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ABSTRACT

Nayak, Ashutosh PhD, Purdue University, December 2018. Dynamic Load Scheduling
for Energy Efficiency in a Microgrid. Major Professor: Dr. Seokcheon Lee.

Growing concerns over global warming and increasing fuel costs have pushed the

traditional fuel-based centralized electrical grid to the forefront of mounting public

pressure. These concerns will only intensify in the future, owing to the growth in

electricity demand [1]. Such growths require increased generation of electricity to meet

the demand, and this means more carbon footprint from the electrical grid. To meet

the growing demand economically by using clean sources of energy, the electrical grid

needs significant structural and operational changes to cope with various challenges.

Microgrids (µGs) can be an answer to the structural requirement of the electrical

grid. µGs integrate renewables and serve local needs, thereby, reducing line losses and

improving resiliency. However, stochastic nature of electricity harvest from renewables

makes its integration into the grid challenging. The time varying and intermittent

nature of renewables and consumer demand can be mitigated by the use of storages

and dynamic load scheduling. Automated dynamic load scheduling constitutes the

operational changes that could enable us to achieve energy efficiency in the grid.

The current research works on automated load scheduling primarily focuses on

scheduling residential and commercial building loads, while the current research on

manufacturing scheduling is based on static approaches with very scarce literature

on job shop scheduling. However, residential, commercial and, industrial sector, each

contribute to about one-third of the total electricity consumption. A few research

works have been done focusing on dynamic scheduling in manufacturing facilities for

energy efficiency. In a smart grid scenario, consumers are coupled through electricity

pool and storage. Thus, this research investigates the problem of integrating produc-
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tion line loads with building loads for optimal scheduling to reduce the total electricity

cost in a µG.

This research focuses on integrating the different types of loads from different

types of consumers using automated dynamic load scheduling framework for sequen-

tial decision making. After building a deterministic model to be used as a benchmark,

dynamic load scheduling models are constructed. Firstly, an intelligent algorithm is

developed for load scheduling from a consumer’s perspective. Secondly, load schedul-

ing model is developed based on central grid controller’s perspective. And finally, a

reinforcement learning model is developed for improved load scheduling by sharing

among multiple µGs. The performance of the algorithms is compared against dif-

ferent well-known individualistic strategies, static strategies and, optimal benchmark

solutions. The proposed dynamic load scheduling framework is model free with min-

imum assumptions and it outperforms the different well-known heuristics and static

strategies while obtains solutions comparable to the optimal benchmark solution.

The future electrical grid is envisioned to be an interconnected network of µGs.

In addition to the automated load scheduling in a µG, coordination among µGs by

demand and capacity sharing can also be used to mitigate stochastic nature of supply

and demand in an electrical grid. In this research, demand and resource sharing

among µGs is proposed to leverage the interaction between the different µGs for

developing load scheduling policy based on reinforcement learning.



1

1. INTRODUCTION

1.1 Electrical grid in transformation

US electrical grid is the biggest and the most complex machine ever built serving

318.9 million people. There are about 7,700 power plants that produce and distribute

electricity to homes, businesses and other consumers as shown in Figure 1.1. That

electricity travels through more than 160,000 miles of high-voltage electric transmis-

sion lines that reach into every nook and cranny of the country [2]. The electric

grid also accounted for approximately 37% of energy related carbon dioxide emis-

sions with coal fired and natural gas fired power plants accounting for 71% and 28%

respectively [1].

Fig. 1.1. The USA electrical grid
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The fundamental architecture of todays electricity grid is based on the idea of a

top-down radial transmission system predicated on unidirectional energy flows from

large centralized plants to the consumers [3]. Most of these power plants are fuel

based that use coal and natural gas as shown in Figure 1.2.

Fig. 1.2. Fuel based power plants across USA

This unidirectional flows have led to construction of excess generation capacity

leading to increasing CO2 emissions and consumer’s electricity cost. These concerns

will only intensify in the future, owing to growths in demand [1]. Such growths

require increased generation of electricity to meet the demand, and this means more

carbon footprint from the electrical grid. There is also a concern that increasing

supply cannot meet the growing demand by creating additional capacity as demand

is expected to grow as shown in Figure 1.3. The estimated cost to upgrade the electric
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grid to meet the peak demand is $180 billion and electricity prices are expected to

rise by 2.8% [4].

Fig. 1.3. Growing electricity demand

This concerns stem from the fact that the current electricity grid is aging, inef-

ficient and becoming obsolete. This makes efficient use of electricity critical. Two

statements that confirms the inefficiency of electric grid are:

• The current electric grid has been rated D+ by American Society of Civil En-

gineers

• A statistic by EIA shows for every 1 MW of power consumed by U.S. commercial

and residential customers, rate payers are paying for 2.2 MW of generation and

transmission capacity

These growing concerns over global warming and increasing fuel cost has pushed

the traditional fuel-based centralized electrical grid to the forefront of mounting public

pressure. The electric grid needs transformation and is undergoing the process of

transformation. Two major drivers of this transformation are growing digitization

and improved technology for integration of renewables. A report by Ernst and Young

mentioned that US$500 B worth of investment in digital grid is expected in the

next 5 to 7 years [5]. On one hand, digitization enables in getting real time and

accurate information about electricity consumption and generation, running devices
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at optimal time and automate the system of meeting electrical demands. On the

other hand, improved technology has reduced the electricity cost from renewables

and integration of renewables provide us a clean and cheap alternative to expensive

and carbon intensive electricity from fuel based power plants.

The two major drivers for electric grid transformation can be leveraged by struc-

tural and operational level changes in the grid. Line losses are a major contributor

of inefficiency in the grid. Losses from distribution lines are estimated to be $19.5

billion by 2025. Generating electricity using renewables close to the consumption

point would reduce line loss and build greater resiliency. This local generation while

integrating renewables led to the development of the concept of µGs. Australia plans

to shift to shift to a robust 100% renewable grid. Google plans to be powered 100%

by renewables by 2017. Future electrical grid is envisioned to have high penetration

of µGs with the electrical grid as a network of interconnected µGs.

However, the problem of supply and demand matching is not simple in the case of

electricity because of the stochastic nature of electricity harvest from renewables and

uncertain consumer demand. A real time load serving platform will make decisions

dynamically so that the overall efficiency in the grid could be achieved. This research

is thus motivated by the growing interest in µGs to develop a framework for automated

load scheduling platform that schedules electrical loads dynamically based on the

current information.

Moreover, dynamic automated load scheduling could help in achieving energy ef-

ficiency in µGs. Automated load scheduling framework could integrate the demands

of different consumers and make optimal load scheduling decisions based on global

information. µGs are also important for remote places and countries with poor elec-

tricity infrastructure. µGs could leverage the electricity generated locally without

using distribution line from far-off places, thus, creating a scope for technology skip.
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1.2 Smart microgrid

A Microgrid (µGs) is an electrical grid on a smaller scale with defined electri-

cal boundaries. United States DOE defines a µG as: ”A microgrid is a group of

interconnected loads and distributed energy resources within clearly defined electrical

boundaries that act as a single controllable entity with respect to the grid. A microgrid

can connect and disconnect from the grid to enable it to operate in both grid-connected

and island-mode” [6]. Smart µG is analogous to the smart grid with information shar-

ing, connectivity, coordination and capability of intelligent decisions.

Fig. 1.4. Schematic representation of a µG

Schematic representation of a µG is shown in Figure 1.4 that shows how a µG

interacts with macrogrid and other µGs. The characteristics of µGs as described in [7]

are:

• Ability to operate independently or in cooperation with macrogrid. When µG

need electricity, it connects to macrogrid and disconnects under different unfa-

vorable circumstances such as black out/ brown out events.
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• µGs have defined electrical boundaries and serve local demand.

• Ability to integrate distributed energy resources and storage for clean energy

• Ability to achieve high system performance and efficiency through load control

As mentioned in Section 1.1, the electrical grid based on large centralized power

plants is highly inefficient and increasingly becoming obsolete. µGs can provide an

answer to this inefficiency as they serve local needs, thereby, reducing line losses

and building resiliency. µGs are better equipped to take advantages of smart grid

technologies. Also, the defined electrical boundaries of a µG enables optimal load

scheduling to achieve energy efficiency. The major advantages of µG are:

• µGs help in reduction of distribution losses since electricity is generated close

to its end users.

• µGs strengthen reliability by a bottom-up rather than a top-down approach.

Lawrence Berkeley National Laboratory statistics show that 80 to 90% of all

grid failures begin at the distribution level of electricity service [6].

• µGs can integrate distributed energy resources for cheap and clean energy,

thereby enabling us to achieve energy efficiency. It can also integrate electricity

from consumers into the grid.

• Defined electrical boundaries of µG make it tractable and practically feasible

to implement real-time demand response programs.

The concept of µGs is becoming more popular because of the advantages provided

by µGs e.g. higher reliability, lower operating cost, lower distribution losses, tractable

supply chain and other extraneous factors like lowering cost of solar panels, increased

fuel costs, investment in storage options, incentives by governmental organizations

and increasing penetration of Internet technology [6]. The future grid is envisioned

to be an interconnected network of µGs [8]. The concept of µGs would gradually

become a strong and effective support of the electrical grid system [9]. Navigant
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Research ( [10]) provided a projection of the market capacity of µGs as shown in

Figure 1.5. Navigant Research also provided a projection of installed capacity of µGs

as shown in Figure 1.6.

Fig. 1.5. Projection of µGs market capacity

Fig. 1.6. Projection of installed µG capacity

The objective of an electrical grid is to match electricity demand with supply. The

supply side and demand side of the µGs are discussed in Section 1.2.1 and Section 1.2.2

respectively. Supply side explains the different sources of electrical energy in a µG

and demand side explains the different load types of a consumer which needs to be

served.
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1.2.1 Supply side

A µG integrates renewables into the distribution system for harvesting clean en-

ergy. The renewable sources of energy could be wind farms, solar farms, geothermal

stations or tidal energy. Recently, many areas, even countries have run entirely on

renewables for a day or month. For example Costa Rica ran on wind energy for 2

months [11] and Tesla runs an entire island from solar power [12]. This shows that

if we have enough monitoring and controlling capacity, electrical grid could be en-

tirely run on renewable sources of energy. Annual energy outlook 2015 by US Energy

Information projects electricity generation by fuel types as shown in Figure 1.7.

Fig. 1.7. Electricity generation by fuel type

In this research, we consider that the µGs have solar and wind farms. We assume

that hourly harvest from these resources are independent draws from a normal dis-

tribution with corresponding hourly mean as shown in Figure 1.8 and 1.9 for wind

farm and solar farm respectively. The standard deviation is assumed to be 20% of

the mean.
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Fig. 1.8. Mean hourly harvest from a wind farm

Fig. 1.9. Mean hourly harvest from a solar farm

Biggest challenge to integration of renewables into the grid is their time varying

and intermittent nature. Another challenge is voltage synchronization at the switch-

ing stations. However, in this research we consider direct current µGs assuming that

alternate currents synchronization has been taken care of at the switching stations.

Storages can be used to mitigate the stochasticity of electricity harvest from renew-

ables. Storages can smooth out the fluctuations and provide flexibility in shifting

electrical energy in time and space. Storages can also help in reducing peak load
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profile as energy stored in storage could be used at the time of peak load time in-

stead of running carbon intensive natural gas based peaking power plants as shown

in Figure 1.10.

Fig. 1.10. Using storage for peak load reduction

Storages are generally expensive to build and maintain. There are different electri-

cal energy storage options. A brief introduction to different electrical energy storage

options is provided in this section. They have been discussed in [13] and [14]. Fig-

ure 1.11 shows how the deployment of energy storage systems has increased and is

projected to increase. In this research, it is assumed that there is a battery storage.

Sensitivity analysis is conducted on different battery capacities.

Battery storage has been used extensively in our day to day life such as in mobile

phones and computers. In batteries, electrical energy is stored as chemical energy

and discharged when required. Major types of battery storages include lithium ion

batteries, sodium sulphur battery, nickel based battery, zinc based battery, hydrogen

fuel cells and, lead acid batteries. More advancements is underway for developing

batteries with enormous storage capacity.

Hydroelectric storage plants pump water to higher the dam when there is excess

electricity in the grid. During peak demand period, water is released through the gates
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Fig. 1.11. Projected increase in energy storage systems

to run turbines which generate electricity. Similarly, compressed air energy storage

compresses air during off-peak period which could be used to generate electricity

during the peak hours.

Electrochemical capacitors perform similar to the lithium ion batteries that store

electrical energy in two series capacitor of the electric double layer. Thermal energy

storage stores electrical energy in the form of heat energy. For example, heat is

stored in the heat sink during off-peak period which could provide heat during the

peak periods. It has been deployed mostly at community level. Energy can also be

stored in molten salt as heat sink. Flywheel energy storage stores electrical energy in

the form of kinetic energy. It is based on spinning a weighted mass at the end of a

shaft for generating electricity.

Electric vehicles can also be used as an energy storage that can be charged during

the off-peak hours and discharged during the peak hours to minimize the electricity

cost. This technology is gaining popularity as the demand for electric vehicles is

growing. The growth of different storage technologies in terms of storage capacity is

shown in Figure 1.12.
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Fig. 1.12. Energy storage systems by market capacity in MW

µGs can buy electricity from the Macrogrid when required. Electricity is drawn

through points of common coupling as shown in Figure 1.4. A µG is connected to

other µGs and through points of common coupling. If the demand cannot be met

by the energy resources of the µG, electricity is bought from the Macrogrid or other

µGs based on the contract. In this research, it is assumed that a µG pays Macrogrid

based on TOU tariff and the TOU tariff of electricity from Macrogrid is higher than

that of µG.

With increasing penetration of renewables such as solar roofs, electric vehicles

and, wind mills, even consumers can provide electricity to the µG when required

( [15] and [16]). For example, electrical energy stored in electric vehicles can be

sold back to the grid at a time when electricity is expensive. A factory can sell the

excess harvest to the grid from the wind mill installed at the factory location. Selling

back electricity requires two directional electricity flow which has its own technical

challenges.



13

1.2.2 Demand side

Demand side in a µG consists of consumer loads. In this research, we consider that

a consumer may be a residential house, a commercial building or a manufacturing

facility. All the consumer types have different types of electrical loads. Some loads can

be shifted in time and some cannot, thus are called shiftable and flexible loads. There

are some industrial loads, particularly, production line loads that are characteristically

different from other load types [17]. Definition of different load types is provided

in [18].

Definition 1. Non-shiftable loads/ base loads

Non-shiftable loads cannot in time and have to be served when requested. Examples

of non-shiftable loads include refrigerator, medical devices in hospitals and, clean

room in semiconductor factory. Non-shiftable loads cannot be known exactly and

it is estimated for different time slots for every consumer. For a consumer i, the

non-shiftable loads are represented as T nsi [t] = Lnsi [t].

Definition 2. Time-shiftable loads

Time shiftable loads are flexible loads as they can be shifted in time. Time shiftable

loads have a minimum start time and the objective is to minimize the waiting time

for its operation [19]. They also have latest finish time by which it should be served.

The earliest start time and latest finish time form the time window constraints for

the time shiftable loads. Examples of time shiftable loads include washing machine,

floor cleaning machines and, a job processing machine. Time shiftable loads are

uninterruptible loads that run at constant power. For a consumer i, rth time shiftable

load is expressed as a 4-tuple T tsi,r = {tts,mini,r , tts,maxi,r , Ltsi,r, tri,r} where tts,mini,r is the

earliest start time, tts,maxi,r is the latest finish time, Ltsi,r is the power demand and, tri,r

is the time duration for which the load is to be run. In this research, since we consider

discrete time models, tri,r is expressed in number of time slots. Time shiftable loads

are associated with decision variables xtsi,r[t] where xtsi,r[t] = 1 if the load is running at

time slot indexed as t and xtsi,r[t] ∈ {0, 1}.
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Definition 3. Modifiable power loads

Modifiable power loads are flexible loads as they can be served at different power

levels. Modifiable power loads have time window constraints such that the total

energy requirements should be met within their time window. Since energy is equal

to power times time, total energy requirement can be met by supplying varying power

to the load. Modifiable power loads are interruptible. bhosale et.al ( [20]) used the

term power shiftable loads for modifiable power loads. Examples of modifiable power

loads include PHEV, Heating and, Air conditioner. For a consumer i, hth modifiable

power load is expressed as a 5-tuple T psi,h = {tps,mini,h , tps,maxi,h , Lpsi,h, L
ps,min
i,h , Lps,maxi,h } where

tps,mini,h is the earliest start time, tps,maxi,h is the latest finish time, Lpsi,h is the total energy

demand, Lps,maxi,h is the minimum power supply demand and, tps,maxi,h is the maximum

power supply demand. Modifiable power loads are associated with decision variables

xpsi,h[t] where xtsi,r[t] ∈ R+.

Definition 4. Production line loads

Production line loads are involved in production operations e.g. machining, assembly

and processing. These loads are different from other loads because of their properties

e.g. sequential completion of jobs, state change cost such as switching a machine state

from on to off, machine selection flexibility of jobs, flexibility to change processing

speed and, uniterruptability. Different manufacturing set-ups have different arrange-

ment of their production line and the properties of production line loads change

with the manufacturing set-up. In this research, we consider that loads ancillary to

production line e.g. transportation are included in hourly estimate of non-shiftable

loads. Some industrial loads like HVAC, PHEV in parking or clean room have been

accounted for in different load types discussed above. Decision variables associated

with production line loads include job sequence, job selection, machine selection,

processing speed selection and assignment of these decision variables over time. Inte-

grating production line loads with other consumer and load types is one of the major

theme of this research.
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The mean hourly demand for the non-shiftable loads can be estimated as its time

average remain close to constant over long period. It is assumed the distribution of

hourly demand is normally distributed with mean shown in the following data and

standard deviation is 30% of the mean.

Fig. 1.13. Mean hourly demand for non-shiftable loads: residential house

Fig. 1.14. Mean hourly demand for non-shiftable loads: commercial building

Fig. 1.15. Mean hourly demand for non-shiftable loads: factory
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1.3 Automated load scheduling

Energy efficiency is based on real-time demand and supply matching of electricity.

Traditionally, supply is managed based on the predicted demand. However, energy

efficiency could be achieved by optimal load scheduling. With growing electricity

demand, access to electricity in remote areas, smart devices and integration of re-

newables into the grid, the problem of energy efficient load scheduling becomes very

complex and practically impossible to solve using predictive modeling. Moreover,

dynamic changes and stochasticity in the system adds complexity and dimensional-

ity to the problem. Nonetheless, the increased complexity provides a motivation for

automated load scheduling.

Automated load scheduling is defined as autonomous answer by a central con-

troller called System Operator (SO) to the following question - at any given time,

how much load of which consumer is served? The given problem is a scheduling

problem as it can be seen as a time indexed assignment problem where loads are

assigned to different times based on the available resources. Since this assignment is

very complex due to the size and stochasticity, an autonomous controller solves the

assignment using global information such that fairness is maintained in the system.

This research proposes a framework for automated load scheduling. Automated load

scheduling has certain prerequisites. The Major prerequisites include Internet connec-

tivity and smart devices. Internet connectivity is required for real-time information

sharing and smart devices are required for responding to messages from controllers.

Participation of consumers is also required as scheduling decisions are made based

on global information. Figure 1.16 shows the major application areas of IoT. The

figure shows that the number of intelligent and ICT enabled smart devices e.g. home

appliances, industrial machines and smart meters that comply with the objectives

of automated load scheduling are becoming popular and being deployed increasingly.

This shows that the proposed automated load scheduling framework is critical for

future electrical grid infrastructure.
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Fig. 1.16. Most popular IoT applications

Automated load scheduling has also drawn interest of the researchers. The inter-

action between DLCs and SO studied in this research have been studied with different

names. Song et. al [21] considered information exchange between DLCs and utility.

DLC devices have been studied as energy boxes [22] and energy Macro hubs [23].

Mohsenian et.al [19] studied load scheduling for residential houses through an energy

scheduler. Amir et. al [24] considered energy consumption scheduler for autonomous

load scheduling. Hu et. al [25] introduced home energy management systems for load

shifting. Load management in smart homes by retail electricity provider is studied

in Vasinrani et. al [18]. Bhosale et. al [20] used the term controller unit for optimal

load shedding with residential consumers. Saad et.al [26] studied communication in-

frastructure for autonomous load scheduling. Energy management system [27] and

energy hub management system [23] performed automatic load scheduling in their

research. Huang et. al [28] used central controller for energy sharing. Wang et.

al [29] studied automated load scheduling as interaction between consumer, power

grid operator and electricity distributor. Intelligent energy scheduler was in charge of

electricity distribution among energy users [30]. Siemens has developed an advanced

µG management software to dynamically control distributed power generation as per

their press release in February 2015 [31].

Automated load scheduling has several advantages as:
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• Electricity price changes with time. A consumer need not worry about chang-

ing electricity prices as the framework ensures overall minimum electricity cost

in the µG whose benefits are transferred to the consumers. it will also help

in avoiding rebound effect caused by scheduling multiple loads at the time of

minimum cost.

• Information sharing is real-time, thus scheduling decisions can be made based

on global information from the electricity demand side and supply side without

human intervention.

• Scheduling of different loads is accounted for by the framework. This could

enable customized analysis of electricity consumption for the consumers. For

example, a consumer can be provided information on total electricity usage by

their HVAC.

Privacy is a major concern for consumers. A schematic representation of the

automated load scheduling framework is shown in Figure 1.17. The arrows represent

the flow of information and the numbers in black circle represent the sequence of

information flow. Automated load scheduling is performed by controllers at two

levels - DLCs installed at consumers’ location and SO at the µG monitoring center.

DLCs are connected to different devices and control when to run these devices. The

consumers interact with SO through DLCs. Thus, a consumer actually requests

demand to the DLC which sends a request to SO in every time slot. SO do not

have full information of the different loads. After receiving message from SO, a DLC

runs the devices to serve the requests by the consumer. These request could be given

by the consumers to DLCs either for the next day or dynamically throughout the

day. Thus, the proposed framework ensures privacy of the consumers as consumer

information does not go beyond her/his DLC.

The automated load scheduling is modeled as a dynamic scheduling problem with

N participants and one manager. DLCs represent the participants and SO represent

the manager in dynamic scheduling framework. The dynamic scheduling problem is
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Fig. 1.17. Schematic representation of automated load scheduling

repeated over a sequence of time slots t ∈ {0, 1, 2, ..., T} and there are random events

in every time slot. The random events include electricity harvest from renewables and

dynamic requests from consumers({r1[t], r2[t], ..., rN [t]}). The manager observes the

random event vector ({wo[t], r1[t], r2[t], ..., rN [t]}) but the participants observe only

their respective random event (wi[t]). This also ensures privacy of the consumers as

the information of one consumer is not revealed to other consumers. The objective

of the manager is to maximize the utility function
∑T

t=1 φ(ui, u2, ..., uN). The utility

function may take different forms based on the objective.

In every time slot t, a participant i sends request ri[t] to the manager. Thus, the

manager observes the request vector {r1[t], r2[t], ..., rN [t]}. The manager runs Opti-

mizer1 to find optimal message vector {m1[t],m2[t], ...,mN [t]}. Based on the message

vector, a participant performs an action ai[t]. As assumed that the participants par-

ticipate in the game, ai[t] ≤ mi[t], ∀i ∈ I ∀t ∈ T . The action message ai[t] determines

which load is served by DLC of player i based on result from Optimizer2.

One of the major concerns with automated load scheduling framework (or with

any connected system) is security threat. For this research, it is assumed that the

system is secure. We also assume that the Internet connectivity is uninterrupted for

smooth flow of information and control of smart devices.
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1.4 Reinforcement Learning

Reinforcement learning and machine learning are at the forefront of Artificial

Intelligence. With increased computational power, recent successes, advancements

and research interest in AI, the question of Singularity is looming. Conceptually,

reinforcement learning mimics the nature as to how a person learns the world by

exploring different options based on the rewards they get. Reinforcement learning

consists of agents, environment, system dynamics and rewards. The objective of an

agent it to maximize the cumulative rewards they get till the end of the game life.

Recently, Deep reinforcement learning method has achieved human level expertise

in certain games like Atari and AlphaGo. Artificial system by Google’s Deep mind

defeated the World champion Lee Sudol in the game of Go. A large number of big

companies have started an Artificial Intelligence arm, that aims at building differ-

ent applications of reinforcement learning. There is some research in reinforcement

learning in smart grid, but it is limited and solves problems with small action space.

Reinforcement learning aims at building computational and mathematical mod-

els with the goal of solving computational problems. It has shown connections to

the science of Psychology and neurosciences [32]. In their textbook, Sutton and

Barto explained the relationship between the mathematical models used in modern

reinforcement with the traditional models developed by psychologists and neurosci-

entists. An famous example is Pavlov’s experiments that maps states to rewards,

thus making the dog to perform according to the maximum reward without actually

understanding the outside stimulus.

The schematic representation of the steps involved in reinforcement learning is

shown in Figure1.18. The agent explores the environment to learn the unknown re-

wards and system dynamics. After learning the environment, the agent takes decisions

such that the cumulative rewards is maximized. We use the concept of reinforcement

learning and machine learning in this research to convert reinforcement learning prob-

lem into a supervised machine learning problem for dynamic load scheduling.
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Fig. 1.18. Reinforcement learning iterative procedure

While the reinforcement learning has achieved significant progress and success, the

applications of modern reinforcement learning techniques has been limited to games

and toy robotic problems. Traditional reinforcement learning methods with policy

and value iteration techniques have been applied in real problems but the scope of

those methods is limited as it can be used only for problems with small action or

state space. In this research, we used modern reinforcement learning techniques

to develop a framework for the complex problem of dynamic load scheduling. The

problem is complex because of the size of the problem, the size of the action and state

space, partial observability of the states and underlying uncertainties. A model free

method is developed in this research that considers minimum assumptions about the

distribution of stochastic variables.
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1.5 Research problem and contribution

This research aims at developing a framework to achieve electrical energy efficiency

in a µG using dynamic load scheduling. The framework is based on automated

and dynamic load scheduling with minimal assumptions about the future events and

partial information sharing to protect consumer privacy.

A µG has different types of consumers with different types of electrical loads.

Each of these load types have their characteristic properties. These demand can

be met by the electricity supply from different energy sources including renewables.

The renewables provide a cheap and environmental friendly alternative to expensive

electricity from fuel-based power plants. However, the time varying and intermittent

nature of the renewables makes the task of integrating them into the electrical grid

challenging. Also, demand from the consumers are not deterministic and changes

with time. The focus of this research is to dynamically schedule loads (electrical

demands) from the consumers at optimal time to achieve energy efficiency in the µG

measured in terms of the total electricity cost of the consumers. The models also

investigate the design problem of storage sizing through trade-offs between different

storage sizes and total electricity cost.

The major contributions of this research include:

• Developing a framework for integrating building loads with production line loads

from different types of consumers

• Developing a dynamic load scheduling model for automated online load schedul-

ing with partial information sharing

• Developing a generalized framework for online sequential load scheduling deci-

sions using reinforcement learning
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1.6 Organization of the thesis

The remaining of this Thesis is organized as per the following sequence. In Chapter

2, literature relevant to each of the research topics is reviewed to identify gaps in the

literature and use existing literature to build on this research. Chapter 3 presents

mathematical models for automated load scheduling and storage sizing with a single

process parallel machine shop. The models in Chapter 3 are based on complete

information sharing to develop a foundation for Chapter 4. Chapter 4 considers

dynamic scheduling in a complex job shop environment while considering on site

energy harvest and future estimations. Chapter 5 presents a dynamic scheduling

model for dynamic load scheduling using partial information sharing. In Chapter

6, a framework for reinforcement learning is presented that could be generalized to

different online problem environment under certain conditions.

Table 1.1.
Organization of the thesis

Chapter Title

Chapter 1 Introduction

Chapter 2 Literature Review

Chapter 3 Storage Sizing and Optimal load scheduling

- Static approach using mixed integer linear programming

- Dynamic approach using Lyapunov optimization

Chapter 4 Intelligent algorithm for dynamic job shop scheduling

Chapter 5 Dynamic load scheduling with Partial Information Sharing

Chapter 6 Reinforcement learning for end-to-end dynamic load scheduling
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2. LITERATURE REVIEW

Electricity supply chain is a vast area of research and involves a lot of domains e.g.

engineering, management, economics, government, utility companies, policy makers

and, consumers. The major focus of this research is to develop framework and mod-

els to achieve energy efficiency in electrical grid through operational practices. In

this chapter, literature review is provided for the approaches, problems and solution

methodology adopted in the literature.

Energy efficiency can be achieved by using energy efficient devices, newer ma-

chines, transmission and distribution lines with lesser energy losses, high capacity

storage and, highly efficient power plants. However, these methods require huge in-

vestment and could not accommodate the existing infrastructure. Another method is

using the available energy efficiently through operational practices such as changing

the demand pattern of consumers, increasing the utilization of the electricity genera-

tors and increasing the reliability of the grid by using distributed electricity resources.

Different problems have been solved as part of achieving energy efficiency in the grid.

The definitions of these problems with some previous works are provided as follows:

Definition 5. Demand response (DR)

DR refers to the mechanisms that the utilities use to encourage consumers to curtail

or shift their load in order to reduce aggregate demand at particular times [33]. DR

is poised to play an important role in the smart grid [34]. DR can be price driven

or event driven ( [35], [36]). DR programs have limits on the number of events it

can trigger [36]. Chen et. al [36] state that DR programs could be instrumental in

reducing peak demand but to achieve the desired goal, DR programs must be used

judiciously, i.e., when peak loads are very high and by spreading the DR participation

fairly across all customers [37].
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Definition 6. Demand side management (DSM)

DSM refers to the load control actions taken by the consumers in response to the

DR strategies of the utilities. DR and DSM are often used interchangeably. DSM is

from the consumer’s side while DR is set from the utilities side of the electrical grid.

Demand task scheduling based on the controlled release threshold policy developed

in Koutsopoulos et. al [38] aims at minimizing the grid operational cost over the time

horizon. Imamur er.al [39] proposed a genetic algorithm approach to match the load

profile with optimal coast based load profile. Vasirani et.al [40] proposed joint demand

profile model of smart consumer load balancing, where consumers actively participate

in the balancing of demand with supply by forming groups to be contracted in the

market through an aggregator.

Definition 7. Unit commitment (UC)

UC problem is defined as an optimization problem to solve generation schedule of

electricity generating plants. The decisions include which plants to be turned on,

when and run at what levels. UC problem considers non-shiftable loads with known

demand distribution. Carpetier [41] adopted a stochastic approach to solve UC for

generating optimal supply curves. [42] Logenthiran et. al studied UC for microgrids

working in an islanded state. The problem also includes selection of renewable power

plants [43]. Review of UC problems and different solution approaches is provided

in Saravanan et. al [44]. Review for stochastic optimization for UC is discussed in

Zheng et. al [45].

The focus of this research is to develop models to enable us to achieve energy

efficiency in the µGs through automated load scheduling. Automated load scheduling

integrates the different problems as:

• SO sends messages mi[t] to DLCs and load are scheduled by DLCs based on

these messages. Thus, SO sends Demand Response signals which is followed by

the consumers through their respective DLCs. This response to SO messages is

the Demand Side Management by consumers.
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• Integrating load scheduling with supply side aims at obtaining the optimal

schedules for running fuel based electricity generators. This is the integration

of Unit Commitment in µG.

2.1 Electrical grid

The electrical grid is an interconnected network for delivering electricity from

suppliers to costumers [46]. The current electric grid is aging and needs significant

changes to meet the growing demand. Demand for electricity is growing at a much

faster rate than what can be met through expansion of the conventional grid. Uncer-

tainty in demand and generation and volatility by penetration of renewable resources

bring great challenges in grid management [43]. Since the electricity cannot be stored

because of very small storage capacity, fluctuations in demand can be met by over

production which makes the grid inefficient. Grid generates electricity to meet peak

demand and rest of the capacity is underutilized most of the times [47]. It shows that

current electrical needs a revamp and major structural and operational changes.

One of the structural changes include converting the electrical grid into an in-

terconnected network of µGs as discussed in Section 1.2. µGs will gradually be a

strong and effective support for the main power grid and potentially one of the future

trends of power system [48]. The future electrical grid is envisioned to be a network

of interconnected µGs( [8], [3], [7], [49], [50]). One of the operational changes include

active participation of consumers in load scheduling as discussed in Section 1.3. The

focus of this research is to develop a framework to solve automated load scheduling

problem in a µG.

2.2 Energy efficient scheduling (EES)

This research aims to integrate different types of consumers in a µG in load

scheduling. Industrial consumers have production line loads that are different from

other types of load discussed in Section 1.2.2.
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2.2.1 EES in residential houses and commercial buildings

Number of smart homes with smart devices capable of intelligent load manage-

ment are increasing rapidly as shown in Figure 1.16. Some of the works consider a

single house or commercial building while some of the works include a cluster of house

and commercial buildings in a neighborhood. Thus, the load scheduling for residential

houses and commercial buildings has been studied but independent of industrial con-

sumers. Mohsenian et. al( [19]) developed load scheduling model for residential loads

under real-time pricing policy. Amir et. al [24] proposed autonomous demand side

energy management in a static system among residential consumers. Fuller [34] pro-

vided an analysis for price based DR in residential consumers. Vasirani et. al ( [18])

proposed an optimization model for demand supply balance based on aggregating

load profile of consumers. Bakr and Cranefield [51] considered optimal load schedul-

ing in a residential neighborhood through demand aggregation. Energy consumption

of certain appliances in a household is studied by Baharlouei et. al [52]. Wu et. al [30]

developed an approximation algorithm for optimal load scheduling among residential

consumers. Song et. al [21] developed non-stationary load scheduling strategies using

game theoretic approach for residential consumers. Huang et. al ( [28]) developed

optimization model for minimizing total electricity cost by sharing among residential

consumers. Bhosale et.al( [20]) proposed a framework for consumption scheduling

among residential consumers. Hu et al. [25] considered load shifting for minimiz-

ing total electricity cost in a residential house. Home energy management aimed at

maintaining comfort levels is shown studied in Liu et. al [53].

2.2.2 EES in industries

Energy efficient scheduling has attracted researchers and is being studied exten-

sively. Gahm et. al [54] and Giret et. al [55] presented a nice literature survey on

energy efficient load scheduling in industries. The industrial loads are significantly

different from residential and commercial building loads [17]. Magnitude and ability
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to control their demand makes industries good candidate for inclusion in DSM and

DR practices [56]. Starke et. al [57] explains why industries are more ready for DSM

than residential an commercial sector. May et. al [58] develops 7 KPIs for energy

efficiency in production systems. Role of information systems in energy management

for efficiency is discussed in Zampou et. al [59]. Energy management in industry 4.0

scenario is discussed by Shrouf et. al [60].

Figure 2.1 shows different levels at which the energy efficient optimization prob-

lems are formulated for industries. In Level 1, DR strategies are formulated by the

utilities as part of the strategic planning. At Level 2, industries formulate optimiza-

tion problems to achieve their individual objectives as part of process planning. At

Level 3, industries formulate optimization problems for a particular process in process

planning as part of operational planning ( [61], [62], [63], [64], [65]). The focus of this

research is on integrating strategic planning with process planning such that overall

efficiency in a µG can be achieved to enable energy efficiency in the electrical grid.

Different architectures and conceptual designs for sustainable manufacturing have

been presented by researchers. Trentesaux et.al [66] proposed green Holons for man-

ufacturing systems. Thomas et.al [67] leads a discussion on using intelligent manu-

facturing systems and services for sustainability. [68] provided a quantitative report

on potential energy savings from multi-robot assembly systems. Different approaches

and trends in sustainable manufacturing is discussed in Trentesaux and Prabhu [69].

In this section, a brief taxonomy is presented in Figure 2.2 that shows gaps in the

literature. Each cell in Figure 2.2 is represented by W (w) where W is the cell reference

and w is the number of research articles found according to the taxonomy. The

reference for the research articles is shown in Table 2.1. It can be seen from Figure 2.2

that the research on job shop scheduling, particularly dynamic scheduling is scarce.

Static scheduling refers to the schedules that are fixed and not changed over next

time periods. Reactive scheduling refers to the schedules that are changed or revised

based on the current state or future expected state. Dynamic scheduling refers to

developing load schedules based on the current information. Exact approach considers



29

Fig. 2.1. Schematic representation of a µG

solution approaches that guarantee an optimal solution. Heuristics approach considers

problem specific heuristics and meta-heuristics to solve the problem. Simulation

approach refers to a simulation model built in the paper. Some paper considered

analytic approaches to analyze the results but did not consider finding the optimal

value of the objective function.

Static manufacturing Scheduling in Smart Grid Scenario

As it can be seen from Figure 2.2, most of the existing works in manufacturing

scheduling are in static scheduling models for flow shop problems. Nayak et. al

( [70]) discuss the use of a static scheduling approach using Genetic Algorithms for

multi-objective flow shop scheduling problem. The article showed that the scheduling

problems can be solved only for the simplest case of manufacturing scheduling. Even
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Fig. 2.2. Taxonomy for industrial energy efficient scheduling

for the simplest case, it could not be solved for more than 2 machines. Evolutionary

computing was employed to solve the multi-objective problem. However, the static

scheduling models based on evolutionary algorithms might not be useful in a smart

grid scenario due to the following reasons:

• static scheduling models either neglect the real time fluctuations in stochastic

variables e.g. electricity price, consumer demand, energy from renewables or

they assume perfect information from stochastic variables which is impractical

• static scheduling models do not consider real-time information. When renewable

sources of energy are considered, this might lead to significantly poor solutions

[71].

• static scheduling models could be used in multi-stage scheduling e.g. taking

recourse action. However, since it is already difficult to solve the scheduling
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problem, taking recourse action might not be feasible in dynamic scheduling

based on real - time information.

These shortcomings of static scheduling models with respect to the smart grid has

recently drawn the attention of the researchers in dynamic scheduling models. A

large proportion of existing works on dynamic scheduling models is in the field of

communication networks. In these problems, there are no external stochastic variables

as against smart grid. These stochastic variables in smart grid makes the problem

more complex.

This Section is not intended to belittle the evolutionary computing methods. It is

an observation that evolutionary computing methods may not be applicable in smart

grid scenario in its current form. Even though the static scheduling problems may

not be useful for smart grid scenario, the existing standard evolutionary methods can

be modified to suite the needs of the dynamic nature of the smart grids as explained

in the future directions in Section 6.8.

Dynamic manufacturing Scheduling in Smart Grid Scenario

As argued in the previous section, dynamic scheduling models are more useful

for smart grid scenario due to its ability to capture real-time information and han-

dle the uncertainty in stochastic variables. In this research, the focus is on dynamic

scheduling in job shop manufacturing facility. Hao et. al [72] discussed a flow shop

problem in smart grid scenario, however, the Job shop manufacturing scheduling has

not received much attention in literature. Dynamic scheduling has computational

advantage as the the problem need not be pre-solved. Also, dynamic scheduling can

handle online demand (customer requests) which static approach assumes full infor-

mation of future demands. Based on the gaps as shown in through the Table 2.2, this

research discusses a dynamic load scheduling in job shop manufacturing environment

from consumer’s perspective in Chapter 4.
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Table 2.1.: Research papers in Figure 2.2

Cell Research papers Cell Research papers

1 - 2 [73], [74], [75], [76], [77], [78],

[79] , [80], [81], [82], [83], [84],

[85], [86], [87]

3 [88], [89], [90], [91], [92], [93],

[94], [95], [96], [97], [98], [99],

[100] , [101], [83], [84], [102],

[103]

4 [104], [82]

5 [105], [106], [91], [107], [108],

[109]

6 [73], [105], [106], [88], [90],

[92], [93], [95], [98], [80], [100]

, [83], [84], [104], [85], [103]

7 [74], [75], [78], [79], [89], [91],

[107], [92], [94], [96], [97], [99],

[81], [82], [101], [82], [102],

[108], [86], [87]

8 [76] [77], [96]

9 [101], [109] 10 [89], [94], [101]

11 [73], [105], [106], [78], [79],

[88], [90], [91], [107], [92], [93],

[95], [96], [97], [98], [80], [99],

[100], [81], [82], [110], [83], [84],

[104], [82], [102], [108], [109],

[85], [103]

12 [74], [75], [86]

13 - 14 [111], [112]

15 [113], [114], [115], [116], [110],

[110], [117]

16 [118], [119], [120], [121], [91],

[122], [123], [124], [125] [126]

17 - 18 [127]

continued on next page
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Table 2.1.: continued

Cell Research papers Cell Research papers

19 [118], [119], [120], [121], [113],

[114], [115], [127], [123], [116],

[110], [110], [117], [125]

20 [122], [115], [116], [124]

21 [111], [128], [91], [126] 22 -

23 [127] 24 [118], [119], [120], [111], [128],

[121], [113], [114], [115], [127],

[123], [116], [124], [110], [117],

[125]

25 [91], [122] 26 -

27 [129], [130], [131], [132], [133],

[126], [134]

28 [135], [135], [136], [137], [138],

[139], [140], [141]

29 [129], [142], [143], [144], [145],

[146], [133], [147], [148], [149],

[150], [103], [140], [151], [152],

[134], [153], [154]

30 [135], [135], [130], [142], [132],

[138], [155] , [156], [87]

31 [157], [131], [158], [159], [157] 32 [129], [130], [142], [131], [158],

[137], [159], [145], [133], [147],

[148], [103], [140], [151], [140],

[153]

33 [157], [136], [138], [143], [144],

[139], [155] , [157], [156], [149],

[134], [150], [152], [134], [141],

[154]

34 -

35 [146] 36 [157], [156], [133], [147], [148]

continued on next page
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Table 2.1.: continued

Cell Research papers Cell Research papers

37 [157], [135], [135], [129], [130],

[142], [131], [137], [138], [159],

[143], [144], [139], [145], [146],

[155], [134], [150], [103], [140],

[151], [152], [134], [140], [141],

[153], [154]

38 [158], [149]

39 - 40 -

41 [160], [161], [162], [163], [164],

[165], [166], [167], [168], [169],

[170], [171], [172], [173], [168]

42 [174], [156], [175], [176], [177],

[178], [179]

43 [180], [181] 44 [160], [182], [183]

45 [160], [176], [165], [166], [167] 46 [174], [156], [162], [180], [181],

[175], [177], [163], [169], [164],

[167], [168], [170], [171], [172],

[173], [178], [168], [182], [183]

47 [161] 48 [179]

49 [132], [161], [174], [169] 50 [136], [132], [160], [174], [156],

[162], [177], [163], [164], [165],

[166], [180], [181], [175], [176]

[167], [168], [170], [182], [171],

[172], [173], [178], [168], [182],

[183]

51 [184], [179] 52 -

53 - 54 [185], [186], [187]

55 [185], [188] 56 -

continued on next page
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Table 2.1.: continued

Cell Research papers Cell Research papers

57 - 58 [185]

59 [187] 60 [186]

61 [188], [186] 62 -

63 [185], [187] 64 [188]

Few works consider integrating supply side with demand side. Logenthiran et.

al [42] studied short term generation scheduling in µGs. Central and local energy

management is studied in [22]. Khodaei et. al [189] developed a co-optimization

model for µG investment planning on generation and transmission lines. [190] studied

trade-offs between storage capacity and total electricity cost for storage sizing when

multiple µGs interact. [191] studied an integrated model for storage sizing and energy

management in a µG.

Literature on integrating all the consumers, particularly industrial consumers with

different production line loads, is scarce. Zhang et. al [192] considered integrating

industrial load scheduling with residential and commercial consumers for cost mini-

mization of industrial consumers given information on the energy usage from other

consumers. Fin et. al [193] studied electricity consumption pattern between two in-

dustries under real time pricing. Young et. al [194] presented an analysis into energy

consumption in production line along with manufacturing robots. Zhang et. al [195]

developed real-time pricing model for collaborative industries. However, the work

did not consider residential or commercial consumers. Sun et. al [196] considered

integration of manufacturing loads with HVAC systems.

This research identifies two major gaps as listed below and focuses on them to

bridge the gap in the literature in the capacity of µGs.

• Dynamic scheduling for flexible job-shop has not been discussed in the literature

as pointed out in Stock et. al [197]
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• Most of the work does not integrate different types of consumers in a smart grid

scenario and solve for different consumer types independently

• most of the existing works consider either a consumer’s perspective or a grid

operator’s perspective. This research focuses on integrating the two perspec-

tives.

Adoption of µGs is challenging and requires an interdisciplinary effort from en-

gineering, economists, academia, industries and government. Kema technologies [7]

lists the different challenges to be faced before bringing MGs to mainstream. Due

to the different sources of generation, µGs face technical difficulties in voltage and

frequency regulation [9]. Challenges also include public response and government

policies. µGs face the problem of: ”Not in my backyard”. Despite challenges, µG

promises a potential for green electrical grid.

2.3 Lyapunov Optimization

Lyapunov Optimization, also known as stochastic dual gradient, is a policy aimed

at minimizing cost functions for sequential time slots that are additive. The policy

aims at minimizing the average of total accumulated cost while achieving mean rate

stability of the queues, where the queues may be real or virtual. It has been used

for different problems with finite and infinite period. Lyapunov optimization is has

been adopted in different applications ( [198], [199], [200]) and we refer the readers

to textbook by Neely ( [201]) for a tutorial on Lyapunov optimization. [202] explains

Lyapunov optimization as a stochastic dual gradient method. Lyapunov optimization

has been extensively used for DSM in smart grid because of its ease of implementation

and performance guarantees. Neely ( [203]) proposed online algorithm for energy

allocation. A distributed optimization approach was investigated in [29]. Salinas et.

al ( [204]) considered dynamic scheduling with delay tolerant and intolerant loads.

Quality of service for residential consumers considering luxury usage is discussed

in [205]. Lakshminarayana et. al ( [206]) used Lyapunov Optimization to study the
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interaction between different µGs and their storages. Qin et. al ( [50]) implemented

Lyapunov optimization in storage networks. Li et.cal ( [207]) studied finite time

horizon problem. Shi et. al ( [208]) considered Lyapunov optimization from the

perspective of a central controller when the demand from the consumers is fed into

the central controller. In this research, a new policy is developed based on Lyapunov

optimization where:

• Future expectations are considered while making decisions at time slot t. A

recurrent neural network and time series model is constructed that forecasts

energy available from the renewables in the near future time slots

• A multi-objective Lyapunov optimization is considered where two-objectives are

converted to time averaged constraints

2.4 Game Theoretic approach for load scheduling

As the problem of load scheduling involves different consumers who want to min-

imize their electricity cost and schedule their loads when required (to maximize their

utility) under the supervision of a central manager (SO), the problem sets up for a

game theoretic approach with N players and 1 manager. Different game theoretic ap-

proaches have been adopted in the literature. Amir et. al [24] formulated an energy

consumption scheduling game by proposing a static strategy and unique Nash equi-

librium. Bakr and Cranefield [51] proposed a static fair billing mechanism to ensure

fairness in billing among different consumers based on their consumption. Vasirani

and Ossowski [18] developed a collaborative model among cooperating consumers

for load management. Wu et. al [30] proposed a static day-ahead strategy for load

scheduling and solved the problem using polyblock approximation algorithm. A dy-

namic Stackelberg game model for residential load scheduling for a single consumer

is presented by Yu and Hong [209].

However most of the approaches consider either static strategy or complete infor-

mation sharing that poses a privacy and security concern. In this research, a dynamic
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scheduling framework is used with partial information sharing such that the consumer

privacy and security are not compromised. Neely [200] proposed repeated stochastic

game using Lyapunov optimization where control decisions are taken by the manager

for load scheduling among N participants.

2.5 Demand and resource sharing

Demand and supply in the electricity market is highly unpredictable with a lot of

uncertainty. In this research, where the electrical grid is envisioned to be an inter-

connected network of the µGs, collaboration between interested µGs could be used

to mitigate time varying and intermittent nature of electricity supply and demand.

Demand and capacity sharing can be used to maximize profit and resource utiliza-

tion, enable timely delivery to customers in spite of the uncertain market demands

and unexpected capacity shortages, and maximize the overall stability of the sys-

tem [210]. The µG may collaborate by sharing demand and capacity when required

based on mutual contracts. Demand and capacity sharing has not been studied from

the context of electrical grid. It has mostly been studied for internal collaboration

within an organization or vertical collaboration between organizations [211].

Collaboration among companies could also enhance the sustainability of the sys-

tem in the long term. For effective and fair sharing among the participants, protocols

play a significant role. Protocols are decision rules or or procedure to be followed when

two entities collaborate. Yoon and Nof [212] have implemented the decision protocols

for effective demand and capacity sharing among enterprises: demand sharing proto-

col and capacity sharing protocol. These protocols focused on real-time information

sharing without considering long term analysis. Seok and Nof [213] presented demand

and sharing protocols with long term analysis of collaboration among organizations.

These collaboration among different entities can either be static or dynamic, that

is, sharing relationship between entities may change over time. Yoon and Nof [214]

studied affiliation and dissociation among collaborating organizations when collabo-
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ration rules or conditions change. Adaptive demand and capacity sharing is studied

in Seok and Nof [211]. However, the collaboration incurs cost because of the contracts

between the organizations and cost of protocol invocation every time a protocol is

invoked for sharing. Moghaddam and Nof [210] developed protocols for dynamic

best matching among collaborating organizations. They also provide a mechanism

for real-time optimization in collaborative network environment [215]. Moghaddam

and Nof [216] provide an extensive explanation of best matching protocols among

collaborative organizations or entities.

When multiple entities collaborate to achieve a common goal, fairness must be

ensured when building the collaborative protocols. Social welfare function has been

extensively used in economics as a measure of income inequality and comparing in-

come distributions. It has been used in different applications to enforce fairness in

decision making with regard to different allocations. Social welfare function has been

used in resource allocation for wireless network ( [217], [218], [219]), ambulance dis-

patch [220], task allocation in multi-robot system ( [221], [222]) and, decision making

in intelligent shared environments [223]. Nayak et al. [224] studied social welfare

function in smart grid scenario based on resource and task sharing. Fairness in this

research is considered in terms of balancing the delays in scheduling of the requested

loads.

In this research, a simple notion of centrally controlled sharing among two µGs is

considered where the two µGs collaborate to share demand and capacity by the supply

of electricity when required from their renewable resources. They share demand as

demand of one µG could be met by the supply of electricity from the other µG. They

share capacity as battery and sources of energy from one µG can be used to serve

the demand from the other µG. This sharing makes intuitive sense as energy can be

stored in different forms e.g. heat energy, kinetic energy or potential energy. If the

location of one µG is suitable for energy storage, it can store more energy if available

from the other µG. Similarly, demand can also be shared indirectly through supply

of electricity from one µG to another µG.
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2.6 Reinforcement learning for load scheduling

Reinforcement learning is an area of artificial intelligence (AI) where the agents

learn state value functions, state-action value functions and policies to take actions

in an environment to maximize its reward [32]. While machine learning has achieved

significant success in recent time, particularly using deep learning, machine learning

is a subset of Artificial Intelligence, like Reinforcement Learning. The relationship

between reinforcement learning and machine learning is shown in Figure 2.3. The

Fig. 2.3. Schematic representation of Artificial Intelligence (AI)

behavior of the environment, the rewards and the system dynamics are generally not

known in advance and the agents have to learn them to make optimal decisions such

that their cumulative reward is maximized [225]. The iterative procedure of learning

by agents is shown in Figure 1.18 where the agents interact with the environment

to understand the environment function, system dynamics, rewards from different

actions and the value of being in different states [32].

Value function iteration and policy iteration have been commonly used in the past

to learn the state and value functions for energy efficiency. Q- learning is value itera-

tion method where values of the state-action pair are obtained. Different methods to

perform reinforcement learning based on value function iteration and policy iteration
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is discussed and explained in the text book by Sutton and Barko [32]. Aydin and

Ostemel [226] used improved Q-learning for scheduling different jobs by setting job

priority in a job shop environment. Glaubius et.al [227] developed a value iteration

method for dynamic resource scheduling. Kara et.al [228] used Q-learning for schedul-

ing smart devices in a residential building in a smart grid. Li and jayaweera [229]

developed a Q-learning model for dynamic load scheduling in a residential set-up in

smart grid. Kim et. al [230] used Q-learning for dynamic electricity pricing. Zhang

and Schaar [231] developed an improved value iteration method for load scheduling

in smart grid. Qing et. al [232] used Q-learning for optimal electricity generation

control in the electric grid. Yu et.al [233] used Q-learning for collaboration amongst

different generators in the smart grid. Kuate et. al [234] used reinforcement learn-

ing for pricing of the electricity based on the current state. Wang et. al [235] used

Q-learning for residential load scheduling with on site energy generation and energy

storage facility. Rayati et. al [236] developed a policy iteration method for energy

efficient load scheduling with residential buildings. Pan [237] used Q-learning for

lighting scheduling in a residential building. Jay and Swarut [238] used policy iter-

ation method for unit commitment problem. Ahmed and Bouffard [239] developed

a single Markov Decision Process (MDP) for clustering different consumers for effi-

cient load management. Ruelens et. al [240] used reinforcement learning for optimal

thermostat control in residential building. Chen et. al [241] studied a single machine

single operation machine scheduling problem and built a deep learning based model.

Asl el. al [242] developed a framework for multi-objective reinforcement learning

based on value iteration to get Pareto optimal solutions.

However, value based methods work only when the system dynamics is well defined

or when the action and state space is small. Dynamic load scheduling problem has

high-dimension and continuous state and action space. Thus, it is not practical to

use traditional value iteration and policy iteration methods. Approximate function

estimation can be used to learn functions that map from the state to actions or state

to state values or state to state-action values. In this research, a deterministic policy
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is learnt that maps from state values to action values. There are some works on

approximating function values for load scheduling in smart grid. Jasmin et. al [243]

used a function approximation for approximating state -action values for solving a

unit commitment problem. Zhang et.al [244] developed a deep Q-learning based

reinforcement learning method for supply and demand oriented Stackelberg game

in smart grid. The deep artificial neural network model acts as critic for the value

iterations. Bahrami et.al [245] developed an online learning algorithm for demand

response in a smart grid scenario. They considered different load types and service

quality through delays and built an actor- critic method for learning optimal actions.

They also used value function approximation instead of value iteration to obtain state

function values. Policy iteration method is much more stable than the value iteration

methods.

Policy search performs better as compared to value iteration methods because of

its stability. Also, as the dimensionality and cardinality of state and action space

increases, value function methods are not practical. But even though policy search is

more stable, as the number of parameters needed to approximate the policy function

increases, the number of steps in Figure 1.18 for convergence increases exponentially.

When neural networks in used for approximating the policy, any function can be ap-

proximated but the number of parameters is very high. In dynamic load scheduling,

this research approximates a function from current state to the load scheduling ac-

tions. To handle the increased number of steps requirement, a guided policy search

method is employed.

In guided policy search, the policy search is converted into a supervised learning

problem. Supervised learning is more robust and stable than policy search. The

policy is optimized using supervised learning, which scales nicely with the number of

dimensions of the action and state space. The training set for supervised learning can

be constructed using trajectory optimization under known dynamics [246]. Another

issue with most of the practical applications is that the neither system dynamics

nor the systems states are actually known. Thus, in this research, a deterministic
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policy is developed using the guided policy search that provides actions based on the

observations provided by the system. One major issue with policy search is that is

very slow. It is slow as it needs two steps: convergence and improvement. The the

problems are difficult in itself. However, the two problems can be solved simultaneous

using guided policy search as discussed by Levine et.al [225].

In guided policy search, locally optimal trajectories are obtained and are used as

response variables for the training part of the supervised learning. Since the locally

optimal actions are known, it is used to generate the system dynamics from observa-

tions. Thus, both the target and the behavior policies are the different. Guided policy

search converts policy search into supervised learning, by iteratively constructing the

training data using an efficient model-free trajectory optimization procedure [225].

In this research, the guided policy search is used to obtain deterministic policy. A

deterministic policy maps system observations/ states to actions [247]. The idea of

using neural network for approximating the deterministic policy is taken from Lilli-

crap et.al [248]. The optimal trajectories in this research are based on sample based

paths used by Lioutikov et.al [249]. A distribution is obtained for optimal actions

rather than just a single action value for achieve robustness and create smoothness in

the functions as non-smoothness makes the learning process slow [246]. In the guided

policy search, the deterministic policy is trained such that the guided trajectory dis-

tribution converges to the learnt parametric policy. Even though, locally optimal

trajectories are used to generate data for the supervised learning, the convergence in

policies ensures that the policy produces a good long-horizon performance. In this

research, the optimal trajectories are obtained by solving the load scheduling problem

at the end of the week. Thus, every week has as different starting state. This helps

in making the policy more robust to different starting states and making the best

decisions without making compounding errors.

Guided policy search has drawn the interest of researchers because of several

advantages it brings to reinforcement learning. The major advantages include:
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• it converts reinforcement learning to supervised learning problem that is more

stable and thus converges faster

• the locally optimal trajectories reduce the number of data points required for

learning the deterministic policy

• in load scheduling problem, individual weeks can be assumed to be fairly inde-

pendent and since a deterministic problem can be solved at the end of the week

to optimality, response variables in the supervised learning are optimal actions,

thus reducing the need for policy improvement step.

2.7 Data and Softwares used in the research

To develop realistic case studies, real data have been used in this work. The

electricity prices for p2[t] are taken from summer day price by the Ameren power

company [250]. Non-shiftable load profile for different consumer types is obtained

from the DOE website [251]. Data for average hourly electricity harvest from renew-

ables is obtained from the ERCOT website [252]. The data for factory scheduling

(production line loads and processing times) have been simulated as discussed in

the research article by Fang et. al [98] and the electrical loads for residential and

commercial buildings have been taken from the research article by Hao et.al [72].

This research is conducted on a Windows i7 processor on a 8GB RAM laptop. The

codes were written in Python and all the codes are available at Github [253]. Eclipse

and PyCharm IDE were used to write the codes( [254], [255]). For optimization,

GUROBI [256] Student license was used and the computational times mentioned in

this research are the time (in seconds) when the solver finds the optimal solutions

within its tolerance limits. Tensorflow by Google [257] is used to develop the pre-

diction function and a 2 layer recurrent neural network architecture is selected for

predicting wind energy from the renewables. A three layer perceptron architecture is

considered to model the deterministic policy in reinforcement learning.
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3. STORAGE SIZING AND OPTIMAL LOAD

SCHEDULING

Most of the load scheduling problems solve the problem independently for non-

industrial and industrial consumers. In a µG where different types of consumers

share electricity generation resources and storage, the consumers are coupled as con-

sumption pattern of one consumer affects the electricity cost of other consumers.

Since storage are expensive, optimal storage sizing is critical for µG design. In this

chapter, we investigate optimal storage sizing under two different scenarios 1) long

term load scheduling 2) dynamic load scheduling. In both these scenarios, we consider

residential houses, commercial buildings and a manufacturing facility as consumers

who participate in automated load scheduling. The objectives of this chapter is to:

• Construct mathematical models to integrate production line load scheduling

with other types of load and consumers in a µG.

• Analyze electrical storage capacity under different objectives using trade-offs

between the total electricity cost and storage capacity.

The mathematical models have been constructed based on certain assumptions as

mentioned in previous chapters. The summary of the assumptions are as follows:

• The µG considered is a direct current µG and voltage synchronization has been

taken care of by converting the alternating current electricity into direct current.

• The consumers participate in automated load scheduling and the smart devices

have the capability to respond to the real-time load scheduling decisions.

• The electrical loads of different devices are deterministic and known.

• The time horizon is one day that is divided into different discrete time slots.
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• Discrete time model is considered because real-time prices are released in dis-

crete time at an interval of 15 minutes.

• The loads take integer multiple of time slots to complete. That is, all the loads

run for integer multiple of 15 minutes.

• There are no outage costs. If the demand can be met from µG, electricity is

bought from Macrogrid and the capacity of Macrogrid is ∞.

• Set-up time in the production line loads are included in the processing time.

To construct the mathematical models, the following set of constraints for storage

are used in every model. Equation 3.1 shows the evolution of electrical energy in the

battery where η is the storage efficiency. Equation 3.2 ensures feasible discharge from

battery. Equation 3.3−Equation 3.6 state the resource constraints. Equation 3.8 is

the variable type constraint. Since the decisions are taken at time t, the scheduling

decisions will always draw available energy from the battery. This frequent charging

and discharging of the battery affects the life of the battery. To handle the problem of

frequent charging and discharging from the battery, a cost cd is used in the objective

function and a binary variable c̄[t] is used if energy is drawn from the battery as

shown in Equation 3.7 where MB is a big number.

A[t+ 1] = ηA[t] + Y [t]−B[t] ∀t ∈ {1, 2, ..., T} (3.1)

B[t] ≤ A[t] ∀t ∈ {1, 2, ..., T} (3.2)

B[t] ≤ Bmax ∀t ∈ {1, 2, ..., T} (3.3)

Y [t] ≤ Ymax ∀t ∈ {1, 2, ..., T} (3.4)

A[t] ≤ Amax ∀t ∈ {1, 2, ..., T} (3.5)

Bmax, Ymax ≤ Amax ∀t ∈ {1, 2, ..., T} (3.6)(
B[t] + Y [t]

)
≤ c̄[t]MB ∀t ∈ {1, 2, ..., T} (3.7)

A[t], B[t], Y [t] ∈ R+ ∀t ∈ {1, 2, ..., T} (3.8)
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The storage options considered in this chapter are shown in Table 3.1. The dif-

ferent storage sizes are taken from the paper by Lakshminarayan et. al ( [206]). The

analysis on different storage sizes is presented in this Chapter without considering

the investment cost for the storages since the focus is on short term scheduling.

Table 3.1.
Different Storage options

Option Amax Bmax Ymax

1 0.8 MW 0.2 MW 0.2 MW

2 2 MW 0.4 MW 0.4 MW

3 4 MW 0.8 MW 2 MW

5 20 MW 4 MW 4 MW

The µG has residential houses and commercial buildings as non-industrial con-

sumers and a parallel machine shop as industrial consumer. The consumers may have

different load types and each load type has its own characteristic constraints which

have to be satisfied. The constraint sets have been constructed in this section to be

used in different models as they remain valid for all the models throughout the thesis.

Constraint set for the time shiftable loads is constructed in Equation 3.9 − Equa-

tion 3.11. Time constraint is stated in Equation 3.9. Continuity of the time shiftable

load at constant power is ensured by Equation 3.10. Variable types is shown in

Equation 3.11.
tts,maxi,r∑
t=tts,mini,r

xtsi,r[t] = 1 ∀r ∈ R, ∀i ∈ I (3.9)

xtsi,r[t] ≤ xtsi,r[t
′
] ∀t ≤ t

′ ≤ t+ tri,r (3.10)

xtsi,r[t] ∈ {0, 1} (3.11)

Constraint set for the modifiable power loads is constructed in Equation 3.12 −

Equation 3.15. Energy requirement constraint for modifiable power loads is shown
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in Equation 3.12 while power demand constraints are shown in Equation 3.13 and

Equation 3.14. Variable type constraint is shown in Equation 3.15.

tps,maxi,h∑
t=tps,mini,h

xpsi,h[t] = Lpsi,h ∀h ∈ H,∀i ∈ I (3.12)

xpsi,h[t] ≤ Lps,maxi,h ∀h ∈ H,∀i ∈ I,∀t ∈ {tps,mini,h , ..., tps,maxi,h } (3.13)

xpsi,h[t] ≥ Lps,mini,h ∀h ∈ H,∀i ∈ I,∀t ∈ {tps,mini,h , ..., tps,maxi,h } (3.14)

xpsi,r[t] ∈ R+ (3.15)

A parallel machine shop is a single process shop where the jobs can be processed

in any of the machines in the shop floor. Different manufacturing set-up may have

parallel machine shop, e.g., parallel machine flow shop and parallel machine job shop.

However, in this research a single process parallel machine shop is considered where

the different processes are independent. This manufacturing set up is used in contin-

uous and batch processing such as steel plants and pharmaceuticals. In single process

parallel machine shop, the set of orders o ∈ {1, 2, ..., } = O to be processed in a day is

known before the start of the shift. These jobs can be processed in any of the machine

j in machine set J . All the jobs must be finished during the shift of the day where ts

is the shift start time and te is the shift ending time. sjk is the time to process job k

in machine j and it is assumed to be integer multiples of the time slot as we model

the problem as discrete time model.

Production line loads satisfy the constraints in Equation 3.16 − Equation 3.20.

aj,o[t] = 1 if job o is processed in machine i. αj,o is the power required to process job k

in machine j. βo is the spike in power when machine j is switched on. Equation 3.16

ensures that all the jobs are completed within the day shift. Equation 3.17 ensures

non interruptible nature of the job such that a job is not removed from the machine

until it is processed. Equation 3.18 ensures that only one job is being processed in

a machine at a given time. Equation 3.19 states the power requirement (PRj,o[t])

and Equation 3.20 is the variable type constraint. First part of PRj,o[t] is the power
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required to process a job and second part is the spike in power due to the switching

on of a machine when job o starts in machine j at time t.

te∑
t=ts

∑
o∈J

lj,o[t] = sj,o ∀o ∈ O (3.16)

lj,o[t] ≤ lj,ot
′ ∀o ∈ O, ∀j ∈ J,∀t′ ≤ t+ sj,o (3.17)∑

o∈O

lj,o[t] = 1 ∀j ∈ J,∀t ∈ T (3.18)

PRj,o[t] = αj,olj,o[t] + βj(lj,o[t]− lj,o[t− 1]) ∀o ∈ O, ∀j ∈ J,∀t ∈ T (3.19)

lj,o[t] ∈ {0, 1} ∀j ∈ J,∀k ∈ K, ∀t ∈ T (3.20)

Data for the electrical loads for the different load types used in this chapter is given

in Table 3.2.

Table 3.2.
Load requirements of different load types

Load Residential house Commercial building Factory

Time shiftable load U(2,4) kW U(8,15)kW U(8,15)kW

Modifiable power load U(2,4) kW U(8,15)kW U(8,15)kW

Production line load - - U(30,50)kW

Hourly electricity prices are shown in Figure 3.1. p2[t] is taken from [258] and

p1[t] is obtained from p2[t] such that p2[t] = c H[t]∑
t∈T H[t]

where c is a constant.

A case study on deterministic scheduling is presented in Section 3.1 and dynamic

load scheduling using an online algorithm is presented in Section 3.2.
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Fig. 3.1. Electricity hourly prices

3.1 Static scheduling using mixed integer linear programming

In this section, a deterministic MILP model is constructed for load scheduling in a

µG. Different loads can be served by the electricity harvested from renewables, base

load plant in the µG, natural gas based peaker plants and electricity bought from the

Macrogrid. The objectives of this model include:

• develop a formulation for integrating industrial load scheduling with other types

of loads and consumers in a µG.

• develop a framework for analyzing storage requirement under different pricing

policies and storage efficiencies based on the total electricity cost

• integrate supply side with demand side for achieving overall energy efficiency

in a µG by scheduling electricity generation from peaker plants

Most of the works considered charging the battery from excess harvest ( [259] and

[190]). In this section, 2 different battery charging options have been considered. First

option is charging the battery from excess harvest and second option is charging the
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battery from excess harvest as well as from the electricity bought from Macrogrid.

The impact of storage sizing (storage capacity) is also investigated.

To understand the impact of storage sizing on total electricity cost, two different

pricing models have been considered. First is TOU tariffs and second is CPP where

the electricity prices are assumed to be known. PAR is also studied as it is critical

for the reliability of any grid.

3.1.1 Mathematical model

The load scheduling model is constructed to minimize the total electricity cost

in a µG in a day. The model is called long term scheduling as the decisions are

made in a single time period for a long time period. The µG decisions integrate

load supply side decisions and demand side decisions, thus this is an integrative

model. Let Haw[t] and Has[t] be harvested from a wind and a solar farm at time

t. Electricity from the renewables used at time t is X[t] ≤ Ha[t] where Ha[t] =∑
w∈W Haw[t] +

∑
s∈S HaS[t] ∀t ∈ T . The µG may run peaker plant at level e

where ppf,e[t] = 1 if peaker plant f runs at level e generating Pf,e kW at time t. 8

different models are constructed to understand the investigate the trade-offs between

electricity cost with different storage capacity under different pricing schemes and

storage efficiency. The models are shown in Table 3.3. in Model V and Model VI,

loads are scheduled randomly while loads are scheduled at the time of minimum cost

in Model VII and Model VIII.

The objective function of minimizing the total electricity cost under TOU is given

in Equation 3.21 and under CPP is given in Equation 3.22. In this section, we consider

that time interval between two slots is 15 minutes. Therefore, Equation 3.21 and

Equation 3.22 include a factor of 4. Total load at time t is given in Equation 3.23 and

the peak load is stated in Equation 3.24. Supply and demand matching is shown in

Equation 3.25. Storage constraints, time shiftable load constraints, modifiable power

load constraints and production line load constraints have been explained earlier and
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Table 3.3.
Different load scheduling models in Chapter 3

Model Pricing Charging: Excess harvest Charging: Macrogrid

Model I TOU Yes Yes

Model II TOU Yes No

Model III CPP Yes Yes

Model IV CPP Yes No

Model V TOU Yes No

Model VI CPP Yes No

Model VII TOU Yes No

Model VIII CPP Yes No

stated in Equation 3.26, Equation 3.27, Equation 3.28 and Equation 3.29 respectively.

Variable type constraint for different decision variables are shown in Equation 3.30

and Equation 3.31.

minimize

(∑
t∈T

(p1[t]X[t] + p2[t]G[t] + c̄[t]cd+
F∑
f=1

E∑
e=1

Pf,e)

)
/4 (3.21)

minimize
(∑
t∈T

(p1[t]X[t] + p2[t]G[t] + c̄[t]cd+
F∑
f=1

E∑
e=1

Pf,e + cpZ)
)
/4 (3.22)

L[t] =
∑
i∈I

Lnsi [t] +
∑
i∈I

∑
r∈R

Ltsi,rx
ts
i,r +

∑
i∈I

∑
h∈H

xtsi,h +
∑
j∈J

∑
o∈O

PRj,o[t] ∀t ∈ T (3.23)

Z ≤ L[t] ∀t ∈ T (3.24)

G[t] +X[t] +B[t] = Y [t] + L[t] ∀t ∈ T (3.25)

Equation 3.1− Equation 3.8 (3.26)

Equation 3.9− Equation 3.11 (3.27)

Equation 3.12− Equation 3.15 (3.28)

Equation 3.16− Equation 3.20 (3.29)
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G[t], X[t], A[t], B[t], Y [t], xpsi,h[t] ∈ R
+ ∀t ∈ T,∀i ∈ I,∀h ∈ H (3.30)

xtsi,r[t], ppf,e[t], c̄[t] ∈ {0, 1} ∀t ∈ T,∀i ∈ I,∀r ∈ R, ∀f ∈ F, ∀e ∈ E (3.31)

In Model II and Model IV, battery is charged from excess harvest in the µG only and

not from Macrogrid. Equation 3.32 enforces the constraint on battery charging from

excess harvest only.

Y [t] ≤ (X[t]− L[t])+ ∀t ∈ T (3.32)

Peak to average ration (PAR) is calculated as shown in Equation 3.33. PAR depends

on the pricing policy adopted in the market and the storage capacity of the µG as

shown in Section 3.1.2. Lower PAR is preferred as it requires lesser infrastructure

(e.g. transmission and distribution lines) cost to build a system of lower capacity.

PAR =
maxt∈T

(
G[t] +X[t] +

∑
f∈F

∑
e∈E Pf,e

)
averaget

(
G[t] +X[t] +

∑
f∈F

∑
e∈E Pf,e

) (3.33)

3.1.2 Results

The µG has 150 houses, 4 commercial building and 1 factory. To study storage

capacity requirement, 3 different battery efficiencies have been considered - 1, 0.8

and, 0.6. 3 peak pricing costs cp are considered - $0.4, $1 and, $1.6. The trade-off

between the total electricity cost and storage option under different battery efficiency

and TOU tariffs is shown in Figure 3.2. It is observed as expected that as the storage

capacity increases, the total cost decreases. Also, as the storage efficiency decreases,

total electricity cost increases. The trade-off between the total electricity cost and

storage option under different battery efficiency and CPP is shown in Figure 3.3.

Figure 3.4(a) shows the PAR under TOU pricing for the different models. It

is observed that the PAR is highest for individualistic scheduling (Model VII) and

lowest for random scheduling (Model V). PAR is minimum for Model V because we

generate the time windows for loads using uniform distribution and therefore loads

are distributed uniformly, thus, minimizing PAR. For Model I and Model II, PAR is in

between the individualistic and random scheduling. Also, PAR increases as storage
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Fig. 3.2. Electricity cost for different storage options under TOU pricing

Fig. 3.3. Electricity cost for different storage options under CPP

capacity increases because more loads are scheduled at the time of minimum cost

which can be met through storage. PAR for Model V and Model VII show no pattern

with storage capacity as it is independent of the storage capacity. Figure 3.4(b) and

Figure 3.4(c) show PAR for Model III and Model IV respectively under the different

peak prices. In this experiment, storage efficiency is considered to be 0.8. It shows

that as the peak price increases, PAR decreases and loads may be scheduled at the

time of lower electricity costs.
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Fig. 3.4. PAR for different models

3.1.3 Conclusion and discussion

In this model, deterministic load scheduling in a µG is addressed. The µG is

considered as a network of different (types of) generators serving different (types of)

demands by different (types of) consumers. Different models are analyzed based on

two pricing policies under two conditions of how the battery is charged. A mixed

integer programming model is constructed. The results show the trade-offs between

the total electricity cost with different storage capacity and storage efficiency. It is ob-

served that charging battery from the Macrogrid allows more flexibility in scheduling

loads thus total electricity cost is lowered. Results also show that the Peak to Average

Ratio (PAR) is highest for individualistic scheduling and lowest for random schedul-

ing. Electricity cost decreases as the storage capacity increases. PAR increases as the

storage capacity increases as more jobs can be scheduled at the same time. As the

peak price increases, PAR decreases for optimal scheduling. The analysis provided

on the storage capacity and PAR could help in designing storage sizing based on the

pricing policy in a µG. This is one of the first works in storage sizing which accounts

for storage efficiency.
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Even though the problem discusses a simplified deterministic case, the paper

presents rigorous analysis on storage sizing, PAR and, pricing policies that will serve

as a guideline and benchmark for practical situations with uncertain electricity har-

vest, demand and, real time decision making. The model could be studied for different

manufacturing set-up with different production line loads. In this section, it is as-

sumed that DLCs send exact information to the SO of different loads to be scheduled.

In the deterministic model, since the decisions are made assuming that the infor-

mation is deterministic, the optimal decisions are made for a longer time period. In

the next model, real-time decisions are made for a short term based on the current

information. Since the decisions are made based on current information, future events

are not considered in these models. This might lead to sub-optimal decisions.
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3.2 Dynamic load scheduling using Lyapunov optimization

The load scheduling is modeled as a dynamic scheduling model with N consumers

and a central controller as shown in Figure 3.5. DLCs represent the consumers and

SO represents the controller. The model is called dynamic scheduling model because

it schedules loads over a sequence of time slots t ∈ T = {0, 1, 2, ..., |T |} and there are

random events in every time slot. The random events include electricity harvest from

renewables, electricity price and, dynamic requests from consumers. The controller

observes the random event vector but the consumers observe only their respective

random event. The objectives of this Section include:

• develop a dynamic model for integrating industrial load scheduling with other

types of loads and consumers in a µG.

• develop a framework for analyzing storage requirement under real - time pricing

policy

Most of the works as mentioned in Section 2 consider static scheduling. In real

time electricity markets, electricity prices are released 15 minutes prior to the time.

Also, a better estimate of electricity harvest from renewables can be made closer

to the time. The idea to use real time information for optimal scheduling provides

motivation for building a dynamic load scheduling model.

Since the loads are scheduled at different time slots with different electricity prices,

some loads are scheduled at the time of higher prices. To ensure consumer participa-

tion in coordinating with the controller, fairness is used such that a consumer pays

in accordance with her total consumption as shown in Equation 3.36. For example,

let TCi1 and TCi2 are the total electricity cost paid by residential consumer i1 and

i2 respectively and rest of the terms in Equation 3.36 are explained in the previ-

ous Section. Fi is the flexibility given by a consumer in terms of time flexibility in
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load scheduling to the controller. Flexibility for the industrial consumer is given by

Equation 3.34 while for non industrial consumer is given by Equation 3.35.

Fi =
∑
r∈R

(tts,maxi,r − tts,maxi,r ) +
∑
h∈H

(tps,maxi,h − tps,maxi,h ) (3.34)

+
∑
k∈K

(te − ts) ∀i | i is industrial consumer

Fi =
∑
r∈R

(tts,maxi,r − tts,maxi,r ) +
∑
h∈H

(tps,maxi,h − tps,maxi,h ) (3.35)

∀i | i is non industrial consumer

TCi1Fi1
TCi2Fi2

=

∑
t∈T T

ns
i1 [t] +

∑
r∈R L

ts
i1,r +

∑
h∈H L

ps
i1,h∑

t∈T T
ns
i2 [t] +

∑
r∈R L

ts
i2,r +

∑
h∈H L

ps
i2,h

(3.36)

Fig. 3.5. Schematic representation of a dynamic scheduling model

In every time slot t, consumer i sends request ri[t] to the controller. Thus, the

controller observes the request vector {r1[t], r2[t], ..., rN [t]}. It takes control action

based on the online algorithm explained in Section 3.2.2 to find optimal message

vector {m1[t],m2[t], ...,mN [t]}. Based on the message vector, the consumer schedules

loads through action ai[t]. As assumed that the consumers coordinate in dynamic

scheduling, ai[t] ≤ mi[t],∀i ∈ I, ∀t ∈ T . The action message ai[t] determines which

load is served by the DLC of player i.

First, a benchmark model is developed in Equation 3.37 − Equation 3.26 that

assumes complete information of the various stochastic variables at the start of the

day such as real-time electricity price, electricity harvest from the renewables, and



59

consumer demand. This benchmark model is constructed with the aim of obtaining

an optimal solution for the dynamic scheduling model discussed later in this Section.

3.2.1 Benchmark Model

Total electricity cost is shown in Equation 3.37. The storage constraints and load

constraints for different load types are shown in Equation 3.38 − Equation 3.41. Total

load at time t is given by Equation 3.42 while supply and demand balance is shown

in Equation 3.43. Equation 3.44 and Equation 3.44 are the variable type constraint.

Min
∑
t∈T

(
X[t]p1[t] +G[t]p2[t] + c̄[t]cd

)
/4 (3.37)

Equation 3.1− Equation 3.8 (3.38)

Equation 3.9− Equation 3.11 (3.39)

Equation 3.12− Equation 3.15 (3.40)

Equation 3.16− Equation 3.20 (3.41)

L[t] =
∑
i∈I

Lnsi [t] +
∑
i∈I

∑
r∈R

Ltsi,rx
ts
i,r +

∑
i∈I

∑
h∈H

xtsi,h +
∑
j∈J

∑
o∈O

PRj,o[t] ∀t ∈ T (3.42)

G[t] +X[t] +B[t] = Y [t] + L[t] ∀t ∈ T (3.43)

G[t], X[t], B[t], Y [t], xpsi,r[t] ∈ R+ ∈ {0, 1} ∀t ∈ T (3.44)

xtsi,r[t], aj,o[t] ∈ {0, 1} ∀t ∈ T (3.45)

However, this model can be used only as benchmark for other models as electricity

harvest from renewables and consumer demands can be realized only in real-time.

This model could be solved at the end of the time horizon to check how well the

proposed could have done. Dynamic models schedule the loads based on most recent

and accurate information. Next , a step wise methodology to construct the dynamic

scheduling model that uses an online algorithm is discussed.
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3.2.2 Control Actions using Lyapunov optimization

In this paper, a real time model is considered with no assumption on future and

all the decisions are made based on the current information. The dynamic scheduling

model aims at minimizing the total electricity cost for the consumers by solving a

greedy online scheduling problem at every time slot t. These greedy solutions will

schedule no loads (except non-shiftable load which have to be served) to minimize the

total electricity cost at time slot t. Thus a control parameter Thi ,∀i ∈ I is developed

which forces the online problem to schedule some loads based on different weights

given to the loads at time t. First, the construction of control parameter is discussed

in Section 3.2.2 followed by the Lyapunov optimization based online algorithm in

Section 3.2.3.

Control parameter

A threshold Thi is used to force the greedy online scheduling problem to schedule

some loads. If the flexible loads are not scheduled till their latest finish time, it has to

be served in the next time slot, thus making it behave like a non-shiftable load that

loses its flexibility. Thus, priority is given to the loads which were requested earlier.

This a simple priority rule and different models can be build on different priority

rules. Since the non-shiftable loads have to be served, it does not play a part in the

threshold. The weights given to the different load types are defined in Table 3.4.

zj[t] = 1 if machine j is running at time t hence zj[t] = 1 if
∑

k∈K aj,k[t− 1] = 1. The

threshold function at time t for consumer i is shown in Equation 3.46 when consumer

i is a factory. For residential and commercial consumers, threshold function is given

in Equation 3.47.

Ti[t] =
∑
r∈R

Ltsi,r(1− xtsi,r)wtsi,r[t] +
∑
h∈H

(Lpsi,h − x
ps
i,h)w

ps
i,h[t] (3.46)

+
∑
j∈J

∑
o∈O

(1− lj,o[t])
(
αj,o + βjzj[t− 1]

)
wplj,o[t]− Thi
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Table 3.4.
Variable definitions

Variable Definition

wtsi,r[t] t− tts,mini,r | t ≥ tts,mini,r ,
∑t−1

t=tts,mini,r
xtsi,r[e] = 0

wpsi,h[t] t− tps,mini,h | t ≥ tps,mini,h ,
∑t−1

e=tps,mini,h

xpsi,r[e] < Lpsi,r

wplj,k[t] t− ts, |t ≥ ts,
∑t−1

t=ts

∑
o∈O aj,o[t] = 0

Ti[t] =
∑
r∈R

Ltsi,r(1− xtsi,r)wtsi,r[t] +
∑
h∈H

(Lpsi,h − x
ps
i,h)w

ps
i,h[t]− Thi (3.47)

A dynamic set SLi[t] is constructed for the control actions. Since the control

actions are taken in every time step, SLi[t] includes loads that have been requested but

not yet served till time t. The set SLi[t] is defined as a 2-tuple {Lsli,d, wsli,d[t]} where Lsli,d

is the load to be considered and wsli,d[t] is the weight for threshold. d ∈ SLi[t] is given

in Equation 3.48. Using SLi[t], an approximation for Equation 3.46 is constructed in

Equation 3.49.

{Ltsi,r, wtsi,r} ⊂ SLi[t] | d is time shiftable load (3.48)

{
ltsi,h

t− tps,mini,h

, wtsi,h} ⊂ SLi[t] | d is modifiable power load

{
(∑

j∈J αj,o

|J |

)
, wplj,o} ⊂ SLi[t] | d is production line load

Ti[t] =
∑

d∈SLi[t]

Lsli,dw
sl
i,d(1− xsli,d)− Thi ∀i ∈ I,∀t ∈ T (3.49)

The intuition behind the threshold function is that the flexible loads should be

served so as to minimize the delay in scheduling the loads. The model aims to mini-

mize the time average value threshold function that is contradictory to cost function

as electricity cost is incurred in scheduling the loads.
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3.2.3 Lyapunov optimization

Lyapunov optimization relaxes the problem to time average minimization problem

satisfying time average constraints. In every time slot t, the controller solves a greedy

scheduling problem as discussed in this section. Objective function for minimizing

the time average cost is shown in Equation 3.50 while time average constraint for the

threshold function is given in Equation 3.51 where Thi is a known constant.

lim
|T |→∞

1

|T |
∑
t∈T

E

[
X[t]p1[t] +G[t]p2[t] + c̄[t]cd

]
(3.50)

lim
|T |→∞

∑
t∈T

1

|T |
Ti[t] = lim

|T |→∞

1

|T |
∑
t∈T

∑
d∈SLi[t]

Lsli,dw
sl
i,d(1− xsli,d)− Thi,∀i ∈ I (3.51)

A virtual queue Qi for threshold function of consumer i from Equation 3.49 is de-

veloped as shown in Equation 3.52. If the virtual queue grows, the online algorithm

schedules the load which aligns with the notion of minimizing the time to serve for

the flexible loads.

Qi[t+ 1] = max
(
0, Qi[t] +

∑
d∈D

Lsli,dw
sl
i,d(1− xsli,d)− Thi

)
(3.52)

Lyapunov function is defined as ω[t] = 1
2

∑
i∈I
(
Qi[t]

)2
. A drift function is defined as

4[t] = E
[
ω[t+ 1]− ω[t]|Q[t]

]
where Q[t] = {Q1[t], Q2[t], ..., QN [t]}. Equation 3.53 is

derived from Equation 3.52 by taking the squares of both sides.(
Qi[t+ 1]

)2 ≤
(
Qi[t] +

∑
d∈D

Lsli,dw
sl
i,d(1− xsli,d)− Thi

)2

(3.53)

Simplifying Equation 3.53 and using the drift function 4[t], Equation 3.54 is derived.

First part uses the facts that (1 − x) ≤ x when x ≥ 0 and (a − b)2 ≤ (a + b)2 when

a, b ≥ 0.

4[t] =
∑
i∈N

((∑
d∈D

Lsli,dw
sl
i,d + Thi

)2
+Qi[t]

(∑
d∈D

Lsli,dw
sl
i,d(1− xsli,d)− Thi

))
∀t ∈ T

(3.54)

Let the constant C =
∑

i∈N

((∑
d∈D L

sl
i,dw

sl
i,d + Thi

)2
+Qi[t]

(∑
d∈D L

sl
i,d − Thi

))
.

Theorem 1 The virtual queue Qi is mean rate stable.

Proof The proof is provided in the Appendix ??.
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A drift+penalty function is formed in Equation 3.55 where a penalty term is added

to account for the objective function of minimizing total electricity cost.

O[t] ≤ C|T | −
∑
i∈I

Qi[t]
∑
d∈D

Lsli,dw
sl
i,dx

sl
i,d + V

(
X[t]p1[t] +G[t]p2[t]

)
∀t ∈ T (3.55)

Intuitively, Lyapunov optimization aims at minimizing the average electricity cost

while maintaining the stability of the virtual queues Qi. V is the weight factor for

the objective function which involves minimizing a bound on the drift and penalty as

two contradicting functions. Increasing V gives greater priority to minimize the cost

at the expense of greater size of the virtual queue.

SO takes control actions by solving the following Mixed Integer Linear Program-

ming optimization problem in Equation 3.56 − Equation 3.60 over each time slot t.

These control actions aim to minimize the drift + penalty function by control actions

in every time slot. The objective function is given in Equation 3.56. Supply and

demand balance is shown in Equation 3.57. Storage constraints and feasibility con-

straint for a machine are introduced in the model in Equation 3.58 and Equation 3.59

respectively. Equation 3.60 and Equation 3.61 are the variable type constraint.

Minimize −
∑
i∈I

Qi[t]
∑
d∈D

Lsli,dw
sl
i,dx

sl
i,d + V

(
G[t]p2[t] +X[t]p1[t]

)
(3.56)

G[t] +X[t] +B[t] = Y [t] +
∑
i∈I

Lnsi [t] +
∑
i∈I

∑
d∈D

Lsli,dx
sl
i,d (3.57)

Equation 3.1− Equation 3.8 (3.58)∑
o∈O

aj,o[t] = 1 ∀j ∈ J,∀o ∈ O (3.59)

xsli,d, aj,o[t] ∈ {0, 1} ∀i ∈ I,∀d ∈ D, ∀j ∈ J,∀o ∈ O (3.60)

G[t], X[t], B[t] ∈ R+ ∀i ∈ I (3.61)

After finding the decision variables in every time slot t, the virtual queues Qi[t]

are updated based on Equation 3.53, shiftable load set SLi,t is updated based on

the decision variable values xsli,d and, storage in battery A[t] is updated based on

Equation 3.1. If xsli,d = 1 and the load takes more than one time slot, then it is
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considered as non-shiftable load for the next time slots running at the same power

as at time t. This is a drawback of the proposed online algorithm which may lead to

sub-optimal solutions. It can be alleviated by stochastic dynamic scheduling using

estimation for future time slots which is considered in Chapter 4, Chapter 5 and

Chapter 6.

The proposed model developed in this Section is a relaxed version of the bench-

mark model discussed in Section 3.2.1. The proposed model aims to minimize the

total electricity cost as in the benchmark model. The storage constraints and produc-

tion line constraints are ensured in the online scheduling problem solved in every time

slot t. The load constraints are satisfied while constructing the dynamic set SLi[t].

A flexible load becomes non-shiftable load if it not served till its latest finish time,

thus the time window constraints are also followed in the proposed model.

3.2.4 Results

A µG with residential houses, commercial building and a factory with parallel ma-

chine shop is considered. µG meets the consumers’ demand by harvesting electricity

from renewables (solar farm and wind farm), discharging electricity from the battery

and buying electricity from Macrogrid when required. The objective of the model is

to minimize the total electricity cost in the µG for a day.

To verify the performance of the proposed dynamic scheduling model, its perfor-

mance is compared with different models as discussed in Table 3.5. Model I is the

benchmark model with perfect information of future events and provides benchmark

solution. In Model II, loads are scheduled based on estimation of demand and elec-

tricity harvest using formulation in Section 3.2.1. This model is based on the strong

assumption that all the loads are known at the start of the day that is impractical.

This model is used for scheduling electricity generation in generating plants [42]. In

Model III, loads are scheduled at the time of minimum cost in their time windows.

This model is used in building control to minimize the total cost of a consumer as
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some of the works mentioned in Section 2. This model aims at optimization at a

consumer level leading to overall increase in cost leading to peak demand at the time

of minimum cost. It is assumed that prices are estimated for Model II and Model III.

In Model IV, static strategy of scheduling the loads when requested is adopted. It

is the simplest model that does not have any assumption and can be adopted in any

electricity market.

Table 3.5.
Different load scheduling models

Model Definition

Model I Benchmark scheduling (Section 3.2.1)

Model II Scheduling based on estimation

Model III Individualistic scheduling

Model IV Static strategy

Model V Dynamic scheduling model

The results for the different methods is shown in Figure 3.6. Different ratios of

non-shiftable to flexible loads are considered. This ratio of non-shiftable to flexible

load is defined as load ratio in this research. It can be shown that as the load ratio

increases, the total electricity cost increases as flexible loads provide the flexibility of

load shifting. Also, as the storage capacity increases along the different options, total

cost decreases. These trade-offs between total electricity cost and storage capacity

can be used as a guideline in µG design based on Techno-economic analysis of savings

from the different storage capacity.

Individualistic scheduling performs the worst because all the loads are scheduled

by the consumers independently of other consumers at the time of minimum cost,

thus creating a spike in demand. This spike is met by expensive electricity from the

Macrogrid. This confirms that local information optimization performs poorly against

global information optimization. Static strategy of scheduling loads when requested
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is also expensive as compared to the dynamic model proposed in this paper. This is

because the flexibility of the loads is not leveraged and loads are scheduled at the time

of peak consumption. Scheduling based on estimation performs comparatively to the

benchmark but its assumptions are impractical. The estimation based scheduling

model can be improved and made dynamic by rescheduling after every information.

Instead of reactive scheduling, the proposed dynamic scheduling model schedules the

load based on current information. The model is practical, has minimum assumptions

and performs comparatively well as against the optimal benchmark solution. The

results are obtained for the parameter value V = 10 assuming Thi = 50 for residential

consumers, Thi = 100 for commercial consumers and Thi = 250 for the industrial

consumers. The value of Thi is obtained such that on an average, the flexible loads

are served by half of its time window.

(a) Ratio = 0.5 (b) Ratio = 1

(c) Ratio = 2 (d) Ratio = 8

Fig. 3.6. Trade-offs between electricity cost and storage
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The proposed dynamic scheduling model performs comparatively to the bench-

mark solution. Table 3.6 shows the optimality gap in the solution of the proposed

model as compared to the benchmark solution. For most of the cases, the error is

within acceptable 5%.

Table 3.6.
Optimality gap in the proposed model as compared to benchmark solution

Storage option Error (in %)

S1 3.1

S2 2.7

S3 2.0

S4 3.5

A mathematical study on optimal value of V will be considered in future work.

The performance of the algorithms has been done using V = 10. Different experiment

run show that the algorithm is robust to the value of V and a mathematical study on

optimal value of V will be considered in the future work. The algorithm performs bad

when V = 0 and when V =∞ as in the former case, the algorithm aims to decrease

the drift hence scheduling all the job when requested. In the later case, the algorithm

does not schedule any load and all the loads are scheduled after being converted as

non-shiftable loads.

An example of optimal load profile for Model I and Model V is shown in Figure 3.7.

The results have been obtained for load ratio = 2, storage option 3 and, V = 10. It

can be seen that Model I maintains the number of loads scheduled at a given time

since the demand data is generated uniformly. There is spike is load profile when the

electricity price is lower. Model V on the other hand I shows a lag in the load profile

as compared to the load profile for Model I. This is because the dynamic model waits

to schedule the load based on the drift+penalty function and some of the loads are

scheduled at the time of their latest finish time. Total harvest from generation is also
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shown in Figure 3.7 to show that electricity from renewables is generally out of sync

with the demand and storage can be used to shift the usage across time.

Fig. 3.7. An example of load profile

However, in this Section, as the load ratio decreases from 2 to 0.5, the cost in-

creases for the test case shown in Figure 3.6(a). This is because of the methodology by

which the test cases are generated. A multiplication factor is used for non-shiftable

and shiftable loads and as the ratio is decreased, demand for non-peak hours de-

creases as shown in Figure 3.8 - Figure 3.10 while demand for flexible loads during

peak hours increases. Thus as the ratio decreases beyond a certain point, the den-

sity of demand intensifies during a given time period, increasing the consumption of

expensive electricity from Macrogrid.

Peak-Average Ratio (PAR) is a critical measure for system reliability. It is defined

as Peak load in a given time horizon by average load. It can be seen from Figure ??

that as storage capacity increase, PAR increases as more loads can be scheduled at

a given time. This confirms that increasing the storage capacity can hedge against

spike in demand due to unforeseen events such as machine failure. However, building

and maintenance of storage is expensive thus storage sizing in a µG is critical.

µGs could also sell S[t] electricity at time t back to the Macrogrid when it is

more profitable to sell the electricity. The objective functions in Section 3.2.1 and
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Fig. 3.8. Demand profile under Load ratio = 0.5

Fig. 3.9. Demand profile under Load ratio = 1

the penalty term in Section 3.2.2 are updated as shown in Equation 3.62 and Equa-

tion 3.63 to account for selling the electricity back to the Macrogrid. Also, Equa-

tion 3.24 and Equation 3.56 are updated as shown in Equation 3.64 and Equation 3.65.

The results for Model I and Model V are shown in Figure 6.4 where p3[t] = 1.5p2[t].

Min
∑
t∈T

X[t]p1[t] +G[t]p2[t]− S[t]p3[t] (3.62)
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Fig. 3.10. Demand profile under Load ratio = 2

Min −
∑
i∈I

Qi[t]
∑
d∈D

Lsli,dx
sl
i,d + V

(
G[t]p2[t] +X[t]p1[t]− S[t]p3[t]

)
(3.63)

G[t] +X[t] +B[t] = Y [t] + L[t] + S[t] ∀t ∈ T (3.64)

G[t] +X[t] +B[t] = Y [t] + S[t]
∑
i∈I

Lnsi [t] +
∑
i∈I

∑
d∈D

Lsli,dx
sl
i,d (3.65)

The performance of the proposed model as against benchmark solution in shown

in Table 3.7 when µG could sell electricity back to the Macrogrid. The proposed

model performs within approximately 5% error of the benchmark solution.

Table 3.7.
Optimality gap when µG could sell electricity to the Macrogrid

Storage option Error (in %)

S1 5.4

S2 5.2

S3 4.2

S4 2.8
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(a) Ratio = 0.5 (b) Ratio = 1

(c) Ratio = 2 (d) Ratio = 8

Fig. 3.11. Electricity cost for different storage options when µG could sell electricity

The load profile for Model I and Model V is shown in Figure 3.12 for storage

option 3 and load factor 2 when µG can sell electricity to the Macrogrid. As shown in

Figure 3.7, loads profile is approximately uniform for Model I. Load profile in Model

V tries to match the profile for non-shiftable loads. There are spikes when the drift

function outweigh the penalty term. The proposed model illustrates that the future

scenarios of consumers selling back electricity could be included in the model.

Computation time is an important measure for the performance of the algorithm.

Particularly, when production lie loads are considered, most of the problems are NP-

hard in nature. Since the proposed algorithm solves sub-problems in every discrete

time, the computation time is expected to be low as against Model I and Model II. The

average time to solve the problem using the proposed framework is shown in Table 3.8.

It confirms lower computation time for the proposed framework. The results show

that as the number of flexible load decreases (load ratio increases), computation time
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Fig. 3.12. Example of load profile when µG could sell electricity

Table 3.8.
Computation time (in seconds) for different load ratio

Load Ration Model I Model V

0.5 30.02 0.69

1 21.42 0.45

2 13.67 0.34

8 5.45 0.22

decreases as the number of decision variables and constraints decreases. Thus, the

proposed model is feasible as the decision variables lie in feasible set of the original

problem in Section 3.2.1.

Operating in islanded state is an important property of the µGs. Storage Op-

tion 1 and Storage Option 4 are studied in terms of the number of instances when

G withdraws electricity from Macrogrid. The results are shown in Table 3.9. It is

observed that on increasing the storage size, µG stays in islanded state more fre-

quently. Difference in proportion in rows 1 and 2 indicate that electricity was drawn

from the Macrogrid just to charge the storage. In dynamic scheduling, the model
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draws electricity from Macrogrid more frequently as decisions are made without any

information of the future.

Table 3.9.
Proportion of time slots when µG work in Islanded state

Model Storage option 1 Storage option 4

I,III 0.542 0.605

II,IV 0.563 0.667

Dynamic scheduling 0.332 0.383

To study the computational time of the model, model for different problem sizes

have been solved. The problem size is shown with (a1, a2, a3) where a1 is the number

of industrial, a2 is the number of commercial and, a3 is the number of residential

consumers. The average computational time is shown in Table 3.10. Computation

is higher for model where electricity is not drawn from the Macrogrid because of the

added constraint in the model. It is observed that as the problem size increases,

the computational time increases exponentially for deterministic model. Since the

dynamic model runs the optimization model for every time slot, time taken to solve

the problem is in the order of 10 seconds that proves that the model is scalable for

bigger problem instances. Dynamic model obtains results with around 7% error as

the decisions are made without future information and sub-problems are solved in

every time slot t.

3.2.5 Conclusion and discussion

An automated load scheduling framework under the umbrella of dynamic schedul-

ing was presented to deal with efficient energy management in a µG. The framework

uses an online algorithm where the central controller take control actions based on

Lyapunov optimization. It integrates different (types of) loads from different (types

of) consumers. This Section also studies storage sizing and impact of ratio of non-
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Table 3.10.
Computational time (in seconds) for different problem size

Problem size Model I, III Model II, IV Dynamic scheduling

(1, 3, 150) 40.32 120.65 1.37

(1, 3, 150) 40.32 120.65 1.37

(2, 6, 300) 120.34 481.21 2.34

(3, 9, 450) 250.67 1085.19 4.69

(4, 12, 600) 480.53 2208.34 6.92

(5, 15, 750) 670.23 3986.08 13.67

shift able loads to flexible loads. It is one of the first work that considers integrating

production line load with different consumer types for dynamic energy management

in a µG. Comparative analysis of the proposed dynamic model with different realistic

models confirms that the proposed model outperforms other models and it obtains

results within 5% error of the benchmark solutions.

The model can be extended in different directions. This Chapter does not inves-

tigate a rule for selecting the optimal values of the weight parameter V which can

be obtained by extensive simulation and experimental analyses. However, the results

show that for the given test cases, the model is fairly robust to the values of V . How-

ever built in this Chapter does not ensure consumer privacy as all the information is

sent to the controller, that is, the SO. Chapter 5 includes constructing an intelligent

algorithm for DLCs for dynamic load scheduling such that all the scheduling decisions

for a consumer are made by the algorithm itself and it shares partial information, or

just requests to the SO.
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4. INTELLIGENT ALGORITHM FOR DYNAMIC LOAD

SCHEDULING IN A JOB SHOP

In the previous Chapter, a simple parallel machine shop was considered for the pro-

duction line loads. Majority of continuous production factory e.g. steel processing

and pharmaceuticals consider different processing step as independent, thus align-

ing with single process parallel machine shop manufacturing environment. However,

majority of discrete production factory have flow shop or job shop manufacturing

environment.

Most of the existing research on energy efficient scheduling focuses on flow shop

modeling. However, flow shop is a special case of job shop. Job shops are much

complex as compared to flow shops because of the flexibility in job routing and job

sequencing. Job shop scheduling is a classic example of NP - Hard problems. The

major objectives of this Chapter include:

• Developing an intelligent algorithm for dynamic job shop scheduling

• Integrating production line loads with non-production line loads and on-site

energy generation in a multi-objective job shop scheduling problem.

• Using forecasting as input in the dynamic load scheduling problem

The model developed in this chapter is different from the models developed in

previous chapter as:

• The algorithm is based on local controller’s perspective as against a Central

Operator in the previous Chapter

• Energy forecast for future time slots is used for making scheduling decisions at

every time slot t
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In Demand Side Management (DSM), demand requests are generated by local

controllers (e.g. smart meters installed at consumers physical location), a central

µG controller gathers real-time information, develops optimal control commands and

sends them to the local controllers. The control commands can include different

measures e.g. maximum peak or maximum energy allowed to be consumed in the

next time slot and the consumer will be charged based on their actual consumption.

If the actual consumption by consumer is higher from the control command sent by

the µG central controller, the consumer is faced with higher electricity prices [260].

In this Chapter, an intelligent algorithm is developed for a job shop manufacturing

facility that can generate dynamic demand requests to the central µG controller.

Many real-time and online DSM algorithms have been developed for smart grid as

some of them are highlighted in Table 4.1. The research articles can be classified into

two different types. 1) Type I: from a central controller perspective and 2) Type II:

from a local controller perspective. In Type I, the models obtain optimal command

controls to be sent to the local controllers while in Type II, the model obtains optimal

demand requests to be sent to the central controller. In Type I, the model assumes

that the demand requests from consumers is optimized from consumers perspective.

Shi et.al ( [208]) proposed a research direction to develop intelligent algorithms on

the consumer side to generate the demand requests. While most of the existing works

focus on residential or commercial consumers where non-critical loads can be reduced

or shifted conveniently [261], an industrial consumer is considered in this Chapter

with job shop manufacturing set-up to generate demand requests for the µG central

controller.

4.1 Job shop scheduling

Unlike the various works in DSM, energy efficient job shop scheduling is strictly

a multi-objective problem. This is because any production scheduling problem has

a traditional objective e.g. makespan, tardiness or throughput that is a measure of
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Table 4.1.
Classification of research articles based on load scheduling perspectives

Article Type Method Consumer type

[24] I Game Theory Residential

[262] I Game Theory Not specified

[206] I Lyapunov Optimization µGs

[263] I Interval Optimization Not specified

[208] I Lyapunov Optimization Not specified

[51] II Game Theory Residential

[260] II Welfare maximization Not specified

[209] II Game Theory Residential

[148] II Integer Programming Flow shop

[261] II Scenario generation Industrial

performance of the scheduling algorithm. Job shop scheduling with energy efficiency

makes the problem multi-objective. In this Chapter, three objectives are considered

1) minimizing total electricity cost and 2) minimizing average tardiness of jobs 3)

minimizing average peak consumption.

Job shop scheduling is NP hard in nature. In a job shop manufacturing facility,

an order needs to go through multiple machines before it becomes a final product.

In flexible job shop, an task or operation of an order can be processed in multiple

candidate machines. Different characteristics of job shop scheduling are:

• A single order/operation/task can be processed in a machine at a given time.

The number of units being processed depends on the batch size

• No preemption is allowed, that is, if an order starts processing in a machine, it

cannot be removed until it is finished
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• Processing speed must be selected before starting an order in a machine. Once

the order starts processing, the processing speed cannot be changed.

• The precedence constraints have to be strictly followed and operation sequence

of an order follows a Directed acyclic graph

• A machine once started, should run for a minimum of some time to avoid

frequent switching on/off of machines

• When a machine is started, there is an instantaneous spike in the power con-

sumption

In this Chapter, an intelligent algorithm is proposed for the job shop facility

through a local controller. In the previous chapter, all the information was shared

with the central controller. using this algorithm, the individual consumer privacy

can be maintained and only request messages are sent from the consumers to the

central controller. The schematic representation is shown in Figure 4.1. Shi et.al [208]

proposed a research direction to develop intelligent algorithms on the consumer side

to generate the demand requests.

4.2 Problem Set-up

In this Chapter, the focus is on the production line loads of an industrial con-

sumer and not the µG with all the other consumers. The job shop scheduling aims at

minimizing the time average electricity cost over infinite horizon such that a certain

due date criteria is met. Let the job shop has |J |, j = 1, 2, ..., J machines, it can

process |K|, k = 1, 2, ..., K types of jobs and receives orders O , o = 1, 2, ..., |O|. Each

order has a due date ddo. Each job type k has set of tasks Vk, v = 1, 2, ..., |Vk| to be

completed where the known and deterministic processing time and power consump-

tion of each task v is given by T ok,v and P o
k,v respectively. Task v for job type k is

performed in machine m(k, v). A machine j consumes power IMj when sitting idle,

OMj when it is switched on or OFj when it is switched off where OMj and OFj are
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Fig. 4.1. Schematic representation of the proposed algorithm

instantaneous. These factors make the production loads significantly different from

building loads.

In dynamic production scheduling, heuristics such as First Come First Serve

(FCFS), Shortest Processing Time (SPT), Earliest Due Date (EDD) or Critical Ratio

(CR) are employed in manufacturing facility based on the objectives of the facility.

CR is the best performing heuristics while considering minimizing tardiness. In CR

heuristics, orders in a machine are prioritized based on the value of CRo = ddo−t
RPTo

,

where RPTo is the processing time remaining for completion of order o. In CR

heuristics, the lower the value, higher is the priority. Let the service rate of a task is

µj,k that is the inverse of its processing time. µk,v = 0 if j 6= m(k, v).

The model is based on certain assumptions. The assumptions considered in this

Chapter are:

• the due date of an order o is given ddo = t + RPTo + uxRPTo where u is a

random numer drawn from uniform distributionũniform(0, 1).
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• the model is discrete time with 15 minutes time slots and industrial consumer

has on-site energy generation

• energy generation from renewables follow a stationary time series

• arrival process of order for type k follows Bernoulli process with nominal rate

0 < λk < 1, that is, jobs of type k arrive in every time slot with probability λk.

• the industrial consumer wants to schedule jobs such that the peak is below a

predetermined level P .

• the proposed intelligent algorithm predicts the future values of on-site genera-

tion and xNS[t] for a fixed T ′ future time slots.

On-site energy generation could harvest H[t] at time t. We model the problem as

infinite horizon problem as demands are updated in the system based on online orders

from the customers. Prices for time t are assumed to be known. The production

facility draws G[t] from grid and xNS[t] is the non-production line load at time t.

They can also sell S[t] back to the grid at $p4[t]/KWh. The facility has a battery

with capacity Amax, Ymax, Bmax for storage, charging and, discharging respectively

while the respective amounts at time t are given by A[t], Y [t] and B[t].

The objective functions are shown in Equation 4.1, Equation 4.2 and Equation 4.3.

Equation 4.1 is minimizing the time average cost. Equation 4.2 is minimizing the

average tardiness where CTo is the completion time, Ro is the arrival time and FTo =

CTo−Ro is the flow time of order o. Equation 4.3 is minimizing the peak minimization

where L[t] is explained in Equation 4.8.

min lim
|T |→∞

1

|T |
∑
t∈T

G[t]p1[t] +H[t]p2[t]− S[t]p4[t] (4.1)

min
1

|O|
∑
o∈O

[
CTo − ddo

]+
(4.2)

min

(
max L[t] ∀t ∈ T

)
(4.3)
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The constraints for the battery are shown by Equation 4.4 - Equation 4.6. Evolution

of battery is given in Equation 4.4. The capacity constraint are given by Equation 4.5.

Capacity feasibility constraints are shown in Equation 4.6.

A[t+ 1] = A[t] + Y [t]−B[t] ∀t ∈ T (4.4)

A[t] ≤ Amax, B[t] ≤ Bmax, Y [t] ≤ Ymax ∀t ∈ T (4.5)

B[t] ≤ A[t] and Y [t] ≤ Amax − A[t] ∀t ∈ T (4.6)

Let L[t] be the power load from the manufacturing site at time t. The supply demand

matching is given in Equation 4.7.

G[t] +H[t] +B[t] = L[t] + Y [t] + S[t] ∀t ∈ T (4.7)

L[t] is the total power consumed in time slot t as given in Equation 4.8. It consists of

machine operation (idle/on/off), processing of a task and non-production line load.

At any time t, let there be Qj orders queued in machine j and let P o
j,q is the processing

power and T oj,q is the processing time for qth order in machine j. These values are

known as we know the task and job type of each element in the queue as after each

task, the order moves to the queue of the next task. Let xj,q[t] = 1 if qth order of

machine j is running at time t. Let msj[t] = 1 if machine was running at time t− 1,

yj[t] = 1 if machine was switched on at time t,zj[t] = 1 if machine was switched

off at time t and vj[t] = 1 if machine is kept running idle at time t and MLj[t] is

the machine load as explained in Equation 4.10. The domain constraint is shown in

Equation 4.11.

L[t] = xNS[t] +
M∑
j=1

( Qj∑
q=1

xj,q[t] +MLj[t]

)
∀t ∈ T (4.8)

MLj[t] =OMjyj[t](1−msj[t]) + IMjvj[t]msj[t]

+OFjzj[t]msj[t] ∀j ∈ J,∀t ∈ T (4.9)
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The constraints for running status of a machine are given in Equation 4.10.

vj[t] + zj[t] ≤ 1 if msj[t] = 1

vj[t], zj[t] = 0 if msj[t] = 0 (4.10)

vj[t], yj[t], zj[t], xj,q[t] ∈ {0, 1}

L[t], X[t], S[t], H[t], Y [t], B[t] ∈ R+ (4.11)

Apart from these constraints, some of the constraints are explained in Section 4.2.1.

Constraints on L[t] are further explained in Section 4.3.1 which are essential to main-

tain the job shop assumptions. Before that, the capacity region of the scheduling is

derived next.

4.2.1 Capacity Region for Scheduling

Capacity region (Cap) is used to define the processing capability of the job shop.

It ensures that the queues remain stable for the given arrival rates. Let machine j

allocates ρj,k,v ≤ 1 proportion of its resources to task v of job type k. We define a

set K’ = 1, 2, ...,
∑N

k=1 Kv that contains the list of all the tasks. Let N j be the set of

feasible configurations for machine j. The capacity region for λk is defined by solving

the following Linear Programming (LP) problem.

max
N∑
k=1

λk ∈ Cap (4.12)

such that

λk ≤
(
µj,k,vρj,k,v ∀v ∈ Vk,∀j ∈ J

)
∀k ∈ K (4.13)

N∑
k=1

Vk∑
v=1

ρj,k,v ≤ 1 ∀j ∈ J (4.14)

Equation 4.12 aims at maximizing the capacity region of the job shop. Equation 4.13

ensures that the capacity is defined based on the slowest processing step, where right
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hand of the equation is the measure of effective rate of service for a task. Equation 4.14

is the capacity constraint for resource allocation.

Let V = ∩|K|k=1Vk be a vector of all the different tasks from all the different job

types to be scheduled in the facility. Let ev̄ be a vector with all 0 vectors except 1 at

location v̄. Let N j = (ev̄ ∀v ∈ Vk, ∀k ∈ K) if j = m(k, v). Similarly we define P o as

vector for power consumption by the different tasks.

λk ∈ ¯̄N =
{
Conv(N j) ∀j ∈ J,∀k ∈ K

}
(4.15)

λk ∈ ¯̄N

∣∣∣∣(∑
j∈M

K∑
v∈V̄

evP
o
v < cm− xNS

)
(4.16)

Let the minimum value of control command from central µG be cm and xNS be the

maximum non-production line load. Equation 4.15 provides the feasibility constraint

when Conv(N j) is the convex hull. Equation 4.15 shows job shop specific constraint

that a machine can process only one job at a time and any task of a job can be

processed in a single machine only. Equation 4.16 provides the feasibility constraint

for maximum peak load for production line load. Strict inequality is used to account

for machine loads in Equation 4.9.

Lemma 1 1
|O|
∑|O|

o=1

(
CTo − ddo

)
≤ 0.

Proof Let the completion rate of an order be deo such that 1
FTo

= deo and FTo ≥

RPTo. Since λk ∈ C, λk ≤ deo (arrival rate less than service rate for queue stability),

FTo ≤ λ−1
k . Let jobs of type k arrive with arrival rate λ′k and FT ′o = ddo − Ro =⇒

RPT ′o ≥ RPTo. For such jobs, at least one of µ′j,k,v ≤ µj,k,v as RPT ′o ≥ RPTo. Since

λ′k ≤ µ′j,k,vρj,k,v and thus λ′k ≤ λk and λ′k ∈ C. λ′k ≤ λk implies FTo ≤ (λ′k)
−1 ≤ FT ′o

which shows that CTo−ddo ≤ 0 where CTo ≤ FTo+Ro. Summing this result over all

o ∈ O completes the proof. In essence, this lemma shows that since the arrival rate

of jobs is within the capacity region, the queues in machine do not blow up, hence

the tardiness does not blow up.
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4.2.2 Virtual Queues for Lyapunov Optimization

The optimal policy for minimizing tardiness is to follow CR heuristics. Thus

objective function in Equation 4.2 is minimized if we follow a CR policy. However, it

is not optimal for the other 2 objectives. We devise a control policy that attempts to

follow the scheduling policy close to CR but also considers other objective functions.

To do this, we propose two virtual queues shown in Equation 4.20 - Equation 4.21

where δ ≥ 0 and χ ≥ 0 are two control hyper-parameters for the managers.

Let the orders in machine j queue are denoted by Qj[t]. We assume that the

orders are placed in a queue based on their CR values. xj,q,t = 1 if the proposed

policy schedules the order in sequence q at time t. Let the qth order in the queue of

machine j is has priority prj,q, processing power P o
j,q and processing time T oj,q. T

′ is

the maximum orders that can be scheduled in the next T ′ time slots.

prj,q = |Qj[t]| − q + 1

∣∣∣∣ |Q
j [t]|∑
q=1

T oj,q ≤ T ′

prj,q = |Qj[t]| − q + 1

∣∣∣∣ q
′−1∑
q=1

T oi,q < T ′ ≤
q′∑
q=1

T oj,q, |Qj[t]| ≤ T ′

prj,q = [T ′ − q + 1]+
∣∣∣∣|Qj[t]| ≥ T ′ (4.17)

arr[t] and dep[t] is defined in Equation 4.18 and Equation 4.19 respectively. prj[t]

is given by Equation 4.17. The priority value is defined as such to make arr[t]

bounded and also it balances the workload amongst the different machines by not

giving excessive weight to a machine with higher queue length. In this Chapter,

future prediction up to time t+ T ′ is used for making decision at time t. Intuitively,

arr[t] is the sum of priorities of all the jobs that could be started in the time slots

t′ = {t, t + 1, ..., t + T ′} while dep[t] is the sum of priority of jobs that the proposed

policy schedules in the time slots t′.

arr[t] =
∑
j∈M

|Qj [t]|∑
q=1

prj,q[t] (4.18)
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dep[t] =
N∑
i=1

( |Qj [t]|∑
q=1

pj,qxj,q

)
(4.19)

Qd[t+ 1] =
[
Qd[t] + arr[t]− dep[t]− δ

]+ ∀t ∈ T (4.20)

Qp[t+ 1] =
[
Qp[t] + L[t]− (P − χ)

]+ ∀t ∈ T (4.21)

Objectives in Equation 4.2 and Equation 4.3 can be converted to a time averaged

constraint as shown in Equation 4.22 and Equation 4.23 respectively. The two virtual

queues above are derived from these objective turned constraints.

lim
|T |→∞

1

|T |
∑
t∈T

(
arr[t]− dep[t]

)
≤ δ (4.22)

lim
|T |→∞

1

|T |
∑
t∈T

L[t] ≤ P − χ (4.23)

It can be seen from the Equation4.20 and Equation 4.21 that δ and χ are the

hyper-parameters acting as two levers that can be controlled by the managers at the

industrial facility. The effect of changing δ and χ is shown in Section 4.4.

Lemma 2 arr[t] ≥ dep[t] and arr[t] <∞

Proof It can be seen from the definition of arr[t] and dep[t] that arr[t] ≥ dep[t] since

orders are arranged according to CR priority while maximum jobs possible are sched-

uled. The priority of an order is bounded by T ′, thus arr[t] <∞

Lemma 3 CR policy is optimal for objective function given in Equation 4.22 and

Equation 4.2.

Proof CR policy is the optimal policy for the objective of minimizing tardiness in

Equation 4.2. Assume E[Qd[0]] = 0. If we follow the CR policy, arr[t] = dep[t], ∀t ∈

T . Thus CR policy ensures the feasibility of Equation 4.22 even when δ = 0. Since,

we are not following a CR policy and devising our own policy, δ is required to make

the virtual queue Qd stable.
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Theorem 1 If 1
|T |
∑

t∈T E
[
arr[t]− dep[t]

]
≤ δ, queue Qd[t] is mean rate stable.

Proof Consider Equation 4.20, it can be observed that Qd[t + 1] ≤ Qd[t] + arr[t] −

dep[t] − δ. Taking the expectation on both sides and summing it over all t, gives

Equation 4.24.

E[Qd[T ]]− E[Qd[0]] ≤
∑
t∈T

E
[
arr[t]− dep[t]− δ

]
1

|T |
E
[
Qd[T ]

]
≤ 1

|T |

(∑
t∈T

E
[
arr[t]− dep[t]

])
− δ (4.24)

If the condition proposed in this theorem is satisfied, 1
|T |E[Qd[T ] ≤ 0, making it mean

rate stable. Similarly, it can be shown that since E
[
L[t]
]
≤ P −χ, Qp[t] is mean rate

stable.

δ plays an important role in making the virtual queue stable and also increasing

the value of virtual queues that would create pressure on the Lyapunov iteration step

to schedule jobs with higher CR priority. Similarly, χ is a measure of safety in terms

of peak maintenance. Lower the value of χ, higher is the value of the virtual queue

thus there is more pressure to schedule jobs with lower power consumption.

4.2.3 Predicting on-site Energy Generation

In this research, energy from on-site generation is predicted using a ensemble

method involving a Recurrent Neural Network (RNN) and ARMA (Auto-Regressive

Moving Average) time series model. In this Chapter, a wind mill is considered that

is installed at the manufacturing facility that supplies renewable energy to the plant.

Similar analysis and study can be conducted for a facility with solar energy on site

generation. However, the characteristics will be different from the wind energy gen-

eration model developed in this Chapter. Please refer to [264] for understanding the

recurrent neural networks. The data for training the model is obtained from ERCOT

where power form the wind mill is recorded every hour [252]. It is assumed that ft

follows a multivariate normal distribution N (ft,
∑

f ) where ft are the forecast made

at t for t′ ∈ T̄ = {t+ 1, t+ 2, ...t+ T ′}.
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The method consists of using the average of two predictions. One vector is pre-

dicted using recurrent neural network and one vector is predicted using time series

model. And the arithmetic mean of the two vectors is used as ft. The best model for

prediction in this research is obtained using training the RNN based on the square

loss function. The architecture of the RNN and decreasing loss function with train-

ing iterations is shown in Figure 4.2(a) and Figure 4.2(b). Figure 4.3 shows a sample

prediction against true value using RNN model. In Figure 4.3 and Figure 4.5, the

blue line shows the true values while the green line shows the prediction. The loss

functions shows that the RNN model has converged. The training stops when the

out - of - sample error, or, errors in test validation data starts increasing. For RNN,

a two layer perceptron architecture is considered. The model considered time lags of

28 time slots to predict ft.

A RNN architecture is preferred over multi-layer perceptron model as multi layer

perceptron model does not consider the dependency between the data input. In the

case of predicting power from wind, the future predictions are heavily correlated with

the past data. A RNN architecture is the state of the art architecture for predicting

time dependent values. The RNN architecture considered in this research uses Long

Short Term Memory (LSTM) cells. Multilayer perceptron model and RNN model

in particular face the problem of vanishing gradient during the updating (using back

propagation) of the weights. LSTM cells in the RNN architecture handles the problem

of vanishing gradients that is prevalent in RNN. A learning rate of 0.05 is considered

for training the model and the batch size is kept at 32. The number of hidden layers

is set at 2 as the model performance increases when increasing the number of layers.

The performance of RNN model is better as T ′ increases. However, when pre-

dicting for near future time slots, the performance is not as good because it does not

handle the correlation between the time slots mathematically and independently of

other time slots. Thus, past plays a major role in predicting near future time slots

and acts in contributing noise to the estimation. However, the time series model

mathematically handles the past that should be included in the model to predict the
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(a) Architecture for Recurrent Neural Network

(b) Model training error with iterations for RNN

Fig. 4.2. RNN model for estimating ft

future time slots. Therefore a time series model is also studied to predict the power

available from the wind mill to the facility. However, the prediction performance

deteriorates as T ′ increases because of the following two reasons:
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Fig. 4.3. Prediction sample for time series model

• the time series model takes time to recover from shock. When the time series

model experiences a randomly high/low value, it takes time to wash off the

residue as the prediction is based on this randomly high/low value

• the prediction of the time series model decays exponentially with increasing

future time slot. Thus the performance of the model decreases for increasing

future time slots

Because of these two reasons, time series model is used with RNN model for power

prediction from wind mill. Thus, the two models have their advantages and disad-

vantages and an ensemble methods performs better than the two methods considered

individually. Next, the time series considered in this research is explained.

For ARMA time series model, a ARMA (3,0,0)x (1,0,0,24) model is fit. ARMA

model provides better predictions for smaller lookahead time slots but the predic-

tion performance decreases as the prediction time horizon increases. If wt+1 is the

prediction for time slot t + 1, the function for prediction using ARMA is shown in

Equation 4.25. The coefficients are obtained for the simplest model with the best

fitting function. The best fit is considered based on root mean square values and

Akaike Information Criteria (AIC) values. The Autocorrelation function (ACF) and

the partial autocorrelation function (PACF) of the residuals is shown in Figure 4.4(a)

and Figure 4.4(b) respectively. A sample of prediction from time series model is
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shown in Figure 4.5. The ACF and PACF plots show that the model fit is good and

the residuals could represent white noise (mean 0 and a constant variance σ).

wt+1 =1.6478wt − 0.7428wt−1 + 0.08wt−2 + 0.1523wt−24− (4.25)

1.6478 ∗ 0.1523xt−24 + 0.7428 ∗ 0.1523xt−25 − 0.008 ∗ 0.1523xt−26 (4.26)

(a) ACF of the time series model (b) PACF of the time series model

Fig. 4.4. Time series model for estimating ft

Fig. 4.5. Prediction sample for time series model

4.3 Handling uncertainty in power prediction

Power from the wind mill is highly unpredictable because of the uncertain nature

of the weather. Thus estimating the power from just one data point (based on recent
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history) might lead to highly noisy and poor predictions. Thus, when predicting on-

site energy generation, ft is obtained by sampling. Sample size S is decided based on

Wasserstein Distance (WD) as explained By Bao et. al [261]. If the prediction horizon

T ′ is smaller, prediction accuracy is higher as against when T ′ is large as shown by

increasing TD and T ′ in Figure 4.6(a). Let S̄ be the set of samples obtained for

the prediction. Let the prediction follow a multivariate distribution with parameters

N(fT , σft). From the dataset, different data points are collected for prediction at

point t such that the data points were obtained for time of the day in terms of

hour t. The heuristic used to draw samples is described in Heuristic 4.1. Future

values of these data points are considered as true values and the WD distance is

calculated using these values. Let the true values follow a distribution given by a

multivariate distribution with parameters N(f̄T , σf̄t). Let the correlation coefficients

for the 2 distribution is given by Cf and C̄f . The WD distance between these two

distributions is given as shown in Equation 4.27.

WD = |ft − f̄t|+ Trace

(
Cf + C̄f − 2

√
Cf C̄f

√
Cf

)
(4.27)

Heuristic 4.1: Drawing samples for prediction

1. For every time slot h, collect the values of previous T ′ time slots in set Ft

2. Calculate the exponential average of the elements in the set Ft

3. Run a K-means clustering algorithm with Kc = 4 for separating the data in each

time slot into 4 different groups and calculate the average of each group

4. When drawing samples for hour h, calculate the exponential average eah of its

previously observed T ′ time slots and find the cluster with its average closest to eah

5. Draw samples S̄ randomly from this cluster for a given hour of the day h

As S̄ increases, WD decreases when measured against true data. In this Chap-

ter, 200 samples are drawn for estimating ft as there is no further improvement in

WD on increasing S. An example of correlations coefficients is shown for T ′ = 3 in

Figure 4.6(c) which shows that increasing sample size improves estimation. The cor-
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relation matrix is converted into a single vector and drawn as shown in Figure 4.6(c).

The x axis are the numbers from 1 to 9 representing the index of the correlation

values. The fitted distribution is assumed to be a multivariate distribution with T ′

dimensions.

(a) WD with T ′ for S = 200 (b) WD with S for T ′ = 6

(c) Correlation with increasing S

Fig. 4.6. Wasserstein distance with different T ′ and S

4.3.1 Lyapunov Optimization Iteration Step

Based on the previous Chapters, Lyapunov Optimization aims at minimizing drift

+ penalty function at each time step to achieve different objectives. For a Lyapunov

iteration step, the future values for electricity generation from renewables and non-
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production line load are considered. The non-production line load xNS[t′] is estimated

as the average for that time slot for all the previous days. ft = {f [t+1], f [t+2], ..., f [t+

T ′]} is obtained by prediction explained in Section 4.2.3.

Define Θ[t] = (Qd[t], Qp[t]). The Lyapunov function and one slot conditional

drift for virtual queues Qd[t] and Qp[t] is given by Equation 4.28 and Equation 4.29

respectively, where the value of B is given in Equation 4.30. αd and αp are the weights

given to the two virtual queues and B is obtained from the definition of arr[t] that

sets the maximum value of priority to be T ′. Since a maximum of T ′ orders can be

schedule in a machine in T ′ time slots, fist half of B is obtained by the sum of the

maximum possible priorities.

L(Θ[t]) =
1

2

(
αdQ

2
d[t] + αpQ

2
p[t]

)
(4.28)

O(Θ[t]) = E
[
L(Θ[t+ 1])− L(θ[t])|Θ[t]

]
≤ αdQd[t]E

(
arr[t]− dep[t]− δ|Θ[t

]
)

+ αpQp[t]E
(
L[t]− (P − χ)|Θ[t]

)
(4.29)

B =
1

2

(
αpM

(
T ′(T ′ + 1)

2
− δ
)2

+ αd
(
P − χ

)2
)

(4.30)

The upper bound on the weighted sum of drift-plus-penalty function,O(Θ[t]) +

V
(
G[t]c1[t] +H[t]c2[t]

)
is minimized in each time slot t where V is another constant

control variable. The O(V ) and O(1/V ) trade offs for drift and penalty can be con-

tained for the problem considered in this paper, but the proof is similar as developed

by Neely [201].

Thus, the job shop scheduling framework based on the virtual queues aims at

solving the following optimization problem from Equation 4.31 - Equation 4.44 ∀t ∈

T . This Mixed Integer Programming Quadratic Constrained optimization problem is

the intelligent algorithm at the industrial consumer’s end. The objective function and

most of the constraints are linear. The problem is quadratically constrained to handle

the constraint in the manufacturing scheduling to ensure that once an order is started,
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it is not pre-emptied before completion. The storage constraints are satisfied in every

time slot t. Power consumption for machine on/off/idle decisions and constraints

for running an order makes the problem complex. These constraint differentiate the

production line load from residential or commercial building loads.

min − αdQd[t]dep[t] + αpQp[t]P + µP

L[t] + V
(
G[t]c1[t] +H[t]c2[t]−G[t]

)
(4.31)

such that

G[t] +H[t] +B[t] = Y [t] + L[t] (4.32)

G[t′] + f [t′] +B[t′] = Y [t′] + L[t′] ∀t′ ∈ T̄ (4.33)

L[t] = xNS[t] +
M∑
i=1

Qi[t]∑
q=1

P o
i,qxi,q,t +

M∑
i=1

MLi[t] (4.34)

L[t′] = xNS[t′] +
M∑
i=1

Qi[t′]∑
q=1

P o
i,qxi,q,t′ ∀t′ ∈ T̄ (4.35)

L[t′] ≤ P ∀t′ ∈ {t, ..., t+ T ′} (4.36)

T ′∑
t′=0

xj,q,t+t′ ≤ T oj,q ∀q ∈ Qj[t],∀j ∈ J (4.37)

xj,q,t+1

( t+T ′−1∑
t′=t

xj,q,t′

)
≤ T oj,q, ∀q ∈ Qj[t], ∀j ∈ J (4.38)

xj,q,t′ ≤ vj[t] + yj[t] ∀t′ ∈ {t, ..., t+ T ′} (4.39)

Qj [t]∑
q=1

xj,q,t′ ≤ 1 ∀j ∈ J,∀t′ ∈ {t, ..., t+ T ′} (4.40)

A[t′ + 1] = A[t′] + Y [t′]−B[t′]∀t′ ∈ {t, ..., t+ T ′} (4.41)

A[t′] ≤ Amax, B[t′] ≤ Bmax, Y [t′] ≤ Ymax ∀t′ ∈ {t, ..., t+ T ′} (4.42)

B[t′] ≤ A[t′] and Y [t′] ≤ Amax − A[t′] ∀t′ ∈ {t, ..., t+ T ′} (4.43)

xj,q,t′ , vj[t
′], yj[t

′], zj[t
′] ∈ {0, 1}∀t′ ∈ {t, ..., t+ T ′} (4.44)

G[t′], H[t′], L[t′] ∈ R+∀t′ ∈ {t, ..., t+ T ′} (4.45)
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Equation 4.31 is the opportunistic drift-plus-penalty function. In Lyapunov opti-

mization, there is a lag of 1 time unit. It means that a penalty at time t is reflected

in the actions of time step t + 1 after the virtual queue update. Thus a penalty

µP is introduced on peak in Equation 4.31. Equations [4.32 - 4.33] are the supply

demand matching constraints. Equations [4.34 - 4.35] expresses the power consumed

at different time slots where MLi[t] is explained in Equation 4.9. Equation 4.36 en-

sures that the peak constraint is not violated. Equations [4.37 - 4.38] are the job

shop constraints for non-interruption and non pre emptiveness as a task has to be

completed once started. Equation 4.40 ensures the job shop constraint that machine

can process a single job at a given time slot. Equation 4.39 shows a task can be

completed only in a machine that is in on state. Equation 4.41 - Equation 4.43 are

the storage constraints. Equations 4.44 - Equation 4.45 are the domain constraint.

The quadratic constraint may have a high computational time to handle the com-

plexity in the constraint. However, since most of the constraints are linear and the

problem is convex, the optimizer used in this research is able to solve the problem in

small computation time. The optimizer uses interior point method to solve the prob-

lem to optimality. The optimality gap is set as 1x10−5 and the iteration stops when

the solution achieves the optimality gap criteria. It is important that the computa-

tional time is small as the problem is solved for dynamic (and real-time) sequential

decision making. If the computation time is large, the model needs significant changes

to account for the lag in decision making. A study is provided in the Section 4.4 to

understand the computational time to solve the problem.

After solving the model discussed above, Qd[t], Qp[t] and msi[t],∀i ∈ I are updated

and the orders with xi,q,t = 1 are scheduled and start in time slot t. If an order is

scheduled at time t, the power consumption of that order is added to non-shift able

non-production line loads in the future time slots.
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4.4 Simulation Experiments and Results

An example of the data for on-site generation profile, non-production line load

profile and electricity price for a month is shown in Figure 4.7. The experiment is

run for 180 days where first 150 days are discarded in analysis as warm up period.

A job shop with 5 machines that can handle 5 job types are considered for analysis.

Let u be a random drawn from uniform distribution U(0, 1). The number of tasks,

processing time for each task and processing power for each task for each job type k is

given by Kj = 1 + bux4c, T oj,k = 1 + bux4c and P o
j,k = 25 +ux55 respectively. As seen

from Figure 4.7 and observed in an industrial facility, the non-production line load

remains fairly stationary. Frequent switching on/off of machines is not good for the

health of the machine. Based on the information from an industrial consumer, it is

assumed that if a machine is switched off at time t, msj[t
′] = 0∀t′ ∈ {t, t+1, ..., t+5},

thus machine is not switched on for the next 3 hours.

Fig. 4.7. Data used in this Chapter for simulation

Two different cases are considered. In Case I, the industrial consumers consider

only previous day’s demand, that is, at the start of the day, they have complete infor-
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mation of the orders to schedule for that day. In Case II, the demands are updated

online in the system based on customers orders, thus there is higher stochasticity in

demands. The former case is prevalent in industries under contract manufacturing

while the latter case is prevalent in industries with emerging cloud manufacturing and

Industry 4.0. All the experiment results shown in this Section show the average value

when the experiment is run 30 times with different random number seed. Common

random numbers are used to generate different experiments, thus maintaining the

fairness in measuring the performance of the proposed framework.

Figure 4.8 - Figure 4.12 studies the affect of different hyper-parameters {δ, χ, T ′, V }.

The sensitivity analysis is performed by changing one parameter while keeping other

parameters as constant (αd = 1, αp = 0.1, T ′ = 3, V = 25, χ = 20, δ = 3, µ = 1, P =

0.8x|M |x55).

Fig. 4.8. Average tardiness with δ

As seen from the results in Figure 4.8, as the value of δ increases, the average

tardiness increases as pressure on virtual queue Qd[t] decreases. Similarly, as the

value of χ increases, average tardiness increases as shown in Figure 4.9. The pressure

to reduce peak increases therefore fewer machines are switched on and fewer orders are
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Fig. 4.9. Average tardiness with χ

Fig. 4.10. Average Peak consumption with χ

scheduled. Also, as this pressure increases, the peak reduces as shown in Figure 4.10.

Sensitivity for V is shown in Figure 4.11 in terms of the throughput percentage. This

is because if the throughput is lower, electricity cost is lower as not enough jobs

were scheduled for a fair comparison. As the value of T ′ increases, Qp[t] increases as
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Fig. 4.11. Average throughput with χ

Fig. 4.12. Average electricity costs with V

more orders could be scheduled by CR but after a certain level, throughput starts

decreasing as the orders are deferred to later t as number of orders in queue remains

the same. It can be observed that T ′ = 3 performs the best as if T ′ is small, there is

low pressure to schedule orders while the model has a tendency to defer orders when
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T ′ is high. In this Chapter, T ′ = 3 is used as 6 half hour slots, thus, when prediction

is used, 6 future time slots are considered. As V is increased, the cost first increases,

then decreases. On increasing the V , the cost increases as drift term competes with

penalty term in Equation 4.31, thus increasing the cost as more jobs are scheduled.

However, as the value of V becomes large, drift term could only compete when it is

too big, thus cost reduces as fewer jobs are scheduled.

This shows the importance of interplay between δ and χ in deciding the best

hyper-parameters according to their metrics. The cost is highest when V is 0 as all

the jobs are scheduled at earliest possible time.

The computational time for the Lyapunov optimization that is solved in every time

slot is an important factor to enable real-time and dynamic decision making process.

The average computation for solving the Lyapunov optimization step for different

problem size is shown in Table 4.2. The smaller computational times ensures that

the model can be applied in practice when making sequential decisions in every time

slot. As observed in the table that as the problem size increases, the computational

time increases as expected. A majority of small scale manufacturing facilities that

could be placed in a small µG community have less than 30 machines. Large scale

manufacturing facilities have 50 - 100 machines. Large scale manufacturing facilities

may themselves be treated as independent µGs.

To evaluate the performance of the proposed framework, three different models

are used: 1) BM1: CR ratio heuristics 2) BM2: Pure Lyapunov optimization with-

out considering future expectations. For pure Lyapunov optimization, a max-weight

policy is considered since arr[t] = 0 if T ′ = 0 is considered 3) BM3: A relaxed of-

fline solution that relaxes some of the job shop constraints as job shop scheduling is

NP-Hard and solves a deterministic problem. The problem is solved at the end of the

period when all the stochastic variables values have been realized. The objective is

to minimize the total electricity cost such that the throughput is ≥ the throughput

of the proposed framework. To check the scalability of the model, different problem

sizes are considered with higher values of M and N . The performance for the dif-



101

Table 4.2.
Computational time for different problem size

(|M |, |K|) Time (in seconds)

(5,5) 0.083

(5,10) 0.092

(10,10) 0.279

(10,15) 0.318

(20,30) 0.469

(50,50) 0.832

(75,75) 1.491

(100,100) 2.936

Fig. 4.13. Electricity cost for different models

ferent experiment set ups is provided in Figure 4.13. The results show that the CR

heuristics performs the worst while the proposed heuristic performs comparative to

the relaxed offline solutions obtained by solving the problem at the end of the period.
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4.5 Conclusion and discussion

In this Chapter, an intelligent algorithm is developed for a local controller installed

at consumer’s location. A job shop manufacturing facility is considered that aims at

minimizing the total electricity cost while reducing the average tardiness and peak

energy consumption. The intelligent algorithm considers future expectations while

making scheduling decisions at time t. This is the first work in dynamic job shop

scheduling considering energy related objectives. The simulation results show that

the algorithm performs comparatively to Critical Ratio (CR) heuristics in terms of

tardiness while outperforming it significantly in terms of energy related objectives.

The proposed framework in this Chapter introduces two hyper-parameters that can

be used by the facility manager to control the throughput of orders and their effect

is studied through sensitivity analysis. The manager can select the different values

based on her/his preference for this multi-objective optimization problem.

The model can be extended in different directions. The value of T ′ is selected based

on the sensitivity analysis. However, a theoretical study could be conducted to select

the optimal T ′ based on the knowledge of the variance along with the sampling mean.

The performance of the algorithm is compared with the benchmark solution obtained

by solving the relaxed deterministic problem at the end of the planning period. This

property is explored in Chapter 6 to learn a deterministic optimal policy based on the

optimal actions by converting the load scheduling problem into a supervised learning

with guided policy search. X[t] in this Chapter can be considered as the request ri[t]

from the industrial consumer to the SO. Similarly, intelligent algorithms can be built

for different types of consumers. This Chapter considers an industrial consumer’s

perspective. In the next Chapter, central controller’s perspective is considered where

requests from different consumers can be developed using the intelligent algorithm

proposed in this Chapter.
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5. DYNAMIC LOAD SCHEDULING IN A µG WITH

PARTIAL INFORMATION SHARING

In this Chapter, a dynamic load scheduling based on consumer utilities and partial

information sharing is presented with different types of loads and different types of

consumers described in a µG as discussed in Section 1.2.2. Most of the dynamic mod-

els consider that consumer share all the information about their demand to the SO.

Load scheduling models developed in Chapter 3 also assumed that consumers share

complete information to SO. However, consumer privacy is very critical, particularly

when all the consumers are connected. In this Chapter, a dynamic load scheduling

model is investigated such that consumer privacy and security is not compromised.

The objectives of this chapter include:

• Develop a dynamic load scheduling model based on consumer utility function

• Use partial information sharing for load scheduling to respect consumer privacy

The model developed in this chapter is significantly different from the previous models

as:

• The consumers send partial information to the SO as against complete infor-

mation in Chapter 3

• All the consumers are considered from the perspective of SO as against consid-

ering just the perspective of industrial consumer in Chapter 4

• Energy forecast for future time slots from renewable sources of energy is con-

sidered
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5.1 Dynamic Scheduling with different consumer types

In this section, a model for dynamic load scheduling with partial information

sharing is developed. SO is the manager and consumers (DLCs) are the participants.

In every time slot, the manager observes random events such as real time electricity

price released by Macrogrid, electricity harvest from the renewables and the electrical

energy stored in the battery. The participants observe random event such as new

demands. Information of one player is not known to neither the manager nor other

players but the utility function of a consumer is known to SO. The steps in dynamic

scheduling with all the consumers are shown in Figure 5.1.

Fig. 5.1. Different steps in dynamic load scheduling with partial information

The consumers share partial information with the manager (SO). In each time slot

t, a participant provides the manager with the information of the minimum request

and the maximum request. The minimum request in this research is considered to

be the non-shift able loads while the maximum request from a consumer is the X[t]

obtained in Chapter 4. After receiving information from the consumers, the manager

runs an optimization model for finding the optimal supply L∗, sets electricity price

p for the participants and the message vector m[t] = {m1[t],m2[t], ...,mN [t]} for the

consumers. Assuming that the consumers follow the instructions by the manager,

ai[t] ≤ mi[t],∀i ∈ I,∀t ∈ T . After each time slot, based on the consumption by the
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different consumers, information on virtual queues is updated by the manager. The

consumers are charged based on p and total electricity consumed.

5.2 Consumer participation in collaborative Load Scheduling

In this Section, participation of the consumers is characterized for the participating

consumers. Time average utility for a consumer i is shown in Equation 5.1. Objective

of the dynamic load scheduling problem, shown in Equation 5.2, is to maximize the

sum of time average utilities for all the consumers. A participant would participate

in load scheduling under certain conditions such that: For a participant i, the time

average utility ūi is at least as large as the maximum time average utility a participant

could achieve if she did not participate in the collaboration, even though she has

information on the optimal message from the manager. The condition is shown in

Equation 5.3. To ensure that a consumer participates in collaborative load scheduling,

time average utility when she plays should be greater than time average utility when

she does not participate and therefore has no information about the optimal message

from the manager. It is shown in Equation 5.4.

ūi = lim
|T |→∞

1

|T |
∑
t∈T

ui(ai[t]) (5.1)

Maximize
N∑
i=1

ūi (5.2)

lim
|T |→∞

1

|T |
∑
t∈T

(
ui(ai[t], a

−1
i [t])− ui(bi[t], a−1

i [t])
)
≥ 0 (5.3)

lim
|T |→∞

1

|T |
∑
t∈T

(
ui(ai[t], a

−1
i [t])− ui(bi[t])

)
≥ 0 (5.4)

5.3 Dynamic load scheduling

Dynamic load scheduling consists of 4 steps. First, the participants send infor-

mation about their maximum and minimum demand in each time slot. Second,

the manager obtains optimal supply value based on the estimated values of random
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variables. Third, the manager finds optimal message for each consumer based on Lya-

punov optimization. Lastly, the participants schedule the loads based on the message

from the manager and update their request for the next time slot.

5.3.1 Request from consumers

In this Chapter, all the three types of consumers with their respective types of

loads are considered: Industrial manufacturing facility, residential consumers and

commercial buildings. Each consumer sends their minimum and maximum demand

to the grid manager.

Electricity requested by each residential building and commercial building and

job shop at time t is explained in Chapter 3 in Section 3.2.2 and by job shop is

explained in Chapter 4 in Section 4.2. The minimum request from a consumer i

is remini [t] = Lnsi [t] and maximum request is remaxi [t] =
∑

d∈SLi[t] L
sl
i,d + Lnsi [t]. The

minimum and maximum request from a job shop facility is obtained by remini [t] =

xNS[t] and remaxi [t] = X[t] respectively as explained in Chapter 4. These values

are known internally only to the DLCs of the respective consumers but not shared

with any other consumer or the SO. In every time slot, the SO sees only remini [t]

and remaxi [t] from all the consumers, thus only partial information is shared by the

consumers to the manager. The consumers DLC may also provide requests at time t

in the form of an array containing information about the requirements of future time

slots based on their forecast for onsite energy generation.

5.3.2 Optimal supply L∗

It is assumed that SO has an estimation of the future values of electricity harvest

from renewables and average demand from all the consumers. This estimation is

obtained from the sampling method discussed in Section 4.2.3. Thus, electricity

generation from the renewables is assumed to be normally distributed around a time

varying mean. This estimation is used to identify how much of total request can



107

be deferred to later time periods. This provides an improvement to the Lyapunov

optimization technique. The optimization model for optimal supply is constructed in

Equation 5.5 − Equation 5.11. Eg[t], Ep[t] and El[t] is the estimated harvest from

renewables, estimated electricity price from Macrogrid and and estimated load from

the consumers. The estimation is based on sampling using Wesserstein distance as

described in Chapter 4. At the end of each day, the problem is solved for optimality

and the value of El[t] is obtained as a weighted average of the historical optimal

values. This also helps in making better load scheduling decisions as the decisions are

made based on historically optimal values and it is also able to adapt to new demand

pattern. Since a tentative model is considered, storage constraints are neglected in

this formulation for future time slots as the objective is to find out how much load

can be deferred to future time slots. X̄[t] is the decision variable as how much of the

total requested demand should be met at time t where L∗ = X̄[t].

minimize
t′=t+T

′∑
t′=t

(
X[t′]Ep[t

′] +G[t′]Ep[t
′]
)

(5.5)

¯X[t′] +G[t′] = El[t
′] ∀t′ ∈ {t+ 1, ..., t+ T

′} (5.6)

G[t′] ≤ El[t
′] ∀t′ ∈ {t+ 1, ..., t+ T

′} (5.7)

t′=t+T ′∑
t′=t

(
¯X[t′] +G[t′]

)
=

t′=t+T ′∑
t′=t

El[t
′] (5.8)

X̄[t] ≥
∑
i∈I

remini [t′] ∀t ∈ T (5.9)

X̄[t] ≤
∑
i∈I

remaxi [t] ∀t ∈ T (5.10)

X̄[t′] ∈ R+ ∀t′ ∈ {t, t+ 1, ..., t+ T
′} (5.11)

The objective function to minimize the total cost for period T
′

is shown in Equa-

tion 5.5. The function aims to minimize the cost of an estimated function. The

supply and demand balance is shown in Equation 5.6. Equation 5.8 ensures that

the consumer requests at time t are scheduled in the following time slots that helps

in deciding how much load can be deferred to the future time slots. Equation 5.7
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is the resource constraint. The constraint to meet minimum demand is shown in

Equation 5.9 while the constraint for maximum demand requested is shown in Equa-

tion 5.10. Distribution of the current demand to different time periods is ensured in

Equation 5.8. Equation 5.11 is the variable domain constraint.

After finding the optimal supply L∗, electricity price p is proposed by the manager

and the consumers will be charged based on p and message mi[t] (developed in the

next section). p is obtained from Equation 5.12.

p =
min(Ha[t], L∗)p1[t] + max(0, L∗ −H[t])p2[t]

L∗
(5.12)

5.3.3 Optimal message to the players (m[t])

The utility function of the players is given in Equation 5.13 where cu is a scaling

constant. The first term corresponds to the total electricity cost and the second term

corresponds to the priority of the demand fulfillment. The two parts are contradictory

in nature. Optimal value of mi[t] for a consumer is given in Equation 5.14. If a player

consumes bi[t] > mi[t], she pays for the difference at p2[t].

ui(ai[t]) = −
(
pai[t] +

cure
max
i [t]

2ai[t]

)
(5.13)

a∗i [t] =

√
curemaxi [t]

p
(5.14)

The utility of the manager is given in Equation 5.15 that is the total electricity cost.

uo(a[t]) = −
(
X[t]p1[t] +G[t]p2[t]

)
(5.15)

Their participation constraints are shown in Equation 5.3 and Equation 5.4 respec-

tively are their respective virtual queues QCCE
i and QP

i are shown in Equation 5.16

and Equation 5.17 respectively.

QCCE
i [t+1] = max

(
0, QCCE

i [t]+p2[t]
(
mi[t]−ri[t]

)
+φremaxi [t]

( 1

mi[t]
− 1

ri[t]

))
(5.16)

QP
i [t+ 1] = max

(
0, QP

i [t] + p
(
mi[t]− ri[t]

)
+ φremaxi [t]

( 1

mi[t]
− 1

ri[t]

))
(5.17)
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The Lyapunov function is shown in Equation 5.18. Using the operators used in

Chapter 3 and the drift function, The drift + penalty function for the manager is

shown in Equation 5.19. The model is simplified as the terms
curemaxi [t]

mi[t]
is not included

to keep the model simple, linear and convex. Also, since cu/re
min
i [t] does not go to

0 very fast, the term does not vary much and its impact can be adjusted by the

parameter value of the parameter V and cu. In this formulation, the value of cu

may be replaced with
(
QCCE
i [t] +QP

i [t]
)
. The penalty term is different from previous

models as the penalty is included on the optimal supply L∗. This also removes the

problem of scaling and is independent of time.

ω[t] =
1

2

(∑
i∈I

(
QCCE
i [t]

)2
)

+
1

2

(∑
i∈I

(
QP
i [t]
)2
)

(5.18)

O[t] = C −
[∑
i∈I

(
QCCE
i [t]p2[t]mi[t] +QP

i [t]mi[t]p
)]

+ V
(
Z − L∗

)
(5.19)

Thus, the manager solves the problem defined in Equation 5.20 − Equation 5.22 as

described below. Equation 5.20 is the objective function to be solved at time slot

t. Equation 5.21 is the supply demand balance constraint. Equation 5.22 is another

supply demand balance constraint that includes the optimal supply L∗. Equation 5.23

is the variable type constraint. Equation 5.24 are the storage constraints defined in

Chapter 3.

minimize O[t] (5.20)

X[t] +G[t] +B[t] =
∑
i∈I

mi[t] (5.21)

Z = X[t] +G[t] +B[t] (5.22)

Z,mi[t] ≥ 0 ∀t ∈ T (5.23)

Equation 3.1− Equation 3.8 ∀t ∈ T (5.24)

Based on the optimal m[t] and consumption by the consumers, the virtual queues are

updated in every time slot. The message vector m[t] is the recommendation to the

consumers and they consume according to their actual requirement. It is assumed

that the consumers participate in load scheduling and consume power ≤ mi[t].
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5.3.4 Scheduling loads by DLCs

The DLCs schedule the loads based on the optimal message from the manager.

Since DLCs schedule loads, consumer privacy and security is ensured. The loads are

scheduled by each DLC based on the weights of the different loads as developed in

Table 3.4 by solving the optimization problem developed in Equation 5.25 − Equa-

tion 5.27. The objective function is shown Equation 5.25. The constraint on total

consumption, assuming that the participant participates in the collaboration is shown

in Equation 5.26. Equation 5.27 is the variable type constraint.

maximize Lsli,dwdxd (5.25)∑
d∈D

Lsli,dxd ≤ mi[t] (5.26)

xd ∈ {0, 1} ∀d ∈ D (5.27)

To compare the performance of the proposed repeated stochastic game, the solution

is compared against the benchmark model developed in Section 3.1. Since the model

uses the estimation information from future events, this model outperforms the model

developed in Section 3.2.

5.4 Simulation results

A similar experiment set up is used in this chapter as used in Chapter 3. The

performance of the proposed algorithm is compared to the benchmark solutions and

the solutions obtained from Lyapunov optimization method in Chapter 3. Since Lya-

punov optimization method outperforms different static and individualistic strategy

models, results from other models are not shown in this Chapter. The different models

are summarized in Table 5.1.

The Lyapunov optimization method in Chapter 3 does not consider the estimation

of future values of the random process. The drift + penalty term for Lyapunov method

in this Chapter is shown in Equation 5.19.
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Table 5.1.
Different load scheduling models in Chapter 4

Model Definition

Model I Benchmark scheduling (Section 3.2.1)

Model V Lyapunov optimization based dynamic scheduling: Chapter 3

Model VI Proposed Lyapunov optimization using future information

To compare the performance of the these algorithms, three different distributions

are used for electricity generation in renewables. The average (expected) value of the

three distributions is shown in Figure 5.2. Three different test cases based on the

electricity generation from the renewables are denoted as G1, G2 and, G3.

(a) Generation from renewables: G1 (b) Generation from renewables: G2

(c) Generation from renewables: G3

Fig. 5.2. Mean of the electricity generation from renewables
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Performance of the different algorithms for different load ratios in terms of the

total electricity cost for different test cases are shown in Figure 5.3. The results are

obtained for the storage option 1 as mentioned in Table 3.1.

5.4.1 Selecting the value of T ′

A sensitivity analysis for T ′ is performed using Ranking and Selection method in

optimization through simulation that takes Bayesian approach. This method is The

ranking and selection method selects the best value for T ′ for the different test cases

such that a good average performance is obtained. A sequential sampling method-

ology is used to find the best value for T ′. This is a substitute for the sensitivity

analysis performed in Chapter 4. The complete method of is described in Section re-

fappendix1.

The best values of T ′ for different test cases is shown in Table 5.2. The results

are obtained for storage option 1 and load factor 0.25. The optimal values of T ′

depends on the structure of the problem and distribution of the random variables.

The total number of simulation runs (or simulation effort) is kept at 500 over which

the allocation of simulation effort is made. In the sequential approach, in each step,

only one choice is selected and a random sample is sampled for that choice. Bayesian

approach for ranking and selection provides a statistical method to obtain the best

choice that is expected to perform good on an average. However, it may not perform

well when considering worst case measures.

Table 5.2.
Best values for the parameter T ′

Test case Best value of T ′

G1 3,17

G2 14,4

G3 11,4
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The intuition behind the algorithm is that if the prior confidence on the prior is

low and thus the variance is high, as more and more data is collected, the variance for

posterior decreases. In contrast, if the variance for the prior is low, collecting more

data does not vary the variance of the posterior distribution.

As the value of T ′ increases, L∗ decreases as it is distributed among the different

future time periods t ≤ T ′. Also, as the value of T ′ decreases, it misses the opportunity

of deferring loads to the time of lower cost. Thus, there is trade-off in the selection of

T ′ values. The Bayesian approach of finding the best alternatives among the different

values of T ′ runs the simulation appropriate number of time for different alternatives

and finds the alternative with the highest expected value.

5.4.2 Numerical results

The utility function of the different consumers have been defined using the values

as cu = 0.8. The value is obtained such that on an average, the cost term pai[t]

and the wait term
curemaxi [t]

2ai[t]
are approximately same for averages as used by Yu and

Hong [209]. The results are shown for corresponding optimal values of T ′ for different

test cases as shown in Table 5.2. The results show that the proposed Model VI

performs comparable to Model I while outperforming Model V.

Load profile of the algorithms also shows how the algorithm performs against

the benchmark solution. The better the algorithm matches the load profile of the

benchmark solution, the better is the performance of the algorithm. Example load

profiles for different test cases are shown in Figure 5.4 − Figure 5.6. The results are

obtained for storage option 1 and load ratio 0.25.

In test case G1, generation from renewables is low as compared to the demand.

In this case, the load profile is determined mainly by the the electricity prices and

there is a peak a when the prices is low.

In test case G2, generation from the renewables is periodic with peaks. The

proposed Model VI tries to fit the generation profile because generation is more than
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(a) Test case G1 (b) Test case G2

(c) Test case G3

Fig. 5.3. Algorithm performance for different test cases

total demand on an average. In test case G3, the generation is out of sync with the

demand and the load profile is determined by the electricity prices as generation is

less than demand in most of the time slots.

The load profiles for different test cases show that the proposed model performs

better in matching the load profile of Model I. Peak load was not considered in

above test cases. Peak load is critical as it determines Peak-to-Average Ratio that

is critical for grid reliability. One disadvantage with the proposed model is that the

loads from different periods may be deferred to a particular time that may lead to

a spike in demand at that time slot leading to increased peak-to-average ratio and

also increases cost as more electricity is bought from Macrogrid. The peak can be

avoided by a peak load constraint in the model. The results with different peak

constraints in the different test cases is shown in Figure 5.7. The results are obtained
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(a) Load profile for Model I (b) Load profile for Model V

(c) Load profile for Model VI

Fig. 5.4. Example load profile for test case G1

for respective best T ′ values. The error in Model VI as against Model I with peak

load constraint is shown in Table 5.3. The result shows that the solutions from the

model are comparable even with partial information. As the peak-to-average ratio is

decreased by placing a constraint of 70MW, the total cost for the benchmark solution

increases while total cost for Model VI is comparative to that of Model I.

Computation time for Model VI increases as there is an additional step of finding

L∗. The comparison for the average computation time is shown in Table 5.4. The

results show that the computational time does not increase much for Model VI as

against Model V while performing much better than Model I.

However, the methodology requires a rigorous mathematical study to understand

the performance of the algorithm with different stochastic processes with different
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(a) Load profile for Model I (b) Load profile for Model V

(c) Load profile for Model VI

Fig. 5.5. Example load profile for test case G2

Table 5.3.
Optimality gap in Model VI with peak load constraint

Test case Error (in %)

G1 1.1

G2 3.3

G3 5.4

distributions. This work will be carried out in the future to develop a generalized op-

timization technique for real-time decision making based on Lyapunov Optimization.
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(a) Load profile for Model I (b) Load profile for Model V

(c) Load profile for Model VI

Fig. 5.6. Example load profile for test case G3

Table 5.4.
Computation time for different models

Load ratio Model I Model V Model VI

0.25 110 19 24

0.5 57 18 22

1 31 18 21

5.5 Conclusion and discussion

This chapter presents a framework for automated load scheduling based on the

concept of collaboration among the consumers. In this model, the consumers reveal
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(a) Test case G1 (b) Test case G2

(c) Test case G3

Fig. 5.7. Total electricity cost for Model VI with peak constraints

partial information of their electrical demand to the system operator SO. Based on

the request from the consumers, the manager takes control actions using an online

algorithm. The model uses information on estimation of future generation from re-

newables and consumer demand. The notion of consumer utility is established for the

load scheduling problem. Different test cases have been simulated to test the perfor-

mance of the proposed repeated stochastic model. The results show that the proposed

method outperforms static approaches, Lyapunov optimization method discussed in

Chapter 3 and performs comparatively to the benchmark solutions. The performance

of the model improves as against the Lyapunov method when the variability in supply

or demand increases.
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Since the model is very generalized and it is not restrictive based on any of the

structural properties of the load scheduling problem, the model can be extended

to different problems such as optimal demand fulfillment in supply chain, spectrum

allocation in cloud computing and other problems where the consumer demands can

be delayed for optimality. A mathematical approach can be developed to identify the

El[t] used in this chapter. Stochastic optimization techniques could be used to obtain

L∗ when the distribution has large variance or the distribution is unknown.

In the next Chapter, the current model is extended is extended to make us of the

information given by optimal solutions at the end of the time period based on which

the benchmark model is constructed. This information is used to learn a policy that

takes dynamic decisions based on the current state, future expectations and what the

model has learnt from the environment over time.
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6. REINFORCEMENT LEARNING FOR DYNAMIC

LOAD SCHEDULING IN A µG

In this Chapter, a reinforcement learning model using guided policy search is pre-

sented for dynamic load scheduling in a µG. All the previous models aimed at using

a deterministic policy that could achieve asymptotic guarantees for queue stability

and bounded cost. The policies require complete state and system dynamics infor-

mation that is not always available. The performance of the previous models was

compared based on the solutions obtained from the benchmark model that has per-

fect information. This property to obtain the optimal solutions at the end of the

period is explored to develop a parametric policy using reinforcement learning based

on locally optimal trajectories. The learnt policy does not assume any information

on actual state or system dynamics.

The objectives of this chapter is to:

• Propose a framework for reinforcement learning in dynamic load scheduling in

smart grid scenario

• Establish and implement a guided policy search for end-to-end real-time decision

making in electrical load scheduling

The model developed in this chapter is significantly different from the models

developed in previous chapters as:

• An end-to-end parametric policy is learnt using reinforcement learning that

makes decisions based on observations rather than the state information

• The problem is converted to a supervised learning problem where data is ob-

tained based on locally optimal trajectories
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Note In this Chapter, notations used in the computer science community for

reinforcement learning and machine learning are used. Notations for this Chapter are

shown in Table 6.1 below.

Table 6.1.
Notations used in reinforcement learning

Symbols Definition

al output from layer l

b Batch size

p(xt+1|xt) State transition probability

p(x1) Initial state probability

M Actions taken based on input X

l(X,M) Loss function for supervised learning

L1 L1 norm for regularization

L2 L2 norm for regularization

ot Observation vector

xt State vector

w Weight vector for the neural network parameters l

X Input data

Y Output data

zl Input to layer l

τ Trajectory distribution

µl Batch normalization mean for layer l

σl Batch normalization variance for layer l

p(ot|xt) Observation vector as a distribution of the state vector

πθ(τ) Probability distribution of the trajectory when πθ policy is used

πθ(Mt|xt) System dynamics when action is taken based on the state vector

πθ(xt+1|xt,Mt) System dynamics based on action and the previous state

πθ(Mt|ot) System dynamics when action is taken based on the observation vector
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6.1 Demand and capacity sharing among µGs

In this Chapter, a very simple notion of demand and capacity sharing is considered

as shown in Figure 6.1. Two µGs are considered that participate in the collaborative

demand and capacity sharing. The SO considered in the previous chapters could be

the link between a Central Controller (CC) and the participating µGs.

Fig. 6.1. Demand and capacity sharing among µGs

In each time slot t, the consumers send request to the SO. The requests may be

send for the immediate time slot as in Chapter 3 or next few time slots as in Chapter 4.

In this Chapter, we consider that the consumers send requests for T ′ time slots based

on the demand and on-site energy harvest. The SO sends the demand information

from the consumers along with the information of forecasts from renewables in the µG

and the energy available in the battery. The central controller then sends messages

to the consumers on how much electricity can be consumed in time slot t. If the
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consumer uses more electricity, they have to pay for the extra electricity consumed

at higher price.

The SO sends messages received from the central controller to the DLC’s that

schedules the different electrical loads based on their weights of the different loads.

The weights are given as shown in Table 3.4. In each time slot t, an array SLi[t] is

maintained that contains information on the per time unit power demand and weight

of that load at time slot t as shown in Equation 3.46. SLi[t] contains information

of the loads that have been requested but not yet scheduled. Then the loads are

scheduled such that the power constraints are not violated for the tth and the next

T ′ time slots. The heuristic to generate electricity demand request to SO by DLCs’

is given by Heuristic 6.1 and the heuristic to schedule the loads after getting message

from the SO is given by Heuristic 6.2.

Heuristic 6.1: Generating electricity request by DLCs

1. Define remini [t] = 0 and remaxi [t] = 0 ∀t ∈ {t, t+ 1, ..., t+ T ′}

2. Define SLi[t] as explained in Equation 3.46

3. remini [t] = xnsi [t] and remini [t′] = E
[
xnsi [t]

]
∀t ∈ {t+ 1, t+ 2, ..., t+ T ′}

4. remaxi [t] = remini [t]

5. Update remaxi [t, t+ 1, ..., t+ T ′] by adding the power demand of all the different

loads for the time slot t for which the load is to be scheduled. Schedule the loads

such that the power is balanced in the future T ′ time slots.

Based on the total electricity requested by the consumers and the realization of

different stochastic variables such as electricity harvest from the renewables, final

consumption by the consumers and the electricity prices, the optimal messages for

each consumer and for each time slot can be obtained by solving the optimization

problem in Equation 6.1 - Equation 6.15 at the end of the planning period. Since

we consider an infinite horizon problem, the optimization problem is solved at end of

every week. This solution is locally optimal for that week only and it is considered as

the locally optimal trajectory for reinforcement learning as discussed in the next two
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Heuristic 6.2: Electricity load scheduling by DLCs

1. Read messages mi[t, t+ 1, ..., t+ T ′] from SO

2. Sort loads in SLi[t] according to their weights

3. Start scheduling the load based on their weights. Schedule the load in the time slots

(starting from t) such that the total power consumption does not exceed the mi[t
′] for

every time slots in which that load is run. This is based on the assumption that the

consumers participate and do not consume more than mi[t]

4. Add unscheduled loads to the array SLi[t+ 1]

sections. Since a stationary distribution is assumed, two weeks can be considered as

independent from each other.

Equation 6.1 - Equation 6.15 solve the optimization problem for the week w̄ from

time slots N̄ to N̄ + t x 2 x 24 x 7 where N̄ is a multiple of 2 x 24 x 7 and the time

slots make the set T̄ . 2 represents the time slots of 30 minutes, 24 represents the 24

hours in a day and 7 represents the 7 days in a week. In this Chapter, peak demand

charge is not considered. However, it can be included in the model easily by adding

a peak constraint as shown in Chapter 3. Three different types of energy sources are

considered and two µGs are considered as shown in Figure 6.1. Let Ū represents the

set of µGs. The notations are similar as in Chapter 3 but for every variable, a bar

is added to differentiate the model in this Chapter. For example, X[t] is replaced by

X̄u[t] for µGu. Energy sources include wind farms in µGu and solar farms in µGv. If

the demand cannot be met by the battery or energy storage, the µGs can purchase

electricity from central grid at prices p2[t]. The cost of electricity is considered same

as in Chapter 3. µGu can give X̄u,v[t] to µGv at the rate of p5[t] ≥ p1[t].

The objective function of minimizing cost is given by Equation 6.1. To maintain

fairness amongst the participating consumers, Equation 6.2-Equation 6.3 is developed

that ensures that the delay is proportional to the total consumption by a consumer.

Equation 6.2 defines fi as the total delay in fulfillment of the demands over the time

slots T̄ . It is assumed that all the demands have to be met as the loads have a
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deadline by which it has to be completed. For any load, let td be the time at which

that particular load was scheduled/completed. Based on the different types of loads,

subscripts are added in td as shown in Equation 6.2. Equation 6.3 ensures that the

fairness is maintained between two different consumers in a µGs. This fairness is

maintained across all the consumers in a µG such that the advantage/ disadvantage

of having more/fewer renewable resources are directly given to the consumers of

that µG and not spread across µGs. The notations are similar to that discussed in

Chapter 3 but subscripts are added to keep the notation succinct. For example, Amax

in Chapter 3 is replaced by Amax,u for the battery capacity for µGu. The demand

and supply matching is shown in Equation 6.4-Equation 6.6. Equation 6.4 is the

total consumption in a µG in time slot t. Equation 6.5 ensures that the the non-

shift able loads of consumers are met in every time slot t. Equation 6.6 ensures

that the total consumption by the consumers in µG equals to the total supply in

that time horizon. The optimization problem is solved from a central controllers

perspective, hence only the information on consumption is known but no information

is available about the types of loads. The battery constraints for µGu is shown

in Equation 6.7-Equation 6.14. These constraints are similar to that explained in

Equation 3.1-Equation 3.8. Since the problem is locally optimal, a threshold ¯TH

is placed such that the energy level of the battery does not go beyond this level as

shown in Equation 6.13. This constraint also ensures safety of the battery. The

domain constraints are shown in Equation 6.15.

Minimize
∑
t∈T̄

(∑
u∈U

(
p1[t]X̄u[t] + p2[t]Ḡu[t]

)
+
∑
u,v∈U

p3[t]X̄u,v[t]

)
(6.1)

fi,u =
∑
r∈Ri

(
td,r,i − tts,mini,r

)
+
∑
r∈Ri

(
td,h,i − tps,mini,r

)
∀i ∈ Iu,∀u ∈ U (6.2)

fi,u
fi′,u

=

∑
t∈T̄ ai,u[t]∑
t∈T̄ ai′,u[t]

∀i, i′ ∈ µGu,∀u ∈ U (6.3)

Ḡu[t] + X̄u[t] +
∑

v∈U,v 6=u

X̄v,u[t] =
∑
i∈Īu

ai,u[t] + Yu[t]−Bu[t] ∀u ∈ Ū , ∀t ∈ T̄ (6.4)
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Ḡu[t] + X̄u[t] +
∑

v∈U,v 6=u

X̄v,u[t] ≥
∑
Īu

xNSi [t] ∀u ∈ U,∀t ∈ T̄ (6.5)

∑
t∈T̄

(
Ḡu[t] + X̄u[t] +

∑
v∈U,v 6=u

X̄v,u[t]

)
=
∑
t∈T̄

(∑
i∈Īu

ai,u[t]

)
∀u ∈ U (6.6)

Āu[t+ 1] = ηĀu[t] + Ȳu[t]− B̄u[t] ∀t ∈ {1, 2, ..., T},∀u ∈ Ū (6.7)

B̄u[t] ≤ Āu[t] ∀t ∈ {1, 2, ..., T},∀u ∈ Ū (6.8)

B̄u[t] ≤ B̄max,u ∀t ∈ {1, 2, ..., T},∀u ∈ Ū (6.9)

Ȳu[t] ≤ Ȳmax,u ∀t ∈ {1, 2, ..., T},∀u ∈ Ū (6.10)

Āu[t] ≤ Āmax,u ∀t ∈ {1, 2, ..., T},∀u ∈ Ū (6.11)

B̄max,u, Ȳmax,u ≤ Āmax,u ∀t ∈ {1, 2, ..., T},∀u ∈ Ū (6.12)

Āu[|T̄ |] ≥ ¯THu ∀u ∈ Ū (6.13)

Āu[t], B̄u[t], Ȳu[t] ∈ R+ ∀t ∈ {1, 2, ..., T},∀u ∈ Ū (6.14)

Ḡu[t], X̄u[t], X̄u,v[t] ∈ R+ ∀t ∈ T̄ ,∀u, v ∈ Ū (6.15)

6.2 Guided Policy Search

In this Chapter, a deterministic policy for load scheduling is developed by con-

verting the problem of policy search into a supervised learning problem by iteratively

constructing the training data based on the optimal solutions obtained at the week as

discussed in the previous Section. This method is known as the guided policy search

as the policy is guided by the optimal trajectory (optimal messages in this Chapter)

based on the observations (different indicators of state) rather than the state as full

state information is not observable in real time.

It is based on locally optimal trajectories as the training data is generated by

solving the problem for one week and not the entire planning horizon. This this

method is known as guided policy search with locally optimally trajectories. The

training set for supervised learning can be constructed using known system dynamics

as in the previous Section.



127

In this Chapter, an episode is defined as the time horizon for a week for which

the optimal values can be obtained at the end of the week. The goal of guided

policy search is to find a policy πθ(Mt|ot) where Mt is the vector of optimal message

vector and ot is the observation vector. The system dynamics given by p(xt+1|xt) is

not known at time t but the decisions are made based on ot where ot is stochastic

consequence of xt. In general, πθ(Mt|ot) is the distribution of actions under the

policy conditioned on state at time t. The probability over the trajectory τ is given

by Equation 6.16. However, since the policy is conditioned on observation rather than

the state, the obtained policy distribution is given by Equation 6.17

πθ(τ) = p(x1)
τ∏
t=1

πθ(Mt|xt)p(xt+1|xt,Mt) (6.16)

πθ(Mt|xt) =

∫
πθ(Mt|ot)p(ot|xt)dot (6.17)

If a loss function in supervised learning is given by l(xt,MT ), objective of the guided

policy search method is to minimize the total expected loss as given in Equation 6.18.

Min Eπθ
[ τ∑
t=1

l(xt,Mt)
]

(6.18)

Since the state variables are not known at time t, the loss function cannot be obtained.

However, using guided policy search, the loss function can be estimated using the loss

function shown in Equation 6.20.

This method consists of two steps. In the first step, training dataset is obtained

by solving the problem optimally at the end of the week when all the stochastic

variables for each of the time slots t in that week are realized. In each time slot t,

the observation vector is saved. Thus at the end of the week, the observation vector

and the optimal values are known for each of the time slots. In the second step,

neural networks is used to learn the policy (or a mapping function) that maps the

observations from each time slot t to the optimal messages obtained for that time

slot. These two steps are not sufficient in obtaining good results as explained in the

next section.
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6.3 Locally optimal trajectory

Converting the policy search problem into a supervised learning problem mem-

orizes the the data but does not learn the policy mentioned in Heuristic 2 as this

policy is not visible to the reinforcement learning. This fits well into the model so as

to maintain the consumer privacy so that the loads are scheduled with partial infor-

mation sharing. To learn the policy, an iterative approach is considered as shown in

Figure 6.2.

Fig. 6.2. Iterative procedure for the policy search

When starting the iterative procedure, the messages mi[t] from the central con-

troller to consumer i is given by remini [t]+uniform(0.25, 1)
(
remaxi [t]−remini [t]

)
. This

messages are used to schedule loads and hence generate the data for the first iteration

for training the neural network. This iterative procedure ensures that the method

not only performs well in learning from data, but also learns the policy to take action
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when unforeseen data is observed. The performance increases substantially on using

the iterative step as against increasing the number of data points collection.

The policy defined by πθ(Mt|ot) provides the guidelines to the central controller

in real time. System dynamics distribution given by p(Mt|xt) governs how the system

evolves when the true system information is known. By using the iterative procedure,

the behavior of πθ(Mt|ot) and p(Mt|xt) converges. This ensures that the policy un-

derstands the system dynamics as well as the optimal messages that could be been

provided to consumers in each time slot based on the observation information that

could potentially represent the system state information.

This method does not learn the policy parameters directly as done in Q-learning

or traditional reinforcement learning. These methods require that all the states and

actions should be seen by the model during the training period. This is practically

impossible when the state space could be continuous or the problem size in large.

The proposed method scales gracefully with the increase in size. It uses locally

trajectories as guideline to learn ”what we could have done better” decisions. Using

these guidelines also enables that the learning part could be done with much less

data as the target value is known and during each iteration step the parameter values

(weights in neural networks) are saved.

6.4 Neural network for Policy Approximation

A neural network (multi-layer perceptron) is used to learn the deterministic policy

. The architecture example used in this research is shown in Figure 6.3. h1, h2 and

h3 are the number of hidden neurons (nodes) in each layer. In this research, 8 hidden

layers have been considered to learn the mapping function. The rectified linear unit

(ReLU) activation shown in Equation 6.19 function is used for mapping inputs to the

output. z is the output from a layer, w is the weight and a is the linear combination

of outputs from previous hidden units and the weights. The input vector (X) to the

neural network includes:
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• maximum electricity demand remaxi [t] from each consumer in a µG for the next

T ′ time slots.

• forecast of electricity harvest from the renewables at time t

The output vector Y contains:

• the optimal messages information mi[t] for the next T ′ time slots for each of the

consumer

• how much renewable energy should be used by the µG by itself and how much

should it be given to the other collaborating µGs. In this Chapter, since 2 µGs

are considered, it creates a vector of size 4

• storage at the end of the time slot

The Y vector is obtained after solving the optimization problem while the X

vector is obtained by storing the values of data points during the simulation run.

The output can be used to back calculate X̄u[t] and Ḡu[t] from the output. In case

of infeasibility, energy usage for a µG is given priority before allowing the other µG

to draw electricity from it.

Fig. 6.3. Fully connected neural network architecture for optimal policy learning
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zl = max (0, a) where a = wT zl−1 (6.19)

Along with the input vector, the vector of remini [t] is maintained to such that the non-

deferrable electricity loads for time t can be scheduled at time t. This information is

the part of the behaviour policy that is different from the target policy.

Neural network models have different hyper-parameters and the values of these

hyper - parameters used in this research are shown in Table 6.2. The value of the hyper

- parameters are obtained based on Bayesian Optimization for Hyper parameters as

discussed in [265]. To obtain the best hyper parameter values, bayesopt library for

python is used ( [266]). The hyper parameters are selected by running the experiments

for 100000 iterations and the model with lowest error is selected. Neural networks

is not the focus of this research so the details of these hyper-parameters are omitted

here.

Table 6.2.
Hyper - parameters for neural network

Hyper - parameter Value

Depth (number of layers) 3

Number of iterations 500,000

Activation function ReLU

Regularization L1 norm

Weight of Regularization 0.01

Optimization ADAM optimizer

Learning rate 0.05

Batch size 32

Batch normalization True

epsilon (Batch normalization) 0.1

Training set proportion 0.8
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The loss function for the neural network is shown in Equation 6.20. y and z8 are in

vector form. y is the response while z8 is the output from the final layer. Squared loss

function is used as it is a convex function and batch normalization further smooths

out the function for optimization. Squared loss is considered as if the message vector

(output from the machine learning) is higher than the optimal, the the electricity cost

increases. If it is lower, the demand from the consumer cannot be met and hence the

service quality decreases. L1 regularization and ReLU is used to make the network

sparse so that it learns faster.

loss = (y − z3)2 + 0.01 x
3∑
l=1

|Wi| (6.20)

Batch normalization is used to increase the speed of learning as it deals with

covariate shift in the inputs and outputs of the different layers and makes the opti-

mization function smooth. The batch normalization discussed by Ioffe and Szegedy

( [267]) is applied in the second and third layer of hidden units since the data is not

i.i.d as assumed in traditional machine learning. Since the data in a batch may be

sampled from different hour of the day, the variance is large and intuitively (as well

as based on the performance of the model), the performance worsens if the batch

is normalized in the first layer. However, the performance improves if the batch is

normalized in the rest of the layers. Also, the ReLU activation is applied both before

and after the activation function. In the original application of batch normalization,

ReLU is applied after batch normalization, but the results in this Chapter show that

the model performs better if the ReLU function is applied before batch normalization.

Also, the performance improves if ReLU activation is applied both before and after

batch normalization. This result could also be a potential area of research for under-

standing the performance of the batch normalization method. In the next Section, we

brief introduction of existing reinforcement learning techniques is provided to show

the relationship with the current methodology proposed in this Chapter.
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6.5 Why neural network for policy?

Deep neural networks could theoretically may any input to any output given they

are drawn from the same distribution. In this research, we assume that data from

weeks are i.i.d. and thus we can assume that the optimal values of the output are

drawn from the same distribution. Neural networks, however, lack interpretation

and is mostly a black box. To handle this, different interpret able machine learning

algorithms have been tested. These algorithms perform very poorly as against neural

network policy. Thus, in this research, neural networks were used. Some of the

algorithms tested in this research and their potential reasons for failures include:

• linear regression models are well known for their simplicity and interpretabil-

ity. However, the mapping of state variables to the optimal values is highly

non-linear. Using kernel tricks and feature engineering is very difficult as the

functional form that is linear to output variables is not known.

• K-nearest neighbour and ensemble methods like generalized boosting model

(eXtreme Gradient Boosted Trees, a.k.a, XGBoost) divide the space and take

the average as the output. These methods can map the non-linearity but these

are based on averaging and cannot extrapolate outside the training set. In

dynamic load scheduling, the averaging also inhibits and limits the importance

of time based variables. Since the state variables are presented in the form of

time based variables, averaging does not perform well.

A research direction is to develop different models for learning the mapping function

from the input to the output. Different machine learning or reinforcement learning al-

gorithms could be developed instead of using neural networks. Deep neural networks

are the current state of the art that provide end-to-end mapping capability without

much feature engineering (e.g. w developed time based normalization for data nor-

malization). As the systems become complex, feature engineering would become too

complex and we need end-to-end methods. Thus, in this research, neural networks

are used to learn the scheduling policy.
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6.6 Relationship with different Reinforcement Learning Models

The proposed iterative procedure draws heavy motivation from different reinforce-

ment learning methods discussed in literature. off policy, guided policy search, deter-

ministic policy gradient, The iterative procedure in Algorithm 1 is inspired from the

Guided Policy Search discussed by Levine et. al ( [246] and [225]). Optimal solutions

for mi[t] obtained by solving the problem at the end of the week can be considered

as the locally optimal trajectories. The proposed iterative algorithm is model free as

it does not consider any information or knowledge on state transitions. A function

approximation is used that learns policies in high dimension continuous action and

state spaces. The proposed method is off-target policy as the target policy is different

from the behavior policy that is used to generate the data for the supervised learning

[268]. The policy for load scheduling developed in this work is a deterministic policy

and a deterministic policy gradient is used [247] as the target policy is learnt by using

an off policy critic. In the supervised learning, the response variables provide sta-

ble targets that are not shifting with time, which makes the function approximation

stable and robust. The algorithm can also be considered as an actor critic algorithm

where the optimal values of mi[t] act as a critic to the approximating function of the

actor. Moreover, the algorithm does not need to learn the critic function, rather it is

obtained from the convex optimization. This significantly improves the speed of the

reinforcement learning algorithm. Batch normalization is used in all layers except the

first layers due to time dependency of the predictor variables. Moreover, for stable

learning, batch learning is used and the samples in the batch can be assumed to be

independent as they have been normalized as discussed in Algorithm 3.

We discuss an analogy with the current state of reinforcement learning with two

examples and explain why the proposed methodology is different from the existing

reinforcement learning models. While reinforcement learning is mostly used in com-

puter games with graphics as inputs, their state representation is simple and straight

forward. In the following figure, three different test cases are shown. We compare
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and contrast them with respect to the dynamic load scheduling model developed in

this Chapter.

(a) DeepMind AlphaGo using

deep neural network

(b) Robotic control for lifting

and placing objects

(c) Dynamic load scheduling in

µG

Fig. 6.4. Examples of application of reinforcement learning for build-
ing analogy in Table 6.3

Direct application of deep learning techniques achieves poor result and requires

model specific adjustment. First, the predictor variables are normalized using mean

and variance for its corresponding time of the day as described in Algorithm 2. Sec-

ond, a sampling based forecasting method using Wasserstein Distance is used to

predict energy from renewables as described in Algorithm 3. Batch normalization is

also used in the hidden layers.

The architecture of the neural network is kept the same for the iterative step

shown in Figure 6.2. The iterative step helps the neural network to understand the

policy used for load scheduling shown in Equation 6.1 - Equation 6.15. At each step

in the iteration process, the weights are saved and the supervised learning starts from

the saved weights. This makes the learning process faster and the weights are not

learnt from the scratch. This helps in speeding up the process of learning the weights

and the policy, thus reducing the time to test and validate the model.

6.7 Simulation Results

As discussed in Section 6.1, two µGs are considered and each µG has a commercial

building as discussed in Chapter 3. Only non-production line loads are considered



136

Table 6.3.
Comparing existing applications of reinforcement learning

AlphaGo Robotic Control Load Scheduling

State Representation Image of the Board

at tth turn

Image (video) of

robot camera at tth

action time instance

Demand request and

forecast from renew-

ables at time t

State size Discrete (high car-

dinality)

Continuous set (infi-

nite)

Continuous set (infi-

nite)

Reward Calculation Reward based on

win/lose at the end

of the game

Does not calculate

reward

Does not calculate

reward

Method Used Monte Carlo Tree

Search and neural

network

Neural network

based policy search

Neural network

based scheduling

actions

Use optimal solutions No, but consider

value functions

Yes (locally optimal) Yes (locally optimal

- one week’s deci-

sions)

Value function calcu-

lation

Yes No No

Using forecast to rep-

resent state

No No Yes

Mathematical opti-

mization for response

variables

No No Yes

Iterative procedure for

internal policy

No Yes Yes
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Heuristics 6.3: Normalization of predictor variables

1. During warm up period:

1.a For each t, initialize D[t]← φ

1.b D[t]← D[t] + {o[t]}

2. For each t:

2.a Use K means to divide D[t] into Mt clusters using Mahalanobis distance

2.b Store the mean and the covariance structure of each cluster

3. While obtaining mi[t]:

3.a For each o[t], find the cluster which it belongs to

3.b Normalize o[t] according to that cluster

Heuristics 6.4: Sampling for forecasting energy from Wind mill

1. Similar to Algorithm 2, clusters are maintained for energy from wind mill for each t

2. For each time t, collect power from wind mill for previous F time slots in array TF

3. Find the corresponding cluster. Select predictions St in that cluster randomly.

4. Find the weighted mean based on the distance of St from the TF

so that the policy can be developed based on exact solutions as the problem can be

solved to optimality when considering buildings loads.

Error is defined as the difference from the optimal solution. The results are shown

for the electricity cost of 1 week. Figure 6.5 and Figure 6.6 shows the decrease

in error with the number of iterations. The model is run 3 different times from

scratch for 200 iterations. Two different cases are shown. In Case I, the supervised

learning performed better than Case II as in Case I, the size of the µGs were kept

similar. In Case II, the sizes were different. Also, in both the cases, two more models

are considered where the µGs may or may not collaborate in sharing demand and

energy resources. Because of the similar size of the µGs in case I, the input and

output variables of the supervised learning consists of a smoother function. Thus,

the method could perform better if the load is balanced between collaborating µGs.
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Three different runs (sample path of errors) have been shown for all the four cases.

The iteration is restricted to 200. This number is selected as the three different runs

seems to converge to a similar error rate. This ensures that the performance of the

model is not dependent on the sample path, thus it ensures the stability of the model.

The error rate decreases with the number of iterations as the model could learn the

values of θ and understand the policy. It does not always decrease as the data is

sampled randomly and also weight updates may lead to worse solutions. This helps

in making the performance of the algorithm more robust to changes and multiple

start times at the start of the week. The error reduction with iteration is shown for

the case when the participating µG collaborate and when the µGs do not collaborate

with each other in Figure 6.5 and Figure 6.6 respectively.

Example of mapping function value from two time slots selected at random is

shown in Figure 6.7. It shows that the supervised learning is able to map the input

to the output accurately. Also, the performance for Case I is better as against that for

Case II when the µG sizes are similar because of a more smoother function. During

the experiments, whenever a new case study is developed, previously saved values of

θ are used to generate the new case study. The performance shows that the weights

are very robust to the inputs.

Table 6.4 shows the results for collaboration between 2 µGs. In the majority of

the cases, the collaboration between the µGs help them reduce their operating cost

as against no collaboration. The results are obtained as average of 30 simulation

runs of 1 week. When the µG sizes are similar, the algorithm performs better for no

collaboration as compared to collaboration in Case II with µGs of different sizes.

Table 6.4.
Results in terms of percentage error from benchmark

Case Error: Collaboration Error: No Collaboration

Case I 6.59 7.22

Case II 7.95 8.08
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(a) Error with iterations: Case I

(b) Error with iterations: Case II

Fig. 6.5. Error with iterations for Collaborative µGs

The results show that the no collaboration in Case I performs better than collab-

oration and no collaboration in Case II. Intuitively, collaboration should outperform

no collaboration. These results show that based on the structure of the problem un-

der consideration, the performance might differ. Thus, the objective and nature of
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(a) Error with iterations: Case I

(b) Error with iterations: Case II

Fig. 6.6. Error with iterations for Non - collaborative µGs

the µG should be known in advance for better performance of the proposed reinforce-

ment learning model. The results show promising potential for using reinforcement

learning in dynamic load scheduling. Most importantly, this is an end-to-end method

that does not require model specific fine tuning of the hyperparameters. This en-
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(a) Case I: Predicted vs optimal message

(b) Case II: Predicted vs optimal message

Fig. 6.7. Response and Optimal message mi[t] for two different cases

ables usage of the existing methodology directly into other problem structures. This

Chapter further provides a framework on how stochastic optimization problem can be

integrated with machine learning (deep learning) for optimization problems. The re-
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sults can be improved by increasing the number of layers and optimizing the machine

learning method used in this Chapter.
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6.8 Conclusions and discussions

This research develops a new framework of integrating operations research with

reinforcement learning through optimal guided policy search. In this Chapter, local

guided policies are obtained by solving the load scheduling problem at the end of the

week, thus by realizing all the stochastic variables involved in the model. At every

time slot t, indicators that can help in making decisions are stored e.g. forecast from

renewable, unscheduled/partially completed electrical loads, and, information on non-

shiftable loads. The guided policy search based reinforcement learning converts the

sequential decision making problem into a supervised learning problem. These local

guided policies act as response while the indicators act as predictor variables for the

machine learning model.

A neural network is used to learn a function that maps from the indicators to the

optimal action values using the architecture shown in Figure 4.2(a). Deep neural net-

works (multi layer perceptrons) can theoretically map a function of infinite dimension

and does not over fit when carefully implemented. The Neural network developed in

this Chapter fits the model well with good generalization performance.

The model architecture cannot handle the situation when the number of consumers

in a µG increase. An improved model should be investigated e.g. recurrent neural

network that can handle increase or decrease in the number of consumers. A different

model can also be developed based on Chapter 3 and Chapter 4 for learning the

hyper parameters using reinforcement learning while still considering the Lyapunov

optimization policy for load scheduling.
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Research Contributions

This research aims at developing a framework for dynamic scheduling of different

types of electrical loads from different types of consumers. Starting with a static

approach with full information sharing, this research dwells into the opportunities of

using Artificial intelligence with partial information sharing. This research is one of

the first research in:

• building a generalized model for dynamic load scheduling while considering

different types of electrical loads by different types of consumers

• building a dynamic scheduling model for job shop scheduling while integrating

production line loads with non-production line loads

• using forecast values in dynamic load scheduling policy using Lyapunov opti-

mization and present an analysis on selecting the best value of T ′

• building a reinforcement learning model for dynamic load scheduling based on

optimal values obtained at the end of the planning period

The approach adopted in this research can be generalized to many different prob-

lems such as inventory planning and control, vehicle routing, vehicle scheduling, cloud

computing and, resource sharing. The idea of using forecasts and guided policy search

presented in this research can be used in developing optimization based deep learning

model as against the current practice of end-to-end deep learning model without us-

ing the information provided by optimization. The idea of solving the problem after

realizing the stochastic variables is standard method in operations research’s decision

making domain. This research integrates this idea of using optimization with neural

networks to develop deterministic policies that could make decisions based on real

time information.
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6.9 Future Research Directions

Dynamic load scheduling problem consists of many interconnected problems e.g.

unit commitment, optimal dispatch, infrastructure and capacity planning, and, end

user load scheduling. The problems spreads across many disciplines e.g. game theory,

security, optimization, simulation, controls, machine learning and infrastructure e.g.

battery, storage, new modes of electrical transmission. The current research aims at

developing a framework that can take inputs from higher level decisions to provide

optimal end-user load scheduling. Thus, this research attempts at solving a small but

critical part of the upcoming and environment friendly smart grid infrastructure.

6.9.1 Limitations of the current research

The limitations of this research include:

• Building theoretical models for the selection of T ′ values for optimal selection of

future time slots to consider instead of using sensitivity analysis as depending

on the size of the µG, the T ′ value might change.

• The load scheduling model uses sampling for handling the variance in the dif-

ferent stochastic variables. A theoretical model can be built based on dynamic

programming to capture the additional information provided by the variance.

• This research does not consider infrastructure planning as a short time horizon is

considered in this research. More sophisticated models can be developed based

on this research to solve the load scheduling problem for longer time horizons

that can help in the study of infrastructure planning.

• The reinforcement learning problem cannot handle changes in the number of

consumers in the µG as with the change in the number of consumers, the input

and the output structure changes. This also increases the size of the model and

thus increases the model complexity. One direction could be using recurrent

neural network that can handle different input sizes.
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6.9.2 Research Directions

Future research directions may consider solving the problems posed by limitations

of this research. Some other directions include:

• Integrating scheduling with pricing. The current research consider time based

pricing but some markets follow Critical Peak Pricing. Also, it is assumed that

the pricing is independent of the demand and is based on availability of energy

from the renewables and the time based cost of electricity from the Macrogrid.

• Evolutionary computing has been extensively used in scheduling problems.

However, they cannot be used in smart grid scenario e.g. µGs in its current

form. Modified version of evolutionary computing problems can be considered

(example dynamic directions by Ant, or Swarms or learning if - else conditions

using Genetic Algorithms)

• Game theoretic approaches have been considered in the context of different

dynamic optimization problems with application in smart grid scenario. This

research considers that all the consumers are benevolent and participate in

automated load scheduling (under mild conditions considered in Chapter 5).

However, better incentives models are required to ensure that consumers par-

ticipate.

• In the reinforcement models discussed in Chapter 6, neural network is used to

learn the policy. However, a simple neural network has been used that achieves

good results. The results can be improved by making the network more deep.

Also, for smaller neural networks, evolutionary computing may be used to find

the θ values in the neural network. Population based approaches e.g. particle

swarm optimization and ant colony optimization could be used to find the best

paths the data flow takes in the neural network.



REFERENCES



147

REFERENCES

[1] EIA, “Electric Power Annual,” Tech. Rep. January, 2010.

[2] “Six maps that show the anatomy of americas vast infrastructure,” 2016. [On-
line]. Available: https://www.washingtonpost.com/graphics/national/maps-
of-american-infrastrucure

[3] P. Asmus, “Why microgrids are moving into the mainstream,” IEEE Electrifi-
cation Magazine, vol. 2, no. 1, pp. 12–19, 2014.

[4] U. Irfan, “Warming to have severe impacts on
peak electricity demand,” 2017. [Online]. Available:
http://www.eenews.net/climatewire/2017/02/07/stories/1060049626

[5] “Building the digitally powered utility for the future,” 2016. [Online]. Avail-
able: http://www.ey.com/Publication/vwLUAssets/EY-building-the-digitally-
powered-utility-of-the-future

[6] B. P. Asmus, “Are Moving into,” IEEE Electrification Magazine, no. March,
pp. 12–19, 2014.

[7] Kema Inc., “Microgrids Benefits, Models, Barriers and Suggested Policy Ini-
tiatives for the Commonwealth of Massachusetts,” Tech. Rep., 2014.

[8] J. M. Guerrero, M. Chandorkar, T. L. Lee, and P. C. Loh, “Advanced control
architectures for intelligent microgridspart i: Decentralized and hierarchical
control,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1254–
1262, 2013.

[9] H. Han, X. Hou, J. Yang, J. Wu, M. Su, and J. M. Guerrero, “Review of Power
Sharing Control Strategies for Islanding Operation of AC Microgrids,” IEEE
Transactions on Smart Grid, vol. 7, no. 1, pp. 1–16, 2015.

[10] N. Research, 2015. [Online]. Available: http://microgridmedia.com/20x-
growth-forecast-in-remote-microgrid-and-nanogrid-market/

[11] 2016. [Online]. Available: http://www.sciencealert.com/costa-rica-has-been-
running-on-100-renewable-energy-for-2-months-straight

[12] 2016. [Online]. Available: https://www.engadget.com/2016/11/22/tesla-runs-
island-on-solar-power/

[13] EIA, “Electric Power Annual,” Tech. Rep. January, 2010.

[14] R. Cespedes and I. Xplore, “Capturing Grid Power 32,” Tech. Rep. august,
2009.



148

[15] H. Ren, W. Gao, and Y. Ruan, “Economic optimization and sensitivity analysis
of photovoltaic system in residential buildings,” Renewable Energy, vol. 34,
no. 3, pp. 883 – 889, 2009.

[16] Y. Ru, J. Kleissl, and S. Martinez, “Storage size determination for grid-
connected photovoltaic systems,” IEEE Transactions on Sustainable Energy,
vol. 4, no. 1, pp. 68–81, 2013.

[17] A. Gholian, H. Mohsenian-Rad, Y. Hua, and J. Qin, “Optimal Industrial Load
Control in Smart Grid: A Case Study for Oil Refineries,” IEEE Transaction on
Smart Grid, vol. 7, no. 5, pp. 2305 – 2316, 2016.

[18] M. Vasirani and S. Ossowski, “A Collaborative Model for Participatory Load
Management in the Smart Grid,” 1st International Conference on Agreement
Technologies, no. October, pp. 57–70, 2012.

[19] A. H. Mohsenian-Rad and A. Leon-Garcia, “Optimal residential load con-
trol with price prediction in real-time electricity pricing environments,” IEEE
Transactions on Smart Grid, vol. 1, no. 2, pp. 120–133, 2010.

[20] M. S. Bhosale and R. A. Pagare, “Residential Load Scheduling using Smart
Grid,” International Journal of Science and Research, vol. 4, no. 7, pp. 2013–
2016, 2015.

[21] L. Song, Y. Xiao, and M. Van Der Schaar, “Demand side management in smart
grids using a repeated game framework,” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 7, pp. 1412–1424, 2014.

[22] H. Kanchev, D. Lu, F. Colas, V. Lazarov, and B. Francois, “Energy manage-
ment and operational planning of a microgrid with a pv based active genera-
tor for smart grid applications,” IEEE Transactions on Industrial Electronics,
vol. 58, no. 10, pp. 4583–4592, 2011.

[23] S. Meters, D. Response, D. Automation, E. V. Charging, and D. Generation,
“Smart Grids,” vol. 3, no. 0, pp. 1–66, 2012.

[24] A. L.-G. Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, Juri Jatskevich,
Robert Schober, “Autonomous Demand Side Management Based on Game-
Theoretic Energy Consumption Scheduling for the Future Smart Grid,” IEEE
Transaction on Smart Grid, vol. 1, no. 3, pp. 320–331, 2010.

[25] R. L. Hu, R. Skorupski, R. Entriken, S. Member, and Y. Ye, “A Mathematical
Formulation for Optimal Load Shifting of Electricity Demand,” IEEE Transac-
tions on Big Data, vol. PP, no. 99, pp. 1–18, 2015.

[26] W. Saad, Z. Han, and H. V. Poor, “Coalitional game theory for cooperative
micro-grid distribution networks,” in IEEE International Conference on Com-
munications, 2011, pp. 6–10.

[27] H. S. V. S. K. Nunna and S. Doolla, “Demand response in smart distribution
system with multiple microgrids,” IEEE Transactions on Smart Grid, vol. 3,
no. 4, pp. 1641–1649, 2012.



149

[28] Z. Huang, T. Zhu, Y. Gu, D. Irwin, A. Mishra, and P. Shenoy, “Minimizing
electricity costs by sharing energy in sustainable microgrids,” in Proceedings of
the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings
- BuildSys ’14, 2014, pp. 120–129.

[29] M. S. Wang, Yu and R. M. Nelms, “Distributed online algorithm for optimal
real-time energy distribution in the smart grid,” vol. 1, no. 1, pp. 70–80, 2014.

[30] Y. Wu, V. K. N. Lau, and D. H. K. Tsang, “Optimal Energy Scheduling for Res-
idential Smart Grid with Centralized Renewable Energy Source,” IEEE Systems
Journal, vol. 8, no. 2, pp. 562–576, 2014.

[31] Siemens, “Siemens press release,” 2015. [Online]. Avail-
able: http://news.usa.siemens.biz/press-release/siemens-introduces-companys-
first-advanced-microgrid-management-software-control-distr

[32] P. Montague, Reinforcement Learning: An Introduction, by Sutton,
R.S. and Barto, A.G., 2017, vol. 3, no. 9. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1364661399013315

[33] M.H.Albadi, “Demand response in electricitymarkets: An overview,” in Proc.
IEEE 2007 Power Eng. Soc. Gen. Meet.l, 2007, pp. 1 – 5.

[34] J. C. Fuller, K. P. Schneider, and D. Chassin, “Analysis of residential demand
response and double-auction markets,” in IEEE Power and Energy Society Gen-
eral Meeting, 2011, pp. 1–7.

[35] Z. Sun and L. Li, “Potential capability estimation for real time electricity de-
mand response of sustainable manufacturing systems using Markov Decision
Process,” Journal of Cleaner Production, vol. 65, pp. 184–193, 2013.

[36] J. B. Weiwei Chen, Xing Wang, Jon Petersen, Rajesh Tyagi, “Electric utilities,”
IEEE Transactions on Smart Grid, vol. 4, no. 4, pp. 2309–2318, 2013.

[37] D. Bian, M. Pipattanasomporn, and S. Rahman, “A Human Expert-Based
Approach to Electrical Peak Demand Management,” IEEE Transactions on
Power Delivery, vol. 30, no. 3, pp. 1119–1127, 2014.

[38] I. Koutsopoulos and L. Tassiulas, “Control and optimization meet the smart
power grid - scheduling of power demands for optimal energy management,”
Energy, p. 9, 2010.

[39] A. Imamura, S. Yamamoto, T. Tazoe, H. Onda, H. Takeshita, S. Okamoto, and
N. Yamanaka, “Distributed demand scheduling method to reduce energy cost in
smart grid,” 2013 IEEE Region 10 Humanitarian Technology Conference, pp.
148–153, 2013.

[40] M. Vasirani and S. Ossowski, “Smart consumer load balancing: state of the
art and an empirical evaluation in the spanish electricity market,” Artificial
Intelligence Review, vol. 39, no. 1, pp. 81–95, 2013.

[41] K. F. L. D. Schlosser, R., “Stochastic optimization of unit com- mitment: a new
decomposition framework,” IEEE Transactions on Power Systems, vol. 11, pp.
21 067 – 1073, 1996.



150

[42] T. Logenthiran and D. Srinivasan, “Short term generation scheduling of a
microgrid,” in IEEE Region 10 Annual International Conference, Proceed-
ings/TENCON, 2009, pp. 1–6.

[43] Z. M. L. G. Jiang, Ruiwei and Y. Guan, “Two-stage robust power grid opti-
mization problem,” European Journal of Operational Research, vol. 234, no. 3,
pp. 1–34, 2010.

[44] B. Saravanan, S. Das, S. Sikri, and D. P. Kothari, “A solution to the unit
commitment problem-a review,” Frontiers in Energy, vol. 7, no. 2, pp. 223–236,
2013.

[45] W. J. Zheng, Q.P. and A. Liu, “Stochastic optimization for unit commitment a
review,” IEEE Transactions on Power Systems, vol. PP, no. 99, pp. 1–12, 2014.

[46] S. M. Kaplan, PSmart Grid. Electrical Power Transmission: Background and
Policy Issues. The Capital.Net, Government Series, 2009.

[47] E. Feinberg, “Smart Grid Optimization Smart Grid : What is it ? Smart Grid
optimization,” Tech. Rep., 2012.

[48] A. Molderink, V. Bakker, M. G. C. Bosman, J. L. Hurink, and G. J. M. Smit,
“Management and control of domestic smart grid technology,” IEEE Transac-
tions on Smart Grid, vol. 1, no. 2, pp. 109 – 119, 2010.

[49] H. Wang and J. Huang, “Bargaining-based energy trading market for intercon-
nected microgrids,” IEEE International Conference on Communications, vol.
2015-Septe, pp. 776–781, 2015.

[50] J. Qin, S. Member, Y. Chow, S. Member, J. Yang, and S. Member, “Networked
Storage Operation Under Uncertainty,” IEEE Transactions on Smart Grid,
vol. 7, no. 2, pp. 1–13, 2015.

[51] S. Bakr and S. Cranefield, “Optimizing shiftable appliance schedules across res-
idential neighbourhoods for lower energy costs and fair billing,” CEUR Work-
shop Proceedings, vol. 1098, pp. 45–52, 2013.

[52] Z. Baharlouei and M. Hashemi, “Demand Side Management Challenges in
Smart Grid: a Review,” Smart Grid Conference, no. Dlc, pp. 96–101, 2013.

[53] Y. Liu, Y. Zhang, K. Chen, S. Z. Chen, and B. Tang, “Equivalence of Multi-
Time Scale Optimization for Home Energy Management Considering User Dis-
comfort Preference,” IEEE Transactions on Smart Grid, vol. 3053, no. c, pp.
1–1, 2016.

[54] C. Gahm, F. Denz, M. Dirr, and A. Tuma, “Energy-efficient scheduling in man-
ufacturing companies: A review and research framework,” European Journal of
Operational Research, vol. 248, no. 3, pp. 744–757, 2016.

[55] A. Giret, D. Trentesaux, and V. Prabhu, “Sustainability in manufacturing op-
erations scheduling: A state of the art review,” Journal of Manufacturing Sys-
tems, vol. 37, pp. 126–140, 2015.

[56] M. Starke and D. O. E. Eere, Assessment of Industrial Load for Demand Re-
sponse across U . S . Regions of the Western Interconnect Prepared by, 2013,
no. September.



151

[57] M. Starke, D. Letto, N. Alkadi, R. George, B. Johnson, K. Dowling, and
S. Khan, “Demand-side response from industrial loads,” 2013 NSTI Nanotech-
nology Conference and Expo, vol. 2, pp. 758–761, 2013.

[58] G. May, I. Barletta, B. Stahl, and M. Taisch, “Energy management in pro-
duction: A novel method to develop key performance indicators for improving
energy efficiency,” Applied Energy, vol. 149, pp. 46 – 61, 2015.

[59] E. Zampou, S. Plitsos, A. Karagiannaki, and I. Mourtos, “Towards a frame-
work for energy-aware information systems in manufacturing,” Computers in
Industry, vol. 65, no. 3, pp. 419 – 433, 2014.

[60] F. Shrouf, J. Ordieres, and G. Miragliotta, “Smart factories in industry 4.0:
A review of the concept and of energy management approached in produc-
tion based on the internet of things paradigm,” in 2014 IEEE International
Conference on Industrial Engineering and Engineering Management, 2014, pp.
697–701.

[61] P. Mativenga and M. Rajemi, “Calculation of optimum cutting parameters
based on minimum energy footprint,” CIRP Annals - Manufacturing Technol-
ogy, vol. 60, no. 1, pp. 149–152, jan 2011.

[62] A. Vijayaraghavan and D. Dornfeld, “Automated energy monitoring of machine
tools,” CIRP Annals - Manufacturing Technology, vol. 59, no. 1, pp. 21–24,
2010.

[63] Y. He, B. Liu, X. Zhang, H. Gao, and X. Liu, “A modeling method of task-
oriented energy consumption for machining manufacturing system,” Journal of
Cleaner Production, vol. 23, no. 1, pp. 167–174, 2012.

[64] L. B. Z. X. G. H. L. X. He, Yan, “A modeling method of task-oriented en-
ergy consumption for machining manufacturing system,” Journal of Cleaner
Production, vol. 23, no. 1, pp. 167–174, 2012.

[65] H. Cao and H. Li, “Simulation-based approach to modeling the carbon emissions
dynamic characteristics of manufacturing system considering disturbances,”
Journal of Cleaner Production, vol. 64, pp. 572–580, 2014.

[66] D. Trentesaux and A. Giret, “Go-green manufacturing holons: A step towards
sustainable manufacturing operations control,” Manufacturing Letters, vol. 5,
pp. 29 – 33, 2015.

[67] A. Thomas and D. Trentesaux, Are Intelligent Manufacturing Systems Sustain-
able? Cham: Springer International Publishing, 2014, pp. 3–14.

[68] G. B. Davis Meike, Marcello Pellicciari, “Energy efficient use of multirobot
production lines in the automotive industry: Detailed system modeling and
optimization,” IEEE Transactions on Automation Science and Engineering,
vol. 11, no. 3, pp. 798 – 809, 2013.

[69] D. Trentesaux and V. Prabhu, Sustainability in Manufacturing Operations
Scheduling: Stakes, Approaches and Trends. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 106–113.



152

[70] A. Nayak, K. Fang, and S. Lee, “Demand response in flow shop with job due
dates using genetic algorithm approach,” Smart and Sustainable Manufacturing
Systems, vol. 1, no. 1, pp. 100–120, 2017.

[71] T. Logenthiran, D. Srinivasan, and T. Z. Shun, “Demand Side Management in
Smart Grid Using Heuristic Optimization,” IEEE Transactions on Smart Grid,
vol. 3, no. 3, pp. 1244–1252, 2012.

[72] J. W. Zhang, H., Zhao, F., Sutherland, “MANUFACTURING SCHEDULING
FOR ENERGY COST REDUCTION IN A SMART GRID SCENARIO,” in
Proceedings of the ASME 2014 International Manufacturing Science and En-
gineering Conference MSEC2014 June 9-13, 2014, Detroit, Michigan, USA,
zhang2014j, 2014, pp. 1–10.

[73] T. Majozi, “Heat integration of multipurpose batch plants using a continuous-
time framework,” Applied Thermal Engineering, vol. 26, no. 13, pp. 1369 –
1377, 2006.

[74] L. zdamar and S. I. Birbil, “A hierarchical planning system for energy inten-
sive production environments,” International Journal of Production Economics,
vol. 58, no. 2, pp. 115 – 129, 1999.

[75] G. Mouzon, M. B. Yildirim, and J. Twomey, “Operational methods for min-
imization of energy consumption of manufacturing equipment,” International
Journal of Production Research, vol. 45, no. 18-19, pp. 4247–4271, 2007.

[76] P. Solding, D. Petku, and N. Mardan, “Using simulation for more sustainable
production systems methodologies and case studies,” International Journal of
Sustainable Engineering, vol. 2, no. 2, pp. 111–122, 2009.

[77] Y. He, B. Liu, X. Zhang, H. Gao, and X. Liu, “A modeling method of task-
oriented energy consumption for machining manufacturing system,” Journal of
Cleaner Production, vol. 23, no. 1, pp. 167–174, mar 2012.

[78] M. B. Yildirim and G. Mouzon, “Single-machine sustainable production plan-
ning to minimize total energy consumption and total completion time using a
multiple objective genetic algorithm,” Engineering Management, IEEE Trans-
actions on, vol. 59, no. 4, pp. 585–597, 2012.

[79] M. Yildirim and G. Mouzon, “A framework to minimise total energy consump-
tion and total tardiness on a single machine,” International Journal of Sustain-
able Engineering, vol. 1, no. 2, pp. 1–12, 2014.

[80] E. Seid and T. Majozi, “Optimization of energy and water use in multipurpose
batch plants using an improved mathematical formulation,” Chemical Engi-
neering Science, vol. 111, pp. 335 – 349, 2014.

[81] M. Rager, C. Gahm, and F. Denz, “Energy-oriented scheduling based on evolu-
tionary algorithms,” Computers & Operations Research, vol. 54, pp. 218 – 231,
2015.

[82] C. Liu, J. Yang, J. Lian, W. Li, S. Evans, and Y. Yin, “Sustainable performance
oriented operational decision-making of single machine systems with determin-
istic product arrival time,” Journal of Cleaner Production, vol. 85, pp. 318 –
330, 2014.



153

[83] R. Thry, G. Htreux, M. Agha, A. Hat, and J. L. Lann, “The extended resource
task network: a framework for the combined scheduling of batch processes and
chp plants,” International Journal of Production Research, vol. 50, no. 3, pp.
623–646, 2012.

[84] M. H. Agha, R. Thery, G. Hetreux, A. Hait, and J. M. L. Lann, “Integrated pro-
duction and utility system approach for optimizing industrial unit operations,”
Energy, vol. 35, no. 2, pp. 611 – 627, 2010.

[85] X. Gong, T. D. Pessemier, W. Joseph, and L. Martens, “An energy-cost-
aware scheduling methodology for sustainable manufacturing,” Procedia CIRP,
vol. 29, pp. 185 – 190, 2015.

[86] F. Shrouf, J. Ordieres-Mer, A. Garca-Snchez, and M. Ortega-Mier, “Optimiz-
ing the production scheduling of a single machine to minimize total energy
consumption costs,” Journal of Cleaner Production, vol. 67, pp. 197 – 207,
2014.

[87] S. Plitsos, P. P. Repoussis, I. Mourtos, and C. D. Tarantilis, “Energy-aware
decision support for production scheduling,” Decision Support Systems, vol. 93,
pp. 88–97, 2017.

[88] J. Yusta, F. Torres, and H. Khodr, “Optimal methodology for a machining
process scheduling in spot electricity markets,” Energy Conversion and Man-
agement, vol. 51, no. 12, pp. 2647 – 2654, 2010.

[89] H. Yan and L. Fei, “Methods for integrating energy consumption and environ-
mental impact considerations into production operation of machining process,”
Chinese Journal of Mechanical Engineering, vol. 23, pp. 1–8, 2010.

[90] A. Hat and C. Artigues, “A hybrid cp/milp method for scheduling with energy
costs,” European Journal of Industrial Engineering, vol. 5, no. 4, pp. 471–478,
2011.

[91] P. M. Castro, I. Harjunkoski, and I. E. Grossmann, “New continuous-time
scheduling formulation for continuous plants under variable electricity cost,”
Industrial & Engineering Chemistry Research, vol. 48, no. 14, pp. 6701–6714,
2009.

[92] L. Tang, P. Che, and J. Liu, “A stochastic production planning problem with
nonlinear cost,” Computers & Operations Research, vol. 39, no. 9, pp. 1977 –
1987, 2012.

[93] Y. yuan TAN, Y. lei HUANG, and S. xin LIU, “Two-stage mathematical pro-
gramming approach for steelmaking process scheduling under variable electric-
ity price,” Journal of Iron and Steel Research, International, vol. 20, no. 7, pp.
1 – 8, 2013.

[94] C. V. Le and C. K. Pang, “Fast reactive scheduling to minimize tardiness
penalty and energy cost under power consumption uncertainties,” Computers
& Industrial Engineering, vol. 66, no. 2, pp. 406–417, oct 2013.

[95] H.Hadera and I. Harjunkoski, “Continuous-time batch scheduling approach for
optimizing electricity consumption cost,” Computer Aided Chemical Engineer-
ing, vol. 32, pp. 403–408, 2013.



154

[96] D. F. Tobias Kuster, Marco Lutzenberger and S. Albayrak, “Distributed evolu-
tionary optimisation for electricity price responsive manufacturing using multi-
agent system technology,” International Journal on Advances in Intelligent Sys-
tems, vol. 6, no. 2, pp. 27 – 40, 2013.

[97] M. Mashaei and B. Lennartson, “Energy reduction in a pallet-constrained flow
shop through on-off control of idle machines,” IEEE Transactions on Automa-
tion Science and Engineering, vol. 10, no. 1, pp. 45–56, 2013.

[98] K.-T. Fang and B. M. Lin, “Parallel-machine scheduling to minimize tardiness
penalty and power cost,” Computers and Industrial Engineering, vol. 64, no. 1,
pp. 224 – 234, 2013.

[99] F. Shrouf, J. Ordieres-Mere, A. Garcia-Sanchez, and M. Ortega-Mier, “Opti-
mizing the production scheduling of a single machine to minimize total energy
consumption costs,” Journal of Cleaner Production, vol. 67, pp. 197 – 207, 2014.

[100] I. Mattik, P. Amorim, and H.-O. Gnther, “Hierarchical scheduling of continuous
casters and hot strip mills in the steel industry: a block planning application,”
International Journal of Production Research, vol. 52, no. 9, pp. 2576–2591,
2014.

[101] W. Kong, T. Chai, J. Ding, and S. Yang, “Multifurnace optimization in elec-
tric smelting plants by load scheduling and control,” IEEE Transactions on
Automation Science and Engineering, vol. 11, no. 3, pp. 850–862, 2014.

[102] U. N. A. Z. F. S. J. W. Fang, Kan, “Scheduling on a single machine under
time-of-use electricity tariffs,” Annals of Operations Research, vol. 238, no. 1,
pp. 199–227, 2016.

[103] J.-Y. Moon and J. Park, “Smart production scheduling with time-dependent
and machine-dependent electricity cost by considering distributed energy re-
sources and energy storage,” International Journal of Production Research,
vol. 52, no. 13, pp. 3922–3939, 2014.

[104] Y. Liu, H. Dong, N. Lohse, S. Petrovic, and N. Gindy, “An investigation into
minimising total energy consumption and total weighted tardiness in job shops,”
Journal of Cleaner Production, vol. 65, pp. 87 – 96, 2014.

[105] M. Georgiadis, L. Papageorgiou, and S. Macchietto, “Optimal cyclic cleaning
scheduling in heat exchanger networks under fouling,” Computers & Chemical
Engineering, vol. 23, Supplement, pp. S203 – S206, 1999.

[106] M. C. Georgiadis and L. G. Papageorgiou, “Optimal scheduling of heat-
integrated multipurpose plants under fouling conditions,” Applied Thermal En-
gineering, vol. 21, no. 16, pp. 1675 – 1697, 2001.

[107] M. Ji, J.-Y. Wang, and W.-C. Lee, “Minimizing resource consumption on uni-
form parallel machines with a bound on makespan,” Computers & Operations
Research, vol. 40, no. 12, pp. 2970 – 2974, 2013.

[108] K. Li, X. Zhang, J. Y.-T. Leung, and S.-L. Yang, “Parallel machine scheduling
problems in green manufacturing industry,” Journal of Manufacturing Systems,
vol. 38, pp. 98 – 106, 2016.



155

[109] C.-H. Liu, “Mathematical programming formulations for single-machine
scheduling problems while considering renewable energy uncertainty,” Inter-
national Journal of Production Research, vol. 54, no. 4, pp. 1122–1133, 2016.

[110] B. J. Zhang, X. L. Luo, X. Z. Chen, and Q. L. Chen, “Coupling process plants
and utility systems for site scale steam integration,” Industrial & Engineering
Chemistry Research, vol. 52, no. 41, pp. 14 627–14 636, 2013.

[111] D. Mignon and J. Hermia, “Using batches for modeling and optimizing the
brewhouses of an industrial brewery,” Computers & Chemical Engineering, vol.
17, Supplement 1, pp. S51 – S56, 1993.

[112] C. A. Babu and S. Ashok, “Peak load management in electrolytic process in-
dustries,” IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 399–405,
2008.

[113] K. Nolde and M. Morari, “Electrical load tracking scheduling of a steel plant,”
Computers & Chemical Engineering, vol. 34, no. 11, pp. 1899 – 1903, 2010.

[114] A. Hat and C. Artigues, “On electrical load tracking scheduling for a steel
plant,” Computers & Chemical Engineering, vol. 35, no. 12, pp. 3044 – 3047,
2011.

[115] E. C. Eren and N. Gautam, “Efficient control for a multi-product quasi-batch
process via stochastic dynamic programming,” IIE Transactions, vol. 43, no. 3,
pp. 192–206, 2010.

[116] C. Liu, C. Zhao, and Q. Xu, “Integration of electroplating process design and
operation for simultaneous productivity maximization, energy saving, and fresh-
water minimization,” Chemical Engineering Science, vol. 68, no. 1, pp. 202 –
214, 2012.

[117] A. B. F. D. Zeyi Sun, Lin Li, “Customer-side electricity load management for
sustainable manufacturing systems utilizing combined heat and power genera-
tion system,” International Journal of Production Economics, vol. 165, pp. 112
– 119, 2015.

[118] R. Adonyi, J. Romero, L. Puigjaner, and F. Friedler, “Incorporating heat in-
tegration in batch process scheduling,” Applied Thermal Engineering, vol. 23,
no. 14, pp. 1743 – 1762, 2003.

[119] K. Nilsson and M. Soderstrom, “Industrial application of production planning
with optimal electricity demand,” Applied Energy, vol. 46, pp. 181–192, 1993.

[120] K. Nilsson, “Industrial production planning with optimal electricity cost,” En-
ergy Conversion and Management, vol. 34, no. 3, pp. 153 – 158, 1993.

[121] E. Kondili, N. Shah, and C. Pantelides, “Production planning for the ratio-
nal use of energy in multiproduct continuous plants,” Computers & Chemical
Engineering, vol. 17, Supplement 1, pp. S123 – S128, 1993.

[122] M. P. Brundage, Q. Chang, Y. Li, G. Xiao, and J. Arinez, “Energy efficiency
management of an integrated serial production line and hvac system,” IEEE
Transactions on Automation Science and Engineering, vol. 11, no. 3, pp. 789–
797, 2014.



156

[123] S. Mitra, I. E. Grossmann, J. M. Pinto, and N. Arora, “Optimal production
planning under time-sensitive electricity prices for continuous power-intensive
processes,” Computers & Chemical Engineering, vol. 38, pp. 171 – 184, 2012.

[124] Y. Wang and L. Li, “Time-of-use based electricity demand response for sustain-
able manufacturing systems,” Energy, vol. 63, pp. 233 – 244, 2013.

[125] N. E.-F. Chudong Tong, Ahmet Palazoglu and X. Yan, “Energy demand
management for process systems through production scheduling and control,”
AICHe Journal, vol. 61, no. 11, p. 37563769, 2015.

[126] M. P. Brundage, Q. Chang, Y. Li, J. Arinez, and G. Xiao, “Implementing a real-
time, energy-efficient control methodology to maximize manufacturing profits,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 6,
pp. 855–866, 2016.

[127] P. M. Castro, I. Harjunkoski, and I. E. Grossmann, “Optimal scheduling of con-
tinuous plants with energy constraints,” Computers and Chemical Engineering,
vol. 35, no. 2, pp. 372–387, feb 2011.

[128] D. Mignon and J. Hermia, “Peak utility load reduction in batch processes oper-
ated periodically and under uncertainty,” Computers & Chemical Engineering,
vol. 20, no. 3, pp. 249 – 263, 1996.

[129] S. Ashok, “Peak-load management in steel plants,” Applied Energy, vol. 83,
no. 5, pp. 413 – 424, 2006.

[130] K. Fang, N. Uhan, F. Zhao, and J. W. Sutherland, “A new approach to schedul-
ing in manufacturing for power consumption and carbon footprint reduction,”
Journal of Manufacturing Systems, vol. 30, no. 4, pp. 234–240, oct 2011.

[131] K. Fang, N. a. Uhan, F. Zhao, and J. W. Sutherland, “Flow shop scheduling
with peak power consumption constraints,” Annals of Operations Research, vol.
206, no. 1, pp. 115–145, jan 2013.

[132] A. Bruzzone and D. Anghinolfi, “Energy-aware scheduling for improving manu-
facturing process sustainability: a mathematical model for flexible flow shops,”
CIRP Annals, vol. 61, no. 1, pp. 459–462, 2012.

[133] A. Bego, L. Li, and Z. Sun, “Identification of reservation capacity in critical
peak pricing electricity demand response program for sustainable manufacturing
systems,” International Journal of Energy Research, vol. 38, no. 6, pp. 728–736,
2014.

[134] J.-Y. Ding, S. Song, and C. Wu, “Carbon-efficient scheduling of flow shops by
multi-objective optimization,” European Journal of Operational Research, vol.
248, no. 3, pp. 758 – 771, 2016.

[135] C. Boyadjiev, B. Ivanov, N. Vaklieva-Bancheva, C. Pantelides, and N. Shah,
“Optimal energy integration in batch antibiotics manufacture,” Computers &
Chemical Engineering, vol. 20, Supplement 1, pp. S31 – S36, 1996, european
Symposium on Computer Aided Process Engineering-6.



157

[136] R. Grau, M. Graells, J. Corominas, A. Espua, and L. Puigjaner, “Global strat-
egy for energy and waste analysis in scheduling and planning of multiproduct
batch chemical processes,” Computers & Chemical Engineering, vol. 20, no. 67,
pp. 853 – 868, 1996.

[137] B. Lee and G. Reklaitis, “Optimal scheduling of cyclic batch processes for heat
integrationi. basic formulation,” Computers & Chemical Engineering, vol. 19,
no. 8, pp. 883 – 905, 1995.

[138] J. L. Junwen Wang and N. Huang, “Optimal vehicle batching and sequencing
to reduce energy consumption and atmospheric emissions in automotive paint
shops,” International Journal of Sustainable Manufacturing, vol. 2, no. 2-3, pp.
1742–7223, 2011.

[139] M. Dai, D. Tang, A. Giret, M. a. Salido, and W. D. Li, “Energy-efficient schedul-
ing for a flexible flow shop using an improved genetic-simulated annealing al-
gorithm,” Robotics and Computer-Integrated Manufacturing, vol. 29, no. 5, pp.
418–429, oct 2013.

[140] S. A. Mansouri, E. Aktas, and U. Besikci, “Green scheduling of a two-machine
flowshop: Trade-off between makespan and energy consumption,” European
Journal of Operational Research, vol. 248, no. 3, pp. 772 – 788, 2016.

[141] D. Lei, Y. Zheng, and X. Guo, “A shuffled frog-leaping algorithm for
flexible job shop scheduling with the consideration of energy consumption,”
International Journal of Production Research, vol. 55, no. 11, pp. 3126–3140,
2017. [Online]. Available: http://dx.doi.org/10.1080/00207543.2016.1262082

[142] H. Zhang, F. Zhao, K. Fang, and J. W. Sutherland, “Energy-conscious flow shop
scheduling under time-of-use electricity tariffs,” CIRP Annals - Manufacturing
Technology, vol. 63, no. 1, pp. 37–40, 2014.

[143] E. Capn-Garca, A. D. Bojarski, A. Espua, and L. Puigjaner, “Multiobjective
optimization of multiproduct batch plants scheduling under environmental and
economic concerns,” AIChE Journal, vol. 57, no. 10, 2011.

[144] H. Luo, B. Du, G. Q. Huang, H. Chen, and X. Li, “Hybrid flow shop schedul-
ing considering machine electricity consumption cost,” International Journal of
Production Economics, vol. 146, no. 2, pp. 423 – 439, 2013.

[145] O. Adekola, J. D. Stamp, T. Majozi, A. Garg, and S. Bandyopadhyay, “Unified
approach for the optimization of energy and water in multipurpose batch plants
using a flexible scheduling framework,” Industrial & Engineering Chemistry
Research, vol. 52, no. 25, pp. 8488–8506, 2013.

[146] S. Zanoni, L. Bettoni, and C. H. Glock, “Energy implications in a two-stage
production system with controllable production rates,” International Journal
of Production Economics, vol. 149, pp. 164 – 171, 2014.

[147] H. Zhang, F. Zhao, and J. W. Sutherland, “Energy-efficient scheduling of mul-
tiple manufacturing factories under real-time electricity pricing,” CIRP Annals
- Manufacturing Technology, vol. 64, no. 1, pp. 41–44, 2015.



158

[148] Z. F. Zhang, Hao and J. W. Sutherland, “Scheduling of a Single Flow Shop for
Minimal Energy Cost Under Real-Time Electricity Pricing,” Journal of Manu-
facturing Science and Engineering, vol. 139, no. 1, p. 014502, 2016.

[149] A. Sharma, F. Zhao, and J. W. Sutherland, “Econological scheduling of a man-
ufacturing enterprise operating under a time-of-use electricity tariff,” Journal
of Cleaner Production, vol. 108, Part A, pp. 256 – 270, 2015.

[150] C. Zhang, P. Gu, and P. Jiang, “Low-carbon scheduling and estimating for a
flexible job shop based on carbon footprint and carbon efficiency of multi-job
processing,” Proceedings of the Institution of Mechanical Engineers, Part B:
Journal of Engineering Manufacture, vol. 229, no. 2, pp. 328–342, 2015.

[151] K. Biel, F. Zhao, J. W. Sutherland, C. H. Glock, K. Biel, F. Zhao, J. W. Suther-
land, and C. H. Glock, “Flow shop scheduling with grid-integrated onsite wind
power using stochastic MILP,” International Journal of Production Research,
vol. 56, no. 5, pp. 2076–2098, 2017.

[152] E.-d. Jiang and L. Wang, “An improved multi-objective evolutionary algorithm
based on decomposition for energy- efficient permutation flow shop scheduling
problem with sequence-dependent setup time,” International Journal of
Production Research, vol. 0, no. 0, pp. 1–16, 2018. [Online]. Available:
https://doi.org/10.1080/00207543.2018.1504251

[153] Y. Zhai, K. Biel, F. Zhao, and J. W. Sutherland, “Dynamic scheduling of a flow
shop with on-site wind generation for energy cost reduction under real time
electricity pricing,” CIRP Annals - Manufacturing Technology, vol. 66, no. 1, pp.
41–44, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.cirp.2017.04.099

[154] C. Lu, L. Gao, X. Li, Q. Pan, and Q. Wang, “Energy-efficient permutation
flow shop scheduling problem using a hybrid multi-objective backtracking
search algorithm,” Journal of Cleaner Production, vol. 144, pp. 228–238, 2017.
[Online]. Available: http://dx.doi.org/10.1016/j.jclepro.2017.01.011

[155] B. Zheng, H. Wu, J. Qin, W. Du, J. Wang, and D. Li, “A simple model clarifies
the complicated relationships of complex networks,” arXiv preprint arXiv: . . . ,
pp. 1–9, 2012.

[156] C.-H. Liu and D.-H. Huang, “Reduction of power consumption and carbon foot-
prints by applying multi-objective optimisation via genetic algorithms,” Inter-
national Journal of Production Research, vol. 52, no. 2, pp. 337–352, 2014.

[157] E. K. Boukas, A. Haurie, and F. Soumis, “Hierarchical approach to steel pro-
duction scheduling under a global energy constraint,” Annals of Operation Re-
search, vol. 26, no. 1-4, pp. 289–311, 1991.

[158] C. P. E. Kondili and R. Sargent, “A general algorithm for short term scheduling
of batch operations using milp formulation,” Computers & Chemical Engineer-
ing, vol. 17, no. 2, pp. 211 – 227, 1993.

[159] C. Artigues, P. Lopez, and A. Hait, “The Energy Scheduling Problem:Industrial
Case Study and constraint propagation techniques,” international journal of
production economics, vol. 143, no. 1, pp. 13–23, 2013.



159

[160] G. Chen, L. Zhang, J. Arinez, and S. Biller, “Energy-efficient production sys-
tems through schedule-based operations,” IEEE Transactions on Automation
Science and Engineering, vol. 10, no. 1, pp. 27–37, 2013.

[161] C. Pach, T. Berger, Y. Sallez, T. Bonte, E. Adam, and D. Trentesaux, “Reactive
and energy-aware scheduling of flexible manufacturing systems using potential
fields,” Computers in Industry, vol. 65, no. 3, pp. 434 – 448, 2014.

[162] Y. He, Y. Li, T. Wu, and J. W. Sutherland, “An energy-responsive optimization
method for machine tool selection and operation sequence in flexible machining
job shops,” Journal of Cleaner Production, vol. 87, pp. 245 – 254, 2015.

[163] D. M. Tang, Dunbing, “Energy-efficient approach to minimizing the energy
consumption in an extended job-shop scheduling problem,” Chinese Journal of
Mechanical Engineering, vol. 28, no. 5, pp. 1048–1055, 2015.

[164] M. A. Salido, J. Escamilla, A. Giret, and F. Barber, “A genetic algorithm
for energy-efficiency in job-shop scheduling,” The International Journal of Ad-
vanced Manufacturing Technology, vol. 85, no. 5, pp. 1303–1314, 2016.

[165] C. K. Pang and C. V. Le, “Optimization of total energy consumption in flex-
ible manufacturing systems using weighted p-timed petri nets and dynamic
programming,” IEEE Transactions on Automation Science and Engineering,
vol. 11, no. 4, pp. 1083–1096, 2014.

[166] R. Zhang and R. Chiong, “Solving the energy-efficient job shop scheduling prob-
lem: a multi-objective genetic algorithm with enhanced local search for mini-
mizing the total weighted tardiness and total energy consumption,” Journal of
Cleaner Production, vol. 112, Part 4, pp. 3361 – 3375, 2016.

[167] L. X. G. L.-Z. G. Zhang, Liping, “Dynamic rescheduling in fms that is simul-
taneously considering energy consumption and schedule efficiency,” The Inter-
national Journal of Advanced Manufacturing Technology, vol. 87, no. 5, pp.
1387–1399, 2016.

[168] G. May, B. Stahl, M. Taisch, and V. Prabhu, “Multi-objective genetic algorithm
for energy-efficient job shop scheduling,” International Journal of Production
Research, vol. 53, no. 23, pp. 7071–7089, 2015.

[169] M. A. Salido, J. Escamilla, F. Barber, and A. Giret, “Rescheduling
in job-shop problems for sustainable manufacturing systems,” Journal of
Cleaner Production, vol. 162, pp. S121–S132, 2017. [Online]. Available:
http://dx.doi.org/10.1016/j.jclepro.2016.11.002

[170] M. Dai, D. Tang, Y. Xu, and W. Li, “Energy-aware integrated process plan-
ning and scheduling for job shops,” Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture, vol. 229, no. 1 suppl,
pp. 13–26, 2015.

[171] L. Yin, X. Li, L. Gao, C. Lu, and Z. Zhang, “Energy-efficient job shop scheduling
problem with variable spindle speed using a novel multi-objective algorithm,”
Advances in Mechanical Engineering, vol. 9, no. 4, pp. 1–21, 2017.



160

[172] X. Wu and Y. Sun, “A green scheduling algorithm for flexible job shop with
energy-saving measures,” Journal of Cleaner Production, vol. 172, pp. 3249–
3264, 2018.

[173] H. Piroozfard, K. Y. Wong, and W. P. Wong, “Minimizing total carbon footprint
and total late work criterion in flexible job shop scheduling by using an improved
multi-objective genetic algorithm,” Resources, Conservation and Recycling, vol.
128, pp. 267–283, 2018.

[174] J.-Y. Moon and J. Park, “Smart production scheduling with time-dependent
and machine-dependent electricity cost by considering distributed energy re-
sources and energy storage,” International Journal of Production Research,
vol. 52, no. 13, pp. 1–18, dec 2013.

[175] C. Garcia-Santiago, J. D. Se, C. Upton, F. Quilligan, S. Gil-Lopez, and
S. Salcedo-Sanz, “A random-key encoded harmony search approach for energy-
efficient production scheduling with shared resources,” Engineering Optimiza-
tion, vol. 47, no. 11, pp. 1481–1496, 2015.

[176] R. Z. R. C. J. Y. Ding, S. Song and C. Wu, “Parallel machine scheduling under
time-of-use electricity prices: New models and optimization approaches,” IEEE
Transactions on Automation Science and Engineering, vol. 13, no. 2, pp. 1138–
1154, 2016.

[177] T. Stock and G. Seliger, “Multi-objective shop floor scheduling using monitored
energy data,” Procedia CIRP, vol. 26, pp. 510 – 515, 2015.

[178] H. Mokhtari and A. Hasani, “An energy-efficient multi-objective optimization
for flexible job-shop scheduling problem,” Computers and Chemical Engineer-
ing, vol. 104, pp. 339–352, 2017.

[179] Y. Zhang, J. Wang, and Y. Liu, “Game theory based real-time multi-objective
flexible job shop scheduling considering environmental impact,” Journal of
Cleaner Production, vol. 167, pp. 665–679, 2018.

[180] D. Lei and X. Guo, “An effective neighborhood search for scheduling in dual-
resource constrained interval job shop with environmental objective,” Interna-
tional Journal of Production Economics, vol. 159, pp. 296 – 303, 2015.

[181] C. Liu, F. Dang, W. Li, J. Lian, S. Evans, and Y. Yin, “Production planning of
multi-stage multi-option seru production systems with sustainable measures,”
Journal of Cleaner Production, vol. 105, pp. 285 – 299, 2015.

[182] G. Gong, Q. Deng, W. Gong, Xuran Liu, and Q. Ren, “A new double flexible
job-shop scheduling problem integrating processing time, green production, and
human factor indicators,” Journal of Cleaner Production, vol. 174, no. 23, pp.
560–576, 2018.

[183] L. Yin, X. Li, L. Gao, C. Lu, and Z. Zhang, “A novel mathematical model
and multi-objective method for the low-carbon flexible job shop scheduling
problem,” Sustainable Computing: Informatics and Systems, vol. 13, pp. 15–30,
2017. [Online]. Available: http://dx.doi.org/10.1016/j.suscom.2016.11.002



161

[184] G. May, B. Stahl, M. Taisch, and V. Prabhu, “Multi-objective genetic algorithm
for energy-efficient job shop scheduling,” International Journal of Production
Research, vol. 53, no. 23, pp. 7071–7089, 2015.

[185] Z. Sun, L. Li, M. Fernandez, and J. Wang, “Inventory control for peak electricity
demand reduction of manufacturing systems considering the tradeoff between
production loss and energy savings,” Journal of Cleaner Production, vol. 82,
pp. 84 – 93, 2014.

[186] T. L. Urban and W.-C. Chiang, “Designing energy-efficient serial production
lines: The unpaced synchronous line-balancing problem,” European Journal of
Operational Research, vol. 248, no. 3, pp. 789 – 801, 2016.

[187] J. M. Nilakantan, G. Q. Huang, and S. Ponnambalam, “An investigation on
minimizing cycle time and total energy consumption in robotic assembly line
systems,” Journal of Cleaner Production, vol. 90, pp. 311 – 325, 2015.

[188] Z. Sun and L. Li, “Potential capability estimation for real time electricity de-
mand response of sustainable manufacturing systems using markov decision
process,” Journal of Cleaner Production, vol. 65, pp. 184 – 193, 2014.

[189] A. Khodaei and M. Shahidehpour, “Microgrid-based co-optimization of gen-
eration and transmission planning in power systems,” IEEE Transactions on
Power Systems, vol. 28, no. 2, pp. 1582–1590, 2013.

[190] S. Lakshminarayana, T. Q. S. Quek, and H. V. Poor, “Cooperation and storage
tradeoffs in power grids with renewable energy resources,” IEEE Journal on
Selected Areas in Communications, vol. 32, no. 7, pp. 1386–1397, 2014.

[191] R. Rigo-Mariani, B. Sareni, and X. Roboam, “Integrated Optimal Design of a
Smart Microgrid With Storage,” IEEE Transactions on Smart Grid, pp. 1–9,
2015.

[192] H. Zhang, F. Zhao, and J. W. Sutherland, “Manufacturing scheduling for re-
duced energy cost in a smart grid scenario,” Reengineering Manufacturing for
Sustainability, pp. 183–189, 2013.

[193] P. Finn and C. Fitzpatrick, “Demand side management of industrial electricity
consumption: Promoting the use of renewable energy through real-time pric-
ing,” Applied Energy, vol. 113, pp. 11 – 21, 2014.

[194] Y.-C. Choi and P. Xirouchakis, “A holistic production planning approach in
a reconfigurable manufacturing system with energy consumption and environ-
mental effects,” International Journal of Computer Integrated Manufacturing,
vol. 28, no. 4, pp. 379–394, 2015.

[195] F. Z. Hao Zhang and J. W. Sutherland, “Manufacturing scheduling of col-
laborative factories for energy cost reduction.” 43rd SME North American
Manufacturing Research Conference (NAMRC), Charlotte, 2015, pp. 273–278.

[196] L. L. Zeyi Sun and F. Dababneh, “Plant-level electricity demand response for
combined manufacturing system and heating, venting, and air-conditioning sys-
tem,” Journal of Cleaner Production, vol. 135, pp. 1650 – 1657, 2016.



162

[197] T. Stock and G. Seliger, “Multi-objective shop floor scheduling using monitored
energy data,” Procedia CIRP, vol. 26, pp. 510–515, 2015.

[198] M. J. Neely and L. Huang, “Dynamic product assembly and inventory control
for maximum profit,” Proceedings of the IEEE Conference on Decision and
Control, pp. 2805–2812, 2010.

[199] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load balancing
and scheduling in cloud computing clusters,” Proceedings - IEEE INFOCOM,
pp. 702–710, 2012.

[200] M. J. Neely, “A lyapunov optimization approach to repeated stochastic games,”
in 51st Annual Allerton Conference on Communication, Control, and Comput-
ing (Allerton), Monticello, IL, 2013, pp. 1082–1089.

[201] ——, Stochastic Network Optimization with Application to Communication and
Queueing Systems, 2010, vol. 3, no. 1.

[202] T. Chen, Q. Ling, and G. B. Giannakis, “Learn-and-Adapt Stochastic Dual
Gradients for Network Resource Allocation,” pp. 1–14, 2017.

[203] S. T. Neely, M.J. and G. Dimakis, “Efficient algorithms for renewable energy
allocation to delay tolerant consumers,” Smart Grid Communications (Smart-
GridComm), 2010 First IEEE International Conference on, no. 1, pp. 1–10,
2010.

[204] S. Salinas, M. Li, P. Li, and Y. Fu, “Dynamic Energy Management for the Smart
Grid With Distributed Energy Resources,” Smart Grid, IEEE Transactions on,
vol. 4, no. 4, pp. 2139–2151, 2013.

[205] Y. Huang, S. Mao, and R. M. Nelms, “Adaptive electricity scheduling in mi-
crogrids,” IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 270–281, 2014.

[206] S. Lakshminarayana, T. Q. S. Quek, and H. V. Poor, “Combining coopera-
tion and storage for the integration of renewable energy in smart grids,” in
Proceedings - IEEE INFOCOM, 2014, pp. 622–627.

[207] T. Li and M. Dong, “Real-time energy storage management: Finite-time horizon
approach,” 2014 IEEE International Conference on Smart Grid Communica-
tions, SmartGridComm 2014, pp. 115–120, 2015.

[208] W. Shi, N. Li, C. C. Chu, and R. Gadh, “Real-Time Energy Management in
Microgrids,” IEEE Transactions on Smart Grid, vol. 8, no. 1, pp. 228–238,
2017.

[209] M. Yu and S. H. Hong, “A Real-Time Demand-Response Algorithm for Smart
Grids: A Stackelberg Game Approach,” IEEE Transactions on Smart Grid,
vol. 7, no. 2, pp. 879–888, 2015.

[210] M. Moghaddam and S. Y. Nof, “Combined demand and capacity sharing with
best matching decisions in enterprise collaboration,” International Journal of
Production Economics, vol. 148, pp. 93–109, 2014.



163

[211] H. Seok and S. Y. Nof, “Collaborative capacity sharing among manufacturers on
the same supply network horizontal layer for sustainable and balanced returns,”
International Journal of Production Research, vol. 52, no. 6, pp. 1622–1643,
2014.

[212] S. W. Yoon and S. Y. Nof, “Demand and capacity sharing decisions and pro-
tocols in a collaborative network of enterprises,” Decision Support Systems,
vol. 49, no. 4, pp. 442–450, 2010.

[213] H. Seok and S. Nof, “Collaborative capacity sharing among manufacturers on
the same supply network horizontal layer for sustainable and balanced returns,”
International Journal of Production Research, vol. 52, no. January 2015, pp.
1622–1643, 2014.

[214] S. W. Yoon and S. Y. Nof, “Affiliation/dissociation decision models in demand
and capacity sharing collaborative network,” International Journal of Produc-
tion Economics, vol. 130, no. 2, pp. 135–143, 2011.

[215] M. Moghaddam and S. Y. Nof, “Real-time optimization and control mecha-
nisms for collaborative demand and capacity sharing,” International Journal of
Production Economics, vol. 171, Part 4, pp. 495 – 506, 2016.

[216] M. Mohsen and S. Y. Nof, Frontiers in Best Matching. Springer International
Publishing, 2017, pp. 221–228.

[217] S. L. Ok C., P. Mitra and S. Kumara, “Maximum energy welfare routing in
wireless sensor networks,” in Proceedings of Networking, vol. 4479, 2007, p.
203214.

[218] L. S. M. P. Ok, C. and S. Kumara, “Distributed routing in wireless sensor
networks using energy welfare metric,” Information Science, vol. 180, no. 9, pp.
1656–1670, 2010.

[219] P. T. Yang and S. Lee, “A distributed reclustering hierarchy routing proto-
col using social welfare in wireless sensor networks,” International Journal of
Distributed Sensor Networks, vol. 8, no. 4, p. 681026, 2012.

[220] S. Lee, “The role of preparedness in ambulance dispatching,” Journal of the
Operational Research Society, vol. 62, p. 1888, 2011.

[221] M. H. Kim, S. P. Kim, and S. Lee, “Social-welfare based task allocation for
multi-robot systems with resource constraints,” Computers and Industrial En-
gineering, vol. 63, no. 4, pp. 994–1002, 2012.

[222] J. Kim, H. Chae, S.-H. Yook, and Y. Kim, “Spatial evolutionary public goods
game on complete graph and dense complex networks,” Scientific Reports,
vol. 5, p. 9381, 2015.

[223] C. Ok, S. Lee, and S. Kumara, “Group preference modeling for intelligent shared
environments: Social welfare beyond the sum,” Information Sciences, vol. 278,
pp. 588–598, 2014.

[224] A. Nayak, R. Levalle, S. Lee, and S. Y. Nof, “Resource sharing in cyber-physical
systems: modeling framework and case studies,” International Journal of Pro-
duction Research, vol. 7543, no. 3, pp. 1–15, 2016.



164

[225] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-End Training of
Deep Visuomotor Policies,” vol. 17, pp. 1–40, 2015. [Online]. Available:
http://arxiv.org/abs/1504.00702
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APPENDIX

Using Raking and selection for selecting the best value for T ′

A bayesian approach for the selection of T ′ is described in this Section. The

method is known as Ranking and Selection in the Simulation community. It is known

as Thompson’s Sampling or multi-lever slot machine optimization in dynamic pro-

gramming community. The method has asymptotic guarantees but it cannot guar-

antee optimal values for different options but obtains the ”best” value. The best

alternative or choice is selected based on the measure of output. In this chapter,

total electricity cost is considered as a measure. The sensitivity is performed for

g = {1, 2, ..., 24} values of T ′. Since, the experiments are simulated based on random

variables, the outcome from the experiments is also a random variable. The objective

is to sequentially select a value of g such that the expected value of χ is maximized

where χ is defined in Equation 6.21 and µ(gi) is the utility from gi where utility is

defined as u(g) = −cost. The method is flexible as different objective functions e.g.

throughput, customer satisfaction may also be considered for the cost function.

χ = maxg=1,2,...,G µ(g) (6.21)

Since µi is random, it has a sampling distribution. Assuming that the sampling

distribution is normal, µi N(µo(g), σ2
o(g)) where are the parameters of the prior dis-

tribution. Since the prior distribution is not known, the experiment is run 10 times

to estimate µo(g), σ2
o(g) and, λ(g) where λ(g) is the estimation for the population

variance. The sequential procedure for Bayesian ranking and selection is described

below where the experiments are run NE times with optimal allocation of simulation

effort. Each simulation run is denoted with n.
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• The experiments are run 10 times for every value of g to estimate µo(g) and

σ2
o(g)

• The choice of g to sample is obtained from the function shown as:

argmaxg=1,2,...,G σ̃n(g)f

(
− |4n(g)|

σ̃n(g)

)
(6.22)

where f(z) = zφ(z)+ψ(z). φ(z) is the normal CDF and ψ(z) is the normal PDF.

σ̃n(g) and 4n(g) are calculated as shown in Equation 6.23 and Equation 6.24

respectively.

σ̃n(g) =

√
σ2
n(g)− 1

σ−2
n (g) + λ(g)

(6.23)

4n(g) = µn(g)−maxg′ 6=g µn(g′) (6.24)

µn(g) and σn(g) are obtained from Equation 6.25 and Equation 6.26 respectively

where y(g) is the new observation for choice g..

µn(g) =
σ−2
n−1(g)µn−1(g) + λ−1(g)yn(g)

σ−2
o (g) + λ−1(g)

(6.25)

σ2
n(g) =

1

σ−2
o (g) + λ−1(g)

(6.26)

• After NE runs, select the value of g with highest expected value for Equa-

tion 6.22

The best values of T ′ for different test cases is shown in Table 5.2. The results

are obtained for storage option 1 and load factor 0.25. The optimal values of T ′

depends on the structure of the problem and distribution of the random variables.

The total number of simulation runs (or simulation effort) is kept at 5000 over which

the allocation of simulation effort is made. In the sequential approach, in each step,

only one choice is selected and a random sample is sampled for that choice. Bayesian

approach for ranking and selection provides a statistical method to obtain the best

choice that is expected to perform good on an average. However, it may not perform

well when considering worst case measures.
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Theorem 1: The virtual queue Qi in Chapter 3 is mean rate stable

Proof A queue Qi[t] is mean rate stable if Equation 6.27 is satisfied.

lim
|T |→∞

1

|T |
E
[
Qi[t]

]
= 0 (6.27)

Using the drift function 4[t], taking an expectation over Q[t] and summing it over

all t, 4[t] is converted to the form as shown in Equation 6.28.

ω[t]− ω[0] ≤ C|T |+−
∑
t∈T

Qi[t]
∑
d∈D

Lsli,dw
sl
i,dx

sl
i,d (6.28)

Let Qi[0] = 0, ∀i ∈ I, hence ω[0]. Right hand side of Equation 6.28 consist of two

parts where C|T | is constant. In the second part, Qi[t] ≥ 0 and xsli,d ≥ 0. Hence,

Equation 6.28 is simplified to Equation 6.29.∑
i∈I

E
[
Qi[t]

2
]
≤ C|T | (6.29)

As E[a2] ≥ E[a]2, Equation 6.30 is derived from Equation 6.29.

E[Qi[t]] ≤
√
C|T | ∀i ∈ I (6.30)

Dividing both sides by |T | makes lim
|T |→∞

√
C
|T | = 0, that concludes the proof as the

desired result shown in Equation 6.27 is obtained.
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Theorem 2: Penalty Term in O[t] is bounded by 1
V

and queue term by V

Proof The drift+penalty inequality term is given as O[t] ≤ C−
∑

i∈I δiE

[
Qi[t]

]
+

V

[
X[t]p1[t] +G[t]p2[t]

]
. Let M [t] = X[t]p1[t] +G[t]X2[t], M∗ be the optimal value of

E[M ] and, Mmin be the lower bound on the M . Summing O[t] over all t, Equation 6.31

is obtained.

E
[
ω[Q[t]]

]
− E

[
ω[Q[0]]

]
+ VM ≤ C|T |+ VM∗ −

∑
i∈I

∑
t∈T

δiE
[
Qi[t]

]
(6.31)

Using Theorem 1 and applying the limit on both sides, Equation 6.32 is obtained

that shows the penalty term is bounded by 1
V

.

lim
|T |→∞

1

|T |
∑
t∈T

M [t] ≤M∗ +
D

V
(6.32)

Using Theorem 1, rearranging Equation 6.31 and putting the limits, Equation 6.33

is constructed that shows direct proportionality between queue term and V . Equa-

tion 6.34 concludes the proof.

lim
|T |→∞

1

|T |
∑
i∈I

δiE

[
Qi[t]

]
≤ C|T |+ VM∗ − V lim

|T |→∞

1

|T |
E

[
M [t]

]
(6.33)

lim
|T |→∞

1

|T |
E

[
Qi[t]

]
≤
C|T |+ V

(
M∗ −Mmin

)
δi

∀i ∈ I (6.34)
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Theorem 3: The virtual queues QCCE
i and QP

i are mean rate stable

Proof Using the proofs similarly as in Theorem 1, Equation 6.35 and Equa-

tion 6.36 are obtained.

ωCCE[t]− ωCCE[0] =|T |
(∑

i∈I

(
− p2[t](ri[t]−mi[t]) + φKi(

1

mi[t]
− 1

ri[t]
)
)2
)

(6.35)

−
∑
i∈I

QCCE
i [t]

(
− p2[t](ri[t]−mi[t]) + φKi(

1

mi[t]
− 1

ri[t]
)

)

ωP [t]− ωP [0] =|T |
(∑

i∈I

(
− p2[t]ri[t] + pmi[t] + φKi(

1

mi[t]
− 1

ri[t]
)
)2
)

(6.36)

−
∑
i∈I

QCCE
i [t]

(
− p2[t]ri[t]− pmi[t] + φKi(

1

mi[t]
− 1

ri[t]
)

)
Taking out the constants and replacing them by C, provides us with the same form

as Equation 6.29 that can be used to show the mean rate stability of the virtual

queues QCCE
i and QP

i . It is shown in Equation 6.37 and Equation 6.38 respectively.

The constants for Equation 6.37 and Equation 6.38 are shown in Equation 6.39 and

Equation 6.40. Note that the constant are not exactly constants but are bounded

from above.

ωCCE[t]− ωCCE[0] = C1 −
∑
i∈I

QCCE
i

(
p2[t]mi[t] +

φKi

mi[t]

)
(6.37)

ωP [t]− ωP [0] = C2 −
∑
i∈I

QCCE
i

(
pmi[t] +

φKi

mi[t]

)
(6.38)

C1 =|T |
(∑

i∈I

(
− p2[t](ri[t]−mi[t]) + φKi(

1

mi[t]
− 1

ri[t]
)
)2
)

(6.39)

−
∑
i∈I

QCCE
i [t]

(
φKi

ri[t]
+ p2[t]mi[t]

)

C2 =|T |
(∑

i∈I

(
− p2[t]ri[t] + pmi[t] + φKi(

1

mi[t]
− 1

ri[t]
)
)2
)

(6.40)

−
∑
i∈I

QP
i [t]

(
φKi

ri[t]
+ pmi[t]

)
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To make the model simple, linear and convex, the terms QCCE
i

1
mi[t]

and QP
i

1
mi[t]

are

not included in Equation 6.37 and Equation 6.38. These terms are bounded as mi[t] ≥

Lnsi [t], thus the term does not go to∞. Also, Ki is bounded as it is the total electricity

requested from a player. Thus, the drift for the player CCE and player participation

is given by Equation 6.41 and Equation 6.42 respectively. The loss of these terms can

also be compensated by selecting the best value of TH and V .

ωCCE[t]− ωCCE[0] = C1 −
∑
i∈I

QCCE
i

(
p2[t]mi[t]

)
(6.41)

ωP [t]− ωP [0] = C2 −
∑
i∈I

QCCE
i

(
pmi[t]

)
(6.42)



VITA



174

VITA

ASHUTOSH NAYAK

N Salisbury Street, West Lafayette, IN, 47906 — 765 409 6516

EDUCATION

PhD, School of Industrial Engineering, Purdue University 2014 - 2018

M.Tech, Industrial Engineering, Indian Institute of Technology, Kharagpur 2013 - 2014

B.Tech, Industrial Engineering, Indian Institute of Technology, Kharagpur 2009 - 2013

WORK EXPERIENCE

Postdoctoral fellow, University of California, Davis Dec 2018 - Aug 2020

Research Assistant, INMaC Aug 2017 - Dec 2018

Intern, General Electric Global Research Center, Niskayuna, NY May 2016 - Aug 2016

Research Assistant, General Electric Apr 2015 - May 2017

Teaching Assistant, Purdue University Aug 2014 - May 2015

RESEARCH INTEREST

Dynamic decision making based on historical aggregation, real time information and forecast

Integrating machine learning with operations research in allied research application

Integrating optimization with reinforcement learning for different application

Understanding customer behavior and designing optimal marketing policies

Optimizing multi-objective manufacturing scheduling problem



175

ASHUTOSH NAYAK

N Salisbury Street, West Lafayette, IN, 47906 — 765 409 6516

JOURNAL PUBLICATIONS

• Using Reinforcement Learning for Dynamic Load Scheduling in Smart Grid (*)

• Nayak, A. and Lee, S. (2018) Optimal Fermenter Scheduling For Electricity Cost Min-

imization At A Chemical Production Facility (Journal of Cleaner Productions)

• Nayak, A. and Lee, S (2017) Storage Sizing and Optimal Load Scheduling for Co-

operative Consumers in µG with Different Load Types, IISE Transactions, 0 (0), 1-

9

• Nayak, A., Fang, K. and Lee, S (2017) An Improved Genetic Algorithm Approach to

Energy-Efficient Flow Shop Scheduling With Job Due Dates, Smart And Sustainable

Manufacturing Systems, 1 (1), 100 120

• Saurabh P, Nayak, A., Kumar A, Cheikhrouhou N. and Tiwari MK (2017) An inte-

grated decision support system for berth and ship unloader allocation in bulk material

handling port, Computers and Industrial Engineering, 106, 369 399

• Nayak, A., Rodrigo R., Lee, S and Nof S.Y. (2016) Resource sharing in cyber-physical

systems: modelling framework and case studies, International Journal of productions

Research, 54 (23), 6969 6983

• Mohapatra, P., Nayak, A., Kumar, S.K. and Tiwari, M.K. (2015) Multi-objective

process planning and scheduling using controlled elitist non-dominated sorting genetic

algorithm, International journal of production research 53 (6), 1712-1735

• Raj, R, Wang, J.W., Nayak, A., Tiwari, M.K., Han, B., Liu, C.L., Zhang, W.J. (2015)

Measuring the resilience of supply chain systems using a survival model, IEEE Systems

Journal 9 (2), 377-381.

• F.T.S. Chan, Nayak, A., Raj, R., Chong A.Y.L. and Tiwari, M.K. (2014) An in-

novative supply chain performance measurement system incorporating research and

development (R&D) and marketing policy, Computers & Industrial Engineering 69,

64-70



176

ASHUTOSH NAYAK

N Salisbury Street, West Lafayette, IN, 47906 — 765 409 6516

CONFERENCE PUBLICATIONS

• Nayak, A., Lee, S. and Sutherland, J.W. (2018) Dynamic scheduling for minimizing

electricity cost and carbon footprint by integrating Lyapunov optimization with future

predictions (Accepted: CIRP, LCE 2019)

• Nayak A., Lee, S. (2018) Using Reinforcement Learning for Dynamic Load Scheduling

in Smart Grid, Institute For Operations Research and Management Science, 2018,

Phoenix, AZ

• Nayak A., Lee, S. (2017) Integrating Monte Carlo Simulation with Lyapunov Opti-

mization for Dynamic Load Scheduling, Institute For Operations Research and Man-

agement Science, 2017, Houston, TX

• Nayak A., Lee, S. (2017) Real-Time Load Scheduling Using Lyapunov Optimization

for Time Shift Able Loads With Time Window Constraints, Industrial and Systems

Engineering Research Conference, Pittsburgh, PA

• Nayak, A., Kim, K. and Lee, S. (2016) Modeling Job Shop Scheduling for Peak Elec-

tricity Load Constraint, Industrial and Systems Engineering Research Conference,

Anaheim, CA

• Pratap, S., Nayak, A., Cheikhrouhou, N., Tiwari, M.K. (2015) Decision support sys-

tem for discrete robust berth allocation, IFAC-PapersOnLine 48 (3), 875-880

*: Under preparation


