit

ε 0.01 0.01 0.01 -

α0 30 30 30 (MHz ·m)−1

p - 1.1 1.1 -

q - 2 2 -

T - 1 1 -

cmax - 10 10 -

a - 3 3 -

σg - 3 3 m−3

σe 15 15 15 m−3

γ - - 0.5 -

Table 1.4.
Precision vs recall area for all techniques in Fig. 1.11 and Fig. 1.18.
MBIR has the highest PR area.

SAFT l1-norm 2D MBIR 2.5D MBIR

PR area for k-wave data 0.1236 0.2131 0.3476 -

PR area for MIRA data 0.1397 0.1932 0.2836 0.2908
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Fig. 1.17. Comparison between all reconstruction results from the
MIRA experimental data: the first row from the top is the position
of the defects, the second row is SAFT reconstruction, the third row
is l1-norm reconstruction, the fourth row is 2D MBIR reconstruction,
and the fifth row is 2.5D MBIR reconstruction. 2.5D and 2D MBIR
tend to produce results with less noise and artifacts compared to other
techniques.
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Fig. 1.18. PR curves for each technique over all 73 slices in the MIRA
experimental data. 2.5D and 2D MBIR outperforms the other tech-
niques.
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PR area = 0.5906 PR area = 0.6199 PR area = 0.4235

(a) (b) (c) (d)

PR area = 0.4827 PR area = 0.4384 PR area = 0.4951 PR area =0.5234

(e) (f) (g) (h)

Fig. 1.19. A comparison between different settings of MBIR where
(a) is the defect diagram of rough-hor-slice11, (b) is 2D MBIR recon-
struction, (c) is 2.5D MBIR reconstruction with all modifications to
the forward and prior models, (d) is 2D MBIR reconstruction with-
out direct arrival signal or shift error estimation, (e) is 2D MBIR
reconstruction without shift error estimation, (f) is 2D MBIR recon-
struction using regular stitching, (g) is 2D MBIR reconstruction using
an isotropic model, (h) is 2D MBIR reconstruction for a constant reg-
ularization. The results in (c) shows performance enhancement over
the other results.
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1.5.4 Results from Modifying the Forward and Prior Models

In this section, we investigate the effect of various MBIR model attributes on the

image quality resulting from the MIRA data reconstructions. In particular, we com-

puted reconstructions without direct arrival signal elimination, shift error estimation,

anisotropic reconstruction, and spatially variant regularization. We then compared

each of these degraded results to the baseline MBIR reconstructions using the com-

plete MBIR algorithm in order to better understand the value of each technique

in overall image quality. We also calculated the component-wise PR area for each

reconstruction.

Fig. 1.19 compares MBIR performance when not using each modification. Fig.

1.19b shows 2D MBIR reconstruction with PR area = 0.5906. Fig. 1.19c shows

2.5D MBIR reconstruction with PR area = 0.6199. Fig. 1.19d shows 2D MBIR

reconstruction without the direct arrival signal modeling with PR area = 0.4235.

Fig. 1.19e shows 2D MBIR reconstruction with the direct arrival signal modeling,

but not the shift error estimation, with PR area = 0.4827. Fig. 1.19f shows 2D MBIR

reconstruction with regular stitching with PR area = 0.4384. Fig. 1.19g shows 2D

MBIR reconstruction with an isotropic forward model with PR area = 0.4951. Fig.

1.19h shows 2D MBIR reconstruction with constant regularization with PR area =

0.5234. All the PR areas specified in Fig. 1.19 were obtained by calculating the

precision and recall for each plot for only the cross-section shown in Fig. 1.19a.

Discussion

Fig. 1.19d does not model the direct arrival which causes the reconstruction to

have artifacts at the top of the image. These artifacts have high amplitude and

could overshadow targets closer to the transducers. Fig. 1.19e reduces these artifacts

by modeling the direct arrival signal. However, some residual of the artifacts still

appears at the top right corner due to changes in acoustic speed in the concrete

medium. Fig. 1.19f shows the results of performing conventional stitching technique
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to stitch the reconstruction from multiple scans. The stitching method produces

vertical discontinuities at the boundaries between the stitched images. Also, the

stitching method does not make use of additional information that can be obtained

from adjacent scans to improve the reconstruction. Fig. 1.19g uses an isotropic model

for the transmitted beam which produces artifacts at the top of the image. These

artifacts appear because of the assumption that the signal travels in all directions

equally which allows MBIR to use pixels with large transmitter-pixel or pixel-receiver

angles to fit the data. Fig. 1.19h uses a spatially constant regularization which

suppresses weak details in deep regions of the reconstruction. This results from the

fact that the signal is dramatically attenuated as it propagates into deeper regions.

Consequently, reconstruction with a constant regularization attenuates most useful

detail in the deep parts of the image.

In contrast, Fig. 1.19b shows 2D MBIR with much better performance in reduc-

ing artifacts, exploiting correlations from adjacent scans, showing targets for deeper

regions, and having larger PR area. Finally, Fig. 1.19c shows the 2.5D MBIR recon-

struction which is qualitatively and quantitatively slightly better than 2D MBIR.

1.5.5 Convergence of MBIR

To show the algorithm’s convergence behavior, we reconstructed cross-section

rough-hor-slice11 in Fig. 1.19a from the MIRA data with different initializations:

uniformly distributed random noise with range [0, 10], zero, a constant value of 10.

Fig. 1.20 shows the NRMSE vs. iteration for the different initializations.

1.6 Summary

This thesis proposed an MBIR algorithm for ultrasonic one-sided NDE. The thesis

showed the derivation of a linear forward model. The QGGMRF potential function for

the Gibbs distribution prior model was chosen for this problem because it guarantees

function convexity, models edges and low contrast regions, and has continuous first
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Fig. 1.20. NRMSE vs. iteration for different initializations in the
MBIR algorithm. The initializations used in the plot are uniformly
distributed random noise with range [0, 10], zero, and a constant value
of 10, respectively.
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and second derivatives. Furthermore, we proposed modifications to both the forward

and prior models that improved reconstruction quality. These modifications included

direct arrival signal elimination, anisotropic transmit and receive pattern, and spa-

tially variant regularization. Additionally, a joint-MAP estimate and a 2.5D MBIR

were performed to process large multiple scans at once which helps reduce noise and

artifacts dramatically compared with results from individual scans. The research was

supported by simulated and extensive experimental results. The results compared the

performance of MBIR with SAFT and l1-norm qualitatively and quantitatively. The

results showed noticeable improvements in MBIR over SAFT and l1-norm in reducing

noise and artifacts.

While the results of this thesis are promising, it is worth mentioning the need of a

non-linear forward model to address the issues due to the complexity of the one-sided

UNDE systems, such as reverberation, and acoustic shadowing.
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2. DIRECT DEEP LEARNING FOR ONE-SIDED

ULTRASONIC NON-DESTRUCTIVE EVALUATION

2.1 Introduction

One-sided ultrasound non-destructive evaluation (UNDE) is vital for inspecting

large heterogeneous specimens, such as the casing of injection wells and thick concrete

walls [35]. To perform the inspections, different kind of systems are used to extract

ultrasonic data, such as plane wave imaging (PWI) [36,37] and multi-static array [34].

In a PWI system, all the transducers transmit at the same time and receive the re-

flections. In a multi-static array system, each transducer transmits individually while

the rest of the transducers receive (see Fig. 2.1). PWI is typically used for real time

reconstruction while multi-static array system is more preferred in some applications,

such as inspecting large concrete structures, to acquire more information. However,

raw data from multi-static array cannot be arranged to form an image with simple

continuous patterns or artifacts as in PWI, Fig. 2.2, which requires post-processing

to reconstruct an image with much simpler artifacts.

Due to the need for rapid reconstructions with multi-static array, full waveform

inversion approaches [38] are not practical for ultrasound NDE and hence analytic

algorithms based on a delay-and-sum approach, such as the synthetic aperture focus-

ing technique (SAFT), are routinely used for reconstructions of ultrasound reflection

mode data [8–10].

Recently, we have developed a model-based iterative reconstruction [39] approach

using a simplified linear model and demonstrated significant improvements in recon-

structed image quality as compared to SAFT, while still being able to produce a

reconstruction in near real-time. However, this MBIR method still results in artifacts
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due to the inherent non-linearity of the ultrasound system. In summary, existing ap-

proaches for one-sided UNDE may result in reconstructions with significant artifacts.

There have been several recent efforts to use deep convolutional neural networks

(CNN) to address inverse problems in imaging [40]. One class of algorithms applies a

two-step, non-iterative approach composed of a simple inversion followed by a CNN

to obtain a reconstruction for inverse problems such as tomography [41, 42], MRI

[43, 44], photo-acoustic tomography [45, 46], compressed sensing [47], and non-linear

optical imaging based on multiple scattering [48]. Alternatively, researchers have

adapted variable splitting strategies such as the Plug-and-Play approach [49, 50] to

iteratively solve two learned sub-problems corresponding to a forward-model inversion

and a denoising step [46, 51–55]. In summary, deep-learning based techniques have

demonstrated promising results for a variety of inverse problems in imaging.

Recently, methods have been proposed for non-iterative reconstruction of PWI

ultrasound data using CNNs [56,57]. In this approach, the CNN can directly process

the ultrasound data because the PWI ultrasound data can be arranged to form an

image with simple patterns that the CNN can sufficiently model. However, this

approach is not directly applicable to the reconstruction of multi-static UNDE data.

In this thesis, we present a direct deep learning (DDL) method for reconstruct-

ing high-quality images from multi-static one-sided ultrasound data. Our method is

based on a two-step process. In the first step, we transform the raw data from the

measurement domain to the image domain using a simple linear back-projection. In

the second step, we use a multi-scale deep convolutional neural network to compute

the final reconstructed image. In addition, we propose methods for training the algo-

rithm from ultrasound simulation data that make it robust to model mis-match and

compensate for the attenuation of deeper reflections.

Furthermore, we compare the results of our proposed DDL algorithm to the re-

constructions produced by SAFT and MBIR using both simulated and real data, and

we demonstrate qualitative reductions in noise and artifacts along with quantitative

improvements in precision-recall performance on ground-truth targets.
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We introduce five major contributions in this thesis:

1) A non-iterative two-stage inversion approach using back-projection and CNN for

multi-static UNDE applications;

2) An approach to reducing modeling mismatch effects when reconstructing from real

data;

3) A space-variant amplification approach for more accurate reconstruction of deep

targets;

4) A joint CNN technique for the reconstruction of multiple multi-static scans for

large field-of-view imaging;

5) Qualitative and quantitative results from simulated and experimental data.

The organization of the rest of this thesis is as follows. In section 2.2, we cover the

ultrasound forward model. In section 2.3, we cover our proposed technique. In section

2.4, we cover the modeling mismatch issue. In section 2.5, we cover the attenuation

of deeper region issue. In section 2.6, we cover the joint reconstruction approach.

Finally, in section 2.7, we cover results from simulated and experimental data.

Fig. 2.1. Illustration of a widely used ultrasound system for one-sided
non-destructive evaluation using a multi-static array. The transducers
are used to make pulse-echo measurements which are processed to
reconstruct the cross-section.
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Fig. 2.2. Illustration of raw data (arranged to form a 2D image)
obtained from PWI and multi-static array using 10 transducers. (a) is
the ground truth image. (b) is the raw data obtained from PWI where
each column correspond to the received signal at one transducer. (c)
is the raw data obtained from multi-static array where each column
corresponds to one transmit-receive pair.

2.2 Ultrasound Forward Model and Linear Model-Based Inversion

The goal of ultrasound reflection mode imaging is to determine the properties of

a cross-section being imaged using a transducer array (See Fig. 2.1). In particular,
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the ultrasound wave propagation in a medium can be described by a set of coupled

partial differential equations [58],

∂u

∂t
= − 1

ρ0

∇p,

∂ρ

∂t
= −ρ0∇u− u∇ρ0,

p = c2
0(ρ+ d · ∇ρ0 − Lρ), (2.1)

where u is the acoustic particle velocity, ρ is the acoustic density, d is the acoustic

particle displacement, L is an operator defined by

L = −2α0c
y−1
0

∂

∂t

(
−∇2

) y
2
−1

+ 2α0c
y
0 tan

(πy
2

)
(−∇2)

y+1
2
−1,

and 0 < y < 3, y 6= 1 is a parameter that controls the behavior of the absorption and

dispersion. For the forward (simulation) model, the inputs to this system of equations

are the 2D fields corresponding to c0, the acoustic velocities; ρ0, the ambient densities;

and α0, the attenuation. The output is the pressure p measured at the locations rj of

the transducers as a function of time, t. These measurements are then concatenated

to form the measurement vector y. Abstractly, we can represent this forward model

relationship as

y = f(c0, ρ0, α0) .

Using these equations we can solve for the pressure at the transducer locations for a

given input signal in order to simulate the received signal. However, the inversion of

the underlying quantities from the received signals based on this model is challenging

because of the complicated and non-linear nature of the forward model.

To address these challenges, we developed a simplified linear model for the mea-

surements [39], given by

ỹi,j(t) =

∫
R3

Ãi,j(τi,j(ν), t)x̃(ν)dν + d̃i,j(t), (2.2)

where ỹi,j is the measurement at the transmit-receive pair (i, j), ν is a point in the field

of view, Ãi,j is a response function that accounts for the time-shift and attenuation

of the transmitted pulse, x̃ is the reflection coefficient, τi,j is the time delay of the
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transmitted signal for point ν and the measurement pair (i, j), d̃i,j is the direct arrival

signal. Using this model, we designed a fast model-based reconstruction approach [39]

(MBIR) which works by minimizing the cost-function

v̂ ← argmin
v

{
1

2
||y − Av||22+R(v)

}
, (2.3)

where A is a projection matrix which discretizes Ã, v is a vector of reflection co-

efficients and R is a Markov random field based regularizer [59]. While this model

is simple and significantly improves the reconstructions compared to conventional

delay-and-sum approaches like SAFT, the method can result in artifacts in the re-

constructed images due to the assumption of linearity. Furthermore, the reflection

coefficient may not have a clear quantitative interpretation compared to quantities

such as the speed, density or attenuation in the medium.
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Fig. 2.3. Illustration of a back-projection of a one-sided ultrasonic
NDE measurements using the system matrix A in Eq. 2.3. The
left image is the ground truth (speed-of-sound in units of m/s) and
the right image is the back-projection of the simulated measurements
obtained from the ground truth using an array of 10 transducers and a
non-linear wave propagation model. The back-projection suffers from
artifacts and does not faithfully reconstruct the object.
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Input 
Image

Output
Image

2 X 2 max-pooling

2 X 2 up-sampling

128 X 48 128 X 483 X 3 conv + BN + ReLU

copy

1 X 1 conv

128 X 48 X 64

64 X 24 X 256

32 X 12 X 512

16 X 6 X 512
8 X 3 X 1024

Fig. 2.4. DDL architecture used for the reconstructions. The input
is an image obtained by applying the adjoint of a linear operator to
the measurements. Within each stage, we apply a 3 × 3 convolution
followed by a batch normalization and a rectified linear unit. The size
of the feature maps at each stage is noted in the image.
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2.3 Direct Deep Learning for Non-Linear Ultrasound Inversion

Since computing the exact solutions to (2.1) is expensive, we propose a two stage

approach to the inversion. In the first step we leverage our previously introduced

linear model and use the A matrix in (2.3) to get the back-projection, i.e. ṽ = ATy.

While this method highlights some of the essential features, such a reconstruction is

not quantitative and has severe artifacts due to the non-linearity of the interaction

between the ultrasound signal and specimen (see Fig. 2.3). In order to compensate for

these artifacts, we use such an image as input to a deep-neural network that has been

trained to map such an input to the actual image of the desired material properties

such as the speed of sound in the medium. In particular, we use a modified U-net

architecture in [60] to learn a mapping of this initial image to the actual reconstruction

(see Fig. 2.4). This architecture is desirable because it has the entire input image in its

receptive field and can hence learn features that are globally correlated. Furthermore

the presence of skip-connections ensures that the architecture combines the features

from different scales effectively. We will refer to the proposed technique as direct deep

learning (DDL) for the rest of the thesis.

Training of DDL using simulated data

We use the k-wave simulator to train DDL on one-sided UNDE applications [58].

The inputs to k-wave are three images: speed, density, and attenuation. The output

of k-wave are measurement vectors where each vector corresponds to measurements

from one transmit-receive pair. Fig. 2.5 shows an illustration of k-wave simulation

where the output vectors are stacked to form one long vector. In this thesis, we vary

the speed input and fix both the density and attenuation inputs for simplicity. We

refer to this kind of noiseless dataset as pure-simulation-input (PSI) data. DDL is

trained by inputing the back-projection of the k-wave measurements to the neural

network and calculating the cost function of the output of the neural network and

the ground truth speed image as shown in Fig. 2.6.
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Fig. 2.5. Illustration of k-wave simulated data.

Fig. 2.6. Illustration of DDL training from k-wave PSI training data.
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2.4 Modeling Mismatch

DDL is trained on simulated data because we don’t have enough real data for

training. However, this creates a problem which is a modeling mismatch between

the k-wave simulation and the real data obtained in [39], see Fig. 2.7. Some of the

reasons why the modeling mismatch is happening are as follows. First, the model

for the transmitted signal used in k-wave is not sufficient enough to match the real

transmitted signal in the experimental data. Currently, the best way to model the

transmitted signal is to use either a clean direct arrival signal or a clean reflection from

the experimental data. Next, k-wave does not model a transducer-surface coupling or

any reverberations between defects and the concrete surface because it assumes the

transducers are embedded in the medium. Next, another important reason is that we

assume the concrete is a homogeneous medium in the k-wave simulation which is not

the case in reality. This modeling mismatch does not effect the performance of SAFT

or MBIR, but it is very critical in DDL because DDL will be trained on simulated

data that do not sufficiently represent real data.

In this thesis, we propose a solution that reduces the effect of the modeling

mismatch in the DDL training. We propose adding additive white Gaussian noise

(AWGN) to the input of the simulation in the training set. We call this dataset

noisy-simulation-input (NSI) data. Fig. 2.8 shows an illustration of the NSI k-wave

block that needs to replace the PSI k-wave block in Fig. 2.6 to generate NSI data.

Note that this solution does not reduce the modeling mismatch itself, but it reduces

its effect. Furthermore, it makes DDL learn the general features of the system rather

than very sophisticated features of k-wave simulation, i.e. the noise applied to the

simulation input acts as a type of regularization to DDL. Also, note that the loss

function for the DDL training uses the original ground truth not the noisy simulation

input.
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Fig. 2.7. Illustration of k-wave modeling mismatch with real data.
The k-wave plot is from a k-wave simulation from a generated ground
truth similar to a ground truth in the MIRA real data in [39].

Fig. 2.8. Illustration of noisy-simulation-input (NSI) k-wave where
AWGN is added to the input of k-wave before simulation. This block
should replace the PSI k-wave block in Fig. 2.6 to generate NSI data.
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2.5 Spatially Variant Amplification for Input In DDL

As the ultrasonic signal propagates through the medium, it gets attenuated con-

siderably. This attenuation causes the reflection of deeper defects to be very weak.

The convolutional layer in neural network is space invariant. Therefore, it is difficult

to design an architecture based on convolutional layers that could account for the at-

tenuation of deeper reflections. An issue in DDL appears when it mis-classifies weak

reflections with steel rebars. The reason is that steel rebars are considered point scat-

ters, so their reflections are also weak, and DDL was trained on that. Furthermore,

due to the weak reflections of deeper objects, many of these objects are classified

as steel rebars in that region by DDL. To resolve this issue, we propose a spatially

variant amplification (SVA) step where deeper regions of the back-projections are

amplified more than closer regions. We adopt a similar formula used in MBIR for the

spatially variant regularization [39], i.e.

cs = 1 + (cmax − 1)

(
Depth of s

Maximum Depth

)a
, (2.4)

ṽs ← ṽscs, (2.5)

where cs is the amplification coefficient for pixel s, cmax is the the maximum

amplification for the deepest region, a is a parameter that controls the transitioning

from low amplification to high amplification, and ṽs is the value of pixel s in the

back-projection ṽ.

2.6 Joint DDL

The DDL shown in section 2.3 is designed to reconstruct from a single scan.

However, DDL is not designed for applications where multiple scans are obtained

to reconstruct from a large field of view. For scanning large regions, typically, the

ultrasonic device is used to perform multiples scans in raster order to build up a

3D profile of the structure, Fig. 2.9. A conventional stitching could be applied

to stitch single DDL reconstructions, but this is not an efficient way to solve this
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problem. In [39], MBIR used the joint-MAP technique to perform the stitching

internally which turned out to be very efficient in reducing the stitching artifacts

and exploiting extra information from adjacent scans. We are proposing a joint-

DDL technique, an analogous approach to the joint-MAP technique in MBIR, that

combines the back-projections of all the scans needed to reconstruct from the large

field of view. The joint-DDL technique uses multiple input channels equal to the

number of scans performed. However, the DDL architecture requires that the input

size is the same as the output size which is not the case if each input channel has the

size of a small single back-projection, and the output channel has the size of the large

field of view. Therefore, joint-DDL makes the input channels have the same size as

the output channels, but each input channel is set to zero everywhere except for the

region where the scan is assumed to happen. This region is set to equal the back-

projection of the corresponding scan. In this case, the non-zero region in each input

channel is a shifted version of the region in the next or previous scan. The joint-DLL

technique will require its architecture to be slightly different from DDL architecture,

see Fig. 2.10. The first modification is the size of the input and output channel

which will change to the size of the large field of view. The second modification is the

number of input channel which will change from one to the number of scans obtained

to cover the whole cross-section.

Training for Joint DDL

To train DDL on reconstructing multiple scans jointly, we need to generate mul-

tiple images that share the same cross section. Each cross section will be considered

one training sample. If we use N independent cross-sections for the dataset, we need

to simulate N ×M images, where M is the number of images per cross-section. This

is considered computationally expensive and inefficient. Independent cross-sections

means that cross-sections do not share the same defects or targets. We are propos-

ing a way to reduce the number of simulations needed while keeping the number of
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1st Scan 2nd Scan Mth Scan…

One Cross-section

S
W

Fig. 2.9. An illustration of multiple measurements needed to scan
a cross-section. Images from each scan share some pixels with its
neighbor images. Proper stitching technique is needed to account for
this shared areas in the field-of-view.

cross-sections, N , the same. The idea is to use dependent cross-sections. We use a

significantly wide ground truth image with width equals to W + (M + N − 2) × S,

where W is the width of a single scan image, M is the number of images per cross-

section, N is the number of cross-sections needed, and S is the length of the shift

between each scan. Next, we assign each cross-section a unique M consecutive small

images from the wide ground truth. Therefore, with this arrangement, we will only

need to simulate M +N − 1 images to obtain N cross-sections for the DDL dataset,

Figs. 2.9 and 2.11.

2.7 Results

In this section we compare DDL with two different techniques qualitatively and

quantitatively.
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…

Input 
Image

Output
Image

2 X 2 max-pooling

2 X 2 up-sampling

128 X 48 128 X 483 X 3 conv + BN + ReLU

copy

1 X 1 conv

128 X 48 X 64

64 X 24 X 256

32 X 12 X 512

16 X 6 X 512
8 X 3 X 1024

Fig. 2.10. Illustration of Joint-DDL architecture. Within each stage,
we apply a 3 × 3 convolution followed by a batch normalization and
a rectified linear unit. The size of the feature maps at each stage is
noted in the image. The input to the neural network contains multiple
channels where each channel is a back-projection of one of the scans
shifted in the correct region where the scan was performed.

1st CS 2nd CS Nth CS…

S

Fig. 2.11. An illustration of generating dataset of dependent cross-
sections (CS). This helps in reducing the number of scans and simu-
lations needed for DDL training.



57

2.7.1 Algorithms for Comparison

We compare DDL with SAFT [61] and MBIR [39] using simulated and experimen-

tal data. Both simulated and experimental data perform multiple scans to cover a

large field of view. SAFT processes the multiple scans jointly while MBIR processes

them using the joint-MAP stitching technique. For all MBIR qualitative results, the

MBIR regularization parameters were tuned to show the best results visually.

DDL was trained on dataset that was generated by k-wave. k-wave simulates

each single scan individually. The inputs to k-wave are 3 3D-ground-truth images of

speed, density, and attenuation (we vary speed and fix density and attenuation) to

simulate the propagation in 3D. The reason to use a 3D simulation is to model the

attenuation of the propagated signal better and reduce the modeling mismatch as

possible. The speed 3D-ground-truth image contains three layers that are duplicates

of a 2D ground truth image. Next, the measurements were back-projected using the

same system matrix used in MBIR. Note that the back-projection is in 2D not 3D.

However, the size of the system matrix had to increase a little for DDL to account

for the down-sampling in the architecture, i.e. the size changed from 120 x 210

cm to 128 x 224 cm. The reconstructed image is, then, cropped to return to the

actual size of the field of view. Next, the back-projections of the simulated dataset

are normalized by the mean and standard deviation of the back-projections of the

training set. However, the back-projections of the experimental data are normalized

by the mean and standard deviation of the back-projections of the experimental data.

The mean and the variance are calculated without including the regions where the

direct arrival artifacts might appear, e.g. the first 10 rows of all back-projections are

ignored. Next, a spatially variant amplification is used to amplify deeper regions as

described in section 2.5. The values we used for the parameters in Eq. 2.4 are a = 3

and cmax = 10. Finally, joint-DDL is used to reconstruct from the multiple scans in

both simulated and experimental data.
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The signal-to-noise-ratio (SNR) will be used for one DDL training and for com-

parison between the techniques. We define SNR to be

SNR = 10 log10

(
‖y‖2

‖w‖2

)
,

where y is the noiseless simulated output from k-wave, and w is the added noise to y.

In this section, we will use two different DDL trainings: DDL trained on pure-

simulation-input data (PSI-DDL) and DDL trained on noisy-simulation-input data

where AWGN is added to the simulation input with SNR = 0 (NSI-DDL) as discussed

in section 2.4. The training diagram for these different datasets is shown in Figs. 2.6

and 2.8.

The datasets were generated from dependent cross-sections. For each dataset,

1600, 200, and 200 cross-sections from the dataset were used for DDL training, vali-

dation, and testing, respectively. For DDL, we used the PyTorch [62] library, and the

code for the neural network architecture was obtained from [63]. Stochastic gradient

descent is used to optimize the loss function with batch size = 1, learning rate =

0.0001, and momentum = 0.5. Fig. 2.12 shows examples of the training phantoms

used to generate the ultrasound training data along with the curves for training and

validation plots for the data-set.

A component-wise precision and recall (PR) plot is used for the simulated and

experimental data to compare the performance of each technique as shown in [39].

The number of true positive (TP), false positive (FP), and false negative (FN) for

each technique are calculated using this metric. Using these values, the precision and

recall curve can be plotted as follows:

recall =
TP

TP + FN

and

precision =
TP

TP + FP
.

the techniques are compared by the area under the PR curves where larger area

indicates better performance. The standard Matlab functions “edge(x,’log’,0)” and
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“imfill(x,’holes’)”, where x is the image we would like to segment, are used to segment

the reconstructed image into connected components. However, since DDL images has

an offset of the background acoustic speed, e.g. 2620 m/s for concrete, DDL images

are modified in the following way:

x← |x− 2620|,

where x is the original DDL image. Next, for each connected component, the maxi-

mum value and centroid is calculated and stored. Next, each connected component

is paired with a target if its centroid is the closest to the target’s centroid and if it

is within a range r cm from the target. Note that targets or connected components

cannot be paired more than once. There are two factors that can help in choosing the

value of r. The first factor is the error margin of the true location of the targets (egt).

There is no error margin in simulated data because the centroid of the targets are well

known, so egt is zero, but in experimental data, egt is not zero. The second factor,

is the average error margin of the target’s reconstructed centroid for all techniques

(er). Typically, r is chosen to be the sum of the two error margins. Next, All images

are divided by their maximum value for each technique. Next, thresholds from 1 to 0

with step 0.001 are applied to all images. For each threshold, a TP is declared if the

maximum value of a paired connected component is equal or greater than the thresh-

old. A FP is declared if the maximum value of an unpaired connected component is

equal or greater than the threshold. The FN is calculated by subtracting the number

of TP’s from the number of targets.

We used 2.60GHz Sky Lake CPUs and Tesla P100 GPUs. SAFT was performed

using Matlab. MBIR was performed using C. DDL was performed using C (first step)

and python (second step). The code for both MBIR and DDL was optimized for fast

performance.

The simulation for both PSI and NSI datasets using k-wave required a total of

about 48 hours using 96 CPUs and 12 GPUs. The DDL was trained two times for

PSI and NSI where each training performed 100 epochs and required about 3.5 hours

using one GPU.
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Fig. 2.12. Example of training phantoms used to train DDL and a
plot of the training and validation loss vs. epoch.

For each cross-section reconstruction, SAFT required approximately 1 seconds

using one CPU. MBIR required on average approximately 19 seconds using one CPU.

The first step in DDL required approximately 0.54 seconds using one CPU. The second

step in DDL required approximately 1.8 seconds using one CPU, or about 0.16 seconds

using one GPU.

2.7.2 K-wave Simulated Results

In this section, we generate PSI data by simulating a system that is similar to the

MIRA experiment performed in [39]. We used a ten transducer multi-static system

with an acquisition geometry in which one of the transducers transmits while the

others receive. The transducers are spaced 4 cm apart. The transmitter sends a

pulse of duration 50 µs with a carrier frequency of 52 KHz. The receiver collects 201

samples with a sampling frequency of 200 KHz.

The PSI dataset was generated by the k-Wave simulation software with its de-

fault boundary conditions [58] and is representative of the type of defects seen while

inspecting thick, reinforced concrete walls with embedded steel plates. The density
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and attenuation were fixed, while the speed of sound varied from pixel to pixel de-

pending on the material of the object. The background of the field of view is concrete

with acoustic speed of 2620 m/s. The steel rebar is represented as circles with speed

5660 m/s. The defects are represented as rectangles with different speeds with pos-

sible alkali–silica reactions (ASR) [64, 65] inside with speed 4500 m/s. The cracks

are represented as ASR crooked lines. We used a wide ground truth (for dependent

cross-sections) for the dataset as discussed in section 2.6, so we can take multiple

scans where each scan is shifted by 10 cm from the previous or next scan. Each

cross-section is assigned a unique 18 consecutive images of size 128 × 48 from the

wide ground truth.

Fig. 2.13 shows reconstructed images from the test set (not used in training or val-

idation) using SAFT, the linear MBIR of (2.3), PSI-DDL, and NSI-DDL techniques.

PSI-DDL is trained from the training set of the PSI data. NSI-DDL is trained on

the training set of the NSI data which is the same as the PSI data except that we

add noise to the simulation input. Table 2.1 and Table 2.2 show the settings of all

techniques. Fig. 2.14 and Table 2.3 show the component-wise PR results for each

techniques over the results from the entire PSI testing set where PSI-DDL has the

highest PR area. The error margin egt with these results is zero, but er is high because

of SAFT’s inaccuracy. Therefore, the range r for the PR metric was chosen to be 4

cm where lower values of r produce much poorer performance for SAFT with respect

to the other techniques.

Fig. 2.15 shows the performance of all techniques in reconstructing sample 1 in

Fig. 2.13 with AWGN added to the measurements of sample 1 with different SNR

values.

Fig. 2.16 shows the performance of all techniques in reconstructing sample 1 in

Fig. 2.13 with fewer measurements. The original number of measurement uses 45

distinct transmitter-receiver pairs for each scan.
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Discussion

In Fig. 2.13, the units of each method are different, i.e. the unit in SAFT, MBIR,

and DDL are pressure, reflectivity, and speed of sound, respectively. What makes

DDL advantageous is that we are reconstructing the same unit as the ground truth

which makes it easy to interpret the image. Notice that PSI-DDL reconstruction

significantly outperforms SAFT and MBIR in reconstructing the targets with shape

very close to the targets’ true shape, and in reducing artifacts found in SAFT and

MBIR. Sample 4 shows an important example where PSI-DDL was able to reduce the

reverberation and shadowing artifacts significantly compared with SAFT and MBIR.

NSI-DDL does not perform as good as PSI-DDL because we are intentionally adding

noise to the simulation input in the training. This noisy simulation input degrades

the performance of NSI-DDL, but it will enhance the performance when modeling

mismatch is an issue, specially with real data.

In Fig. 2.15, MBIR reduces noise better than the other techniques. In general,

tragets in NSI-DDL appear more clearly. However, the noise in PSI-DDL and NSI-

DDL are shown as circular or ASR objects similar to the ones it was trained on. Such

noise may be hard to spot and may pass as actual features in the specimen.

In Fig. 2.16, PSI-DDL and NSI-DDL show better results overall than the other

methods in showing the targets clearly with less noise and artifacts. However, similar

to SAFT, PSI-DDL and NSI-DDL show artifacts at the top of the image caused by

the direct arrival signal. The reason this is happening in PSI-DDL and NSI-DDL

is because they were trained on removing the direct arrival artifacts from 45 pairs.

With fewer pairs, the overlapping of the direct arrival artifacts is different to DDL

which makes the artifact problem difficult to resolve.

2.7.3 MIRA Experimental Results

We are using the same MIRA experimental data demonstrated in [39] that was

used mainly to compare MBIR with SAFT. In this thesis, we apply DDL to the
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Fig. 2.13. Comparison between all reconstruction results from k-wave
simulated data from the test set only: the first row is the ground truth,
the second row is SAFT reconstruction, the third row is linear MBIR
reconstruction, the fourth row is PSI-DDL reconstruction, and the
fifth row is NSI-DDL reconstruction. PSI-DDL is outperforming the
other techniques in showing target shapes much closer to the ground
truth shapes.
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Fig. 2.14. PR plots for results from the entire k-wave PSI testing data.
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Fig. 2.15. Comparison between all techniques on reconstructing sam-
ple 1 in Fig. 2.13 with AWGN added to the measurements of sample
1 with different SNR values: the first row is SAFT reconstruction, the
second row is linear MBIR reconstruction, the third row is PSI-DDL
reconstruction, and the fourth row is NSI-DDL reconstruction.
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Fig. 2.16. Comparison between all techniques on reconstructing sam-
ple 1 in Fig. 2.13 with different number of transmitter-receiver pairs
(less than 45 distinct pairs) per scan: the first row is SAFT recon-
struction, the second row is linear MBIR reconstruction, the third
row is PSI-DDL reconstruction, and the fourth row is NSI-DDL re-
construction.
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MIRA data and compare its performance with the same SAFT and MBIR results

previously published. The experiment extracted real data from a large concrete block

of size 213.36 x 213.36 x 101.6 cm (84 x 84 x 40 inches), Fig. 2.17. The specimen

was heavily reinforced with horizontal and vertical steel rebars and was embedded

with designed defects in different locations, Fig. 2.18. However, the location of the

targets are not exact due to possible displacement of the targets while pouring the

cement. The specimen was scanned from both sides horizontally and vertically. Each

cross-section required 18 scans with about 10-cm shift to cover the whole field of view.

A total of 1314 scans were performed to cover 73 cross-sections of the specimen.

The MIRA device, Fig. 2.17, is used to collect the data [33, 34]. It contains

10 columns of transducers separated by 4 cm where each column contains 4 dry

contact points with 2 mm radius. Only the distinct pairs, 45 pairs, are used in the

reconstruction results for all techniques. The carrier frequency is 52 KHz, the speed

of sound in concrete is 2620 m/s, and the sampling frequency is 200 KHz.

Four techniques were used to reconstruct the data: SAFT, MBIR, PSI-DDL, and

NSI-DDL. For each cross-section, the techniques reconstruct the 18 scans jointly.

Fig. 2.19 shows the reconstruction for each technique. The first row shows the

defect diagram. The second row shows the instantaneous envelop of SAFT reconstruc-

tion. The third row shows MBIR reconstruction. The fourth row shows PSI-DDL

reconstruction. The fifth row shows NSI-DDL reconstruction.

Fig. 2.20 and Table 2.3 show the component-wise PR results for each technique

over the whole 73 cross-sections where r is set to 10 cm because the position of the

targets was not exactly known due to possible displacement while pouring the cement.

NSI-DDL shows larger PR area than the other techniques. The MBIR PR area was

optimized with respect to σg for a fair comparison.
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Discussion

The results in Fig. 2.19 show significant enhancement for MBIR and NSI-DDL

over SAFT in reducing noise and artifacts. Furthermore, NSI-DDL tends to show

targets shape closer to the real shape than MBIR, e.g. circular steel rebars, rectangu-

lar defects, and a line for the back wall. In general, NSI-DDL tends to show targets

more clearly and MBIR tends to have less noise.

NSI-DDL was able to reduce reverberation artifacts better than the other tech-

niques. For example, NSI-DDL was able to resolve the reverberation caused by the

edges of D-8, D-9, D-12, and D-13. However, NSI-DDL was not able to resolve the

reverberation between the targets and the surface. This is because k-wave does not

model transducer-surface coupling as discussed in section 2.4. Also, the shadowing

artifacts appear mostly in the back wall for all techniques where a target can over-

shadow the back wall. The back wall in NSI-DDL tends to appear better behind

targets than the other techniques.

The performance of NSI-DDL is better than PSI-DDL because NSI-DDL reduces

the modeling mismatch issue which is a major problem in DDL.

2.7.4 Results from Spatially Variant Amplification

In this section we show results for sample 1 in Fig. 2.19 before and after the

spatially variant amplification upgrade. Fig. 2.21 shows the results where (a) shows

NSI-DDL without SVA and (b) shows NSI-DDL with SVA.

Discussion

The image in (a) shows reconstruction where deeper regions are attenuated and

have circular artifacts because of the weak reflections from these regions. The image

in (b) shows better reconstruction for deeper regions.
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Table 2.1.
Parameter settings used for all techniques for the k-wave and the MIRA data.

Parameters Value Unit

Carrier frequency 52 kHz

Sampling frequency 200 kHz

Cement p-wave speed 2620 m/s

Reconstruction resolution 1 cm

Number of columns 210 -

Number of rows 120 -

Table 2.2.
The MBIR parameters settings used for the k-wave and the MIRA data.

Parameters Value (K-wave/MIRA) Unit

ε 0.01 -

α0 30 (MHz ·m)−1

p 1.1 -

q 2 -

T 1 -

cmax 10 -

a 3 -

σg 0.5/3 m−3

σe 15 m−3
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Fig. 2.17. The concrete specimen and the MIRA device used for the
experimental data [33]. 20 defects are embedded in the specimen.

Fig. 2.18. A side view of defects [33]. The location of the defects is
approximated due to possible displacement while pouring the cement.
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Fig. 2.19. Comparison between all techniques in reconstructing real
data: the first row is the ground truth, the second row is SAFT re-
construction, the third row is linear MBIR reconstruction, the fourth
row is PSI-DDL reconstruction, and the fifth row is NSI-DDL recon-
struction. MBIR appears to have less noise while NSI-DDL appears
to show more targets and less artifacts. The reconstructed targets in
NSI-DDL have closer shapes to the real targets.
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Fig. 2.20. PR plots for the entire MIRA experimental results.

Table 2.3.
Precision vs recall area for all techniques in Fig. 2.14 and Fig. 2.20.
DDL has the highest PR area.

SAFT MBIR PSI-DDL NSI-DDL

PR area for k-wave data 0.4264 0.7471 0.8818 0.7883

PR area for MIRA data 0.1397 0.2836 0.3255 0.3936
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Fig. 2.21. Results for sample 1 in Fig. 2.19 for DDL with and without
SVA. (a) is NSI-DDL without SVA and (b) is NSI-DDL with SVA.
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2.8 Summary

In this thesis, we proposed a method for reflection model ultrasound reconstruc-

tion using a deep neural network. Our algorithm obtains an initial estimate using a

linear back projection and then uses a trained neural network to map this preliminary

reconstruction to the final solution. We proposed a solution to resolve the modeling

mismatch in the K-wave simulation by adding noise to the simulation input. We also

used a spatially variant amplification to amplify reflections for deeper regions which

helps in reducing artifacts and detect more targets in those regions. We proposed joint

DDL that jointly reconstructs multiple scans which share the same cross-section. Fi-

nally, using simulated and experimental data we showed that our algorithm produces

a significant improvement quantitatively and quantitatively compared to the typically

used analytic algorithms as well as iterative algorithms based on linear models.
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