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Traffic is inevitably a major source of air pollution, particularly in urban areas. Efforts are 

made towards reducing emissions by improving vehicle and fuel technology and promoting 

alternative, sustainable modes of transportation. Although the emergence of EVs has shown 

capabilities of decreasing energy use and emissions levels, the EV market is developing slowly 

mainly due to drivers’ range anxiety and charging time. Electric roadways (ERs) have been 

proposed as a solution to overcome the concerns related to EVs by converting road segments into 

powered lanes where vehicles can be charged as they move along the roadway. This technology 

has the potential to increase driving range, decrease battery size and thus, lower the weight and 

the cost of EVs. In this context, exploring the challenging concept of ERs comes natural.  

Since data on the market acceptance and the environmental implications on this technology 

are limited to non-existent, this thesis has the following objectives: 1) identify the factors that 

affect the short- and long-term intention to use ERs, 2) estimate the level of adoption of the ER 

technology and identify characteristics of the market segments and 3) assess the impact of ERs 

on criteria pollutants and greenhouse gas emissions based on the market adoption results. 

To achieve these objectives, a survey of the general population in Los Angeles, California 

was conducted, gathering 600 responses representative of gender and age in the area. Los 

Angeles is considered a leader in electro-mobility and thus, a natural choice for the 

implementation of ERs. The short-or long-term intentions to drive on ERs and purchase an EV 

knowing about the availability of ERs were found to be correlated and thus, were modeled 

simultaneously using a bivariate ordered probit model. The compatibility of the ER technology 

with respondents’ lifestyle and needs, respondents’ tendency towards using sustainable forms of 

transportation, respondents’ innovativeness and perceived environmental benefits were among 

the most significant variables found to affect the short-term and long-term intention to use ERs. 
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The level of adoption of the ER technology and corresponding market segments were 

identified using a combination of Principal Component Analysis (PCA) and Cluster Analysis. 

Three clusters emerged from the analysis: early adopters (48.5%), mid-adopters (27.67%) and 

late adopters (23.83%) that differed in terms of demographics and socioeconomic characteristics, 

travel and EV charging characteristics and level of awareness.  

The adoption levels found were then used to estimate the emissions change due to the 

implementation of the ERs by 2050. Using the California Air Resources Board’s (CARB) 2017 

EMissions FACtor model (EMFAC). Two scenarios were examined considering light-duty 

vehicles (LDVs) in a specific corridor: “with” and “without electrification” scenarios. The results 

suggested that the ER technology for light-duty vehicles has the potential to provide emission 

reductions of 4 to 24%. A sensitivity analysis was also conducted to examine the effect of speed 

on the results. 

Turning to the practical implications, this thesis can provide a foundational framework for the 

evaluation of the ER technology in terms of environmental and economic viability and set the 

groundwork for future research. Ultimately, the short-term and long-term intention analysis can 

be used as a draft guide by state and local agencies and inform their strategic short- or long- 

range plans for mobility. By segmenting potential users, policy makers and transport operators 

can be informed about the main challenges regarding the promotion of the ER technology to 

distinct market segments and devise ways to accelerate its adoption. The findings from the 

impact analysis of ERs on criteria pollutants and greenhouse gases can also inform long-range 

transportation plans and existing regulations and policies in California and beyond. 
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1. INTRODUCTION 

The chapter provides the theoretical background for this thesis that includes the need for 

transportation electrification and current barriers to electric vehicle adoption In addition, the 

research motivation and objectives are discussed, followed by the contributions of the thesis and 

thesis organization. 

 Transportation Electrification 1.1

Transportation is recognized as the final frontier for major advancement in energy efficiency. 

In the United States (US), the transportation sector accounts for 71% of total petroleum 

consumption and 28% of total greenhouse gas emissions (United States Department of 

Transportation [USDOT], 2017). Due to the increased travel demand and limited improvements 

in fuel efficiency, petroleum consumption in the transportation sector has increased by 27% since 

1990 (Sieminski, 2017). In particular, over 30% of the US energy use and greenhouse gas 

emissions and over 50% of air pollution near high-density roadways are attributed to the internal 

combustion engine (Sieminski, 2017). Road freight transportation is second in the order of 

energy consumption because it accounts for approximately 20% of all transportation petroleum 

consumption. As a result, the importance and awareness of the environmental impacts of road 

transportation is growing rapidly.  

Efforts are being made towards reducing emissions and achieving sustainability goals for the 

transportation sector under the “avoid, shift and improve” strategy (International Energy 

Agency [IEA], 2017a). “Avoidance” is being achieved by reducing travel distances. For example, 

the concept of self-contained communities that include mixed types of facilities (residential and 

business areas at the same location) is a way to decrease the amount of travel. The 

implementation of integrated urban and transport planning and the optimization of road freight 

deliveries are another example of this case. “Shift” is being achieved by encouraging the use of 

sustainable modes of transportation. The increased share of public transport modes in urban 

passenger transport and the shift from road freight activity to rail and shipping can lead to 

significant emissions reduction. “Improve” includes all the ways by which vehicle fuel 
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technology can be advanced and the share of these improved vehicles can be accelerated to 

promote use of low-carbon fuels. 

In this context, alternative fuels are part of those policies with the view to achieving the 

decarbonization of the environment. Alternative fuel vehicles are vehicles that are flexible fuel, 

or dual-fuel vehicles designed to operate on at least one alternative fuel (Alternative Fuels Data 

Center, 2017). The Energy Policy Act of 1992 defines an alternative fuel as: biodiesel, natural 

gas and liquid fuels domestically produced from natural gas, propane (liquefied petroleum gas), 

electricity, hydrogen, blends of 85% or more of methanol, denatured ethanol, and other alcohols 

with gasoline or other fuels, methanol, denatured ethanol, and other alcohols, coal-derived, 

domestically-produced liquid fuels, fuels (other than alcohol) derived from biological materials, 

P-Series fuels (Alternative Fuels Data Center, 2017). 

Among the numerous alternative fuels’ solutions, the electrification of transportation has 

been proven to be a promising way to accomplish the goal of reduced transport carbon footprint. 

According to the European Commission, “electricity does not only allow delivering energy from 

renewable sources to the vehicle, but also the possibility to use vehicle batteries connected to the 

smart grid for temporary storage of energy from fluctuating sources such as solar and wind” 

(European Commission, 2017). Thus, the emergence of electric vehicles (EVs) is among those 

technological innovations that can ameliorate fuel efficiency and significantly decrease levels of 

emissions to a significant extent compared to other initiatives. In contrast to internal combustion 

engine vehicles, EVs offer high efficiency, high reliability, flexible fuel source, 70% lower 

operating costs, and zero tailpipe emissions (United States Department of Transportation 

[USDOT], 2017). 

EVs are propelled by the electric energy stored in their batteries and are available in different 

types that vary in range and capability. More specifically, there are three main categories in 

which EVs can be classified (Liao et al., 2017; Zero Emission Urban Bus System [ZeEUS], 

2016):  

 Hybrid electric vehicles (HEVs): these vehicles include both a battery system and a 

conventional internal combustion engine and can be recharged while braking. These 

vehicles are able to be based solely on electric energy for a certain distance and when 

additional range is needed the internal combustion engine is used (Liao et al., 2017).  
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 Plug-in electric vehicles: these are based only on their battery and are plugged into a 

source of electrical power to be recharged. They can be further classified into plug-in 

hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs). The difference 

between those two subcategories is the fact that PHEVs operate using both their battery 

and their engine, while battery electric vehicles derive all power from battery packs and 

have no internal combustion engine, fuel cell or fuel tank (Liao et al., 2017). 

 Fuel cell electric vehicles (FCEVs): these vehicles contain a fuel cell system powered by 

hydrogen that generates electricity to operate the vehicle. Electricity is stored in the 

battery system of the vehicle. This electricity used to power the vehicle, along with heat 

and water vapor, are the only byproducts of fuel cells (Zero Emission Urban Bus System 

[ZeEUS], 2016).  

The most widely known mechanism for EV charging is the stationary charging where EVs 

can be supplied with electric energy only at stationary stations by being plugged into a socket or 

at stationary facilities by being wirelessly charged. In particular, the main types of EV charging 

are the following (Alternative Fuels Data Center, 2017): 

 AC (alternating current) Level 1 charging station uses a 120-volt current and only 

requires a power cord that comes with the EV. The charge time is slow at only 3-5 miles 

per hour of charging (around 8 to 12 hours, depending on the vehicle’s battery). 

 AC Level 2 charging station uses 240-volt power to enable faster regeneration of an EV’s 

battery system, providing 10-20 miles per hour of charging (around 4 to 6 hours). 

 DC (direct current) fast charging station converts high voltage AC power to DC power 

for direct storage in EV batteries. It uses a 480-volt current and usually provides EVs 

with 80% charge in 20 to 30 minutes. 

Throughout the years, the US government implemented a number of environmental policies 

and regulations to move from gasoline-fueled to these more efficient vehicles. “Zero-emission 

vehicle” programs (ZEV) have been established and include key strategies of transport 

electrification in order to reduce greenhouse gas emissions, air pollution, fossil fuel consumption 

and energy costs. These programs are implemented by the ZEV states (California, Connecticut, 

Maryland, Massachusetts, New York, Oregon, Rhode Island and Vermont) which require 

automakers to follow ZEV mandates, that is to sell a certain number of ZEVs (BEVs, PHEVs 

and FCEVs) (California Air Resources Board [CARB], 2017b). An agreed collective target of 
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these states is at least 3.3 million ZEVs on the road by 2050, as per the State ZEV Programs 

Memorandum of Understanding (MOU) (State Zero- Emission Vehicle Programs Memorandum 

of Understanding, 2013). 

There is also an additional factor that can promote embracing these environmentally friendly 

technologies, namely fuel economy regulations. These regulations incorporate provisions so as to 

focus more on EVs while assessing corporate averages (International Energy Agency [IEA], 

2017b). In this way, Original Equipment Manufacturers (OEMs) are motivated to begin 

generating EVs, although this minimizes average fuel economy advancement as well as the 

associated profits provided in the timeframe set by the regulations. Thus, this policy will be one 

of the primary policies to encourage electro-mobility, provided that it is tightened beyond the 

efficiency that can be offered from improved ICEs and HEVs (International Energy Agency 

[IEA], 2017b). 

EV financial incentives are another policy geared towards the decarbonization of the 

environment. These incentives are important for reducing the purchase cost and total cost of 

ownership associated with EVs (International Energy Agency [IEA], 2017b). Such incentives 

can take the form of direct rebates, tax breaks or exemptions and are adjusted to account for the 

vehicles’ characteristics in terms of greenhouse gas and pollutant performance and 

environmental costs. However, according to Hoy and Weken (Hoy & Weken, 2017), financial 

incentives are most effective when they minimize the EV purchase premium and come with a 

total cost of ownership advantage compared with conventional internal combustion engine 

vehicles (ICEV). 

Other policies that seek to increase the value proposition of EVs and more specifically, 

passenger EVs, include waivers on regulations that limit the availability of license plates for 

ICEVs, exemptions from access restrictions to urban areas, exemptions from usage fees for 

specific portions of the road network and dedicated parking. Access to publicly-available 

charging infrastructure, access to bus lanes and high-occupancy vehicle (HOV) lanes, 

investments in EV infrastructure, tailored EV electricity rates, and outreach to customers by 

electric utilities and others (International Energy Agency [IEA], 2017b) are also examples of 

these policies. These targeted policies are best developed at the municipal level and adapted to 

the local mobility conditions of each urban area.  
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In conclusion, the electrification of transportation is a concept of much interest due to the 

increased need to cope with climate and energy goals. This interest can be shown by the fact that 

the national EV share increased by 29% from 2016 to 2017 with Los Angeles, San Francisco and 

New York City presenting the highest annual increases (Slowik & Lutsey, 2018). Using different 

policies and testing various technologies, the electrification of transportation can be advanced “in 

a manner that benefits all utility customers and users of all forms of transportation, while 

supporting the evolution of a cleaner grid and stimulating innovation and competition for US 

companies”, according to the Transportation Electrification Accord (Transportation 

Electrification Accord, 2018).  

 Barriers to EV Adoption 1.2

While the emergence of EVs has shown capabilities of decreasing energy use and emissions 

levels, several reports show that the EV market is developing slowly. More specifically, despite 

governmental support, the continuous increase in the electric car stock, in EV supply equipment 

(EVSE) deployment and in electric car sales in the past five years, annual growth rates have been 

declining (International Energy Agency [IEA], 2017b).  

As a matter of fact, in 2016, the (global) electric car stock growth was 60%, down from 77% 

in 2015 and 85% in 2014. The year 2016 was also the first time that year-on-year electric car 

sales growth had fallen below 50% since 2010. Currently, the global electric car stock is just 

0.2% of the total fleet of passenger light-duty vehicles and heavy-duty vehicles, indicating that 

the scale achieved so far, is still small (International Energy Agency [IEA], 2017b). California is 

home to almost half of all of the nation’s PEVs; but even in California, only about 5 out of every 

1,000 registered vehicles are PEVs.   

In general, the extent to which EVs can be adopted and thus, lead to higher air quality 

depends mainly on their characteristics. According to a wide range of studies, range anxiety, 

charging time, availability of charging stations and EV purchase cost are essential elements for 

an EV’s adoption (Boston Consulting Group, 2009; Carley et al., 2013; Hidrue et al., 2011; 

Philip & Wiederer, 2010; Rezvani et al., 2015; Sierzchula et al. 2014; Virginia Clean Cities, 

2010; Wilmink, 2015).  

Furthermore, although most EV charging today occurs at home, at work, and at retail and 

public urban sites, this model only meets the needs of small light duty commuter traffic. If the 
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EV market share is to grow considerably, research and development will need to focus on 

progressing in energy storage and in addressing the needs of two different vehicle sectors: longer 

haul interstate travel and significant energy for larger light duty and heavy-duty vehicles.  

In addition, in the case of public charging that offers easy charging access, it is unclear 

whether public infrastructure can support the EV market. More specifically, Level 2 charging is 

considered to offer very slow charging to meet consumer demand. On the other hand, Level 3 

charging is expensive, requires extensive infrastructure maintenance and lacks US standards set 

by the Society for Automotive Engineers (SAE) (Chambers, 2011). In addition, charging an EV 

in DC fast charging stations requires significant on-vehicle battery capacity, which adds 

substantial vehicle cost and weight to support travel from station to station. It also degrades 

battery life associated with deep discharge and rapid fast charging cycles (e.g., 80% charge in 30 

min). On the other hand, home charging also has its limitations. The two main concerns with 

home charging are the availability of charging infrastructure for multifamily housing and the 

permitting and installation process for single family homes (PLANYC, 2010; Dubin et al, 2011). 

Due to these concerns, EV adoption is limited, particularly for larger light-duty and heavy-

duty vehicles (LDV and HDV), which combined account for over 50% of total US transportation 

energy use (from all sources, among all transit categories). To illustrate this, PHEVs provide an 

example of EVs low market adoption. Researchers had predicted that their market penetration 

would reach 10-15% but it only reached 2.75% in 2015, showing a small increase of only 0.45% 

between 2007 and 2015 (Balducci, 2008, German, 2015, Ozaki & Sevastyanova, 2011, Greene et 

al., 2004). The current effort is concentrated to making advancements in battery technology and 

batteries that would have improved design and charging capabilities (Thackeray et al., 2012, 

Egbue & Long, 2012). To achieve this, alternative ways of EV charging are being investigated, 

so as to also reduce the costs associated and the required of effort in terms of battery technology 

advancement. 

An alternative mechanism for EV charging that has been suggested and is being studied is the 

dynamic charging (or in-motion charging), also referred to as charging-while-driving. Electric 

roadways (ERs) have been proposed as a solution to overcome the concerns related to EVs by 

converting road segments into powered lanes (electric roadways). In particular, electric road 

infrastructure is able to transfer the electrical power to charge EVs efficiently while they move 

along the roadway through specialized inductive or conductive facilities.   
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The reason why dynamic charging is increasingly gaining ground is that it can increase 

driving range, decrease battery size for EVs and use capacitors which would both lower the 

weight and the cost for the vehicle (Singh, 2016). If the energy for dynamic charging systems is 

obtained by fossil-free electrical energy sources, then transportation with ERs based on dynamic 

charging can be carried out nearly free of greenhouse gas-emission (Wang & Mompo, 2014). 

 Research Motivation and Objectives 1.3

A number of conclusions can be made from the discussion provided in the previous sections. 

These conclusions, which serve as the motivation of this thesis, are: 

 There is an urgent need for decarbonization of the environment. 

 The transportation sector contributes to carbonization to a significant degree and thus, 

awareness with respect to environmental impacts of highway transportation is growing 

rapidly. 

 Among the efforts that are made towards reducing the environmental impacts of highway 

transportation, the improvement of vehicle fuel technology and efficiency could be one of 

the most direct ways to improve the situation. 

 Among the alternative fuels, electricity is gaining ground, since it allows both delivering 

energy from renewable sources to the vehicle and using vehicle batteries for temporary 

storage of energy from fluctuating sources such as solar and wind. 

 EV adoption is limited due to certain barriers: range anxiety, charging time, availability 

of charging stations and EV purchase cost. 

 There is a variety of ways to increase the adoption of EVs. Alternative ways of EV 

charging offer a strong case and can positively affect public’s perception on EVs   

 ERs are an innovative way of EV charging that can address most of the limitations 

associated with EVs. 

 There is a need to identify the factors that influence ER demand and estimate ER 

demand.  

 Thus, exploring the challenging concept of ERs comes naturally. The goal of this thesis is to 

assess the market adoption and impact of the technology of ERs on air pollution. In particular, 

the thesis will proceed with the following primary objectives regarding ERs: 
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1. Identify the factors that affect technology adoption and more specifically, the short- and 

long-term intention to use ERs and purchase an EV, knowing about the availability of 

ERs. 

2. Estimate the adoption rates of ERs and conduct market segmentation analysis. 

3. Quantify the impact of the ERs on criteria pollutants and greenhouse gas emissions. 

To achieve these objectives, a survey of the general population in Los Angeles was 

conducted. Los Angeles has one of the largest EV market and thus, the area serves as a natural 

test bed to assess residents’ opinion on ERs. The data from the survey is analyzed using 

econometric models in order to show the factors that affect the short- and long-term intention to 

use ERs. A cluster analysis is applied to estimate the level of the technology adoption and the 

characteristics of each cluster-market segment are identified. The adoption rates found are used 

as inputs in an emissions model to estimate the emissions reduction in the case where the ERs 

are implemented, assuming different adoption rates and operating speeds. Note that the 

emissions analysis focuses on estimating tailpipe emissions and thus, infrastructure or vehicle 

manufacturing emissions are not included. 

 Thesis Contribution  1.4

This thesis provides a foundational framework for the upcoming technology of ERs and 

specifically, identifies the important factors that affect the adoption of ERs and associated 

changes in travel demand and patterns as well as assesses the impact of this technology on 

criteria pollutant and greenhouse gas emissions. Thus, the outcome of this thesis can inform 

travel demand models and impact studies, and assist transportation planners, regulators, utilities, 

and state and local decision-makers. 

Moreover, this thesis yields results that can support the evaluation of the technology in terms 

of environmental and economic viability and set the groundwork for future research, investments 

or demonstration projects and infrastructure deployment. This thesis provides actionable 

guidance for accelerating market adoption. The potential adoption of this technology can 

ultimately lead to significant reductions in energy consumption and greenhouse gas emissions 

while providing a strong stimulus to the domestic workforce. 



22 

 

 Thesis Organization 1.5

This thesis is organized into six chapters: 

Chapter 2, Literature Review, includes a comprehensive overview of the technology of ERs, 

previous studies and demonstration projects relating to dynamic charging, the benefits, concerns 

and other aspects regarding ERs. 

Chapter 3, Research Framework, Empirical Setting, and Data, discusses the general 

methodology that is used to achieve the research goals of this thesis and provide details about the 

study area selected for the analysis, the tools used (survey design) and data preparation. 

Chapter 4, Market Adoption, presents the results related to the market adoption of ERs 

concerning the factors affecting short-term and long-term intention to use ERs and the market 

segmentation analysis. 

Chapter 5, Impact on Criteria Pollutants and Greenhouse Gas Emissions, describes the tools 

used (emissions model chosen) and the results of the environmental impact assessment of ERs. 

Chapter 6, Conclusions, summarizes the key findings and practical implications, discusses 

the study limitations, and provides recommendations for future research. 
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2. LITERATURE REVIEW 

This chapter provides a critical synthesis of the literature, regarding different aspects of ERs. 

The concept of ER technology is defined and the main benefits and concerns related to ERs as 

well as the optimal locations for implementation and the key stakeholders involved in this 

technology are discussed. Note that since the electric road industry is relatively new, little 

research has been conducted in this field so far. Furthermore, the reports that have been 

published are usually limited to examining only one concept of this technology and examine the 

potential of this technology on a specific road. The interested reader can refer to Rezvani et al. 

(2015) for a review of studies on EV adoption. Section 3.3 and the results sections (sections 

4.1.3.2 and 4.1.4.2) also mention a few studies related to EV demand and adoption. 

 Types of Electric Roadway (ER) Technology 2.1

Electric roadway systems can be described as electrified roads that enable dynamic power 

transfer to the vehicles, as they are operate on the roadway. The electric road recharges the 

vehicle batteries while in motion and the vehicles receive the power in different ways depending 

on the technology concept. This method of charging can be referred to as dynamic or in-motion 

charging (Li & Mi, 2015; Vilathgamuwa & Sampath, 2015) or charging while-driving (Chen et 

al., 2016). 

Electric roads can be accessible to vehicles with electric propulsion as well as conventional 

fossil fueled vehicles. The electric road system consists of four main subsystems: energy supply, 

power transfer, the road and the road operation. Starting from the energy supply, ERs should 

have a continuous energy supply from the national, regional or intermediate electricity grid. The 

grid is comprised of different voltage levels that depend on what purpose the particular part has 

in the system and what it is used for. The ERs can be connected to a level that is beyond its own 

working voltage level (Jelica, 2017).  

EVs operating on ERs would be equipped with an energy pick up unit, a small battery and a 

potentially smaller internal combustion engine (ICE), which allows vehicles to also drive on 

conventional roads outside the ER network. In addition, more vehicle and infrastructure 



24 

 

requirements are needed to be integrated in order to retrofit the EV. Those requirements depend 

on the type of the technology that is used and are discussed in more detail in the next sections. 

ERs are based on two main concepts of dynamic charging, depending on the way the electric 

power is transferred to EVs. Electrical power can be transmitted by conductive or wireless 

energy transfer. In particular, with conductive energy transfer, the power transmission is either 

based on rails which are implemented in the road or on overhead catenary lines (Moller, 2017). 

These systems can be achieved by adding new charging infrastructure and new interface 

components to the EV. The different concepts of energy transfer are described in the following 

subsections. 

2.1.1 Overhead Conductive System 

The overhead conductive system consists of overhead contact lines that make power 

available to vehicles by being connected to the available substations and an active pantograph 

located on the top of the vehicle. This way, energy is transferred from the overhead lines to the 

vehicle.  

A pantograph is generally composed of a lower arm, an upper arm, a pantograph head, and 

connections between them (Dahlberg, 2006). The pantograph is on the vehicle and presses 

against the power line, ensuring a steady connection regardless of the road condition to enable 

continuous electrical propulsion (Moller, 2017). This system allows for vehicle operation outside 

the electrical section of the infrastructure consisted of the overhead contact lines. Depending on 

the operation mode, the pantograph can be raised or lowered automatically or manually while 

vehicle is moving and thus, enables vehicle flexibility to switch lanes or overtake other vehicles 

or cross under bridges. This flexibility also applies in the case of vertical movements of the 

vehicle due to potential height variations or bumps in the road (Jelica, 2017).  

This technology is similar to that used for many years for trains and trolley buses. The 

difference is that in this case, the vehicle is flexible in its movement. Thus, it can be claimed that 

the overhead conductive system may be a well-tested and proven technology compared to the 

other dynamic charging systems, the concepts of which had not been directly introduced 

previously. In general, the overhead line solution has been able to achieve an efficiency of 

around 80-90% (Siemens, 2012b). The percentage of efficiency depends on various factors such 

as the material used, the size of the power cables, the speed of the vehicles, etc. 
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This system can be completely incorporated into existing road infrastructure, without needing 

significant modifications. The only new additions to the existing system are the overhead wires, 

the pillars and the pantograph. Safety regulations and standards may apply for these systems so 

as to prevent from hazards. An example is the regulation, according to which the overhead wires 

have to be installed in a height of at least 19.685 feet which enables only vehicles with a 

corresponding size to connect to them (e.g., trucks and buses). Special arrangements may be 

expected for implementations of the system under bridges and in tunnels which may lead to 

lower hanging wires (Andersson & Edfeldt, 2013). There is also the argument that overhead lines 

are perceived as old-fashioned and visually unattractive (Viktoria Swedish ICT, 2014).  

2.1.2 Conductive Rail System  

In the conductive rail system, the basic principle is a power supply rail that is fully integrated 

into the road or located on the top of the road. This rail is physically enclosed within the area 

occupied by the vehicle and is supplied by power boxes that are connected to the electrical grid 

via transformer substations installed along the roadway at a certain density (Jelica, 2017). The 

function of the rail is automatic. It is divided into different segments, which are active and 

powered when a vehicle is detected to drive on each of them. 

The vehicle driving on a conductive rail uses a physical pick-up to connect to the electrified 

rail in the road that is a moveable arm. The mechanical pick-up arm detects the location of the 

rail in the road and when the vehicle is situated above the rail, it automatically comes in a 

lowered position so as to come into contact with the conductor. As long as the vehicle is 

traveling along the rail, the moveable arm is in contact with the road and moves horizontally. 

When the vehicle is exiting from the rail track the moveable arm is automatically 

disconnected and lifted. This provides the vehicle with the ability to be flexible and pass other 

vehicles while driving. When this disconnection takes place, the vehicle can be operated on 

battery until it is back again in the vicinity of the track.  

In general, the conductive rail approach has a total system efficiency of approximately 82% 

(Viktoria Swedish ICT, 2014). It is also expected to have a minimal impact on the road in terms 

of function and maintenance, as rational solutions for installation and maintenance are being 

developed and tested by different companies around the world that are interested in this concept. 
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2.1.3 Wireless Charging System 

In contrast with the conductive charging systems, wireless charging systems transfer 

electrical energy wirelessly. Numerous studies have been conducted to investigate this charging 

system and thus, there is more extensive literature review material to provide. 

In-motion wireless power transfer (WPT) is based on the development of both roadway 

infrastructure and vehicle components (Limb et al., 2016). In this concept, the power transfer 

happens through charging devices that are implemented into the road and on the vehicle (coils). 

More specifically, primary WPT pads are embedded underneath the roadway and are connected 

to the power grid, through cables and power inverters, so as to be supplied with electricity. When 

the power supply produces an electric current in the primary coils, the coils can produce a time-

changing magnetic field (Brecher & Arthur, 2014).  

This variable magnetic field can induce an electric current through a secondary coil located 

on the vehicle that is driving above the electrified segment. The secondary coil or onboard pick-

up unit can provide this power to fuel the vehicle’s propulsion system and, in this way, run the 

electric motor/generator to charge the on-board battery (Viktoria Swedish ICT, 2013). Excess 

power delivered to the vehicle is stored in on-board energy storage systems which include super-

capacitors and batteries (Limb et al., 2016).  

There are two main approaches to wireless charging: the electromagnetic inductive approach 

and the magnetic resonant approach. In the inductive charging, the power supplied will be in the 

form of normal household electricity or alternating magnetic field that is converted to direct 

current through an in-vehicle rectifier device (Boys & Covic, 2010). The magnetic field 

generated by the primary coil radiates in all directions and thus, the alternating current (flux) 

drops rapidly with the distance. As a result, the secondary coil must be located in close proximity 

with the primary coil to intercept the most flux. This creates a limitation for EVs. In some WPT 

technologies that use this technology, the top pick up unit is lowered to bring it into the requisite 

proximity to the bottom coil align precisely to obtain acceptable efficiency. This technology 

cannot be applied to moving vehicles. 

More specifically about the efficiency, the amount of energy that the secondary coil can 

receive depends on its characteristics, namely the cross section it presents to the magnetic field. 

More specifically, the optimum amount of energy can be transferred when the secondary coils 

has identical dimensions with the primary coil and is aligned parallel and with a vertical 
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separation of tens of millimeters (Hassan & Elzawawi, 2015). The separation, alignment and 

sizes of the respective coils determine the “coupling factor” which has a significant influence on 

the efficiency of the energy transfer. To illustrate this, perfect coupling, meaning that all the 

magnetic field generated by the primary coil is captured, has a coupling factor of 1. The key 

benefit of a closely coupled inductive wireless charging system is its relatively high efficiency. 

Because of this relatively high efficiency, the transfer of significant power is achieved with 

speeding up charging cycles.  

However, the magnetic field it generates cannot be picked up by another coil (on top of it) 

unless the two coils are in close proximity. Therefore, in some WPT technologies, the top pick 

up unit is lowered to bring it into the requisite proximity to the bottom coil align precisely to 

obtain acceptable efficiency. This technology cannot be applied to moving vehicles. 

As an alternative method of wireless charging developed by MIT (Kurs et al., 2007), electric 

power can be also transferred through magnetic resonance. In this approach, the technique is still 

“inductive”, since the magnetic field generated by the primary coil induces a current in the 

secondary coil. However, it is a “non-radiating” wireless charging technique that takes advantage 

of the stronger coupling that happens between resonant coils, even when they are more separated. 

In other words, in magnetic resonance wireless charging, electricity can be transferred efficiently 

without perfect horizontal alignment and thus, without the requirement of closely coupling the 

coils (Giler, 2009). A further advantage of the technology is its ability to transfer power between 

a single primary coil and multiple secondary coils. However, this approach exhibits some 

disadvantages, too. In particular, this system shows relatively low efficiency due to flux leakage, 

greater circuit complexity and, because of the (typically) high operating frequencies, potential 

electromagnetic interference (EMI) challenges (Dubal, 2015). 

All in all, a tradeoff between efficiency and convenience, such as being able to charge several 

devices simultaneously, without the need for accurate alignment, should be considered before 

deciding which approach to use in the design of the ER.  

Other alternative ways of wireless charging are being developed as modified or combined 

versions of the aforementioned two. One representative example is the Shaped Magnetic Field in 

Resonance (SMFIR), pioneered by OLEV (On-line electric vehicle). According to Suh et al. 

(2011), this technology is different from the other ones in the following ways: it uses ferrite 

cores to shape the two-dimensional magnetic field in order to create a “magnetic field path” from 
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the bottom ferrite core to the core attached to a moving vehicle. The high-intensity field is 

confined in a relatively well-defined space between the ground and the vehicle.  

This is equivalent to creating a loop from the poles of the underground ferrite core through 

the poles of the top ferrite core (an inverse-shaped U) of the pickup unit attached to the vehicle. 

As the magnetic field oscillates through these ferrite “loops,” the energy associated with the 

magnetic field is picked up using the resonance effect. In order to pick up the magnetic field, the 

top pick up unit must be in resonance with the field frequency of the lower unit imbedded in the 

ground, which creates a “continuous loop” of magnetic field (Suh et al., 2011). This is why this 

technology is called “Shaped Magnetic Field in Resonance” (SMFIR). 

It can be easily understood from the above that the coils embedded in the roadway play a 

major role in the function of the WPT system. The primary coil pads are circular in shape in 

order to allow the electromagnetic waves to propagate in the most efficient way, minimizing the 

availability of the waves to be absorbed by the secondary coils (Boys and Covic, 2010). As far as 

the materials used are concerned, the coils are usually made with Litz wire, so as to prevent the 

undesirable increases in resistance of the system (Sullivan, 1999) and with aluminum/metal that 

surrounds the top of the ferrite bars in order to generate the necessary electromagnetic field. 

In the wireless charging systems, the levels of efficiency depend on different factors such as 

the material used, the alignment of the EV with the ER, the alignment of the coils towards each 

other, the energy source, the traffic conditions and the speed of the vehicle and the distance 

between the road and the current collector on the vehicle. This distance between the vehicles 

pick up and the roadway surface, known as air gap, is one of the most critical elements during 

planning. The relationship between the air gap and the charging efficiency is not linear, but 

seems to exhibit a polynomial formulation. 

In general, misalignments until 100 to 150mm have a relatively marginal impact on the 

quality of the power transfer but misalignments between 200 and 250mm lead to substantially 

lower levels of efficiency. Though, the exact degree of efficiency is not straightforward, a 

transfer of above 150kW per segment may be possible, indicating that heavier vehicles such as 

trucks with increased demand in electricity can also be powered through this type of technology 

(Viktoria Swedish ICT, 2013; Singh, 2016). 
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 Research Studies on Electric Roadway (ER) Technology 2.2

There have been different studies on the concept of dynamic charging, in terms of its design 

and technical analysis, the planning infrastructure, and its economic analysis. 

 

Design and technical analysis 

Bolger et al. (1978) studied the design of an electromagnetic coupling mechanism (wireless 

power transfer), the “Dual Mode Electric Transportation” (DMET), using pure models, circuit 

analyses and tests of a full-size physical prototype to provide the necessary results on the system 

characteristics within a network of high speed arterials. This paper includes details on the 

properties of inductive coupling found such as the design power per passenger cars (20kW), the 

core material, thickness, the pickup length per passenger car (around 5 feet), the conductor, the 

magnetic properties, and inductance. 

More recently, Shin et al. (2014) presented the design and implementation of a wireless 

power transfer system for moving EVs. Electrical and practical designs of the inverter, power 

lines, pickup, rectifier, and regulator as well as an optimized core structure design for a large air 

gap were described with the view to achieving high output power and power transfer efficiency. 

More specifically, the results indicated that the implementation of the system needed an amount 

of power of 100-kW, 80% power transfer efficiency and 10.2 inches of air gap. 

Many studies have focused on the problem of the air gap between the pickup unit and the 

charging infrastructure. These studies have proposed design methods of loosely coupled 

inductive power transfer systems (Stielau & Covic, 2000; Chen et al., 2010; Wang et al., 2004b; 

Budhia et al., 2011, Sallan et al., 2009; Imura & Hory, 2011). Research has also been conducted 

to analyze techniques to improve the efficiency of power transfer, including resonant inverters 

for wireless power transfer (Abe et al., 1998; Wang et al., 2004a; Meins et al., 2006; Borage et 

al., 2005; Li and Mi, 2015; Bi et al, 2016; Moller, 2017; Brecher & Arthur, 2014), efficient 

pickup units (Raabe et al., 2007; Kissin et al., 2011; Elliott et al., 2010), effective pickup tuning 

methods (James et al., 2005; Zaheer et al., 2010; Covic et al., 2008) and pickup voltage control 

methods (Wu et al., 2010a). 

Stamati & Bauer (2013) investigated design considerations of dynamic charging such as the 

percentage of road that should be covered, the distribution and the length of the electric segments 

over the road, the power transfer capability of the system and the total power demand for all the 
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passing-by vehicles using the system. An important finding is that an operating frequency of 

100khz in the system would provide high transfer efficiency, given a length of 0.186 miles of the 

primary coil. In addition, an EV with a battery of typical size (24kWh) could achieve 310.7 miles 

driving range if the on-road system transfers 25kW, given a 40% coverage of the road.  

What is more, there has been an effort for assessing the technical maturity of the electric road 

systems. Sundelin et al. (2016) evaluated the maturity level of the different ERS technologies 

using the method associated with Technology Readiness Levels (TRLs) and focuses on the 

power transfer technology subsystem. Results showed that the maturity of some elements related 

to the operation of the technology in an open system are not mature enough yet, while the 

maturity of the technology from a technical perspective is quite high. 

Li et al., 2018 evaluated the longitudinal safety of EVs with wireless charging lanes on 

freeways based on simulations that included deployment of a wireless charging lane and 

distribution of state of charge (SOC) of EVs. This study showed that the safety of EVs operating 

in the charging lane is significantly affected by the SOC, with a lower SOC resulting in higher 

longitudinal crash risks. Another factor was found to be the maximum deceleration before 

entering the charging lane, being negatively associated with the longitudinal safety of EVs. 

 

Planning infrastructure and optimization 

With regard to the planning infrastructure, a number of studies have focused on the 

implications of dynamic charging to overall transportation network. Sarker et al. (2016) show 

how to effectively distribute power to the different charging coils along a wireless charging lane 

in a vehicle-to-infrastructure (V2I) communication system. They proposed a system that 

generates less communication latency, a balance SOC and less drop in efficiency rates.  

Routing algorithms that take dynamic charging into account have also been developed. Li et 

al. (2016) developed an ant colony optimization based on multi-objective routing algorithm that 

utilizes communications systems to determine the best route considering the current battery 

charge. 

There have also been recent studies related to the optimal placement of wireless charging 

lanes. The basic difference in these studies arises in the objective function and/or the type of 

routes, between the origin and destination that are considered. Recently, Chen et al. (2016) 

considered the optimal placement of wireless charging lanes when the charging infrastructure is 
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considered to affect the EV driver’s route choice. They developed a mathematical model to 

minimize the total social cost in terms of travel times.  

Riemann et al. (2015) analyzed the optimal number and locations of wireless charging 

facilities for EVs with stochastic user equilibrium model, considering both the facility location 

and the traffic flow pattern. Their model proved to be effective, since it captured the EV drivers’ 

routing choice behavior towards the EV charging facility availability and congestion effects. 

Liu & Song (2017) investigated a deterministic and a robust planning problem of dynamic 

wireless charging facilities for electric buses. The deterministic model established the bus battery 

sizes and the allocation of the charging facilities for such system. The robust model showed 

optimal design that proved strong towards the uncertainty of energy consumption and travel time 

of buses. 

In addition, a project led by Utah State University (Song & Singleton, 2017) produced an 

optimization framework for the optimal deployment of dynamic charging lanes for plug-in 

hybrid trucks in an electrified road freight transportation system subject to the budget constraints 

and equilibrium behavior of drivers. Technology optimization results show that the vehicle 

characteristics of a WPT EV fleet will consist of 25-mile range EVs with stationary charging at 

locations stopped greater than one hour and 50 kW charging on high-speed (greater than 30 mph) 

primary and secondary roadways, representing a total roadway infrastructure cost of $1.45 

trillion. When used in conjunction, optimized vehicle and roadway architectures satisfy 97.7% of 

24-hour drive cycles, a 22.4% increase from when no in-motion charging is used. 

 

Economic Analysis 

As far as the financial aspect of the charging technology is concerned, Ko & Jang (2013) 

showed that dynamic charging can significantly reduce the high initial cost of EV by allowing 

the battery size to be downsized. This method could be used to complement other concepts such 

as battery swapping to reduce driver range anxiety. 

A smart charge scheduling model is presented in Li et al. (2015) that maximizes the net profit 

to each EV participant while simultaneously satisfying energy demands for their trips. Popular 

BEV models were analyzed and it was shown that they can generate an annual regulation profit 

of $454, $394 and $318, given average daily driving distances of 20 miles, 40 miles and 60 miles, 

respectively.  
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Gill et al.2014 analyzed the costs associated with implementing a dynamic wireless power 

transfer infrastructure and a business model for the development of a new EV infrastructure. 

They found that such a system has high costs of construction, maintenance, and operations and 

that the appropriate business model would be based on a joint company, with public transport 

agencies like DOT, utility companies and interested private investors as participants 

collaborating to operate and maintain the system over its life-cycle. 

Jeong et al. (2015) conducted economic analysis of dynamically-charged EVs and 

particularly, the OLEV bus. They quantitatively analyzed the benefits of this system with an 

economic model of battery size and charging infrastructure allocation, using a mathematical 

optimization model. They found the thresholds for the battery size reduction and the associated 

cost savings. He et al. (2013) explored the integrated pricing of electricity in a power network 

and usage of electric roads. They proposed “first- and second-best pricing” models under 

different authoritarian regimes that proved to be effective in maximizing the social welfare. 

Limb et al. (2017) also conducted an economic viability analysis of in-motion charging 

applied to the US transportation fleet by comparing the technology to conventional ICE 

transportation and long-range EV fleet. The results demonstrate that the vehicle equipped with 

this technology will be an EV with 25 miles of range that would receive 50 kW charging at high-

speed (greater than 30 miles per hour. Based on these characteristics, the infrastructure cost 

concerning the entire EV fleet in the US would be $1.45 trillion. It was also found that the 

system would have a societal return on investment of 36.7 years, based on $2.5 million per lane-

mile annual retrofitting cost and an inventory of 13,788 electrified miles annually.  

The study of Fuller (2016) assessed the potential for wireless charging lanes (WCL) to 

address range and charging issues of EVs via considering travel to regional destinations in 

California, which indicated that dynamic charging might be a more cost-effective range-

extension approach compared to increasing battery capacity. The cost of WCL per lane mile is 4 

million dollars (Fuller, 2016), which is approximately 3 times more than that of non-WCL. One 

method to reduce the cost is to utilize improved charging material with a low price, but this may 

be impractical in the near future. Another cost reduction measure is to partially deploy WCL on 

freeways (He et al., 2017). 
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 Demonstration Projects 2.3

This section reviews the studies that have been undertaken and/or are still ongoing so as to 

examine the ER deployment. These case studies cover both in-motion conductive and inductive 

charging systems and are analyzed in terms of their goals, achievements, and factors they 

considered. Table 2.1 summarizes the characteristics and findings of the case studies and 

research projects in the US and abroad. 

2.3.1 Overhead Conductive Systems 

In California, US, Siemens and South coast Air Quality Management District (SCAQMD) 

are currently testing the overhead conductive eHighway system in a one-mile demonstration in 

the city of Carson, in the proximity of ports of LA and ports of Long Beach (Siemens, 2017a). 

This project is testing how different plug-in hybrid electric truck configurations interact with the 

eHighway infrastructure which includes a catenary wire supporting the overhead contact wire, 

similar to trolley systems or streetcars. Siemens originally presented this innovative "eHighway" 

concept in 2012. The core element of the system is an intelligent pantograph on the trucks 

combined with a hybrid drive system. A sensor system enables the pantograph to connect to and 

disconnect from the overhead line at speeds of up to 90 km per hour. Trucks equipped with the 

system operate locally emission-free with electricity from the overhead line and automatically 

switch to a hybrid engine on roads without overhead lines (Siemens, 2012a).  

In the specific project, a battery-electric truck, a natural gas-augmented electric truck and a 

diesel-hybrid truck are driving using this catenary system on the north- and south-bound lanes of 

South Alameda Street from East Lomita Boulevard to the Dominguez Channel in Carson. The 

used vehicles are manufactured by Volvo and local truck retrofitters. The demonstration track 

started the operation within 2017 and thus, the results are not available at the time of writing this 

thesis. The goal is to set up a zero-emission corridor on Interstate Highway 710 with the view to 

lowering fossil fuel consumption and CO2 emissions, reducing truck operating costs, and 

accommodating freight transportation. 

The feasibility of integrating overhead contact systems is also being studied throughout 

Europe. To start with, in Germany, the eHighway technology will be tested on a public highway 

in Germany. The system is being built as part of the joint project "Electrified, innovative heavy 

freight transport on autobahns" (ELISA) of Germany's Federal Ministry for the Environment, 
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Nature Conservation, Building and Nuclear Safety (BMUB) (Siemens, 2017b). The project is 

planning to build an overhead contact line for electrified freight transport on a 6.2 mile stretch of 

a German expressway between the Zeppelinheim/Cargo City Süd interchange at the Frankfurt 

Airport and the Darmstadt/Weiterstadt interchange (Siemens, 2017b). The line will supply 

electricity for the electric drive of a hybrid truck. Field trials of the eHighway technology on 

German highways are planned to begin in 2019.  

In Sweden, trials are being conducted as part of the FABRIC project (Feasibility analysis and 

development of on-road charging solutions for future EVs). The test site in Sweden is using the 

overhead conductive charging solution on a 1.24 mile stretch of E16 motorway (north of 

Stockholm) (Siemens, 2015). This demonstration project started in June 2016 and tests two bio-

diesel hybrid trucks, manufactured by Scania and adapted, in partnership with Siemens, to 

operate under the catenary system. The test results will be available within 2019 and are intended 

to verify the system’s suitability for future commercial use with the ultimate goal being to 

develop a fossil fuel independent transport sector by 2030 (Siemens, 2015). 

2.3.2 Conductive Rail Systems 

In Sweden, the conductive rail system is being tested through various projects and 

demonstrations. The techniques that have been developed are based on conductive technology 

that uses an electric rail installed on roads to power and recharge vehicles during their journey. 

The eRoad Arlanda project aimed at building a 1.24-mile demonstration section to apply the 

conductive rail system for both commercial and passenger vehicles. During 2012-2018 period, a 

18-ton battery electric truck carrying freight was being tested in order to determine how well the 

installation works under normal traffic conditions in various weather conditions (eRoadArlanda, 

2017a). An embedded electric rail and a customized energy pick-up integrated into the truck 

were the two basic systems used for the investigation of electrified shuttle transports along a 

public road in the vicinity of the Arlanda Airport, Stockholm, Sweden, during 2017-2018 

(eRoadArlanda, 2017b). Development and tests were being carried out on a separate enclosed 

test track. The test track was around 0.22 miles and located on a 6.21-mile section of Road 893 

between Arlanda Cargo Terminal and the Rosersberg logistics area. The system has been tested 

during six winters since 2012 and results showed that it can withstand snow, ice, water, gravel, 

leaves and other weather effects.  
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In April 2018, the 1.24-mile section of electric rail has been officially opened, constituting 

the first public demonstration road of its kind that allowed vehicles to be recharged while driving 

(eRoadArlanda, 2018). The plan is to expand the system across Sweden. More specifically about 

the technical details, the eRoadArlanda’s technical solution (rail solution from the company 

Elways) transfers energy from a rail in the road to the vehicle, using a movable arm. The arm 

detects the location of the rail in the road and as long as the vehicle is above the rail, the contact 

will be in a lowered position. When overtaking, the contact is automatically raised. The rail, 

which is connected to the power grid, also functions automatically. It is divided into sections and 

each individual section is powered only when a vehicle is above it. When a vehicle stops, the 

current is disconnected. The rail enables the vehicle’s batteries to be recharged while powering 

its passage. The system also calculates the vehicle’s energy consumption, which enables 

electricity costs to be debited per vehicle and user.  

The overall goal of the project was to generate knowledge, experience and decision data that 

could be beneficial to the creation of a platform for the electrification of a larger transport 

network in Sweden. The investment in the eRoadArlanda project is in line with the Swedish 

government’s target of reducing transportation infrastructure that uses fossil fuels by 70% by 

2030 (eRoadArlanda, 2017a). Results from the demonstration project have shown that this 

system can reduce carbon dioxide emissions up to 90% and at a cost of around $1.93 million per 

mile, the price of electrification is said to be 50 times cheaper than an urban tram line. 

Another Swedish based company, Elonroad, also works on the development of ERs in Lund, 

southern Sweden together with Lund University. The solution is intended to be used by both 

moving and stationary electric cars, buses or trucks. Elonroad has constructed a 0.12 miles long 

test track outside Lund, at LTH, Lund University. The electric road consists of a rail that rises 

about 2 inches from the surface and has width of around 12 inches, having slantwise sides. A 

power cable is connected to the power station at the end of the rail. Sliding contacts under the car 

provides electricity to the onboard charger (Elonroad, 2017). Based on the project’s estimations 

(Elonroad, 2017), the electric road will transfer power up to 240kW with 97% efficiency. In 

addition, the cost of the system is preliminarily estimated to be $1.4 million per mile. 

Since 2012, the French rail transport company Alstom is testing the conductive rail charging 

system on electric trucks and buses at a facility in Hallered, near Gothenburg, Sweden which is 

operated by AB Volvo. A 0.29 inches wide track, with a 0.17mile electrified roadway section, is 
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being used for developing the electric road technology (FABRIC, 2017). The system consists of 

two power lines built into the surface of the road and a current collector on the vehicle that 

connects to the road. The vehicle integration is being performed as part of the Slide-in research 

project (Olsson, 2014) and FABRIC Project (FABRIC, 2017). According to the test results, it 

was found that the system is able to transfer 120 kW of power in total, achieving 93.3% power 

transfer efficiency. 

2.3.3 Wireless Charging Systems 

The PATH (Partners for Advance Transit and Highways) program at UC Berkeley, was 

conducted to build a roadway with EV powered inductively in the end of 1970s (Eghtesadi, 

1990). A 60 kW, 35-passenger bus was driven along a 0.13-mile distance road track. Due to 

limited technology, the operating frequency of Berkeley system was 400 Hz and their efficiency 

was only 60%. From there, researchers and industry have improved the performance of the 

dynamic EV charging systems (Vilathgamuwa & Sampath, 2015).  

The Sustainable Electrified Transportation Center (SELECT), has been established at Utah 

State University, US in 2016. This research center initiated the construction of a quarter mile, 

oval-shaped electrified test track (Electric Vehicle and Roadway (EVR) facility) and has 

demonstrated that in-motion EVs can be effectively charged using dynamic wireless charging 

(Morris, 2015; Liu & Song, 2017). The University’s campus in Salt Lake City and the Utah 

Transit Authority have collaborated on demonstrating inductive power transfer for USU’s fully 

electric 20-passenger bus-referred to as the “Aggie Bus”.  

The “Aggie” bus is the first bus developed and designed by a North American organization 

that is charged with wireless power transfer technology and is the world’s first electric bus with 

such technology. It can achieve a power level up to 25 kW, greater than 90% efficiency from the 

power grid to the battery and a maximum misalignment of up to six inches (Utah State 

University today, 2012). As of 2018, the Aggie buses are in operation through a shuttle service 

provided to the Utah State University community and are also equipped with an autonomous 

control kit from Autonomous Solutions Inc. This kit is required to identify inductive power 

transfer coils embedded in the roadway and to align automatically under various road and 

weather conditions (Utah House of Representatives, 2017). According to USU, this technology 
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could result in $180 billion in annual cost savings, a 20% reduction in air pollution and a 10% 

reduction in CO2 emissions in the United States. 

The FABRIC European Project (Feasibility analysis and development of on-road charging 

solutions for future EVs) is also investigating the feasibility of in-road inductive wireless 

systems with test sites in France and Italy. The test site in France is supplied with inductive 

charging system by Qualcomm. The first demonstrations took place at a less than 1-mile (0.062 

miles) FABRIC test track at Satory Versailles, recently built by the French research institute 

VEDECOM. Qualcomm’s Halo dynamic EV charging system (DEVC) was integrated into the 

test track, and the receiving components were installed in two Renault Kangoo EVs. The 

dynamic charging prototype tested has the capability of charging an EV dynamically at up to 20 

kW at highway speeds. Various power levels and scenarios (experiments associated to dynamic 

inductive charging use on road and periurban highway) are being tested. The expected efficiency 

of the system is 80%. 

In Italy, the existing test track is specifically designed for testing inductive wireless 

technology under different conditions in urban environment. Two paved lanes are equipped with 

embedded induction loops able to recharge the EVs while they are driven electric distribution 

and communication network. The FABRIC test bed is designed and constructed in accordance 

with safety guidelines and standards to provide at least 0.16 miles of electric car and light-duty 

vehicle dynamic charging infrastructure. The site is able to support for at least one vehicle and 

possibly three powered vehicles simultaneously. Two implementations are being investigated. 

The first implementation is the technology developed by Politecnico di Torino, named POLITO 

Charge While Driving and the second is the SAET SPA system. The technology is being tested 

mainly at FIAT vans and is able to achieve power transfer of up to 20kW (POLITO) and 40kW 

(SAET) at urban speeds. The goal is to achieve wireless power transfer with an efficiency of 70-

80%. 

So far, preliminary results from the Italian and French test sites showed that the dynamic 

charged EV represents the most advantageous option in terms of CO2 emissions, operation costs 

and total cost of ownership compared with a BEV or a diesel car (FABRIC, 2017).  

Bombardier’s PRIMOVE e-mobility team has performed a series of tests with a dynamically 

(inductively) charged hybrid electric truck at a construction site in Mannheim, Germany. The test 

track used was around 262.5 feet long and consisted of four 65.6 feet long charging segments 
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embedded within the road. These charging segments automatically switch on and off when the 

vehicle is driving above them supplying it with electrical energy, completely contactless. The 

truck was found to be able to be inductively supplied with approximately 183 kW, with 89% 

energy power transfer efficiency (Sundelin, 2016). The test conducted were mainly focusing on 

increasing safety, stability and accuracy of dynamic, inductive charging and also minimizing the 

electromagnetic stray field. This was achieved by working with different lengths of the devices 

embedded into the ground as well as conducting tests to determine the ideal distance between the 

individual charging segments (Primove, 2016). 

Another research project in Lathen, Germany is testing the inductive energy transfer systems 

for passenger and light commercial vehicles. The company called Integrated Infrastructure 

Solutions (INTIS) operates its own test center that includes a 0.016-mile-long test track which 

can be outfitted with inductive coil sections (Integrated Infrastructure Solutions [INTIS], 2016). 

In particular, three types of vehicles are being tested: an electric sports car, an electric bus and an 

electric minivan. According to the results from the coil system, the electric sports car can be 

supplied with up to 30kW, the electric bus with up to 60kW and the electric minivan with up to 

30kW. In general, the main road side components for inductive energy transfer systems for 

stationary or on-the-move applications are all available and can be used for tests up to a 

transferred power of 200kW at frequencies up to 35 kHz (Integrated Infrastructure Solutions 

[INTIS], 2016). 

In 2016, VICTORIA project (Vehicle Initiative Consortium for Transport Operation and 

Road Inductive Application) led by Endesa Company, initiated an electric bus route in Malaga, 

Spain, using inductive power transfer developed by CIRCE. Eight 31.5 inches and 50kW coils 

will be installed along 0.062 miles (100m) of the route. This prototype was developed for low 

speeds (6.2 mph). The urban bus from Gulliver is self-guided to assure proper speed or 

misalignment and is adaptive for conductive and inductive charging (Endesa, 2013). 

Experimental results in 2017 showed that dynamic charging system’s efficiency is 83 % at rated 

power due to lateral misalignment. It is expected that further testing at different speeds will be 

carried out within the FABRIC project when the bus becomes available again. 

In 2009, the Korea Advanced Institute of Science and Technology (KAIST) started its Online 

Electric Vehicle (OLEV) project in South Korea. This incorporated a technology called the 

Shaped Magnetic Field in Resonance (SMFIR) and has been implemented in the shuttle system 
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of the KAIST campus (Suh et al., 2011). KAIST has also deployed trams using this system at the 

Seoul Grand Park Amusement Park and in 2013 introduced the world’s first battery electric bus 

which travels for a distance of 15 miles between the train station in the city of Gumi and the 

district of In-dong (Jang et al., 2015).  

By then, the initial project had already led to the formation of two spin-off companies, OLEV 

Korea and OLEV Boston, the latter launched in 2011. Results of the trials so far have shown 

real-world performance of the OLEV system with 75% to 85% efficiency for charging at 100 

kilowatts. The single power electronic has a rate of 20kW and the system has a power rate up to 

200kW (20kW/pickup and 5 pickups per bus) (FABRIC, 2014a). The buses can travel at a top 

speed of around 52.8 miles per hour, but usually travel at approximately 37.3 miles per hour in 

ordinary service. The advantage to the KAIST/OLEV system is that the rechargeable bus battery 

is smaller than usual, at only 1/5 the size of a normal electric bus battery. Recharging pads cover 

only 10–15 percent of the bus route (Suh & Cho, 2017). 

Israeli-based start-up ElectRoad also announced successful tests of its dynamic charging 

system on an 80ft. test track. The company uses conduction coils to power electric cars via 

magnetic induction and plans to embed them along public transportation routes in Tel Aviv by 

2018. Currently, ElectRoad is working on demonstrating the complete system, initially on an 

electric car and then on a bus platform. The goal is to achieve an efficiency of more than 88% of 

energy transferred (ElectRoad, 2017). 

The Transport Research Laboratory (TRL) in UK has conducted a feasibility study of 

dynamic inductive power transfer along the network of England’s major roads on behalf of 

Highways England (Transport Research Laboratory, 2015). The project has investigated a 

number of possible wireless power transfer technologies focusing on those able to function as 

dynamic wireless power transfer (DWPT) systems for cars, large good vehicles (LGV)/heavy 

good vehicles (HGV). In total seventeen WPT systems were investigated, eight of which had a 

dynamic capability. Each system capable of dynamic functionality was evaluated by the project 

team against a number of metrics covering: power transfer level, operational speed, suitability 

for different vehicle types and availability for trials (Transport Research Laboratory, 2015). 

Specifications for the installation of DWPT equipment into vehicles and safety implications were 

also considered as part of the study. The requirements for EV batteries were found to be 

dependent on vehicle dynamics, duty cycles and vehicle powertrain technology.  
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Three types of road construction were considered for DWPT, these being trench-based 

constructions (where a trench is excavated in the roadway for installation of the DWPT primary 

coils), full lane reconstruction (where the full depth of bound layers are removed, the primary 

coils installed and the whole lane resurfaced), and full lane prefabricated construction (where the 

full depth of bound layers are removed and replaced by pre-fabricated full lane width sections 

containing the complete in-road system). The system could support both electric and HEVs and 

would likely impose high peaks and variations in power demand which will be dependent on 

traffic conditions at the time, based on theoretical results. The system expectations, according to 

the study, refer to 100-140kW of power transfer and more than 80% overall efficiency. However, 

this study is a conceptual one, since field trials have not been conducted yet and thus, it is using 

assumptions and scenarios made by TRL, based on existing ER projects (Transport Research 

Laboratory, 2015). 

Inductive power transfer technology is also being investigated by the University of Auckland 

in New Zealand (University of Auckland, 2010). The associated research project aims to develop 

new charging pads that could survive and create new charging materials made of soft composites 

in a cost-effective manner, without degrading the road performance of the road and ensuring 

increased service life. This might involve charging coils at intersections, or on slopes to support 

power transfer for vehicles traveling uphill. This research has been used for limited use on public 

transportation systems, since it is mainly used to develop fully-functioning inductive power 

systems for handling materials and factory automation applications. Besides testing the in-

motion wireless charging system, the stationary wireless charging is also being explored for 

PHEVs or BEVs. 
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Table 2.1: Summary of selected studies on ERs 

Reference Location 

Technology 

Test track/site Vehicle Type Results/Goals  
Overhead 

Conductive 

Conductive 

rail 

Wireless 

Inductive 

Siemens, 2017a 
California, 

US 
X 

 

 
1-mile test track (demo) 

in Carson, LA 

Battery-electric, 

natural gas 

augmented, 

diesel-hybrid 

truck 

Ongoing 

Overall goals: 

zero-emission 

corridor, reduced 

truck operating 

costs 

Siemens, 2017b 
Germany, 

EU 
X 

 

 

Demonstration on a 6.2 

mile stretch of 

expressway, Frankfurt 

Hybrid electric 

truck 

Field trials start in 

2019 

Siemens, 2015 
Sweden,  

EU 
X 

 

 

1.24 mile stretch of 

expressway, north of 

Stockholm 

Bio-diesel 

hybrid truck 

Ongoing 

Results available 

within 2019 

eRoadArlanda, 

2018, 2017 

Sweden, 

EU 
 X  

1.24-mile 

demonstration, 

Stockholm Arlanda 

Airport/0.22-mile test 

track 

Electric truck 

Opened in 2018 

Tested during six 

winters since 

2012 

Measured:  

90% reduction in 

carbon dioxide 

emissions 

50 times cheaper 

than an urban 

tram line (at a 

cost of $1.93 

million per mile) 
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Table 2.1 continued 

Elonroad, 

2017 
Sweden, EU  X  

0.12-mile test truck, 

outside Lund. 

Electric vehicles 

(cars, buses, 

trucks) 

Ongoing 

Goal: up to 

240kW of power 

transfer with 97% 

efficiency 

Preliminary cost 

estimation: $1.4 

million per mile 

Olsson, 2014  

FABRIC, 

2017 

Sweden, EU  X  
0.17-mile test truck, 

Hallered, Sweden 

Electric trucks 

and buses 

Started from 2012 

Measured: 

120kW power 

transfer 

93.3% efficiency  

Eghtesadi, 

1990 

Vilathgamuwa 

and Sampath, 

2015 

California, 

US 
 

 

X 
0.13-mile stretch, 

Berkeley 

Battery-electric 

bus 

Measured: 

Operating 

frequency of 400 

Hz 

60% efficiency 

rate 

Utah State 

University, 

2012 

Utah, US  

 

X 

Shuttle service to Utah 

State University 

Community, quarter 

mile stretch, Logan 

20-passenger 

“Aggie” electric 

bus 

Ongoing 

Goals: 25 -40kW 

power transfer 

90% efficiency 

20% reduction in 

air pollution 

10% reduction in 

CO2 emissions 

$180 billion in 

annual cost 

savings 
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Table 2.1 continued 

FABRIC, 2017 France, EU  

 

X 
0.062-mile test track, 

Versailles 

Renault Kangoo 

electric vehicles 

Ongoing 

Goals: 20-40kW 

at highway 

speeds, 

80% efficiency 

 

FABRIC, 2017 Italy, EU  

 

X 

0.16-mile test track, 

SAET and POLITO 

solutions, Turin 

FIAT electric 

vans 

Ongoing 

Goals: 20-100kW 

70-80% 

efficiency 

 

Sundelin, 2016 

Primove, 2016 

Germany, 

EU 
 

 

X 
262.5-foot test truck, 

Manheim 

Hybrid electric 

truck 

Ongoing 

Measured: 

183kW 

89% efficiency 

Integrated 

Infrastructure 

Solutions 

[INTIS], 2016 

Germany, 

EU 
 

 

X 
0.016-mile test truck, 

Lathen 

Electric 

passenger and 

commercial 

light vehicles 

(car, bus, 

minivan) 

Ongoing 

Measured: 

30-70kW power 

transfer (coil 

system) 

Endesa, 2013 Spain, EU  

 

X 

0.062-mile stretch with 

low speeds (6.2 mph), 

Malaga 

Battery electric 

bus 

Ongoing 

Goals: 50kW 

power transfer 

83% efficiency 

Suh et al., 2011 

Jang et al., 

2015 

Suh & Cho, 

2017 

FABRIC, 

2014a 

South 

Korea, Asia 
 

 

X 

Shuttle system of 

KAIST campus 

Trams at Seoul Park 

Amusement Park, Gumi 

Battery electric 

bus (OLEV 

buses) 

Started from 2009 

Already in use 

Measured: 20-

200kW power 

transfer 

75-85% 

efficiency rate 
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Table 2.1 continued 

ElectRoad, 

2017 

Israel, 

Middle East 
 

 

X 
80-foot test track, Tel 

Aviv 

Battery electric 

car and bus 

Ongoing 

Goals: 

More than 88% 

efficiency 

Transport 

Research 

Laboratory, 

2015 

United 

Kingdom, 

EU 

 

 

X 

 
Not field trials yet 

Electric cars, 

large good 

vehicles, heavy 

good vehicles 

Ongoing 

Not available 

results-

conceptual study 

Goals: 

Investigation of 

different WPT 

systems, 

expectations 

mention up to 

100-140kW of 

power transfer 

More than 80% 

efficiency 
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 Benefits and Concerns about Electric Roadways (ERs) 2.4

Electric roads constitute an innovative system that can alter the way EVs can be charged. As 

with any technology, there are merits and limitations associated with each alternative technique 

for highway electrification.  

2.4.1 Benefits 

Electric roads deliver continuous power to vehicles while they are in motion, and thus offer a 

promising solution to address major barriers to vehicle electrification. In particular, this charging 

solution offers unlimited range with vehicles that actually cost less to purchase and operate than 

their internal combustion engine counterparts. This is because reduction in the battery size 

reduces the vehicle weight. Hence, this advantage will be highly recognized by fleet operators 

and consumers. 

The reduced size of the battery has also important environmental implications, since the 

emissions embodied in the production of the battery decrease compared to the emissions 

produced from the battery of a traditional EV. In general, total emissions from light duty vehicles 

and trucks will be reduced in the long run, as a result of improvements in fuel economy and 

engine operation (Limb et al., 2017).  

In addition, the concept of dynamic charging can increase battery life with reduced discharge 

cycles and no rapid fast charging, increase productivity by eliminating long charging times, and 

provide a direct path to higher levels of autonomy (continuous operation, unlimited range, no 

user interaction required for charging). 

Another important implication is that this emerging technology provides a path to creating 

zero-emission corridors and encouraging electric conversion through infrastructure investment. 

Thus, local and state agencies that have the goal of reducing carbon traffic emissions can benefit 

by investing in this promising concept. 

For the electrical infrastructure system, the roadway charging solution provides a continuous 

and relatively predictable load that can be actively controlled. This approach allows actively 

controlling vehicle charging rates, at the sub-second level, thus managing local grid electrical 

demand to meet vehicle requirements as long as the total energy is delivered over tens of miles. 

This represents a paradigm shift away from the fixed location, on-demand, high-peak, fast-
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charging gas station model currently trending for EV corridors. Fuel savings would be shared 

between the roadway operator to cover the infrastructure investment and the end user. Another 

important advantage for broad adoption of in-road charging is providing a single infrastructure 

solution that is compatible with light to heavy duty vehicles. This eliminates challenges 

associated with multiple standards for each light duty power level and custom solutions for 

public transit and freight. 

2.4.2 Concerns 

On the other hand, the main barriers concerning the electric roads are related to increased 

complexities on a system level. The conventional transportation system has evolved organically 

over more than 100 years and constitutes today an open socio-technical system with different 

standards and regulations and constituted by different, more or less, autonomous and 

complementary subsystems. These subsystems – the truck, road, and fuel system– are today 

produced and operated autonomously by different actors, e.g., truck manufacturers, construction 

companies, road authorities, and oil companies. The electric road technology requires, initially at 

least, a more closed system-design, where the subsystems are tightly coupled together. The 

power train of the electric truck needs to be tightly integrated with the power transfer technology, 

which needs to be integrated with the electric road design, which in its turn needs to be 

integrated with the regional power grid.  

Consequently, there are a number of stakeholders from different industries that are highly 

interested in the different concepts of electric road technologies, e.g., manufacturers concerning 

the vehicle and its power-train; railroad manufacturers concerning the power transfer technology 

and electric roads technology; construction firms concerning the physical infrastructure; and 

power utilities concerning the electric power supply and operations of the power grid. Moreover, 

there are several new services required in order to manage ERs, e.g., payment systems, logistics, 

driver management, electricity metering, and safety. Thus, the complexity of the system may be 

high. For this reason, software management services may be needed to reduce the complexities 

of the technological interfaces between the electric road system and its customers. 

In addition, one of the main concerns is the cost of the implementation of this infrastructure. 

The initial cost of this system is rather high. The investment and implementation costs of ERs 

mainly depend on a wide range of factors (type of technology, road characteristics, existing 



47 

 

 

substations, etc.). Different sources presumed costs of about $2-$4 million per lane-mile 

(FABRIC, 2014b; Fuller, 2016; Viktoria Swedish ICT, 2013; Moller, 2017). Depending on the 

business model that will be followed, the implementation and use of dynamic charging systems 

can incur charges to users that can cover electricity supply costs (FABRIC, 2014b). In the long 

run, payback periods for the specific technology can decrease, operating costs for the vehicles 

decrease, and return on investment can be higher. In other words, if the system is implemented at 

a larger scale, costs can be brought down. Different options of potentially considering tolling 

systems can lead to a model that can generate revenues for the state, as the technology becomes 

more and more mature in terms of wider public implementation and acceptance. For this reason, 

a gradual implementation of ERs from a small system to a large system is recommended.  

Turning to the expected maintenance costs, inductive charging systems can be installed under 

the road without any additional visible infrastructure and without a safety risk and are expected 

to minimize the need for maintenance. In addition, these systems could potentially be used as 

heating pavement systems, preventing from frost damages during winter (Moller, 2017). In 

general, based on rough estimates from case studies, the maintenance costs per year range from 1 

to 2% of the total investment costs over the estimated lifespan of the system (Viktoria Swedish 

ICT, 2013).  

The legal aspects and obstacles for ERs have not yet been explicitly defined. Such barriers 

may include electrical safety laws, environmental laws as well as access to the right-of-way (ICT, 

2013). For example, overhead wires have to be installed in a height of at least 19.685 feet which 

enables only vehicles with a corresponding size to connect to them. Special arrangements may be 

expected for implementations of the system under bridges and in tunnels which may lead to 

lower hanging wires (Andersson & Edfeldt, 2013). In general, some of these questions may be 

easy to solve, but other issues require a real case to be tested and evaluated in the future. 

As far as the safety concerns are concerned, concerns related to the electricity of charging 

zone, damages from tear, wear or rutting during different conditions have been expressed. 

However, tests are being conducted in the demonstration projects to evaluate several hazard 

situations before the implementation of the system in real conditions. From these tests, 

conclusions about the technology implementation will be made and used appropriately. For 

example, it has been found that for electrical safety reasons, in-road solutions -both inductive and 

conductive- must consist of short segments 20m (65.6 feet) or even shorter depending on the 
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vehicle length of the shortest vehicles running on the electrified lanes (Viktoria Swedish ICT, 

2013). These segments can be activated only when it bears at least one suitable vehicle and thus 

covering it from any third parties touching it. For all other situations the segment needs to be 

deactivated. 

Since this system is not widely implemented and it is still being tested, it is reasonable that 

such concerns will be raised. This leads to the conclusion that one of the major weaknesses of 

this concept is the lack of maturity. The system has not proven itself in a real environment yet 

and a business model that can support it has not been found. Probably, bus lines and routes (e.g., 

city to airport connections) will be more appropriate for this technology, since they have steady 

traffic loads. Besides, as argued in Chen et al. (2016), commercial fleets, such as buses and 

trucks, are likely to be early adopters of dynamic charging infrastructure due to higher benefits 

offered to these vehicles. 

However, as research progresses and adoption becomes higher, more concrete information 

from demonstration projects is expected to alter the situation by reaching a higher level of 

maturity and encourage the investment and use of this system. This is why a study of the market 

acceptance and the environmental impact of this technology is needed. 

 Optimal Locations   2.5

The implementation of the ERs can be achieved with two different ways. The first way is the 

construction of an entirely new road where the ERs technology can be installed. The second is 

the incorporation of the ERs technology to the existing infrastructure by carrying out some 

modifications. It is natural to conclude that the first way is more expensive than the second one. 

However, according to studies, the largest part of the cost comes from the construction and 

installation work itself, being around a third of the total implementation costs of ERs (Jelica, 

2017). 

Another aspect related to the implementation of ERs is the identification of their optimal 

locations in a road network. In order to be effectively implemented, they should be strategically 

deployed based on important factors that need to be considered. In particular, access to power 

network constitutes an essential factor, since the goal of implementation is to minimize the 

energy losses as much as possible (FABRIC, 2014b; Riemann et al., 2015). The distance from 

substations should also be considered, so as to be less than 0.5 or 1 mile to have a sufficient 
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energy distribution (Siemens, 2017a). Furthermore, proximity to various land uses, such as 

airports, ports, terminals, courier delivery services, logistic companies and distribution centers 

also plays a major role in determining the optimal locations for ERs.  

In addition, the identification of a suitable location of an ER also depends on the road 

characteristics and road environment, such as the number of available lanes, length, the physical 

condition and materials, the geometric design of existing infrastructure etc. (FABRIC, 2014b; 

Transport Research Laboratory, 2015, Viktroria Swedish ICT, 2013). Another primary factor to 

be considered is the daily traffic of the road (Stamati & Bauer, 2013). According to Limb et al., 

(Limb et al, 2017), the deployment of the technology should be based on the largest number of 

vehicles miles traveled per mile of roadway. Other factors that are expected to affect the decision 

for the location of ERs are related to the emissions levels of the study area, the temperature and 

weather conditions and so on (FABRIC, 2017; Viktoria Swedish ICT 2013). 

 Stakeholders Involved 2.6

In general, the electric road system is a system that needs the consideration of several factors 

in all the stages of their implementation as well as their operation and maintenance. This is 

because it is a new technology that is handled in a different manner compared to a conventional 

road. In the ER concept, the road and the vehicles driving on it interact continuously. Thus, there 

is an increased need of data collection, so as to monitor the road and its interactions with the 

vehicles. One important component of the data is the energy consumption of the vehicles that are 

moving along the ER, since this information can be used by the system operators to establish 

different business models for the ER (Jelica, 2017). These models need to be flexible, since a 

large number of stakeholders are involved in this system, such as EV manufacturers, users, 

regulators (state/national authorities and legislators), state and local agencies, policy-makers and 

so on. Figure 2.1 below presents the difference between the major stakeholders involved in a 

typical road system compared to an ER system (Viktoria Swedish ICT, 2013). 
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Figure 2.1: Stakeholders of conventional road and ER systems  

(Viktoria Swedish ICT, 2013) 

 Summary 2.7

By closely examining the existing literature regarding ERs, it is possible to gain knowledge 

on technology details, factors considered in their implementation, expected results from 

demonstrations and research studies, and lessons learned. However, there is still a long way to go 

for a full commercial implementation, since this technology requires time to be studied based on 

the candidate location, be adopted and constructed. 

It can also be concluded from the overview of previous studies related to ERs that data on 

market acceptance on ERs does not currently exist. Existing studies do not provide an 

understanding of the adoption level of ERs. Localized market data specific to ERs are necessary, 

as a first step to their implementation. The investigation of first adopters and main concerns 

related to ERs (technical or non-technical) would provide a roadmap of how this technology 

should look in the future in order for the stakeholders to select the elements that are necessary 

and feasible to build and test the system. This way, the users can be satisfied during the system’s 

lifetime and this emerging technology can be properly adjusted to the involved stakeholder’s 

needs.  

Similarly, the emissions change based on the implementation of the technology has not been 

extensively studied on the study area. However, information on the potential of this technology 

to improve the quality of life may be important. 
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3. RESEARCH FRAMEWORK, EMPIRICAL SETTING, AND DATA 

In this chapter, the research framework to achieve the three objectives of this thesis is 

discussed. In addition to the general framework, this chapter also presents the empirical setting 

of the study in order to provide a specific context for the application of the research framework 

and methodology. Sections 3.3-3.5 offer details about the survey that was designed targeting the 

general population in the study area. Sampling limitations are also discussed along with the steps 

that were undertaken in order to overcome any related issues. 

 Research Framework  3.1

As described in Chapter 1, the general research objectives of this thesis are to evaluate the 

market adoption and environmental impact of ERs in terms of emissions reduction. The main 

objectives, together with the specific goals presented, can be achieved by following a proposed 

research framework. Figure 3.1 presents the basic components within the research framework 

followed in this study. 

As Figure 3.1 shows, the market adoption of ERs is based on the analysis of a) the factors 

that affect the intention to use the ERs in the short- and long-run so as to indirectly include the 

time dimension in the analysis and b) the adoption rates and market segments of ERs. For this 

purpose, a survey of current and potential users of a certain road network is conducted to assess 

the opinions for this emerging technology and estimate the EV market diffusion, while 

accounting for human preference heterogeneity, and behavioral and market responses to 

technological innovations. More specifically, the questionnaire includes questions related to 

possible factors affecting technology adoption of passenger car drivers that cannot be transferred 

easily onto the field of commercial-vehicle driving. It reveals respondent’s socioeconomic 

profile, travel patterns, attitudes towards ERs and other behavioral characteristics that could 

affect their intention to use the ERs. These characteristics are reflected through stated choice 

questions that include essential attributes of the technology. More information on the survey 

design is presented in Section 3.3. This methodology was adopted after reviewing related studies 

that focused on predicting the market adoption of different technologies (discussed in section 3.3) 
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and served as the basis for the design of the survey questions (e.g., Rogers, 2003; Moons & De 

Pelsmacker, 2015; Al-Alawi & Bradley, 2013).  

Using the data extracted by the survey, appropriate econometric models are estimated to 

assess market acceptance. The factors that affect short-term and long-term behavioral intention 

towards ERs are also identified and the market segmentation analysis follows by providing the 

adoption levels for different market segments. The market segmentation analysis is an important 

step to understand the target demand and accelerate ER adoption. The findings concerning the 

adoption rates are then used to evaluate the environmental impact of this technology based on 

different scenarios that run in the emissions model. The following chapters provide more details 

of the methodological approach that is used for each objective.  

 Empirical Setting 3.2

This thesis develops and tests a framework to assess the market acceptance and impact of 

ERs on criteria pollutants and greenhouse gas emissions. The case study area is the Los Angeles 

County in California. General EV and travel patterns, environmental issues and basic road 

network of the study area are presented in Section 3.2.1.  

3.2.1 Study Area 

The study area selection was based on the examination of EV market share. The 

implementation of ERs would be more meaningful and effective in an area that is proactive in 

terms of the large number of registered EVs and the availability of public charging stations and 

energy networks. Los Angeles is considered a leader in electro-mobility and thus, a natural 

choice for the implementation of ERs. 

3.2.1.1 EV Trends 

California plays a substantial role in increasing the EV uptake in the United States due to a 

combination of policies and promotional activities (e.g., The Zero Emission Vehicle regulation, 

consumer rebates, access to carpool lanes on congested highways, extensive EV charging 

infrastructure, progressive electric utility policies, greater model availability and marketing, 
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Figure 3.1: Research framework
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access to high-occupancy vehicle lanes and continued growth of local EV promotions) 

(International Council on Clean Transportation [ICCT], 2018). 

California is the second largest EV market in the world, after China. In particular, the 

California market-about 96,000 EV sales in 2017 (29% increase since 2016)-accounts for half of 

the US market and nearly half of cumulative EV sales through 2017 (International Council on 

Clean Transportation [ICCT], 2018). This compares with California representing about 12% of 

the US population, 14% of the economy, and 12% of national new light-duty vehicle sales 

(International Council on Clean Transportation [ICCT], 2018). EV sales in the state since 2011 

totaled 269,000, constituting about 48% of US EV purchases (International Council on Clean 

Transportation [ICCT], 2017). Public vehicle charging infrastructure in California represents 31% 

of the US infrastructure, and includes a quarter of the public direct-current fast charging 

(International Council on Clean Transportation [ICCT], 2017). 

Among California’s cities, Los Angeles stands out in terms of the size of EV market and this 

is the main reason that it is chosen as the study area of this thesis. Los Angeles had new EV sales 

of nearly 12,000 during 2017-while the median household income was about $51,000, below the 

statewide median of $64,000 (International Council on Clean Transportation [ICCT], 2018). 

More specifically, LA residents purchased more than 38,000 new EVs constituting more than 

one-fifth of the entire US EV market. In terms of cumulative EV sales, the Los Angeles 

metropolitan area accounted for more than 143,000 sales from 2010 to 2017 (International 

Council on Clean Transportation [ICCT], 2018). In 2016, Los Angeles exhibited one the largest 

annual increases in EV registrations–from about 23,600 to more than 30,000 vehicles-and had 20 

to 30 vehicle models available for purchase (International Council on Clean Transportation 

[ICCT], 2017).  

Out of the 344 public charging points in California, as measured at the end of 2017, the EV 

market share in Los Angeles was 5%, being more than twice the US average. More than 80% of 

the workplace charging infrastructure is Level 2, and the rest is a mix of Level 1 and direct 

current (DC) fast charging stations (United States Department of Energy [USDOE], 2016). In 

particular, based on the ChargeHub charging stations map, in a 9.32-mile radius of Los Angeles, 

there are 1506 level 2 charging stations (93%) and only 107 level 3 or DC fast charging stations 

(7%). Thus, level 2 charging stations are more common. The cost of home charging in Los 

Angeles is around $0.15 per kwh (fuel economy of 2.5 miles per kwh) (Fuller, 2016), while the 
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cost of charging at Level 2 public charging stations is approximately $0.6 per kwh (Southern 

California Association of Governments [SCAG], 2012). It is important to mention that 54% of 

the charging stations in LA (1613 in total) are free and are usually Level 1 or Level 2 charging 

stations.  

Different incentives are provided to LA residents in order to increase EV uptake. These 

incentives include state purchase incentives, city purchase incentives, HOV lane access, parking 

incentives and “other” incentives, which include exemptions from state and local fees and 

emissions inspections. The incentives given for the purchase of EVs lower the costs so as to be 

closer to the cost of traditional vehicles. California’s rebates are typically $2,500 for BEVs and 

$1,500 for PHEVs and the federal rebates are estimated to be $7,500 (International Council on 

Clean Transportation [ICCT], 2016).  

In general, EV adoption in LA can be affected by certain characteristics that exist only in the 

LA Market. These characteristics are: “(i) high ratio of multifamily housing buildings and renters, 

(ii) high ratio of new and hybrid cars, and (iii) commuter market with high availability to 

multiple vehicles per household and limited public transit commuting” (Dubin et al., 2011). 

Because of these characteristics, the EV market in LA offers great potential. However, public 

policies and new ideas are needed to encourage investment related to EVs. 

Despite the high adoption of EVs in Los Angeles, there is still room for improvement. It is 

still uncertain whether people will switch to electric mobility, especially for long distance trips. 

According to a study conducted in 2011 (Dubin et al., 2011), LA residents have concerns about 

using EVs for long distance trips or about EV charging, indicating that the EV market should be 

expanded beyond early adopters. The success of the EV market overall will depend on how well 

the market responds to incentives and whether it can overcome the barriers to adoption through 

improved technologies.  

3.2.1.2 Travel Patterns 

The Los Angeles metropolitan area, with nearly two cars per household, has the highest 

vehicles-per-capita ratio in the world; more than 12 million cars travel on its freeway system 

every day. According to the 2009 National Household Travel Survey (NHTS) data, 71 % of trips 

in Los Angeles County are made by a driver alone in a car; 11% carpool; 12% of trips are with 

public transit, and 6% of trips are made by other modes (walking, biking). According to the 2016 
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American Community Survey, 69.7% of LA residents commuted by driving alone, 8.7% 

carpooled, 9.2% used public transportation, and 3.5% walked. Approximately 2.8% commuted 

by all other means, including taxi, bicycle, and motorcycle (United States Census Bureau, 2016).  

The Global Traffic Scorecard (INRIX, 2016) found that Los Angeles residents spent a total of 

104 hours driving per person in 2016, resulting in a total cost of $2,408 per driver in 2016. The 

average commuting trip in Los Angeles is 8.8 miles (Goldstein, 2015b), while the average trip 

length for all other non-work trip purposes is less than 6 miles (California Department of 

Transportation, [Caltrans], 2013). In addition, the average amount of time people spend 

commuting with public transit on a weekday is 81 minutes and the average distance people 

usually ride in a single trip with public transit is 6.90 miles (Moovit Insights, 2018). 

As far as the Goods Movement is concerned, ports of LA and Long Beach play a major role. 

In particular, based on the EMFAC model 2017 data (California Air Resources Board [CARB], 

2017a), in 2017, the annual population of all kinds of trucks was around 2,763,846 trucks in LA. 

These trucks were making 14,588,307 trips per day in total, which is 10,622,618 vehicle miles 

traveled per day. The truck traffic constitutes a high proportion of average daily traffic in LA and 

especially in Lower Los Angeles. 

Compared to other US metropolitan areas, Los Angeles has residents that drive more miles 

per person than would be expected based on the region’s overall population density (RAND 

Corporation, 2008). Hence, the per capita demand for roadways is rather high despite high 

population density. Therefore, high levels of congestion exist and the most realistic way to 

reduce it may be to explore ways to manage the demand for driving during the peak hours 

(RAND Corporation, 2008). It is also important to mention that the statistics presented indicate 

that drivers make frequent short-distance trips. The short trips, in conjunction with year-round 

mild climate, provide additional evidence that Los Angeles is an ideal market for EVs. 

3.2.1.3 Environmental Issues 

It is known that California is one of the most polluted states and has authority under the 

Clean Air Act since 1967 that allows it to set its own emissions standards, which are tougher 

than national standards established by the Environmental Protection Agency (EPA). Under the 

provisions of the Clean Air Act, the California Air Resources Board (CARB) (merger of the 

Bureau of Air Sanitation and the California Motor Vehicle Pollution Control Board) has adopted, 
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implemented and enforced a wide variety of nation-leading air pollution controls (California Air 

Resources Board [CARB], 2018).  

Different vehicle emissions control strategies have been deployed to deal with the high levels 

of pollution originating from the traffic of California’s States. Among these are (California Air 

Resources Board [CARB], 2018): 

 The first tailpipe emissions standards for hydrocarbons and carbon monoxide (1966), 

oxides of nitrogen (1971), and particulate matter from diesel-fueled vehicles (1982); 

 Catalytic converters, beginning in the 1970s; 

 On-board diagnostic, or “check engine” light, systems, beginning with 1988 model-year 

cars; 

 A Zero-Emission Vehicle (ZEV) regulation (1990) that requires manufacturers to 

produce an increasing number of ZEVs. California’s goal is to get 1.5 million zero-

emissions vehicles on the state’s roads by 2025; 

 The nation’s first greenhouse gas emissions standards for cars (mandated by the 

Legislature in 2002 and approved by CARB in 2004); and 

 California’s Advanced Clean Cars Program (2012), which reduces both conventional 

“criteria” and greenhouse gas pollutant emissions from automobiles.  

Recent strict standards have been established by the state’s legislature. A notable example is 

the California’s greenhouse gas reduction program. This program includes specific goals 

targeting a 40% reduction in greenhouse gas emissions below the 1990 level by 2030 and a 80% 

reduction below 1990 level by 2050 (United States Environmental Protection Agency, 2018). 

Los Angeles is one of the best-known cities that suffer from transportation smog in the 20
th

 

century. The millions of vehicles in circulation in conjunction with the additional effects of the 

Los Angeles/Long Beach port complexes frequently contribute to extremely high levels of air 

pollution. In particular, the entire area in between Los Angeles Harbor to Riverside has become 

known as the "Diesel Death Zone" (Discover Magazine, 2013). Especially in the South Coast Air 

Basin, diesel particulate matter (PM) emitted mostly on freeways and oxides of nitrogen (NOx) 

are major non-attainment criteria pollutants and health risk drivers (URS Corporation, 2009). 

The report for the mobility plan 2035 for the city of Los Angeles provides information on air 

pollution (Los Angeles Department of City Planning, 2014). According to the data provided, 

there were 57 unhealthy air quality days in 2012, when air pollution levels in LA County 
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exceeded federal standards. The annual cost of health impacts from air pollution in the south 

Coast Air Basin was $22 billion, while more than 2000 premature deaths were recorded per year 

in greater Los Angeles attributed to air pollution from vehicles. These trends continue until 

recent years. 

According to the study of the American Lung Association, that was conducted during 2014-

2016, Los Angeles and especially the Los Angeles/Long Beach area is the area that has the 

highest level of ozone pollution and is ranked fourth in terms of year-round particle 

contamination (American Lung Association, 2018). More specifically, it has been found that 

18,688,022 people in LA are at risk due to short-term or year-round particle pollution and ozone 

pollution. The number of Americans exposed to unhealthy levels of air pollution dropped to 

about 125 million people, down from 166 million in last year's report. 

This shows that despite the efforts, air pollution still remains at high levels jeopardizing the 

quality of life. Since challenges still exist, alternative ways of air pollution mitigation should be 

investigated, and their environmental impact must be quantified so as to ensure their 

sustainability. In this context, this study will examine the implementation of the ER technology 

in a corridor in Los Angeles County, as an alternative way to increase EV adoption and thus, 

reduce greenhouse gas emissions and other sources of air pollution. 

3.2.1.4 Road Network 

The City of Los Angeles is served by an extensive network of freeways, streets, and local and 

regional public transportation systems. Based on the Mobility draft Plan 2035 (Los Angeles 

Department of City Planning, 2014) that considered 2014 data, in Los Angeles, 86.5 square miles 

(28% of city’s developed road area) are land areas occupied by LA road network. Around 7,500 

miles are dedicated to street infrastructure with 60% constituting local streets while 40% are 

dedicated to arterial and collector streets, while freeways occupy around 181 miles. Out of the 

75.2 million miles that are driven on average in the city of Los Angeles on an average day, 53% 

are on freeways and 47% on “surface” or arterial streets. 

The major intercity highway routes are (City of Los Angeles, Department of Transportation, 

2012): 

-Interstate 5 (north to Sacramento and south to San Diego) 

- US Route 101 (north to Santa Barbara) 
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- Interstate 10: Santa Monica Freeway/San Bernardino Freeway (west to Santa Monica and 

east to Phoenix, Arizona). 

Arterial streets connect freeways with smaller neighborhood streets, and are often used to 

bypass congested freeway routes and have been labeled as boulevards. Table A.1 in Appendix A 

summarizes important intracity freeway routes, arterial streets, avenues, bus lines and metro rail 

lines that constitute the main street grid of the city (Los Angeles County GIS Data Portal, 2010). 

 Survey Design  3.3

In order to achieve this thesis’ objectives, a survey was conducted; the survey instrument is 

presented in Appendix B1. The questionnaire was based on the supporting literature and 

educated assumptions and included five main parts: 

1) Level of awareness 

This section was included since awareness is an internal part of the five-step-making decision 

process of Diffusion (Rogers, 2003). According to Rogers (2003), the innovation-decision 

process involves five steps: (1) awareness, (2) persuasion, (3) decision, (4) implementation, and 

(5) confirmation. Thus, the level of awareness has a potential to affect adoption of innovations 

and a higher level of awareness can indicate the group of innovators of Rogers’ Diffusion of 

Innovation. 

The questions selected were based on the information provided in Section 3.2 and followed 

an order from general to specific, moving from advances regarding electro mobility to advances 

related to ERs. They have the goal to assess respondents’ level of awareness on topics, such as 

California’s goal concerning zero-emissions vehicles, California’s tax rebates for EVs, on-road 

charging definition and news on ERs (i.e., electrification of a section of I-710). 

2) Travel characteristics, EVs, charging habits and ERs 

This section contains general information that can influence the level of technology adoption 

and thus, be used in the analysis. In particular, travel behavior can be a factor of every 

transportation-related decision and for this reason it was essential to be included in the survey. 

This part covers topics such as car ownership, fuel type of car owned, miles driven during a year, 

use of car-sharing services and on demand ride-sharing services, mode choice for different trip 

purposes, frequency of trips per trip purpose, frequency of travel for short, medium and long 

distances and factors that affect route choice. The last question asked respondents to indicate the 
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level of importance of factors (the Likert-type scale was used) such as cost, travel time, 

convenience and comfort, ambience, safety, reliability of travel and familiarity with the route 

that have been found to affect route choice from supporting literature. 

In an effort to capture the travel habits of LA residents specifically, the section of travel 

characteristics also included questions on the frequency of travel on indicative highway and 

transit corridors (e.g., I-710, I-210, Vermont Avenue and Metro Orange Line). However, 

additional corridors were added, since there was an interest to investigate whether alternative 

routes are more frequently used by LA residents and thus, can also be considered as candidate 

corridors for electrification, as opposed to the proposed ones. There were two different questions 

for highway corridors (i.e., freeways and arterial streets) and transit corridors (i.e., BRT lines) in 

order to avoid any confusion of respondents. At this point, it is acknowledged that the corridors 

provided constitute a small sample of the road network and that data on current use of these 

corridors already exist. The ultimate goal though is to correlate this information with people’s 

responses to other questions.  

 The second part of this section is dedicated to EVs and contains questions related to EV use, 

EV charging habits, state of battery charge and importance of factors affecting EV purchase. The 

inclusion of these factors were based on an extensive literature review on EV studies, part of 

which has been presented in Section 1.2 when the main EV barriers were discussed (Boston 

Consulting Group, 2009; Beresteanu and Li, 2011; Burgess et al., 2013; Carley et al., 2013; 

Diamond, 2009; Gallagher & Muehlegger, 2011; Hidrue et al., 2011; Philip & Wiederer, 2010; 

Rezvani et al., 2015; Sierzchula et al. 2014; Tran et al., 2013; Virginia Clean Cities, 2010; 

Wilmink, 2015). 

The third part of the section included general questions on ERs, as a first step to understand 

respondents’ perception on them. The goal of this section was to investigate what respondents 

think about the potential of on-road charging considering access restrictions for electric charging 

and the potential of on-road charging in future years and for different trip purposes. There were 

also questions aiming to capture thresholds that will motivate the purchase of an EV and use of 

the technology for different trip purposes/ trip lengths, to capture how much more respondents 

are willing to pay for using the technology compared to alternative ways of charging and how 

likely they are to take the public transit to their destination, knowing that electric buses operate 
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on electric lanes. The questions included in this subsection were based on the literature provided 

for the concept of ERs, considering user needs and technology potential. 

3) General thoughts and opinions on ERs 

This section is crucial for the analysis of the market adoption. It includes questions that 

constitute components of the behavioral intention to use ERs or questions that reflect the 

potential benefits and concerns of ERs that were presented in the literature review (Section 2.4). 

Additional questions examined the public’s interest in purchasing EVs based on the availability 

of electric roadway infrastructure, public’s intention to drive on ERs and the intention to switch 

from personal vehicles in favor of traveling by electric buses (operating on ERs). In particular, 

three components based on the Diffusion of Innovation (relative advantage/disadvantage, 

compatibility and complexity) are included, subjective and personal moral norms, two 

components that may affect the perceived behavioral control (habits, self-efficacy, safety), and 

the component of environmental concerns and sustainability to capture potential habitual factors 

and preferences that are not based on rational decisions. 

More specifically, the majority of the questions attempted to capture the following 

components of existing theories or case studies are presented in Table 3.1 on the next page. 

It is important to mention that the questions of this section were formed in a way so as to 

have a hypothetic approach and to help respondents answer in a meaningful way, even though 

they are not familiar with or have little exposure to the concept. The section has also questions 

that may seem redundant, but this is how hypotheses can be tested based on the well-established 

theories from social sciences and psychology that were previously presented. A 5-point Likert-

type scale was used for the structure of these questions based on the theoretical model, ranging 

from 1 as strongly disagree to 5 as strongly agree. 

4) Willingness-to-pay scenarios 

The purpose of this section is to capture people’s willingness-to-pay for using ERs for their 

daily commute regarding different lane configurations (routes) for the implementation of the 

technology in Los Angeles. In particular, two cases are considered: commute by taking a freeway 

and commute by taking an arterial road. “Cheap talks” and text are provided to account for any 

hypothetical bias. The thought-process of developing this section is the following: the state of 

mind of the user when responding is that he/she is driving an EV and he/she needs to charge it. 
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The options are to charge it as the EV moves along on ERs or continue driving on the non-

electric (conventional) lane(s) and take a detour to charge it in the stationary charging stations.  

These options assume that if the driver has sufficient state of charge (SOC) and does not need 

to stop to charge the vehicle, he/she will likely not use the electrified lane. 

The lane configurations provided in the willingness-to-pay scenarios are as follows: 

a) All lanes are non-electric (conventional): typical lanes where on-road-charging is not available 

with a mix of traffic (light-duty vehicles, trucks); in this case, people will need to stop to charge 

your EV. 

b) On-road charging is available on one lane; the other lanes are conventional; a mix of traffic 

(light-duty vehicles conventional and electric, trucks) can drive on the electrified lane (electrified 

lane with mixed traffic).  

c) On-road charging is available on one lane; the other lanes are conventional; only EVs can 

drive on the electrified lane (electrified lane exclusive for EVs).  

Different hypothetical scenarios are constructed consisting of the aforementioned alternative 

options and two attributes, in order to examine the respondents’ route decision. The attributes 

considered are the user cost for each alternative route to reach the final destination (including 

charging cost) and the total trip time from the origin to the final destination, including any 

activities during the trip (e.g., stop for charging the EV). These attributes have been used in other 

choice experiments for different technology options or not (Hoen & Koetse, 2014; Shin et al., 

2015). The appropriate number of the hypothetical scenarios will be based on the fractional 

factorial design to achieve orthogonality and not having confounded main effects. The number of 

scenarios found is eight scenarios in each case (freeway and arterial road). In Appendix B2, the 

fractional factorial design table is provided (Table B2.1). The assumptions made and the values 

of the parameters used in the scenarios, including the parameters used in the script and the 

parameters used as attributes-factors (cost and travel time) are based on the literature review and 

are presented thoroughly in Appendix B2 (Table B2.2). Note that the willingness-to-pay analysis 

was beyond of the scope of this thesis, and as such, the willingness-to-pay estimates are not 

included herein. 
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Table 3.1: Components included in Section 3 of the survey 

Section Component General description Literature 

General thoughts 

and behaviors 

Innovativeness 

 

 

5 adopter categories (innovators; early 

adopters; early majority; late majority; 

laggards) 

 

Rogers, 2003 

 

Environmental concerns 

 

Reflects on habitual factors related to 

environment 

 

Bamberg & Möser, 2007,  

Thøgersen & Olander, 2006,  

Roy et al., 2005,  

Bamberg, 2003 

Sustainability 

 

Reflects the preference for sustainable 

modes of transport 

 

Moons & De Pelsmacker, 2015 

Habits 

 

 

Habits towards use of cars  

 

Moons & De Pelsmacker, 2015 

Aarts et al., 1997b 

Klöckner & Matthies, 2004 

Gärling et al., 1997 

Norman & Smith, 1995 

Opinions on ERs 

Relative advantage 

Whether an individual believes that the 

new idea is better/worse than the one is 

replaced 

 

Rogers, 2003 

Moons & De Pelsmacker, 2015 

 

Complexity 
How easily the new idea will be used 

 

Rogers, 2003 

Moons & De Pelsmacker, 2015 

 

Compatibility 

Whether the new idea is compatible 

towards individual’s values and needs 

 

Rogers, 2003 
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Table 3.1 continued 

 

Attitudes towards use 

Reflects people’s opinion about driving on 

electric roadways 

 

Rogers, 2003 

Ajzen, 1991 

Moons & De Pelsmacker, 2015 

Payre et al., 2014 

Petschnig et al., 2014,  

Jansson, 2011 

Subjective norms 

 

Reflects external social pressures 

 
Ajzen, 1991 

Personal moral norms 

 

Implies that an individual considers 

himself/herself responsible for adopting a 

behavior morally 

 

Ajzen, 1991, 

Fagnant & Kockelman, 2015,  

Petschnig et al., 2014,  

Heath & Gifford, 2002, 

Self-efficacy 

 

Whether people consider themselves 

capable to do the specific task. 

Moons & De Pelsmacker, 2015 

Ajzen, 1991 

Perceived behavioral 

control 

How an individual perceives the intention 

to drive on electric roadways 

Ajzen, 1991 

Fagnant & Kockelman, 2015 

Nysveen et al., 2005 

Emotions 

 

Emotions towards a complex innovative 

and eco-friendly product may be a key 

determinant towards the intention to drive 

on electric roadways 

Moons & De Pelsmacker, 2015 

Perlusz, 2015 

Bagozzi et al., 1999 

Han et al., 2017 

Safety 

 

Captures safety concerns while driving on 

electric roadways 

Ease to use of electric roadways, shared 

use of electric roadways or separate. 

Andersson & Edfeldt, 2013 

Viktoria Swedish ICT, 2013 
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5) Sociodemographic questions  

Lastly, typical sociodemographic questions were added in the final questionnaire in order to 

relate the respondents’ characteristics of the previous sections to a specific sociodemographic 

profile. Particularly, questions were added about the gender, age group, employment situation, 

annual household income, highest level of education, race, ethnicity, people living in a 

household, children living in a household, holders or driver’s license and brief crash history. 

These questions may evaluates whether variations in the behavior towards electro-mobility and 

ERs is associated with differences in socioeconomic and demographic groups. 

The development of the questionnaire was a collaborative and iterative process. The general 

basic guidelines were followed in order to write questions that will elicit accurate answers to the 

research questions and will encourage respondents to respond the questions in an easy way. After 

the questionnaire was drafted and reviewed, it was pretested so as to make final changes before 

sending the survey. Pretesting a survey is an essential step in the questionnaire design process to 

evaluate how people respond to the overall questionnaire and specific questions. That said, a 

small sample was used to pretest it and provided comments and feedback regarding the 

formulation and the interpretation of the questions. 

Since the goal was to keep the questionnaire as clear and simple as possible (based on Lohr, 

2009), closed questions directly associated with the topics of interest were preferred. The number 

and choice of response options offered as well as the order of questions and answer categories 

can influence how people respond to closed-ended questions. Thus, more general questions were 

introduced first and more specific questions about EVs and ERs were presented after to avoid 

contrast effects. The majority of answers included categories so as to help the respondent 

remember the responses that might otherwise be forgotten and feel less tired or pressured 

throughout the survey.  

Ordinal response categories of some questions were presented sequentially and this way, 

respondents could easily place their responses along the continuum. As far as the question 

wording is concerned, simple and concrete language was used and words that may be viewed as 

biased were avoided. Definitions were provided in every question that included specific terms 

related to ERs and double negatives or unfamiliar abbreviations or jargon that can result in 

respondent confusion were avoided. The demographic questions were written according to the 

Census Bureau which has conducted a great deal of experimental research to determine effects of 
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alternate wordings and orderings of these questions. The answer categories of those questions 

were also adjusted so as to reflect the socioeconomic conditions of the study area. 

It is important to mention that all the documents associated with the survey were reviewed 

and the final questionnaire was submitted for approval under the Institutional Review Board with 

Protocol # 1711019932. 

The survey designed belongs to the category of stated preference surveys. Stated preference 

surveys are widely applied in the areas of marketing and demand modeling and are efficient for 

exploring hypothetical choice situations and innovative applications with which consumers are 

not familiar with and thus, there are not revealed preference data on which to rely (Fujii & 

Gärling, 2003). Stated preference surveys have the advantage of flexibility, meaning that they 

can be used to construct realistic scenarios for most new policies (Fujii & Gärling, 2003; 

Whitehead et al., 2008). Hence, they are the most important source of data for modeling and 

representing people’s opinions when faced with new technologies, particularly if the technology 

examined is very different from existing alternatives, such as the technology of ERs. 

However, one limitation of the stated preference survey is its hypothetical nature (Whitehead 

et al., 2008). Respondents are exposed to some unfamiliar situations in which they had to provide 

their opinion about topics for which they have no knowledge, experience or awareness. Thus, 

there is uncertainty about the validity of the responses. Respondents may have given truthful 

answers that are limited by the level of their exposure to the concept (Whitehead et al., 2008). On 

the other hand, respondents may have given trivial answers due to the hypothetical nature of the 

questions included in the survey. 

This limitation was addressed by appropriate data preparation and then data analysis. In 

particular, prior to analysis and modeling, data screening was performed in order to identify 

cases of over-coverage (where people not in the target population are not screened out of the 

sample), missing values, passive or unengaged responses, and outliers (Section 3.5). These cases 

can cause behavior-intention inconsistencies and thus, were carefully removed from the sample, 

always ensuring that there is enough number of responses. Proper modeling can also overcome 

this limitation. The data was further analyzed by using suitable econometric and other 

methodologies in order to achieve the thesis objectives. 
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 Sampling 3.4

Sampling (i.e., selecting a sub-set of a whole population) is often done for reasons of cost and 

practicality. In any case, it is important that the sampled population and the target population 

should be similar to one another. In an ideal scenario, the target population is identical with the 

population sample, a situation which is the main requirement of a good sample. In most surveys, 

however, a good and representative sample with external validity is the goal in order to achieve 

known precision and accuracy characteristics in the population. 

The target population of this thesis’ questionnaire was people who are LA residents and over 

18 years with the objective to collect a representative sample of Los Angeles. The questionnaire 

was distributed online in Purdue Qualtrics through LightspeedGMI which has a panel that 

resides in LA area. The data collection period was from May 11
th

 2018 to June 3
rd

 2018. 

The determination of the minimum sample size (adequacy analysis) is an essential step of the 

analysis, since it is needed to ensure a certain precision or degree of confidence in the estimated 

value of population parameter, given the standard deviation. The parameters that affect the 

sample size are the margin of error, the confidence level and the population of Los Angeles. In 

particular, the margin of error (MoE) (or “precision”) is the positive or negative deviation of the 

estimated parameters from its true value. The confidence level or interval associated with the 

estimate of a population parameter is a measure of the precision of that estimate and thus, the 

confidence of the sample. The following equation gives the relationship between the minimum 

sample size needed (n) and the aforementioned parameters: 

                                               (
      

   
)                                                       Equation 3.1 

where      is the Z-value corresponding to an area of α/2 to the left of the curve of the standard 

normal distribution, MoE is the margin of error and σ is the standard deviation. Since the 

standard deviation is unknown, a value of 0.5 is used as a conservative assumption. Usually a 

confidence level of 95% is utilized, corresponding to a z-value of 1.96. Assuming a MoE of 4%, 

the minimum sample size (n) is equal to 600 completed responses. 

Although the goal was to follow the method of random sampling, the survey was distributed 

on-line and thus, a simple random sample identical to the target population could not be achieved. 

This case of selection bias (under-coverage) may lead to a sampling error that is incorporated 

into analysis by estimating the standard error of the estimates. This phenomenon happens since a 
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number of people refuse to respond or because not all the people are reachable or capable of 

responding (especially when they are not included in the LightspeedGMI panel). 

Due to this limitation, hard quotas concerning the gender and age of respondents were 

implemented as a remedy, based on the US Census data (2010). The following table presents the 

hard quota for each age group (Table 3.2). 

Table 3.2: Hard quotas 

Age groups 
Required responses 

(%) 

Required responses 

(count) 

Gender distribution 

(%) 

18-24 years old 18.2% 109 
Male: 48% 

Female: 52% 

25-34 years old 19% 114 
Male: 48% 

Female: 52% 

35-44 years old 17.4% 104 
Male: 48% 

Female: 52% 

45-54 years old 17.1% 103 
Male: 48% 

Female: 52% 

55-64 years old 13.7% 82 
Male: 48% 

Female: 52% 

65+ years old 14.1% 88 
Male: 48% 

Female: 52% 

Total 100% 600 
Male: 48% 

Female: 52% 

 

Lastly, the income level, educational level and annual mileage of the survey respondents 

were compared with current US Census (2010) and/or NHTS (2017) data for LA and the results 

of comparisons are presented in Appendix B3. 

 Data Preparation 3.5

The survey data was analyzed and screened to ensure that there will not be any issues that 

may negatively influence the research results. Besides the issue of selection bias that was 

previously discussed, measurement errors are also part of the non-sampling errors (i.e. errors that 
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cannot be attributed to the sample-to-sample variability (Lohr, 2009). Although the measurement 

error is a concern in all surveys that should be minimized in the design stage of the survey, 

sometimes is unavoidable. The reasons for this phenomenon are various: people sometimes do 

not tell the truth, do not always understand the questions, do not always answer all questions, 

questions may be misleading or wrongly displayed etc. (Lohr, 2009). Due to this danger, after 

the data collection, data preparation should follow, taking always into account the desired sample 

size. 

Prior to modeling, cases of over-coverage should be removed. Over-coverage can occur when 

people not in the target population are not screened out of the sample (Lohr, 2009). Thus, data 

screening must be performed in terms of this problem, meaning that people that are under 18 

years old or are not LA residents should be excluded from the analysis. An initial screen question 

was included in the survey, asking each respondent whether they are under or over 18 years old 

and whether they live in Los Angeles Metropolitan area. However, all the responses were tested 

again after the data is collected and the responses presenting the aforementioned problem were 

excluded. 

Another issue that may occur is related to incomplete responses and missing values (Lohr, 

2009). Failing to obtain all the information needed per respondent may distort the results and 

introduce many errors in the analysis. Regarding this, there are mainly three ways to follow 

(Raaijmakers, 1999; Bennett, 2001). The first option is to leave the data with the missing values 

in place, especially when the number of missing data is small. The second option is to delete the 

subjects for every missing value in the dataset. The third option is to replace the missing values 

using different estimation methods. The second option is usually chosen and thus, the responses 

that are not complete, meaning that over 10% of the questions are not answered were removed 

from the dataset, ensuring each time that there is enough number of observations in the data set. 

The data set should also be checked for passive or unengaged responses (Lohr, 2009). This 

means that respondents give passive, “straight-lined” or “patterned” responses to the survey’s 

questions, reducing the variability of them. Through data cleaning, the responses that are extreme 

cases of this phenomenon can be discovered and removed; however, the researcher should be 

careful so as to not influence the level of objectivity that the survey should contain. In this thesis, 

there was evidence of passive or unengaged responses that were carefully removed from the data 

set. 



70 

 

 

 

Furthermore, outliers in the data set should be identified through an exploration of the 

descriptive statistics of the variables during data preparation. Outliers are those observations that 

are distant from other observations mainly due to experimental errors (Washington et al., 2011). 

There are two main schools of thought when it comes to the treatment of outliers (Osborne & 

Overbay, 2004; Zijlstra et al., 2011): those who treat outliers as outlaws and thus argue that 

outliers should be identified and kept out of the model; then there are those who argue that 

outliers may be telling something revealing and thus they should be kept and included in the 

model as long as they do not exceed a certain number. In this thesis, cases that were suspicious 

were removed from the data set. 
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4. MARKET ADOPTION ANALYSIS 

This chapter describes the methodology used for the analysis and also, presents the 

estimation results for the short-term and long-term intention to drive on ERs or purchase an EV, 

the adoption rates and market segments. A detailed explanation of the methodology followed to 

answer each research question is provided in Sections 4.1.1 and 4.2.1. In short, the methodology 

that is used to identify the factors that affect the adoption of ERs has the ultimate goal to 

examine the influence of “time” in individual’s decision to use the new technology. Thus, this 

approach introduces a “time” dimension into the analysis by providing the factors that affect the 

early and late intention to use ERs. The market segmentation analysis is a parallel procedure that 

can capture the “current/static” trend in the market. It can shed light on the characteristics and 

distribution of the different groups that may be potential users of the technology.  

 Short-term and Long-term Intention Models 4.1

The first objective of this thesis is to evaluate the factors affecting respondents’ intention to 

drive on ERs as soon as ERs become available and their intention to purchase an EV, knowing 

that ERs are currently available (short-term intention model). In addition, the factors that affect 

respondents’ long-term intention to drive on ERs and purchase an EV knowing that ERs will be 

available in the future will also be assessed (long-term intention model). The methodology used, 

the data analyzed and the estimation results are presented in the following sections. The two 

models are discussed in terms of their parameter estimates, goodness-of-fit and the implications 

of their results. 

4.1.1 Modeling Technique 

The questions used for the short-term intention model are the following: “I intend to drive my 

EV on electric roadways as soon as electric roadways become available” and “I intend to 

purchase an EV, knowing that electric roadways are currently available”. The corresponding 

questions for the long-term intention model are: “I intend to drive my EV on electric roadways in 

the foreseeable future” and “I intend to purchase an EV, knowing that electric roadways will be 

available in the foreseeable future”. For both cases, the questions constitute the dependent 
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variables of the modeling that are expressed in a 5 Likert-type scale: 1-strongly disagree, 2-

disagree, 3-neutral, 4-agree, 5-strongly agree. It is also acknowledged that the question on the 

intention to drive an EV assumes that EVs will be WPT-enabled. 

The short- or long-term intention to drive on ERs and the short- or long-term intention to 

purchase an EV knowing about ERs may raise concerns about potential correlation between 

them. This is because the EV purchase intention, as it is evident from the respective survey 

questions, is directly related to the existence of ERs. In particular, there is a reasonable 

assumption that the potential of using the ERs acts as a motive to purchase an EV and drive on 

this system. Hence, it is hypothesized that the intention to drive on ERs is a reflection of the 

reason why a customer would purchase an EV.  

This assumption can also be supported by quantitative evidence. Indeed, it was found that the 

ER usage and EV purchase intentions are strongly related with a correlation greater than 0.6 

(threshold established) based on the correlation matrix (Table 4.1). In addition, it is assumed that 

the intention to drive on ERs and the intention to purchase an EV, knowing about the existence 

of ERs share unobserved characteristics, leading to the correlation of their error terms. Therefore, 

it can be concluded that the dependent variables of the problem can be modeled as a system. 

Table 4.1: Correlation matrix of dependent variables 

 Short-term Intention 
Intention to purchase an EV Intention to drive on ERs 

Intention to purchase 

an EV 
1 0.74 

Intention to drive on 

ERs 
0.74 1 

 Long-term Intention 
Intention to purchase an EV Intention to drive on ERs 

Intention to purchase 

an EV 
1 0.77 

Intention to drive on 

ERs 
0.77 1 

 

The response data on the short- and long-term intention related to ERs is discrete and ordered. 

For this purpose, ordered probability models have been developed and usually address the 

problem of ordered discrete data. Standard multinomial discrete-outcome modeling methods 

such as the multinomial logit model (MNL) or nested multinomial discrete models are also a 

possibility and can be tested but such models do not account for the ordinal nature of the discrete 
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data and thus, all information reflected by the ordering is lost (Washington et al, 2011). As stated 

in Amemiya (1985), if an unordered model (such as the MNL) is used to model ordered data, the 

model parameter estimates remain consistent but there is loss of efficiency. 

Nevertheless, there are cases where an unordered probability model may provide a superior 

fit to ordered data. Such cases arise because ordered probability models place a restriction on 

how the independent variables affect outcome probabilities. In the process of selecting a model, a 

tradeoff is inherently being made between recognizing the ordering of responses and losing the 

flexibility in specification offered by unordered outcome models (Washington et al, 2011). 

In order to simultaneously model the dependent variables as a system, a bivariate ordered 

probit model is used for each case: short-term and long-term intention. According to Greene & 

Hensher (2010) and Anastasopoulos et al. (2012), the structure of the model considering two 

outcomes (1 and 2) for each observation i of ordinal data y can be derived as follows: 

First step 

                                                        

 

                                                                                   Equation 4.1 

with 
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)     [( 
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)]                                              Equation 4.2 

where X is the vector of independent variables used to explain the dependent variables yi 

            β represents the vector of estimable parameters 

            ε denotes the vector of the random error terms, assuming that they are normally  

            distributed with zero mean and variance equal to one 

            j are indices symbolizing the integer choice ordering (it corresponds to zero to 4) 

            μ and θ denote the estimable threshold parameters 

            ρ is the cross-equation correlation coefficient of the error terms  

            N stands for the normal distribution 

Second step 
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where Φ [.]  is the standard normal cumulative distributive function: 

                                           Φ(μ) = 
 

√  
∫       

 

 

 

  
 ω2   dω                                   Equation 4.4 

In the above model, the positive value of the parameter β indicates that the probability of 

higher responses increases with an increase in variable X. On the other hand, the probability of 

lower responses decreases with an increase in X. The opposite relationships apply for the case of 

a negative value of β. 

One practical difficulty associated with ordered probit models is the interpretation of 

interior/intermediate categories. This difficulty could be attributed to the location of the 

thresholds where the areas between the shifted thresholds may cause probabilities to increase or 

decrease after shifts to the right or to the left. Marginal effects analysis is conducted to acquire a 

good sense of the direction of the influence on the interior categories. Each subject will have 

their own marginal effect and hence, the values of marginal effects are the average marginal 

effects over the population for each category (Greene, 2007; Washington et al., 2011). 

                                          
      

  
 [ (        )   (      )]                           Equation 4.5 

where        is probability of outcome of level j  

     ω are thresholds, and  

     φ(.) is probability mass function of the standard normal distribution.  

In the current thesis, all the questions of the survey are tested for their significance as 

independent variables. Among the survey questions, there are questions based on topics directly 

or indirectly related to the use of ERs (innovativeness, subjective and personal moral norms, 

environmental concerns, sustainability, car use habits, potential benefits and concerns of ERs). 

Each topic consists of a number of questions constituting a group of opinions or a variable. The 

responses to these questions were treated in a separate way compared to the other questions of 

the survey. More specifically, the average of responses to each of these variable-groups was 

computed for each observation, resulting to an index: 

                                                
∑   

 
   

 
                                              Equation 4.6 

where    represents the attitude of each observation toward the variable or group of opinions j 

               represents the rating on question i 

           n represents the number of questions included in each group 
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Since this index is based on questions with answer categories following the 5 Likert type 

scale, its value ranges from 1 to 5. The index was then used to create indicator variables and 

assess their significance as factors affecting respondents’ usage intention. 

However, the new dummy variables created are expected to be endogenous in the model, 

because of their correlation with the error terms that capture unobserved characteristics related to 

the short-term or long-term intentions. In order to address this limitation, binary probit models 

were estimated with each of these variables constituting the dependent variable and other 

exogenous variables being the independent variables. This way, the model would predict and 

replace those variables with their respective probabilities that would be then used to the initial 

bivariate ordered models as independent variables. 

As far as the independent variables are concerned, new combined variables were created by 

analyzing the data set and by testing them in each model. For the variables that might be 

endogenous, separate binary probit models were estimated and they were replaced with their 

respective probabilities. For each created variable, it was ensured that there is an adequate 

number of observations (at least 10 to 15 observations or about 10% of the total sample), by 

developing histograms for the independent variables. Correlation matrices for dependent and 

independent variables were developed and also reviewed.  

The selection of the model variables was mainly based on pre-processing data as well as on 

making educated assumptions regarding their association with the intention to drive on ERs and 

purchase an EV, knowing that ERs are or will be available. Through an iterative process of trial-

and-error, significant variables were found based on a one-tailed hypothesis test at a significance 

level of 10% (t-critical =1.28) and were included in each model.  

The assessment of overall model fit was based on the Likelihood Ratio test statistic, the 

McFadden ρ
2
 statistic and adjusted McFadden ρ

2
 (Washington et al., 2011). These measures are 

calculated in order to evaluate the quality of the model.  

The Likelihood Ratio test is calculated as follows: 

                                                                                                                Equation 4.7 

Where        is the log-likelihood at zero of the restricted model and         is the log-

likelihood at convergence of the unrestricted model. 

The Likelihood Ratio test is calculated as follows: 
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                                                                                                         Equation 4.8  

If the value of the Likelihood Ratio test is higher that the critical value      
  -where α the 

significance level and df the degrees of freedom-, the unrestricted model can be supported. 

The    statistic provides a measure of the overall model fit and is estimated as follows: 

                                                                
      

      
                                       Equation 4.9 

The adjusted   statistic reduces the log-likelihood at convergence of the unrestricted model, 

considering the number of parameters k in the model and is calculated as follows: 

                                                             
        

      
                             Equation 4.10 

The values of McFadden ρ
2
 and adjusted McFadden ρ

2
 indicate the percentage of the 

variance explained. Thus, the model quality is higher when the values of these measures are 

close to 1. 

The count R
2
 is also a measure that indicates the predictive power of the model and is given 

by the following equation: 

                        count R2    
                                          

                            
                  Equation 4.11 

 

4.1.2 Data Analysis 

Prior to starting the modeling procedure to identify the factors that affect the intention to 

drive on an ER and purchase an EV, the histograms of the short-term and long-term intention 

were reviewed to examine if there are enough observations in each category. Figures 4.1 and 4.2 

show that each answer category seems representative with at least 10% of responses. Hence, 

there was no need to merge any categories. Similar figures were created to investigate how the 

short- or long-term intention to drive on ERs varies between respondents with EV experience or 

not (Figures C1.1 and C1. 2 in Appendix C1). 
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Figure 4.1: Descriptive statistics of the short-term intentions 

 

 

Figure 4.2: Descriptive statistics of the long-term intentions  

 

Table 4.2 shows the descriptive statistics of the variables included in the model in addition to 

sociodemographic variables. It is important to mention that this table includes the statistics for 

the indicator variables that were used in the models. The only exception is the variable related to 
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the mode choice per trip purpose that is provided with more details in the following table in 

order to avoid any confusion. An analytical table with the detailed answer breakdown per 

associated question is presented in Appendix C1 (Table C1.1).  

Table 4.2: Descriptive statistics of the survey responses 

Variable Description Response Frequency 

Gender 
1: Male 1: 47% 

2: Female 2: 53% 

Age 

1: 18-24 years old 1: 18.17% 

2: 25-34 years old 2: 19% 

3: 35-44 years old 3: 17.33% 

4: 45-54 years old 4: 17.17% 

5: 55-64 years old 5: 13.67% 

6: 65 years or older 6: 14.67% 

Education 

1: Grade school 1: 0% 

2: Some high school  2: 2.5% 

3: High school graduate  3: 15.17% 

4: Technical training beyond  

     high school  
4: 5.67% 

5: Some college 5: 27% 

6: College graduate 6: 34.17% 

7: Graduate school 7: 15.5% 

Income 

1: Less than $25K 1: 18.8% 

2: $25K to less than $50K 2: 23.2% 

3: $50K to less than $75K 3: 18.3% 

4: $75K to less than $100K 4: 15.8% 

5: $100K to less than $150K 5: 14.7% 

6: $150K to less than $200K  6: 4.7% 

7. $200K or more 7: 4.5% 
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Table 4.2 continued 

Employment Situation 

1: Full time 1: 45.5% 

2: Part time 2: 13.7% 

3: Unemployed 3: 9% 

4: Student 4: 9% 

5: Retired 5: 14.8% 

6: Homemaker 6: 6.5% 

7: Other 7: 1.5% 

Household Size 

1: One 1: 25.17% 

2: Two 2: 30.17% 

3: Three 3: 18.5% 

4: Four 4: 17.33% 

5: Five or more 5: 8.83% 

Number of Children 

1: None 1: 65.83% 

2: One 2: 16.33% 

3: Two 3: 13.67% 

4: Three 4: 2.83% 

5: Four 5: 1.33 

Respondents who typically 

travel medium distances (10-

50 miles) a few times per 

week or almost every day. 

1: Yes 1: 32% 

2: No 2: 68%   

Respondents who agreed or 

strongly agreed on average 

that ERs are compatible with 

their lifestyle, daily needs or 

personal values and attitudes.  

1: Yes 1: 85.5% 

2: No 2: 14.5% 

1 if respondent rated driving 

range as very or extremely 

important factor when they 

think of purchasing an EV, 0-

otherwise. 

1: Yes 1: 68.67% 

2: No 2: 31.33% 

Respondents who agreed or 

strongly agreed on average 

that they would or have 

already changed their travel 

behavior/preferences because 

of the existence of sustainable 

forms of transportation. 

1: Yes 1: 84.83% 

2: No 2: 15.17% 
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Table 4.2 continued 

Respondents who agreed or 

strongly agreed on average 

that they have safety concerns 

about ERs. 

1: Yes 1: 77.67% 

2: No 2: 22.33% 

Respondents who agreed or 

strongly agreed on average 

that they are positive towards 

trying new innovations. 

1: Yes 1: 71.17% 

2: No 2: 28.83% 

1 if respondent rated charging 

time as very or extremely 

important factor when they 

think of purchasing an EV, 0-

otherwise. 

1: Yes 1: 69.67% 

2: No 2: 32.33% 

1 if respondent rated financial 

incentives/rebates provided 

(such as subsidies) as very or 

extremely important factor 

when they think of purchasing 

an EV, 0-otherwise 

1: Yes 1: 57.33% 

2: No 2: 42.67% 

1 if respondent rated 

operational cost/ cost to 

charge the EV (cost per mile) 

as very or extremely 

important factor when they 

think of purchasing an EV, 0-

otherwise. 

1: Yes 1: 66.17% 

2: No 2: 33.83% 

1 if respondent rated 

social/family influence as 

very or extremely important 

factor when they think of 

purchasing an EV, 0-

otherwise. 

1: Yes 1: 32.17% 

2: No 2: 67.83% 

1 if respondent rated safety as 

very or extremely important 

factor when planning their 

commute route, 0-otherwise. 

1: Yes 1: 73.83% 

2: No 2: 26.17% 

Respondents who agreed or 

strongly agreed on average 

that ERs would offer more 

advantages compared to 

driving on non-electric 

(conventional) roadways. 

1: Yes 1: 86.5% 

2: No 2: 13.5% 
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Table 4.2 continued 

1 if respondent rated EV’s 

purchase cost as very or 

extremely important factor 

when they think of purchasing 

an EV, 0-otherwise. 

1: Yes 1: 66% 

2: No 2: 34% 

1 if respondent rated 

environmental benefits as 

very or extremely important 

factor when they think of 

purchasing an EV, 0-

otherwise. 

1: Yes 1: 55.33% 

2: No 2: 44.67% 

1 if respondent owns an EV 

and their vehicle’s driving 

range is 150 miles or below. 

1: Yes 1: 8% 

2: No 2: 92% 

1 if respondent rated vehicle 

performance as very or 

extremely important factor 

when they think of purchasing 

an EV, 0-otherwise. 

1: Yes 1: 68.5% 

2: No 2: 31.5% 

1 if respondent indicated that 

they typically charge their EV 

in DC Fast charging stations 

regardless of the location 

(either at home or at work or 

at public/private charging 

stations) 0-otherwise. 

1: Yes  1: 20.17% 

2: No 2: 79.83% 

Primary mode of travel for 

trips for work/school. 

  
  
  
  
  
  

1: Walk 1: 12.84% 

2: Bike (conventional) 2: 3.21% 

3: Bike (electric)  3: 0.51% 

4: Car (conventional) 4: 68.07% 

5: Car (electric)  5: 5.07% 

6: Public transportation 6: 7.77%  

7: Ride-hailing service 7: 1.86% 

8: Car-sharing service 8: 0.68% 
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Table 4.2 continued 

Primary mode of travel for 

trips for grocery and 

shopping. 

  
  
  
  
  
  

1: Walk 1: 10.4% 

2: Bike (conventional) 2: 3.02% 

3: Bike (electric)  3: 1.51% 

4: Car (conventional) 4: 72.99% 

5: Car (electric)  5: 6.38% 

6: Public transportation 6: 3.52%  

7: Ride-hailing service 7: 1.68% 

8: Car-sharing service 8: 0.5% 

Primary mode of travel for 

trips for personal business 

(e.g., errands, trips to 

medical/dental facilities, 

banks, etc.). 

  
  
  
  
  
  

1: Walk 1: 5.21% 

2: Bike (conventional) 2: 2.02% 

3: Bike (electric)  3: 1.51% 

4: Car (conventional) 4: 73.28% 

5: Car (electric)  5: 5.88% 

6: Public transportation 6: 7.73%  

7: Ride-hailing service 7: 3.53% 

8: Car-sharing service 8: 0.84% 

Primary mode of travel for 

trips for social/recreational 

activities (e.g., trips to gym, 

church, parks, theaters, etc.) 

  
  
  
  
  
  

1: Walk 1: 7.54% 

2: Bike (conventional) 2: 3.35% 

3: Bike (electric)  3: 1.51% 

4: Car (conventional) 4: 69.35% 

5: Car (electric)  5: 7.04% 

6: Public transportation 6: 6.2%  

7: Ride-hailing service 7: 4.36% 

8: Car-sharing service 8: 0.67% 
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4.1.3 Short-term Intention Estimation Results 

The estimation results of the bivariate ordered model for the short-term intention to drive on 

ERs and purchase an EV, knowing that ERs are available are presented in Table 4.3. For the 

statistical analysis of the problem, NLOGIT6 was used as software. There was no correlation 

issue for the variables used in each model (Correlation matrix of variables used is presented in 

Appendix C2). The established threshold is 0.6. 

Table 4.3: Estimation results (short-term intention) 

Short-term intention Intention to drive on ERs 
Intention to purchase an 

EV 

Variable 

code name 
Description 

Estimated 

parameter 

(St.Error) 

t-value (p-

value) 

Estimated 

parameter 

(St.Error) 

t-value (p-

value) 

CONST Constant 
-1.237  

(0.337) 

-3.67  

(0.0002) 

-1.691 

(0.262) 

-6.44  

(0.000) 

MEDDIST 

1 if respondents travel 

medium distances (10-50 

miles) a few times per 

week or almost every 

day, 0-otherwise 

0.157  

(0.081) 

1.93 

(0.0268**) 
- - 

PCOMP 

Respondents who agreed 

or strongly agreed on 

average that ERs are 

compatible with their 

lifestyle, daily needs or 

personal values and 

attitudes. (*) 

1.669  

(0.370) 

4.51  

(0.000) 

1.952  

(0.381) 

5.12  

(0.000) 

IMPRANGE 

1 if respondent rated 

driving range as very or 

extremely important 

factor when they think of 

purchasing an EV, 0-

otherwise. 

0.187  

(0.083) 

2.25 

 (0.012**) 
- - 

PSUST 

Respondents who agreed 

or strongly agreed on 

average that they would 

or have already changed 

their travel 

behavior/preferences 

because of the existence 

of sustainable forms of 

transportation. (*) 

2.096  

(0.356) 

5.89  

(0.000) 

1.684  

(0.360) 

4.68  

(0.000) 

PSAFE 

Respondents who agreed 

or strongly agreed on 

average that they have 

safety concerns about 

ERs. (*) 

-0.670  

(0.440) 

-1.52 

(0.064**) 
- - 
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Table 4.3 continued 

PINNOV2 

Respondents who agreed 

or strongly agreed on 

average that they are 

positive towards trying 

new innovations. (*) 

0.764  

(0.429) 

1.78  

(0.038**) 

1.067 

(0.441) 

2.42  

(0.008**) 

RICH1 

1 if respondent has 

income of $100,000 or 

higher annually, 0-

otherwise.  

- - 
0.186  

(0.083) 

2.24 

(0.0126**) 

IMTIME 

1 if respondent rated 

charging time as very or 

extremely important 

factor when they think of 

purchasing an EV, 0-

otherwise. 

- - 
-0.235  

(0.091) 

-2.60  

(0.009) 

INCENT 

1 if respondent rated 

financial 

incentives/rebates 

provided (such as 

subsidies) as very or 

extremely important 

factor when they think of 

purchasing an EV, 0-

otherwise. 

- - 
0.154 

(0.083) 

1.85 

 (0.032**) 

COSTMILE 

1 if respondent rated 

operational cost/cost to 

charge the EV (cost per 

mile) as very or 

extremely important 

factor when they think of 

purchasing an EV, 0-

otherwise. 

- - 
0.134 

(0.08828) 

1.52  

(0.064**) 

INFLU 

1 if respondent rated 

social/family influence as 

very or extremely 

important factor when 

they think of purchasing 

an EV, 0-otherwise. 

- - 
0.225 

 (0.0864) 

2.61 

(0.005**) 

Threshold 1 0.586 (0.063) 9.36 (0.000) 0.694 (0.625) 
11.10 

(0.000) 

Threshold 2 1.432(0.078) 18.37 (0.000) 1.606 (0.080) 
20.10 

(0.000) 

Threshold 3 2.590 (0.101) 25.73 (0.000) 2.624(0.105) 
24.95 

(0.000) 
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Table 4.3 continued 

Cross-equation correlation coefficient (ρ) 
Estimated parameter (St. error): 0.74155 (0.01996) 

z-value (p-value): 37.16 (0.000) 

McFadden pseudo ρ
2
  0.1038562 

Count R
2
  60.7% 

Log-likelihood -1497.04712 

Log-likelihood at zero -1670.54335 

Number of observations 600 

*Predicted probability generated from an estimated binary probit model 

** p-values were calculated and rounded using on-line calculator for one-tailed test and 0.10 

significance level 

 

4.1.3.1 Model Goodness-of-fit  

The Likelihood Ratio test statistic, the McFadden ρ
2
 statistic and adjusted McFadden ρ

2
 are 

calculated in order to evaluate the quality of the model. Using equations 4.7, the Likelihood 

Ratio test value is 346.99246. The statistic    is distributed with 23 degrees of freedom (23 

parameters in the unrestricted model and 0 parameters in the restricted) and is equal to 32.0069 

at a 10% confidence level, providing evidence to support the model. The    statistic and the 

adjusted    statistic are shown in the table and are calculated using equations 4.9 and 4.10, 

respectively. These measures indicate that approximately 10.39% of the variance is explained by 

the model. The values of McFadden ρ
2
 and adjusted McFadden ρ

2
 are lower than the desirable 

value of 1, but were the highest of all the various models attempted. The low values of these 

measures may be attributed to the quality of the data and the survey (missing data, selective bias) 

and the potential need for more specific questions in the questionnaire or the need for additional 

variables to account for unobserved factors.  

Additionally, the count R
2
 was also calculated to assess the predictive power of the model, 

using equation 4.11. It was found that the model shows a high predictive power (count R
2
 = 

60.7%). Lastly, the cross-equation correlation coefficient (ρ) is found to be statistically 

significant at a significance level of 0.10 (p-value <0.0001). This provides evidence for the 
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correlation between the short-term intention to drive an ER and the short-term intention to 

purchase an EV, when ERs become available. Therefore, modeling the ER usage and EV 

purchase intentions as a system seems appropriate and reasonable in an attempt to identify the 

factors that affect short-term intention. 

4.1.3.2 Interpretation of the Results 

The final model includes variables related to travel patterns, opinions on EVs and ERs as 

well as some socioeconomic information. Since this is the first study related to the adoption of 

ERs, there is no literature to use so as to directly compare the results. However, there is sufficient 

literature on EV adoption which has been taken into consideration for the analysis of the results. 

While evaluating and explaining the influence of the estimated parameters in ordered probit 

models, the signs of the coefficients are useful for determining the increase or decrease in the 

probability for the extreme categories (Washington et al., 2011). More specifically, it was found 

that respondents who frequently travel medium distances (10-50 miles) would strongly agree 

with the intention to drive on ERs as soon as the technology is available. A possible explanation 

for this result is that medium distance drivers may be more familiar with the issue of limited 

driving range. Thus, they may envision greater benefits by using the ERs due to the increased 

driving range of EVs that can operate on the system. A similar finding concerning the 

relationship of travel distance and EV orientation was found at Diamond (2009) and Hidrue et al. 

(2011) where the more frequent the trips or the longer the distance traveled, the more likely for 

respondents to be EV-oriented. 

In addition, it was found that compatibility has a statistically significant positive relationship 

with the attitudes towards driving on ERs or purchasing an EV given that ERs are currently 

available. This is because respondents that believe that the concept of ERs is compatible towards 

their values, lifestyle and needs have higher intention to drive on them or purchase an EV that 

operates on them as soon as this technology is provided. It is important to mention that the 

influence of this variable is stronger for the intention to purchase an EV, by examining the 

corresponding parameter estimates. This finding can be generally connected to the work of 

Brown et al. (2014) where individuals’ decisions concerning their mode choice was found to be 

affected by their lifestyle needs. 
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For respondents who answered that the driving range of an EV is a very or extremely 

important factor, the likelihood that they would strongly agree with the intention to drive on ERs 

when they are available was high and the likelihood that they would strongly disagree with the 

intention to drive on them was low. This can be explained by the fact that range anxiety is 

considered an essential barrier for adopting electro-mobility. However, ERs could potentially 

deal with this issue, increasing this way people’s intention to drive on them. There have been 

numerous studies indicating that driving range is an important factor affecting EV purchasing 

decisions (Hidrue et al., 2011; Carley et al., 2013; Wilmink, 2015; Diamond, 2009; Chorus et al. 

2013; Hackbarth & Madlener 2013; Helveston et al., 2015; Valeri & Danielis, 2015). 

Respondents who agreed or strongly agreed on average that they would or have already 

changed their travel behavior/preferences because of the existence of sustainable forms of 

transportation show a higher intention to drive on ERs or purchase an EV to drive on them. This 

is reasonable since people that have a general preference for sustainable modes of transport 

would opt for alternative and environmentally friendly ways to travel such as an EV that can 

operate on ERs. These results can be linked with other studies which generally found that 

respondents who were more concerned about environmental sustainability and fuel efficiency 

were more willing to adopt electro-mobility or purchase an EV (Axsen & Kurani, 2011; Brown 

et al., 2014; Burgess et al., 2013; Hidrue et al., 2011). 

People that are concerned about the safety of the dynamic charging system may feel 

suspicious to drive on them and this is why this variable is negatively associated with the 

intention to drive on ERs as soon as they are available. In the beginning of the system 

implementation, safety concerns are a natural consequence for the majority of the people that are 

not familiar with this emerging concept. This finding is in line with other studies about different 

technologies where safety concerns negatively impact people’s behavioral intention to adopt a 

technology (Musselwhite & Haddad, 2007, Musselwhite 2004). 

There is a positive relationship between whether an individual supports innovativeness and 

intention to drive on ERs. People who are more innovative are more willing to try new 

technologies and thus have a higher intention to drive on ERs. Similarly, innovative individuals 

show stronger intention to purchase an EV, knowing that ERs are currently available. According 

to a number of studies, innovativeness has a positive influence on behavioral intention and is a 
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common characteristic of early adopters of a new technology (Egbue & Long, 2012; Edison & 

Geissler, 2003; Moons & De Pelsmacker, 2015; Rogers, 2003; Heffner et al., 2007a, 2007b).  

The short-term intention to purchase an EV, knowing that ERs are currently available is also 

influenced by respondents’ income level and some characteristic of EVs. In particular, 

respondents with higher annual income levels (more than $100,000) are more likely to purchase 

an EV, knowing that ERs are currently available because they are less price-sensitive and thus, 

they can afford purchasing and operating an EV. This is in line with the existing literature 

(Achtnicht et al., 2012; Hackbarth & Madlener, 2013; Hess et al., 2012; Diamond, 2009; Mabit 

& Fosgerau, 2011; Molin et al., 2012; Potoglou & Kanaroglou, 2007; Valeri & Danielis, 2015). 

In addition, people with higher income seem to show pro-environmental attitudes and are more 

interested in new “greener” technologies, indicating their positive attitudes toward purchasing an 

EV (Söderholm & Ek, 2010; Wu et al. 2010; Tran et al., 2013).  

As far as the EV’s characteristics are concerned, respondents who ranked charging time 

higher, the likelihood that they would purchase an EV, knowing that ERs are currently available 

is low. This is because potential buyers usually make rational choices and may prefer vehicles 

that do not require time to be recharged/refueled (e.g., ICEs). Even in the case of the ER, they 

may believe that this solution would only be complementary to the existent charging options for 

an EV, so it may not offer a significant advantage. This finding can be aligned with the results of 

the majority of the studies related to EVs and charging time (Hidrue et al., 2011; Carley et al., 

2013; Wilmink, 2015; Bockarjova et al., 2014; Chorus et al., 2013; Hackbarth & Madlener, 

2013; Hoen & Koetse, 2014; Rasouli & Timmermans, 2013). 

Respondents who believe that the operational cost (cost of EV charging) is important when 

purchasing an EV would strongly agree with the intention to purchase an EV, knowing that ERs 

are currently available. This can be justified by the fact that people realize that an EV operating 

on an ER would have the benefit of lower fuel costs (Hidrue et al., 2011; Wilmink, 2015; Musti 

& Kockelman, 2011; Molin et al., 2012; Hackbarth & Madlener, 2013; Rasouli & Timmermans, 

2013). Financial incentives or rebates seem to also have a substantial effect on people’s 

purchasing decisions. In particular, respondents who answered that this factor is very or 

extremely important have a high intention to purchase an EV, knowing that ERs are currently 

available, since they can rip the benefits of rebate programs. The significance of policy attributes 

and incentives in promoting EV adoption has been acknowledged by different studies (Hess et 
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al., 2012, Gallagher & Muehlegger, 2011; Potoglou & Kanaroglou, 2007; Glerum et al., 2014; 

Mau et al., 2008; Chorus et al., 2013; Hackbarth & Madlener, 2013; Hoen and Koetse, 2014; 

Horne et al., 2005 etc.). 

Respondents who answered that social/family influence is very important or extremely 

important as a factor when they think of purchasing an EV have a higher intention to purchase an 

EV. This can be explained by the fact that a “greener” lifestyle associated with the usage of EVs 

is an important factor that positively affects people’s purchasing decision. This can also be 

supported by literature (e.g., Axsen and Kurani, 2011; Axsen et al, 2009; Rasouli & 

Timmermans 2013; Kim et al. 2014; Kahn, 2007; Lane & Potter, 2007; Heffner et al., 2007a). 

The marginal effects for the short-term intention to drive on ERs and purchase an EV, 

knowing that ERs are available were computed to acquire a good sense of the direction and 

magnitude of each variable’s influence on the interior categories. The marginal effects for each 

category are interpreted as a change in the outcome probability of each threshold category P(y=j) 

given a unit change in an independent variable x (Washington et al., 2011). For indicator 

variables, the change in category probabilities is the outcome of the variable changing from zero 

to one. A positive marginal effect for a specific state indicates an increase in the probability for 

that state, while a negative value corresponds to a decrease in probability for that state in 

response to an increase in the explanatory variable. A large marginal effect indicates that the 

variable, expressed in the given units, has a relatively large effect on a respondent’s rating, while 

a relatively small marginal effect indicates a relatively minimal effect (Washington et al., 2011). 

The results are presented in Tables 4.4 and 4.5. Table 4.4 shows that for one unit increase in 

the participants who frequently travel medium distances (10-50 miles), the probability of 

indicating a strong intention (“strongly agree”) or an intention (“agree”) to drive on ERs as soon 

as they become available increases on average by 0.02935 and 0.04941, respectively. The 

marginal effects of the other variables can be interpreted in a similar way. 
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Table 4.4: Computed marginal effects for intention to drive on ERs (short-term intention) 

Short-term 

intention 
Intention to drive on ERs 

Variable 

code name 
Variable Description 

Str. 

Disagree 
Disagree Neutral Agree 

Str. 

Agree 

[Ѱ=1] [Ѱ= 2] [Ѱ=3] [Ѱ=4] [Ѱ=5] 

MEDDIST 

1 if respondents travel 

medium distances (10-50 

miles) a few times per 

week or almost every 

day, 0-otherwise 

-0.03804 -0.02589 -0.01483 0.04941 0.02935 

PCOMP 

Respondents who agreed 

or strongly agreed on 

average that ERs are 

compatible with their 

lifestyle, daily needs or 

personal values and 

attitudes (*) 

-0.31902 -0.20749 -0.10196 0.40516 0.22330 

IMPRANGE 

1 if respondent rated 

driving range as very or 

extremely important 

factor when they think of 

purchasing an EV, 0-

otherwise. 

-0.02766 -0.01733 -0.00750 0.03438 0.01811 

PSUST 

Respondents who agreed 

or strongly agreed on 

average that they would 

or have already changed 

their travel 

behavior/preferences 

because of the existence 

of sustainable forms of 

transportation.(*) 

-0.41505 -0.26994 -0.13265 0.52713 0.29052 

PSAFE 

Respondents who agreed 

or strongly agreed on 

average that they have 

safety concerns about 

ERs. (*) 

0.02733 0.01778 0.00874 -0.03471 -0.01913 

PINNOV2 

Respondents who agreed 

or strongly agreed on 

average that they are 

positive towards trying 

new innovations. (*) 

-0.15437 -0.10040 -004934 0.19605 0.10805 

*Predicted probability generated from an estimated binary probit model 
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Table 4.5: Computed marginal effects for intention to purchase an EV, knowing that ERs are 

currently available (short-term intention) 

Short-term 

intention 
Intention to purchase an EV 

Variable 

code name 
Variable Description 

Str. 

Disagree 
Disagree Neutral Agree 

Str. 

Agree 

[Ѱ=1] [Ѱ= 2] [Ѱ=3] [Ѱ=4] [Ѱ=5] 

RICH1 

1 if respondent has 

income of $100,000 or 

higher annually, 0-

otherwise. 

-0.03493 -0.02642 -0.00380 0.04226 0.02289 

IMTIME 

1 if respondent rated 

charging time as very or 

extremely important 

factor when they think of 

purchasing an EV, 0-

otherwise. 

0.07984 0.06191 0.01264 -0.09781 -0.05657 

INCENT 

1 if respondent rated 

financial 

incentives/rebates 

provided (such as 

subsidies) as very or 

extremely important 

factor when they think of 

purchasing an EV, 0-

otherwise. 

-0.03622 -0.02499 -0.00021 0.04119 0.02022 

COSTMILE 

1 if respondent rated 

operational cost/cost to 

charge the EV (cost per 

mile) as very or 

extremely important 

factor when they think of 

purchasing an EV, 0-

otherwise. 

-0.03745 -0.02520 0.00072 0.04187 0.02005 

INFLU 

1 if respondent rated 

social/family influence 

as very or extremely 

important factor when 

they think of purchasing 

an EV, 0-otherwise. 

-0.07241 -0.05580 -0.01057 0.08843 0.05034 

PCOMP 

Respondents who agreed 

or strongly agreed on 

average that ERs are 

compatible with their 

lifestyle, daily needs or 

personal values and 

attitudes. (*) 

-0.39849 -0.28142 -0.01064 0.46061 0.22994 
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Table 4.5 continued 

PSUST 

Respondents who agreed 

or strongly agreed on 

average that they would 

or have already changed 

their travel 

behavior/preferences 

because of the existence 

of sustainable forms of 

transportation. (*) 

-0.33406 -0.23592 -0.00892 0.38613 0.19276 

PINNOV2 

Respondents who agreed 

or strongly agreed on 

average that they are 

positive towards trying 

new innovations. (*) 

-0.23592 -0.16661 -0.00630 0.27269 .13613 

*Predicted probability generated from an estimated binary probit model 

By comparing the marginal effects associated with the common variables across the ER 

usage and EV purchase intentions, conclusions can be made on the magnitude of influence some 

parameters exert on the short-term intention to drive on an ER or purchase an EV, knowing that 

ERs are currently available. In particular, the variable indicating respondents who agreed on 

average that ERs are compatible with their needs appears to be more influential on the intention 

to purchase an EV, as shown by the larger value of the corresponding marginal effect. The same 

applies in the case of the variable that represents respondents who are positive towards trying 

new innovations. As such, it seems that compatibility and innovation are more important factors 

in affecting the decision to purchase an EV than the decision to drive on an ER. This may have 

implications in terms of the market acceptance of ERs. More particular, it could be assumed that 

even if a customer is innovative or believes that the new technology is compatible with his/her 

needs, purchasing an EV would be the first step to become familiar with the new concept. As is 

has been shown in studies related to public acceptability of innovative finance strategies or 

technologies (e.g., Jones, 2003; Ricci et al., 2008; Yetano Roche et al., 2010), familiarity with 

the proposed technology is a key factor in increasing public acceptance. 

4.1.4 Long-term Intention Results 

The estimation results of the bivariate ordered model for the long-term intention to drive on 

ERs and purchase an EV, knowing that ERs will be available in the foreseeable future are 

presented in Table 4.6. No correlation issue was identified for the variables used in each model, 

based on a 0.6 threshold (Correlation matrices of variables used in Appendix C3).  
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Table 4.6: Estimation results (long-term intention) 

Long-term intention 
Intention to drive on 

ERs 

Intention to purchase an 

EV 

Variable 

code name 
Description 

Estimated 

parameter 

(St.Error) 

t-value 

(p-value) 

Estimated 

parameter 

(St.Error) 

t-value 

(p-value) 

CONST Constant 
-1.128 

 (0.308) 

-3.66  

(0.003) 

-0.880  

(0.319) 

-2.76  

(0.006) 

COLLEGE 

1 if respondent’s highest level 

of education is some college or 

graduate college or graduate 

school. 

0.200  

(0.074) 

2.71  

(0.007) 
- - 

SROUTE 

1 if respondent rated safety as 

very or extremely important 

factor when planning their 

commute route, 0-otherwise. 

0.282  

(0.104) 

2.72  

(0.007) 

0.244  

(0.104) 

2.35  

(0.009**) 

PINNOV2 

Respondents who agreed or 

strongly agreed on average that 

they are positive towards 

trying new innovations. (*) 

1.840  

(0.411) 

4.47  

(0.000) 

1.870  

(0.463) 

4.03  

(0.000) 

PRELA 

Respondents who agreed or 

strongly agreed on average that 

ERs would offer more 

advantages compared to 

driving on non-electric 

(conventional) roadways. (*) 

1.198  

(0.445) 

2.69  

(0.007) 

0.734  

(0.485) 

1.51  

(0.066**) 

PCOST 

1 if respondent rated EV’s 

purchase cost as very or 

extremely important factor 

when they think of purchasing 

an EV, 0-otherwise. 

-0.134  

(0.072) 

-1.88 

(0.030**) 
- - 

ENVBEN 

1 if respondent rated 

environmental benefits as very 

or extremely important factor 

when they think of purchasing 

an EV, 0-otherwise. 

0.356  

(0.105) 

3.39  

(0.001) 

0.398  

(0.115) 

3.47  

(0.001) 

SRANGE 

1 if respondent owns an EV 

and their vehicle’s driving 

range is 150 miles or below. 

0.356  

(0.114) 

3.12  

(0.002) 
- - 

YOUNG 
1 if respondent is 34 years old 

or younger, 0-otherwise. 
- - 

0.161  

(0.082) 

1.95  

(0.026**) 
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Table 4.6 continued 

VEHPERF 

1 if respondent rated vehicle 

performance as very or 

extremely important factor 

when they think of purchasing 

an EV, 0-otherwise. 

- - 
-0.273  

(0.087) 

-3.13  

(0.002) 

DCCHARGE 

1 if respondent indicated that 

they typically charge their EV 

in DC fast charging stations 

regardless of the location 

(either at home or at work or at 

public/private charging 

stations) 0-otherwise. 

- - 
0.341  

(0.116) 

2.94  

(0.003) 

INFLU 

1 if respondent rated 

social/family influence as very 

or extremely important factor 

when they think of purchasing 

an EV, 0-otherwise. 

- - 
0.246  

(0.082) 

3.00  

(0.003) 

WBIKE 

1 if respondent indicated that 

their primary mode of travel is 

walking or biking 

(conventional bike or electric 

bike) for each of the trip 

purposes (work/school, grocery 

and shopping, personal 

business, social/recreational) 

- - 
0.198  

(0.073) 

2.72  

(0.007) 

Threshold 1 0.521 (0.070) 
7.50 

(0.000) 

0.615 

(0.060) 

10.17 

(0.000) 

Threshold 2 1.327 (0.082) 
16.10 

(0.000) 

1.503 

(0.079) 

18.95 

(0.000) 

Threshold 3 2.510 (0.102) 
24.72 

(0.000) 

2.481 

(0.105) 

23.62 

(0.000) 

Cross-equation correlation coefficient (ρ) 
Estimated parameter (St. error): 0.80139 (0.01682) 

z-value (p-value): 47.66 (0.000) 

McFadden pseudo ρ
2
  0.1279834 

Count R
2
  62.5% 

Log likelihood -1460.399999 

Log-likelihood at zero -1674.73885 

Number of observations 600 

*Predicted probability generated from an estimated binary probit model 

** p-values were calculated and rounded using on-line calculator for one-tailed test and 0.10 

significance level 
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4.1.4.1 Model Goodness-of-fit  

The selection of the final model was based on the Likelihood Ratio test statistic, the 

McFadden ρ
2
 statistic and adjusted McFadden ρ

2
. By calculating the aforementioned measures as 

in the short-term intention model, the χ
2
 value for the Likelihood Ratio Test value is 428.6779 

which is greater than the critical value         
 = 34.38159. The McFadden ρ

2 
statistic is 

0.1279834 and the adjusted McFadden ρ2 is 0.11305, indicating that the model explains around 

12.8% of the variance.  

Furthermore, the count R
2
 was calculated and showed a high predictive power of 62.5% (375 

correctly predicted observations). The intention to drive on an ER in the foreseeable future and 

the intention purchase an EV, knowing that ERs will be available in the foreseeable future seem 

to be highly correlated, due to the statistical significance of the cross-equation correlation 

coefficient (ρ) (significance level of 10%; p-value <0.0001).  

4.1.4.2 Interpretation of the Results 

As far as the factors affecting the long-term intention are concerned, it was found that 

education level is positively associated with the intention to drive on ERs in the foreseeable 

future. Respondents that have a higher level of education (some college, graduate college or 

graduate school) usually are more open-minded, willing to try and confident with the adoption of 

a new technology. Prior research to different fields has shown that highly educated individuals 

tend to have a higher intention to adopt new technologies compared to less educated individuals 

(Welch, 1973; Wozniak, 1984; Lleras-Muney & Lichtenberg, 2002; Kennickell & Kwast, 1997). 

In addition, there are studies which have found that education level is an important factor 

influencing EV preferences (Hidrue et al., 2011; Kim et al. 2014; Potoglou & Kanaroglou, 2007; 

Wu et al, 2010b; Söderholm & Ek, 2010). 

Respondents that rated safety as very or extremely important factor when planning their 

commute route are more likely to ride on ERs and purchase an EV in the foreseeable future. The 

safety of the commute route is positively associated with the intention to drive on ERs, since 

respondents may think that the system’s safety will be optimized in the foreseeable future. 

Although safety concerns were found to negatively influence the intention to drive on ERs in the 

model of short-term intention, in the foreseeable future these concerns may be non-existent 

potentially due to the wider implementation of the system. The safety of the commute route is 



96 

 

 

 

also positively associated with the intention to purchase an EV, knowing that ERs will be 

available in the foreseeable future but with a lower coefficient compared to the coefficient in the 

intention to drive on ERs. Similarly, respondents who consider the safety of their route as an 

important factor may feel confident that driving an EV on an ER will be safe and the technology 

could be mature enough in the foreseeable future. 

Respondents who agreed or strongly agreed, on average, that they are positive towards trying 

new innovations may have a higher intention to drive on ERs and purchase an EV, knowing that 

ERs will be available in the foreseeable future. This shows that innovativeness was found to be a 

significant factor for both the short- and long-term intention to use the ER technology. In 

addition to innovativeness, the perceived relative advantage that ERs may have compared to 

other technologies positively affects people’s intention to purchase an EV and drive on ERs in 

the foreseeable future. Past studies have shown that relative advantage can form positive 

attitudes towards the use of a new technology (Moons & De Pelsmacker, 2015; Rogers, 2003; 

Rogers, 1995).  

Purchase cost is also an essential factor affecting the intention to drive on ERs in the 

foreseeable future. More specifically, for respondents who answered that the purchase cost of an 

EV is very or extremely important, the likelihood that they would agree with the intention to 

drive on ERs in the foreseeable future is low. A possible explanation for that is that people 

consider that driving on an ER would require a specialized vehicle that may be expensive but 

they would prefer lower cost vehicles. This finding is aligned with the results of some studies 

that have explored EV preferences and have found that EV purchase cost is a factor of greater 

importance (Hidrue et al., 2011; Carley et al., 2013; Wilmink, 2015; Musti & Kockelman, 2011; 

Molin et al., 2012; Hackbarth & Madlener, 2013; Rasouli & Timmermans, 2013). 

Another factor that can influence the intention to drive on ERs in the foreseeable future is the 

one related to the environmental benefits of ERs. Respondents that consider the environmental 

aspect of using an EV as an essential factor when making purchasing decisions, may have 

increased likelihood of choosing environmentally friendly modes of transport. Thus, they have a 

higher intention to drive on ERs that are expected to reduce traffic emissions even more in the 

foreseeable future. Similarly, because of the perceived environmental benefits that EVs have, 

respondents have higher intention to purchase an EV, knowing that ERs will be available in the 

future. These results can also be supported by the existing literature regarding the relationship of 
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EV adoption and the perceived environmental friendliness of these vehicles (Kahn, 2007; Axsen 

& Kurani, 2009; Hidrue et al., 2011; Kim et al., 2014; Burgess et al., 2013). 

People who own an EV and their vehicle’s driving range is 150 miles or below seem to have 

a higher intention to drive on an ER in the foreseeable future. This is because EV owners with a 

limited range may be more likely to choose a charging solution that can address the barrier of 

range anxiety and thus, have a higher intention to drive on ERs in the foreseeable future. This 

finding can be linked with studies that have found either that driving range is an important factor 

in electro- mobility (Hidrue et al., 2011; Carley et al., 2013; Wilmink et al., 2015; Diamond, 

2009; Chorus et al. 2013; Hackbarth & Madlener 2013; Helveston et al., 2015; Valeri & 

Danielis, 2015) or that EV experience plays a major role in forming positive attitudes related to 

EVs (Skippon & Garwood, 2011; Jabeen et al., 2012). 

Younger individuals (34 years old or below) usually have a tendency towards “greener” or 

innovative transportation modes. As a result, the likelihood to purchase an EV, knowing that ERs 

will be available in the future appears to be high. This finding is in line with previous research on 

Millennials’ intention to purchase EVs (Wu et al., 2010a; Polatoglu & Ekin, 2001; Morris et al. 

2005; Hidrue et al., 2011). The vehicle performance as a factor of purchasing an EV is negatively 

associated with the intention to purchase an EV, knowing that ERs will be available in the 

foreseeable future. One possible explanation for that is that conventional vehicles are considered 

to have a stronger performance (engine power, acceleration time or maximum speed) compared 

to EVs. Consumers may value these characteristics more and hence they have a low intention to 

purchase an EV. Generally, vehicle performance is a factor that has found to be significant in 

past studies associated with EV purchase intentions (Graham-Rowe et al., 2012; Lieven, 2011; 

Hidrue et al, 2011; Burgess et al., 2013). EVs’ performance has been reported as a barrier to 

adoption in the studies of potential buyers’ intentions to adopt EVs (Egbue and Long, 2012; 

Graham-Rowe et al., 2012), indicating that consumers may prefer better performance.  

People who typically charge their EV in DC fast charging stations regardless of the location 

(either at home or at work or at public/private charging stations) may value charging time and 

efficiency more than other factors. Thus, the likelihood of purchasing an EV, knowing that ERs 

will be available in the foreseeable future is high given that ERs have the potential to reduce 

charging times. In line with the short-term intention model, social/family influence plays an 
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important role in the intention to purchase an EV; however, by comparing the corresponding 

coefficients, it seems that this factor has less impact on the short-term intention model. 

Respondents who indicated that their primary mode of travel is walking or biking 

(conventional bike or electric bike) for each of the trip purposes would strongly agree with the 

intention to purchase an EV, knowing that ERs will be available in the foreseeable future. This 

may be explained by the fact that people who prefer non-motorized modes of transport for every 

trip purpose usually exhibit a more environmentally friendly behavior and thus, they would be 

more likely to choose a cleaner car for their daily trips. 

The marginal effects for the long-term intention to drive on ERs and purchase an EV, 

knowing that ERs will be available were estimated. The same rationale is used to explain the 

results in the current model of long-term intention. The marginal effects are presented in Tables 

4.7 and 4.8. 

A trend may be revealed by comparing the marginal effects of the common variables of the 

short-term and long-term intention models. In particular, it is observed that the variable 

indicating the respondents who are innovative has a larger effect in the long-term (Tables 4.7, 

4.8) than in the short-term intention to drive on ERs (Tables 4.4, 4.5). Similarly, the variable that 

represents the importance of social/family influence and the variable of innovativeness have a 

stronger association with the intention to purchase an EV in the foreseeable future compared to 

the short-term intention.  

This result may show that the probability of using the new technology or purchasing an EV, 

being aware of ERs, depends on the implementation time of this technology. In particular, 

individuals may feel more confident to try a new technology if it has been studied and tested for 

a certain time period. This is why the same factors are less influential in the short-term intention 

model.  
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Table 4.7: Computed marginal effects for intention to drive on ERs in the foreseeable future 

(long-term intention) 

Long-term 

intention 
Intention to drive on ERs 

Variable code 

name 

Variable 

Description 

Str. 

Disagree 
Disagree Neutral Agree 

Str. 

Agree 

[Ѱ=1] [Ѱ= 2] [Ѱ=3] [Ѱ=4] [Ѱ=5] 

COLLEGE 

1 if respondent’s 

highest level of 

education is some 

college or graduate 

college or graduate 

school. 

-0.04464 -0.02481 -0.01919 0.05368 0.03496 

SROUTE 

1 if respondent rated 

safety as very or 

extremely important 

factor when planning 

their commute route, 0-

otherwise. 

-0.06012 -0.03279 -0.02446 0.07158 0.04579 

PINNOV2 

Respondents who 

agreed or strongly 

agreed on average that 

they are positive 

towards trying new 

innovations. (*) 

-0.33661 -0.20299 -0.18581 0.41851 0.30690 

PRELA 

Respondents who 

agreed or strongly 

agreed on average that 

ERs would offer more 

advantages compared to 

driving on non-electric 

(conventional) 

roadways. (*) 

-0.21466 -0.12945 -0.11849 0.26689 0.19572 

PCOST 

1 if respondent rated 

EV’s purchase cost as 

very or extremely 

important factor when 

they think of purchasing 

an EV, 0-otherwise. 

0.03993 0.02356 0.02078 -0.04910 -0.03516 

ENVBEN 

1 if respondent rated 

environmental benefits 

as very or extremely 

important factor when 

they think of purchasing 

an EV, 0-otherwise. 

-0.06924 -0.04019 -0.03482 0.08409 0.06016 

SRANGE 

1 if respondent owns an 

EV and their vehicle’s 

driving range is 150 

miles or below. 

-0.08105 -0.06262 -0.09204 0.09708 0.13863 

*Predicted probability generated from an estimated binary probit model 
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Table 4.8: Computed marginal effects for intention to purchase an EV, knowing that ERs will 

be available in the foreseeable future (long-term intention) 

Long-term 

intention 
Intention to purchase an EV 

Variable 

code name 
Variable Description 

Str. 

Disagree 
Disagree Neutral Agree 

Str. 

Agree 

[Ѱ=1] [Ѱ= 2] [Ѱ=3] [Ѱ=4] [Ѱ=5] 

YOUNG 

1 if respondent is 34 

years old or younger, 0-

otherwise. 

-0.07936 -0.05414 -0.01219 0.08644 0.05925 

SROUTE 

1 if respondent rated 

safety as very or 

extremely important 

factor when planning 

their commute route, 0-

otherwise. 

-0.06243 -0.03585 0.00198 0.06171 0.03460 

VEHPERF 

1 if respondent rated 

vehicle performance as 

very or extremely 

important factor when 

they think of purchasing 

an EV, 0-otherwise. 

0.09201 0.06578 0.02042 -0.10253 -0.07567 

DCCHARGE 

1 if respondent indicated 

that they typically 

charge their EV in DC 

Fast charging stations 

regardless of the 

location (either at home 

or at work or at 

public/private charging 

stations) 0-otherwise. 

-0.05016 -0.037 -0.01235 0.05731 0.0422 

INFLU 

1 if respondent rated 

social/family influence 

as very or extremely 

important factor when 

they think of purchasing 

an EV, 0-otherwise. 

-0.08605 -0.06090 -0.01761 0.09551 0.06904 

PINNOV2 

Respondents who 

agreed or strongly 

agreed on average that 

they are positive 

towards trying new 

innovations. (*) 

-0.31467 -0.20213 -0.02155 0.33291 0.20544 

ENVBEN 

1 if respondent rated 

environmental benefits 

as very or extremely 

important factor when 

they think of purchasing 

an EV, 0-otherwise. 

-0.08787 -0.05366 -0.00291 0.08981 0.05464 
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Table 4.8 continued 

PRELA 

Respondents who 

agreed or strongly 

agreed on average 

that ERs would offer 

more advantages 

compared to driving 

on non-electric 

(conventional) 

roadways. (*) 

-0.25238 -0.16212 -0.01729 0.26701 0.16477 

WBIKE 

1 if respondent 

indicated that their 

primary mode of 

travel is walking or 

biking (conventional 

bike or electric bike) 

for each of the trip 

purposes 

(work/school, 

grocery and 

shopping, personal 

business, 

social/recreational). 

-0.02749 -0.01848 -0.0033 0.02985 0.01945 

*Predicted probability generated from an estimated binary probit model 

 Market Segmentation 4.2

One of the objectives of the current thesis is to find the level of adoption of the ERs 

technology. The survey of general population was used as a tool to extract the data needed for 

the market segmentation analysis. Multidimensional statistical methods were used in order to 

create groups of respondents based on their similarities among the different opinions examined 

through the questionnaire. 

4.2.1 Modeling Technique 

The data obtained from the questionnaire was processed by means of two multivariate 

statistical analysis methods: Principal Component Analysis (PCA) and Cluster Analysis (CA).  

Principal Component Analysis 

PCA is an explanatory factor procedure commonly used in market research (Henson & 

Roberts, 2006; Tabachnick & Fidell, 2007; Thompson, 2004). The objective of this method is to 

reduce the initial number of variables into a new set of items, called principal components. If the 

initial variables are not correlated, this method does not achieve remarkable results (Washington 

et al., 2011). Observational data typically contain a large number of correlated variables and thus 
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PCA can be successful. In particular, this technique uses the potential correlations among 

different items to estimate independent factors that best represent the items they include and thus, 

they best describe the research question of the technology adoption (Mooi & Sarstedt, 2011). The 

fact that the obtained factors are not correlated is an important aspect                                                                                                                                                                                                                                                                                                             

of this analysis, since they can be used in regression analysis without collinearity issues (Mooi & 

Sarstedt, 2011). 

Each principal component resulted from PCA is a linear weighted combination of the initial 

variables and can be described by the following equation (Vyas & Kumaranayake, 2006): 

                                                                                              Equation 4.12 

where PCm represents the m
th

 principal component extracted, αmn denotes the weight for the m
th

 

principal component and the n
th

 variable and Xn stands for the n
th

 variable. The weights for each 

component are given by the eigenvectors of the correlation matrix or the co-variance matrix in 

the case where the data is standardized (Vyas & Kumaranayake, 2006). The combination of 

various variables under different components is based on the variables’ observed variance 

(O’Rourke & Hatcher, 2013). This variance is described by the eigenvalue of the corresponding 

eigenvector (Vyas & Kumaranayake, 2006). The components are presented in order from the 

component that explains the greatest percentage of the total variation to the one that explains the 

least variation (Vyas & Kumaranayake, 2006). 

In order to conduct the PCA, the following steps have to be taken, according to Mooi & 

Sarstedt (2011) and Williams et al. (2010): 

 Evaluation of the assumptions of PCA and data appropriateness for the analysis 

The assumptions are related to the nature of the data (internal or ratio scale level), the 

sufficient correlation between the items (correlation matrix, Kaiser–Meyer–Olkin (KMO) 

statistic and the Bartlett’s test of sphericity), the sample size and the sample to variable ratio. 

 Extraction of the factors 

Since PCA is the extraction method, factors are extracted in a way that minimizes the 

difference between the initial and reproduced each time correlation matrix (Mooi & Sarstedt, 

2011). In particular, a set of highly correlated variables are selected by the PCA and are related 

to a specific component. Then, another set of variables with high correlation are chosen and 

included in a second factor. This process is iterative until all the variables have been included 

(Mooi & Sarstedt, 2011). The overall objective though is to reduce the number of items through 
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this factor extraction by extracting only a few factors that account for a high degree of the overall 

variation (Mooi & Sarstedt, 2011). 

 Determination of the number of factors 

There are certain criteria that can determine factor extraction. Among the various extraction 

rules and approaches are: the Kaiser’s criterion (eigenvalue > 1) (Kaiser, 1960), the scree test 

(Cattell, 1966), the cumulative percent of variance extracted, the variable’s variance that can be 

reproduced (called communality) and the parallel analysis (Horn, 1965). It is suggested that 

multiple approaches be used in factor extraction (Williams et al., 2010). The selection of the 

rotation method is also included in this step and it can facilitate the interpretation of the results. 

Rotation offers a more simplified solution, since it maximizes high item loadings and minimizes 

low item loadings (Williams et al., 2010). There are two common rotation techniques: orthogonal 

rotation and oblique rotation. The orthogonal rotation is used when the factors produced should 

not be correlated. The orthogonal Varimax rotation is the most common technique in PCA 

(Thompson, 2004) and aims at maximizing the dispersion of loadings within factors (Mooi & 

Sarstedt, 2011). The varimax rotation is also recommended to be used to enhance the 

interpretability of the results (Mooi & Sarstedt, 2011). The oblique rotation is used when the 

factors produced do not need to be uncorrelated and should be used only if the results are 

different to interpret (Mooi & Sarstedt, 2011). Direct oblimin is the most commonly used oblique 

rotation technique (Mooi & Sarstedt, 2011). 

 Interpretation of the results  

This step involves labeling of the factors based on the variables assigned to each factor. The 

labeling of factors is a subjective, theoretical, and inductive process (Pett et al., 2003) and thus, it 

is challenging. The resulted factor loadings describe the association between variables and 

factors and this is why higher loadings are desired. However, it is also reasonable to assign a 

variable to a factor, despite the fact that the variable does not load highly on the specific factor 

(Mooi & Sarstedt, 2011); as long as the variable’s factor loading is above an acceptable level, 

depending on the number of factors in general and on the number of variables in each factor. In 

any case, the factors’ eigenvalues (eigenvalue>1), the difference between the observed and 

reproduced correlation coefficients (residuals>0.05), the cumulative variance explained (total 

variance>50-60%) and the communalities of each variable (communality>0.30) should be 

checked compared to their acceptable levels (Mooi & Sarstedt, 2011). 
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All the above steps are presented in more detail in the section of the PCA results (Section 4.2.2). 

Cluster Analysis 

The new set of components found from PCA was used as an input to cluster analysis (CA). 

Cluster analysis is a method that examines the similarity of multidimensional objects and then 

identifies homogenous groups of these objects called clusters (Mooi & Sarstedt, 2011). The 

objects that are in the same cluster have the maximum similarity but also the maximum 

dissimilarity with objects not belonging in that cluster. The initial step of CA is to decide which 

characteristics or in other words clustering variables will be used to segment the sample. Given 

that a PCA has been conducted, the clustering variables are considered to be the principal 

components extracted from PCA. It is important to mention that the selection of the clustering 

variables in general should be such that they provide sufficient differentiation between segments 

(Mooi & Sarstedt, 2011). In addition, if there are collinearity-correlation issues between the 

clustering variables, they are not considered sufficiently unique to identify distinct clusters, since 

specific aspects covered by these variables will be over-presented in the clustering solution 

(Mooi & Sarstedt, 2011). This is the reason why the PCA using the Varimax rotation method can 

handle this issue and is the first step before the CA. 

There are different approaches to measure the level of similarity between objects or to form 

clusters and thus, there are different clustering procedures. The usual differentiation is between 

hierarchical and partitioning methods. There is also the two-step clustering that constitutes a 

combination of hierarchical and partitioning methods (Mooi & Sarstedt, 2011). Hierarchical 

methods are based on clustering algorithms that use distance measures to create clusters while 

partitioning methods use the within cluster variation as a measure and require a pre-specified 

number of clusters (Mooi & Sarstedt, 2011).  

Hierarchical methods can be agglomerative or divisive. The agglomerative clustering starts 

with each object being an individual cluster. Then, the individual clusters are merged, depending 

on their similarity, in order to successively form new clusters. Each new cluster is linked to a 

higher level of hierarchy from the bottom up. The opposite procedure is the divisive clustering. 

In this method, there is one initial cluster that includes all the objects of the analysis and this 

cluster is gradually divided from the top down. In both techniques, the assignment of an object to 

a cluster means that this object cannot be reassigned to any other cluster; a characteristic that 

distinguishes hierarchical and partitioning methods. There is a variety of measures of similarity 
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to be used in these methods. Examples are the Euclidean distance, the city-block distance 

(Manhattan metric), the Angular, Canberra or Mahalanobis distance (Mooi & Sarstedt, 2011). 

Among the most popular clustering algorithms that exist for the hierarchical methods are: nearest 

neighbor (single linkage), furthest neighbor (complete linkage), average linkage, centroid and 

Ward’s method (Mooi & Sarstedt, 2011).  

The two-step cluster analysis is based on two steps: first, a procedure similar to k-means 

takes place by forming pre-clusters. Then, the hierarchical clustering algorithm is applied on the 

pre-clusters to combine the objects and form final homogenous clusters (Mooi & Sarstedt, 2011). 

This method can result in solutions based on a mix of both continuous and categorical variables 

and for different number of clusters. This is the advantage of this method compared to the other 

clustering procedures.  

As far as the partitioning methods are concerned, the k-means procedure is one of the 

simplest non-hierarchical clustering methods (Mooi & Sarstedt, 2011). This is the method that 

this thesis followed. The k-means algorithm-where k the number of pre-determined clusters-aims 

at segmenting the data in a way that within-cluster variation is minimized (Steinley, 2006). The 

initial step of this algorithm is the random assignment of all the projects to different clusters. As 

a next step, successive reassignments of the objects to other clusters take place. The criterion for 

an object reassignment is the squared distance of each case to the center (cluster mean) of the 

associated cluster (Mooi & Sarstedt, 2011). This procedure is repeated until all cases are 

allocated to the cluster for which their distance to the cluster mean is the shortest.  

The cluster centers are found by computing the mean values of the objects contained in the 

corresponding cluster concerning each of the variables (Mooi & Sarstedt, 2011). The k-means 

algorithm starts with an initial set of centers and classifies the observations based on their 

distances from the centers. The cluster means are computed again and iteratively, every time the 

objects are reallocated to other clusters until the cluster affiliation does not change between 

successive steps or the maximum number of iterations is reached. After iteration stops, all the 

objects are assigned to clusters and the cluster centers are computed for a last time (final cluster 

centers). Based on the final cluster centers, the results of the clustering solution can be 

interpreted.  

An important characteristic of this method is that the researcher has to pre-specify the 

number of clusters to be obtained. Due to this issue, different approaches exist and can offer help. 
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Some researchers use the variance ratio criterion introduced by Calinski & Harabasz (1974) 

(Milligan & Cooper, 1985) or apply a hierarchical procedure to determine the appropriate 

number of clusters and then the k-means procedure (Punj & Stewart, 1983). Another approach is 

to try different number of clusters using k-means and examine which solution is best, based on 

certain validation criteria (Mooi & Sarstedt, 2011). In general, k-means is considered a superior 

method compared to hierarchical methods based on (Mooi & Sarstedt, 2011), since “it is less 

affected by outliers and the presence of irrelevant clustering variables and also can be applied to 

large datasets”.  

The interpretation of the cluster solution is made by defining and labeling the obtained 

clusters. This can be achieved by examining the clustering variables’ mean values and comparing 

the average score of each cluster compared to the average scores of each clustering variable. The 

label of each cluster should reflect its objects and demographic variables can be used to profile 

the retained segments.  

The validation of the cluster solution is also an essential step. The solution should be 

evaluated with respect toward its stability, reliability and validity (Mooi & Sarstedt, 2011; Dibb 

1999; Tonks 2009; Kotler & Keller, 2009). In order to assess the solution’s stability, examining 

the output regarding its metrics and statistics is important. In addition, different clustering 

procedures, algorithms or distance measures can be used to re-run the analysis and review the 

results. In order to evaluate the solution’s reliability, it is suggested to replicate the analysis using 

a separate collected dataset (Mooi & Sarstedt, 2011). Finally, the solution’s validity can be 

examined by exploring the significance of the differences between the segments with regard to 

some criterion variables or by exploring whether the segments are: substantial, accessible, 

differentiable, actionable, stable, parsimonious, familiar and relevant, based on Dibb (1999), 

Tonks (2009), Kotler & Keller (2009). The obtained clusters should exhibit high degree of 

within-homogeneity and between segment heterogeneity (Mooi & Sarstedt, 2011). 

The following sections provide the results of the PCA and the CA used to estimate the 

adoption rates and conduct market segmentation analysis. In particular, the specific settings and 

methods utilized in each case are discussed and the final clusters are analyzed in terms of their 

size and characteristics. 
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4.2.2 Principal Component Analysis (PCA) Results 

A PCA was conducted in this section in order to identify which variables are the most salient 

and capture important information to be used for the clustering process. For this purpose, the 

IBM SPSS Statistics software, version 22 was used. 

Ofthe total number of variables of the survey (228 variables), the variables related to general 

thoughts and opinions on ERs (70 variables, third section of the survey) were used in the analysis. 

This decision was made based on a process of trial and error. In particular, all the variables of the 

survey were tested in the PCA analysis but the results indicated that the validity of the analysis 

was ambiguous, the variance explained was minimum and the interpretation of the results was 

not reasonable. Since, there was an idea of the factor structure that could be helpful in evaluating 

the research question of the ER technology adoption, the factor solution can be adjusted (Mooi & 

Sarstedt, 2011). Hence, the focus was on the variables-questions associated with the intention to 

use ERs that had also the advantage of being expressed on the same scale (Likert scale of 5 point 

ordinal scale: 1-strongly disagree to 5-strongly agree). 

Prior to starting the analysis, the assumptions of PCA should be studied. Although there are 

different opinions in the appropriate sample size for this type of analysis, there is the general 

view that over 500 observations denotes an adequate size (Comrey & Lee, 1973) as cited by 

Gorsuch, 1983; Hair et al., 1995; Pett et al., 2003; Thompson, 2004). Thus, the sample of 600 

responses can be considered sufficient. Additional rules have been stated and are related to the 

ratio of the number of observations to the number of variables. Examples of these rules mention 

that this ratio ranges from 3:1, 6:1, 10:1, 15:1 or 20:1 (Gorsuch, 1983; Hair et al., 1995; Pett et 

al., 2003; Thompson, 2004; as cited by Williams et al., 2010). In the current work, there are 600 

responses and 70 variables. However, there are studies that have shown that there is not a 

specific ratio to determine the level of success of the analysis (Hogarty et al., 2005; MacCallum 

et al., 1999; as cited by Williams et al., 2010). Thus, this rule seems ambiguous. As a next step, 

the variables should be examined for potential correlation issues through their correlation matrix 

and the significance levels of their correlation. Since there were some variables that were highly 

correlated (above absolute 0.3), the PCA can be used a solution that would result in independent 

factors which are suitable for being used in grouping the respondents in distinct clusters (Mooi & 

Sarstedt, 2011).  
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Further measures used to test for the appropriateness of this method are the Kaiser–Meyer–

Olkin (KMO) statistic and the Bartlett’s test of sphericity (Lattin, 2005; Field, 2005). The KMO 

index, also called the measure of sampling adequacy, ranges from 0 to 1, with 0.50 considered 

suitable for factor analysis (Hair et al., 1995; Tabachnick & Fidell, 2007). This test explains 

whether other variables in the dataset can explain the correlations between a pair of variables 

(Mooi & Sarstedt, 2011).  

Bartlett's test of sphericity was used to test whether the correlation matrix is diagonal (null 

hypothesis indicating that non-diagonal elements are zero) (Mooi & Sarstedt, 2011). The desired 

result is to reject the null hypothesis, since high correlations are needed in PCA. Thus, this test 

should be significant (p< 0.05) for factor analysis to be suitable (Hair et al., 1995; Tabachnick & 

Fidell, 2007). Both tests gave satisfactory results and confirmed that all the variables are related 

and can be used in the PCA. 

In order to extract the principal components, the criteria that will assist in the determination 

of the factors should be assumed. The rotation method selected was the Varimax method 

(orthogonal method) (O’Rourke & Hatcher, 2013), which forces the factor solution to be 

uncorrelated. In other words, through this procedure the variables that are highly correlated are 

selected to factor, constituting a component that is not associated with the other components. 

This characteristic is important for the use of the factor solution in the CA that requires the 

independence of the clustering variables. 

The extraction method was based on Kaiser’s criteria (components’ eigenvalues>1), the scree 

plot test that shows the correct number of factors and the cumulative percent of variance 

explained (Kaiser, 1960; Cattell, 1966). As far as the settings are concerned, the minimum 

correlation between a factor and each variable (factor loading) was set as 0.3. Thus, any 

coefficient with an absolute value below this value was ignored (Tabachnick & Fidell, 2014). In 

addition, every retained component must include at least three variables to be reliable. Also, in 

order to avoid multicollinearity issues between the factors, every variable should appear in only 

one component. If the previous conditions are not met, the corresponding variables removed 

from the analysis and the PCA should re-run (Samuels, 2017). Furthermore, the determinant of 

the correlation matrix should be ensured that it is greater than 0.00001. A value lower than the 

suggested one indicates high inter-correlations among variables. 
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Another important aspect of the analysis is each variable’s communality that can indicate 

how well this variable is represented or captured by the extracted components (Mooi & Sarstedt, 

2011). Communalities are usually indicators of the solution’s goodness-of-fit but there is not a 

commonly used threshold for them. As a rule of thumb, the variable’s variance should be 

explained by at least 30% through the components extracted and thus, the communalities should 

be above 0.3 (Mooi & Sarstedt, 2011). 

Based on the aforementioned guidelines, the PCA was conducted. This led to a solution 

comprising of four factors and 22 variables in total. Table 4.9 shows the KMO and Barlett’s test 

as well as the value of the determinant, indicating that the respective conditions mentioned 

previously were met. 

Table 4.9: KMO statistic, Barlett’s test and determinant 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy .884 

Bartlett's Test of Sphericity 

Approx. Chi-Square 6609.948 

df 231 

Significance .000 

Determinant 0.000014 

 

Table 4.10 illustrates that around 62% of the observed variance has been accounted for. 

As general rule, the total variance explained should be at least 50-60% (Streiner, 1994) and thus, 

using this criterion the solution seems valid. In contrast with other components, eigenvalues of 

the first four components are above one, validating Kaiser’s criterion, and therefore confirming 

the assumption that the proportion of the variance explained by each component is acceptable. 

Table 4.10: Final components and eigenvalues 

Component Eigenvalue 
% of Variance 

explained 

Cumulative % of 

variance explained 

1 6.978 31.719 31.719 

2 2.714 12.338 44.057 

3 2.380 10.819 54.876 

4 1.582 7.192 62.069 

 

The scree plot can also be used to confirm the suitable number of extracted factors. 

According to Williams et al. (2010), interpreting the scree plot is made in two steps: first, a 
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straight line can be drawn through the smaller eigenvalues where a departure from this line 

occurs, indicating where a break occurs; second, the point beyond the break can show the 

number of components retained. Figure D1.1 in Appendix D1 indicates that 4 factors are to be 

retained. 

The groups of variables retained for the PCA are indicated on the summary table below 

(Table 4.11). In particular, this table shows the adopted name for each component (“Component 

name”), the variables-questions of the survey assigned in each component (“Variables 

included”), the code name of each variable (“Code name”), the variables’ loadings to each 

component (“Loadings to each component”) and the communality estimates (“Communalities”). 

Based on the table (Table 4.11), the four factors extracted are: opinions on ERs, 

environmental consciousness, safety concerns and habits towards driving a car. More 

specifically, opinions on ERs (first component) reflect ten variables-questions of the survey: two 

behavioral intention questions (intention to drive on ERs), two questions of attitudes towards the 

use of ERs, one question of personal moral norms, two questions of self-efficacy, two questions 

from perceived behavioral control and one question from the innovation category. All these 

questions are related to the section of opinions on ERs, as explained in the survey design 

(Section 3.3), and this is why this component was labeled accordingly. The second component 

contains questions from the general environmental concerns’ subsection of the survey while the 

third component includes questions related to the safety concerns concerning the ER technology. 

The last component consists of one question from the sustainability subsection and two from the 

subsection of the habits towards the use of cars. All the four components are positively 

associated with the corresponding questions they include. Finally, all factor loadings are high 

and above 0.3 increasing the results’ face validity (Mooi & Sarstedt, 2011). 
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Table 4.11: PCA analysis 

Component name Variables included Code name 

Loadings to each component 

Communalities 

1 2 3 4 

Opinions on ERs 

 

I intend to drive my EV on electric 

roadways as soon as electric 

roadways become available. 

IntRideERs1 0.825    0.688 

I intend to drive my EV on electric 

roadways shortly after electric 

roadways become available. 

IntRideERs2 0.812    0.662 

For me, driving on electric 

roadways would be__Undesirable: 

Desirable 

AttERs7_1 0.764    0.665 

Because of my own principles, I 

would feel an obligation to drive 

on electric roadways because 

electric vehicles can be charged 

more efficiently. 

PerMorNor1 0.724    0.596 

When electric roadways become 

widely available, I would know 

enough to drive on one. 

SelfEff3 0.724    0.614 

 

 

 



112 

 

112 

 

 

Table 4.11 continued 

 

When electric roadways become 

widely available, I would have 

the ability to drive on them if I 

want to. 

PercBehCont2 0.719    0.593 

I would have the necessary 

knowledge to drive on electric 

roadways. 

SelfEff1 0.717    0.595 

Driving on electric roadways 

sounds ____ to me. Stupid:Smart 
AttERs4_1 0.714    0.611 

I believe that the sales of 

conventional (internal-

combustion) vehicles may be 

banned in the future. 

PercBehCont4 0.584    0.421 

I am willing to be an early 

adopter of new technologies, but 

prefer to follow the lead of others 

and to ensure there is a clear 

benefit to me before doing so. 

EarMaj1 0.458    0.393 

 

Environmental 

consciousness 

 

I think that cars are negatively 

impacting air quality. 
EnvConc4  0.816   0.683 

I think that trucks are negatively 

impacting air quality. 
EnvConc5  0.788   0.628 

I believe that transportation can 

have an important impact on the 

environment and our ability to be 

sustainable. 

EnvConc6  0.764   0.648 
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Table 4.11 continued 

 

I think we are not doing enough 

to save scarce natural 

resources from being used up. 

EnvConc2  0.754   0.635 

I think air pollution is becoming 

more and more serious in recent 

years. 

EnvConc3  0.716   0.588 

I think individuals have a 

responsibility to protect the 

environment. 

EnvConc1  0.707   0.583 

 

Safety concerns 

 

I would have safety concerns 

about driving on electric 

roadways. 

Safety1Rev   0.873  0.779 

On-road charging on electric 

roadways would cause me safety 

concerns. 

Safety3Rev   0.780  0.633 

I would have safety concerns 

about driving on electric 

roadways if trucks are not banned 

from these roads. 

Safety2Rev   0.854  0.751 

Habits towards 

driving a car  

 

 

Driving a car is one of my habits. HAB2    0.814 0.704 

No matter how convenient and 

sustainable the travel options are, 

I will always prefer to drive my 

personal vehicle. 

SUS2    0.812 0.685 

Not driving a car is something I 

would not feel comfortable with. 
HAB1    0.780 0.637 
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As a last step, the goodness-of-fit of the factor solution was also evaluated by ensuring that 

the proportion of cases where differences (residual) between the correlation coefficients in the 

data (observed) and the correlation coefficients from the factors (reproduced) are greater than 

0.05 is as small as possible (Mooi & Sarstedt, 2011). There is no rule of thumb regarding the 

maximum proportion of residuals greater than 0.05 but in general a proportion of more than 50% 

can be problematic (Mooi & Sarstedt, 2011). It should be noted that this issue would also appear 

in the stage where the assumptions of the PCA are checked. In particular, low correlations and an 

unsatisfactory KMO test would have raised concerns. In the PCA conducted, the solution is 

considered sufficient since there are only 57 (27% which is < 50%) non-redundant residuals with 

absolute values greater than 0.05.  

4.2.3 Cluster Analysis (CA) Results 

In this section, the sample of 600 LA residents was clustered by applying the k-means cluster 

method on four clustering variables found from the Principal Component Analysis (PCA): 

opinions on ERs (factor 1), environmental consciousness (factor 2), safety concerns (factor 3) 

and habits towards driving a car (factor 4). The CA was conducted using IBM SPSS Statistics 

software, version 22. The methodology was based on the book of Mooi & Sarstedt (2011), on 

software tutorials and on studies that have used the same software (Chawla & Joshi, 2017; 

Carvalho, et al., 2015).  

4.2.3.1 Clustering Procedure 

Before conducting the CA, a one-way analysis of variance (ANOVA) was used in order to 

assess whether the means of the four principal components vary across different demographic 

variables: gender, age, employment situation, household income level, educational level, 

household size, number of children, vehicle ownership. The ANOVA was used, since it can 

analyze multiple differences comparing three or more means (Mooi & Sarstedt, 2011). After 

testing the homogeneity of variances, Levene’s test showed that population variances are 

homogenous and thus, the F-statistic is used to estimate the p-value (significance level) 

according to F-distribution. The F-statistic gives the ratio of factor variance to the error variance 

in ANOVA and tests the null hypothesis that there is no difference in the means of the factors 

across the different testing variables. Using a significance level of 0.05, if the p-value is less than 
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or equal to 0.05, the null hypothesis can be rejected and thus, the means of the factors (dependent 

variables in SPSS) vary across the demographic variables (factors in SPSS).  

The results are reported in Table 4.12. As can be seen, the opinions on ERs vary across all 

demographic variables except vehicle ownership. Environmental consciousness vary across 

educational level; safety concerns vary across age and household size; habits towards driving a 

car vary across age, employment situation, income level, household size and vehicle ownership. 

Since each principal component varies across at least one demographic variable, the respective 

principal component can be used as a clustering variable. The aforementioned results support the 

decision to use these four factors in the analysis.  

Table 4.12: One-way ANOVA with principal components and demographic variables 

Principal 

Component 

Demographic 

variable 
F-value Significance 

Opinions on ERs 

Gender 17.309 0.000 

Age 12.783 0.000 

Employment 

situation 
7.744 0.000 

Household income 2.709 0.013 

Educational level 2.324 0.042 

Household size 6.542 0.000 

Number of children 9.845 0.000 

Vehicle ownership 1.600 0.173 

Environmental 

consciousness 

Gender 8.681 0.003 

Age 0.644 0.666 

Employment 

situation 
0.196 0.964 

Household income 0.312 0.931 

Educational level 3.110 0.009 

Household size 0.044 0.996 

Number of children 0.331 0.857 

Vehicle ownership 1.465 0.211 

Safety concerns 

Gender 0.226 0.635 

Age 2.515 0.029 

Employment 

situation 
0.733 0.599 

Household income 0.697 0.653 

Educational level 0.995 0.420 

Household size 3.596 0.007 

Number of children 2.187 0.069 

Vehicle ownership 0.728 0.573 
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Table 4.12 continued 

Habits towards 

driving a car 

Gender 1.932 0.165 

Age 2.696 0.020 

Employment 

situation 
3.695 0.003 

Household income 3.899 0.001 

Educational level 0.983 0.427 

Household size 3.033 0.017 

Number of children 0.885 0.473 

Vehicle ownership 10.779 0.000 

 

The k-means method was then used to group respondents into clusters. This method was 

chosen because of its superiority compared to other clustering techniques. In particular, k means 

technique is claimed to be less influenced by outliers or irrelevant variables (Mooi and Starstedt, 

2011). In addition, the nature of the thesis’ data is ordinal and k-means is routinely used on 

ordinal data. Furthermore, this nonhierarchical clustering procedure is suggested for large sample 

sizes, over 500 responses (Mooi & Sarstedt, 2011). Thus, k means method seemed to be more 

suitable.  

The data of the analysis did not need to be standardized in SPSS, since the range or scale of 

one clustering variable is not larger or different from others. The method of iterate and classify 

was used to define the successive iterations and how the final process will be carried out. The 

maximum number of iterations until convergence was set as 10 (default value) and the 

convergence criterion as 0 (default value). The squared Euclidean distance is used for the 

divergence measure between units (Chawla & Sondhi, 2016). 

4.2.3.2 Number of Clusters  

In order to determine the appropriate number of clusters, different numbers of clusters were 

deployed and the results were reviewed to determine the robustness of the clustering algorithm. 

It was found that three clusters can offer the best solution. The final decision on the number of 

clusters was based on the examination of the stability, reliability and validity of the cluster 

solution and also the clarity in interpreting the results. For this purpose, the SPSS output was 

carefully examined. 

The k-means clustering starts with an initial set of centers. Each observation is assigned to 

the closest cluster, based on the distance from all the cluster centers. When all the cases have 
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been allocated to the clusters, new cluster centers are estimated and the assignment process is 

made again, based on the updated clusters. This process is iterative and cluster centers and 

assignments are modified until the convergence criterion is satisfied. This iteration process and 

progress of each cluster is part of the software’s output and is presented in Table D1.1 in 

Appendix D1. As can be observed, the cluster centers change less over time until iteration 9
th

 

where there is no change and the solution converges. Thus, the cluster solution can be claimed 

strong and stable.  

The analysis of variance of the four components of the analysis can indicate the impact of 

each one of them on determining which observation is allocated to each cluster. The results 

reported in Table 4.13 show that the average scores for the four dimensions used are significantly 

different among the three clusters because of the large F-statistics and the low p-values (at a 5% 

significance level). As a result, the principal components included indeed contribute to the 

separation of clusters; the largest the F-value the greatest the contribution of the factor to the 

cluster solution. 

Table 4.13: One-way ANOVA results 

ANOVA/Principal 

components 

Cluster Error 

F Significance Mean 

Square 
df 

Mean 

Square 
df 

Opinions on ERs 108.55 2 0.64 597 169.69 0.000 

Environmental 

consciousness  
179.169 2 0.403 597 444.457 0.000 

Safety concerns 25.04 2 0.919 597 27.233 0.000 

Habits towards 

driving a car 
27.091 2 0.913 597 29.685 0.000 

 

The final cluster centers are estimated as the mean for each factor within each final cluster 

and reflect the characteristics of each respondent for each cluster. This in conjunction with the 

output of the Euclidean distances between the clusters centers can indicate the level of similarity 

or dissimilarity among clusters. In particular, a graph is generated by the software and shows the 

final cluster centers (Figure D1.2 in Appendix D1). This graph can show whether the resulted 

clusters are different by each factor. On the Y-axis there is the Euclidean distance from the 

cluster center for each factor and the X-axis includes the three clusters. Using this graph, the 

factors that seem not to be very different across different pairs of clusters can be visually 
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identified. Based on this figure (Figure D1.2), safety concerns (factor 3) seemed to have similar 

values for clusters 1 and 2. 

To test if this factor (safety concerns) is statistically significant across the two clusters and to 

generally verify that each pair of clusters is different by every factor, a one-way ANOVA is 

conducted. More specifically, a post hoc test is used to evaluate whether the difference between 

the average scores of the factors between the cluster pairs is different. The four factors are used 

as dependent variables and the cluster membership is used as factor in the software. The Fisher's 

Protected Least Significant Difference (PLSD) test was used, since it is less conservative and it is 

more likely to identify at least one significant pairwise comparison, given a significant ANOVA 

(Howell, 2014). The results are presented in Appendix (Table D1.2 in Appendix D1) and clearly 

show that the difference of mean values is statistically significant (significance ≤ 0.05), 

providing more evidence that the cluster solution is valid.  

The number of cases assigned in each cluster is also reported and can be used as an additional 

way to evaluate the cluster solution. There were no missing values while the clusters seem to be 

well-sized, meaning that no cluster was under-represented and thus, the results can be claimed 

meaningful (Table 4.14). 

Table 4.14: Number of cases in each cluster 

Cluster 

1 166 

2 143 

3 291 

Valid cases 600 

Missing values 0 

 

A diagnostic graph with vertical box plots was also created to identify outliers within each of 

the clusters. The figure shown in Appendix D1 (Figure D1.3) reveals that there are eight outliers 

in cluster 1 and one outlier in cluster 3. The lines in the middle of the boxes represent the 

median. These observations can be claimed slightly outliers, since all the distances are within 

reason. In particular, the length of each box is the interquartile range (IQR) computed from 

Tukey’s hinges, representing the 25
th

 and 75
th

 percentile of data (Nuzzo, 2016). Values more 

than three IQR’s from the end of the box are labeled as extreme, denoted with an asterisk in the 

figure (*). Values more than 1.5 IQR’s but less than 3 IQR’S from the end of the box are labeled 

outliers (o) (Nuzzo, 2016). Since there are no extreme values in the figure, it was decided to 
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retain the outliers. In general though, when there are many outliers, different number of clusters 

should be tested. However, this cluster solution gave the minimum number of outliers.  

It is important to mention that the solution’s stability and reliability was evaluated by also 

using different clustering procedures on the data set and testing whether the results are the same. 

More specifically, a hierarchical cluster analysis and a two-step cluster analysis were attempted, 

indicating that three clusters provide a sufficient solution. In addition, potential changes in the 

clusters’ composition were examined by critically revisiting and replicating the results of k-

means algorithm many times (Mooi & Sarstedt, 2011). Based on these evaluations, the three 

cluster solution was more effective and efficient. 

4.2.3.3  Cluster Labeling 

As a next step, the cluster mean values were computed across the four factors/clustering 

variables in order to assign appropriate labels to each of the three clusters. More specifically, the 

initial steps taken are the following: 

1) For each observation/respondent, his/her average “score” (average value of answers) in the 

questions that are included in each component was calculated (average values by respondent by 

component). 

2) For each cluster, the observations that are included in it were isolated. Then, the averages of 

mean responses (from the previous step) of all the respondents in each cluster were estimated by 

each component (average values by cluster by component). 

The results can be shown in the following table (Table 4.15) that shows the average or 

“score” of each cluster in each component. The last row presents the overall mean score in each 

component by all respondents, regardless of the cluster membership. 

According to the table (Table 4.15), the clusters seem to be conceptually distinguishable. 

Taking into account that the scale (Likert scale of 5 point ordinal scale: strongly disagree to 

strongly agree) and direction of the answers is the same: from 1 (least positive opinions to each 

factor) to 5 (most positive opinions to each factor), Cluster 3 (291 respondents) has the highest 

mean values compared to the other clusters on three out of four components indicating that this 

group of respondents may be more positive towards the adoption of ERs. 
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Table 4.15: Average score of each cluster across the principal components 

Principal 

components/ 

Clusters 

Average values by cluster by component 

Opinions 

on ERs* 

Environmental 

consciousness* 

Safety 

concerns* 

Habits towards 

driving a car * 

C
lu

st
er

s 1 3.087 3.069 2.552 3.394 

2 2.849 4.376 2.338 3.107 

3 3.952 4.295 2.838 3.800 

Overall mean 

score 
3.446 3.975 2.640 3.522 

*Scale of answers:  

-Opinions on ERs: 1. Strongly Disagree, 2. Disagree, 3. Neutral, 4. Agree, 5. Strongly Agree 

-Environmental Consciousness: 1. Strongly Disagree, 2. Disagree, 3. Neutral, 4. Agree, 5. Strongly Agree 

-Safety concerns: 1. Strongly Agree (= I have safety concerns), 2. Agree, 3. Neutral, 4. Disagree, 5. Strongly       

  Disagree (=I do not have safety concerns) 

-Habits towards driving a car: 1. Strongly Disagree, 2. Disagree, 3. Neutral, 4. Agree, 5. Strongly Agree 

 

According to the meaning of each component, respondents of this cluster agreed the most to 

the thought of driving on ERs and had the fewest safety concerns regarding the use of ERs. As 

far as the car usage is concerned, the average of responses leaned toward the agree options 

concerning the habit of driving the car and this average was higher compared to the other 

clusters. Therefore, this group of respondents which scored the highest value related to habits 

towards driving a car, seem to be more positive on embracing the concept of ERs and using the 

technology installed in passenger electric cars. However, this cluster appears to have the second 

highest value in terms of the environmental consciousness, standing after cluster 2 with a slight 

difference. Regardless of this characteristic, cluster 3 seems to be generally more likely to adopt 

the technology first. In addition, by comparing with the overall mean scores, this cluster has 

higher than average mean values in all components. Thus, the users in this cluster can be labeled 

as “early adopters”.  

Cluster 2 (143 respondents) has the lowest values across three out of four components 

(opinions on ERs, safety concerns, habits towards driving a car) showing that this group may 

have concerns regarding the adoption of ER technology. In addition, the cluster’s values in these 

three components are lower than the overall mean. The average of responses concerning the 

opinions on ERs and safety concerns is less than 3 which represented the “neutral” option. Thus, 
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cluster 2 seems to disagree with driving on ERs and has less trust of the safety of the technology. 

However, this cluster appears to agree with the need to protect the environment more than any 

other cluster and this can be corroborated by the fact that it has the least tendency towards using 

the car (fourth principal component). This result may be an indication that respondents of this 

cluster cannot perceive and they are skeptical towards the fact that this new technology can 

potentially have a greater environmental benefit than EVs already have. Although one could 

claim that this cluster shows a greater appreciation toward the environmentally friendly 

technologies, the difference with cluster 3 (early adopters) is marginal. Thus, no clear consensus 

can be emerged for the cluster labeling based only on this factor. To conclude, the respondents 

included in this cluster can be labeled as “late adopters”, mainly based on the lowest values in 

general.  

Cluster 1 (166 respondents) comprises of respondents whose mean score is slightly below 

“early adopters” and seem to be more skeptical of adopting the technology compared to “early 

adopters”. More specifically, cluster 1 appears to have less pessimistic answers compared to 

“late adopters” on ERs and safety concerns and less optimistic responses on all the four 

components compared to early adopters. It has also the second highest score in the factor of 

habits towards driving a car, after early adopters. This cluster though has the lowest score in the 

environmental factor, possibly meaning that they are less environmentally concerned. As with 

cluster 1, this cluster’s labeling can be based on a general review of the factors included in the 

analysis. From this perspective, cluster 1 has mostly lower values than early adopters and higher 

values than late adopters. In addition, cluster 1 has average scores close to 3 (neither agree nor 

disagree) and it appears that are somehow skeptical and indecisive. Thus, this cluster can be 

labeled as “mid-adopters”. 

In conclusion, clusters 2 and 3 can be treated as extreme behaviors while cluster 1 includes 

values that usually stand somewhere in between the two. Thus, “early adopters” have the most 

optimistic attitude toward ER technology followed by “mid-adopters” and “late adopters”. 

The following graph shows the distribution of the aforementioned clusters (Figure 4.3). 
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Figure 4.3: Distribution of clusters (adoption rates) 

 

The interpretation of the results in terms of the adoption of the technology can also be 

supported by examining each cluster’s responses to the short-term and long-term intention 

questions. In particular, the majority of “agree” and “strongly agree” responses come from the 

cluster labeled early adopters (cluster 3) followed by mid-adopters (cluster 1) and late adopters 

(cluster 2) (Figures D2.1-D2.8 in Appendix D2). 

The potential gap between stated attitudes of respondents and the hypothetical nature of the 

topic of interest is worth to be acknowledged at this point (Kaufmann & Panni, 2017; Kaufmann 

et al., 2012). From a general perspective, it can be easily understood that the two factors that are 

directly connected to ERs are the factor of opinions on ERs and the factor of safety concerns on 

ERs compared to the other two factors (environmental consciousness and habits towards driving 

a car.) The other two factors are also statistically important but from a behavioral point of view 

their interpretation of the results can be ambiguous. This in conjunction with the survey 

limitations and the cluster solution stability can lead to the conclusion that the cluster labeling 

provided is as much representative as possible. 
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4.2.3.4 Clusters’ Characteristics 

After identifying the clusters, the objective is to describe the characteristics of each cluster 

and how they differ on relevant dimensions. Data that is not included in the cluster procedure is 

used to profile the characteristics of each cluster and thus, gain more insights on the ER adoption 

pattern. The three clusters derived from cluster analysis were described with respect toward their 

most important characteristics.  

In an attempt to identify the most important characteristics to be discussed by cluster, the 

relationship between the obtained clusters and basic sociodemographic, travel and EV charging 

related variables was evaluated. A χ
2
 analysis was conducted for this purpose at a 5% 

significance level. Tables D2.1 and D2.2 in Appendix D2 present a summary of the results by 

providing the χ
2 

statistics by each variable (“Variable categories” column) and the profile of 

each cluster. It was evident that all the variables-except for household size, car ownership per 

fuel type and type of charger used-are associated with the adoption of ER technology, since the 

χ
2
 test gives p-values lower than 0.05. This shows that the level of adoption significantly varies 

across these variables.  

Based on the aforementioned results, the following characteristics were analyzed across 

clusters: 

 

Demographics and socioeconomic characteristics 

Among the respondents in the “early adopters” cluster, 23% belong to the age group of 25-34 

years old. This age group is the dominant category in this cluster, indicating that early adopters 

would more likely be younger individuals (Millennials) who may have a greater tendency toward 

innovativeness. The majority of mid-adopters (20.5% of respondents) is between 35-44 years old, 

while late adopters are mostly 65 or above years old (24%). The results are shown in Figure 4.4. 

This result emphasizes the difference between younger and older generation in adopting new 

technologies. Older people are usually less familiar with newer technologies than younger 

generation. Overall, early and mid-adopters tend to be younger, a finding that is in line with the 

literature (Dubin et al., 2011; Morris et al., 2015).  
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Figure 4.4: Age distribution across clusters 

Early and mid-adopters have a similar gender distribution with male respondents constituting 

54% and 52% respectively while female respondents are 46% and 48% respectively (Figure 4.5). 

On the other hand, “late adopters” include more female (73%) than male respondents (27%) 

(Figure 4.5).  

 

Figure 4.5: Gender across clusters 

Early adopters have the highest percentage of respondents with annual income over $75,000 

(48%) compared to mid-adopters (36%) and late adopters (28%). The dominant income category 

for mid-adopters and late adopters is $25,000-$50,000 while the majority of early adopters make 
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$75,000 to $100,000. A similar trend exists for the employment situation of respondents across 

clusters, since the percentage of people working full time from the “early adopters” cluster to the 

late adopters cluster drops from 53% to 32%. In addition, the highest percentage of 

unemployment was reported in the cluster of late adopters (12% of respondents compared to 8% 

in early adopters and 9% in mid-adopters). This may have implications for the relationship 

between income level and level of adoption. In particular, it seems that the earliest adopters may 

be described by a higher income and status while late adopters tend to have a mid-level 

socioeconomic status. Different studies in the past have found a positive association between 

income and level of innovativeness (Dickerson & Gentry 1983; Gatignon & Robertson 1991; 

Rogers 1995; Uhl et al., 1970; Im et al., 2003). The results are shown in Figures 4.6 and 4.7. 

 

 

Figure 4.6: Income level across clusters 
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Figure 4.7: Employment situation across clusters 

As far as the educational level is concerned, there were not significant differences across 

clusters (Figure 4.8). The vast majority of respondents in each cluster has a high educational 

level, meaning their highest level is some college or college graduate or graduate school (early 

adopters: 82%; mid-adopters: 69%; late adopters: 73%). However, it is noteworthy that early 

adopters have a considerably higher rate of graduate school attendants (20%) compared to 11% 

for mid-adopters and 12% for late adopters, indicating what was expected: early adopters may 

have a higher educational level.  

 

Figure 4.8: Educational level 
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The majority of respondents in each cluster do not have children. In particular, around 78% 

of late adopters do not have children while 66% of mid-adopters and 60% of earlier adopters also 

do not have children. The highest percentage of respondents with more than 2 children seems to 

be in the mid-adopters cluster (7%) followed by late adopters (5%) and early adopters (2%) 

(Figure 4.9). 

 

Figure 4.9: Number of children across clusters 

It was also observed that around 94% of early adopters have a driver’s license while this 

percentage drops for the mid-adopters (84.94%) and late adopters (84.62%). Thus, it seems that 

the people who would adopt this technology first would be drivers; a conclusion that is intuitive. 

The results are shown in Figure 4.10. 

 

Figure 4.10: Driver’s license ownership across clusters 
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Early adopters seem to have the least percentage of people that do not own a personal vehicle 

(4%) compared to mid-adopters (11%) and late adopters (12%) (Figure 4.11). 39% of early 

adopters, 35% of mid-adopters and just 19% of late adopters drove their personal vehicle more 

than 15,000 miles. The dominant answer category in the early and mid-adopters’ clusters is 

driving 10,000 to 14,999 miles, while the category that had more responses for late adopters is 

driving less than 10,000 miles. This clearly illustrates that early to mid-adopters are people with 

a higher car use throughout the year; a finding that was also evident from their higher average 

score in the principal component of habits towards driving a car. The results are shown in Figure 

4.12. 

 

Figure 4.11: Car ownership across clusters 

 

Figure 4.12: Mileage across clusters 
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Travel and EV charging characteristics 

Car sharing or ride-hailing services appear to be more attractive to early adopters, since 34% 

of respondents are members of one of these or both services (Figure 4.13). Only 17% of mid-

adopters and just 4% of late adopters are members of car-sharing or ride-hailing services. This 

shows that early adopters are willing to try innovative services compared to the other clusters 

and this is why they could adopt the ER technology more quickly.  

 

 

Figure 4.13: Car sharing or ride hailing membership across clusters 

 

Even if the majority of respondents in each cluster does not own an EV, there are some 

respondents that have driven an EV in general (Figure 4.14). The highest percentage of 

respondents that have driven an EV appears in the early adopters’ cluster (37%). On the other 

hand, 23% of mid-adopters and just 14% of late adopters have driven an EV. This might mean 

that if an individual has a more positive evaluation (perception, attitudes) of EVs from 

experiencing them, he or she will probably be more willing to purchase this kind of vehicle or 

generally try new technologies associated with the use of EVs. This finding is in line with other 

studies as well (e.g., Skippon & Garwood, 2011; Jabeen et al., 2012).  
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Figure 4.14: EV experience across clusters 

 

Early adopters charge their EV more than the other clusters do. In particular, 21% of early 

adopters charge their EV at home at least a few times per week while this percentage drops to 16% 

for mid-adopters and 6% for late adopters. A similar trend exists for EV charging at work or 

public/private charging stations. This may indicate that early adopters have greater needs in 

terms of charging, since they use their EVs more and are concerned about their vehicle’s range. 

In addition, the majority of early adopters seem to charge their EVs at home (21%) compared to 

the other locations. This finding may imply that early adopters who mostly charge their EVs at 

home seem to have invested more in this technology by purchasing the charging equipment 

needed. Thus, the technology of ER which overcomes range anxiety would seem more attractive 

to them compared to the other clusters. The results are shown in Figures 4.15-4.17. 
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Figure 4.15: Charging frequency at home across clusters 

 

 

 

 

   Figure 4.16: Charging frequency at work across clusters 
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   Figure 4.17: Charging frequency at public/private stations across clusters 

 

When respondents were asked about their battery’s level when they leave home, the majority 

of early adopters answered that their EVs are fully charged (26%) while this respondents’ share 

drops for mid-adopters (16%) and late adopters (14%) (Figure 4.18). This may indicate that 

people who usually fully charge their EV before they leave home are more concerned about their 

vehicle’s range and thus, a technology that overcomes a barrier like that would be appealing to 

them.  

 

Figure 4.18: Battery level when they leave home across clusters 
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Level of awareness 

Results indicate that early adopters have a higher level of awareness. On average 16% of 

early adopters indicated that they are following the news about the topics related to electro-

mobility presented in the level of awareness section of the survey. The corresponding 

percentages for mid-adopters and late adopters are on average only 9% and 5% respectively. In 

addition, the cluster of early adopters has the highest average score in all the questions related to 

the level of awareness, followed by mid-adopters and lastly late adopters. The results are shown 

in Figures 4.19-4.22. 

 

Figure 4.19: Level of awareness across clusters-1 

(“Are you aware of California’s goal of getting 1.5 million zero-emissions vehicles on the states’ 

roads by 2025”?) 

 

Figure 4.20: Level of awareness across clusters-2 

(“Are you aware that California has given tax rebates to buyers of new Zero Emissions Vehicles”?) 
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Figure 4.21: Level of awareness across clusters-3 

(“Have you ever heard about on-road charging of EVs”?) 

 

 

 

Figure 4.22: Level of awareness across clusters-4 

(“Have you heard that there was a proposal to electrify a section of Interstate 710 with on-road 

charging”?) 
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The following table (Table 4.16) summarizes the main findings for early, mid- and late 

adopters. 

Table 4.16: Summary of clusters characteristics – market segmentation analysis 

Early Adopters Mid-Adopters Late Adopters 

40% are Millennials (<34 

years old) 

Most dominant age category 

is people 35-44 years old 

(20%) 

Most dominant category 

people 65 or above years old 

(24%) 

48% have annual income 

over $75,000 

Most dominant income 

category (28%) is annual 

income of $25,000-$50,000 

50% have annual income 

less than $50,000 

53% work full time (8% are 

currently unemployed)  

44% work full time (9% are 

currently unemployed) 

32% work full time (12% 

are currently unemployed) 

45% own one vehicle, 18% 

own three or more vehicles 

and 4% do not own a 

vehicle.  

39% drove more than 

15,000 miles last year  

41% own one vehicle, 20% 

own three or more vehicles 

and 11% do not own a 

vehicle.  

20% drove between 5,000-

10,000 miles last year 

43% own one vehicle, 12% 

own three or more vehicles 

and 12% do not own a 

vehicle.  

19% drove more than 

15,000 miles and 17% less 

than 5,000 miles last year 

34% use ride-hailing 

services 

17% use ride-hailing 

services 
4% use ride-hailing services 

37% have driven EVs 23% have driven EVs 14% have driven EVs 

Most dominant category is 

charging their EVs every 

day and the most usual 

charging location is at home 

Most dominant category is 

charging their EVs few 

times per week and the most 

usual location is at work 

Most dominant category is 

charging their EVs once per 

week and the most usual 

location is at home 

Higher level of awareness 

on topics related to electro-

mobility 

Average level of awareness 

on topics related to electro-

mobility 

Lower level of awareness on 

topics related to electro-

mobility 

 

  



136 

 

 

 

4.2.3.5 Cluster Solution Validation 

As a last step, a discriminant analysis was conducted to validate the results obtained from the 

CA. Through this procedure, a predictive model is built for group membership. Discriminant 

functions are generated from a sample of cases with known cluster membership and low 

correlation. The process is effective if group membership is based on values of a categorical 

variable and predictor variables are continuous following a normal distribution. An additional 

assumption of the procedure is that the smallest group should be greater in size than the number 

of predictor variables (Bian, 2012). 

This procedure is a case of reversed ANOVA, the predictors (average scores of the factors) 

are used as independent variables and the group membership is used as dependent variable. After 

ensuring that all the assumptions are met, the four components were used to classify respondents 

in relation to the three groups established in the cluster analysis. The independent variables were 

entered together for the analysis. The prior probabilities of membership in the groups formed are 

calculated for each observation, using different group sizes. 

Table 4.17 illustrates the results of the discriminant analysis. According to the table, overall 

94.2% of original grouped cases was correctly classified. In particular, the table shows the level 

of accuracy with which respondents were classified into the three groups. It can be read as 

follows: 89.2% of cluster 1 (mid-adopters), 88.1% of cluster 2 (late adopters) and 100% of 

cluster 3 (early adopters) were correctly classified. The rest 10.8% of mid-adopters was 

classified to early adopters and the remaining 11.9% of late adopters was classified to early 

adopters.  

Table 4.17 shows that the model does a satisfactory job of classifying the survey respondents 

by showing a high level of classification accuracy. Thus, the cluster analysis results can be 

claimed as credible and can confirm the existence of three well discriminative groups of 

respondents with respect toward the four factors that are strongly associated with the ER 

technology. 
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Table 4.17: Classification results 

Cluster Number of Case 

Predicted Group Membership  

Cluster 1 

(Mid-

Adopters) 

Cluster 2 

(Late 

Adopters) 

Cluster 3 

(Early 

Adopters) 

Total 

Count Cluster 1 (Mid-Adopters) 148 0 18 166 

Cluster 2 (Late Adopters) 0 126 17 143 

Cluster 3 (Early Adopters) 0 0 291 291 

% Cluster 1 (Mid-Adopters) 89.2 0 10.8 100.0 

Cluster 2 (Late Adopters) 0 88.1 11.9 100.0 

Cluster 3 (Early Adopters) 0 0 100.0 100.0 

Overall accuracy of classification 94.2% 
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5. IMPACT ON CRITERIA POLLUTANTS AND GREENHOUSE GAS 

EMISSIONS 

This chapter describes the model used to assess the impact of ERs on criteria pollutants and 

greenhouse gas (GHG) emissions as well as the data used and assumptions made for the analysis. 

The results regarding the emissions change due to the implementation of the ERs are presented, 

considering the scenarios of early (optimistic) and late (pessimistic) adoption. A sensitivity 

analysis with respect to speed is also conducted to account for the effect of different traffic 

conditions on the emissions related to ERs. 

 Model Presentation 5.1

Vehicle emissions and criteria pollutants resulted from the dynamic charging are calculated 

using California Air Resources Board’s (CARB) 2017 EMissions FACtor model (EMFAC). 

EMFAC2017 estimates tailpipe (or tank-to-wheel) emissions and supports air quality planning 

and state implementation plans. This model includes the latest emissions inventory model that 

calculates mobile emissions of motor vehicles operating on roads in California (California Air 

Resources Board [CARB], 2017b).   

This model was selected because it includes the latest and most accurate data on California’s 

car and truck fleets and travel activity, supporting air quality and state implementation plans and 

rulemaking (California Air Resources Board [CARB], 2017a). The model reflects CARB’s 

current understanding of vehicle’s way of travel and emissions production (California Air 

Resources Board [CARB], 2017b) and thus, it can be generally used to show emission changes 

over-time as well as future projections (California Air Resources Board [CARB], 2017b). This 

way CARB can assess potential control programs and proposals with the view to shielding the 

environment (California Air Resources Board [CARB], 2017b). 

The modeling is based on two main processing steps. The first step includes the 

determination of the emission factors that state the rate at which the emissions are produced and 

in the second step, estimates of vehicle activity are calculated. Then, the emissions are found 

using the following relationship: 

Emissions= emissions rates x vehicle activity data from motor vehicles                Equation 5.1 
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where emissions rates are expressed in mass of pollutant (grams) emitted per mile traveled, per 

vehicle per day or per trip made and vehicle activity data is data from all motor vehicles, from 

passenger cars to heavy duty cars operating on highways, freeways and local roads in California 

(California Air Resources Board [CARB], 2017b). A list of all the vehicle classifications that are 

available in EMFAC2017 is presented in Appendix E (Table E.1). 

The pollutants that are modeled in EMFAC are presented in Table 5.1 (California Air 

Resources Board [CARB], 2017b). The same table also presents the types of emission processes 

that are available for the analysis (California Air Resources Board [CARB], 2017b). The 

emission processes account for the daily emissions of a vehicle regardless of its condition (in-

motion or otherwise). 

Table 5.1: Primary pollutants and emissions processes in EMFAC2017 

Primary Pollutants and GHGs 

Carbon monoxide (CO) 

 

Nitrogen oxides (NOx) 

 

Hydrocarbons (HC): HC can be expressed 

as TOG (total organic gases), ROG 

(reactive organic gases), THC (total 

hydrocarbon), or CH4 (methane). According 

to the Environmental Protection Agency, 

ROG is a fraction of TOG and can represent 

Volatile Organic Compounds (VOC), 

because of their similarity 

 

Particulate matter (PM): particulate matters 

10 microns or less in diameter (PM10), and 

particulate matters 2.5 microns or less in 

diameter (PM2.5) 

 

Sulfur oxides (SOx) 

 

Fuel: fuel consumption based on the 

tailpipe emissions of CO, CO2 and THC 

using the carbon balance equation 

 

Greenhouse Gases (GHG): CO2, Nitrous 

Oxide (N2O) and Methane (CH4) 
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Table 5.1 continued 

Emissions Processes 

Running Exhaust Emissions (RUNEX): 

while the vehicle is traveling on the road 

Idle Exhaust Emissions (IDLEX): while the 

vehicle is operating but not traveling 

significance distances (e.g., during loading 

or unloading of HDVs) 

Start Exhaust Tailpipe Emissions (STREX): 

when the vehicle is starting to work 

Diurnal Evaporative HC Emissions 

(DIURN): when increased ambient 

temperatures lead to fuel evaporation due to 

the vehicle being inactive 

Resting Evaporative Losses (RESTLOSS): 

when fuel permeation occurs through 

rubber and plastic vehicle components 

while the vehicle is inactive 

Hot Soak Evaporative HC Emissions 

(HOTSOAK): when fuel heating or vapor 

losses occur after a trip is made 

Running Loss Evaporative HC Emissions 

(RUNLOSS): when hot fuel vapors are 

released from the vehicle’s fuel system 

Tire Wear Particulate Matter Emissions 

(PMTW): due to wear of tires 

Brake Wear Particulate Matter Emissions 

(PMBW): due to break usage 

 

There are different tools for different types of emissions analyses and purposes in EMFAC. 

The run modes that are offered are the following: the emissions mode (Custom or Default 

Activity) and the emissions rate mode (Project Level Analysis-PL). These modes are included in 
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the full version of the model. The web database option is also an alternative and provides the 

ability for analyses using both emission rates and emissions.  

The emissions mode of the full model version is proposed for regional analyses and is based 

on travel activity data (California Air Resources Board [CARB], 2017b). The vehicle activity 

data are either default to facilitate fuel-based inventory analyses or customized by the user in 

order to include regional travel activity data of local transportation agencies. The researcher can 

define the level of detail of the output using a variety of options, depending on his /her needs. In 

particular, the emissions mode provides the ability to conduct emissions analysis by area, 

calendar year, vehicle type, vehicle model year or aggregated, speed or aggregated, pollutant and 

process. The area types provided for selection are: Statewide, Air Basin, Air District, MPO, 

County, Sub-area and specific geographic areas. 

The default activity mode offers the capability of specifying emissions by vehicle model year 

and also for EVs. These two features are not available in the custom activity mode and constitute 

the main difference between the two run types. The custom activity mode is usually proposed 

when the goal is to estimate on-road emissions for State Implementation Plans (SIPs) (California 

Air Resources Board [CARB], 2017b). This type of modeling can also generate an output for 

natural gas heavy duty vehicles. 

The emissions rate mode (Project Level Analysis) is used for generating emission rates for a 

Project-Level assessment using specific data (California Air Resources Board [CARB, 2017b). 

This mode is more data intensive, since local meteorological and activity data are needed. 

Another major difference compared to the emissions mode is that in the emissions rate mode, the 

emission rates can be generated using the aggregate option for the vehicle technology type. 

Although in the emissions mode the analysis by speed is optional, in the project level mode 

speed bins must be selected in order to estimate the emissions rates. 

The EMFAC Web database option is an on-line platform that provides an easy way to 

conduct emissions analysis without the need for installing the full version of the model. The user 

specified conditions are the same with the aforementioned modes with the difference that the 

Web Database can provide spatially aggregate data without accepting user activity inputs during 

modeling. In addition, it currently does not include hourly emissions data or emission rates data 

by temperature and humidity.  
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In conclusion, different data types provide different levels of detail. The following table 

(Table 5.2) provides a summary of the features that are available (√) or not (X) so far in the three 

aforementioned tools (California Air Resources Board [CARB], 2017a). 

Table 5.2: Model features across EMFAC mode tools  

(California Air Resources Board [CARB], 2017a) 

Tools/Features 

Full model version 

Web Database Emission 

Mode 

Default 

Activity 

Emission 

Mode 

Custom 

Activity 

Emission 

Rate Mode 

Aggregated Area X X X √ 

Model Year √ X √ √ 

Aggregated Vehicle 

Class 
X X √ X 

Temperature/Relative 

Humidity 
Default only Default only Users specific Default only 

Hourly 

Emissions/Emission 

Rates 

√ √ √ X 

Emissions/Emission 

Rates for EVs 
√ X √ √ 

Emissions/ Emission 

Rates for Natural Gas 

Vehicles 

X √ √ X 

Emissions/Emission 

Rates for all 

pollutants 

√ √ √ 

No Total 

Hydrocarbon 

(THC), No 

Total 

Particulate 

Matter (TPM) 

Daily 

emissions/Emission 

Rates by calendar 

year or season, speed 

and process. 

√ √ √ √ 

 

EMFAC modeling uses vehicle population, in-use emissions and travel activity data to 

calculate emissions. In particular, EMFAC2017 uses vehicle fleet characteristics based on 2013-

2016 vehicle registration data from California Department of Motor Vehicles (DMV). For the 
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heavy-duty vehicle population, the most recent International Registration Plan (IRP) Data is used 

as another source. California Highway Patrol (CHP) School Bus Inspections and National 

Transit Database (NTD) data are also used to characterize school buses and urban transit buses 

respectively (California Air Resources Board [CARB], 2017b).   

Extensive emission testing (on-road and chassis dynamometer) of light duty and heavy-duty 

trucks provides the data for the necessary emission factors (California Air Resources Board 

[CARB], 2017b). More specifically for light duty vehicles (LDVs), the following data sources 

that are used for estimating the emission rates: new Federal Test Procedure (FTP) data from the 

US Environmental Protection Agency’s In-Use Vehicle Program (IUVP), data from CARB’s 

Vehicle Surveillance Program (VSP) and national fuel efficiency data on CO2 rates from the 

official US government source for fuel efficiency information (www.fueleconomy.gov) 

(California Air Resources Board [CARB], 2017c). For the emissions and speed correction factors 

related to medium heavy-duty (MHD) and heavy heavy-duty (HHD) diesel trucks, EMFAC2017 

utilizes data from a variety of sources such as: the UC Riverside testing project, CARB’s Truck 

and Bus Surveillance Program (TBSP), CARB PEMS tests, Texas A&M Transportation Institute 

(TTI) idle testing projects, Integrated Bus Information System (IBIS) of West Virginia 

University (WVU), CARB’s Transit Bus Tests of Valley Transit Agency (VTA) and bus data by 

Altoona Center.  

The model also develops vehicles’ profiles through the collection of vehicle activity 

characteristics that influence emissions production. The datasets used for the activity profiles of 

LDVs and HDVs include state Metropolitan Planning Organizations (MPOs), the Bureau of 

Automotive Repair (BAR) Smog Check Data (2001-2014), the 2010-2012 California Household 

Travel Survey and activity data from the study of the UC Riverside's College of Engineering-

Center for Environmental Research & Technology (UCR CE-CERT) (California Air Resources 

Board [CARB], 2017c). However, depending on the mode selected, localized activity profiles 

developed by transportation agencies can be used to create regional emission inventories 

(California Air Resources Board [CARB], 2017c). 

To determine the change of sales and VMT data over-time, EMFAC2017 relies on regression 

model forecasting techniques using the latest data from UCLA Anderson Forecast (UCLA), 

California Department of Finance (DOF), California Board of Equalization (BOE), California 

Energy Commission (CEC), US DOE Energy Information Administration (EIA), and US Bureau 

http://www.fueleconomy.gov/
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of Economic Analysis (BEA) (California Air Resources Board [CARB], 2017b). In particular, 

planning agencies use transportation models to estimate overall target VMT for a base year and 

predict VMT for the following years. These models are based on historical fuel sales and 

regression-based growth rates and estimate new future VMT as a function of socioeconomic 

indicators such as the gas price, the unemployment rate, disposable income, etc. 

Finally, the regulations and policies related to air quality and reduction of greenhouse gases 

(GHG) emissions are based on Phase 2 GHG standards, the Road Repair and Accountability Act 

of 2017 (Senate Bill 1) and updates on Advanced Clean Cars (ACC) regulation based on the 

2017 Midterm review (California Air Resources Board [CARB], 2017c). Emissions standards of 

these policies are used by the model to estimate the change in emission factors over time. 

For more information on the data and methods used by EMFAC2017, the interested reader 

can refer to the technical documentation of the model that includes the necessary details 

(California Air Resources Board [CARB], 2017b). 

 Data and Methods 5.2

In order to estimate the on-road emissions that would occur as a result of the implementation 

of ERs, two scenarios will be considered. These scenarios are termed “without electrification” 

for the current condition in the study area and “with electrification” for the case in which the 

technology of ERs is implemented and localized data will be used for the analysis. The horizon 

year is the period 2018-2050 due to the availability of EMFAC resources. Overall, the steps 

followed for the analysis are: corridor selection, development of assumptions, data collection, 

EMFAC model application. 

5.2.1  Corridor Selection 

The analysis was based on the I-710 corridor in LA (Port of Long Beach to Valley Blvd). I-

710 is a north-south auxiliary freeway running for 22 miles through Los Angeles within the 

Southern California Edison (SCE) territory. Since it is a freeway corridor, the average speed of 

vehicles driving on this corridor depends on the traffic conditions each time of day. On average, 

speeds can vary from 30 to 70 mph, with the majority of traffic operating at 50-70mph 

throughout the day, based on PeMs (Performance Measurement) data. Different segments of I-

210 have different number of lanes, ranging from three to six (including HOV lanes in some 



145 

 

 

 

segments) (California Department of Transportation [Caltrans], 2013). Many segments of this 

corridor operate at level of service (LOS) E or F throughout the day (California Department of 

Transportation [Caltrans], 2012; City of Los Angeles, 2012) mainly due to the high average daily 

traffic and the aging infrastructure of the corridor. A summary table showing some basic 

geometric characteristics of I-710 is presented in Appendix E (Table E.2) (California Department 

of Transportation [Caltrans], 2013).  

As a result, serious problems appear, including safety risks (e.g., damage on the freeway 

pavement), congestion and air pollution, mostly originating from diesel-fueled vehicles idling in 

rush-hour traffic congestion. Hence, the cities in the vicinity of these corridors deal with serious 

traffic issues and low air quality, putting the public health of LA residents in jeopardy. In 

response, government associations, LA residents and community groups are making efforts to 

improve air quality, mobility, congestion, safety and assess alternative, green goods movement 

technologies (LA Metro, 2018). More information on the corridor data used is presented at a 

summary data table later. Figure 5.1 shows the location of I-710 corridor. 

 

Figure 5.1: Overview of study corridor (I-710) 

(Bing Maps) 
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5.2.2 Assumptions 

The main initial assumptions made for the analysis are presented in the following table 

(Table 5.3) by subject of interest. 

Table 5.3: Assumptions for emissions modeling 

Subject Assumptions 

Corridor selected 
It was assumed that both directions of the corridor 

will be electrified. 

Type of emissions 

The ER infrastructure or vehicle manufacturing 

emissions are not included in the analysis. 

 

Since the ER technology is about dynamic charging, 

the emissions analysis focuses on the emissions while 

the vehicle is traveling on the road. Thus, the running 

exhaust emissions are explored. 

Vehicle types 

Since the choice experiment was designed only for 

light-duty vehicles (the survey respondents did not 

include medium and heavy-duty vehicle owners or 

operators), it would be more effective to focus only 

on light duty vehicles for which the adoption rates 

were found. The category of light duty vehicles 

(LDV)–non-truck in EMFAC consists of the 

following vehicle types (EMFAC2007 Categories): 

 

-Passenger cars (LDA) 

-Light- duty vehicles with GVWR<6000lbs and 

ETW<=3750 lbs (LDT1) 

-Light-duty vehicles with GVWR<6000lbs and ETW 

3751-5750lbs) (LDT2) 

Pollutants and emissions 
CO2, CO, NOx, ROG, PM2.5, PM10, N2O, CH4 and 

SOx 

Adoption rates 

The adoption rate represents those who will adopt the 

technology including both EV owners or not. It 

shows the percentage of people who will use ERs, 

meaning that the diesel/gas vehicles and the 

corresponding VMT will be reduced by this 

percentage (VMT reduction due to the eVMT and the 

VMT of individuals who would adopt the ERs). 

VMT 

VMT per capita will remain the same between the 

“without electrification” and “with electrification” 

scenarios. 

 The previous table also includes the main settings used for the EMFAC2017 Web database 

model.  



147 

 

 

 

5.2.3 Traffic Data 

In order to conduct the analysis, traffic related data on the I-710 corridor was necessary in 

order to construct the “without electrification” scenario. Average aggregate values were sought, 

since the analysis would constitute a high-level planning. The following table (Table 5.4) shows 

the data found for the conditions in I-710. 

Table 5.4: I-710 traffic data 

Type of data Use Value Source 

Average annual daily 

I-710 LDV VMT (2017-

2018) 

 

Estimation of aggregate I-

710 VMT for “without 

electrification” scenario 

for year 2018 

 

3,442,355 VMT 

(both directions) 

PeMs version 18.00 

(VMT aggregates for I-

710: 2017-2018) 

 

Processed in excel: 

non-truck average 

annual VMT per 

direction of travel 

Diesel/gas VMT per 

vehicle type in LA for 

each year 

Estimation of I-710 VMT 

for “without 

electrification” scenario 

per fuel and vehicle type 

for year 2018 

The proportion of 

diesel/gas VMT of 

I-710 is assumed to 

be the same for LA 

diesel/gas VMT 

EMFAC2017 model 

data 

I-710 Energy technical 

report, 2017 

Average speed in I-710 

Setting for the model run. 

 

Use also for sensitivity 

analysis 

65mph 

PeMs version 18.00 

(speed distribution 

across VMT in I-710) 

More than 48% VMT 

was observed in high 

speed bins (65mph) 

 

Traffic growth for VMT 

Estimation of the VMT 

change over the years for 

“without” electrification 

scenario and reduce 2018 

VMT 

The VMT growth 

in I-710 per 

vehicle/fuel type 

was assumed to be 

the same as this in 

LA per vehicle/fuel 

type 

EMFAC2017 model 

data. 
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5.2.4 Adoption Rates Data 

An important input for the emissions modeling is the market penetration rates of ERs found 

from the survey on general population. The accurate prediction of the rate of market penetration 

over the years includes great uncertainties and depends on a variety of influencing factors (i.e., 

fossil fuel price, national incentive schemes and new developments in EV technology). In this 

analysis, the rate of market penetration from 2018-2050 is estimated based on the assumption of 

a logistic S-curve. This methodology is in line with other studies, which have used S-curves to 

predict the market penetration of new technologies (Draper et al., 2008; Choi et al., 2013; Brady 

& O’Mahony 2011; Smith, 2010).  

The logistic curve is determined by specifying two points (year, adoption rate) of the curve. 

Assuming that in 2018 the adoption will be 0%, two scenarios are explored: an “optimistic” 

scenario achieving 48.5% market adoption for ERs by 2050 and a “pessimistic” scenario 

indicating 23.8% adoption by 2050. These values correspond to the percentages of early and late 

adopters of the survey, respectively. The equation of the S-curve is given by the following: 

                                                                          
 

                                                   Equation 5.2 

This equation is transformed by adding two parameters (α and T0) in order to reflect the 

growth of adoption (Branderwinder, 2008; Humphrys, 1987): 

                                                                    
 

           
                                          Equation 5.3 

 

where f(x) indicates the adoption rate value 

             t indicates the time (year) 

             α is a parameter that stretch or compress time 

            T0 is a parameter and shift the timeline of the curve 

By applying and calibrating the parameters of s curve function, the values shown in Figure 

5.2 were obtained. 
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Figure 5.2: Projected ER penetration under two scenarios: “optimistic” (48.5% by 2050) and 

“pessimistic” (23.8% by 2050) 

 

5.2.5 Methods 

Based on the aforementioned assumptions, the EMFAC2017 Web Database model was run 

for the general LA area and for speed of 65 mph generating the emissions rates regarding the 

travel activity of light duty vehicles in the area. The data for I-710 described in the previous 

section was used to obtain the current situation (VMT and emissions) in the corridor (without 

electrification scenario), since EMFAC2017 Web database does not provide the ability for a 

corridor analysis.  

The calculated emission rates and I-710 VMT are found only for the diesel and gas LDVs 

operating in the specific speed chosen (65mph). More specifically, EMFAC model generates an 

output with LA VMT for diesel and gas vehicles operating at 65mph and the proportion of diesel 

and gas VMT by vehicle type in LA is estimated for 2018. By assuming that the fuel type share 

remains constant, the I-710 VMT found from PeMs database are multiplied by each percentage 

to obtain the gas and diesel VMT by vehicle type in the corridor.  

The future VMT for the “without electrification” scenario were based on VMT growth 

models and vehicle profiles of EMFAC, as described in Section 5.1. The adoption rates were 

used to appropriately reduce the VMT in the existing situation and produce the “without 
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electrification” scenario. The emission rates of pollutants were estimated for light-duty vehicles 

and converted into emissions based on the VMT levels. The following figure (Figure 5.3) shows 

the aggregate method used to estimate the impact of ERs on emissions. 

It is important to mention that the majority of the assumptions developed (the VMT per 

capita remains the same before and after the electrification of I-710, the proportion of diesel/gas 

vehicles and traffic growth in I-710 will be the same as in the LA, the ER adoption rates 

correspond to the VMT reduction that includes both eVMT and “ER VMT”) are attributed to 

data limitations but also due to the high-level nature of the analysis. Future research can work on 

finding more detailed data on the related topics. 

 Results 5.3

Based on the VMT and adoption rate change over the years, it is expected that total emissions 

would decrease on some order of magnitude. The emissions modeling results are presented in the 

following table (Table 5.5) which contains a summary of the comparisons of VMT and 

emissions levels between “without electrification” scenario and “with electrification” scenario, 

including the two cases of adoption rates. As mentioned in Section 5.1, emissions of the criteria 

pollutants (ROG, CO, NOX, SOX, PM10, PM2.5) and GHGs (CO2, CH4, N2O) are computed. ROG 

is used to describe the VOC, since the model does not produce emissions rates for VOC.  

The emissions estimates are presented separately for light duty diesel vehicles and light-duty 

gas vehicles (Table 5.5) summed over the 32-year analysis period (2018-2050). The analysis is 

not conducted by vehicle type (LDA, LDT1, LDT2), since the results were found to be similar 

for all the three types; thus, they were analyzed together based only on the fuel type difference. 

VMT are presented in average annual daily values and emissions are provided in grams. GHG 

emissions (CH4 and N2O) are converted into CO2 equivalents so they can be compared. The 100-

year global warming potential (GWP) of CH4 compared to CO2 is 28kg of CO2 and the GWP of 

N2O is 265kg of CO2, according to the latest values from the Fifth Assessment Report (AR5) 

(Myhre et al., 2013). 
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Figure 5.3: Emissions modeling methodology using EMFAC
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Table 5.5: EMFAC results-emissions levels across scenarios (speed of 65 mph) 

Vehicle 

type 
Measure 

Without 

electrification 

level 

With electrification 

level-optimistic 

With electrification 

level-pessimistic 

L
D

V
 

(D
IE

S
E

L
) 

VMT
*
 1.04E+06 7.69E+05 9.05E+05 

ROG
**

 6.02E+03 5.15E+03 5.59E+03 

CO
**

 9.24E+04 7.41E+04 8.34E+04 

NOX
**

 2.97E+04 2.70E+04 2.83E+04 

SOX
**

 1.92E+03 1.47E+03 1.70E+03 

CO2
**

 2.03E+08 1.55E+08 1.80E+08 

CH4
**

 7.83E+06 6.69E+06 7.27E+06 

PM10
**

 3.36E+03 3.01E+03 3.19E+03 

PM2.5
**

 3.22E+03 2.88E+03 3.05E+03 

N2O
**

 8.48E+09 6.46E+09 7.49E+09 

L
D

V
 

(G
A

S
) 

VMT
*
 1.07E+08 8.17E+07 9.44E+07 

ROG
**

 6.07E+05 5.55E+05 5.81E+05 

CO
**

 4.16E+07 3.45E+07 3.81E+07 

NOX
**

 3.58E+06 3.13E+06 3.36E+06 

SOX
**

 2.51E+05 1.99E+05 2.25E+05 

CO2
**

 2.54E+10 2.01E+10 2.28E+10 

CH4
**

 4.48E+09 4.00E+09 4.24E+09 

PM10
**

 9.22E+04 7.87E+04 8.56E+04 

PM2.5
**

 8.48E+04 7.24E+04 7.87E+04 

N2O
**

 1.09E+11 8.98E+10 9.96E+10 

*VMT (Annual average daily vehicle miles traveled) 

**Pollutants in grams and GHGs (CO2, CH4, N2O) in CO2 equivalent grams 

 

The following figures (Figures 5.4-5.5) show the percent difference in emissions of the two 

scenarios of “with electrification” scenarios from the “without electrification” scenario. The 

aggregated results are presented for diesel and gas vehicles. 
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Figure 5.4: Total emissions change for diesel LDVs  

 

 

Figure 5.5: Total emissions change for gas LDVs 
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The results show that the use of ER technology will lead to significant savings with respect to 

diesel and gas fuel use and emissions, based on the two scenarios adopted. Overall, the emissions 

reduction for diesel vehicles ranges from 4.43% (pessimistic scenario) to 23.75% (optimistic 

scenario), while for gas vehicles varies from 4.21% (pessimistic scenario) to 20.68% (optimistic 

scenario), depending on the pollutant. As expected, the net emissions reduction is greater for all 

pollutants and greenhouse gases in the optimistic scenario compared to the pessimistic scenario. 

The resulted emissions reductions may overall reflect the fact that a) diesel and gas engines are 

certified to strict emissions standards since 2000 which are taken into consideration by the model 

in order to achieve future emissions reduction targets and b) the adoption of ER technology will 

lead to more changes with respect to all pollutants and gases. 

For both scenarios, the greatest difference for diesel LDVs (24% for optimistic scenario/12% 

for pessimistic scenario) appears for CO2, N2O and SOx, while the least reduction for the same 

fuel type comes from NOx (9%/4%). For gas vehicles, CO2 and SOx show the greatest reduction 

(21%/10%) followed by N2O (18%/9%) while ROG and CH4 are close to their base case levels 

(without electrification scenario).  

Turning to CO, while it is produced at a higher level by gas vehicles, diesel vehicles 

demonstrated greater reductions in both scenarios (20%/9%). In addition, gasoline engines are 

associated with a greater reduction in PM10 and PM2.5 (15%/7% for each) compared to diesel 

engines. This was expected, since gas emission is the primary source of the particular matter 

pollutant (United States Environmental Protection Agency [EPA], 2002). The same applies for 

NOx (13%/6% reduction for gas LDVs) whose levels appear higher for gas vehicles. 

While at this study SOx and PM show a decrease over time, other studies have found that the 

particular pollutants may increase with the implementation of dynamic charging (Nesbitt et al., 

1990; Limb et al., 2017). Given that diesel vehicles constitute primary contributors to SOx, this 

thesis’ finding suggests that improvements in diesel engines are expected in LA. The model may 

account for other environmental factors or mandates regarding the transition to ultra-flow diesel 

fuel, according to the California diesel fuel program (California Air Resources Board [CARB], 

2015). As a result, alternative fuel technologies (fuel cell vehicles, natural gas vehicles etc.) are 

being sought.  

Comparing the order of the reduction for each pollutant within each scenario of adoption, it 

seems that it stays constant. For example, in both adoption scenarios the greatest reduction in 
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emissions originates from SOx and CO2 for both fuel types and the lowest from NOx in diesel 

LDVs. On the other hand, the emission reduction across the two scenarios is elastic to varying 

adoption estimates, reaching a maximum of around 15% difference between the two scenarios.  

Table 5.6 below illustrates the latter findings including two columns that indicate the order of 

the reduction in each scenario for both fuel types. 

Table 5.6: Order of emissions reduction by adoption scenario (1: greatest reduction-13: 

lowest reduction) and emissions reduction from current condition across scenarios by pollutant 

Vehicle 

type 
Measure 

%Difference 

(optimistic) 
Order 

% 

Difference 

(pessimistic) 

Order 

% difference in 

emissions levels 

(optimistic-

pessimistic) 

L
D

V
 

(D
IE

S
E

L
) 

ROG -14.55% 7 -7.15% 7 8.7% 

CO -19.81% 3 -9.73% 3 12.6% 

NOX -9.02% 11 -4.43% 11 5.0% 

SOX -23.75% 1 -11.67% 1 15.8% 

CO2 -23.75% 1 -11.67% 1 15.8% 

CH4 -14.55% 7 -7.15% 7 8.7% 

PM10 -10.41% 10 -5.12% 10 5.9% 

PM2.5 -10.41% 10 -5.12% 10 5.9% 

N2O -23.75% 1 -11.67% 1 15.8% 

L
D

V
 

(G
A

S
) 

ROG -8.57% 13 -4.21% 13 4.8% 

CO -17.11% 5 -8.41% 5 10.5% 

NOX -12.75% 8 -6.26% 8 7.4% 

SOX -20.68% 2 -10.16% 2 13.3% 

CO2 -20.68% 2 -10.16% 2 13.3% 

CH4 -10.75% 9 -5.28% 9 6.1% 

PM10 -14.59% 6 -7.17% 6 8.7% 

PM2.5 -14.59% 6 -7.17% 6 8.7% 

N2O -17.65% 4 -8.67% 4 10.9% 

 

The following figures (Figure 5.6-5.9) show the total reduction in criteria pollutants (ROG, 

CO, NOx, SOx, PM2.5 and PM10) and GHGs levels (CO2, CH4, N2O) over the 32 years of analysis 
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for diesel and gas LDVs. As can be seen from the graphs, the emissions reduction is more 

distinctive across the scenarios approximately after 2030 where a 4% of adoption in optimistic 

scenario and a 2% adoption in the pessimistic scenario are achieved. This may be related to the 

fact that California has established targets for emissions reduction by 2030 and 2050 (United 

States Environmental Protection Agency, 2018), meaning that the reduction would be more 

intense between these years. The pattern of reduction with respect to pollutants is the same 

between the gas and diesel fueled vehicles, while the reduction of GHGs shows a different 

pattern for the two fuel types.  

In particular, the pollutants’ change for both fuel types show a parabolic trend ending at a 

point that stands lower compared to the beginning of analysis period. The same applies for the 

case of gas GHG emissions curves. In contrast, the GHGs curves for diesel LDVs show that the 

total GHG emissions will increase until 2023. After this year, for the “without electrification” 

scenario a slight downward trend is evident but the emissions level in 2050 is predicted to be 

higher than that in 2018. For the “with electrification” scenarios, the GHG emissions 

substantially decrease from 2023 until 2043 when the reduction rate starts to be smaller. The 

slower rate at which GHGs are reduced in all the scenarios after a certain time may be attributed 

to the fact that the reductions from existing mobile source diesel regulations may have been 

already realized until then (Lyons et al., 2005).   

In all the cases though, it seems that the implementation of ERs in I-710 will yield the 

greatest benefits in terms of emissions reduction under a 48% adoption by 2050. 
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Figure 5.6: Total emissions change from 2018-2050 for diesel LDVs (criteria pollutants) 

 

 

 

 

Figure 5.7: Total emissions change from 2018-2050 for diesel LDVs (GHGs) 
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Figure 5.8: Total emissions change from 2018-2050 for gas LDVs (criteria pollutants) 

 

 

 

 

Figure 5.9: Total emissions change from 2018-2050 for gas LDVs (GHGs) 
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Sensitivity analysis 

A sensitivity analysis was conducted in order to test the effect of speed on emissions levels or 

changes. The purpose of the specific analysis is to indirectly capture different traffic conditions 

of the corridor corresponding to more congested periods, such as during a peak period. The 

speed can be highly variable from time to time on the freeways. Based on PeMs data, speeds in I-

710 vary on average from 50-70 mph throughout the day. Thus, the minimum speed of 50mph 

was chosen to be tested. By also considering the peak time periods, the speed under very 

congested traffic conditions varies from 15mph to 25mph (PeMs data). Thus, an average speed 

of 20mph was chosen to conduct the analysis (URS Corporation, 2009) and compare the results 

with those occurring using 65mph.   

The emissions estimates for each speed are presented in the following figures (Table 5.7 and 

Tables 5.8). It is important to mention that by varying the speed, two separate runs were 

conducted for the two adoption scenarios; one at a time using the same base case of 2018. 

Figures 5.10-5.11 show the percent change in emissions across the speeds tested (65mph, 50mph, 

20mph) and are presented for gas and fuel LDVs. 

As can be seen from the results (Tables 5.7-5.8), for 50mph the emissions levels of diesel and 

gas CO and diesel CH4 increased while the emissions of all others decreased compared to these 

at 65mph. This is in line with other studies that have investigated the effect of speed on 

emissions, considering freeways (European Environment Agency, 2011; United States National 

Research Council, 1995; Newman & Kenworthy 1992). The level of emissions’ change by 

pollutant due to the ER technology is higher for both scenarios using 50 mph. Judging by the 

figures showing the emissions change due to the ER technology (Figures 5.10-5.11) at 50mph, 

the trend is similar to this in Figures 5.4 and 5.5, regarding the greatest and least emissions 

reduction compared to the base case. The findings suggest that traveling at a speed that is 30% 

lower than the average in I-710 corridor and by implementing ERs, emissions can decrease 

anywhere from around 4.3% (lowest value at pessimistic scenario) and 24.12% (highest value at 

the optimistic scenario).  
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Table 5.7: EMFAC results-emissions (speed of 50 mph) 

Vehicle 

type 
Measure 

Without 

electrification level 

With electrification 

level-optimistic 

With electrification 

level-pessimistic 

L
D

V
 

(D
IE

S
E

L
) 

ROG
**

 6.39E+03 5.28E+03 5.85E+03 

CO
**

 1.02E+05 7.92E+04 9.09E+04 

NOX
**

 2.92E+04 2.61E+04 2.77E+04 

SOX
**

 1.56E+03 1.19E+03 1.38E+03 

CO2
**

 1.65E+08 1.25E+08 1.46E+08 

CH4
**

 8.32E+06 6.87E+06 7.61E+06 

PM10
**

 3.14E+03 2.75E+03 2.95E+03 

PM2.5
**

 3.01E+03 2.63E+03 2.82E+03 

N2O
**

 6.89E+09 5.23E+09 6.07E+09 

L
D

V
 

(G
A

S
) 

ROG
**

 5.20E+05 4.74E+05 4.97E+05 

CO
**

 5.33E+07 4.37E+07 4.86E+07 

NOX
**

 3.19E+06 2.76E+06 2.98E+06 

SOX
**

 2.36E+05 1.86E+05 2.12E+05 

CO2
**

 2.39E+10 1.88E+10 2.14E+10 

CH4
**

 3.84E+09 3.41E+09 3.63E+09 

PM10
**

 7.64E+04 6.50E+04 7.08E+04 

PM2.5
**

 7.03E+04 5.98E+04 6.51E+04 

N2O
**

 9.95E+10 8.13E+10 9.06E+10 

**Pollutants in grams and GHGs (CO2, CH4, N2O) in CO2 equivalent grams 
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Table 5.8: EMFAC results-emissions (speed of 20 mph) 

Vehicle 

type 
Measure 

Without 

electrification 

level 

With electrification 

level-optimistic 

With electrification 

level-pessimistic 

L
D

V
 

(D
IE

S
E

L
) 

ROG
**

 2.57E+04 2.03E+04 2.30E+04 

CO
**

 4.52E+05 3.38E+05 3.96E+05 

NOX
**

 4.61E+04 3.82E+04 4.22E+04 

SOX
**

 2.75E+03 2.07E+03 2.41E+03 

CO2
**

 2.91E+08 2.18E+08 2.55E+08 

CH4
**

 3.35E+07 2.63E+07 3.00E+07 

PM10
**

 6.00E+03 5.21E+03 5.61E+03 

PM2.5
**

 5.74E+03 4.99E+03 5.37E+03 

N2O
**

 1.21E+10 9.10E+09 1.06E+10 

L
D

V
 

(G
A

S
) 

ROG
**

 1.40E+06 1.27E+06 1.34E+06 

CO
**

 8.73E+07 7.10E+07 7.93E+07 

NOX
**

 4.42E+06 3.78E+06 4.11E+06 

SOX
**

 3.47E+05 2.71E+05 3.10E+05 

CO2
**

 3.51E+10 2.74E+10 3.13E+10 

CH4
**

 1.05E+10 9.23E+09 9.87E+09 

PM10
**

 2.15E+05 1.81E+05 1.98E+05 

PM2.5
**

 1.97E+05 1.66E+05 1.82E+05 

N2O
**

 1.40E+11 1.13E+11 1.27E+11 

**Pollutants in grams and GHGs (CO2, CH4, N2O) in CO2 equivalent grams 
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Figure 5.10: Total emissions reduction in with electrification scenario for diesel LDVs (65mph, 50mph, 20mph) 
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Figure 5.11: Total emissions reduction in with electrification scenario for gas LDVs (65mph, 50mph, 20mph)
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For the speed of 20 mph, the results show certain differences. In particular, it is observed that all 

the emission estimates increased to a substantial degree except for diesel and gas N2O that 

decreased compared to the level found using 65mph for both scenarios (with and without 

electrification). For diesel vehicles, the greatest reduction due to the new technology is associated 

with CO, followed by SOx, CO2 and N2O. Considering that CO emitted by vehicles increases at 

lower speeds (European Environment Agency, 2011), the result that CO is greatly reduced with the 

ER technology sounds promising. The trend in gas vehicles is similar to that found for 65mph, 

meaning that SOx and CO2 are reduced the most after the implementation of the technology, 

followed by N2O and CO. The level of emissions’ change by pollutant from “with” to “without 

electrification” scenarios is higher using 20 mph. In general, the emissions reduction in this case 

varies from around 5% (lowest value at pessimistic scenario for gas vehicles) to 25% (highest value 

at optimistic scenario for diesel vehicles).  

The following figures (Figures 5.12-5.15) show the total change of criteria pollutants and GHGs 

from 2018 to 2050 for all scenarios, speeds and fuel types. 

 

 

Figure 5.12: Total emissions change from 2018-2050 for diesel LDVs (criteria pollutants) 

(65mph, 50mph, 20mph) 
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Figure 5.13: Total emissions change from 2018-2050 for diesel LDVs (GHGs)  

(65mph, 50mph, 20mph) 

 

 

 

Figure 5.14: Total emissions change from 2018-2050 for gas LDVs (criteria pollutants) (65mph, 

50mph, 20mph) 
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Figure 5.15: Total emissions change from 2018-2050 for gas LDVs (GHGs)  

(65mph, 50mph, 20mph) 

 

These results may illustrate some ideas concerning the relationship of speed and emissions. In 

particular, for moderate speeds (40-60mph), emissions are expected to be lower compared to 

higher speeds (above 60mph). As found in literature, this is because vehicles traveling at higher 

speeds require higher engine loads and fuel and thus, produce more emissions (Barth & 

Boriboonsomsin, 2009). In addition, for speeds under congestion, the emissions levels increase 

dramatically. This may be because high peak speeds generally represent stop-and-go traffic 

conditions and therefore, the emission rates per mile are quite higher (Barth & Boriboonsomsin, 

2009).  

From the emissions reduction due to the ER technology at 20mph which represents traveling at 

congested periods, the results may indicate that regardless of the fuel type (gas or diesel in this 

analysis), the ER technology would significantly contribute to reducing the traffic emissions even 

during high peak periods. It is important to mention, though, that all the aforementioned 

conclusions can depend on different factors, both technological and non-technological (such as 

fleet mix, congestion, driving patterns, acceleration/deceleration frequency etc.) (European 

Environment Agency, 2011). 
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6. CONCLUSIONS 

This thesis stemmed from the need for research on alternative fuel technologies and in particular, 

on technologies that address most of the limitations associated with electric vehicles (EVs). Electric 

roadways (ERs) are among these technologies that can offer a wide range of benefits in the field of 

electrification of transport. This thesis focuses on the wireless dynamic charging system associated 

with ERs. Since data on the market acceptance and the environmental implications of this 

technology are limited to non-existent, this thesis aimed to establish a general framework, provide 

initial insights toward understanding the market acceptance and impact of ERs on air pollution. In 

particular, the following questions are addressed: 

1. What are the factors that affect the short- and long-term intention to use ERs and 

purchase an EV, knowing about the availability of ERs? 

2. What is the level of adoption of the ER technology and what are the characteristics of 

the market segments? 

3. What is the potential impact of ERs on criteria pollutants and greenhouse gas (GHGs) 

emissions? 

To address these questions, a survey on the general population in Los Angeles, California was 

designed and used as the main data source, since this city is considered proactive in terms of 

electro-mobility. The survey data was analyzed through appropriate methods in order to answer the 

first two research questions. The market penetration of ERs found was used as an input in the 

analysis of emissions that followed to address the third research question.  

The following sections present some of the main key findings, practical implications, potential 

limitations of this thesis and recommendations for future research. 

 Key Findings  6.1

6.1.1  Market Adoption 

The short- or long-term intention to drive on ERs and the short- or long-term intention to 

purchase an EV knowing that ERs are or will be available are correlated, since the potential of 

using the ERs requires the purchase of an EV to use the system. Thus, the ER usage and EV 

purchase intentions were modeled simultaneously using econometric models, as a function of travel 
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patterns, EV characteristics, respondents’ preferences and opinions on ERs and socioeconomic 

characteristics.  

Comparing the two models, it was observed that the variable of innovativeness and social and 

family influence had a stronger association with the long-term intention to drive on ERs or purchase 

an EV than with the short-term intention. The degree to which the ER technology is in line with 

respondents’ lifestyle, needs, personal values or attitudes (compatibility) and respondents’ tendency 

towards using sustainable forms of transportation were found to be important factors that positively 

affect the short-term intention to travel on ERs or purchase an EV. Respondents’ innovativeness 

and the perceived environmental benefits of the ER technology were highly significant 

determinants of the long-term intention to travel on ERs or purchase an EV, knowing that ERs will 

be available in the foreseeable future. Among the individuals’ socioeconomic characteristics, being 

young or having a higher educational level was associated with a higher long-term intention while a 

higher income level was associated with a higher short-term intention. Purchasing an EV may 

generally constitute the first step to become familiar with the new concept in the short run, as 

demonstrated in the model. 

The level of adoption of the ER technology was estimated and the characteristics of the market 

segments of ERs were identified. A Principal Component Analysis (PCA) was conducted in order 

to identify which variables are the most salient and capture important information. The principal 

components found were related to: opinions on ERs, environmental consciousness, safety concerns 

and habits towards driving a car. Based on the aforementioned variables, a Cluster Analysis was 

performed by applying the k-means method. Three distinct market segments were identified: the 

early adopters, mid-adopters and late adopters based on the mean scores of each cluster across the 

four principal components. These scores were expressed in a 5-point Likert-type scale. Early 

adopters constitute 48.5% while mid- and late adopters represent 27.67% and 23.83% of the 600 

total responses, respectively. The basic characteristics of each cluster were analytically presented in 

Section 4.2.3.4. Note that since this is the first study on ER market segments, the characteristics of 

these segments cannot be corroborated with findings of previous studies. 

Early adopters have the fewest safety concerns about ERs, the most positive opinions towards 

ERs and the highest score in terms of the habits towards using a car. Early adopters are young (less 

than 34 years old) and of a higher income. Around half of them work full time and the majority 

consists of drivers traveling more than 15,000 miles per year and own or have used an EV. Early 
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adopters charge their EVs usually at home and at a more frequent level than the other clusters. 

Ride-hailing services are popular among them. Late adopters seem to be the most suspicious about 

the ER technology, showing the lowest average values in opinions on ERs, habits towards driving a 

car and safety concerns. This category consists mainly of people aged 65 or above and of lower 

income. These respondents are unemployed or do not own a car by a higher percentage compared to 

other clusters. Only a small percentage has an experience with an EV or ride-hailing services before 

and individuals of this cluster show the lowest level of awareness with respect to electro-mobility. 

Mid-adopters appeared to have less optimistic responses on the four components compared to early 

adopters and less pessimistic responses than late adopters. With average scores close to 3 (on a 

scale from 1 to 5), respondents of this cluster seem more indecisive than early adopters. In general, 

this cluster consists of respondents that stand in between the other two clusters in terms of the 

percentage of individuals that exhibit the previously described characteristics or behaviors. 

6.1.2  Impact on Criteria Pollutants and Greenhouse Gas Emissions 

The potential impact of ERs on traffic emissions was analyzed using California Air Resources 

Board’s (CARB) 2017 EMissions FACtor model (EMFAC). This analysis included only the 

tailpipe emissions of criteria pollutants and greenhouse gases (GHGs) while the vehicle is traveling 

and not the ER infrastructure or vehicle manufacturing emissions. The results from the emissions 

analysis assessment suggested that the ER technology has the potential to provide emissions 

savings for the period of 2018-2050, considering LDVs. Given a speed of 65mph, the analysis 

illustrated that the adoption of ERs can significantly decrease the emissions levels of GHGs (CO2, 

N2O and CH4) and pollutants such as SOx. The pollutants that contribute to the ozone, meaning 

NOx, ROG and PM are also reduced with the implementation of the technology (over 5% reduction) 

but at a lower level. It has been demonstrated that variations in the level of adoption can 

significantly change the emissions levels and savings by fuel type and pollutant. Hence, if diesel 

and gas vehicles are reduced and vehicles equipped with ER technology are used instead, the 

emissions reductions would range from 4% for the pessimistic scenario (23.8% adoption) to 24% 

for the optimistic scenario (48.5% adoption), depending on the pollutant.  

 The sensitivity analysis showed that speed can cause variations in the emissions levels of 

pollutants and GHGs. The findings suggest that the general trend in emissions change before and 

after electrification at 50mph is similar to this at 65 mph. For the speed of 20 mph, the greatest 
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reduction due to the new technology is associated with CO in diesel vehicles, while SOx and CO2 

showed the greatest reduction for gas vehicles. In general, for higher or very low speeds, the 

emissions levels of the majority of the pollutants increase, while for moderate speeds such as 

50mph, emissions levels appeared to decrease. Regardless of the fuel type (gas or diesel), the ER 

technology would significantly contribute in reducing traffic emissions either during peak periods 

or normal traffic conditions. 

 Practical Implications  6.2

This thesis provides a foundational framework on the upcoming technology of ERs in terms of 

market adoption and emissions reduction. By examining the market adoption of ERs, it was 

concluded that familiarity with the new technology is the key factor for achieving public acceptance. 

The probability of using the new technology or purchasing an EV, being aware of ERs, depends on 

the implementation time of this technology. At the earliest stages of the technology, people tend to 

be more skeptical while people are becoming more familiar and recognize its benefits, as the 

maturity of the technology grows. This indicates that increasing awareness related to electro-

mobility may be a significant strategy for achieving a higher intention to drive on ERs or purchase 

an EV.  

Although one could claim that the technology needs to be there to drive the adoption, the factors 

found to affect the adoption in this analysis can be used as a draft guide by state and local 

transportation agencies, transit operators and regulatory bodies-e.g., Los Angeles County 

Metropolitan Transportation Authority (LA Metro), California Department of Transportation 

(Caltrans), Southern California Association of Governments (SCAG)-and inform their strategic 

short- or long- range plans for mobility. For instance, the analysis showed that respondents who 

travel medium distances (10-50 miles) are more likely to adopt the technology in the short-run. 

Thus, if the technology were to be implemented soon, doing so on corridors that serve medium 

distance trips (10-50 miles) could make more sense. This may be because in shorter trips (up to 10 

miles), drivers may not generally be really concerned about their driving range, while in longer trips 

(more than 50 miles) the technology may lose its competitiveness in terms of the cost of 

implementation and power requirements at least at its first stages of implementation. The 

electrification coverage of the road would also play an important role at this case in driving 

adoption. Similarly, the vehicle purchase cost and operational cost (cost to charge an EV) were 
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found to be important factors in the long-term intention model; hence, by ensuring that the cost of 

the vehicle with WPT technology would be affordable in the future compared to a conventional EV 

would make the transition to the technology easier.  

Furthermore, these factors can help improve the understanding of the roles of the various 

stakeholders involved. For instance, safety concerns in the short-term intention model, such as the 

possible user or animal physical contact with the charging zone, may yield that it is extremely 

important that certain stakeholders work to ensure that any concern will be addressed by the time of 

ERs implementation. Among these stakeholders may be construction companies or original 

equipment manufacturers (OEMs), utilities or in general policy makers that will establish safety 

policies concerning the innocuous use of the system. Likewise, charging time as a factor of the 

short-term intention model may also emphasize the importance of the role of utilities. The 

operational cost (cost per mile) and financial incentives were also significant factors in the short-

term intention model, indicating the involvement of utilities, transportation operators, policy 

makers or regulatory agencies (e.g., California Air Resources Board [CARB]). It can be inferred 

that the implementation of such a system will be complex in terms of the adopted business model 

but will be mainly based on a joint partnership/collaboration of different organizations: OEMs, 

technology providers and public agencies (such as LA Metro, City of LA). 

In addition, this analysis can provide policy makers and transport operators with a realistic 

description of the main challenges regarding the promotion of the ER technology to the users and 

with ideas for customizing the supply to meet demand expectations. Since information about the 

target demand is learned through the specific market segmentation analysis, the way that policies of 

accelerating adoption will be designed and implemented can become more effective.  

The information obtained from the emissions analysis showed how the ER technology could 

reduce the on-road emissions by considering different levels of adoption and speeds. Thus, the 

results can stimulate state and local agencies to further investigate the technology with the view to 

implementing it. The findings from the analysis of the impact of ERs on criteria and GHG 

emissions can also inform the long range plans or existing regulations and policies and set new 

standards for certain emissions, based on the projection of ER adoption. In addition, the results may 

indicate that regardless of the fuel type (gas/diesel), the ER technology would significantly 

contribute to reducing the traffic emissions in congested periods or under higher speeds, depending 

on the pollutant. This can have implications for transportation decision making and specifically, 
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regarding the set speed limit of a potential exclusive lane on I-710 with EVs equipped with wireless 

power transfer (WPT) technology. 

 Limitations and Recommendations 6.3

This thesis entails certain limitations due to its nature as well as to a number of assumptions and 

simplifications made in the process of developing the results. The following represent the main 

limitations of this thesis along with some recommendations which may help better elucidate the full 

scope of the study and guide future research in this area. 

6.3.1 Survey Design and Sample 

A stated preference survey was designed for the purposes of this thesis and thus, it is 

acknowledged that the corresponding inferences are subject to the limitations of stated preference 

surveys, such as their hypothetical nature. These limitations attempted to be addressed through 

appropriate data preparation and analysis such as removal of incomplete responses, cases of over-

coverage, passive responses, inclusion of “cheap talks” to address hypothetical bias, etc. (Section 

3.5) or proper modeling. A revealed preference survey could overcome the issue of hypothetical 

responses, since it is based on observations of actual choices. However, this type of survey is not 

suitable for concepts that are not currently implemented (such as ERs) and individuals are not 

familiar with. In addition, the survey conducted in this thesis is a cross-sectional study and not a 

longitudinal study, implying that the results will reflect only the current situation and public’s 

perception and cannot assess changes in opinions and level of adoption over time. This would 

require several observations of the same objects over a period of time in order to detect for 

developments and changes in the characteristics of the target population. 

The survey respondents constitute the general population and do not include medium and 

heavy-duty vehicle owners or operators or buses. Thus, the results of adoption rates refer only to 

this group of people. Future research can examine the perception of truckers, shippers, carriers, 

transit operators and other towards this technology and estimate market adoption for medium/heavy 

duty vehicles or buses in the study area. Likewise, the emissions analysis only considered LDVs. 

Further research could focus on assessing the environmental impact of the technology for all types 

of vehicles and fuels. 



173 

 

  

 

6.3.2 Research Methodology and Assumptions 

The adoption curves used in the analysis assumed that there are two adoption scenarios: the 

optimistic (early adopters share in 2050) and the pessimistic (late adopters share in 2050). However, 

it is acknowledged that this does not exactly consider the time dimension of adoption. For example, 

the pessimistic scenario could include only early adopters by 2050, while the optimistic scenario 

could include all the adopters. Nevertheless, in this analysis it was assumed that the adoption of the 

technology cannot reach 100% by 2050, since it is still in its infancy.  

Furthermore, the cluster solution indicated that the majority of late adopters is above 65 years 

old. It is believed though that the cluster results can be representative among the different age 

groups over the years. In other words, a potential respondent that is above 65 years old in any time 

would have similar behavior with a 65-year-old respondent in the sample. 

The adoption rates found were not examined in terms of their sensitivity to factors such as 

energy prices, actual reduction of battery cost, etc. A Monte Carlo simulation could be used to show 

the distribution of demand and analyze the uncertainty of ER adoption. This way, the feasibility or 

viability of the ER technology could be explored in terms of its penetration rate. 

The emissions analysis was conducted using a macro level model calibrated for Los Angeles, 

California, the EMFAC model. As such, aggregate values of speed and traffic volumes were used to 

estimate current and future traffic conditions and obtain the emissions estimates. Future research 

can consider integrating a traffic simulation model with an emissions model and use driving cycle 

data, hourly or peak hour corridor volumes and VMT for emissions modeling. Examples of such 

models include models that need traffic situations to find emissions (e.g., HBEFA) or models which 

include second-by-second engine or vehicle state data (e.g., PHEM, MOVES) for the complete 

driving profile (Smit et al., 2010). A further consideration for the simulation model could also be 

the respondent’s preference for the lane configuration of this technology and the corresponding 

impacts on speed and thus, emissions. To illustrate this, if a dedicated lane is considered for ERs, 

the speed of the vehicles on the other lanes may become slower and emissions can potentially 

increase. 

Furthermore, a number of assumptions were made for the emissions modeling. EMFAC2017 

estimates tailpipe (tank-to-wheel) emissions and not well-to-tank emissions. Thus, one of the 

assumptions made is that infrastructure or vehicle manufacturing emissions are not included in the 

analysis. Future research can focus on conducting a life cycle assessment including all emissions 
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related to fuel and vehicle production, processing, distribution, use, and recycling/disposal. This 

way, more concrete and complete conclusions could be made. Additional models could be used in 

that direction. An example of these models is the CARB’s Vision model that also considers fuel 

blends and power mix information for well-to-tank emissions estimation. A life cycle assessment 

like this could show the difference in emissions between a traditional EV and an EV equipped with 

WPT capability, considering that the latter has a reduced battery size. 

Another limitation or suggestion for this analysis is the fact that the emissions reduction did not 

account for the amount of energy that is used for the in-motion charging of the vehicle and can 

impact the results. Future research could investigate the relationship between the charging 

efficiency the technology supports and the energy consumption while driving. This could also have 

implications to the speed and the amount of power transferred while driving. 

In conclusion, this thesis constitutes a preliminary study; it can be used to generate further 

discussion on the matter of dynamic charging, which can potentially be widely implemented to 

improve the efficiency and mitigate the adverse impact of transportation operations on the 

environment. The results of the thesis can be extended and used to show the broader impact on 

other regions across the US in major cities and along interstate highways. Lastly, there could be 

multiple future research directions based on this thesis that may include: investigating the load 

impact to the grid, estimating the optimal time for the ER technology implementation or the 

minimum level of adoption to compensate for the ER deployment, and exploring the synergies 

between the wireless power capability and autonomy of vehicles for greater charging efficiency, 

among others.  
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APPENDIX A. STREET GRID OF STUDY AREA 

The following table summarizes important freeway routes, arterial streets, avenues, bus lines and metro rail lines that constitute the 

main street grid of the city (Los Angeles County GIS Data Portal, 2010). 

 Table A.1: Los Angeles major roads 

 

Freeways 

 

 

Arterial streets 

 

 
 

Bus lines 

 

 

Metro Rail 

 Major east–west 

routes 

(boulevards) 

Major north–south 

routes (boulevards) 
Major Avenues 

Glendale Freeway (SR-2) Victory Topanga Canyon Broadway Metro Local Light Rail: 

Santa Ana Freeway (I-5/US-

101) 
Ventura Crenshaw  Bundy Drive   Gold Line 

Golden State Freeway (I-5) Hollywood Reseda Barrington Avenue  Metro Rapid: Expo Line  

Santa Monica Freeway/San 

Bernardino Freeway (I-10) 
Sunset Lincoln Centinela Avenue  Orange Line Blue Line 

Antelope Valley Freeway (SR-

14) 
Santa Monica Sepulveda  Fountain Avenue  Silver Line Green Line 

Seaside Freeway (I-710/SR-47) Beverly 
Van Nuys Westwood 

Beverly Glen 
Mulholland Drive  Metro Express 
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Table A1 continued 

Pomona Freeway (SR-60) Wilshire 
San Vicente 

Robertson  
Slauson Avenue 

 
Underground: 

Marina Freeway (SR-90) Olympic 
La Cienega Laurel 

Canyon Glendale 
Pacific Coast Highway 

 

Red Line  

Gardena Freeway (SR-91) Pico 
Avalon 

Century Park  

 

Purple Line 

Hollywood Freeway (US-

101/SR-170) 
Venice 

 

East Avenue of the 

Stars  

  Ventura Freeway (US-

101/SR-134) 
Washington 

 

Normandie Avenue  

  Terminal Island Freeway 

(SR-103) 
Adams 

 

Highland Avenue 

  Glenn M. Anderson 

Freeway/Century Freeway (I-

105) 

Jefferson 

 

Melrose Avenue  

  Harbor Freeway (I-110/SR-

110) 
Exposition  

 

Florence Avenue  

  Arroyo Seco Parkway (SR-

110) 

Martin Luther 

King Jr.  
 Vermont Avenue 

  Ronald Reagan Freeway 

(SR118) 

  

La Brea Avenue  

  
Foothill Freeway (I-210) 

  

Fairfax Avenue  

  
San Diego Freeway (I-405) 

  

Western Avenue  

  
Long Beach Freeway (I-710) 

  

Figueroa Street  

  Pacific Coast 

Highway/Lincoln Boulevard 

(SR-1)  

  

Grand Avenue  

  Santa Monica Boulevard 

(SR-2)  

  

Huntington Drive 

  Decker Canyon Road (SR-

23) 

  

Central Avenue   

   

https://en.wikipedia.org/wiki/California_State_Route_1
https://en.wikipedia.org/wiki/California_State_Route_1
https://en.wikipedia.org/wiki/California_State_Route_1
https://en.wikipedia.org/wiki/California_State_Route_2
https://en.wikipedia.org/wiki/California_State_Route_2
https://en.wikipedia.org/wiki/California_State_Route_23
https://en.wikipedia.org/wiki/California_State_Route_23
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Table A1 continued 

Topanga Canyon Boulevard 

(SR-27)  

  

Alameda Street 

  
Alameda Street (SR-47)  

     
Slauson Avenue (SR-90)  

     
Highland Avenue (SR-170) 

     
Venice Boulevard (SR-187)  

      

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/California_State_Route_27
https://en.wikipedia.org/wiki/California_State_Route_27
https://en.wikipedia.org/wiki/California_State_Route_47
https://en.wikipedia.org/wiki/California_State_Route_90
https://en.wikipedia.org/wiki/California_State_Route_170
https://en.wikipedia.org/wiki/California_State_Route_187
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APPENDIX B. SURVEY MATERIAL 

B1. SURVEY 
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SECTION 1 

1. Level of awareness 

1. Are you aware of California’s goal of getting 1.5 million zero-emissions vehicles on the state’s roads by 

2025? 

□  I have never heard of it 

□ I think that I have heard of it 

□ I have heard of it but don’t know much beyond the description provided  

□ I am following the news about it on a regular basis 

 

2. Are you aware that California has given tax rebates to buyers of new Zero Emissions Vehicles? (A zero-

emissions vehicle, or ZEV, is a vehicle that emits no exhaust gas from the onboard source of power) 

□ I have never heard of it 

□ I think that I have heard of it 

□ I have heard of it but don’t know much beyond the description provided 

□ I am following the news about it on a regular basis 

 

3. Have you ever heard about on-road charging of electric vehicles? (On-road charging refers to a technology 

that enables electric vehicles to charge from the road while in motion without user input or needing to plug 

into a socket. This can be achieved while moving or during short stops). 

□ I have never heard of it 

□ I think that I have heard of it 

□ I have heard of it but don’t know much beyond the description provided 

□ I am following the news about it on a regular basis 
 

4. Have you heard that there was a proposal to electrify a section of Interstate 710 with on-road charging? 

□ I have never heard of it 

□ I think that I have heard of it 

□ I have heard of it but don’t know much beyond the description provided 

I am following the news about it on a regular basis 

□ I am following the news about it on a regular basis 
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SECTION 2  

2.1 Travel characteristics 
 

 

1. How many personal vehicles does your household own?  

0_____            1_____            2_____            3_____            > 4 ______ 

 

2a. How many of the personal vehicles that your household owns belong to the following fuel categories: 

Fuel type/number 
of vehicles 

0 1 2 3 >4 

Diesel      

Gasoline       

Natural gas      

Biofuel      

Hydrogen      

Hybrid Electric      

Plug-in Hybrid      

Battery Electric      

 

2b. If you own an electric vehicle (EV), what is the vehicle’s electric mode driving range? 

□ I do not own an EV 

□ 0-50 miles 

□ 51-100 miles 

□ 101-150 miles 

□ 151-200 miles 

□ 201-250 miles 

□ 251-300 miles 

□ > 300 miles 

 

3. How many miles approximately did you drive your personal vehicle last year?  

I do not own a personal vehicle_____   <5,000 miles_____  5,000-9,999 miles_____  10,000-14,999 miles_____            

15,000-19,999 miles______  20,000-24,999 miles_____   >25,000 miles ______ 

I do not know______ 

 

4a. Are you a member of a car-sharing service (e.g. ZipCar, Turo, etc.) or do you have a ride-hailing service 

account (e.g. Uber, Lyft, etc.)? 

□ Yes 

□ No 

 

4b. If you are a member of a car-sharing service or have a ride-hailing service account, how many times did you 

use it in the last month?   _______ 

 

5. Which of the following is your primary mode of travel for each trip purpose? (Please, select only one mode for 

each trip purpose).  
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Trip Purpose Walk 
Bike 

(conventional) 

Bike 

(electric) 

Car 

(conventional 
vehicle) 

Car 

(electric 
vehicle) 

Public 

transportation 

Ride 

hailing 

service 

(e.g. taxis, 

Uber, 

Lyft, 

carpool, 

etc.) 

Car- 

sharing 

services (e.g. 

ZipCar, etc.) 

Trips for 

work/school 
  

 
 

 
  

 

Trips for 

grocery and 

shopping 

  

 

 

 

  

 

Trips for 

personal 

business 

(e.g. errands, 

banks, 

medical/dent
al etc.) 

  

 

 

 

  

 

Trips for 

social/recrea

tional 

activities 

(e.g. trips to 

gym, church, 

parks, 

theaters, 
etc.) 

  

 

 

 

  

 

Other types 
of trips  

  
 

 
 

  
 

 

 

6. How many single trips did you make for the following trip purposes during the last seven days? Please consider 

the primary mode you indicated for each trip purpose in the previous question (question 5). (A single trip is 

defined as a single journey made by an individual between two points using a specific mode of travel and a defined 

trip purpose). 

Trip Purpose 0 1 2-3 4-5 6-7 >8 

Trips for work/school       

Trips for grocery and 

shopping 
      

Trips for personal 

business (e.g. errands, 

banks, medical/dental 

etc.) 

      

Trips for 

social/recreational 

activities (e.g. trips to 

gym, church, parks, 

theaters, etc.) 

      

Other types of trips       
 



182 

 

182 

 

 

7a. How often on average do you travel on the following freeways and arterial streets? 

 

7b. How often on average do you travel on the following transit corridors? 

 

 

 

 

 

 

  

Never 

Less 

often 

than 

every 6 

months 

Every 6 

months 

Every 3 

months 

Once a 

month 

Once a 

fortnight 

Once a 

week 

A few 

times a 

week 

Almost 

every 

day 

Do not 

know 

I-5                    

I-105                    

I-110           

I-210           

I-405           

I-605           

I-710           

  

Never 

Less 

often 

than 

every 6 

months 

Every 6 

months 

Every 3 

months 

Once a 

month 

Once a 

fortnight 

Once 

a 

week 

A few 

times a 

week 

Almost 

every 

day 

Do 

not 

know 

Metro 

Orange 

Line 

          

Metro 

Silver 

Line 

          

Metro 

Line 

720 

          

Metro 

Line 

754 
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7c. Thinking about how far you typically drive, how often on average do you travel to:  

 

Never 

Less 

often 

than 

every 6 

months 

Every 6 

months 

Every 3 

months 

Once a 

month 

Once a 

fortnig

ht 

Once a 

week 

A few 

times a 

week 

Almost 

every 

day 

Distances 

near to 

where I live 

(up to 10 

miles) 

        

 

Medium 

distances 

(10-50 miles 

        

 

Longer 

distances (up 

to 50 miles) 

        

 

 

 

 

8. Please indicate the level of importance of each factor below when planning your commute route?  

Factor 
Not at all 

Important 

Slightly 

Important 
Important 

Fairly 

Important 

Very 

Important 

Do not know 

Cost (cost per 

mile, tolls etc.) 
     

 

Travel time       

Convenience 

and comfort 

(number of 

traffic signals 

in the route, 

type of route 

preferred etc.) 

     

 

Ambience 

(beauty of 

route, scenery) 

     

 

Safety       

Reliability of 

travel 
     

 

Familiarity 

with the route  
     

 

 



184 

 

184 

 

 

2.2   Electric Vehicles 

9a. Have you ever driven an electric vehicle? 

□ Yes 

□ No 

 

9b. If you own an electric vehicle, where and how often do you charge your vehicle on average on a weekly basis? 

 

Never 
Once per 

week 

2-3 times 

per week 
Every day 

More than 

one time 

per day 

N/A 

At home 

     

 

At work 

     

 

At public/private stations  

     

 

 

9c. If you own an electric vehicle, what type of charger do you typically use to charge your vehicle? 

 

Level 1 AC Level 2 AC 
DC Fast 

Charge 
N/A Don’t know 

At home 

    

 

At work 

    

 

At public/private stations  

    

 

 

10. If you own an electric vehicle, what is your level of your battery when you leave your home on a typical day? 

□ Less than 50% 

□ 50% 

□ 50-90% 

□ Fully charged 

□ I do not pay attention on the level of my battery of my electric vehicle 
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11. Please, indicate how important each of the following factors would be to you when you think of electric 

vehicles. 

Factors: 
Not at all 

Important 

Slightly 

Important 
Important Fairly 

Important 

Very 

Important 
Do not 

know 

How far you could 

travel before it needs 

recharging (driving 

range) 
          

 

Charging time 

          

 

Availability of charging 

stations 
          

 

Battery warranty and 

lifetime 
     

 

Initial purchase cost  

          

 

Maintenance costs 

(such as servicing) 
     

 

Operational cost (cost 

to charge it/cost per 

mile)           

 

Financial incentives 

/rebates provided (such 

us subsidies)           

 

Social/Family Influence 

          

 

Environmental benefits 
          

 

Vehicle performance 

          

 

Safety performance 

     

 

How good the car looks 
     

 

Ability to buy one 

second-hand      

 

Maturity of vehicle's 

technology 
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2.3  Electric Roadways 

 

On electric roadways, electric vehicles can be charged from the road while in motion without user input or needing 

to plug into a socket. This can be achieved while moving or during short stops. 

 

12. If a charging lane is deployed in an urban area, should access to it be: 

 Yes No Do not know 

Open for all vehicles (the charging is only 

activated when a registered electric vehicle is 

using it) 

 

   

Restricted to electric vehicles only, with traffic 

lights and camera enforcement 

 

   

Restricted to electric vehicles only, with 

physical barriers or bollards to control access 

 

   

Restricted to electric buses only, with traffic 

lights and camera enforcement 

 

   

Restricted to electric buses only, with physical 

barriers or bollards to control access 

 

   

Restricted to electric trucks only, with traffic 

lights and camera enforcement 

 

   

Restricted to electric trucks only, with physical 

barriers or bollards to control access 

 

   

 

 

13a. How likely do you think your commute trip will include an electric roadway in the next____ 

 Very 

unlikely 
Quite unlikely Neutral 

Quite 

likely 

Very 

likely 
Do not know 

5 years       

10 years       

15 years       

20 years       

25 years       

30 years       

35 years       
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13b. How likely do you think your trips for grocery, shopping, personal business, social/recreational reasons etc.  

will include an electric roadway in the next ________ 

 
Very unlikely Quite unlikely Neutral Quite likely Very likely 

Do not 

know 

5 years       

10 years       

15 years       

20 years       

25 years       

30 years       

35 years       

 

13c. How likely do you think your intercity trip (e.g. trip to San Diego, Las Vegas etc.) will include an electric 

roadway in the next ________ 

 
Very unlikely Quite unlikely Neutral Quite likely Very likely 

Do not 

know 

5 years       

10 years       

15 years       

20 years       

25 years       

30 years       

35 years       

 

 

14a. Assuming that a percentage of your commute trip includes an electric roadway, how likely are you to purchase an EV and drive 

on this road to charge your vehicle? (For example, if your trip is 10 miles, 10% represents 1 mile of electrified road). 

 

  

Percentage of 

electrification 

per mile of the 

route 

Very 

unlikely 
Quite unlikely Neutral Quite likely Very likely 

Do not 

know 

1%-5%       

5%-10%       
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10%-25%       

25%-50%       

50%-75%       

75%-100%       
 

 

14b. Assuming that a percentage of your trip for grocery and shopping, personal business trips, social/recreational 

trips includes an electric roadway, how likely are you to purchase an EV and drive on this road to charge your 

vehicle? (For example, if your trip is 10 miles, 10% represents 1 mile of electrified road). 

 

Percentage of 

electrification 

per mile of the 

route 

Very 

unlikely 
Quite unlikely Neutral Quite likely 

Very 

likely 

Do not 

know 

1%-5%       

5%-10%       

10%-25%       

25%-50%       

50%-75%       

75%-100%       

 

14c. Assuming that a percentage of your intercity trip (e.g. trip to San Diego, Las Vegas etc.) includes an electric 

roadway, how likely are you to purchase an EV and drive on this road to charge your vehicle? (For example, if your 

trip is 10 miles, 10% represents 1 mile of electrified road). 

 

Percentage of 

electrification 

per mile of the 

route 

Very 

unlikely 
Quite unlikely Neutral Quite likely 

Very 

likely 

Do not 

know 

1%-5%       

5%-10%       

10%-25%       

25%-50%       

50%-75%       

75%-100%       
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15. If electric roadways become available, how much more are you willing to pay for on-road charging compared to 

what you pay for charging your EV at _____? 

 Home  

(15 cents/kWh) 

Public charging stations  

(60 cents/kWh) 

I am not willing to pay more   

Less than 5%    

5%-10%    

10%-15%    

20%-25%    

25%-30%    

30%-35%    

35%-40%    

40%-45%    

45%-50%    

More than 50%    

Less than 5%    

 

16. If there were dedicated lanes with on-road charging for electric buses, how likely are you to take public transit to 

your destination (assuming it is well served by the bus route)? 

Very likely __          Quite likely__          Neutral __          Quite unlikely__          Very unlikely__   Do not know__ 
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SECTION 3 

3.1 General Thoughts and Behaviors 

1.1. I am adventurous and eager to be the first to test new innovations. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

1.2. I am willing to be an early adopter of new technologies, but prefer to follow the lead of others and to 

ensure there is a clear benefit to me before doing so. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

1.3. I tend to be suspicious of new technologies and innovation. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

1.4. I am always looking for innovations. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

1.5. I tend to adopt new technologies only after they are tested, proven and heavily adopted by others. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

1.6. I am resistant to changes. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

2.1. I think individuals have responsibility to protect the environment. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

2.2. I think we are not doing enough to save scarce natural resources from being used up. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

2.3. I think air pollution is becoming more and more serious in recent years. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

2.4. I think that cars are negatively impacting air quality. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

2.5. I think that trucks are negatively impacting air quality. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

2.6. I  believe that transportation can have an important impact on the environment and our ability to be 

sustainable. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

3.1. If there were more sustainable choices available in transportation, I would be willing to change my travel 

behavior. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

3.2. No matter how convenient and sustainable the travel options are, I will always prefer to drive my personal 

vehicle. 

Strongly Disagree __   Disagree __    Neutral __    Agree__    Strongly Agree__ 

3.3. I already plan my travel around sustainable forms of transportation (i.e., I take public transit, walk, ride my 

bike, or carpool) 

Strongly Disagree __   Disagree __    Neutral __    Agree__    Strongly Agree__ 

3.4. Not driving a car is something I would feel uncomfortable with. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

3.5. Driving a car is one of my habits 

Strongly Disagree __   Disagree __    Neutral __    Agree__    Strongly Agree__ 
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3.2 Opinions on electric roadways 

On electric roadways, electric vehicles can be charged as they move along the roadway. Electric vehicles (EV) are 

charged from the road surface without any contact or need to plug into a socket. This can be achieved while moving 

or during short stops.  

Please take a few minutes to tell us what you think about electric roadways. 

There are no right or wrong responses; we are merely interested in your personal opinions. In your responses to the 

following questions, please share the thoughts that come immediately to mind. 

 

3.1. Driving on electric roadways would offer more advantages to our society than driving on non-electric 

(conventional) roadways. 

Strongly Disagree __              Disagree __             Neutral __             Agree__              Strongly Agree__ 

3.2 Driving on electric roadways would be more environmental-friendly than driving on non-electric 

(conventional) roadways. 

Strongly Disagree __               Disagree __             Neutral __            Agree__              Strongly Agree__ 

3.3. Driving on electric roadways would enable me to travel for longer distances compared to driving on non-

electric (conventional) roadways. 

 Strongly Disagree __               Disagree __             Neutral __             Agree__             Strongly Agree__ 

3.4. Driving  on electric roadways would enable me to arrive at my destination faster compared than driving on 

non-electric (conventional) roadways. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

 

4.1. It would be easy for me to drive on electric roadways. 

Strongly Disagree __          Disagree __         Neutral __           Agree__         Strongly Agree__ 

4.2. I would find it easy to charge while driving on electric roadways.  

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

4.3. I think that I would not manage driving on electric roadways.  

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

5.1. The thought of driving on electric roadways would suit my lifestyle. 

Strongly Disagree __          Disagree __          Neutral __         Agree__           Strongly Agree__ 

5.2. Driving on electric roadways would suit my daily needs.   

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

5.3. Driving on electric roadways would reflect my personal values and attitudes.  

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

 

   In this subsection, please select your response based on a scale from 1 to 5. 

6.1. I would ___ the thought of driving on electric roadways. 

Not like           1__           2__           3__           4 __          5 __         Like 

6.2. Driving on electric roadways would be a ___ idea for me.   

Bad                   1 __          2  __         3 __          4__           5__          Good 

6.3. I would find driving on electric roadways ___ for my purposes.  

Useless            1 __          2  __         3  __         4 __          5 __          Useful 

6.4. Driving on electric roadways would sound ____ to me.  

Stupid                    1__           2 __          3 __          4__           5 __          Smart 

6.5. Driving on electric roadways would sound ___ to me. 
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Scary                     1 __          2__           3  __         4 __          5  __         Nice 

6.6. Driving on electric roadways would be ____ for my needs.  

Not suitable           1__           2__           3 __          4 __          5__           Suitable 

6.7. For me, driving on electric roadways would be ___. 

Undesirable           1__           2 __          3 __          4 __          5  __         Desirable 

7.1. People who are important to me would support my decision on driving on electric roadways. 

Strongly Disagree __              Disagree __             Neutral __             Agree__            Strongly Agree__ 

7.2. The media would make it more appealing for me about driving on electric roadways.   

Strongly Disagree __              Disagree __             Neutral __             Agree__            Strongly Agree__ 

7.3. People who are important to me would try to convince me to drive on electric roadways.  

Strongly Disagree __               Disagree __             Neutral __             Agree__            Strongly Agree__ 

7.4. People who are important to me would want me to drive on electric roadways.  

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

7.5. People who are important to me would prefer I drove on electric roadways.  

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

7.6. Articles in the media would influence my intention to drive on electric roadways.  

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

8.1. Because of my own principles, I would feel an obligation to drive on electric roadways due to its lower fuel 

consumption. 

Strongly Disagree __               Disagree __             Neutral __             Agree__           Strongly Agree__  

8.2. Regardless of what other people do, I would feel morally obliged to drive on electric roadways due to its 

lower emissions.   

Strongly Disagree __               Disagree __             Neutral __             Agree__            Strongly Agree__ 

8.3. I would feel a moral obligation to drive on electric roadways as they are more environmentally friendly.  

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__  

9.1. I would have the necessary knowledge to drive on electric roadways. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

9.2. I would be capable to drive on electric roadways.   

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

9.3. When electric roadways become widely available, I would know enough to drive on one.  

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

10.1. When electric roadways become widely available, I believe I would afford to drive on one. 

Strongly Disagree __   Disagree __    Neutral __    Agree__    Strongly Agree__ 

10.2. When electric roadways become widely available, I would have the ability to drive on electric roadways if 

I want to.  

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

10.3. When electric roadways become available, I would have the opportunity to charge on the go.  

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

10.4. I believe that the sales of conventional (internal-combustion) vehicles may be banned in the future.  

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 
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11.1. I would like driving on an electric roadway. 

Strongly Disagree __   Disagree __    Neutral __    Agree__    Strongly Agree__ 

11.2. I look forward toward to driving on an electric roadway. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

11.3. Driving on an electric roadway could make me frustrated. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

11.4. I would enjoy the scenery while driving on an electric roadway. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

11.5. I would feel less anxious  when driving on an electric roadway. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

12.1. I would have safety concerns on driving on electric roadways. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

12.2. I would have safety concerns on driving on electric roadways if trucks are not banned from these corridors. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

12.3. On-road charging on electric roadways would cause me safety concerns.   

Strongly Disagree __   Disagree __    Neutral __    Agree__    Strongly Agree__ 

 

3.3 Intention to purchase an electric vehicle (EV) 

 

13.1. I intend to purchase an EV, knowing that electric roadways are currently available. 

Strongly Disagree __               Disagree __             Neutral __            Agree__             Strongly Agree__ 

13.2. I intend to purchase an EV, shortly after electric roadways become available. 

Strongly Disagree __               Disagree __             Neutral __            Agree__             Strongly Agree__ 

13.3. I intend to purchase an EV, knowing that electric roadways will be available in the foreseeable future. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

13.4. I would recommend purchasing an EV, knowing that electric roadways will become available. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

 

3.4 Intention to drive on electric roadways 

14.1. I intend to drive my EV on electric roadways as soon as electric roadways become available. 

Strongly Disagree __               Disagree __             Neutral __            Agree__             Strongly Agree__ 

14.2. I intend to drive my EV on electric roadways shortly after electric roadways become available. 

Strongly Disagree __               Disagree __             Neutral __            Agree__             Strongly Agree__ 

14.3. I intend to drive my EV on electric roadways in the foreseeable future. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 

14.4. I would recommend driving on electric roadways to other EV users. 

Strongly Disagree __          Disagree __          Neutral __          Agree__          Strongly Agree__ 
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3.5 Intention to switch from personal vehicles in favor of traveling by electric buses 

(operating on electric roadways) 

15.1. I expect that I will be taking an electric bus instead of my personal vehicle as soon as electric roadways 

become available. 

Strongly Disagree__ Disagree__ Neutral__ Agree__  Strongly agree__ 

15.2 I expect that I will be taking an electric bus instead of my personal vehicle shortly after electric roadways 

become available. 

Strongly Disagree__ Disagree__ Neutral__ Agree__  Strongly agree__ 

15.3. I expect that I will be taking an electric bus instead of my personal vehicle in the foreseeable future.  

Strongly Disagree__ Disagree__ Neutral__ Agree__  Strongly agree__ 

15.4. I would recommend traveling on electric buses (operating on electric roadways) instead of personal vehicles to 

other people. 

Strongly Disagree__ Disagree__ Neutral__ Agree__  Strongly agree__ 

 

 

SECTION 4 

A) For this section of the survey, you will be provided with a number of scenarios about your daily commute. Please 

imagine that your house and your workplace are located in Los Angeles Metropolitan area and you are about to 

commute to your workplace by taking a freeway (such as I-710, I-210) on a typical weekday using a Nissan Leaf (an 

electric vehicle with a 151 mile battery-only range). The distance between your house and your work place is 9 

miles. The state of charge (SOC) of the EV is 50% at the beginning of your trip.   There are no right or wrong 

responses; we are merely interested in your personal opinions. 

In this scenario, there the following options available to you throughout the I-710 corridor: 

a) All lanes are non-electric (conventional): typical lanes where on-road-charging is not available with a mix of 

traffic (light-duty vehicles, trucks); in this case, you will need to stop to charge your electric vehicle. 

b) On-road charging is available on one lane (electrified lane); the other lanes are conventional; a mix of traffic 

(light-duty vehicles conventional and electric, trucks) can drive on the electrified lane. Using on-road charging to 

charge your electric vehicle can result in average pollution reduction of 30.6% in the first 50 years of technology 

deployment. 

c) On-road charging is available on one lane (electrified lane); the other lanes are conventional; only electric 

vehicles can drive on the electrified lane. Using on-road charging to charge your electric vehicle can result in 

average pollution reduction of 30.6% in the first 50 years of technology deployment. 

As indicated in the table below, you can see: 

-the travel time (in minutes): the total trip time from your origin to your final destination, including any activities 

during your trip (e.g. stop for charging your EV) 

-the cost (in dollars): user cost for each alternative route to reach your final destination (including charging cost).  
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Which route will you choose for your commute to work?      

Scenario 0 

 

 
Non-electric 

(conventional) lane 

Electrified lane with 

mixed traffic 

(different types of 

vehicles) 

Electrified lane 

exclusive for EVs 

Travel time 

(minutes) 
24 13.50 11 

Cost (dollars) 2.60 4 6 

Your choice    

 

 

B) For this section of the survey, you will be provided with a number of scenarios about your daily commute. Please 

imagine that your house and your workplace are located in Los Angeles Metropolitan area and you are about to 

commute to your workplace by taking an arterial road (such as Vermont Avenue) on a typical weekday using a 

Nissan Leaf (an electric vehicle with a 151 mile battery-only range). The distance between your house and your 

work place is 9 miles. The state of charge (SOC) of the EV is 50% at the beginning of your trip.   There are no right 

or wrong responses; we are merely interested in your personal opinions. 

In this scenario, there the following options available to you throughout the I-710 corridor: 

a) All lanes are non-electric (conventional): typical lanes where on-road-charging is not available with a mix of 

traffic (light-duty vehicles, trucks); in this case, you will need to stop to charge your electric vehicle. 

b) On-road charging is available on one lane (electrified lane); the other lanes are conventional; a mix of traffic 

(light-duty vehicles conventional and electric, trucks) can drive on the electrified lane. Using on-road charging to 

charge your electric vehicle  can result in average pollution reduction of 30.6% in the first 50 years of technology 

deployment. 

c) On-road charging is available on one lane (electrified lane); the other lanes are conventional; only electric 

vehicles can drive on the electrified lane. Using on-road charging to charge your electric vehicle can result in 

average pollution reduction of 30.6% in the first 50 years of technology deployment. 

As indicated in the table below, you can see: 

-the travel time (in minutes): the total trip time from your origin to your final destination, including any activities 

during your trip (eg. stop for charging your EV) 

-the cost (in dollars): user cost for each alternative route to reach your final destination (including charging cost).  

Which route will you choose for your commute to work? 
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Scenario 0 

 

 
Non-electric 

(conventional) lane 

Electrified lane with 

mixed traffic 

(different types of 

vehicles) 

Electrified lane 

exclusive for EVs 

Travel time 

(minutes) 
31 17 15 

Cost (dollars) 2.60 3.50 5 

Your choice    

 

 

SECTION 5 

5.1 Demographic Questions 

1. What is the gender you identify with? 

Male__      Female__      Other__  

  

2. What is your age range?     18-24 __     25-34 __     35-44 __     45-54__     55-64__     65 and over__   

3. What describes best your employment situation? 

Work full time__      Work part time__      Currently unemployed __      Student__      Retired __      Homemaker___   

Other, please specify________  

4. Please indicate your approximate annual income before taxes.  

Under $25,000____    $25,000-$49,999____    $50,000-$74,999____    $75,000-$99,999____    $100,000-

$149,999____$150,000-$199,999____ $200,000 or more____    I do not want to disclose this information____         

5. What is your highest level of education? 

Grade school or less__    Some high school__    High school graduate__    Technical training beyond high school__     

Some college__    College graduate__    Graduate school__ 

6. Are you Hispanic or Latino?  

Yes__    No__    I do not want to disclose this information __     

7. How would you describe yourself? 

American Indian or Alaska Native__    Asian__    Black or African American__    Native Hawaiian or Other Pacific Islander__     

White__    I do not want to disclose this information__     

8. Including yourself, how many persons are in your household?  One__   Two__   Three__   Four__   Five or more__ 

9. Please indicate the number of children in your household that are under the age of 18. 

None__     One__     Two__     Three__     Four or more__ 

10. Do you have a driver’s license?  Yes__   No__   

11. How many crashes have you experienced in the past 3 years while driving a car?   

None__     One__     Two__     Three__     Four or more__ 

 

Thank you for completing this survey about electric roadways! 
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B2. VALUES FOR WILLINGNESS-TO-PAY SCENARIOS 

 

Table B2.1: Fractional factorial design table* 

 

Cost ER-mixed Cost ER-separate Time ER-mixed Time ER-separate 

-1 -1 -1 -1 

+1 -1 -1 +1 

-1 +1 -1 +1 

+1 +1 -1 -1 

-1 -1 +1 +1 

+1 -1 +1 -1 

-1 +1 +1 -1 

+1 +1 +1 +1 

SUM  0 0 0 0 

*high values are noted as +1 and low values are noted as -1 

2 levels of each attribute and vary cost and travel time of ERs (not conventional lanes) 

 2 levels for 4 attributes (cost of ERs and travel time of ERs) 

 Fractional factorial design to achieve orthogonality and not having confounded main effects: 2 
(4-1)

 = 8 

scenarios  

 SUM needs to be 0 for orthogonality 
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Table B2.2: Willingness-to-pay input values table 

Use  Parameter Hypotheses/ Assumptions Formula/Value References 
S

ce
n

a
ri

o
 n

a
rr

a
ti

v
e 

EV model 
Respondents are using an EV in their daily 

commute trip. 

Nissan Leaf 

(Nissan Leaf drivers dominate survey 

population in LA. 97% or respondents were 

Leaf owners or lessees). 

Center for Sustainable 

Energy, 2013 

State of charge 

Respondents will choose a lane on ER 

given the fact that their EV needs 

charging. 

Fixed state of charge for all scenarios 

50% Assumptions 

Emissions 

Emissions reduction will occur in the 

electrified lane options. 

Fixed reduction for the electrified lane 

options. 

 

Total emissions from light duty vehicles and 

class 8 trucks will reduce by 30,6% . 

Limb et al., 2017 

F
a

ct
o

rs
 

User cost 

The non-electric (conventional) lane 

option will have the lowest cost, including 

static charging time in Level 3 charging 

station. 

 

 The user cost per mile in electrified lanes 

will be higher, because of the cost of the 

technology installed, the initial lower 

demand for the use of the system and the 

need to avoid congestion. This cost is 

assumed to be slightly higher than the cost 

of HOV/HOT/tolled lanes and includes an 

extra cost of the use of dynamic charging. 

 

 

 

Formulae: 

User cost (non electric lane)=static recharging 

cost per mile  

 

User cost (electrified lane with mixed traffic)= 

HOV/HOT user cost per mile + extra cost of the 

use of dynamic charging per mile 

 

User cost (electrified lane exclusive for EVs)= 

HOV/HOT user cost per mile + extra cost of the 

use of dynamic charging per mile (higher than 

cost in electrified lane with mixed traffic) 

 

 

 

 

 

LA Metro, 2013; 

Southern California 

Public Radio, 2011 

 

McDonald, 2016; 

Chargepoint data, 2017 

 

US DOE, (2017) 
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Table B2.2 continued 

 

 

 

The user cost in freeway route is more 

more expensive that the user cost in 

arterial route, as a base case. 

 

(For simplicity reasons, not all vehicle 

operating costs are not included) 

 

 

Values: 

HOV/HOT user cost per mile: $0.25 -1.40 per 

mile 

Static recharging cost per mile:$0.295/mile 

(Charge speed: 50KW) 

extra cost of the use of dynamic charging per 

mile: $0.08/mile 

 

 

Assumptions for the 

higher value of 

electrified lane 

exclusive for EVs 

Travel time 

 

Highest speed for the electrified lane 

options and lowest for non-electric lane 

option. 

 

Lower travel time for the electrified lane 

options and highest travel time for non-

electric options. 

 

Lowest travel time for the electrified lane 

exclusive for EVs. 

 

Static charging time is based on the fact 

that each vehicle will receive from the 

charging station the same energy power 

that it will receive from the ER 

 

 

 

Fromulae: 

Travel time (non-electric lane) = travel time 

from origin to destination + stationary charging 

time + detour time 

 

Travel time (electrified lane with mixed traffic) 

= travel time from origin to the beginning of ER 

+travel time on ER+ travel time from the end of 

ER to destination  

 

Travel time (electrified lane exclusive for EVs) 

= travel time from origin to the beginning of ER 

+travel time on ER (lower than in electrified 

lane with mixed traffic option) + travel time 

from the end of ER to destination  

 

 

Values: 

Assumption for trip length: 9 miles from origin 

to destination; 7 miles of electrified lane 

 

Speed in non-electric lane, electrified lane with 

mixed traffic and electrified lane exclusive for 

EVs options (freeway):35mph;50mph;65mph 

 

Goldstein, 2014; 

assumptions 

 

PeMS data; Google 

maps (taking average 

values using I-710 and 

Vermont 

Ave.);Federal-Aid 

Highway Program 

Guidance on High 

Occupancy Vehicle 

(HOV) Facility Lanes, 

2016 (speed limits) 

 

Limb et al., 2017 

 

McDonald, 2016; 

Chargepoint data, 2017 
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Table B2.2 continued 

  
 

 

Speed in non-electric lane, electrified lane with 

mixed traffic and electrified lane exclusive for 

EVs options (arterial):25mph;35mph;40mph 

 

Energy transfer from ER to vehicles: 20-50kW 

for light duty vehicles or buses  

Energy efficiency at 87% 

 

Electric needs (non-electric lane) to get the same 

energy power that it will receive from ER 

(9miles trip): 3.132 kw (freeway) and 4.47kw 

(arterial) 

 

Charge speed (Nissan Leaf, Level 3 charging 

station): 50 kw in 1hour 

 

Detour time for charging (non-electric lane): 3-5 

minutes 

 

Google maps for 

detour time, 

considering Level 3 

charging stations, 

 I-710 and Vermont 

Ave. 
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B3. COMPARISONS OF SAMPLE DESCRIPTIVE CHARACTERISTICS 

Table B3.1: Comparison of income 

Source Description 
Response 

Frequency 

Survey Sample 

1: Under $25,000 1: 18.83% 

2: $25,000-$49,999 2: 23.17% 

3: $50,000-$74,999 3: 18.33% 

4: $75,000-$99.999 4: 15.83% 

5: $100,000-$149,999 5: 14.67% 

6: $150,000-$199,999 6: 4.67% 

7: $200,000 or more 7: 4.50% 

Census (2010 data) 

1: Under $25,000 1: 22.6% 

2: $25,000-$49,999 2: 22.9% 

3: $50,000-$74,999 3: 17.6% 

4: $75,000-$99.999 4: 12% 

5: $100,000-$149,999 5: 13.4% 

6: $150,000-$199,999 6: 5.5% 

7: $200,000 or more 7: 6% 

 

Table B3.2: Comparison of education 

Source Description 
Response 

Frequency 

Survey Sample 

1: Grade school 
1: 15.5% 

2: Some high school 
2: 2.5% 

3: High school graduate 
3: 15.2% 

4: Technical training beyond high school 
4: 5.7% 
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Table B3.2 continued 

 

5: Some college 

5: 27% 

 

6: College graduate 6: 34.17% 

7: Graduate school 7: 15.5% 

Census (2010 data) 

1: Grade school 1: 13.4% 

2: Some high school 2: 9.2% 

3: High school graduate 3: 17.6% 

4: Technical training beyond high school 4: 13.8% 

5: Some college 5: 14.7% 

6: College graduate 6: 19.7% 

7: Graduate school 7: 11.6% 

 

Table B3.3: Comparison of annual mileage 

Source Description 
Response 

Frequency 

Survey Sample 

1: <5000 miles 1: 22.0% 

2: 5,000-9,999 miles 2: 24.67% 

3: 10,000-14,999 miles 3: 16.00% 

4: 15,000-19,999 miles 4: 9.67% 

5: 20,000-24,999 miles 5: 7.67% 

6: >25,000 miles 6: 4.83% 

NHTS (2017data) 

1: <5000 miles 1: 31.7% 

2: 5,000-9,999 miles 2: 18.2% 

3: 10,000-14,999 miles 3: 26.9% 

4: 15,000-19,999 miles 4: 10.89% 

5: 20,000-24,999 miles 5: 5.32% 

6: >25,000 miles 6: 6.95% 
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APPENDIX C. SHORT-TERM AND LONG-TERM BAHAVIORAL 

INTENTION MODELS 

C1. DESCRIPTIVE STATISTICS 

 

Figure C1.1: Intention to drive on ERs, as soon as they become available (respondents with EV 

experience or not) 

 

 

Figure C1.2: Intention to drive on ERs in the foreseeable future (respondents with EV experience 

or not) 
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Table C1.1: Descriptive statistics-analytical table 

Variable Description Response Frequency 

Gender 
1: Male 

2: Female 

1: 47% 

2: 53% 

Age 

1: 18-24 years old  

2: 25-34 years old  

3: 35-44 years old  

4: 45-54 years old  

5: 55-64 years old  

6: 65 years or older 

1: 18.2% 

2: 19% 

3: 17.3% 

4: 17.2% 

5: 13.7% 

6: 14.7% 

Education 

1: Grade school 

2: Some high school  

3: High school graduate  

4: Technical training beyond high school  

5: Some college  

6: College graduate  

7: Graduate school 

1: 0% 

2: 2.5% 

3: 15.17% 

4: 5.67% 

5: 27% 

6: 34.17% 

7: 15.5% 

Income 

1: Less than $25K 

2: $25K to less than $50K  

3: $50K to less than $75K  

4: $75K to less than $100K  

5: $100K to less than $150K  

6: $150K to less than $200K  

1: 18.8% 

2: 23.2% 

3: 18.3% 

4: 15.8% 

5: 14.7% 

6: 4.7% 

7. $200K or more 7: 4.5% 

Employment Situation 

1: Full time 1: 45.5% 

2: Part time 2: 13.7% 

3: Unemployed 3: 9% 

4: Student 4: 9% 

5: Retired 5: 14.8% 

6: Homemaker 6: 6.5% 

Household Size 

1: One 

2: Two 

3: Three 

4: Four 

5: Five or more 

1: 25.17% 

2: 30.17% 

3: 18.5% 

4: 17.33% 

5: 8.83% 
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Table C1.1 continued 

Number of Children 

1: None 

2: One 

3: Two 

4: Three 

5: Four 

1: 65.83% 

2: 16.33% 

3: 13.67% 

4: 2.83% 

5: 1.33 

Respondents who traveled 

medium distances (10-50 

miles) 

1: Never 

2: Less often than 6 months 

3: Every 6 months  

4: Every 3 months 

5: Once a month 

6: Once a fortnight 

7: Once a week 

8: A few times a week 

9: Almost every day 

10: Don’t know 

1: 9.33% 

2: 5.67% 

3: 5.67% 

4: 6.83% 

5: 10.33% 

6: 8.67% 

7: 18.67% 

8: 17.83% 

9: 14.17%  

10: 2.83% 

Respondents who agreed or 

strongly agreed on average 

that electric roadways are 

compatible with their 

lifestyle, daily needs or 

personal values and 

attitudes. (*) 

1: Yes 

2: No 

1: 85.5% 

2: 14.5% 

1 if respondent rated 

driving range as very or 

extremely important factor 

when they think of 

purchasing an EV, 0-

otherwise. 

1: Not at all important 

2: Slightly important 

3: Moderately important 

4: Very important 

5: Extremely important 

6: Don’t know 

1: 3.67% 

2: 4.33% 

3: 7.83% 

4: 17.67% 

5: 51% 

6: 15.5% 

Respondents who agreed or 

strongly agreed on average 

that they would or have 

already changed their travel 

behavior/preferences 

because of the existence of 

sustainable forms of 

transportation. 

1: Yes 

2: No 

1: 84.83% 

2: 15.17% 

Respondents who agreed or 

strongly agreed on average 

that they have safety 

concerns about ERs. 

1: Yes 

2: No 

1: 77.67% 

2: 22.33% 
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Table C1.1 continued 

Respondents who agreed or 

strongly agreed on average 

that they are positive 

towards trying new 

innovations. 

1: Yes 

2: No 

1: 71.17% 

2: 28.83% 

1 if respondent rated 

charging time as very or 

extremely important factor 

when they think of 

purchasing an EV, 0-

otherwise. 

1: Not at all important 

2: Slightly important 

3: Moderately important 

4: Very important 

5: Extremely important 

6: Don’t know 

1: 3.33% 

2: 3.5% 

3: 10% 

4: 28% 

5: 39.67% 

6: 15.5% 

1 if respondent rated 

financial incentives/rebates 

provided (such as 

subsidies) as very or 

extremely important factor 

when they think of 

purchasing an EV, 0-

otherwise 

1: Not at all important 

2: Slightly important 

3: Moderately important 

4: Very important 

5: Extremely important 

6: Don’t know 

1: 4.67% 

2: 5.67% 

3: 17.5% 

4: 27.5% 

5: 29.83% 

6: 14.83% 

1 if respondent rated 

operational cost (cost to 

charge the EV/cost per 

mile) as very or extremely 

important factor when they 

think of purchasing an EV, 

0-otherwise. 

1: Not at all important 

2: Slightly important 

3: Moderately important 

4: Very important 

5: Extremely important 

6: Don’t know 

1: 2.83% 

2: 4.33% 

3: 12.17% 

4: 25.67% 

5: 40.5% 

6: 14.5% 

1 if respondent rated 

social/family influence as 

very or extremely 

important factor when they 

think of purchasing an EV, 

0-otherwise. 

1: Not at all important 

2: Slightly important 

3: Moderately important 

4: Very important 

5: Extremely important 

6: Don’t know 

1: 16.83% 

2: 15% 

3: 19.5% 

4: 16.17% 

5: 16% 

6: 16.5% 

1 if respondent rated safety 

as very or extremely 

important factor when 

planning their commute 

route, 0-otherwise. 

1: Not at all important 

2: Slightly important 

3: Moderately important 

4: Very important 

5: Extremely important 

6: Don’t know 

1: 4% 

2: 5.67% 

3: 12.5% 

4: 31.33% 

5: 42.5% 

6: 4% 
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Table C1.1 continued 

Respondents who agreed or 

strongly agreed on average 

that ERs would offer more 

advantages compared to 

driving on non-electric 

(conventional) roadways. 

1: Yes 

2: No 

1: 86.5% 

2: 13.5% 

1 if respondent rated EV’s 

purchase cost as very or 

extremely important factor 

when they think of 

purchasing an EV, 0-

otherwise. 

1: Not at all important 

2: Slightly important 

3: Moderately important 

4: Very important 

5: Extremely important 

6: Don’t know 

1: 3.83% 

2: 2.17% 

3: 12.83% 

4: 22.5% 

5: 43.5% 

6: 15.17% 

1 if respondent rated 

environmental benefits as 

very or extremely 

important factor when they 

think of purchasing an EV, 

0-otherwise. 

1: Not at all important 

2: Slightly important 

3: Moderately important 

4: Very important 

5: Extremely important 

6: Don’t know 

1: 5.17% 

2: 8.5% 

3: 16.33% 

4: 24.5% 

5: 30.83% 

6: 14.67% 

1 if respondent owns an EV 

and their vehicle’s driving 

range is 150 miles or 

below. 

1: I do not own an EV 

2: 0-50 miles 

3: 51-100 miles 

4: 101-150 miles 

5: 151-200 miles 

6: 201-250 miles 

7: 251-300 miles 

8: Over 300 miles 

1: 83.33% 

2: 2.5% 

3: 4% 

4: 1.5% 

5: 0% 

6: 2.67% 

7: 2.33% 

8: 1.67% 

1 if respondent rated 

vehicle performance as 

very or extremely 

important factor when they 

think of purchasing an EV, 

0-otherwise. 

1: Not at all important 

2: Slightly important 

3: Moderately important 

4: Very important 

5: Extremely important 

6: Don’t know 

1: 2.67% 

2: 3.33% 

3: 11% 

4: 26.83% 

5: 41.67% 

6: 14.5% 

If you own an electric 

vehicle, what type of 

charger do you typically 

use to charge your vehicle? 

- At home 

1: Level 1 AC 

2: Level 2 AC 

3: DC Fast Charge 

4: N/A 

5: Don’t know 

1: 7.5% 

2: 7% 

3: 7.33% 

4: 66.33% 

5: 11.83% 

If you own an electric 

vehicle, what type of 

charger do you typically 

use to charge your vehicle? 

- At work 

1: Level 1 AC 

2: Level 2 AC 

3: DC Fast Charge 

4: N/A 

5: Don’t know 

1: 6% 

2: 8.17% 

3: 5.33% 

4: 69.33% 

5: 11.17% 
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Table C1.1 continued 

If you own an electric 

vehicle, what type of 

charger do you typically 

use to charge your vehicle? 

- At public/private stations 

1: Level 1 AC 

2: Level 2 AC 

3: DC Fast Charge 

4: N/A 

5: Don’t know 

1: 5.5% 

2: 7.17% 

3: 7.5% 

4: 67.67% 

5: 12.17% 

Which of the following is 

your primary mode of 

travel for 

each trip purpose? (Please 

select only one mode for 

each trip purpose listed on 

the left side below.) - Trips 

for work/school 

1: Walk 

2: Bike (conventional) 

3: Bike (electric)  

4: Car (conventional) 

5: Car (electric)  

6: Public transportation 

7: Ride-hailing service 

8: Car-sharing service 

1: 12.84% 

2: 3.21% 

3: 0.51% 

4: 68.07% 

5: 5.07% 

6: 7.77%  

7: 1.86% 

8: 0.68% 

Which of the following is 

your primary mode of 

travel for 

each trip purpose? (Please 

select only one mode for 

each trip purpose listed on 

the left side below.) - Trips 

for grocery and shopping 

1: Walk 

2: Bike (conventional) 

3: Bike (electric)  

4: Car (conventional) 

5: Car (electric)  

6: Public transportation 

7: Ride-hailing service 

8: Car-sharing service 

1: 10.4% 

2: 3.02% 

3: 1.51% 

4: 72.99% 

5: 6.38% 

6: 3.52%  

7: 1.68% 

8: 0.5% 

Which of the following is 

your primary mode of 

travel for 

each trip purpose? (Please 

select only one mode for 

each trip purpose listed on 

the left side below.) - Trips 

for personal business (e.g. 

errands, trips to 

medical/dental facilities, 

banks, etc.) 

1: Walk 

2: Bike (conventional) 

3: Bike (electric)  

4: Car (conventional) 

5: Car (electric)  

6: Public transportation 

7: Ride-hailing service 

8: Car-sharing service 

1: 5.21% 

2: 2.02% 

3: 1.51% 

4: 73.28% 

5: 5.88% 

6: 7.73%  

7: 3.53% 

8: 0.84% 

Which of the following is 

your primary mode of 

travel for 

each trip purpose? (Please 

select only one mode for 

each trip purpose listed on 

the left side below.) - Trips 

for social/recreational 

activities (e.g. trips to gym, 

church, parks, theaters, 

etc.) 

1: Walk 

2: Bike (conventional) 

3: Bike (electric)  

4: Car (conventional) 

5: Car (electric)  

6: Public transportation 

7: Ride-hailing service 

8: Car-sharing service 

1: 7.54% 

2: 3.35% 

3: 1.51% 

4: 69.35% 

5: 7.04% 

6: 6.2%  

7: 4.36% 

8: 0.67% 
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C2. SHORT-TERM INTENTION MODEL OUTPUT 

Correlation matrix  

--------+----------------------------------------------------------------------- 

Cor.Mat.|   EVNOW    ERNOW    EVFUT    ERFUT  MEDDIST   COMPAT IMPRANGE     SUST 

--------+----------------------------------------------------------------------- 

   EVNOW| 1.00000   .74238   .81633   .72941   .07215   .49986   .10119   .32951 

   ERNOW|  .74238  1.00000   .78323   .82175   .11146   .54830   .16128   .29641 

   EVFUT|  .81633   .78323  1.00000   .77321   .05758   .49882   .10762   .35590 

   ERFUT|  .72941   .82175   .77321  1.00000   .09172   .57732   .19093   .28792 

 MEDDIST|  .07215   .11146   .05758   .09172  1.00000   .06140   .10907  -.04483 

  COMPAT|  .49986   .54830   .49882   .57732   .06140  1.00000   .19004   .29094 

IMPRANGE|  .10119   .16128   .10762   .19093   .10907   .19004  1.00000   .13024 

    SUST|  .32951   .29641   .35590   .28792  -.04483   .29094   .13024  1.00000 

--------+----------------------------------------------------------------------- 

Cor.Mat.|   EVNOW    ERNOW    EVFUT    ERFUT  MEDDIST   COMPAT IMPRANGE     SUST 

--------+----------------------------------------------------------------------- 

    SAFE|  .12644   .03825   .10838   .07730   .02275   .05824   .04050   .18890 

   INNOV|  .44773   .43315   .45199   .38295   .08241   .38091   .11069   .33838 

   RICH1|  .09332   .03984   .03139   .04603   .06910   .06474   .12487  -.00986 

  IMTIME|  .09037   .11396   .10026   .10745   .08463   .14813   .70836   .14859 

  INCENT|  .22992   .18229   .21000   .22417   .04277   .22866   .49972   .17383 

COSTMILE|  .19667   .17309   .13495   .19337   .02990   .19678   .61052   .16488 

   INFLU|  .35164   .27982   .34227   .27121   .01713   .25157   .17287   .25801 

--------+-------------------------------------------------------------- 

Cor.Mat.|    SAFE    INNOV    RICH1   IMTIME   INCENT  COSTMILE   INFLU 

--------+-------------------------------------------------------------- 

    SAFE| 1.00000   .11861  -.08135   .02846   .09363   .03563   .20565 

   INNOV|  .11861  1.00000   .02478   .13217   .20223   .19915   .37145 

   RICH1| -.08135   .02478  1.00000   .15251   .12665   .11890   .00001 

  IMTIME|  .02846   .13217   .15251  1.00000   .52754   .59014   .24717 

  INCENT|  .09363   .20223   .12665   .52754  1.00000   .55116   .36320 

COSTMILE|  .03563   .19915   .11890   .59014   .55116  1.00000   .28881 

   INFLU|  .20565   .37145   .00001   .24717   .36320   .28881  1.00000 

 

Model output 

Bivariate Ordered Probit Model 

Dependent variable             BivOrdPr 

Log likelihood function     -1497.04712 

Restricted log likelihood   -1670.54335 

Chi squared [ 23](P= .000)    346.99247 

Significance level               .00000 

McFadden Pseudo R-squared      .1038562 

Estimation based on N =    600, K =  23 

Inf.Cr.AIC  =   3040.1 AIC/N =    5.067 

--------+-------------------------------------------------------------------- 

    Y827|                  Standard            Prob.      95% Confidence 

    Y823|  Coefficient       Error       z    |z|>Z*         Interval 

--------+-------------------------------------------------------------------- 

        |Index function for Probability Model for Y827....................... 

Constant|   -1.23650***      .33678    -3.67  .0002    -1.89658   -.57643 

 MEDDIST|     .15647*        .08122     1.93  .0540     -.00271    .31566 

   PCOMP|    1.66879***      .37018     4.51  .0000      .94325   2.39433 

IMPRANGE|     .18714**       .08335     2.25  .0247      .02379    .35050 

   PSUST|    2.09623***      .35582     5.89  .0000     1.39883   2.79364 

   PSAFE|    -.67040         .44019    -1.52  .1278    -1.53316    .19236 

 PINNOV2|     .76447*        .42900     1.78  .0748     -.07635   1.60530 

        |Index function for Probability Model for Y823....................... 

Constant|   -1.69141***      .26245    -6.44  .0000    -2.20581  -1.17701 

   RICH1|     .18636**       .08311     2.24  .0249      .02347    .34926 
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  IMTIME|    -.23516***      .09048    -2.60  .0093     -.41249   -.05783 

  INCENT|     .15429*        .08326     1.85  .0639     -.00889    .31746 

COSTMILE|     .13377         .08828     1.52  .1297     -.03926    .30680 

   INFLU|     .22545***      .08644     2.61  .0091      .05604    .39486 

   PCOMP|    1.95153***      .38127     5.12  .0000     1.20425   2.69881 

   PSUST|    1.68398***      .36008     4.68  .0000      .97823   2.38973 

 PINNOV2|    1.06698**       .44078     2.42  .0155      .20308   1.93089 

        |Threshold Parameters for Probability Model for Y827................. 

  MU(01)|     .58601***      .06262     9.36  .0000      .46328    .70873 

  MU(02)|    1.43243***      .07797    18.37  .0000     1.27962   1.58525 

  MU(03)|    2.58980***      .10067    25.73  .0000     2.39249   2.78711 

        |Threshold Parameters for Probability Model for Y823................. 

LMDA(01)|     .69372***      .06251    11.10  .0000      .57120    .81625 

LMDA(02)|    1.60642***      .07992    20.10  .0000     1.44978   1.76306 

LMDA(03)|    2.62425***      .10519    24.95  .0000     2.41809   2.83041 

        |Disturbance Correlation = RHO(1,2).................................. 

RHO(1,2)|     .74155***      .01996    37.16  .0000      .70244    .78067 

--------+-------------------------------------------------------------------- 

***, **, * ==>  Significance at 1%, 5%, 10% level. 

----------------------------------------------------------------------------- 

 

 

Cross tabulation of predictions  
 

=================================================================== 

 

+--------+-----------------------------------------------+--------+ 

| 

+--------+-----------------------------------------------+--------+ 

|       0|       77        8        1        1        2  |    89  | 

|       1|        8       52       19        5        2  |    86  | 

|       2|       13       29      103       31        2  |   178  | 

|       3|        4       16       54       94       17  |   185  | 

|       4|        0        2        7       15       38  |    62  | 

+--------+-----------------------------------------------+--------+ 

|   Total|      102      107      184      146       61  |   600  | 

+--------+-----------------------------------------------+--------+ 

Frequencies for Predicted Joint Outcomes 

---------+------------------------------------------- 

         |      Y823 

---------+------------------------------------------- 

Y827     |      0      1      2      3      4  Total 

---------+------------------------------------------- 

    0    |    156      0      0      0      0    156 

    1    |      0      0      0      0      0      0 

    2    |      0      0    163      2      0    165 

    3    |      0      0     59    181      0    240 

    4    |      0      0      0      0     39     39 

---------+------------------------------------------- 

Total    |    156      0    222    183     39    600 

---------+------------------------------------------- 
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Marginal effects output 

 
Marginal effects for ordered probability model 

M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 

Names for dummy variables are marked by *. 

--------+-------------------------------------------------------------------- 

        |     Partial                          Prob.      95% Confidence 

    Y823|      Effect    Elasticity      z    |z|>Z*         Interval 

--------+-------------------------------------------------------------------- 

        |--------------[Partial effects on Prob[Y=00] at means]-------------- 

  *RICH1|    -.03493*       -.27765    -1.81  .0707     -.07282    .00295 

 *IMTIME|     .07984***      .63455     3.65  .0003      .03699    .12268 

 *INCENT|    -.03622        -.28784    -1.50  .1348     -.08368    .01125 

*COSTMIL|    -.03745        -.29765    -1.39  .1659     -.09043    .01553 

  *INFLU|    -.07241***     -.57549    -3.60  .0003     -.11188   -.03294 

   PCOMP|    -.39849***    -1.78908    -5.01  .0000     -.55449   -.24249 

   PSUST|    -.33406***    -1.62076    -4.21  .0000     -.48970   -.17841 

 PINNOV2|    -.23592**      -.98312    -2.57  .0102     -.41583   -.05600 

        |--------------[Partial effects on Prob[Y=01] at means]-------------- 

  *RICH1|    -.02642*       -.14336    -1.70  .0890     -.05686    .00403 

 *IMTIME|     .06191***      .33601     3.45  .0006      .02675    .09707 

 *INCENT|    -.02499        -.13562    -1.54  .1240     -.05683    .00685 

*COSTMIL|    -.02520        -.13675    -1.46  .1437     -.05897    .00857 

  *INFLU|    -.05580***     -.30281    -3.40  .0007     -.08798   -.02362 

   PCOMP|    -.28142***     -.86274    -5.11  .0000     -.38929   -.17355 

   PSUST|    -.23592***     -.78157    -4.28  .0000     -.34388   -.12796 

 PINNOV2|    -.16661***     -.47408    -2.59  .0097     -.29279   -.04042 

        |--------------[Partial effects on Prob[Y=02] at means]-------------- 

  *RICH1|    -.00380        -.01032     -.78  .4341     -.01332    .00572 

 *IMTIME|     .01264         .03431     1.32  .1863     -.00611    .03139 

 *INCENT|    -.00021        -.00056     -.07  .9435     -.00594    .00553 

*COSTMIL|     .00072         .00197      .21  .8318     -.00596    .00740 

  *INFLU|    -.01057        -.02870    -1.26  .2076     -.02701    .00587 

   PCOMP|    -.01064        -.01631     -.33  .7447     -.07467    .05340 

   PSUST|    -.00892        -.01478     -.33  .7447     -.06260    .04476 

 PINNOV2|    -.00630        -.00896     -.32  .7458     -.04437    .03177 

        |--------------[Partial effects on Prob[Y=03] at means]-------------- 

  *RICH1|     .04226*        .16163     1.73  .0836     -.00561    .09013 

 *IMTIME|    -.09781***     -.37411    -3.49  .0005     -.15281   -.04281 

 *INCENT|     .04119         .15753     1.52  .1287     -.01195    .09433 

*COSTMIL|     .04187         .16015     1.43  .1516     -.01537    .09911 

  *INFLU|     .08843***      .33822     3.45  .0006      .03815    .13872 

   PCOMP|     .46061***      .99513     4.89  .0000      .27588    .64534 

   PSUST|     .38613***      .90150     4.14  .0000      .20328    .56898 

 PINNOV2|     .27269**       .54683     2.55  .0107      .06341    .48198 

        |--------------[Partial effects on Prob[Y=04] at means]-------------- 

  *RICH1|     .02289         .38066     1.58  .1148     -.00556    .05133 

 *IMTIME|    -.05657***     -.94087    -2.91  .0037     -.09472   -.01842 

 *INCENT|     .02022         .33635     1.53  .1266     -.00573    .04617 

*COSTMIL|     .02005         .33343     1.48  .1396     -.00655    .04665 

  *INFLU|     .05034***      .83721     2.88  .0040      .01606    .08462 

   PCOMP|     .22994***     2.16011     4.50  .0000      .12982    .33006 

   PSUST|     .19276***     1.95688     3.92  .0001      .09649    .28903 

 PINNOV2|     .13613**      1.18700     2.51  .0121      .02979    .24247 

--------+-------------------------------------------------------------------- 

z, prob values and confidence intervals are given for the partial effect 

***, **, * ==>  Significance at 1%, 5%, 10% level. 

----------------------------------------------------------------------------- 
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C3. LONG-TERM INTENTION MODEL OUTPUT 

Correlation matrix  

--------+----------------------------------------------------------------------- 

Cor.Mat.|   EVNOW    ERNOW    EVFUT    ERFUT  COLLEGE   SROUTE    INNOV   RELADV 

--------+----------------------------------------------------------------------- 

   EVNOW| 1.00000   .74238   .81633   .72941   .01918   .16932   .44773   .45612 

   ERNOW|  .74238  1.00000   .78323   .82175   .06048   .17547   .43315   .43105 

   EVFUT|  .81633   .78323  1.00000   .77321   .00688   .16029   .45199   .44759 

   ERFUT|  .72941   .82175   .77321  1.00000   .09844   .18434   .38295   .49543 

 COLLEGE|  .01918   .06048   .00688   .09844  1.00000   .04811   .03366   .08163 

  SROUTE|  .16932   .17547   .16029   .18434   .04811  1.00000   .16826   .16582 

   INNOV|  .44773   .43315   .45199   .38295   .03366   .16826  1.00000   .33473 

  RELADV|  .45612   .43105   .44759   .49543   .08163   .16582   .33473  1.00000 

--------+----------------------------------------------------------------------- 

Cor.Mat.|   EVNOW    ERNOW    EVFUT    ERFUT  COLLEGE   SROUTE    INNOV   RELADV 

--------+----------------------------------------------------------------------- 

   PCOST|  .05403  -.00997  -.00034   .02680   .09459   .17817   .04988   .09176 

  ENVBEN|  .30021   .29233   .29402   .29103   .06711   .24310   .27690   .26869 

  SRANGE|  .20792   .19920   .19324   .19486  -.02967   .03188   .12336   .06827 

   YOUNG|  .26718   .21253   .28707   .20432  -.17097  -.07571   .18159   .05934 

 VEHPERF|  .12717   .13448   .10445   .16750   .08398   .22485   .12148   .21423 

DCCHARGE|  .33132   .23246   .28193   .19378  -.03574   .04703   .17663   .14819 

   INFLU|  .35164   .27982   .34227   .27121  -.00815   .19078   .37145   .22649 

   WBIKE|  .09983   .09651   .12339   .01700  -.10168  -.05881   .04325  -.02066 

--------+----------------------------------------------------------------------- 

Cor.Mat.|   PCOST   ENVBEN   SRANGE    YOUNG  VEHPERF DCCHARGE    INFLU    WBIKE 

--------+----------------------------------------------------------------------- 

   PCOST| 1.00000   .22708  -.05045  -.13221   .42856  -.14570   .12987  -.04579 

  ENVBEN|  .22708  1.00000   .04544   .03890   .50938   .13425   .46798   .02204 

  SRANGE| -.05045   .04544  1.00000   .14896  -.02489   .22255   .14835   .11215 

   YOUNG| -.13221   .03890   .14896  1.00000  -.07243   .19986   .12750   .20363 

 VEHPERF|  .42856   .50938  -.02489  -.07243  1.00000   .06710   .29031  -.05899 

DCCHARGE| -.14570   .13425   .22255   .19986   .06710  1.00000   .29050   .16125 

   INFLU|  .12987   .46798   .14835   .12750   .29031   .29050  1.00000   .05002 

   WBIKE| -.04579   .02204   .11215   .20363  -.05899   .16125   .05002  1.00000 

 

Model output 

Bivariate Ordered Probit Model 

Dependent variable             BivOrdPr 

Log likelihood function     -1460.39999 

Restricted log likelihood   -1674.73885 

Chi squared [ 25](P= .000)    428.67771 

Significance level               .00000 

McFadden Pseudo R-squared      .1279834 

Estimation based on N =    600, K =  25 

Inf.Cr.AIC  =   2970.8 AIC/N =    4.951 

--------+-------------------------------------------------------------------- 

    Y829|                  Standard            Prob.      95% Confidence 

    Y825|  Coefficient       Error       z    |z|>Z*         Interval 

--------+-------------------------------------------------------------------- 

        |Index function for Probability Model for Y829....................... 

Constant|   -1.12776***      .30846    -3.66  .0003    -1.73234   -.52318 

 COLLEGE|     .20001***      .07389     2.71  .0068      .05519    .34484 

  SROUTE|     .28191***      .10378     2.72  .0066      .07850    .48532 

 PINNOV2|    1.83970***      .41114     4.47  .0000     1.03389   2.64551 

   PRELA|    1.19849***      .44549     2.69  .0071      .32533   2.07164 

   PCOST|    -.13425*        .07155    -1.88  .0606     -.27449    .00599 

  ENVBEN|     .35591***      .10495     3.39  .0007      .15020    .56161 

  SRANGE|     .35569***      .11417     3.12  .0018      .13192    .57946 
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        |Index function for Probability Model for Y825....................... 

Constant|    -.88027***      .31886    -2.76  .0058    -1.50522   -.25533 

   YOUNG|     .16073*        .08227     1.95  .0507     -.00051    .32197 

  SROUTE|     .24373**       .10373     2.35  .0188      .04042    .44704 

 VEHPERF|    -.27340***      .08737    -3.13  .0018     -.44465   -.10215 

DCCHARGE|     .34102***      .11585     2.94  .0032      .11396    .56808 

   INFLU|     .24615***      .08204     3.00  .0027      .08535    .40695 

 PINNOV2|    1.86953***      .46344     4.03  .0001      .96120   2.77786 

  ENVBEN|     .39772***      .11457     3.47  .0005      .17318    .62227 

   PRELA|     .73405         .48520     1.51  .1303     -.21692   1.68502 

   WBIKE|     .19773***      .07271     2.72  .0065      .05522    .34025 

        |Threshold Parameters for Probability Model for Y829................. 

  MU(01)|     .52122***      .06946     7.50  .0000      .38508    .65737 

  MU(02)|    1.32697***      .08242    16.10  .0000     1.16543   1.48852 

  MU(03)|    2.51023***      .10153    24.72  .0000     2.31122   2.70923 

        |Threshold Parameters for Probability Model for Y825................. 

LMDA(01)|     .61453***      .06044    10.17  .0000      .49607    .73299 

LMDA(02)|    1.50309***      .07930    18.95  .0000     1.34765   1.65852 

LMDA(03)|    2.48099***      .10502    23.62  .0000     2.27516   2.68682 

        |Disturbance Correlation = RHO(1,2).................................. 

RHO(1,2)|     .80139***      .01682    47.66  .0000      .76843    .83435 

--------+-------------------------------------------------------------------- 

***, **, * ==>  Significance at 1%, 5%, 10% level. 

----------------------------------------------------------------------------- 

 

Cross tabulation of predictions  
 

=================================================================== 

 

+--------+-----------------------------------------------+--------+ 

| 

+--------+-----------------------------------------------+--------+ 

|       0|       77        3        1        1        0  |    82  | 

|       1|        6       43       14        4        1  |    68  | 

|       2|       14       33      102       14        4  |   167  | 

|       3|        5       20       61      107       16  |   209  | 

|       4|        1        0        7       20       46  |    74  | 

+--------+-----------------------------------------------+--------+ 

|   Total|      103       99      185      146       67  |   600  | 

+--------+-----------------------------------------------+--------+ 

 

Frequencies for Predicted Joint Outcomes 

---------+------------------------------------------- 

         |      Y825 

---------+------------------------------------------- 

Y829     |      0      1      2      3      4  Total 

---------+------------------------------------------- 

    0    |    147      0      0      0      0    147 

    1    |      0      0      0      0      0      0 

    2    |      0      0     55      0      0     55 

    3    |      0      0    141    229      2    372 

    4    |      0      0      0      0     26     26 

---------+------------------------------------------- 

Total    |    147      0    196    229     28    600 

---------+------------------------------------------- 
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Marginal effects output 

 
Marginal effects for ordered probability model 

M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 

Names for dummy variables are marked by *. 

--------+-------------------------------------------------------------------- 

        |     Partial                          Prob.      95% Confidence 

    Y829|      Effect    Elasticity      z    |z|>Z*         Interval 

--------+-------------------------------------------------------------------- 

        |--------------[Partial effects on Prob[Y=00] at means]-------------- 

*COLLEGE|    -.04464**      -.58324    -2.01  .0440     -.08809   -.00120 

 *SROUTE|    -.06012***     -.78539    -2.65  .0080     -.10457   -.01566 

 PINNOV2|    -.33661***    -2.30572    -4.31  .0000     -.48955   -.18367 

   PRELA|    -.21466***    -2.02929    -2.74  .0061     -.36807   -.06126 

  *PCOST|     .03993**       .52167     2.19  .0283      .00423    .07563 

 *ENVBEN|    -.06924***     -.90462    -3.51  .0004     -.10787   -.03062 

 *SRANGE|    -.08105***    -1.05882    -5.18  .0000     -.11171   -.05038 

        |--------------[Partial effects on Prob[Y=01] at means]-------------- 

*COLLEGE|    -.02481**      -.28523    -2.21  .0274     -.04686   -.00276 

 *SROUTE|    -.03279***     -.37698    -2.98  .0029     -.05439   -.01119 

 PINNOV2|    -.20299***    -1.22354    -4.43  .0000     -.29279   -.11319 

   PRELA|    -.12945***    -1.07685    -2.77  .0056     -.22097   -.03793 

  *PCOST|     .02356**       .27081     2.27  .0235      .00317    .04394 

 *ENVBEN|    -.04019***     -.46200    -3.77  .0002     -.06110   -.01927 

 *SRANGE|    -.06262***     -.71989    -4.32  .0000     -.09106   -.03418 

        |--------------[Partial effects on Prob[Y=02] at means]-------------- 

*COLLEGE|    -.01919**      -.07117    -2.48  .0131     -.03434   -.00403 

 *SROUTE|    -.02446***     -.09072    -3.23  .0012     -.03929   -.00963 

 PINNOV2|    -.18581***     -.36130    -3.81  .0001     -.28141   -.09020 

   PRELA|    -.11849***     -.31798    -2.60  .0094     -.20791   -.02907 

  *PCOST|     .02078**       .07705     2.24  .0254      .00256    .03899 

 *ENVBEN|    -.03482***     -.12914    -3.49  .0005     -.05436   -.01528 

 *SRANGE|    -.09204***     -.34135    -2.99  .0028     -.15240   -.03168 

        |--------------[Partial effects on Prob[Y=03] at means]-------------- 

*COLLEGE|     .05368**       .13046     2.09  .0364      .00341    .10396 

 *SROUTE|     .07158***      .17395     2.79  .0053      .02130    .12186 

 PINNOV2|     .41851***      .53324     4.32  .0000      .22881    .60820 

   PRELA|     .26689***      .46931     2.73  .0064      .07517    .45861 

  *PCOST|    -.04910**      -.11932    -2.22  .0264     -.09244   -.00576 

 *ENVBEN|     .08409***      .20435     3.64  .0003      .03877    .12941 

 *SRANGE|     .09708***      .23591     6.52  .0000      .06791    .12624 

        |--------------[Partial effects on Prob[Y=04] at means]-------------- 

*COLLEGE|     .03496**       .22505     2.30  .0213      .00520    .06472 

 *SROUTE|     .04579***      .29478     3.06  .0022      .01643    .07515 

 PINNOV2|     .30690***     1.03585     4.11  .0000      .16048    .45333 

   PRELA|     .19572***      .91167     2.71  .0068      .05411    .33733 

  *PCOST|    -.03516**      -.22635    -2.24  .0249     -.06588   -.00444 

 *ENVBEN|     .06016***      .38728     3.57  .0004      .02710    .09322 

 *SRANGE|     .13863***      .89243     2.84  .0045      .04288    .23438 

--------+-------------------------------------------------------------------- 

z, prob values and confidence intervals are given for the partial effect 

***, **, * ==>  Significance at 1%, 5%, 10% level. 
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APPENDIX D. MARKET SEGMENTATION  

D1. CLUSTERING PROCEDURE AND NUMBER OF CLUSTERS 

 

Figure D1.1: Scree Plot test (SPSS output) 

 

Table D1.1: Iteration history of clustering algorithm (IBM SPSS) 

Iteration History
a
 

Iteration 
Change in Cluster Centers 

1 2 3 

1 3.308 3.089 3.099 

2 0.194 0.169 0.075 

3 0.188 0.09 0.051 

4 0.167 0.119 0.048 

5 0.071 0.015 0.036 

6 0.021 0.006 0.012 

7 0.035 0 0.02 

8 0.007 0 0.004 

9 0.00 0.00 0.00 

a. Convergence achieved due to no or small change in cluster centers. The 

maximum absolute coordinate change for any center is .000. The current iteration 

is 9. The minimum distance between initial centers is 7.117. 
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                           Figure D1.2: Final cluster centers (SPSS output) 

  

Table D1.2: Post Hoc test 

Dependent 

Variable 

(I) 

Cluster 

Number 

of Case 

(J) 

Cluster 

Number 

of Case 

Mean 

Difference (I-

J) 

Std. Error Sig. 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Opinions on 

ERs 

1 

2 .78106355
*
 0.091252 0 0.601849 0.960278 

3 -.70433257
*
 0.077794 0 -0.85712 -0.55155 

2 

1 -.78106355
*
 0.091252 0 -0.96028 -0.60185 

3 -1.48539612
*
 0.08168 0 -1.64581 -1.32498 

3 

1 .70433257
*
 0.077794 0 0.55155 0.857115 

2 1.48539612
*
 0.08168 0 1.32498 1.645812 
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Table D1.2 continued 

Environmental 

consciousness 

1 

2 -2.00538153
*
 0.072439 0 -2.14765 -1.86311 

3 -1.50215742
*
 0.061755 0 -1.62344 -1.38087 

2 

1 2.00538153
*
 0.072439 0 1.863115 2.147648 

3 .50322411
*
 0.064841 0 0.375881 0.630568 

3 

1 1.50215742
*
 0.061755 0 1.380873 1.623441 

2 -.50322411
*
 0.064841 0 -0.63057 -0.37588 

Safety concerns 

1 

2 0.214633 0.109402 0.03 -0.00023 0.429492 

3 -.45794501
*
 0.093266 0 -0.64112 -0.27478 

2 

1 -0.21463 0.109402 0.03 -0.42949 0.000226 

3 -.67257787
*
 0.097926 0 -0.8649 -0.48026 

3 

1 .45794501
*
 0.093266 0 0.274775 0.641115 

2 .67257787
*
 0.097926 0 0.480257 0.864899 

Habits towards 

driving a car 

1 

2 .36815117
*
 0.108992 0.001 0.154096 0.582206 

3 -.37004865
*
 0.092917 0 -0.55253 -0.18756 

2 

1 -.36815117
*
 0.108992 0.001 -0.58221 -0.1541 

3 -.73819981
*
 0.097559 0 -0.9298 -0.5466 

3 

1 .37004865
*
 0.092917 0 0.187564 0.552533 

2 .73819981
*
 0.097559 0 0.546598 0.929801 

*The mean difference is significant at the 0.05 level. 
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Figure D1.3: Outliers detection (SPSS output) 
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D2. CLUSTERS’ LABELING AND CHARACTERISTICS 

 

 

Figure D2.1: Intention to drive on ERs as soon as ERs become available by cluster 

 

 

 

Figure D2.2: Intention to drive on ERs shortly after ERs become available by cluster 
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Figure D2.3: Intention to drive on ERs in the foreseeable future by cluster 

 

 

 

        Figure D2.4:  Recommendation of driving on ERs to other EV owners/users by cluster 
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        Figure D2.5: Intention to purchase an EV, knowing that ERs are currently available by 

cluster 

 

 

 

Figure D2.6: Intention to purchase an EV, shortly after ERs become available by cluster 
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Figure D2.7: Intention to purchase an EV, knowing that ERs will be available in the 

foreseeable future by cluster 

 

 

 

Figure D2.8: Recommendation of purchasing an EV knowing that ERs will become available 

by cluster 

 

 

 

 



223 

 

 

 

Table D2.1: Clusters’ profile and level of relationship with sociodemographic variables 

Variable categories 
Early Adopters 

(cluster 3) 

Mid-Adopters 

(Cluster 1) 

Late Adopters 

(cluster 2) 

Sample size (%) 291 (48.5%) 166 (27.67%) 143 (23.83%) 

    

Gender (χ
2
 =  31.549, 

df=2, p=0.000) 

   

Male 53.95% 52.41% 26.57% 

Female 46.05% 47.59% 73.43% 

    

Age (χ
2
 =  25.470, df=10, 

p=0.005) 

   

18-24 years old 16.84% 19.28% 18.18% 

25-34 years old 23.02% 18.07% 11.89% 

35-44 years old 18.90% 20.48% 10.49% 

45-54 years old 15.12% 18.07% 20.28% 

55-64 years old 13.40% 12.65% 15.38% 

65 or above 12.71% 10.24% 23.78% 

    

Employment situation (χ
2
 

=  18.854, df=10, 

p=0.042) 

   

Work full time 52.92% 43.98% 32.17% 

Work part time 13.40% 13.25% 14.69% 

Currently unemployed 7.56% 9.04% 11.89% 

Student 7.22% 10.24% 11.19% 

Retired 12.71% 13.86% 20.28% 

Homemaker 5.15% 7.83% 7.69% 

Other 1.03% 1.81% 2.10% 

    

Income level (χ
2
 = 22.982, 

df=12, p=0.028) 

   

<$25,000 16.49% 20.48% 21.68% 

$25,000-$50,000 17.53% 28.31% 28.67% 

$50,000-$75,000 18.21% 15.66% 21.68% 

$75,000-$100,000 19.93% 14.46% 9.09% 

$100,000-$150,000 17.87% 12.65% 10.49% 

$150,000-$200,000 5.15% 4.22% 4.20% 

>$200,000 4.81% 4.22 % 4.20% 

    

Educational level (χ
2
 = 

25.527, df=10, p=0.004)  

   

Grade school or less 0.00% 0.00% 0.00% 

Some high school 2.75% 1.81% 2.80% 

High school graduate 9.97% 23.49% 16.08% 

Technical training beyond 

high school 4.81% 5.42% 7.69% 

Some college 25.09% 30.12% 27.27% 

College graduate 37.46% 28.31% 34.27% 

Graduate school 19.93% 10.84% 11.89% 

 

 



224 

 

 

 

Table D2.1 continued 

Household size (χ
2
 = 

12.501, df=8, p=0.130) 

   

1 person  22.68% 24.10% 31.47% 

2 people 29.21% 28.31% 34.27% 

3 people 17.87% 21.69% 16.08% 

4 people 21.31% 15.66% 11.19% 

5 or more people 8.93% 10.24% 6.99% 

    

Number of children (χ
2
 = 

32.100, df=8, p=0.000)  

   

0 children 59.79% 65.66% 78.32% 

1 child 19.24% 17.47% 9.09% 

2 children 18.56% 10.24% 7.69% 

3 children 2.06% 3.01% 4.20% 

4 or more children 0.34% 3.61% 0.70% 

    

Number of personal 

vehicles (χ
2
 = 16.606, 

df=8, p=0.034) 

   

0 vehicles 3.78% 10.84% 11.89% 

1 vehicle 44.67% 40.96% 42.66% 

2 vehicles 33.68% 27.71% 33.57% 

3 vehicles 13.06% 15.66% 8.39% 

4 or more vehicles 4.81% 4.82% 3.50% 

    

Number of miles driven (χ
2 

= 37.214, df=12, 

p=0.000) 

   

<5,000 miles 6.53% 13.25% 17.48% 

5,000-9,999 miles 17.87% 20.48% 32.17% 

10,000-14,999 miles 27.84% 21.69% 21.68% 

15,000-19,000 miles 18.56% 17.47% 9.09% 

20,000-24,999 miles 10.65% 10.84% 6.29% 

>25,000 miles 9.97% 7.23% 3.50% 

    

Driver’s license (χ
2
 = 

13.812, df=2, p=0.001) 

   

No 5.84% 15.06% 15.38% 

Yes 94.16% 84.94% 84.62% 
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Table D2.2: Clusters’ profile and level of relationship with travel and EV charging related 

variables 

Variable categories 
Early Adopters 

(cluster 3) 

Mid-Adopters 

(Cluster 1) 

Late Adopters 

(cluster 2) 

Sample size (%) 291 (48.5%) 166 (27.67%) 143 (23.83%) 

    

Car sharing or ride-

hailing membership (χ
2
 

=15.168, df=2, p=0.001) 

   

No 65.64% 82.53% 58.74% 

Yes 34.36% 17.47% 3.50% 

    

Car ownership by fuel 

type-diesel (χ
2
 =12.886, 

df=8, p=0.116 ) 

   

0 vehicles 90.03% 89.16% 97.20% 

1 vehicle 6.19% 9.04% 1.40% 

2 vehicles 1.03% 0.60% 0.70% 

3 vehicles 2.06% 0.60% 0.00% 

4 or more vehicles 0.69% 0.60% 0.70% 

    

Car ownership by fuel 

type-gasoline (χ
2
=15.064, 

df=8, p=0.058 ) 

   

0 vehicles 11.68% 16.27% 15.38% 

1 vehicle 48.80% 42.77% 44.76% 

2 vehicles 26.46% 21.69% 30.77% 

3 vehicles 9.28% 16.87% 6.29% 

4 or more vehicles 3.78% 2.41% 2.80% 

    

Car ownership by fuel 

type-HEV (χ
2
=6.846, 

df=8, p=0.553 )    

0 vehicles 95.53% 89.16% 90.91% 

1 vehicle 0.69% 7.83% 5.59% 

2 vehicles 2.41% 1.81% 2.80% 

3 vehicles 1.03% 0.00% 0.70% 

4 or more vehicles 0.69% 1.20% 0.00% 

    

Car ownership by fuel 

type-PHEV (χ
2
=8.147, 

df=8, p=0.419 )    

0 vehicles 85.22% 92.77% 96.50% 

1 vehicle 10.31% 3.61% 2.10% 

2 vehicles 2.75% 1.20% 1.40% 

3 vehicles 1.03% 1.20% 0.00% 

4 or more vehicles 0.69% 1.20% 0.00% 
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Table D2.2 continued 

Car ownership by fuel 

type-BEV (χ
2
 =9.857, 

df=8, p=0.275 )    

0 vehicles 91.41% 90.96% 97.20% 

1 vehicle 5.50% 4.82% 1.40% 

2 vehicles 1.03% 1.81% 1.40% 

3 vehicles 1.72% 1.20% 0.00% 

4 or more vehicles 0.34% 1.20% 0.00% 

    

Previous EV experience 

(χ
2
 =27.409, df=2, 

p=0.000) 

   

No 63.23% 77.11% 86.01% 

Yes 36.77% 22.89% 13.99% 

    

EV charging frequency at 

home (χ
2
=24.175, df=8, 

p=0.002)    

never 11.34% 25.30% 15.38% 

once per week 6.53% 4.22% 4.90% 

a few times per week 7.56% 8.43% 2.80% 

every day 9.28% 4.82% 3.50% 

more than one time per 

day 4.47% 2.41% 0.00% 

N/A 60.82% 54.82% 73.43% 

    

EV charging frequency at 

work (χ
2
=26.355, df=8 , 

p=0.001)    

never 14.78% 24.70% 18.88% 

once per week 4.12% 3.61% 4.20% 

a few times per week 6.19% 6.02% 2.80% 

every day 9.97% 6.02% 0.00% 

more than one time per 

day 2.41% 5.42% 0.00% 

N/A 62.54% 54.22% 74.13% 

    

EV charging frequency at 

public/private stations 

(χ
2
=16.838, df=8, 

p=0.032) 

   

never 14.09% 24.10% 17.48% 

once per week 7.56% 6.02% 5.59% 

a few times per week 7.90% 8.43% 2.80% 

every day 5.84% 3.01% 0.70% 

more than one time per 

day 2.41% 2.41% 0.00% 

N/A 62.20% 56.02% 73.43% 
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Table D2.2 continued 

Type of charger at home 

(χ
2
=4.925, df=4, 

p=0.295) 

   

Level 1AC 7.90% 11.45% 2.10% 

Level 2AC 8.93% 6.63% 3.50% 

DC Fast charge 10.31% 7.23% 1.40% 

n/a 63.23% 57.83% 82.52% 

don’t know 9.62% 16.87% 10.49% 

    

Type of charger at work 

(χ
2
=6.242, df=4, 

p=0.182)    

Level 1AC 6.19% 10.24% 0.70% 

Level 2AC 9.97% 10.24% 2.10% 

DC Fast charge 7.22% 4.22% 2.80% 

n/a 67.01% 60.24% 84.62% 

don’t know 9.62% 15.06% 9.79% 

    

Type of charger at 

public/private stations 

(χ
2
=3.551, df=4, 

p=0.470) 

   

Level 1AC 5.84% 9.04% 0.70% 

Level 2AC 8.93% 7.83% 2.80% 

DC Fast charge 9.97% 8.43% 1.40% 

n/a 64.95% 58.43% 83.92% 

don’t know 10.31% 16.27% 11.19% 

    

Battery level when they 

leave home (χ
2
=21.884, 

df=8, p=0.005)    

less than 50% 4.12% 7.23% 4.90% 

50% 3.78% 6.02% 4.90% 

50%-90% 8.59% 6.63% 2.10% 

Fully charged 25.77% 16.27% 13.99% 

I do not pay attention to 

the battery level 57.73% 63.86% 74.13% 

    

    

Level of awareness 1 

(χ
2
=23.117, df=6, 

p=0.001)    

I have never heard of this 24.05% 32.53% 41.26% 

I think I have heard of 

this 33.33% 35.54% 30.07% 

I have read of it, but don't 

know much beyond the 

description provided 25.43% 22.89% 23.08% 

I am following the news 

about this on a regular 

basis 17.18% 9.04% 5.59% 

 



228 

 

 

 

Table D2.2 continued 

Level of awareness 

2(χ
2
=20.157, df=6, 

p=0.003)    

I have never heard of this 19.59% 28.31% 33.57% 

I think I have heard of 

this 28.18% 30.72% 32.87% 

I have read of it, but don't 

know much beyond the 

description provided 34.02% 30.12% 25.87% 

I am following the news 

about this on a regular 

basis 18.21% 10.84% 7.69% 

Level of awareness 

3(χ
2
=43.078, df=6, 

p=0.000)    

I have never heard of this 36.43% 40.36% 65.73% 

I think I have heard of 

this 19.59% 26.51% 13.99% 

I have read of it, but don't 

know much beyond the 

description provided 29.21% 22.89% 16.78% 

I am following the news 

about this on a regular 

basis 14.78% 10.24% 3.50% 

Level of awareness 

4(χ
2
=42.510, df=6, 

p=0.000)    

I have never heard of this 58.42% 57.23% 84.62% 

I think I have heard of 

this 15.46% 15.66% 6.99% 

I have read of it, but don't 

know much beyond the 

description provided 12.71% 19.28% 6.99% 

I am following the news 

about this on a regular 

basis 13.40% 7.83% 1.40% 
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APPENDIX E. IMPACT ON CRITERIA POLLUTANTS AND GREENHOUSE GAS EMISSIONS 

Table E.1: EMFAC2011, EMFAC2007 vehicle classifications available to select for EMFAC2017 (or EMFAC 2014) 
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LDA Passenger Cars 
EMFAC2011-LDV 

LDA PC 
Non-Trucks Non-Trucks 

EMFAC2011-LDV Non-Trucks Non-Trucks 

LDT1 

Light-Duty Trucks 

(GVWR <6000 lbs. and 

ETW <= 3750 lbs) 

EMFAC2011-LDV 
LDT1 T1 

Non-Trucks Non-Trucks 

EMFAC2011-LDV Non-Trucks Non-Trucks 

LDT2 

Light-Duty Trucks 

(GVWR <6000 lbs. and 

ETW 3751-5750 lbs) 

EMFAC2011-LDV 
LDT2 T2 

Non-Trucks Non-Trucks 

EMFAC2011-LDV Non-Trucks Non-Trucks 

LHD1 
Light-Heavy-Duty Trucks 

(GVWR 8501-10000 lbs) 

EMFAC2011-LDV 
LHDT1 T4 

Trucks Truck 1 

EMFAC2011-LDV Trucks Truck 1 

LHD2 
Light-Heavy-Duty Trucks 

(GVWR 10001-14000 lbs) 

EMFAC2011-LDV 
LHDT2 T5 

Trucks Truck 1 

EMFAC2011-LDV Trucks Truck 1 

MCY Motorcycles EMFAC2011-LDV MCY MC Non-Trucks Non-Trucks 

MDV 
Medium-Duty Trucks 

(GVWR 6000-8500 lbs) 

EMFAC2011-LDV 
MDV T3 

Non-Trucks Non-Trucks 

EMFAC2011-LDV Non-Trucks Non-Trucks 

MH Motor Homes 
EMFAC2011-LDV 

MH MH 
Non-Trucks Non-Trucks 

EMFAC2011-LDV Non-Trucks Non-Trucks 
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Table E.1 continued 

T6 Ag 
Medium-Heavy Duty 

Diesel Agriculture Truck 
EMFAC2011-HD 

MHDT T6 

Trucks Truck 2 

T6 CAIRP 

heavy 

Medium-Heavy Duty 

Diesel CA International 

Registration Plan Truck 

with GVWR>26000 lbs 

EMFAC2011-HD Trucks Truck 2 

T6 CAIRP 

small 

Medium-Heavy Duty 

Diesel CA International 

Registration Plan Truck 

with GVWR<=26000 lbs 

EMFAC2011-HD Trucks Truck 2 

T6 instate 

constructio

n heavy 

Medium-Heavy Duty 

Diesel instate construction 

Truck with GVWR>26000 

lbs 

EMFAC2011-HD Trucks Truck 2 

T6 instate 

constructio

n small 

Medium-Heavy Duty 

Diesel instate construction 

Truck with 

GVWR<=26000 lbs 

EMFAC2011-HD Trucks Truck 2 

T6 instate 

heavy 

Medium-Heavy Duty 

Diesel instate Truck with 

GVWR>26000 lbs 

EMFAC2011-HD Trucks Truck 2 

T6 instate 

small 

Medium-Heavy Duty 

Diesel instate Truck with 

GVWR<=26000 lbs 

EMFAC2011-HD Trucks Truck 2 

T6 OOS 

heavy 

Medium-Heavy Duty 

Diesel Out-of-state Truck 

with GVWR>26000 lbs 

EMFAC2011-HD Trucks Truck 2 

T6 OOS 

small 

Medium-Heavy Duty 

Diesel Out-of-state Truck 

with GVWR<=26000 lbs 

EMFAC2011-HD Trucks Truck 2 

T6 Public 
Medium-Heavy Duty 

Diesel Public Fleet Truck 
EMFAC2011-HD Trucks Truck 2 

T6 utility 
Medium-Heavy Duty 

Diesel Utility Fleet Truck 
EMFAC2011-HD Trucks Truck 2 

T6TS 
Medium-Heavy Duty 

Gasoline Truck 
EMFAC2011-LDV Trucks Truck 2 
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Table E.1 continued 

T7 Ag 
Heavy-Heavy Duty Diesel 

Agriculture Truck 
EMFAC2011-HD 

HHDT T7 

Trucks Truck 2 

T7 CAIRP 

Heavy-Heavy Duty Diesel 

CA International 

Registration Plan Truck 

EMFAC2011-HD Trucks Truck 2 

T7 CAIRP 

constructio

n 

Heavy-Heavy Duty Diesel 

CA International 

Registration Plan 

Construction Truck 

EMFAC2011-HD Trucks Truck 2 

T7 

NNOOS 

Heavy-Heavy Duty Diesel 

Non-Neighboring Out-of-

state Truck 

EMFAC2011-HD Trucks Truck 2 

T7 NOOS 

Heavy-Heavy Duty Diesel 

Neighboring Out-of-state 

Truck 

EMFAC2011-HD Trucks Truck 2 

T7 other 

port 

Heavy-Heavy Duty Diesel 

Drayage Truck at Other 

Facilities 

EMFAC2011-HD Trucks Truck 2 

T7 POAK 

Heavy-Heavy Duty Diesel 

Drayage Truck in Bay 

Area 

EMFAC2011-HD Trucks Truck 2 

T7 POLA 

Heavy-Heavy Duty Diesel 

Drayage Truck near South 

Coast 

EMFAC2011-HD Trucks Truck 2 

T7 Public 
Heavy-Heavy Duty Diesel 

Public Fleet Truck 
EMFAC2011-HD Trucks Truck 2 

T7 Single 
Heavy-Heavy Duty Diesel 

Single Unit Truck 
EMFAC2011-HD Trucks Truck 2 

T7 single 

constructio

n 

Heavy-Heavy Duty Diesel 

Single Unit Construction 

Truck 

EMFAC2011-HD Trucks Truck 2 

T7 SWCV 

Heavy-Heavy Duty Diesel 

Solid Waste Collection 

Truck 

EMFAC2011-HD Trucks Truck 2 

T7 tractor 
Heavy-Heavy Duty Diesel 

Tractor Truck 
EMFAC2011-HD Trucks Truck 2 
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Table E.1 continued 

T7 tractor 

constructio

n 

Heavy-Heavy Duty Diesel 

Tractor Construction 

Truck 

EMFAC2011-HD 

  

Trucks Truck 2 

T7 utility 
Heavy-Heavy Duty Diesel 

Utility Fleet Truck 
EMFAC2011-HD Trucks Truck 2 

T7IS 
Heavy-Heavy Duty 

Gasoline Truck 
EMFAC2011-LDV Trucks Truck 2 

PTO Power Take Off EMFAC2011-HD Trucks Truck 2 

SBUS School Buses 
EMFAC2011-HD 

SBUS SB 
Non-Trucks Non-Trucks 

EMFAC2011-LDV Non-Trucks Non-Trucks 

UBUS Urban Buses 
EMFAC2011-LDV 

UBUS UB 
Non-Trucks Non-Trucks 

EMFAC2011-LDV Non-Trucks Non-Trucks 

Motor 

Coach 
Motor Coach EMFAC2011-HD 

OBUS OB 

Non-Trucks Non-Trucks 

OBUS Other Buses EMFAC2011-LDV Non-Trucks Non-Trucks 

All Other 

Buses 
All Other Buses EMFAC2011-HD Non-Trucks Non-Trucks 
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Table E.2: I-710 geometric characteristics  

Segments Limits Post miles 
Facility 

Type 

Mixed Flow 

Lanes 
HOV Lanes Lane Miles 

1 
Begin Fwy. to I-

405 
4.96-9.41 Interstate 3 7.83 23.49 

2 I-405 to SR-91 9.41-12.97 Interstate 4 3.56 14.24 

3 SR-91 to I-105 
12.97-

R15.69 
Interstate 4 2.72 10.88 

4 I-105 to I-5 
R15.69-

23.28 
Interstate 4 7.59 30.36 

5 I-5 to SR-60 23.28-24.63 Interstate 4 1.35 5.4 

6 SR-60 to I-10 24.63-26.5 Interstate 3 1.85 5.61 

7 
I-10 to Valley 

Blvd. 
26.5-T27.48 State Route 3 2.94 0.98 

(California Department of Transportation, [Caltrans], 2013a) 
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