
DYNAMIC COORDINATION IN MANUFACTURING AND HEALTHCARE

SYSTEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Zhongjie Ma

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2018

Purdue University

West Lafayette, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Pengyi Shi, Chair

School of Management

Dr. Qi Annabelle Feng

School of Management

Dr. Susan Feng Lu

School of Management

Dr. J.George Shanthikumar

School of Management

Approved by:

Dr. Yanjun Li

Head of the School Graduate Program



iii

Dedicated to my family.



iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisors

Professor Pengyi Shi and Qi (Annabelle) Feng for the continuous support of my Ph.D.

study and related research. I appreciate Professor Shi’s contributions of time, efforts,

and guidance to make my Ph.D. experience productive and stimulating. I am grateful

for Professor Feng’s patience, advice, and immense knowledge. Her guidance helped

me in all the time of the study, research and writing of this dissertation.

I would like to thank Professor George Shanthikumar for teaching me Stochastic

Model and Stochastic Dynamic Programming and his guidance on my research. It

has been my great pleasure working with him. He is one of the most intelligent

researchers I have ever met, and his brilliant ideas in the class or in our research

discussions always enlighten me. His great sense of humor has brought me much joy

in this journey and taught me to stay positive.

I would also like to express my great appreciation to Professor Jonathan Helm

and Sebastian Heese for guiding me in my research, for spending hours discussing

with me, and for raising challenging questions to encourage me to think further.

Their insightful comments and questions have incented me to widen my research

from various perspectives.

I want to thank Professor Susan Lu for serving on my dissertation committee

and providing generous advice in my career choice. I would like to thank my fellow

Ph.D. students and friends in Krannert School of Management for the stimulating

discussions and for all the fun we have had in the last five years.

Finally, I would like to thank my parents for supporting me throughout my Ph.D.

journey. I appreciate the unconditional love and care from them. I would like to

thank in particular my girlfriend, Caiying Zhu, for her support and encouragement.



v

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Inventory Control in Multi-Stage Supply Chain with Supply Uncertainty 1

1.2 Dynamic Supply Chain Coordination with Supply Uncertainty and
Limited Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Case Study: New Diagnostic Test Evaluation . . . . . . . . . . . . . . . 5

1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . 5

2 MULTI-STAGE SUPPLY CHAIN WITH SUPPLY UNCERTAINTY . . . . 7

2.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Preliminaries and Model Transformation . . . . . . . . . . . . . . . . . 13

2.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Problem Transformation and Properties of the Profit Function . 17

2.5 Analysis of the Optimal Policy . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Characterization of the Optimal Policy . . . . . . . . . . . . . . 23

2.5.2 Comparative Statics . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.1 General Production Functions . . . . . . . . . . . . . . . . . . . 36

2.6.2 Multi-Location Serial Systems . . . . . . . . . . . . . . . . . . . 38

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



vi

Page

3 DECENTRALIZED DYNAMIC COORDINATION WITH SUPPLY UN-
CERTAINTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Coordination When the Supply Information is Unknown . . . . . . . . 44

3.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Analysis of the Optimal Transfer Contracts . . . . . . . . . . . 47

3.4 Coordination When No Party has Full Information . . . . . . . . . . . 50

3.4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Analysis of the Optimal Contracts . . . . . . . . . . . . . . . . . 53

3.5 Iterative Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.1 Both Mean and Variance are Known . . . . . . . . . . . . . . . 63

3.6.2 Unknown Variance . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.3 Only the Support of the Demand Distribution is Known . . . . 67

3.6.4 Profit Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 CASE STUDY: NEW DIAGNOSTIC TEST EVALUATION . . . . . . . . . 71

4.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Modeling Framework for Test Routing . . . . . . . . . . . . . . . . . . 74

4.3.1 Queueing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2 MDP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Structural Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.1 Threshold Policy in the Single-class Case . . . . . . . . . . . . . 82

4.4.2 Dominance among Classes in the Multi-class Case . . . . . . . . 90



vii

Page

4.5 Heuristic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.1 Heuristic Description . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.3 Scenarios where Refined Heuristic Policies Show a Large Im-
provement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 CONCLUSION AND DIRECTION FOR FUTURE RESEARCH . . . . . 108

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



viii

LIST OF TABLES

Table Page

2.1 The effect of the production capacity on the average inventories. . . . . . . 30

2.2 The effect of uncertainties on the average inventories. . . . . . . . . . . . . 31

2.3 The effect of the cost parameters on the average inventories. . . . . . . . . 35

4.1 Long-run average daily costs of different policies . . . . . . . . . . . . . . 104

4.2 Impact of routing probability . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Optimality gaps under different parameter settings . . . . . . . . . . . . 105

4.4 Benefit gained by the refined heuristic policy . . . . . . . . . . . . . . . . 107



ix

LIST OF FIGURES

Figure Page

2.1 The sequence of events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The optimal policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Sequence of events when supply information is unknown. . . . . . . . . . . 47

3.2 Sequence of events when both distributions are unknown. . . . . . . . . . . 53

3.3 Illustration of iterative algorithm. . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Impact of the true demand distribution . . . . . . . . . . . . . . . . . . . . 64

3.5 Impact of the fixed mean and variance . . . . . . . . . . . . . . . . . . . . 65

3.6 Impact of the erroneous demand distribution . . . . . . . . . . . . . . . . . 66

3.7 Impact of the erroneous demand distribution . . . . . . . . . . . . . . . . . 66

3.8 Impact of the range of the erroneous demand distribution . . . . . . . . . . 67

3.9 Impact of the erroneous demand distributions . . . . . . . . . . . . . . . . 68

3.10 Impact of the erroneous demand distributions . . . . . . . . . . . . . . . . 69

3.11 Profit share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Basic patient flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



x

ABSTRACT

Ma, Zhongjie Ph.D., Purdue University, December 2018. Dynamic Coordination in
Manufacturing and Healthcare Systems. Major Professor: Pengyi Shi.

As the manufacturing and healthcare systems becomes more complex, efficiently

managing these systems requires cooperation and coordination between different par-

ties. This dissertation examines the coordination issues in a supply chain problem

and diagnostic decision making in the healthcare system. Below, we provide a brief

description of the problem and results achieved.

With supply chain becoming increasingly extended, the uncertainty in the up-

stream production process can greatly affect the material flow that aims toward meet-

ing the uncertain demand at the downstream. In Chapter 2, we analyze a two-location

system in which the upstream production facility experiences random capacities and

the downstream store faces random demands. Instead of decomposing the profit func-

tion widely used to treat multi-echelon systems, our approach builds on the notions

of stochastic functions, in particular, the stochastic linearity in midpoint and the di-

rectional concavity in midpoint, which establishes the concavity and submodularity

of the profit functions. In general, it is optimal to follow a two-level state-dependent

threshold policy such that an order is issued at a location if and only if the inventory

position of that location is below the corresponding threshold. When the salvage val-

ues of the ending inventories are linear, the profit function becomes decomposable in

the inventory positions at different locations and the optimal threshold policy reduces

to the echelon base-stock policy. The effect of production and demand uncertainty

on inventory levels depends critically on whether the production capacity is limited

or ample in relation to the demand. Only when the capacity is about the demand,

the upstream facility holds positive inventory; otherwise, all units produced are im-
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mediately shipped to the downstream. We further extend our analysis to situations

with general stochastic production functions and with multiple locations.

In Chapter 3, we examine the two-stage supply chain problem (described in Chap-

ter 2) under the decentralized control. We consider two scenarios. In the first scenario,

the retail store does not have any supply information including the inventory level

at the manufacturing facility. We show that the upstream and downstream can be

dynamically coordinated with proper transfer payment defined on local inventories

and their own value function in the dynamic recursion. In the second scenario, the

demand distribution is unknown to the manufacturing facility as well as the retail

store does not know the supply information. We characterize the optimal transfer

contracts under which coordination can be achieved, and propose an iterative al-

gorithm to compute the optimal transfer contracts in the decentralized setting. The

total profit of the decentralized system under our algorithm is guaranteed to converge

to the centralized optimal channel profit for any demand and capacity distribution

functions.

In Chapter 4, we provide a case study for the framework developed in [1]. The

authors study the evaluation and integration of new medical research considering

the operational impacts. As a case study, we first describe their two-station queueing

control model using the MDP framework. We then present the structural properties of

the MDP model. Since multiple classes of patients are considered in the MDP model,

it becomes challenging to solve when the the number of patient classes increases. We

describe an efficient heuristic algorithm developed by [1] to overcome the curse of

dimensionality. We also test the numerical performance of their heuristic algorithm,

and find that the largest optimality gap is less than 1.50% among all the experiments.
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1. INTRODUCTION

In the first part of this study, we address the issue of dynamic coordination in supply

chain with limited information visibility. Specifically, we consider a downstream retail

store and an upstream manufacturing facility, and the upstream faces a random supply

as well as the downstream demand is random. In the second part, we provide a case

study for the framework developed in [1]. The authors address the issue of evaluating

the operational impacts of new diagnostic tests. We briefly introduce this dissertation

in the below sections.

1.1 Inventory Control in Multi-Stage Supply Chain with Supply Uncer-

tainty

With the supply chain becoming increasingly global and extended, there have

been considerable attentions in practice and research paid to managing risks deep in

the production processes. The failure of machines and equipment deployed for pro-

duction, the variation of worker skill and operating conditions, the fluctuation of raw

material flows, and the lack of visibility of management process at the manufacturing

facilities can all result in uncertainties in the supply process at the far upstream of

the supply chain. Though there is a vast literature on multi-stage systems, little is

done to understand the impact of upstream supply uncertainty on the dynamics of

the material flows in meeting the uncertain demands at the downstream. This is the

objective of our study.

In particular, we consider a two-location system with an upstream manufacturing

facility producing the product and a downstream store selling the product. The

production capacity at the upstream and the customer demand at the downstream are

both random. At the beginning of each period, the on-hand inventory levels at both
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locations are reviewed, and a production order at the upstream and a replenishment

order at the downstream are initiated. The production output, which is the minimum

of production order and the random production capacity, is generated at the end of

the period. Upon completion of the production, a shipment is dispatched from the

upstream to reach the downstream in the next period. The realized demand at the

downstream is fulfilled using the available inventory and the unmet demand is fully

backordered.

The consideration of random production capacity makes the problem challenging

even in the single-location setting (see, e.g., [2, 3]). For our problem involving serial

system, we deployed the notion of stochastic functions, in particular, the stochastic

linearity in midpoint and the directionally concave order, to transform the objective

into a joint concave function provided that the terminal value obtained at the end of

the planning horizon is concave and submodular in the ending inventory positions.

This approach is an alternative to the conventional decomposition approach developed

by [4] that has been widely adopted to derive structural properties of multi-echelon

systems. To apply the latter approach, one needs to establish the separability of the

profit function in the inventory positions for all locations, whereas our approach does

not require such a separability.

With the joint concavity established, the optimal management policy can be char-

acterized by two state-dependent thresholds, one for each location. A positive order

is initiated at a location if and only if the inventory position at that location is be-

low its threshold. We also show that the threshold at one location is decreasing in

the prior order inventory position at the other location. This monotone property

suggests an substitutable relationship between the inventory positions, as both in-

ventory positions are targeted toward meeting the eventual customer demand at the

downstream.

When the terminal value is separable in the inventory positions, the threshold

policy reduces to the echelon base-stock policy. The base-stock level for the upstream

inventory position represents the target level of the total inventory, which is inde-
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pendent of prior-ordering inventory levels. The base-stock level for the downstream

inventory position is a function cannot exceed the post-order inventory position of

the entire system and is thus dependent on the prior-order inventory position at the

upstream.

Under the optimal policy, the target inventory positions increase when either the

production capacity or the customer demand increases stochastically. The distri-

bution of the inventory in the system, however, changes disproportionately with the

capacity and the demand. In particular, we demonstrate that as the capacity becomes

ample relative to the demand, the average on-hand inventory at the downstream and

the average in-transit order to the downstream are both increasing. However, the up-

stream facility only hold inventory when the average production capacity is around

the average consumer demand. Otherwise, production output is always immediately

shipped to the downstream. When the production capacity is limited [ample] relative

to the consumer demand, an increase in either capacity or demand uncertainty leads

to an decreased [increased] average system inventory. We also observe that, while

an increase in the holding costs or a decrease in the backorder cost induces reduced

target inventory positions, the local inventory levels may respond oppositely. Specif-

ically, the upstream may retain a larger amount of inventory for a lower backorder

cost when production capacity is limited. An increased amount of inventory is held

at the upstream [downstream] when the holding cost increases at the downstream

[upstream].

We further show that our analysis can be extended when the upstream production

follow a general stochastic function, which satisfies the single-crossing property for

stochastic linearity in midpoint. Moreover, we show that our analysis can be carried

out for serial systems with multiple locations.
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1.2 Dynamic Supply Chain Coordination with Supply Uncertainty and

Limited Information

When the upstream and downstream make the ordering decisions based on self

interests, the natural question is: Whether the supply chain can achieve coordination

in such a dynamic environment. To answer this question, we consider two scenarios.

In the first scenario, the downstream does not know the distribution of the upstream

random supply and the upstream’s inventory level; in the second, the upstream does

not know the demand distribution while the downstream does not have the supply

information.

By recognizing some separability property of the optimal value function in the

centralized problem, we show that the upstream and downstream can be dynamically

coordinated with proper transfer payment defined on local inventories and their own

value function in the dynamic recursion in the first scenario.

In the second scenario, when no party has full information, the coordination be-

comes much more challenging. The traditional principal-agent framework, though

has been applied to dynamic contracting [5], it mostly works when one party knows

the exact value of a specific parameter and the other does not. In our model, in an

essential contrast, private knowledge is a function (i.e., the distribution). Applying

the principal-agent approach would require the downstream to specify the set of pos-

sible distributions and a distribution over this set. Such a knowledge structure is very

complex and difficult to specify in practice. Instead, we take a different angle. Using

an iterative process that one party provides a transfer payment and then the other

makes its ordering decision, we show that coordination can be eventually achieved de-

spite the fact that the downstream has no knowledge of the supply distribution while

the upstream has no knowledge of the demand distribution. This iterative process

mimics a negotiation process, which can be implemented easily.
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1.3 Case Study: New Diagnostic Test Evaluation

In medical research, new diagnostic tests are developed and evaluated solely on

their efficacy in detecting an illness [6], [7], [8]. In the working paper [1], which

motivates Chapter 4, the authors show that both the ED and patients could be

worse off after introducing the new diagnostic test without considering the operational

impacts. They further propose a framework for evaluating the operational impact

of the new diagnostic tests and integrating the new tests into the existing clinical

workflow.

Chapter 4 serves as a case study for the framework developed in [1]. Specifically, we

first describe the two-station queueing network model developed by [1]. The authors

propose an infinite-horizon MDP framework to model the test routing problem. We

then present useful structural properties about the dominance among different classes:

if a negative test result is more accurate, it is preferable to use the test on low-risk

patients to rule out the disease; on the other hand, it is preferred to using the test

on high-risk patients to confirm the disease if a positive test result is more accurate.

Since the number of each class patients needs to be kept track of in the MDP model,

the size of the state space becomes large as the number of patient classes increases.

To overcome this curse of dimensionality, an efficient heuristic algorithm is developed

by [1] based on the decomposition idea. We conduct numerical experiments to validate

the performance of their heuristic algorithm, and find that the largest optimality gap

is less than 1.50% among all the experiments.

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we

formulate a two-stage periodic-review inventory model. Using the notion of directional

concave order, we analyze the structural properties of the optimal value function and

characterize the optimal policy. We further analyze the responses of the optimal
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decisions to the changes of cost structure, production capacity, demand and planning

horizon. This chapter is based on [9].

In Chapter 3, we study the two-stage supply chain problem under decentralized

control. We consider two scenarios of information visibility. In the first scenario, the

downstream does not have any supply information including the upstream’s inven-

tory level; in the second, the upstream does not know demand information while the

downstream does not have supply information. In the first scenario, we show that

the upstream and downstream can be dynamically coordinated with a proper transfer

payment defined on local inventories and their own value function in the dynamic re-

cursion. In the second scenario, we first characterize the form of the transfer contracts

to achieve coordination. We further propose an iterative algorithm to compute the

transfer contracts in the decentralized setting, and we prove the decentralized total

profit from our algorithm converges to the centralized optimal channel profit.

In Chapter 4, we provide a case study for the developed framework in [1]. As

a case study, we first describe the queueing control model in [1]. We present the

structural properties of the optimal routing policies. We describe an efficient heuristic

algorithm developed in [1] to overcome the curse of dimensionality in the MDP model.

We validate the heuristic performance through extensive numerical experiments.

In Chapter 5, we conclude the dissertation and provide suggestions for future

research.
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2. MULTI-STAGE SUPPLY CHAIN WITH SUPPLY

UNCERTAINTY

2.1 Synopsis

With the supply chain becoming increasingly global and extended, there have been

considerable attentions in practice and research paid to managing risks deep in the

production processes. Though there is a vast literature on multi-stage systems, little

is done to understand the impact of upstream supply uncertainty on the dynamics of

the material flows in meeting the uncertain demands at the downstream. This is the

objective of our study.

In particular, we consider a two-location system with an upstream manufacturing

facility producing the product and a downstream store selling the product. The

production capacity at the upstream and the customer demand at the downstream are

both random. The consideration of random production capacity makes the problem

challenging even in the single-location setting (see, e.g., [2, 3]). For our problem

involving serial system, we deployed the notion of stochastic functions, in particular,

the stochastic linearity in midpoint and the directionally concave order, to transform

the objective into a joint concave function provided that the terminal value obtained

at the end of the planning horizon is concave and submodular in the ending inventory

positions.

With the joint concavity established, the optimal management policy can be char-

acterized by two state-dependent thresholds, one for each location. A positive order

is initiated at a location if and only if the inventory position at that location is below

its threshold. When the terminal value is separable in the inventory positions, the

threshold policy reduces to the echelon base-stock policy.
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We further show that our analysis can be extended when the upstream production

follow a general stochastic function, which satisfies the single-crossing property for

stochastic linearity in midpoint. Moreover, we show that our analysis can be carried

out for serial systems with multiple locations.

The remainder of this chapter is organized as follows. In the next section, we

discuss the related literature and our contribution. We lay out the model in Section 2.3

and develop a transformation applying the notations of the stochastic functions in

Section 2.4. The characterization of the optimal policy is presented in Section 2.5.

We present two extensions of our model in Section 2.6 and conclude our study in

Section 2.7.

2.2 Literature Review

Our work lies at the intersection of studies concerning procurement management

with uncertain supply and multi-echelon inventory management.

Most of the studies on managing uncertain supplies focus on single-location inven-

tory systems. There is significant amount of work in this area focuses on single-period

models with random demands (e.g., [10–14]) and long-term planning with constant

demand rate (see the review by [15]). For dynamic problems involving demand un-

certainty, the proportional random yield model is mostly studied. Under this supply

function, the optimality of a threshold ordering policy or a reorder-point policy is

established in various contexts (see, e.g., [16–18]. Several authors explored the model

of random supply capacity and find that it is optimal to follow a base-stock policy

when the demand is not price sensitive [2] or the capacity is observed before or-

dering [19]. When the demand is price dependent, however, the optimal policy is

(almost) a threshold policy [3,20]. Different from this line of work, we consider a se-

rial system in which inventory can be held at different locations, as well as in transit.

As a result, the state in our model is multi-dimensional and the interaction among

the state variables plays a crucial role in determining an efficient management policy.
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While our main model focuses on the case of random supply capacity, we show that

our analysis can be generalized to a large class of supply functions by extending the

recent development by [21].

There is a rich literature on multi-echelon inventory management. [4] introduce

the notion of echelon inventories and prove that the optimal value function can be de-

composed into separable functions of individual echelon inventories when the holding

costs and the salvage values are linear. With this decomposition, an echelon base-

stock policy is optimal. [22] and [23] extend this analysis for problems with infinite

planning horizons. [24] derive upper and lower bounds for the echelon base-stock lev-

els, and demonstrate that the simple-to-compute heuristic performs close to optimal

policy. There are many extensions of multi-echelon inventory models by introducing

two delivery modes [25], random yields [15, 26], and cash retention decisions [27].

There are only limited work that incorporates supply capacity. [28] are the first to

consider a two-stage inventory system with deterministic capacities. They prove the

optimality of a modified echelon base-stock policy provided that the downstream has

a smaller capacity than the upstream does. Their assumptions of a two-stage system

and zero lead time for upstream production are essential for their results to hold. [29]

extends the analysis for multi-location systems and one-period production lead times.

In general, the structure of the optimal decision for capacitated multi-echelon sys-

tems is known to be difficult to derive. Therefore, many studies restrict the analysis

within the class of base-stock policies (e.g., [30–32]). The recent work by [33] and [34]

make the same assumption of operating under base-stock policy and propose algo-

rithms to find echelon base-stock levels by mapping the multi-stage serial system to

a single-stage system. [35] propose a variation of the echelon base-stock policy and

derive explicit forms for the base-stock levels. [36] consider a system with uncertain

capacity, while allowing only a one-time production and immediate salvaging of any

leftover inventory.

Our contribution to this literature is twofold. First, we model general stochastic

supply functions at the upstream. This consideration destroys the concavity of the
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profit function. We develop a transformation by appropriately exploring the stochas-

tic properties of the future inventory positions. Second, our approach is very different

from the conventional decomposition discovered by [4]. With this approach, one does

not require the terminal value function to be separable in the ending inventory posi-

tions.

2.3 Problem Description

We consider a two-stage supply chain planning problem over T -period as depicted

in Figure 2.1. The upstream division is a manufacturing facility and the downstream

division is a retail store. At the beginning of period t, the upstream facility reviews

its current inventory level xM,t, receives an order qR,t from the downstream and is-

sues a production order of qM,t. The production takes one period and the output is

constrained by a random capacity Kt. At the end of the production, a shipment up

to the downstream order qR,t, i.e.,

Wt = qR,t ∧ (xM,t + qM,t ∧Kt) (2.1)

is issued. Thus, the inventory dynamics at the upstream facility is

XM,t+1 = (xM,t + qM,t ∧Kt − qR,t)+,

where a+ = max{a, 0}. A shipment from the facility to the store takes one period.

Upon receiving wt−1, the downstream fulfills the random demand Dt occurred in

period t. Any leftover inventory is carried over to the next period and any unmet

demand is backordered. Thus, the inventory dynamics at the downstream store is

XR,t+1 = xR,t + wt−1 −Dt

We assume that {Kt}Tt=1 and {Dt}Tt=1 are independent and identically distributed

stochastic processes, though our analysis can be easily extended to non-stationary,

Markov modulated processes.
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Time

Review 
𝑥𝑅,𝑡 , 𝑤𝑡−1 and 𝑥𝑀,𝑡

Retail order 𝑞𝑅,𝑡 Retail receive 𝑞𝑅,𝑡 ∧ (𝑥𝑀,𝑡 + 𝑞𝑀,𝑡 ∧ 𝐾𝑡)

Review
𝑥𝑅,𝑡+1 = 𝑥𝑅,𝑡 +𝑤𝑡−1 - 𝐷𝑡
𝑊𝑡 = 𝑞𝑅,𝑡 ∧ (𝑥𝑀,𝑡 + 𝑞𝑀,𝑡 ∧ 𝐾𝑡)
𝑋𝑀,𝑡+1 = (𝑥𝑀,𝑡 + 𝑞𝑀,𝑡 ∧ 𝐾𝑡−𝑞𝑅,𝑡)

+

𝐷𝑡 materializes 𝐷𝑡+1 materializes

Manufacturing
order 𝑞𝑀,𝑡

Production quantity 𝑞𝑀,𝑡 ∧ 𝐾𝑡

𝐾𝑡 materializes 𝐾𝑡+1 materializes

Manufacturing deliver
𝑞𝑅,𝑡 ∧ (𝑥𝑀,𝑡 + 𝑞𝑀,𝑡 ∧ 𝐾𝑡)

Retail receive 𝑤𝑡−1

Fig. 2.1.: The sequence of events

As is in the case of classical multi-echelon systems, it is convenient to work the

inventory positions (i.e., the amount of total stock from the current location to the

downstream store). Let YS and YR denote the inventory position for the upstream

and the downstream, respectively. Then,

YS,t+1 = (yS,t + qM,t) ∧ (yS,t +Kt)−Dt, (2.2)

YR,t+1 = yR,t +Wt −Dt. (2.3)

Note that yS,t = xM,t +wt−1 +xR,t is the total amount of inventory in the system and

yR,t = xR,t + wt−1 is the total of on-hand and in-transit stocks for the downstream.

It is easy to see that if qM,t < qR,t − xM,t, then for any given (qM,t, qR,t) one can

construct another pair of order quantities with q′M,t = qM,t and q′R,t = qM,t + xM,t,

and the resulting expected profit does not change. Therefore, it is without loss of

generality to assume qM,t ≥ (qR,t − xM,t)
+. This implies that the firm should not

intentionally under produce for the downstream order. With this observation and

(2.2), we can rewrite (2.1) and (2.3), respectively, as

Wt = (yR,t + qR,t) ∧ (yS,t +Kt)− yR,t, (2.4)

YR,t+1 = (yR,t + qR,t) ∧ (yS,t +Kt)−Dt. (2.5)
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The retail price for the product is p dollars per unit and the manufacturing cost is

c dollars per unit. The per unit inventory holding cost at the upstream is hM and that

in transit is hW . The holding/backlogging cost at the downstream is HR(·) : R→ R+.

We assume that HR(·) is convex and limx→±∞HR(x) =∞.

Let Ĵt(yR,t, yS,t, qR,t, qM,t) denote the expected profit in period t when the current

inventory positions are (yR,t, yS,t), and a production order of qM,t and a store order of

qR,t are issued. Then,

Ĵt(yR,t, yS,t, qR,t, qM,t) (2.6)

= pE[Dt]− cE[qM,t ∧Kt]− E[HR(yR,t −Dt −Dt+1)]

−E[hW ((yR,t + qR,t) ∧ (yS,t +Kt)− yR,t)]

−E[hM((yS,t + qM,t) ∧ (yS,t +Kt)− (yR,t + qR,t) ∧ (yS,t +Kt))]

+E[Vt+1((yR,t + qR,t) ∧ (yS,t +Kt)−Dt, (yS,t + qM,t) ∧ (yS,t +Kt)−Dt)],

where

Vt(yR,t, yS,t) = max
qR,t≥0,

qM,t≥(yR,t+qR,t−yS,t)
+

{
Ĵt(yR,t, yS,t, qR,t, qM,t)

}
(2.7)

is the optimal profit function in period t when the inventory positions are (yR,t, yS,t).

At the end of the planning horizon T , the firm collects a terminal value VT+1(yR,T+1, yS,T+1).

The existing studies often use a piecewise linear and separable form for the terminal

value function (i.e., VT+1(yR,T+1, yS,T+1) = sM(yS,T+1− yR,T+1) + sRy
+
R,T+1− by

−
R,T+1),

where sM is the salvage value at the upstream, sR is the salvage value at the down-

stream, and b is the penalty of unmet demand). We assume a general concave and

submodular VT+1(·, ·). When yR,T+1 > 0, VT+1(yR,T+1, yS,T+1) represents the salvage

value of the final stocks. When yR,T+1 < 0, VT+1(yR,T+1, yS,T+1) may account the

penalty for eventually unmet demands.

We shall note that we have assumed stationary system parameters for ease of

exposition, though all formal results derived below except Proposition 3 extends easily

to nonstationary systems. In our analysis below, we use a superscript ∗ to denote the
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quantities under an optimal solution. For ease of exposition, we may drop the time

index from the subscript when it does not cause confusions.

2.4 Preliminaries and Model Transformation

In this section, we introduce some properties of stochastic functions that are useful

for our analysis. These properties allow us to transform the problem in to a concave

optimization problem and facilitate the analysis of the optimal policy in the next

section.

2.4.1 Preliminaries

It is well known that the inventory control problem under random supply capacity

is nonconcave even for single-location settings (see, e.g., [2,3]). Thus, the multidimen-

sional problem defined in (2.6)-(2.7) is nonconcave in general. Before we can analyze

the optimal policy, we must make appropriate transformations of the problem and

establish structural properties of the profit function. In this subsection, we provide

the needed background knowledge for our analysis.

[21] develop the notion of stochastic linearity in midpoint to describe general

material flows in inventory systems, which also applies to our model with random

production capacities. The notion of stochastic linearity is defined using the concave

ordering [37]. Specifically, a random variable X1 is said to be smaller than a random

variable X2 in the concave order, written as X1 ≤cv X2, if E[φ(X1)] ≤ E[φ(X2)] for

any concave function φ.

Definition 1 [21] A function {A(u) : Rn → R} is stochastically linear in mid-

point, written {A(u),u ∈ Rn} ∈ SL(mp), if for any ua,ub ∈ Rn, there exist Â(ua)

and Â(ub) defined on a common probability space such that

(i) Â(ui) =d A(ui), i = a, b (where =d stands for being equal in distribution), and

(ii) Â(ua)+Â(ub)
2

≤cv A(ua+ub

2
).
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It is easy to check that any almost surely linear function (i.e., of the form A(u) =∑
j αjuj for real numbers αj) satisfies Definition 1, and therefore stochastic linearity

generalizes deterministic linearity. A sufficient condition for a function to be stochas-

tically linear in midpoint is the following single-crossing property [21].

Definition 2 Suppose A(u) = φ(u, Z),u ∈ U ⊂ Rn, where Z is a random variable

and φ(u, z) is an increasing function in z, and E[A((ua + ub)/2)] = E[(A(ua) +

A(ub))/2], ua,ub ∈ U . Then φ(u, z) satisfies the single-crossing property if for

any ua,ub ∈ U , as z increases, the sign of

φ
(ua + ub

2
, z
)
− φ(ua, z) + φ(ub, z)

2

can change at most once and the change is from positive to negative.

The next lemma states that stochastic linearity in midpoint is preserved under

monotone transformation, a useful property for analyzing our model.

Lemma 1 Suppose that {A(u) : u ∈ U ⊂ R} has a transformation that is stochasti-

cally linear in midpoint and g(·) : Rn+1 → R is monotone in the first argument. Let

v0(µ,v) = inf{w : E[A(g(w,v))] ≥ µ},v ∈ V ⊂ Rn. Then {A(g(v0(µ,v),v)) :

g(v0(µ,v),v) ∈ U} ∈ SL(mp). Moreover, if A(u) = φ(u, z) satisfies the single-

crossing property, so does A(g(v0(µ,v),v)).

Proof of Lemma 1. Take µ1, µ2, v1 and v2. Define u1 = g(v0(µ1,v1),v1), u2 =

g(v0(µ2,v2),v2), µ̄ = (µ1 + µ2)/2, and v̄ = (v1 + v2)/2. By definition, we must

have E[A(u1)] = µ1, E[A(u2)] = µ2 and E[A(g(v0(µ̄, v̄), v̄))] = µ̄. Because A(u) has

a transformation that is stochastically linear in midpoint, there exist A1 =d A(u1),

A2 =d A(u2) such that

A1 + A2

2
≤cv A(g(v0(µ̄, v̄), v̄)).

Hence, {A(g(v0(µ,v),v)) : g(v0(µ,v),v) ∈ U} ∈ SL(mp).
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If the transformation of A(u) = φ(u, z) satisfies the single-crossing property, using

same argument that E[A(u1)] = µ1, E[A(u2)] = µ2 and E[A(g(v0(µ̄, v̄), v̄))] = µ̄, thus

φ(g(v0(µ̄, v̄), v̄), z)− φ(u1, z) + φ(u2, z)

2

can change at most once and the change is from positive to negative.

Hence, A(g(v0(µ,v),v)) also satisfies the single-crossing property. �

As our analysis unfolds, it will become clear that the property of stochastic linear-

ity in midpoint allows us to establish concavity of the profit function in the realized

inventory levels provided that the future value function is concave. Given that our

problem involves two locations, we also need additional properties describing the

relationship between the inventory levels at the two locations. This requires the no-

tions of directional concavity and directional concave order introduced by [37] for

multidimesional stochastic functions.

Definition 3 [37] Let ≤ denote the coordinatewise ordering in Rn. For u, v, w ∈

Rn, use the notation [u,v] ≤ (≥)w as a shorthand for u ≤ (≥)w and v ≤ w. A

function ψ : Rn → R is said to be directionally concave if for any ui ∈ Rn, i =

a, b, c, d, such that ua ≤ [ub,uc] ≤ ud and ua+ud = ub+uc, one has ψ(ub) +ψ(uc) ≥

ψ(ua) + ψ(ud)

Definition 4 [37] Let A = (A1, A2, ..., An) and B = (B1, B2, ..., Bn) be two ran-

dom vectors with E[ψ(A)] ≤ E[ψ(B)], for all (increasing) functions ψ : Rn → R

that are directionally concave, provided that the expectations exist. Then A is said

to be smaller than B in the (increasing) directionally concave order, written

A(≤idir−cv) ≤dir−cv B.

[37] show that a function φ(·) is directionally concave if and only if φ(·) is sub-

modular and coordinatewise concave. The next lemma establishes the connection

between the single-crossing property and the directionally concave order. This result

is crucial for the analysis of our model.
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Lemma 2 Suppose ψi(u, z),u ∈ U ⊂ Rn, i ∈ {1, 2, . . . , k}, are increasing in z ∈ Z ⊂

R and satisfy the single-crossing property. For any ua,ub ∈ U and ū = (ua + ub)/2,

E[(ψi(ua, Z) + ψi(ub, Z))/2] and E[ψi(ū, Z)] are finite for some random variable Z

with support Z. Then{
ψi(ua, Z) + ψi(ub, Z)

2
+ C

}
i∈{1,2,...,k}

≤dir−cv
{
ψi(ū, Z) + C

}
i∈{1,2,...,k}

, (2.8)

where C is any random variable independent of Z with a finite mean.

Proof of Lemma 2. Take a function f : Rk → R that is increasing directional con-

cave. By [37], f is also componentwise concave and submodular. We only consider

the case where f is differentiable. Note that because f is componentwise concave, it

can have at most a countable number of nondifferentiable points. At the nondifferen-

tiable points, we can replace the first-order derivative by the left or right derivative

and the following argument continue to hold. Let ϕ̄i(z) = (ψi(ua, z) + ψi(ub, z))/2

and ϕi(z) = ψi((ua + ub)/2, z). Clearly ϕ̄i and ϕi are increasing functions. We have,

by componentwise concavity of f ,

f(ϕ1(z), . . . , ϕk(z))− f(ϕ̄1(z), ϕ2(z), . . . , ϕk(z))

≥ f1(ϕ1(z), . . . , ϕk(z)) · (ϕ1(z)− ϕ̄1(z)),

f(ϕ̄1(z), . . . , ϕ̄j−1(z), ϕj(z), . . . , ϕk(z))− f(ϕ̄1(z), . . . , ϕ̄j(z), ϕj+1(z), . . . , ϕk(z))

≥ fj(ϕ̄1(z), . . . , ϕ̄j−1(z), ϕj(z), . . . , ϕk(z)) · (ϕj(z)− ϕ̄j(z)), j = 2, . . . , k − 1,

f(ϕ̄1(z), . . . , ϕ̄k−1(z), ϕk(z))− f(ϕ̄1(z), . . . , ϕ̄k(z))

≥ fk(ϕ̄1(z), . . . , ϕ̄k−1(z), ϕk(z)) · (ϕk(z)− ϕ̄k(z)),

where fj is the partial derivative of the jth argument. Adding all of the above

together, we obtain

f(ϕ(z))− f(ϕ̄(z)) ≥
k∑
j=1

fj(ϕ̄1(z), . . . , ϕ̄j−1(z), ϕj(z), . . . , ϕk(z)) · (ϕj(z)− ϕ̄j(z)),

≥
k∑
j=1

fj(ϕ̄1(zj), . . . , ϕ̄j−1(zj), ϕj(zj), . . . , ϕk(zj)) · (ϕj(z)− ϕ̄j(z)).
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where zj is the unique crossing point of ϕj and ϕ̄j, i.e., ϕj(z) − ϕ̄j(z) ≥ (<)0 for

z ≤ (>)zj. The last inequality follows from two observations. First, because f is

increasing directional concave, fj is nonnegative and decreasing in each argument

and thus fj is decreasing in z. Second, for any decreasing function φ1 and a φ2 with

φ2(z) ≥ (<)0 for z ≤ (>)z0, φ1(z)φ2(z) ≥ φ1(z0)φ2(z).

Taking the expectation on both sides in the above inequality and applying the

reltaiton E[ϕj(Z)] = E[ϕ̄j(Z)], we obtain

E[f(ϕ̄(Z))− f(ϕ(Z))] ≤ 0.

Now take a function g : Rk → R that is directionally concave. Then there exists

an increasing directionally concave function f such that g(x) = f(x) +
∑k

j=1 cjxj for

some constants c1, c2, . . . , ck. Then, for any constant c,

E[g(ϕ̄(Z) + c)] = E[f(ϕ̄(Z) + c)] +
k∑
j=1

cjE[ϕ̄j(Z) + c]

≤ E[f(ϕ(Z) + c)] +
k∑
j=1

cjE[ϕj(Z) + c]

= E[g(ϕ(Z) + c)].

It is clear that the above inequality continue to hold when we replace c by a random

variable C and take expectation over C. Hence, we conclude the proof. �

Lemma 2 states that if multiple stochastic functions depend on the same random

variable and all satisfy the single-crossing property, they are increasing directionally

concave ordered in midpoint. Lemma 2 provides a way to tackle our multi-dimensional

problem involving stochastically linear functions.

2.4.2 Problem Transformation and Properties of the Profit Function

To apply the notion of stochastic linearity in midpoint, we note that two random

variables are concavely ordered only when they have the same mean. It is therefore

natural to transform the stochastic material flows into their respective means. Define

µM(qM,t) = E[qM,t ∧Kt] and µR(yR,t, yS,t, qR,t) = E[(yR,t − yS,t + qR,t) ∧Kt].



18

It is easy to see that µM(·) and µR(yR,t, yS,t, ·) are increasing. We can derive the

inverse of these two functions, with a slight abuse of notation, as

qM,t(µ) = inf{q : µM(q) ≥ µ} and qR,t(yR,t, yS,t, µ) = inf{q : µR(yR,t, yS,t, q) ≥ µ}.(2.9)

To understand the above transformation, we note that production are initiated be-

cause of the need to increase the inventory at the upstream facility, at the downstream

store or both. The upstream-triggered production output is

Pt(µM) = qM,t(µM) ∧Kt. (2.10)

This output, however, may or may not be fully transferred to the retailer. The

downstream-triggered production output, i.e., the difference between the downstream

order and the upstream inventory, is

St(yR,t, yS,t, µR) = (yR,t − yS,t + qR,t(yR,t, yS,t, µR)) ∧Kt. (2.11)

[21] have shown that functions with the form of Pt(µ) are stochastically linear in

midpoint and satisfy the single-crossing property. With Lemma 1, it is immediate

that the function St(yR,t, yS,t, µR) is also stochastically linear in midpoint and satisfies

the single-crossing property. With (2.10) and (2.11), we can rewrite (2.5) and (2.2),

respectively as,

YR,t+1 = (yR,t + qR,t(yR,t, yS,t, µR)) ∧ (yS,t +Kt)−Dt

= yS,t + St(yR,t, yS,t, µR)−Dt, (2.12)

YS,t+1 = (yS,t + qM,t(µM)) ∧ (yS,t +Kt)−Dt = yS,t + Pt(µM)−Dt. (2.13)

With these transformations, we can rewrite the dynamic programming equation as

Vt(yR,t, yS,t) = max{Jt(yR,t, yS,t, µR, µM) : µR ≥ (yR,t − yS,t), µM ≥ µ+
R}, (2.14)

where

Jt(yR,t, yS,t, µR, µM) = Ĵt(yR,t, yS,t, qR,t(yR,t, yS,t, µR), qM,t(µM)). (2.15)



19

In the above formulation, we have replaced the condition qR,t ≥ 0 by µR ≥ (yR,t−yS,t)

and qM,t ≥ (qR,t − yS,t + yR,t)
+ by µM ≥ µ+

R.

With the development in Lemma 2, we can establish the properties of the profit

function for our problem as described in the next lemma.

Lemma 3 The function ϕ(yR, yS) = max{E[ψ(vR ∧ (yS +K), vS ∧ (yS +K))] : yR ≤

vR ≤ vS, vS ≥ yS}, where K is a nonnegative random variable, is submodular in

(yR, yS) if ψ is concave and submodular.

Proof of Lemma 3. Let φ(yS, vR, vS) = ψ(vR ∧ (yR + K), vS ∧ (yS + K))]. Take

yaR < ybR and yaS < ybS. Let (vijR , v
ij
S ) be the maximizer of {E[ψ(vR ∧ (yjS + K), vS ∧

(yjS +K))] : yiR ≤ vR ≤ vS, vS ≥ yjS}. We first observe that if vijR > yiR for i = a, b and

j = a, b, we have

ϕ(ybR, y
b
S)− ϕ(yaR, y

a
S) = φ(ybS, v

bb
R , v

bb
S )− φ(ybS, v

ab
R , v

ab
S )

= 0

= φ(ybS, v
ba
R , v

ba
S )− φ(yaS, v

aa
R , v

aa
S )

= ϕ(ybR, y
a
S)− ϕ(yaR, y

b
S) (2.16)

because yiR does not affect the optimal solutions. This observation together with

Lemma 4 suggest the following three cases.

Case 1: vijR = yiR for i = a, b and j = a, b. Because yiR ≤ yiS, we have

φ(yiS, v
ij
R , v

ij
S ) = E[ψ(yiR, v

ij
S ∧ (yiS +Kt))].
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Note that vijS = v̄S(yiR) ∨ yiS, where v̄S(·) maximizes ψ(yiR, vS,t) and is a decreasing

function independent of yiS. If v̄S(yaR) ≤ yaS or v̄S(ybR) ≥ ybS, we can verify that

v̄S(ybR) ∨ ybS ∧ (ybS +Kt) ≥ v̄S(yaR) ∨ yaS ∧ (yaS +Kt) for each realization of Kt. Then,

φ(ybS, v
bb
R , v

bb
S )− φ(yaS, v

ba
R , v

ba
S )

= E[ψ(ybR, v̄S(ybR) ∨ ybS ∧ (ybS +Kt))]− E[ψ(ybR, v̄S(ybR) ∨ yaS ∧ (yaS +Kt))]

≤ E[ψ(ybR, v̄S(ybR) ∨ ybS ∧ (ybS +Kt))]− E[ψ(ybR, v̄S(yaR) ∨ yaS ∧ (yaS +Kt))]

≤ E[ψ(yaR, v̄S(ybR) ∨ ybS ∧ (ybS +Kt))]− E[ψ(yaR, v̄S(yaR) ∨ yaS ∧ (yaS +Kt))]

≤ E[ψ(yaR, v̄S(yaR) ∨ ybS ∧ (ybS +Kt))]− E[ψ(yaR, v̄S(yaR) ∨ yaS ∧ (yaS +Kt))],

= φ(ybS, v
ab
R , v

ab
S )− φ(yaS, v

aa
R , v

aa
S ).

The first inequality follows from the suboptimality of v̄S(yaR) for the state (ybR, y
a
S),

the second inequality follows from the submodularity of ψ, and the last inequality

follows from the optimality of v̄S(yaR) for the state (yaR, y
b
S).

If, however, v̄S(yaR) > yaS and v̄S(ybR) < ybS, then,

φ(ybS, v
bb
R , v

bb
S )− φ(yaS, v

ba
R , v

ba
S )

= E[ψ(ybR, y
b
S +Kt)]− E[ψ(ybR, v̄S(ybR) ∨ yaS ∧ (yaS +Kt))]

≤ E[ψ(ybR, y
b
S +Kt)]− E[ψ(ybR, v̄S(yaR) ∧ (yaS +Kt))]

≤ E[ψ(yaR, y
b
S +Kt)]− E[ψ(yaR, v̄S(yaR) ∧ (yaS +Kt))]

≤ E[ψ(yaR, v̄S(yaR) ∨ ybS ∧ (ybS +Kt))]− E[ψ(yaR, v̄S(yaR) ∧ (yaS +Kt))]

= φ(ybS, v
ab
R , v

ab
S )− φ(yaS, v

aa
R , v

aa
S ).

The first inequality follows from the optimality of v̄S(ySR) for the states (ybR, y
a
S), the

second inequality follows from the submodularity of ψ, and the last inequality follows

from the optimality of v̄S(yaR) ∨ ybS.

Case 2: vbbR = ybR and vijR > yiR for (i, j) = (a, a), (a, b), (b, a). We must have

ϕ(ybR, y
b
S) ≤ ψ(ybS, v

ab
R , v

bb
S ) = ϕ(yaR, y

b
S). It follows that

ϕ(ybR, y
b
S)− ϕ(yaR, y

b
S) ≤ 0 = ψ(yaS, v

ba
R , v

ba
S )− φ(yaS, v

aa
R , v

aa
S ) = ϕ(ybR, y

a
S)− ϕ(yaR, y

a
S).
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The last equality holds because viaR > yiR.

Case 3: vbbR > ybR and vijR = yiR for (i, j) = (a, a), (a, b), (b, a). Let ymR be such

that E[ψ(ymR , v̄S(ymR ) ∧ (yaS + K))] = maxvR,vS{E[ψ(vR ∧ (yaS + K), vS ∧ (yaS + K))] :

vR ≤ vS, vS ≥ yaS}. It is easy to see that yaR < ymR ≤ ybR. Also, let ymS be such that

E[ψ(yaR, v̄S(yaR) ∧ (ymS +K))] = maxvR,vS{E[ψ(vR ∧ (ymS +K), vS ∧ (ymS +K))] : vR ≤

vS, vS ≥ ymS }. Then, we must have yaS < ymS ≤ ybS. Let (vijR , v
ij
S ) be the maximizer

with states (yiR, y
j
S) for i ∈ {a,m, b} and j ∈ {a,m, b}. Applying the argument in

(2.16) to ymR , y
b
R, y

a
S, y

b
S, we obtain

ϕ(ybR, y
b
S)− ϕ(ybR, y

a
S) ≤ ϕ(ymR , y

b
S)− ϕ(ymR , y

a
S). (2.17)

Applying the argument for Case 1 to yaR, y
m
R , y

m
S , y

b
S, we obtain

ϕ(ymR , y
b
S)− ϕ(ymR , y

m
S ) ≤ ϕ(yaR, y

b
S)− ϕ(yaR, y

m
S ). (2.18)

Applying the argument for Case 2 to yaR, y
b
R, y

a
S, y

m
S , we obtain

ϕ(ymR , y
m
S )− ϕ(ymR , y

a
S) ≤ ϕ(yaR, y

m
S )− ϕ(yaR, y

a
S). (2.19)

The above three relations imply

ϕ(ybR, y
b
S)− ϕ(ybR, y

a
S) ≤ ϕ(ybR, y

a
S)− ϕ(yaR, y

a
S).

Combining the cases, we conclude the result. �

Lemma 3 suggests that the optimal profit function is submodular provided that the

objective function is concave and submodular. We are yet to complete the induction

argument to establish the concavity for the value function defined in the dynamic

program in (2.14).

Theorem 1 The objective function Jt is jointly concave in (yR, yS, µR, µM) and the

value function Vt is jointly concave and submodular in (yR, yS).

Proof of Theorem 1. In this proof, we drop the subscript t of state and de-

cision variables for ease of exposition. By assumption VT+1(yR, yS) is jointly con-

cave and submodular. Assume that Vt+1(yR, yS) is concave and submodular. Take



22

(y1
R, y

1
S, µ

1
R, µ

1
M) and (y2

R, y
2
S, µ

2
R, µ

2
M). Also define ȳR = (y1

R+y2
R)/2, ȳS = (y1

S +y2
S)/2,

µ̄R = (µ1
R + µ2

R)/2 and µ̄M = (µ1
M + µ2

M)/2. By Lemma 2 and Definition 4, we have

E[Vt+1(y1
S + St(y

1
R, y

1
S, µ

1
R)−Dt, y

1
S + Pt(µ

1
M)−Dt)

+Vt+1(y2
S + St(y

2
R, y

2
S, µ

2
R)−Dt, y

2
S + Pt(µ

2
M)−Dt)]

≤ E[Vt+1(ȳS + St(ȳR, ȳS, µ̄R)−Dt, ȳS + Pt(µ̄M)−Dt)].

Thus Vt+1(yR, yS, µR, µM) is jointly concave in (yR, yS, µR, µM). From (2.15) and

(2.6), it is immediate that Jt+1(yR, yS, µR, µM) is jointly concave. Because concavity

is closed under maximization and the set {(µR, µM) : µR ≥ (yR − yS), µM ≥ µ+
R} is

convex, it follows that Vt(yR, yS) is jointly concave.

To show the submodularity of Vt(yR, yS), take vS = yS + qM and vR = yR + qR.

Define

φ(yS, vR, vS) = Ĵt(yR, yS, qR, qM)− pE[Dt] + cyS + E[HR(yR −Dt −Dt+1)]− hWyR.(2.20)

From (2.6), we have

φ(yS, vR, vS) = E[ψ(vR ∧ (yS +Kt), vS ∧ (yS +Kt))], (2.21)

where

ψ(v1, v2) = −cv2 − hWv1 − hM(v2 − v1) + E[Vt+1(v1 −Dt, v2 −Dt)].

Clearly, the optimal solution should correspond to (v∗R(yR, yS), v∗S(yR, yS)) that max-

imizes φ(yS, vR, vS) subject to the constraints vR ≥ yR (replacing qR ≥ 0) and vS ≥

yS∨vR (replacing qM ≥ (yR−yS+qR)+). From our previous result, ψ is jointly concave

and submodular. Applying Lemma 3, we conclude that φ(yS, v
∗
R(yR, yS), v∗S(yR, yS))

is submodular in (yR, yS) and thus Vt(yR, yS) is submodular. Hence, we conclude the

proof. �

Theorem 1 establishes a substitutable relationship between the downstream inven-

tory yR and the system inventory yS. This is expected because downstream inventory

is directly used to meet the demand, while the system inventory is eventually flowing
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to the downstream to meet the demand. Moreover, the marginal values of the mean

material flows and the inventory levels are subject to diminishing returns, implied

by the concavity of the objective function. This result is an important technical

development, which enables the characterization of the optimal policy.

2.5 Analysis of the Optimal Policy

In this section, we derive the optimal policy and analyze the dynamics of the

system against changes in the system parameters.

2.5.1 Characterization of the Optimal Policy

With the properties established for the profit function, we can solve the problem

as a concave optimization problem and analyze the structure of the optimal policy.

The proof of Theorem 2 uses the following lemma.

Lemma 4 Let (v∗R(yR, yS), v∗S(yR, yS)) maximizes {E[ψ(vR∧(yS+K), vS∧(yS+K))] :

yR ≤ vR ≤ vS, vS ≥ yS}, where ψ is concave and submodular, and K is a nonnegative

random variable. Then the following results hold.

i) If v∗R(y0, yS) = y0, then v∗R(yR, yS) = yR for any yR ≥ y0.

ii) If v∗R(yR, y0) = yR, then v∗R(yR, yS) = yR for any yS ≥ y0.

iii) If v∗S(y0, yS) = yS, then v∗S(yR, yS) = yS for any yR ≥ y0.

iv) If v∗S(yR, y0) = y0, then v∗S(yR, yS) = yS for any yS ≥ y0.

Proof. To see i), we note that yR affects the optimal value only through the

constraint vR ≥ yR. Let v̄S(vR, yS) = arg maxvS{E[ψ(vR ∧ (yS +K), vS ∧ (yS +K)) :

vS ≥ vR ∨ yS}. From the proof of Theorem 1, we deduce that E[ψ(vR ∧ (yS +

K), v̄S(vR, yS) ∧ (yS + K))] is unimodal in vR. Let v̄R(yS) denote its maximizer.

Then, v∗(yR, yS) = v̄R(yS) ∨ yR. Thus, part i) follows.
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In part ii), let v̄S(vR) = arg maxvS{ψ(vR, vS) : vR ≤ vS}. Because v∗R(yR, y0) = yR,

we have y∗S(yR, y0) = v̄S(yR) ∨ y0. Because ψ is submodular, we have arg maxvR

{E[ψ(vR, v̄S(yR) ∨ (y0 + δ) ∧ (y0 + δ + K))] : vR ≥ yR} = yR for any δ > 0. It

follows that E[ψ(vR, v̄S(vR) ∨ (y0 + δ) ∧ (y0 + δ + K))] for vR ≥ yR is maximized at

vR = yR. Take vεR = yR + ε for some ε ∈ (0, δ). Then vεR < y0 + δ as yR ≤ y0. Let

ϕ(vR) = maxvS≥vR∨(y0+δ)E[ψ(vR ∧ (y0 + δ +K), vS ∧ (y0 + δ +K))]. Then

ϕ(vεR) = E[ψ(vεR, v̄S(vεR) ∨ (y0 + δ) ∧ (y0 + δ +K))] ≤ ϕ(yR).

From the proof of Theorem 1, ϕ is unimodal. Thus, the above relation suggests that

(v∗R(yR, y0 + δ), v∗S(yR, y0 + δ)) = (yR, v̄S(yR) ∨ (y0 + δ)).

To see part iii), we note that yR only affects the optimality through the constraint

vR ≥ yR. If v∗R(y0, yS) > y0, then for a sufficiently small δ, the optimal solution would

not change if yR increases from y0 to y0 + δ. Thus, we can focus on the case where

v∗R(y0, yS) = y0. By part i), we have v∗R(y0+δ, yS) = y0+δ. Denote yδS ≡ v∗S(y0+δ, yS).

Suppose vS = vδS > yS is optimal for yR = y0 + δ, we have

E[ψ(y0 + δ, vδS ∧ (yS +K))]− ψ(y0 + δ, yS) > 0.

Because vS = yS is optimal for yR = y0, we have

E[ψ(y0, v
δ
S ∧ (yS +K))]− ψ(y0, yS) ≤ 0.

However, by the submodularity of ψ, we have for each realization of K = k

ψ(y0 + δ, vδS ∧ (yS + k))− ψ(y0 + δ, yS) ≤ ψ(y0, v
δ
S ∧ (yS + k))− ψ(y0, yS),

which leads to a contradiction. Hence we obtain part iii).

Next we show part iv). Given that vS = y0, we must have v0
R ≡ v∗R(yR, y0) ≤ y0

maximizes ψ(vR, y0) over yR ≤ vR ≤ y0. We show that vS = y0 maximizes ψ(v0
R, vS)

over vS ≥ y0. Suppose this is not true, then exists a sufficiently small ∆ > 0 such

that for any 0 < δ ≤ ∆,

ψ(v0
R, y0 + δ)− ψ(v0

R, y0) > 0.
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Therefore,

0 < E[ψ(v0
R, y0 + (∆ ∧K))− ψ(v0

R, y0 ∧ (y0 +K))]

= E[ψ(v0
R ∧ (y0 +K), (y0 + ∆) ∧ (y0 +K))− ψ(v0

R ∧ (y0 +K), y0 ∧ (y0 +K))].

This contradicts the fact that (v0
R, y0) maximizes {E[ψ(vR∧ (y0 +K), vS ∧ (y0 +K))] :

yR ≤ vR ≤ vS, vS ≥ y0}. Thus, we must have (v0
R, y0) maximizes {ψ(vR, vS) : yR ≤

vR ≤ vS, vS ≥ y0}. Now let v̄R(vS) be the maximizer of {ψ(vR, vS), vR ≤ vS}. From

the proof of Theorem 1, ψ(v̄R(vS), vS) is unimodal in vS and its maximum over vS ≥ y0

is obtained when vS = y0. Thus, we must have v∗S(yR, y0 + δ) = y0 + δ. �

Theorem 2 (The Threshold Policy) In each period t, there exist thresholds (ȳR,t(yS,t),

ȳS,t(yR,t)) such that the downstream issues an order to the upstream if and only if

yR,t < ȳR,t(yS,t), and the upstream facility produces if and only if yS,t ≤ ȳS,t(yR,t).

Moreover, ȳR,t(·) and ȳS,t(·) are decreasing.

Proof of Theorem 2. As in the proof of Theorem 1, define vS = yS + qM and

vR = yR + qR. The optimal (vR, vS) maximizes φ defined in (2.21). Applying

Lemma 4(i)&(iv) to φ, the optimality of the threshold policy follows immediately.

Moreover, by Lemma 4(ii)&(iii), the thresholds are decreasing. �

The optimal policy characterized in Theorem 2 is a two-dimensional threshold

policy. An example is demonstrated in the left panel of Figure 2.2. Under this policy,

for each given value of upstream [downstream] inventory position yS,t [yR,t], there

exists a threshold ȳR,t(yS,t) [ȳS,t(yR,t)], such that a positive order is issued by the

downstream (upstream) if and only if its inventory position is below the threshold.

The two threshold curves (ȳR,t(yS,t), ȳS,t(yR,t)) are generally nonlinear, and they to-

gether define the regions in which two, one or no order is issued as shown in the left

panel of Figure 2.2.

In the left panel of Figure 2.2 there is a maximum amount Z for which the leftover

inventory can be salvaged. This terminal value is not separable in the final inventory

positions. In the existing literature, a separable terminal value is often assumed (see,
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Note. t = T = 1, c = 5, hR = 4, hW = 1, hM = 0.2, b = 9, p = 20, D ∼ unif[0.5, 1.5], and

Pr{K = 0.5} = Pr{K = 2} = 0.5. In left panel, VT+1(yR, yS) = −20y−R + E[min{3y+
R +

2(yS − yR), Z}], where Z ∼ unif[18, 22] represents a random maximum salvage value. In

right panel, VT+1(yR, yS) = −20y−R + 3y+
R + 2(yS − yR).

Fig. 2.2.: The optimal policy

e.g., [4, 28, 35]). In this case, the optimal policy reduces to an echelon base-stock

policy, as demonstrated in the right-panel of Figure 2.2.

Corollary 1 (The Base-stock Policy) When the terminal value function VT+1(·, ·)

is concave and separable, the optimal value function is separable, i.e, Vt(yR,t, yS,t) =

V R
t (yR,t) + V S

t (yS,t) for each t. The thresholds in Theorem 2 become

ȳR,t(yS,t) = (ŷS,t ∨ ŷt ∨ yS,t) ∧ ŷR,t and ȳS,t ≡ ȳS,t(yR,t) = ŷS,t ∨ ŷt,

where ŷR,t = arg maxv ψ
R(v), ŷS,t = arg maxv ψ

S(v) and ŷt = arg maxv{ψR(v) +

ψS(v)} for ψR(v) = hMv−hWv+E[V R
t+1(v−Dt)] and ψS(v) = −cv−hMv+E[V S

t+1(v−

Dt)]. Moreover, the optimal downstream order quantity is (ȳR,t(yS,t)− yR,t)+ and the

optimal upstream production quantity is (ȳS,t(yR,t)− yS,t)+.
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Proof of Corollary 1. By assumption VT+1(·, ·) is separable. Suppose that Vt+1(·, ·)

is separable, i.e, Vt+1(yR, yS) = V R
t+1(yR) + V S

t+1(yS). From the proof of Theorem 1,

the optimal (vR, vS) must maximize

φ(yS, vR, vS) = E[ψR(vR ∧ (yS +Kt)) + ψS(vS ∧ (yS +Kt))],

where

ψR(v) = hMv − hWv + E[V R
t+1(v −D)], (2.22)

ψS(v) = −cv − hMv + E[V S
t+1(v −D)], (2.23)

subject to the constraints vR ≥ yR and vS ≥ yS ∨ vR.

Define ŷR,t = arg maxy ψ
R(y), ŷS,t = arg maxy ψ

S(y), and ŷt = arg maxy{ψR(y) +

ψS(y)}. Since ψR and ψS are concave, there are only two possible cases: (i) ŷS,t ≥

ŷt ≥ ŷR,t and (ii) ŷS,t ≤ ŷt ≤ ŷR,t.

In case (i), v∗R,t(yR, yS) = ŷR,t ∨ yR and v∗S,t(yR, yS) = ŷS,t ∨ yS. Therefore,

φ(yR, yS, v
∗
R,t(yR, yS), v∗S,t(yR, yS))

= E[ψR((ŷR,t ∨ yR) ∧ (yS +Kt)) + ψS((ŷS,t ∨ yS) ∧ (yS +Kt))]

= ψR(yR)I{yR≥ŷR,t} + E[ψR(ŷR,t ∧ (yS +Kt))I{yR<ŷR,t} + ψS((ŷS,t ∨ yS) ∧ (yS +Kt))]

= (ψR(yR)− ψR(ŷR,t))I{yR≥ŷR,t} + E[ψR(ŷR,t ∧ (yS +Kt)) + ψS((ŷS,t ∨ yS) ∧ (yS +Kt))].

In deriving the last equation, we have use the fact that yR > ŷR,t implies yS+Kt > ŷR,t

almost surely because yS ≥ yR. It is clear that the right-hand side of the above

equation is separable in (yR, yS).

In case (ii), v∗R,t(yR, yS) = (ŷt∨yS∧ ŷR,t)∨yR and v∗S,t(yR, yS) = ŷt∨yS. Therefore,

φ(yR, yS, v
∗
R,t(yR, yS), v∗S,t(yR, yS))

= E[ψR((ŷt ∨ yS ∧ ŷR,t) ∨ yR ∧ (yS +Kt)) + ψS((ŷt ∨ yS) ∧ (yS +Kt))]

= E[ψR(yR ∧ (yS +Kt))I{yR≥ŷR,t} + ψR((ŷt ∨ yS ∧ ŷR,t) ∧ (yS +Kt))I{yR<ŷR,t}

+ψS((ŷt ∨ yS) ∧ (yS +Kt))]

= (ψR(yR)− ψR(ŷR,t))I{yR≥ŷR,t}

+E[ψR((ŷt ∨ yS ∧ ŷR,t) ∧ (yS +Kt)) + ψS((ŷt ∨ yS) ∧ (yS +Kt))].
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In deriving the last equation, we have use the fact that yR > ŷR,t and ŷR,t ≥ ŷt implies

yS > ŷR,t ≥ ŷt. It is clear that the right-hand side of the above equation is separable

in (yR, yS).

Combining the two cases, we deduce the optimality of a base-stock policy. More-

over, substituting the above expressions of the optimal φ into (2.20) and (2.21), we

have Vt(yR, yS) = V R
t (yR) + V S

t (yS), where

V R
t (yR) = −E[HR(yR −Dt −Dt+1)] + hWyR

+(ψR(yR)− ψR(ŷR,t))I{yR≥ŷR,t}, (2.24)

V S
t (yS) = pE[Dt] + cyS + E[ψR((ŷt ∨ yS,t ∧ ŷR,t) ∧ (yS +Kt))

+ψS((ŷS,t ∨ ŷt ∨ yS) ∧ (yS +Kt))]. (2.25)

Hence, we conclude the proof. �

With a separable terminal value, the thresholds become base-stock levels, up to

which the orders are determined. The quantity ŷR,t and ŷS,t are, respectively, the

ideal post-order inventory position for the downstream and upstream. The quantity

ŷt is the ideal system inventory level when everything produced is shipped to the

downstream and thus the post order inventory positions are the same for the upstream

and downstream. To implement this policy, one first determines the target system

inventory level, i.e., the base stock level ŷS,t ∨ ŷt. A production order is issued to

bring the post-order system inventory to the level of ŷS,t ∨ ŷt ∨ yS,t. The order at

the downstream then determines whether system inventory should be redistributed,

depending on whether ideal downstream level ŷR,t exceeds the post-order system

inventory ŷS,t ∨ ŷt ∨ yS,t. Thus, the base-stock level at the downstream depends on

the upstream inventory position yS,t in general.

2.5.2 Comparative Statics

To obtain additional insights into the optimal policy, we analyze the responses of

the optimal decisions to the changes of system parameters. For ease of exposition,
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we assume linear holding/backlogging cost functions, i.e., HR(x) = hRx
+ + sx− for

hR, s > 0 and HM(x) = hMx, and a separable VT+1(·, ·). In this case, it is optimal to

follow a base-stock policy as suggested in Corollary 1.

Proposition 1 (Comparative Statics: Random Parameters) In two otherwise

identical systems, indexed by a and b, with spreadable VT+1(·, ·), the optimal base-stock

levels satisfy

ȳaS,t ≤ ȳbS,t and ȳaR,t(yS,t) ≤ ȳbR,t(yS,t).

if Ka >st K
b or Da <st D

b.

Proof of Proposition 1. The result can be obtained in a similar way as Proposi-

tion 2. �

It is intuitive to target higher stock levels when the demand becomes larger and the

production capacity becomes smaller (in the stochastic sense) because of the role of

inventories in mitigating potential shortages. However, due to capacitated production,

higher target stock levels do not necessarily imply higher on-hand stock levels. To see

this, we observe from Table 2.1 that an increase in the production capacity can have

different effect on inventories at different locations. In particular, when the system

inventory increases with an increased production capacity, a large portion of the

increased stock is allocated to the downstream. The upstream stock level, however,

may increase or decrease. When the production capacity is very limited compared

with the demand, as soon as production completes, the products are immediately

shipped to the downstream to meet the demand. When there is an ample production

capacity relative to the demand, the upstream facility can always produce on-demand

without worrying about future shortage in fulfilling the downstream order. As a result,

the upstream only holds inventory when the mean production capacity is around the

mean demand.

In Table 2.2 we further examine the effect of capacity and demand uncertainty

on the distribution of the inventory. Even though the mean demand equals the mean
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Table 2.1.: The effect of the production capacity on the average inventories.

µK 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7

E[XR] -3.67 -1.89 -0.34 0.58 0.94 1.08 1.15 1.19 1.22 1.23 1.24

E[W ] 0.67 0.84 0.95 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99

E[XM ] 0.00 0.02 0.11 0.24 0.18 0.05 0.00 0.00 0.00 0.00 0.00

E[YS ] -3.00 -1.03 0.73 1.80 2.11 2.12 2.14 2.18 2.21 2.22 2.23

Notes. E[XR] = E[
∑T

t=1XR,t]/T , E[XM ] = E[
∑T

t=1XM,t]/T , E[W ] = E[
∑T

t=1Wt]/T , and E[YS ] =

E[XR] + E[XM ] + E[W ]. Model parameters are T = 20, c = 5, hR = hW = 4, hM = 0.2, s = 9, p = 20,

D ∼ unif [0, 2], K ∼ unif [µk − 0.5, µk + 0.5], VT+1(yR, yS) = −20y−R , and the initial inventory levels are

all zeros.

supply in the case of limited capacity, the system is frequently experiencing shortage

due to the uncertainties, resulting in negative average inventories. An increased un-

certainty, whether from the upstream production capacity or from the downstream

customer demand, leads to an increased average backlog. Both sources of uncertainty

also induce an increased upstream stock level and a reduced in-transit quantity. How-

ever, the reason behind such behavior is not the same. When the demand becomes

more unpredictable, more inventory needs to be prepared to hedge against the de-

mand risk. In view of the higher holding cost at the downstream, more inventory is

held at the upstream. When the production becomes highly fluctuating, the upstream

tends to place large production orders in order to obtain a large output in the case

of high capacity, which makes up for the shortage in the case of low capacity. As a

result, the upstream holds more inventory when capacity fluctuation becomes wider.

When the production capacity becomes ample, an increased uncertainty from

either supply or demand leads to an increased system inventory (i.e., E[YS]). An

increased demand uncertainty induces a uniform increase of stock levels at all places.

With an increased capacity uncertainty, however, more inventory is retained at the

upstream as opposed to being kept at the downstream. We also note that the in-

transit order is insensitive to the capacity uncertainty when the capacity is ample.
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This suggests a stable material flow from the upstream to the downstream to meet

the customer demand, which is independent of the production capacity.

Table 2.2.: The effect of uncertainties on the average inventories.

Limited Capacity Ample Capacity

E[XR] E[W ] E[XM ] E[YS ] E[XR] E[W ] E[XM ] E[YS ]

∆D = 0 -0.965 0.929 0.004 -0.031 0.693 0.961 0.000 1.655

0.25 -0.966 0.929 0.006 -0.031 0.801 0.974 0.000 1.775

0.5 -0.982 0.925 0.013 -0.044 0.887 0.978 0.000 1.865

0.75 -1.013 0.918 0.028 -0.067 0.966 0.983 0.027 1.975

1 -1.058 0.911 0.050 -0.098 1.027 0.988 0.116 2.132

∆K = 0 -1.025 0.916 0.031 -0.078 1.044 0.988 0.028 2.059

0.25 -1.033 0.915 0.035 -0.083 1.039 0.988 0.048 2.076

0.5 -1.058 0.911 0.050 -0.098 1.027 0.988 0.116 2.132

0.75 -1.101 0.904 0.075 -0.121 1.005 0.988 0.217 2.210

1 -1.161 0.897 0.112 -0.153 0.972 0.988 0.342 2.302

Notes. E[XR] = E[
∑T

t=1XR,t]/T , E[XM ] = E[
∑T

t=1XM,t]/T , E[W ] = E[
∑T

t=1Wt]/T , and E[YS ] =

E[XR] +E[XM ] +E[W ]. D ∼ unif [1−∆D, 1 + ∆D], and K ∼ unif [µK −∆K , µK + ∆K ], where µK = 1

in the limited capacity case and µK = 1.6 in the ample capacity case. Other model parameters are the

same as in Table 2.1.

Proposition 2 (Comparative Statics: Cost Parameters) In two otherwise iden-

tical systems, indexed by a and b, with spreadable VT+1(·, ·), i = a, b, the optimal

base-stock levels satisfy

ȳaS,t ≤ ȳbS,t and ȳaR,t(yS,t) ≤ ȳbR,t(yS,t).

if ca > cb, haM > hbM , haW > hbW , haR > hbR or sa < sb.

Proof of Proposition 2. We prove the result for two otherwise identical systems

with haR > hbR. The results for other parameters can be obtained similarly. We shall

also note that the derivation below proves a stronger result for nonstationary systems

with haR,t > hbR,t for each t.

We use induction to show that V R,a
t (·) − V R,b

t (·) and V S,a
t (·) − V S,b

t (·) are both

decreasing. This is clearly true for period T +1 because both V R
T+1 and V S

T+1 does not
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depend on hR. Suppose this is true for period t+ 1. Then from (2.22) and (2.23), we

deduce that ∆ψj(·) = ψj,a(·) − ψj,b(·), j ∈ {R, S}, and ∆ψ(·) = ψa(·) − ψb(·), where

ψi(·) = ψR,i(·) +ψS,i(·), i ∈ {a, b}, are decreasing. Because ŷij,t = arg maxy ψ
j,i(y), j ∈

{R, S}, and ŷit = arg maxy ψ
i(y),i ∈ {a, b}, we must have

ŷaR,t ≤ ŷbR,t, ŷaS,t ≤ ŷbS,t, ŷat ≤ ŷbt .

Thus, ȳaS,t ≤ ȳbS,t and ȳaR,t(yS,t) ≤ ȳbR,t(yS,t).

Now define γR,i(y) = (ψR,i(y)− ψR,i(ŷiR,t))I{y>ŷiR,t}. Then

γR,a(y)− γR,b(y) = (ψR,a(y)− ψR,a(ŷaR,t))I{y>ŷaR,t} − (ψR,b(y)− ψR,b(ŷaR,t))I{y>ŷbR,t}

=


0 if y ≤ ŷaR,t,

ψR,a(y)− ψR,a(ŷaR,t) if ŷaR,t < y ≤ ŷbR,t,

∆ψR(y)− ψR,a(ŷaR,t) + ψR,b(ŷaR,t) if y > ŷbR,t.

Because ψR,i is concave and ∆ψR(·) = ψR,a(·) − ψR,b(·) is decreasing, it follows that

γR,a(·) − γR,b(·) is decreasing in y. From (2.24), we deduce that V R,a
t (·) − V R,b

t (·) is

decreasing.

Next define γS,i(y) = ψR,i((ŷit ∨ y ∧ ŷiR,t) ∧ (y + k)) + ψS,i((ŷiS,t ∨ ŷit ∨ y) ∧ (y + k))

for k ≥ 0, i ∈ {a, b}. We have four cases to consider:

(i) If ŷaS,t ≤ ŷat ≤ yaR,t and ŷbS,t ≤ ŷbt ≤ ybR,t, then

γS,a(y)− γS,b(y)

=



ψa(ŷat ∧ (y + k))− ψb(ŷbt ∧ (y + k)) if y ≤ ŷat ,

ψa(y)− ψb(ŷbt ∧ (y + k)) if ŷat < y ≤ ŷaR,t ∧ ŷbt ,

ψR,a(ŷaR,t) + ψS,a(y)− ψb(ŷbt ∧ (y + k)) if yaR,t ≤ ŷbt and ŷaR,t < y ≤ ŷbt ,

∆ψ(y) if yaR,t > ŷbt and ŷbt < y ≤ ŷaR,t,

ψR,a(ŷaR,t) + ψS,a(y)− ψb(y) if ŷaR,t ∨ ŷbt < y ≤ ŷbR,t,

ψR,a(ŷaR,t)− ψR,b(ŷbR,t) + ∆ψS(y) if y > ŷbR,t,

Note that ψi and ψj,i,i ∈ {a, b} and j ∈ {R, S} are concave. A concave function is

increasing before its maximum and decreasing after its maximum. Therefore, it is

easy to check each case above to conclude that γS,a(·)− γS,b(·) is decreasing.
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(ii) If ŷaS,t ≥ ŷat ≥ ŷaR,t and ŷbS,t ≥ ŷbt ≥ ŷbR,t, then

γS,a(y)− γS,b(y) = ψR,a(ŷaR,t ∧ (y + k))− ψR,b(ŷbR,t ∧ (y + k))

+


ψa(ŷaS,t ∧ (y + k))− ψb(ŷbS,t ∧ (y + k)) if y ≤ ŷaS,t,

ψa(y)− ψb(ŷbS,t ∧ (y + k)) if ŷaS,t < y ≤ ŷbS,t,

∆ψ(y) if y > ŷbS,t.

Hence the right-hand side is decreasing in y.

(iii) If ŷaS,t ≤ ŷat ≤ ŷaR,t and ŷbS,t ≥ ŷbt ≥ ŷbR,t, then

γS,a(y)− γS,b(y)

= −ψR,b(ŷbR,t ∧ (y + k))

+



ψa(ŷat ∧ (y + k))− ψS,b(ŷbS,t ∧ (y + k)) if y ≤ ŷat ,

ψa(y)− ψS,b(ŷbS,t ∧ (y + k)) if ŷat < y ≤ ŷaR,t,

ψR,a(ŷaR,t ∧ (y + k)) + ψS,a(y)− ψS,b(ŷbS,t ∧ (y + k)) if ŷaR,t < y ≤ ŷbS,t,

ψR,a(ŷaR,t ∧ (y + k)) + ∆ψS(y) if y > ŷbS,t.

To see the function is decreasing in the first case, we note that when y + k < ŷat <

ŷbR,t < ŷbS,t, the right-hand side reduces to ∆ψ(y + k), which is decreasing in y. It is

then easy to check that the right-hand side is decreasing in other cases.

(iv) If ŷaS,t ≥ ŷat ≥ ŷaR,t and ŷbS,t ≤ ŷbt ≤ ŷbR,t, then

γS,a(y)− γS,b(y) = ψR,a(ŷaR,t ∧ (y + k))

+



ψS,a(ŷaS,t ∧ (y + k)) + ψb(ŷbt ∧ (y + k)) if y ≤ ŷaS,t

ψS,a(y)− ψb(ŷbt ∧ (y + k)) if ŷaS,t < y ≤ ŷbt

ψS,a(y)− ψb(y) if ŷbt < y ≤ ŷbR,t

∆ψS(y)− ψR,b(ŷbR,t ∧ (y + k)) if y > ŷbR,t.

Following the same arguments as in previous cases, we deduce that the right-hand

side is decreasing in y.

Since γS,a(·)−γS,b(·) is decreasing, it is immediate from (2.25) that V S,a
t (·)−V S,b

t (·)

is decreasing. Hence, we conclude the proof. �
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Proposition 2 suggests that the target stock levels become lower when it is more

expensive to produce or to hold inventories, or when the backorder penalty is smaller.

In Table 2.3, we observe that the average inventory positions reveal consistent re-

sponse to the cost parameters as the target stock levels. However, the distribution of

the inventory at different places in the system may reveal local patterns. In particular,

while the system inventory (i.e., E[YS]) becomes smaller when any inventory cost (i.e.,

hR, hM or hW ) increases , the downstream [upstream] carries more inventory when

it becomes more expensive to hold inventory at the upstream [downstream]. We also

observe that the upstream facility may hold less inventory when the backorder cost

(i.e., s) increases. This happens when the production capacity is limited and thus an

increased backorder cost induces a larger inventory distributed to the downstream.

We shall note that though we state Proposition 1 and Proposition 2 for station-

ary system parameters, both results hold for nonstationary systems (see the proofs

of these propositions). The next proposition explores additional properties of the

optimal policy under stationary environment.

Proposition 3 (Comparative Statics: Stationary Systems) When VT+1(yR, yS) =

V R
T+1(yR) + V S

T+1(yS) and system parameters are all stationary,

ȳS,t ≥ ȳS,t+1 and ȳR,t(yS) ≥ ȳR,t+1(yS).

Moreover, if E[V R
T+1(y2−D)]−E[V R

T+1(y1−D)] ≥ hW (y2− y1)−E[HR(y2−D(3))] +

E[HR(y1 −D(3))] for any y1 < y2, then

ŷR,t = F−1
D(3)

(
s+ hM
s+ hR

)
for t = 1, 2, . . . , T − 1,

where D(k) is the k-fold convolution of demand D =d Dt and F−1
D(k) is the inverse of

the distribution of D(k).

Proof of Proposition 3. The first part of the proposition follows in a similar way

as Proposition 2 when the time horizon T changes. We focus on deriving the second

part. From the proof of Corollary 1, ŷR,t is the unconstrained maximizer of

ψRt (v) = hMv − hWv + E[V R
t+1(v −D)].
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Table 2.3.: The effect of the cost parameters on the average inventories.

Limited Capacity Ample Capacity

E[XR] E[W ] E[XM ] E[YS ] E[XR] E[W ] E[XM ] E[YS ]

s = 7 -1.073 0.909 0.057 -0.108 0.910 0.982 0.100 1.993

8 -1.065 0.910 0.053 -0.103 0.975 0.985 0.107 2.067

9 -1.058 0.911 0.050 -0.098 1.027 0.988 0.116 2.132

10 -1.053 0.911 0.047 -0.094 1.072 0.991 0.125 2.188

11 -1.048 0.912 0.045 -0.091 1.114 0.993 0.129 2.236

hR = 1 -1.014 0.913 0.017 -0.084 1.517 0.999 0.004 2.520

2 -1.031 0.912 0.029 -0.090 1.291 0.994 0.060 2.345

3 -1.045 0.911 0.040 -0.094 1.144 0.991 0.091 2.225

4 -1.058 0.911 0.050 -0.098 1.027 0.988 0.116 2.132

5 -1.070 0.910 0.059 -0.102 0.931 0.986 0.135 2.052

hM = 0.2 -1.058 0.911 0.050 -0.098 1.027 0.988 0.116 2.132

1 -1.050 0.910 0.026 -0.114 1.030 0.988 0.000 2.018

1.8 -1.045 0.910 0.012 -0.123 1.030 0.988 0.000 2.018

2.6 -1.042 0.910 0.003 -0.128 1.030 0.988 0.000 2.018

3.4 -1.040 0.910 0.000 -0.130 1.030 0.988 0.000 2.018

hW = 1 -1.054 0.915 0.052 -0.087 1.043 0.999 0.118 2.159

2 -1.056 0.914 0.051 -0.091 1.037 0.995 0.118 2.150

3 -1.057 0.912 0.050 -0.095 1.032 0.991 0.117 2.141

4 -1.058 0.911 0.050 -0.098 1.027 0.988 0.116 2.132

5 -1.060 0.909 0.049 -0.102 1.022 0.985 0.115 2.122

c = 4 -1.057 0.912 0.051 -0.094 1.032 0.991 0.117 2.141

4.5 -1.058 0.911 0.050 -0.096 1.030 0.990 0.117 2.136

5 -1.058 0.911 0.050 -0.098 1.027 0.988 0.116 2.132

5.5 -1.059 0.910 0.049 -0.100 1.024 0.986 0.116 2.126

6 -1.060 0.909 0.049 -0.102 1.022 0.985 0.115 2.122

Notes. E[XR] = E[
∑T

t=1XR,t]/T , E[XM ] = E[
∑T

t=1XM,t]/T , E[W ] = E[
∑T

t=1Wt]/T , and

E[YS ] = E[XR] + E[XM ] + E[W ]. µK = 1 for the limited capacity case and µK = 1.6 for the

ample capacity case. Other model parameters are the same as in Table 2.1.

Substituting (2.24) in the above gives

ψRt (v) = hMv − E[HR(v −D(3))]− hWE[D]

+E[(ψRt+1(v −D)− ψRt+1(ŷR,t+1))I{v−D≥ŷR,t+1}]. (2.26)

Define ŷ ≡ F−1
D(3)((s+ hM)/(s+ hR)). Because ψRt+1 is concave and it is maximized at

ŷR,t+1, it is immediate that ψRt is maximized at ŷ if ŷR,t+1 ≥ ŷ. Thus, we only need
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to show ŷR,T ≥ ŷ. This follows from the fact that ψRT is concave and E[V R
T+1(y2 −

D)]−E[V R
T+1(y1 −D)] ≥ hW (y2 − y1)−E[HR(y2 −D(3))] +E[HR(y1 −D(3))] for any

y1 < y2. �

In a stationary system, the base-stock levels are decreasing over time. This is

because a unit produced earlier has a better chance to be sold before the end of the

horizon. This observation is consistent with its counterpart in single-location systems

(see,.e.g., [3]).

Proposition 3 further suggests that when the terminal value is highly sensitive

to the inventory positions (relative to the difference between the holding cost at the

downstream and that in transit), the ideal inventory position at the downstream can

be derived using a newsvendor formula. The ideal inventory position at the down-

stream depends on the backorder penalty as well as the comparison between the

holding costs at the upstream and at the downstream. When holding inventory is

significantly cheaper at the upstream than at the downstream, a lower inventory posi-

tion should be maintained at the downstream. Instead, a larger amount of inventory

is kept at the upstream to save on inventory holding.

2.6 Extensions

In this section, we discuss two important extensions of our model, one with general

production functions and one with multiple locations.

2.6.1 General Production Functions

Our previous analysis assumes that the production output is constrained by a

random production capacity. In general, the input and output relationship can ex-

hibit different various relationships depending on the input material flow, technology

deployed and labor productivity. The study by [21] suggests that most of the produc-

tion functions studied in the existing literature are stochastically linear in midpoint.
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Thus, in this subsection, we consider a general production function P (qM) that has

a stochastically linear in midpoint transformation.

The inventory dynamics at the downstream described in (2.12) now becomes

YR,t+1 = (qR,t + yR,t) ∧ (yS,t + P (qM,t))−Dt, (2.27)

and the system inventory dynamics described in (2.13) becomes

YS,t+1 = yS,t + P (qM,t)−Dt. (2.28)

Lemma 5 Suppose {A(u) : u ∈ U ∈ R} ∈ SL(mp). For u ∈ U and v ∈ V ∈ R,

B(u, v) =d v ∧ A(u) can be transformed into functions that are stochastically linear

in midpoint.

Proof of Lemma 5. Take v1, v2, u1, u2 with v̄ = (v1 + v2)/2 and ū = (u1 + u2)/2.

Let µ1 = E[v1 ∧ A(u1)] and µ2 = E[v2 ∧ A(u2)]. Because {A(u) : u ∈ U} ∈ SL(mp),

there exists A1 =d A(u1) and A2 =d A(u2) such that Ā =d (A1 +A2)/2 ≤cv A(ū). Let

B̄ =d (v1 ∧ A1 + v2 ∧ A2)/2. Because the minimum function is concave, we have

B̄ ≤st v̄ ∧ Ā.

Then for any b ≤ v̄, F̄B̄(b) ≤ F̄Ā(b), where F̄X is the survival function of random

variable X. This implies that, for any b ≤ v̄,∫ b

−∞
F̄B̄(w)dw ≤

∫ b

−∞
F̄Ā(w)dw ≤

∫ b

−∞
F̄A(ū)(w)dw.

The last inequality implies that Ā ≤cv A(ū).

Now let µ̄ = (µ1 + µ2)/2. It is clear that ū = E[B̄]. Define v̂(u) = inf{v :

E[v ∧ A(ū)] ≥ µ}. Because B̄ ≤st v̄ ∧ Ā, where v̂(u) ≤ v̄. In other words, we have∫ b

−∞
F̄B̄(w)dw ≤

∫ b

−∞
F̄A(ū)(w)dw for b ≤ v̂(µ̄).

Thus, In other words, B̄ ≤cv v̂(µ̄) ∧ A(ū). Thus, there exists a transformation of

B(u, v) that is stochastically linear in midpoint. �



38

According to Lemma 5, we can conclude that both the downstream inventory in

(2.27) and the system inventory in (2.28) can be transformed into a stochastic function

that is linear in midpoint provided that is the case for the production function P (qM).

When both (2.27) and (2.28) satisfy the single-crossing property, a sufficient con-

dition for stochastic linearity in midpoint, we can directly apply Lemma 2 to show

that the profit function is concave and submodular in the inventory levels. Thus, the

analysis in §2.4 continues to hold. The difference here is that even when the terminal

value function VT+1(·, ·) is concave and separable, the threshold policy for production

order does not reduce to a base-stock policy.

2.6.2 Multi-Location Serial Systems

In this subsection, we discuss how our analysis can be extended to multi-location

systems. There are N locations indexed by n ∈ {1, 2, . . . , N}. The manufacturing

facility is located at N , the retail store is located at 1. After the completion of

production, products are transported through intermediate locations (N−1), . . . , 3, 2

in sequence before reaching the store to meet the customer demand.

At the beginning of each period t, the on-hand inventory level xn is reviewed

at location n ∈ {1, 2, . . . , N}, a delivery of wn+1,t−1 from the upstream location is

expected to be delivered at the end of the period. The firm needs to determine the

order quantity qn,t for each location n ∈ {1, 2, . . . , N}. Upon receiving the order

from the downstream location qn−1,t, location schedules a shipment wn,t based on

the available stock at the end of period t and the shipment reaches the downstream

location n− 1 at the end of the next period (i.e., period t + 1). Thus, the shipment

dispatched stage n at the end of period t is

wn,t = qn−1,t ∧ (xn,t + wn+1,t−1) for n ∈ {2, . . . , N}

with w1,t = Dt and wN+1,t−1 = qN,t ∧Kt. Then the dynamics of the inventory can be

written as

xn,t+1 = xn,t + wn+1,t−1 − wn,t.
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Using a similar transformation used for our base model, we define recursively the

inventory positions as y0,t = 0 and

yn,t = yn−1,t − xn,t + wn+1,t−1, for n ∈ {1, 2, . . . , N}.

Then we can rewrite the in-transit orders and on-hand inventory levels as

wn,t = (yn−1,t + qn−1,t) ∧ yn,t − yn−1,t,

xn,t+1 = (yn,t − yn−1,t − qn−1,t)
+.

With these relations, we can derive the dynamics of the inventory positions as

YN,t+1 = (yN,t + qN,t) ∧ (yN,t +Kt)−Dt,

YN−1,t+1 = (yN−1,t + qN−1,t) ∧ (yN,t +Kt)−Dt,

Yn,t+1 = (yn,t + qn,t) ∧ yn+1,t −Dt, n ∈ {1, 2, . . . , N − 2}.

Let vn,t = yn,t + qn,t denote the post-order inventory position and use xt denote a

vector of (x1,t, x2,t, . . . , xn,t). Assume that the holding and backorder cost at the store

is a convex function H1(·), the holding cost at location n is hn and the holding cost

for in-transit order shipped from location n is hW,n for n ∈ {2, 3, . . .}. Then, we can

write the dynamic programming equation as

Ĵt(yt,vt) = pE[Dt]− c(E[vN,t ∧ (yN,t +K)]− yN,t)− E[H1(y1,t −Dt −Dt+1)]

−
N−1∑
n=2

hn(yn,t − vn−1,t)
+ − hNE[vN,t ∧ (yN,t +Kt)− vN−1,t ∧ (yN,t +Kt)]

−hW,NE[vN−1,t ∧ (yN,t +Kt)− yN−1,t]−
N−1∑
n=2

hW,n(vn−1,t ∧ yn,t − yn−1,t)

+E[Vt+1(Yt+1)],

where

Vt(yt) = max{Ĵt((yt,vt)) : vt ≥ yt, v1,t ≤ v2,t ≤ · · · ≤ vN,t}.

We assume that the terminal value VT+1(yT+1) is concave and submodular.
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One can use the same stochastic linearity transformation as the one in the two-

location model to make the post-order inventory position at locations N and N − 1

stochastically linear in midpoint. It is easy to see that Lemma 2 applies to the N -

dimensional random functions Yt+1 and thus the joint concavity of E[Vt+1(Yt+1)] in

(yt,vt) can be established. Thus, the analysis in §2.4 can be extended to treat the

problem with multiple locations.

We can further show that when the terminal value is separable in the ending in-

ventory positions, the value function Vt becomes separable. Consequently, an echelon

base-stock policy becomes optimal in this case.

2.7 Summary

In this chapter, we analyze a two-location system in which the upstream produc-

tion facility experiences random capacities and the downstream store faces random

demands. Instead of decomposing the profit function widely used to treat multi-

echelon systems, our approach builds on the notions of stochastic functions, in par-

ticular, the stochastic linearity in midpoint and the directional concavity in midpoint,

which establishes the concavity and submodularity of the profit functions.

In general, it is optimal to follow a two-level state-dependent threshold policy

such that an order is issued at a location if and only if the inventory position of that

location is below the corresponding threshold. When the salvage values of the ending

inventories are linear, the profit function becomes decomposable in the inventory

positions at different locations and the optimal threshold policy reduces to the echelon

base-stock policy. The optimal policy will serve as our coordination benchmark in

the next chapter.
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3. DECENTRALIZED DYNAMIC COORDINATION

WITH SUPPLY UNCERTAINTY

3.1 Synopsis

In Chapter 2, we consider a two-stage supply chain problem and identify the

optimal management policy of the material flows from a centralized perspective. In

this chapter, we consider each stage makes the ordering decision based on self interests.

The goal of our analysis in this chapter is to identify an approach to coordinate the

dynamic decisions between the two locations under limited information visibility. The

optimal policy we derive in Chapter 2 serves as our coordination benchmark.

In studies about the decentralized decision making in supply chain management,

most of the literature assumes single-period setting. In the dynamic setting, the

coordination becomes much more challenging to achieve and most simple contracts

which can achieve coordination in the single-period setting fail to do so. We consider

two dynamic settings in this chapter. In the first setting, the retail store does not

know the distribution of the stochastic supply function and the inventory level at the

manufacturing facility; in the second, the manufacturing facility does not know the

demand distribution while the retail store does not have supply information.

In the first scenario, we show that the retail store and manufacturing facility can

be dynamically coordinated with proper transfer contracts defined on the local inven-

tories and their own value function in the dynamic recursion. In the second scenario,

we identify the optimal transfer contracts to achieve the dynamic coordination and

propose an iterative algorithm to compute the contracts in the decentralized setting.

The remainder of this chapter is organized as follows. In Section 3.2, we review the

related literature. In Section 3.3, we study the first scenario problem and characterize

the transfer contracts to achieve coordination. In Section 3.4, we study the second
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scenario problem and analyze the optimal contracts under which coordination can be

achieved. In Section 3.5, we develop an iterative algorithm to compute the optimal

transfer contracts and show the convergence of the algorithm. In Section 3.6, we

analyze the convergence rate under different numerical settings and the profit splits

under different fixed payments. In Section 3.7, we conclude this chapter.

3.2 Literature Review

Our study is related to three streams of literature. The first stream is multi-

echelon inventory management, which we have reviewed in Section 2.2. We review

the other two streams of literature in this section.

Supply chain coordination. A rich body of research in the filed of operations man-

agement has studied the coordination issue in supply chain. [38,39] provide excellent

surveys. Most of the literature focuses on designing different contracts to achieve

coordination in a single-period or infinite-horizon setting. For example, [40] study

the simple linear transfer payments in a Nash equilibrium framework; [41] consider

the setting of single supplier and multiple retailers and achieve coordination in a

wholesale pricing contract; [42] study the revenue-sharing contracts; [43] study the

coordination between the production and marketing division in a firm. The paper

by [44] considers an assembly system with one manufacturer and two suppliers.

Few papers consider the supply chain coordination under supply uncertainty.

When modeling supply uncertainty, most papers assume a random yield model. [45]

consider designing contracts to achieve coordination in a single-period setting with a

single supplier whose production process follows a random yield model. [46] study the

coordination in a specific industry: influenza vaccination, in which the vaccination

production follows a random yield model. [47] and [48] study the coordination of as-

sembly system in a single-period setting with random component yields. Comparing

to these papers, we consider random capacity to model the supply uncertainty in a

multi-period setting.
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There are relatively few papers considering coordination under a multi-period

setting, in which coordination becomes more challenging. [49] study the optimal policy

of the vendor-managed inventory model under a contract called (z, Z) in practice.

Under the (z, Z) contract, the supplier pays a penalty if the retailer’s inventory level

is less than z or more than Z. [50] consider a two-stage serial supply chain with

deterministic capacity limit at each stage in a Markov equilibrium framework, and

the equilibrium solution is a modified echelon base-stock policy. A key difference

between our model and theirs is that we consider a random supply capacity. The

main focus of the papers by [49] and [50] is to characterize the policy under their

decentralized settings, and our aim of analysis is to identify an approach to achieve

coordination.

It is worth mentioning that some literature in this stream adopt principal-agent

framework to induce truth revelation. [5] study multi-period principal-agent problem,

where the state of the system can only be observed by the agent. [51] analyze a supply

chain with one retailer and one supplier, and the supplier can not observe the retailer’s

inventory level. [52] consider the situation when the supplier’s unit production cost

is unknown to the retailer, and characterize the optimal contract. In our model,

in an essential contrast, the private knowledge is a function (i.e., the distribution).

Applying the principal-agent approach would require the principal to specify the set

of possible distributions and a distribution over this set. Such a knowledge structure

is very complex and difficult to specify in practice. Instead, we first identify the

optimal contracts to achieve coordination and then propose an iterative algorithm to

compute the contracts under the decentralized setting.

Dynamic decentralized control in resource allocation. Our problem is also re-

lated to the dynamic resource allocation among different decentralized agents, which

can be dated back to the papers by [53], [54] in the economics literature. We limit

our attention to the most relevant papers here. [55] study the allocation of shared

resources between multiple agents. Each agent receives requests for the shared re-

sources. They design a transfer price contract so that the overall decentralized system
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profit is the same as the centralized optimal profit. [56] consider a similar problem

in a queueing system between a pricing agent and a service agent. The pricing agent

makes the dynamic pricing decision to control the arrival rate, and the service agent

controls the service rate of the system. They also characterize the transfer contracts

under which the decentralized system total profit is maximized. In our second sce-

nario problem, we use the similar idea to design the transfer contracts to achieve

coordination. However, our model is more complicated in that multiple agents solve

their own dynamic programming sequentially, and the profit and decision of one agent

are based on the optimal policy of the other agent, which makes it more challenging

to characterize the optimal transfer contracts.

3.3 Coordination When the Supply Information is Unknown

3.3.1 Problem Formulation

We consider a two-stage supply chain planning problem over T -period. The up-

stream division is a manufacturing facility (he) and the downstream division is a retail

store (she). The dynamics of the system is depicted in Figure 3.1.

Retail store’s problem. At the beginning of each period t, the inventory level xR,t

at the store is reviewed. An order qR,t is issued to the manufacturing facility. We

denote yR,t as the order-up-to level, i.e., yR,t = xR,t + qR,t. The retail store faces

an exogenous demand Dt with distribution FDt(·) during period t. The demand is

satisfied through the on-hand inventory xR,t. Any unmet demand is fully backordered

and leftover inventory is carried over to the next period. The delivered order from the

manufacturing facility arrives at the end of period t. We assume the retail store

does not know the manufacturing facility’s inventory level and production

plan, and believes that the inventory level after delivery would be a stochastic func-

tion S̃(xR,t, yR,t) given her initial inventory is xR,t and order-up-to level is yR,t. The

distribution of S̃(xR,t, yR,t) is based on the retail store’s belief and might be erroneous.
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We do not impose any assumptions on the supply function S̃(xR,t, yR,t), and we later

show that our results hold for any form of S̃(xR,t, yR,t).

The inventory at the beginning of period t+ 1 updates to

X̃R,t+1 = S̃(xR,t, yR,t)−Dt. (3.1)

The retail price for the product is p dollars per unit, and the store incurs a

holding/backlogging cost HR(·). We assume that HR(x) : R→ R+ is continuous and

convex, with HR(0) = 0, limx→±∞HR(x) = ∞. Retail store pays the manufacturing

facility a fixed amount b dollars for each delivery. Retail store also incurs a penalty

rt(yR,t, s) to the manufacturing facility if the order-up-to level is yR,t and the actual

inventory position after receiving the delivery from the manufacturing facility is s.

The one-period retail profit is given by

π̃R,t(xR,t, yR,t) = pE[Dt]− E[HR(xR,t −Dt)] + E[rt(yR,t, S̃(xR,t, yR,t))]− b. (3.2)

Let ṼR,t(xR,t) denote the retail store’s optimal expected profit function in period

t when the inventory level is xR,t. Then the optimality equation can be written as

ṼR,t(xR,t) = max{J̃R,t(xR,t, yR,t) : yR,t ≥ xR,t}, (3.3)

where

J̃R,t(xR,t, yR,t) = π̃R,t(xR,t, yR,t) + E[ṼR,t+1(X̃R,t+1)]. (3.4)

We assume a concave terminal value function R1
T+1(xR,T+1). In other words, the

marginal terminal value of inventory at the retail store is subject to diminishing

returns.

Manufacturing facility’s problem. At the beginning of each period t, the order

quantity qR,t from the retail store is received, and the inventory level xM,t is reviewed.

We assume the manufacturing facility can also observe the inventory level at the retail

store. The decision is an input quantity qM,t for production. Because the production

capacity Kt is random with distribution FKt(·), the output from production at the
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end of the period is the minimum of the input and the realized capacity, i.e., qM,t∧Kt

(where a ∧ b = min{a, b}). Upon production completion, the stock level at the

facility becomes xM,t + qM,t ∧ Kt and a shipment is sent to the retail store. The

shipment quantity is the minimum of the order quantity and the available stock, i.e.,

qR,t ∧ (xM,t + qM,t ∧Kt). We denote yS,t as the production-up-to level of the system

total inventory, i.e., yS,t = xM,t+xR,t+qM,t. The inventory at the beginning of period

t+ 1 updates to

XM,t+1 = (yS,t ∧ (xM,t + xR,t +Kt)− yR,t)+, (3.5)

where a+ = max{a, 0}. Since all the information is available to the manufacturing

facility, he also knows the retail store’s inventory at the beginning of period t + 1

updates to

XR,t+1 = yR,t ∧ yS,t ∧ (xM,t + xR,t +Kt)−Dt. (3.6)

It turns out that working with the system total inventory level xS,t = xM,t + xR,t

allows for analytical convenience. The dynamics of the system inventory level is

XS,t+1 = yS,t ∧ (xS,t +Kt)−Dt. (3.7)

The manufacturing cost is c dollars per unit. Manufacturing facility also incurs a

holding cost of hS dollars per unit for all the inventory in the system. The one-period

profit is given by

π̃M,t(xR,t, xS,t, yR,t, yS,t) = b− cE[(yS,t − xS,t) ∧Kt]− hSxS,t

−E[rt(yR,t, yR,t ∧ yS,t ∧ (xS,t +Kt))]. (3.8)

Let ṼM,t(xR,t, xS,t, yR,t) denote the optimal expected profit function in period t when

the retail inventory level is xR,t, and the system inventory level is xS,t, and the retail

order-up-to level is yR,t. Then the optimality equation can be written as

ṼM,t(xR,t, xS,t, yR,t) = max{J̃M,t(xR,t, xS,t, yR,t, yS,t) : yS,t ≥ xS,t}, (3.9)
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where

J̃M,t(xR,t, xS,t, yR,t, yS,t)

= π̃M,t(xR,t, xS,t, yR,t, yS,t) + E[ṼM,t+1(XR,t+1, XS,t+1, yR,t+1(XR,t+1)]. (3.10)

We assume a concave terminal value function R2
T+1(xS,T+1) at period T + 1. In our

analysis, we use a superscript ∗ to denote the quantities under an optimal solution.

For ease of exposition, we may drop the time index from the subscript when it does

not cause confusions.

Time

Review 𝑥𝑅,𝑡

Order 𝑞𝑅,𝑡 Recieve 𝑞𝑅,𝑡 ∧ (𝑥𝑀,𝑡 + 𝑞𝑀,𝑡 ∧ 𝐾𝑡)

Review
𝑋𝑅,𝑡+1 = 𝑥𝑅,𝑡 + 𝑞𝑅,𝑡 ∧ (𝑥𝑀,𝑡 + 𝑞𝑀,𝑡 ∧ 𝐾𝑡) - 𝐷𝑡

𝐷𝑡 materializes 𝐷𝑡+1 materializes

RETAILER

𝐾𝑡 materializes 𝐾𝑡+1 materializes

Reward schedule 𝑟𝑡(⋅)

(a) Retail store sequence of events.

Time

Review 𝑥𝑀,𝑡

Receive order 𝑞𝑅,𝑡
Receive reward 𝑟𝑡 (⋅)

Production input 𝑞𝑀,𝑡 Output 𝑞𝑀,𝑡 ∧ 𝐾𝑡

Review 𝑋𝑀,𝑡+1 = (𝑥𝑀,𝑡 + 𝑞𝑀,𝑡 ∧ 𝐾𝑡−𝑞𝑅,𝑡)
+

Receive order 𝑞𝑅,𝑡+1

MANUFACTURER

Deliver 𝑞𝑅,𝑡 ∧ (𝑥𝑀,𝑡 + 𝑞𝑀,𝑡 ∧ 𝐾𝑡)

𝐷𝑡 materializes

𝐾𝑡 materializes

𝐷𝑡+1 materializes

𝐾𝑡+1 materializes

(b) Manufacturing sequence of events.

Fig. 3.1.: Sequence of events when supply information is unknown.

3.3.2 Analysis of the Optimal Transfer Contracts

In this subsection, we show that the decentralized system described in Section 3.3.1

can be coordinated under our optimal transfer contracts.

Preliminary Results

Before characterizing the coordination mechanism in this section, we first briefly

review the centralized problem; see Chapter 2 for more details. The one-period system

profit is given by

πt(xR,t, xS,t, yS,t)

= pE[Dt]− cE[(yS,t − xS,t) ∧Kt]− E[HR(xR,t −Dt)]− hSxS,t. (3.11)
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Let Vt(xR,t, xS,t) denote the centralized optimal expected profit function in period t

when the inventory level at the retail store is xR,t and the system inventory level is

xS,t. Then the optimality equation can be written as

Vt(xR,t, xS,t) = max{Jt(xR,t, xS,t, yR,t, yS,t) : yR,t ≥ xR,t, yS,t ≥ xS,t}, (3.12)

where

Jt(xR,t, xS,t, yR,t, yS,t) = πt(xR,t, xS,t, yS,t) + E[Vt+1(XR,t+1, XS,t+1)]. (3.13)

We assume a terminal value function VT+1(xR,t+1, xS,t+1) = R1
T+1(xR,t+1)+R2

T+1(xS,t+1)

and both R1
T+1(·) and R2

T+1(·) are concave. An important structural property of the

centralized problem which we derive in Chapter 2 is that the centralized optimal value

function is concave and separable in the echelon inventory level and the optimal pol-

icy is a base-stock policy provided that the terminal value function is concave and

separable. We state this property in the next proposition, and it lays a foundation

for the design of our decentralized coordination mechanism.

Proposition 4 The value function Vt is concave and separable in (xR, xS) for each

t, i.e., Vt(xR, xS) = V 1
t (xR) + V 2

t (xS), and

V 1
t (xR) = max{J1

t (xR, yR) : yR ≥ xR}, (3.14)

V 2
t (xS) = max{J2

t (xS, yS; ỹR) : yS ≥ xS}, (3.15)

where

J1
t (xR, yR) = pE[D]− E[HR(xR −D)] + E[V 1

t+1(yR −D)], (3.16)

J2
t (xS, yS; ỹR) = −cE[(yS − xS) ∧K]− hSxS + E[V 1

t+1(ỹR ∧ yS ∧ (xS +K)−D)]

−E[V 1
t+1(ỹR −D)] + E[V 2

t+1(yS ∧ (xS +K)−D)], (3.17)

and ỹR = arg max{E[V 1
t+1(y −D)] : y ∈ R}.

Proof. From Corollary 1 in Chapter 2, we know that the optimal production

order-up-to level y∗S = ỹS ∨ xS, where ỹS is a constant in each period t. The optimal
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replenishment order-up-to level y∗R = ỹR ∨xR ∧ y∗S. We can rewrite the optimal profit

function Vt(xR, xS) as

Vt(xR, xS)

= pE[D]− E[HR(xR −D)] + E[V 1
t+1(ỹR ∨ xR ∧ (xS +K)−D)]

+E[V 1
t+1(y∗S ∧ (xS +K)−D)− V 1

t+1(ỹR ∧ (xS +K)−D)]I{y∗S<ỹR}

−cE[(y∗S − xS) ∧K]− hSxS + E[V 2
t+1(y∗S ∧ (xS +K)−D)]

= pE[D]− E[HR(xR −D)] + E[V 1
t+1(ỹR ∨ xR −D)]

+E[V 1
t+1(ỹR ∧ yS ∧ (xS +K)−D)− V 1

t+1(ỹR −D)]

−cE[(y∗S − xS) ∧K]− hSxS + E[V 2
t+1(y∗S ∧ (xS +K)−D)],

from which we can easily derive V 1
t and V 2

t . �

Optimal Transfer Contracts

We first give the conjecture about the optimal transfer contract and the optimality

of the contract will be established afterwards. The optimal transfer contract satisfies

rt(yR, s) = E[ṼR,t+1(yR −D)− ṼR,t+1(s−D)]. (3.18)

This contract defines the cash transfer between the retail store and the manufac-

turing facility. From the retail store’s perspective, the transfer contract rt(yR, s) is

the amount to compensate for the loss of future value caused by insufficient supply

from the manufacturing facility. In next theorem, we establish the optimality of the

contract rt(yR, s).

Theorem 3 Let ṼR,t(xR) and ṼM,t(xR, xS, yR) be the value functions defined in (3.3)

and (3.9) under the transfer contract (3.18). Then,

ṼR,t(xR) + ṼM,t(xR, xS, y
∗
R(xR)) = Vt(xR, xS),

where y∗R(xR) is the retail optimal order-up-to level, and Vt(xR, xS) is the centralized

optimal value function defined in (3.12).
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Proof of Theorem 3. We prove the result using induction. By assumption, the re-

sult holds for period T+1. Assume VR,t+1(xR) = V 1
t+1(xR) and VM,t+1(xR, xS, y

∗
R,t+1(xR))

= V 2
t+1(xS), then

VR,t+1(xR) + VM,t+1(xR, xS, y
∗
R,t+1(xR)) = Vt+1(xR, xS).

Under the contract (3.18), we can rewrite the retail objective function JR,t defined

in (3.23) as

JR,t(xR, yR) = pE[D]− E[HR(xR −D)] + E[VR,t+1(yR −D)]. (3.19)

It is straightforward to observe that (3.19) and the centralized objective function J1
t

defined in (3.16) are the same, provided that VR,t+1 = V 1
t+1, therefore VR,t = V 1

t . Let

ỹR = arg max{E[VR,t+1(y − D)] : y ∈ R}, then y∗R(xR) = ỹR ∨ xR. The objective

function of the manufacturing facility under the contract (3.18) can be written as

JM,t(xR, xS, y
∗
R(xR), yS)

= −cE[(yS − xS) ∧Kt]− hSxS + E[VR,t+1(y∗R(xR) ∧ yS ∧ (xS +K)−D)]

−E[VR,t+1(y∗R(xR)−D)] + E[VM,t+1(XR,t+1, XS,t+1, y
∗
R,t+1(XR,t+1))].

Note that the only difference between JM,t(xR, xS, y
∗
R(xR), yS) and J2

t (xS, yS; ỹR) in

(3.17) is that y∗R(xR) = ỹR∨xR is replaced by ỹR in (3.17). Thus we have JM,t(xR, xS,

y∗R(xR), yS) = J2
t (xS, yS; ỹR) when ỹR ≥ xR, and when ỹR < xR, JM,t(xR, xS, y

∗
R(xR), yS)

and J2
t (xS, yS; ỹR) are still the same by observing the relation that yS ≥ xS ≥ xR.

Therefore VR,t(xR) +VM,t(xR, xS; y∗R(xR)) = Vt(xR, xS). This completes the induction

argument. �

3.4 Coordination When No Party has Full Information

In this section, we consider the case in which the demand distribution is unknown

to the manufacturing facility as well as the retail store does not know the capacity

distribution and the inventory level at the manufacturing facility.
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3.4.1 Problem Formulation

In our notation, we use a superscript ∼ to denote the quantities from the erroneous

belief. For example, we denote the random capacity from the retail store’s belief as

K̃t and assume that K̃t follows a distribution FK̃t
(·), which might not be the same as

the true capacity distribution FKt(·). The demand from the manufacturing facility’s

belief is denoted as D̃t, and it is assumed to follow a distribution FD̃t
. Beyond the

costs and revenues described in Section 3.3.1, we need to define two more transfer

payments to achieve coordination in this setting. Suppose the initial inventory level

at the beginning of period t is (xR, xS).

• wt(xR, xS, i) denotes the reward schedule from the manufacturing facility to

retail store if the total inventory in the system at the end of period t (after

demand realization) is i.

• ut(xR, xS, y) is the reward schedule from the retail store to manufacturing fa-

cility if the total inventory in the system after production (before demand real-

ization) is y.

Retail store’s problem. From the retail store’s perspective, the inventory dynamics

are

X̃R,t+1 = S̃(xR,t, yR,t)−Dt, (3.20)

X̃S,t+1 = Ĩ(xR,t, yR,t)−Dt, (3.21)

where S̃(·) and Ĩ(·) are based on the retail store’s belief and might be different from

the true dynamics. Here we assume that the retail store only observes the inventory

level at her site.

Let VR,t(xR,t) denote the optimal expected profit function in period t when the

inventory level is xR,t. Then the optimality equation can be written as

VR,t(xR,t) = max{ĴR,t(xR,t, yR,t) : yR,t ≥ xR,t}, (3.22)



52

where

ĴR,t(xR,t, yR,t)

= pE[Dt]− E[HR(xR,t −Dt)] + E[rt(xR,t, yR,t, S̃(xR,t, yR,t))]

+E[wt(xR, X̃S, Ĩ(xR,t, yR,t)−Dt)]− E[ut(xR, X̃S, Ĩ(xR,t, yR,t))]

+E[VR,t+1(X̃R,t+1)]− b. (3.23)

The terminal value function R1
T+1(xR,T+1) is the same as in Section 3.3.1.

Manufacturing facility’s problem. From the manufacturing facility’s perspective,

the inventory dynamics are

X̂R,t+1 = yR,t(xR,t) ∧ yS,t ∧ (xS,t +Kt)− D̃t, (3.24)

X̂S,t+1 = yS,t ∧ (xS,t +Kt)− D̃t, (3.25)

where yR,t(xR,t) is the retail order-up-to level. Let VM,t(xR,t, xS,t) denote the optimal

expected profit function in period t when the inventory level at the retail store is xR,t

and system inventory level is xS,t. The optimality equation can be written as

VM,t(xR,t, xS,t) = max{ĴM,t(xR,t, xS,t, yS,t) : yS,t ≥ xS,t}, (3.26)

where

ĴM,t(xR,t, xS,t, yS,t)

= −cE[(yS,t − xS,t) ∧Kt]− hSxS,t − E[rt(yR,t(xR,t), yR,t(xR,t) ∧ yS,t ∧ (xS,t +Kt))]

−E[wt(xR, xS, yS,t ∧ (xS,t +Kt)− D̃t)] + E[ut(xR, xS, yS,t ∧ (xS,t +Kt))]

+E[VM,t+1(X̂R,t+1, X̂S,t+1)] + b. (3.27)

The terminal value function R2
T+1(xS,T+1) is assumed to be the same as in Sec-

tion 3.3.1.
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Time

Review 𝑥𝑅,𝑡, 𝑤𝑡

Order 𝑞𝑅,𝑡 Recieve 𝑞𝑅,𝑡 ∧ (𝑥𝑀,𝑡 + 𝑞𝑀,𝑡 ∧ 𝐾𝑡)

Review
𝑋𝑅,𝑡+1 = 𝑥𝑅,𝑡 + 𝑞𝑅,𝑡 ∧ (𝑥𝑀,𝑡 + 𝑞𝑀,𝑡 ∧ 𝐾𝑡) − 𝐷𝑡

𝐷𝑡 materializes 𝐷𝑡+1 materializes

RETAILER

Reward schedule 𝑟𝑡, 𝑢𝑡

𝐾𝑡 materializes 𝐾𝑡+1 materializes

(a) Retail store sequence of events.

Time

Review 𝑥𝑀,𝑡

Receive order 𝑞𝑅,𝑡
Receive reward 𝑟𝑡, 𝑢𝑡

Production input 𝑞𝑀,𝑡 Output 𝑞𝑀,𝑡 ∧ 𝐾𝑡

Review
𝑋𝑀,𝑡+1 = (𝑥𝑀,𝑡 + 𝑞𝑀,𝑡 ∧ 𝐾𝑡 − 𝑞𝑅,𝑡)

+

MANUFACTURER

Deliver 𝑞𝑅,𝑡 ∧ (𝑥𝑀,𝑡 + 𝑞𝑀,𝑡 ∧ 𝐾𝑡)

𝐷𝑡 materializes

𝐾𝑡 materializes

𝐷𝑡+1 materializes

𝐾𝑡+1 materializes

Reward schedule 𝑤𝑡

(b) Manufacturing sequence of events.

Fig. 3.2.: Sequence of events when both distributions are unknown.

3.4.2 Analysis of the Optimal Contracts

We first give the conjecture about the optimal transfer contracts, which should

satisfy

rt(yR, s) = E[VR,t+1(yR −D)− VR,t+1(s−D)], (3.28)

wt(xR, xS, i) = E[VM,t+1(X̂R,t+1(xR, xS), i)], (3.29)

ut(xR, xS, y) = E[wt(xR, xS, y −D)]. (3.30)

Existence

In this section, we want to check whether a set of optimal contracts satisfying

conditions (3.28) - (3.30) exists. In Section 3.3.2, we show that the centralized optimal

value function Vt(xR, xS) is separable in each state, i.e., Vt(xR, xS) = V 1
t (xR)+V 2

t (xS);

see Equation (3.14) and (3.15) for details. If the following dynamic programming

equations are defined, for t = 1, . . . , T ,

V̂R,t(xR) = max{pE[D]− E[HR(xR −D)] + E[V 1
t+1(yR −D)] :

yR ≥ xR}. (3.31)

V̂M,t(xR, xS) = max{−cE[(yS − xS) ∧K]− hSxS − E[V 1
t+1(y∗R(xR)−D)]

+E[V 1
t+1(y∗R(xR) ∧ yS ∧ (xS +K)−D)

+V 2
t+1(yS ∧ (xS +K)−D)] : yS ≥ xS}, (3.32)
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where y∗R(xR) is the optimal replenishment order policy solved from (3.31). It is

straightforward to see that these are the same dynamic programming equations as

(3.14) and (3.15), therefore

V̂R,t(xR) = V 1
t (xR),

V̂M,t(xR, xS) = V 2
t (xS).

Suppose the transfer contracts (3.28) - (3.30) are defined as

rt(yR, s) = E[V̂R,t+1(yR −D)− V̂R,t+1(s−D)], (3.33)

wt(xR, xS, i) = E[V̂M,t+1(X̂R,t+1(xR, xS), i)], (3.34)

ut(xR, xS, y) = E[wt(xR, xS, y −D)]. (3.35)

In next proposition, we show that the solutions of (3.31) and (3.32) are the value

functions for the decentralized problem (3.22) - (3.27) under the contracts (3.33) -

(3.35).

Proposition 5 Let the value functions VR,t(xR) and VM,t(xR, xS) be defined by the

decentralized problem (3.22) - (3.27) under the contracts (3.33) - (3.35), then

VR,t(xR) = V̂R,t(xR),

VM,t(xR, xS) = V̂M,t(xR, xS),

where V̂R,t(xR) and V̂M,t(xR, xS) is the solution of (3.31) and (3.32). In addition,

the decentralized total channel profit VR,t(xR) + VM,t(xR, xS) equals to the centralized

optimal profit Vt(xR, xS).
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Proof of Proposition 5. We prove the result using induction. Assume VR,t+1(xR) =

V̂R,t+1(xR) = V 1
t+1(xR) and VM,t+1(xR, xS) = V̂M,t+1(xR, xS) = V 2

t+1(xS), which are

true for t = T . ĴR,t(xR, yR) defined in (3.23) can be rewritten as

ĴR,t(xR, yR)

= pE[D]− E[HR(xR −D)] + E[V̂R,t+1(yR −D)− V̂R,t+1(S̃(xR, yR)−D)]

+E[V̂M,t+1(X̂R,t+1(xR, XS), Ĩ(xR, yR)−D)]

−E[V̂M,t+1(X̂R,t+1(xR, XS), Ĩ(xR, yR)−D)] + E[VR,t+1(S̃(xR, yR)−D]

= pE[D]− E[HR(xR −D)] + E[V̂R,t+1(yR −D)], (3.36)

which implies VR,t(xR) = V̂R,t(xR) = V 1
t (xR). ĴM,t(xR, xS, yS) defined in (3.27) can

be rewritten as

ĴM,t(xR, xS, yS)

= −cE[(yS − xS) ∧K]− hSxS − E[V̂R,t+1(yR(xR)−D)]

+E[V̂R,t+1(yR(xR) ∧ yS ∧ (xS +K)−D)]− E[V̂M,t+1(X̂R,t+1, yS ∧ (xS +K)− D̃)]

+E[V̂M,t+1(X̂R,t+1, yS ∧ (xS +K)−D)] + E[VM,t+1(X̂R,t+1, yS ∧ (xS +K)− D̃)]

= −cE[(yS − xS) ∧K]− hSxS − E[V̂R,t+1(yR(xR)−D)]

+E[V̂R,t+1(yR(xR) ∧ yS ∧ (xS +K)−D)] + E[V 2
t+1(yS ∧ (xS +K)−D)],

where yR(xR) is the retail optimal ordering policy solved from (3.36). It is easy to see

that yR(xR) is the same as the centralized ordering policy. Comparing ĴM,t(xR, xS, yS)

with (3.32), we can immediately conclude that VM,t(xR, xS) = V̂M,t(xR, xS) = V 2
t (xS).

This completes the induction argument. �

According to Proposition 5, the decentralized total channel profit under the trans-

fer contracts (3.33) - (3.35) is the same as the optimal centralized total profit, and

this result is insensitive to the mis-specification of each site’s unknown information.

However, to compute the optimal transfer contracts, we must know the centralized

decomposed value functions V 1
t and V 2

t , which do not exist in the decentralized prob-

lem. To tackle this challenge, we propose an iterative approach in next section.
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3.5 Iterative Algorithm

In this section, we propose an iterative algorithm to compute the optimal transfer

contracts defined in Section 3.4 in the decentralized setting. We further demonstrate

that the decentralized channel profit is guaranteed to converge to the optimal cen-

tralized profit through our iterative algorithm. Figure 3.3 provides an illustration for

our iterative algorithm.

3.5.1 Algorithm Description

Algorithm 1

Initialize: Set n = 0, V 0
R,t(xR) = 0, V 0

M,t(xR, xS) = 0, r0
t (yR, s) = 0, w0

t (xR, xS, i) =

0 and u0
t (xR, xS, y) = 0 .

Iteration n: Given transfer contracts wnt (xR, xS, i) and unt (xR, xS, y).

• Retail store sets rnt (y, s) = E[V n
R,t+1(y−D)−V n

R,t+1(s−D)], and solves her decen-

tralized problem (3.22)-(3.23) based on wnt and unt . The optimal value function

V n
R,t(xR) is computed, and the optimal order policy ynR,t = arg max{ĴnR,t(xR, yR) :

yR ≥ xR} is specified and communicated to the manufacturing facility. The

transfer contract rnt (y, s) = E[V n
R,t+1(y − D) − V n

R,t+1(s − D)] is also passed to

the manufacturing facility.

• Manufacturing facility takes the retail order ynR,t, and solves his decentralized

problem (3.26)-(3.27) based on transfer contracts rnt , unt and wnt . The optimal

value function V n
M,t(xR, xS) is computed, and the optimal production policy ynS,t =

arg max{ĴnM,t(xR, xS, yS) : yS ≥ xS} is specified. His transfer contract is updated

as

wn+1
t (xR, xS, i) = E[V n

M,t+1(X̂R,t+1(xR, xS), i)].

• Stop if a satisfactory level of precision ε > 0 is reached, e.g.

sup
t,xR,xS

|V n
R,t(xR)− V n−1

R,t (xR)|+ |V n
M,t(xR, xS)− V n−1

M,t (xR, xS)| < ε.
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Otherwise, manufacturing facility communicates his updated transfer contract

wn+1
t (xR, xS, i) to retail store. Retail store communicates her updated transfer

contract, i.e.,

un+1
t (xR, xS, y) = E[wn+1

t (xR, xS, y −D)],

to manufacturing facility. Set n to n+ 1 and repeat.

START 

.

Initialization

Retailer sets  and solves herrnt

T  period problem.

Iteration n : Given  ,   and  .wn

t un

t bn

Retailer passes yn
R,t

 and   to the manufacturer.rnt

 Manufacturer solves his

 T  period problem.

Is convergence 

achieved?

STOP

Manufacturer updates   .wn+1
t

Retailer updates  .un+1
t

n = n + 1

Yes

No

Fixed payment   is updated.bn+1

Fig. 3.3.: Illustration of iterative algorithm.
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3.5.2 Convergence

In this section, we demonstrate that the iterated value function will converge to

the centralized value function. We first give two preliminary results. These two results

are proved in [56] and [57] respectively. The first is

|max
u

f(u)−max
u

g(u)| ≤ max
u
|f(u)− g(u)|. (3.37)

The second is

T∑
s=t

(T − s)k−1

(k − 1)!
≤ (T − t+ 1)k

k!
. (3.38)

In proving the convergence, we impose two assumptions.

• We assume that the mean demand is finite, i.e., E[D] < ∞. Thus we do not

need to consider the situation when the state variables (xR, xS) go to infinity,

and assume that |xR| <∞ and |xS| <∞.

• We assume the terminal value functions R1
T+1(·) = R2

T+1(·) = 0. Note that this

assumption is only intended to improve the clarity of the proof, and all results

hold for more general terminal value functions as long as both functions are

concave.

Lemma 6 The difference between the optimal retail value function in each iteration

V n
R,t and the centralized decomposed value function V 1

t equals to the fixed payment bn,

i.e.,

V n
R,t(xR) + bn = V 1

t (xR), n ≥ 1.

Therefore, the optimal retail ordering policy in each iteration is the same as the cen-

tralized optimal ordering policy.

Proof of Lemma 6. The optimal retail value function in iteration n can be written

as

V n
R,t(xR) = max{ĴnR,t(xR, yR) : yR ≥ xR},
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where

ĴnR,t(xR, yR) = pE[Dt]− E[HR(xR −Dt)] + E[rnt (yR, S̃(xR, yR))]

+E[wnt (xR, XS, Ĩ(xR, yR)−D)]− E[unt (xR, XS, Ĩ(xR, yR))]− bn

+E[V n
R,t+1(S̃(xR,t, yR,t)−Dt)]

= pE[Dt]− E[HR(xR −Dt)]− bn + E[V n
R,t+1(yR −Dt)]

+E[V n−1
M,t+1(X̂R,t+1, Ĩ(xR, yR)−D)]− E[V n−1

M,t+1(X̂R,t+1, Ĩ(xR, yR)−D)]

= pE[Dt]− E[HR(xR −Dt)]− bn + E[V n
R,t+1(yR −Dt)].

Here Ĩ(·) is the retail store’s belief of the system total inventory before demand

realization. Note that retail store can form any erroneous belief, and the proof does

not depend on any specific form of the belief. Comparing the above functions with

(3.14) and (3.16), we can easily see that V n
R,t(xR) + bn = V 1

t (xR) provided that the

terminal value function V n
R,T+1(·) equals to R1

T+1(·). Therefore, the optimal retail

order policy in iteration n would be the same as that of the centralized problem. �

Lemma 7 There exist constants c1, c2 > 0 such that ∀n ≥ 1,

max
xR,xS
|V n
M,t(xR, xS)− V n−1

M,t (xR, xS)| ≤ c1[c2(T − t+ 1)]n

c2n!
.

Therefore,

lim
n→∞
‖V n

M − V n−1
M ‖ = lim

n→∞
max

t∈{1,...,T},xR,xS
|V n
M,t(xR, xS)− V n−1

M,t (xR, xS)| = 0.

Proof of Lemma 7. Denote

∆V n
M,t = max

xR,xS
|V n
M,t(xR, xS)− V n−1

M,t (xR, xS)|.

For the first iteration, since V 0
R,t(xR) and V 0

M,t(xR, xS) are set to be zero, we have

V 1
M,t(xR, xS)

= max
yS

T∑
i=t

−cE[(ys,i −Xs,i) ∧Ki]− hSE[XS,i]

+E[V 1
R,i+1(y1

R,i(XR,i) ∧ yS,i ∧ (XS,i +Ki)−Di)− V 1
R,i+1(y1

R,i(XR,i)−Di)].



60

Since xS,i is bounded in each period, every term in one-period profit is bounded. Let

c1 be the upper bound of one-period profit function, then

∆V 1
M,t = max

xR,xS
|V 1
M,t(xR, xS)| ≤ c1(T − t+ 1).

Suppose the result is true for n, such that

∆V n
M,t = max

xR,xS
|V n
M,t(xR, xS)− V n−1

M,t (xR, xS)| ≤ c1[c2(T − t+ 1)]n

c2n!
.

Then,

|V n+1
M,t (xR, xS)− V n

M,t(xR, xS)|

=

∣∣∣∣max
yS

{
E

T∑
i=t

−cE[(ys,i −Xs,i) ∧Ki]− hSE[XS,i] + un+1
i (XR,i, XS,i, yS,i ∧ (XS,i +Ki))

−rni (ynR,i(XR,i), y
n
R,i(XR,i) ∧ yS,i ∧ (XS,i +Ki))

−wn+1
i (XR,i, XS,i, yS,i ∧ (XS,i +Ki)− D̃i)

}
−max

yS

{
E

T∑
i=t

−cE[(ys,i −Xs,i) ∧Ki]− hSE[XS,i] + uni (XR,i, XS,i, yS,i ∧ (XS,i +Ki))

−rn−1
i (yn−1

R,i (XR,i), y
n−1
R,i (XR,i) ∧ yS,i ∧ (XS,i +Ki))

−wni (XR,i, XS,i, yS,i ∧ (XS,i +Ki)− D̃i)
}∣∣∣∣

≤ max
yS

∣∣∣∣E T∑
i=t

un+1
i (XR,i, XS,i, yS,i ∧ (XS,i +Ki))− uni (XR,i, XS,i, yS,i ∧ (XS,i +Ki))

− wn+1
i (XR,i, XS,i, yS,i ∧ (XS,i +Ki)− D̃i) + wni (XR,i, XS,i, yS,i ∧ (XS,i +Ki)− D̃i)

∣∣∣∣
= max

yS

∣∣∣∣E T∑
i=t

(
V n
M,i+1(X̂R,i, yS,i ∧ (XS,i +Ki)−Di)− V n−1

M,i+1(X̂R,i, yS,i ∧ (XS,i +Ki)−Di)
)

−
(
V n
M,i+1(X̂R,i, yS,i ∧ (XS,i +Ki)− D̃i)− V n−1

M,i+1(X̂R,i, yS,i ∧ (XS,i +Ki)− D̃i)
)∣∣∣∣,

where the first inequality follows from (3.37) and Lemma 6. From Lemma 6, we know

that ynR,i(·) = yn−1
R,i (·), therefore the state dynamics X̂R,i and X̂S,i, for t ≤ i ≤ T , are
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the same in iteration n + 1 and n, provided that the same production policy yS,i is

followed. Next we look at the maximum of the difference.

∆V n+1
M,t ≤

T∑
i=t

c2
c1[c2(T − i)]n

c2n!

≤ c1c
n+1
2

(T − t+ 1)n+1

c2(n+ 1)!

=
c1[c2(T − t+ 1)]n+1

c2(n+ 1)!
,

where the first inequality follows from the induction together with c2 = 2, and the

second inequality follows from (3.38). Taking the maximum over t gives

‖V n
M − V n−1

M ‖ ≤ max
t∈{1,...,T}

c1[c2(T − t+ 1)]n

c2n!
≤ c1(c2T )n

c2n!
.

Thus,

lim
n→∞
‖V n

M − V n−1
M ‖ = 0.

�

Theorem 4 Let V̂M,t(xR, xS) be the value function defined in (3.32). The sequence

V n
M,t(xR, xS), which is computed by Algorithm 1, converges uniformly to V̂M,t(xR, xS),

i.e.,

lim
n→∞
‖V̂M,t(xR, xS)− V n

M,t(xR, xS)‖ = 0.

Moreover,

lim
n→∞
‖Vt(xR, xS)− V n

R,t(xR)− V n
M,t(xR, xS)‖ = 0,

where Vt(xR, xS) is the centralized optimal value function defined in (3.12).
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Proof of Theorem 4. Take any n1, n2 ∈ Z+,

‖V n1+n2
M − V n1

M ‖ ≤
n2∑
i=1

‖V n1+i
M − V n1+i−1

M ‖

≤
n2∑
i=1

c1(c2T )n1+i

c2(n1 + i)!

≤ c1(c2T )n1+1

c2(n1 + 1)!

∞∑
i=0

(c2T )i

i!

=
c1(c2T )n1+1

c2(n1 + 1)!
e−c2T .

This implies limn1→∞‖V n1+n2
M −V n1

M ‖ = 0. Therefore, V n
M is a Cauchy sequence under

the sup-norm, and there exists a function ṼM such that limn→∞‖ṼM − V n
M‖ = 0.

Taking the limit of the dynamic programming equations (3.26) and (3.27) gives

ṼM,t(xR, xS) = max{J̃M,t(xR, xS, yS) : yS ≥ xS},

where

J̃M,t(xR, xS, yS)

= −cE[(yS − xS) ∧K]− hSxS − E[V 1
t+1(yR(xR)−D)]

+E[V 1
t+1(yR(xR) ∧ yS ∧ (xS +K)−D)]− E[ṼM,t+1(X̂R,t+1, yS ∧ (xS +K)− D̃)]

+E[ṼM,t+1(X̂R,t+1, yS ∧ (xS +K)−D)] + E[ṼM,t+1(X̂R,t+1, yS ∧ (xS +K)− D̃)]

= −cE[(yS − xS) ∧K]− hSxS − E[V 1
t+1(yR(xR)−D)]

+E[V 1
t+1(yR(xR) ∧ yS ∧ (xS +K)−D)] + E[ṼM,t+1(X̂R,t+1, yS ∧ (xS +K)−D)].

It is easy to prove that ṼM,t(xR, xS) = V̂M,t(xR, xS) = V 2
t (xS) by induction. Therefore,

we prove that limn→∞‖V̂M − V n
M‖ = 0.

From Lemma 6 and Proposition 5, we can immediately get the second result, i.e.,

lim
n→∞
‖Vt(xR, xS)− V n

R,t(xR)− V n
M,t(xR, xS)‖ = 0.

�
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3.6 Numerical Studies

In this section, we evaluate convergence rate of our iterative algorithm described

in Section 3.5 under different demand distributions and system parameters.

3.6.1 Both Mean and Variance are Known

In this subsection, we assume the mean and variance of the random demand are

known for the manufacturing facility, and only the distributional form is unknown.

We show the convergence in terms of the relative error, i.e.,

Relative error at iteration n = max
t,xR,xS

∣∣∣∣V n
M,t(xR, xS)− V 2

t (xS)

V 2
t (xS)

∣∣∣∣,
where V 2

t (xS) is the centralized decomposed value function, defined in (3.15). The

convergence tolerance ε = 0.01%.

Impact of the true demand distribution

Figure 3.7 reports the convergence of our iterative algorithm when the planning

horizon of the dynamic programming T = 20. We test the convergence rate when

the true demand follows a scaled beta distribution or a two-point distribution. In

Figure 3.7, we observe that it takes more iterations to converge when the true de-

mand follows a two-point distribution. Meanwhile, the convergence rate is robust in

different shapes of beta distributions, and the maximum number of iterations needed

for convergence is 5. Below, we further examine the effect of the average demand,

demand uncertainty and the random capacity on the convergence rate.

Impact of the average demand. Figure 3.5a shows that the relative error decreases

as the average demand increases. This is mainly because the absolute value of the

centralized decomposed value function V 2
t is larger as the mean demand increases.

Since the relative error decreases, the number of iterations needed for convergence

also tends to decrease.
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(b) D: Two-point distributions

Note. The planning horizon of the dynamic programming T = 20. We choose different

forms of the true demand distribution by fixing µD = 5, σ2
D = 1.33. In both subfigures, the

erroneous demand D̃ ∼ unif [3, 7], and the random capacity K ∼ unif [3, 4].

Fig. 3.4.: Impact of the true demand distribution

Impact of the demand uncertainty. Figure 3.5b shows that the relative error

decreases as the variance of the demand distribution decreases. Intuitively, this is

because a larger demand uncertainty magnify the mismatch between the true and

erroneous demand distributions.

Impact of the mean capacity and capacity uncertainty. We also evaluate the

convergence against the mean capacity µK and the capacity uncertainty σK . We find

that the relative error and the number of iterations needed for convergence do not

change much. Therefore, we can conclude that the number of iterations needed for

convergence mainly depends on the difference between the true and erroneous demand

distributions, which is consistent with our theoretical results in previous section.



65

1 2 3 4 5 6 7 8 9 10 11 12 13

Iteration

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

R
el

at
iv

e 
er

ro
r 

(%
)

7
D

 = 4

7
D

 = 5(base)

7
D

 = 6

(a) Impact of the average demand
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(b) Impact of the demand variance

Note. The true demand D follows a two-point distribution, where P (D = dl) = P (D =

dh) = 0.5, and dl = µD − σD, dh = µD + σD. The erroneous demand D̃ ∼ unif [µD −

6σ2
D, µD + 6σ2

D]. Left subfigure: σ2
D = 1.33. Right subfigure: µD = 5.

Fig. 3.5.: Impact of the fixed mean and variance

Impact of the erroneous demand distribution

In Figure 3.6 and 3.7, we report the effect of the form of erroneous demand distri-

bution on the convergence assuming the true demand follows a uniform distribution

and two-point distribution respectively. Interestingly, when the true demand follows

a two-point distribution, assuming the erroneous demand also follows a two-point

distribution may even cost more iterations to converge compared with assuming a

beta distribution for the erroneous demand. This is because the difference between

the true and erroneous demand distributions is larger when p0 are different in the

two-point distributions.
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Note. The true demand D ∼ unif [3, 7]. We choose dif-

ferent forms of the erroneous demand distribution by fixing

µD = 5, σ2
D = 1.33.

Fig. 3.6.: Impact of the erroneous demand distribution

1 2 3 4 5 6 7 8 9 10

Iteration

0%

2%

4%

6%

8%

10%

12%

14%

R
el

at
iv

e 
er

ro
r 

(%
)

beta(0.5,0.5)
beta(1,1)
beta(2,2)
beta(2,5)
beta(1,5)

(a) D̃: beta distributions
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Note. The true demand D follows a two-point distribution, where P (D = 3.85) = P (D =

5.15) = 0.5. We choose different forms of the erroneous demand distribution by fixing

µD = 5, σ2
D = 1.33.

Fig. 3.7.: Impact of the erroneous demand distribution
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3.6.2 Unknown Variance

In this subsection, we relax the previous assumption that the variance of the de-

mand distribution is known for the manufacturing facility, and assume he only has

the information about the average demand. Figure 3.8a and 3.8b show the conver-

gence under different ranges of erroneous demand distribution when the true demand

follows a uniform distribution and a two-point distribution respectively. We can ob-

serve that when the range deviates from the true range further in either direction,

the relative error increases and it takes more iterations to converge.
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(a) True demand D ∼ unif[3, 7].
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(b) P (D = 3.85) = P (D = 6.15) = 0.5.

Note. The erroneous demand D̃ ∼ unif [5− 0.5× range, 5 + 0.5× range].

Fig. 3.8.: Impact of the range of the erroneous demand distribution

3.6.3 Only the Support of the Demand Distribution is Known

In this subsection, we consider the case when the manufacturing facility only knows

the support of the random demand distribution, and both the mean and variance are

unknown. Figure 3.10 and 3.9 show the convergence under different shapes of beta

distributions when the true demand follows a two-point distribution and a uniform

distribution respectively. As we observed in Section 3.6.1, the effect of the shapes
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of the erroneous demand distribution on the convergence is not significant when the

mean and variance are known, however, this does not hold when only the support is

known. Figure 3.10a and 3.9a show that the relative error may become large when

the shape of the erroneous demand distribution changes.
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(b) Benchmark: mean and variance are

known.

Note. The true demand D ∼ unif[3, 7].

Fig. 3.9.: Impact of the erroneous demand distributions

3.6.4 Profit Share

In Figure 3.11, we show the profit share between the retail store and manufacturing

facility using different fixed payments. We can observe that profits can be arbitrarily

distributed for different fixed payments.

3.7 Summary

In this chapter, we examine the two-stage supply chain problem from the decen-

tralized perspective. We consider two scenarios of information visibility. When the
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(a) Support [3.85, 6.15] and mean are known.
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Note. The true demand D follows a two-point distribution, where P (D = 3.85) = P (D =

6.15) = 0.5.

Fig. 3.10.: Impact of the erroneous demand distributions

1 2 3 4 5

Iteration

-3000

-2000

-1000

0

1000

2000

3000

P
ro

fit

Retailer profit
Manufacturer profit
Decentralized total profit
Centralized total profit

(a) Retail share 25%.

1 2 3 4 5

Iteration

-3000

-2000

-1000

0

1000

2000

3000

P
ro

fit

Retailer profit
Manufacturer profit
Decentralized total profit
Centralized total profit

(b) Retail share 50%.

1 2 3 4 5

Iteration

-3000

-2000

-1000

0

1000

2000

3000

P
ro

fit

Retailer profit
Manufacturer profit
Decentralized total profit
Centralized total profit
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Note. The true demand D follows a two-point distribution, where P (D = 3.85) = P (D =

6.15) = 0.5, and the erroneous demand D̃ follows beta(3,1). The profit reported in the figure

is when t = 1 and xR = 0, xM = 0. The fixed payment in each iteration n follows bn =

bn−1 + (1− r)V n−1
R,1 (0)− rV n−1

M,1 (0, 0) and b0 = 0, where r is the retail store’s intended share

of the total profit and r = 25%, 50%, 75% respectively from leftsubfigre to rightsubfigure.

Fig. 3.11.: Profit share
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supply information is not available to the retail store, we design a transfer payment to

achieve the centralized optimal profit. When the demand information is not available

to the manufacturing facility as well as the retail store does not know the supply

information, we characterize the optimal contracts under which coordination can be

achieved, and propose an iterative algorithm to realize the coordination in the decen-

tralized setting. The total profit under our algorithm is guaranteed to converge to the

centralized optimal channel profit for any demand and capacity distribution functions.

The coordinating mechanisms proposed here do not require sophisticated knowledge

structure, making them more practical compared with conventional mechanisms.
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4. CASE STUDY: NEW DIAGNOSTIC TEST

EVALUATION

4.1 Synopsis

In the working paper [1], the authors develop a framework for evaluating the

operational impact of the new diagnostic tests. This chapter mainly serves as a

case study of their developed framework. We first describe the MDP model in their

framework, and we present the structural properties of the optimal policy.

Since there are multiple classes of patients in the MDP model, the size of the

state space becomes large as the number of patient classes increases. To overcome

this curse of dimensionality, we describe the heuristic algorithm developed in [1], and

we validate the numerical performance of their heuristic algorithm.

The remainder of this chapter is organized as follows. In Section 4.2, we review

the related literature. In Section 4.3, we describe the underlying patient flow model

and the test routing problem. In Section 4.4, we present the structural properties of

the optimal policy. In Section 4.5, we describe a heuristic algorithm. We also validate

the performance of the heuristic algorithm in this section. In Section 4.6, we conclude

this chapter.

4.2 Literature Review

This study is related to four streams of literature.

Service operations management. A rich body of research in the filed of operations

management has studied the problem of balancing the speed of the service versus the

quality of the service. [58] provide an an excellent survey. [59] introduce discretion

in task completion, which means the standard for a task completion is not clear.
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A longer service time gives a higher service value. They show that the service time

decreases as the congestion increases under the optimal policy. [60] study the payment

and service strategy when a monopolist expert offers a service with discretionary task

completion and the customers are strategic. [61] study the tradeoff between service

quality and speed when customers are strategic. [62] model a gatekeeper who makes

an initial diagnosis of the customer’s problem and decides if to refer the customer to

a specialist. They focus on the information asymmetry between the gatekeeper and

the specialist and consider in a principal-agent framework. [63] extend the model to

include queueing at both the gatekeeper and expert. They solve the optimal staffing

levels and referral rates between gatekeeper and expert from a centralized perspective.

There are relatively few papers analyzing diagnostic decision making in healthcare.

[64] study the staffing and service depth decision of a nurse triage line in which

the patients decide to call the line or not based on their expectation of diagnostic

accuracy and congestion. They focus on the equilibrium analysis between the provider

and patients, and the diagnostic process is modeled as a Brownian motion in their

paper. However, the model that we adopt in our case study focuses on the diagnostic

process. [65] study the tradeoff between test accuracy and system congestion in a

diagnostic process, in which the service provider conducts multiple tests to determine

the customer’s type. They consider dynamic decision of whether to run more tests

or to stop the process and identify the customer’s type. They find that the service

provider should continue to run test on the customer as long as the belief of the

customer type falls into an interval.

Infinite-server queue and state-dependent service rate. As suggested by the

empirical results in [66], infinite server model with state-dependent service rate turns

out to display a better fit with the empirical data in ED, therefore the service process

of each station follows a same form in the model we adopt. Both infinite server queue

and state-dependent service rate have been studied extensively in queueing literature.

For example, [67] and [68] study the M/M/∞ queue, and [69] and [70] study the

M/G/1 queue with workload-dependent arrival and service rates. Note that the
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queueing model described in Section 4.3.1 can also be viewed as a processor sharing

queue; see the paper by [71] for an overview of processor sharing queue. [72] study

the M/M/1 queue with processor sharing discipline, and [73] explore the G/M/1

queue with processor sharing discipline. [74] investigate the problem of predicting the

response times in M/G/1 processor-sharing queue. [75] provide an approximation for

the waiting time distribution of M/M/n processor-sharing queue.

Dynamic control of queueing systems. Another related stream of literature is

dynamic control of queueing systems. Excellent surveys are provided by [76] and [77].

A rich body of research has studied the admission control, control of service rate and

both. For example, [78] study the admission control of n job classes and multiple

servers, and [79] consider the admission control for a two-station tandem queue loss

model. [80] study a queueing system with removable servers and state-dependent

arrival rates. They characterize the conditions that the optimal number of servers is

increasing in the total number of customers. [81] consider a single-server queue with

Poisson arrivals and state-dependent service rates. The objective is to minimize the

long run average cost by controlling the service rate. There has been many extensions

of the basic model, for example, [82] add pricing decision into the control of anM/M/1

queue, and [83] study the problem of pricing and admission control when the arrival

and service rates are periodically varying and the customers are sensitive to the price

for entering the system. Instead of making the decision of accepting or rejecting the

arriving customer, [84] study the dynamic routing decision (which station should the

arrival be sent to) in a two-station queueing network. They show the optimal routing

decision is threshold type policy and can be characterized by a monotone switching

curve in both finite horizon and long run average cost problems. Their model and

queueing network are closely related to those described in Section 4.3, which also focus

on the routing between two stations. A key difference between them is the service

process for each station. The model we adopt use the infinite-server queue with state

dependent service rate function, which is more general than the single-server setting

with constant service rate in [84]. As mentioned in [85], extending the optimality
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of threshold routing policy in [84] to a multi-sever queueing system remains an open

question. Therefore, it would be challenging to characterize the optimal routing policy

in a multi-class, infinite-server setting. The survey paper by [85] provides an excellent

overview of the results in controlled queueing system.

Clinical diagnostic decision making. Diagnostic decision making has been stud-

ied extensively in the medical literature. There are two common approaches to diag-

nosis. The first is non-analytic approach, like pattern recognition (e.g., [86], [87], [88],

[89], [90], [91]). The second is the probabilistic approach that different tests are con-

ducted to estimate the probability of having the condition (e.g., [92], [93], [94], [8]).

Most of these studies are developed in a clinically controlled environment, without

considering the interactions with existing workflows. The model described in Sec-

tion 4.3 is related to the second approach, in which the probability of having the

condition is updated after each test. Moreover, the operational effects is considered

into the diagnostic decision making in the model. Another important set of questions

related is evaluating the new diagnostic tests. [95] provides a general framework for

clinical evaluation on diagnostic technologies, and the standards for determining the

new test accuracy are well studied in [6], [7], [8].

4.3 Modeling Framework for Test Routing

In this section, we describe the underlying patient flow model and the test routing

problem based on the framework developed by [1].

4.3.1 Queueing Model

J classes of patients are considered in the model, capturing different levels of

patient risk of having a suspected disease. Without loss of generality, the pretest

probability of having the disease is assumed to be the lowest for class 1 patients,

and the highest for class J patients, i.e., p1
0 < p2

0 < · · · < pJ0 , where pj0 is the pretest

probability for class j patients. There are two stations in the queueing model, in which
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the first station represents an “imperfect test”, and the second station represents a

“perfect test.” Here, an imperfect test in the model means the test may give a false

positive or a false negative result, while a perfect test does not. Each patient may go

through station 1 or 2 or both, and then leave the system. Figure 4.1 illustrates the

basic patient flow.

Station 1

(𝑥1
0, 𝑥1

1 , … , 𝑥1
𝐽
)

Station 2 
(𝑥2

0, 𝑥2
1)

Arrival 
Routing

Arrival: 
J class patients (1, … , 𝐽)
Poisson Process

Departure

Departure

Departure
Routing

External Arrival

External Arrival

Fig. 4.1.: Basic patient flow.

Arrival process. Arrivals for each of the J classes form independent Poisson pro-

cesses. The Poisson process is assumed to be time homogeneous for ease of exposition,

but the modeling framework developed in [1] can be extended to incorporate time-

varying arrival rate. For patient class j, the arrival rate is denoted as λj, j = 1, . . . , J .

In addition to the patients with the suspected disease, patients who may use each

station for other reasons are also considered in the model. These exogenous arrivals

to station i also follow a Poisson process with rate λex
i , i = 1, 2.

Service process. In the framework developed by [1], each station is modeled as

processor sharing queue, with the total service rate being characterized as µi(si),

and si being the total number of patients in service at station i. A “uniform” shar-

ing mechanism is considered. That is, each patient’s service rate is µi(si)/si. Two

assumptions are made: (i) the total service rate µi(si) is non-decreasing in si; (ii)

individual patient’s service rate µi(si)/si is non-increasing in si.
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Note that the processor sharing queue can be viewed as an infinite-server queue

with state-dependent service rate function µi(si)/si for each patient. Infinite-server

queues have been demonstrated in the literature as flexible and general enough to

model complicated healthcare systems, while approximating the actual system per-

formance reasonably well [66], [96]. In special cases where µi(si) = c as a constant,

the processor sharing queue corresponds to an M/M/1 queue with service rate c;

when µi(si) = csi, the processor sharing queue corresponds to an M/M/∞ queue

with service rate c (for each patient).

4.3.2 MDP Formulation

Based on the developed framework in [1], we describe an infinite-horizon, dis-

counted cost, continuous-time MDP model for the test routing decision problem.

The state space, action space, cost structure, and objective function are introduced

below.

State Space

The system state is captured with a (J + 3) - dimensional vector

x = (x0
1, x

1
1, . . . , x

J
1 , x

0
2, x

1
2).

• x0
1 and x0

2 denotes the number of patients from external arrivals in station 1 and

station 2, respectively.

• xj1 denotes the number of class j patients in station 1, j = 1, . . . , J .

• x1
2 denotes the total number of patients (excluding external arrivals) in station

2. Patient classes are not differentiated in station 2, the reason for which will

be explained in Section 4.3.2 after we introduce the cost structure.
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For notational convenience, we denote

x1 = (x0
1, x

1
1, . . . , x

J
1 ), x2 = (x0

2, x
1
2), (4.1)

s1 =
J∑
j=0

xj1, s2 = x0
2 + x1

2. (4.2)

For analytical tractability, an upper bound for the number of patients in each station

is imposed, denoted as (su1 , s
u
2). Once si = sui , no more patients can be routed into

that station. When the upper bounds are reached in both stations, the next arriving

patient will be rejected with a penalty cost mj if the arrival is from class j.

Action Space

The MDP action is triggered by a patient arrival or a patient departure (from

station 1). At an arrival event, an arrival routing decision is made, that depends on

which class j the arriving patient belongs to. The arrival action is given by

ajarr(x) =


0 if the arriving patient is rejected ,

1 if the arriving patient is routed to station 1,

2 if the arriving patient is routed to station 2.

There are no routing decision for patients from the external arrivals, and they are

admitted as long as there are available spots (i.e., si < sui ). In the case that si = sui ,

the external patient will be rejected with a penalty of m0
i .

When a class j patient departs from station 1, a departure routing decision is

made about whether the patient needs additional testing at station 2. Because the

test at station 1 is imperfect, the departure routing decision depends on the test result

from station 1. The decision is denoted as aj,+dep(x) (aj,−dep(x)) if the patient receives a

positive (negative) test result at station 1. For r = +,−,

aj,rdep(x) =

 1 if the patient is directly discharged from the system,

2 if the patient is routed to station 2.
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External patients finishing tests in each station and patients finishing tests in station

2 directly depart from the system.

Cost Structure

Two types of costs are considered: individual-level diagnostic cost and system-

level congestion cost.

Diagnostic cost. Diagnostic cost is measured by the accuracy of the diagnostic

result. Define cFN
i , cTN

i , cFP
i , cTP

i as the cost associated with a false negative, true neg-

ative, false positive, and true positive result, respectively. The post-test probability

needs to be specified as follows to calculate these diagnostic costs.

The test results in both stations could be either positive or negative, with proba-

bility bj,+i being positive given the class j patient has the suspected disease, and bj,−i

being negative given the class j patient does not have the suspected disease, i = 1, 2.

Based on the pretest probability pj0 for class j patients and the test result at station

i, the post-test probability is updated as the following: If the test result is positive,

p̃j,+i =
pj0 × b

j,+
i

pj0 × b
j,+
i + (1− pj0)× (1− bj,−i )

, i = 1, 2; j = 1, . . . , J. (4.3)

If the test result is negative,

p̃j,−i =
pj0 × (1− bj,+i )

pj0 × (1− bj,+i ) + (1− pj0)× (bj,−i )
, i = 1, 2; j = 1, . . . , J. (4.4)

Thus, the expected diagnostic cost for class j patient after a test at station i is

cj,+i = p̃j,+i cTP
i + (1− p̃j,+i )cFP

i , (4.5)

cj,−i = p̃j,−i cFN
i + (1− p̃j,−i )cTN

i . (4.6)

For station 2, we have that bj,+2 = bj,−2 = 1 and p̃j,+2 = 1 (p̃j,−2 = 0) if the test

result is positive (negative). Thus, the expression of the expected cost after a test at

station 2 can be simplified as

cj,+2 = cTP
2 , cj,−2 = cTN

2 .

The following assumption is made about the diagnostic costs.
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Assumption 1 cFNi ≥ cTN
i , cFPi ≥ cTP

i . For station 2, cTP
2 = cTN

2 .

For the first and second inequalities in this assumption, it is assumed that the

false-negative (false-positive) cost is higher than the cost of a true-negative (true-

positive), based on medical literature. Making the second assumption that cTP
2 = cTN

2

is to reduce the dimensionality by eliminating the need to differentiate by patient

class in the state space at station 2. For notational convenience, the superscript is

omitted in the station 2 diagnostic costs and denote cTP
2 , cTN

2 as c2.

Congestion cost. To capture the workload impact of routing patients into each

station, the unit time holding cost hi(xi) is considered. hi(xi) is assumed to be

increasing in each coordinate of xi. For example, hi(xi) =
∑

j hjxj corresponds to a

linear holding cost setting; hi(xi) =
∑

j hjx
2
j corresponds to quadratic holding cost

for each class j patient.

Total cost at time t. The total cost at time t is given by

g(X(t))

= h1(X1(t)) + h2(X2(t)) + c2Y2(t) +
J∑
j=1

(
Y j,+

1 (t)cj,+1 + Y j,−
1 (t)cj,−1

)
, (4.7)

where the first two terms capture the holding costs at each station, and the other

terms capture the diagnostic cost at each station. The indicator Y2(t) = 1 denotes

that a test is finished at station 2 at time t (and 0 otherwise); the indicator Y j,+
1 (t) = 1

(Y j,−
1 (t) = 1) denotes that a test is finished at station 1 at time t for a class j patient

with positive (negative) result and this patient directly leaves the system.

Discounted cost formulation. The model is formulated as an infinite-horizon,

discounted cost MDP. Specifically, given the state at time 0 is x(0), the optimal total

discounted cost Vα(x(0)) follows

Vα(x(0)) = inf
π
E

∫ ∞
0

e−αtg(X(t))dt,

where α is the discount rate.
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Bellman Equation

Since the underlying system dynamics is in continuous time, the uniformization

technique is applied to discretize the problem. Recall that the number of patients

in station i is bounded by sui , and the service rate function µi(·) is assumed to be

increasing, then there exists a finite upper bound µ̄i = µi(s
u
i ) for the service rate

function µi(·). Without loss of generality, we assume µ̄1 + µ̄2 + λ+ λex
1 + λex

2 +α = 1.

The optimality equation can be written using event-based dynamic programming

[85], with event operators Tk. This approach is often useful for proving structural

properties.

Vα(x)

= h1(x1) + h2(x2) + λex
1 TA0

1
Vα(x) + λex

2 TA0
2
Vα(x) + µ2(s2)TD2Vα(x)

+
J∑
j=1

λjTARjVα(x) + µ1(s1)TD1Vα(x)

+(µ̄1 − µ1(s1))Vα(x) + (µ̄2 − µ2(s2))Vα(x). (4.8)

Next, we specify each of the event operators, Tk. For a function f : ZJ+3
+ → R,

i = 1, 2, j = 1, . . . , J ,
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TA0
i
f(x) =

 f(x+ e0
i ), if si < sui ,

m0
i + f(x), otherwise.

(4.9)

TARjf(x) =



min{f(x+ ej1), f(x+ e1
2)}, if s1 < su1 , s2 < su2 ,

f(x+ ej1), if s1 < su1 , s2 = su2 ,

f(x+ e1
2), if s1 = su1 , s2 < su2 ,

mj + f(x), if s1 = su1 , s2 = su2 .

(4.10)

TD1f(x) =



∑J
j=1 x

j
1/s1(lj,+1 TDRj,+

1
f(x) + lj,−1 TDRj,−

1
f(x))

+x0
1/s1TD0

1
f(x), if s1 > 0,

0, if s1 = 0.

(4.11)

TD2f(x) =

 x0
2/s2TD0

2
f(x) + x1

2/s2TD1
2
f(x), if s2 > 0,

0, if s2 = 0.

(4.12)

TDRj,r
1
f(x) =


min{cj,r1 + f(x− ej1), f(x− ej1 + e1

2)}, if xj1 > 0, s2 < su2 ,

cj,r1 + f(x− ej1), if xj1 > 0, s2 = su2 ,

0, otherwise,

(4.13)

(r = +,−).

TD0
1
f(x) = f

(
(x− e0

1)+
)
. (4.14)

TDk
2
f(x) = c2Ixk2>0 + f

(
(x− ek2)+

)
, k = 0, 1. (4.15)

Here, eji = (0, . . . , 1, . . . 0) is the unit vector with a 1 in the xji coordinate and zero else-

where. These unit vectors indicating adding or removing a single patient from their

current position in the system. In (4.14) and (4.15), f(x+) = f((x0
1)+, . . . , (x1

2)+),

where (xji )
+ = max{xji , 0}. l

j,+
i (lj,−i ) in (4.11) denotes the likelihood of the test result

being positive (negative), which follows

lj,+i = pj0 × b
j,+
i + (1− pj0)× (1− bj,−i ), i = 1, 2,
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and lj,−i = 1− lj,+i .

The third to seventh terms in Equation (4.8) denote the action (including do

nothing) when one of these events happens: external arrival to station i, denoted as

TA0
i
; service completion in station 2 with rate µ2(s2), denoted as TD2 ; arrival routing

for a class j patient, denoted as TARj ; service completion in station 1 with rate µ1(s1),

denoted as TD1 . The last two terms in Equation (4.8) are dummy transitions.

4.4 Structural Properties

4.4.1 Threshold Policy in the Single-class Case

We present the proof for the optimality of a threshold policy when there is only one

class of patients, i.e., J = 1. For ease of exposition, the external arrivals are omitted

here. In this case, the state is the total number of patients in each station, denoted

as (s1, s2) (see the definition of si in Equation (4.2)). The following assumptions are

necessary to prove Theorem 5.

Assumption 2 The service rate function µi(si) follows

µi(si) =

 0, if si = 0,

µi, otherwise.

(4.16)

Assumption 3 There is no upper limit for the number of patients in each station,

i.e., su1 =∞, su2 =∞.

Assumption 4 The holding cost function hi(si) is increasing and convex in si, i =

1, 2.

Before we present the formal proof, we need the following lemmas first.

Lemma 8 Suppose J = 1, Assumption 3 is satisfied. Define operator T on function

f : Z2
+ → R as

Tf(x) =

 l+1 TDR+
1
f(x) + l−1 TDR−

1
f(x) if x1 > 0;

f(x) if x1 = 0,
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where TDRr
1

is defined in (4.13). If f(x) ∈ I ∩Super∩SuperC and f(1, 0)−f(0, 0) ≥

max{c+
1 , c

−
1 } is satisfied, then Tf(x) ∈ I ∩ Super ∩ SuperC.

Proof. Note that when x1 > 0 and Assumption 3 is satisfied, the operator TDRr
1

has the same form as TCA(2) defined in the Definition 5.2 in [85]. Specifically,

TDRr
1
f(x) = TCA(2)f(x− e1), r = +,−.

From Theorem 7.2 in [85], TCA(2) can preserve the property of I∩Super∩SuperC,

i.e., TCA(2)f(x) ∈ I ∩ Super ∩ SuperC if f(x) ∈ I ∩ Super ∩ SuperC. Therefore, we

are left with proving the result when x1 = 0. In this case,

Tf(x+ e1) = l+1 min{c+
1 + f(x), f(x+ e2)}+ l−1 min{c−1 + f(x), f(x+ e2)}

≥ f(x)

= Tf(x),

where the first inequality comes from the induction that f(x) ∈ I and c+
1 ≥ 0, c−1 ≥ 0.

Note that Tf(x+ e2) = f(x+ e2) ≥ f(x) = Tf(x). Thus, we prove Tf(x) ∈ I when

x1 = 0.

We next prove Tf(x) ∈ Super when x1 = 0, which is equivalent to prove the

relation Tf(x+ e1 + e2) + Tf(x) ≥ Tf(x+ e1) + Tf(x+ e2). Since TDR+
1

and TDR−
1

have the same form, it is easy to observe that proving the above relation can be

reduced to prove

TDR+
1
f(x+ e1 + e2) + f(x) ≥ TDR+

1
f(x+ e1) + f(x+ e2).

We need to consider two cases to prove the above relation. If TDR+
1
f(x+e1 +e2) =

c+
1 + f(x+ e2), then

TDR+
1
f(x+ e1 + e2) + f(x) = c+

1 + f(x+ e2) + f(x)

≥ min{c+
1 + f(x), f(x+ e2)}+ f(x+ e2)

= TDR+
1
f(x+ e1) + f(x+ e2),
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where the first inequality follows from the minimum operator.

If TDR+
1
f(x+ e1 + e2) = f(x+ 2e2), then

TDR+
1
f(x+ e1 + e2) + f(x) = f(x+ 2e2) + f(x)

≥ 2f(x+ e2)

≥ min{c+
1 + f(x), f(x+ e2)}+ f(x+ e2)

= TDR+
1
f(x+ e1) + f(x+ e2).

To see the first inequality, we note that f(x) is component-wise convex in x1 and

x2 according to (6.2) in [85], which is Super(i, j) ∩ SuperC(i, j) ⊂ Cx(i). Thus, we

prove Tf(x) ∈ Super when x1 = 0.

The last part of the proof is to show Tf(x) ∈ SuperC when x1 = 0, which is

equivalent to prove Tf(x+ e2)− Tf(x+ e1) is decreasing in x1 and increasing in x2.

Since TDR+
1

and TDR−
1

have the same form, proving TDR+
1
f(x+ e2)−TDR+

1
f(x+ e1) ≥

TDR+
1
f(x+ e2 + e1)− TDR+

1
f(x+ 2e1) implies Tf(x+ e2)− Tf(x+ e1) is decreasing

in x1.

We need to consider two cases to prove the above relation. If TDR+
1
f(x + 2e1) =

c+
1 + f(x+ e1), then

TDR+
1
f(x+ e2) + TDR+

1
f(x+ 2e1)

= f(x+ e2) + c+
1 + f(x+ e1)

≥ c+
1 + f(x+ e2) + c+

1 + f(x)

≥ min{c+
1 + f(x+ e2), f(x+ 2e2)}+ min{c+

1 + f(x), f(x+ e2)}

= TDR+
1
f(x+ e2 + e1) + TDR+

1
f(x+ e1),

where the first inequality comes from the convexity of f(x) in x2 and the assumption

that f(1, 0)− f(0, 0) ≥ max{c+
1 , c

−
1 }, thus f(1, x2)− f(0, x2) ≥ c+

1 for any x2 ≥ 0.
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If TDR+
1
f(x+ 2e1) = f(x+ e1 + e2), then

TDR+
1
f(x+ e2) + TDR+

1
f(x+ 2e1)

= f(x+ e2) + f(x+ e1 + e2)

≥ f(x+ e2) + c+
1 + f(x+ e2)

≥ min{c+
1 + f(x+ e2), f(x+ 2e2)}+ min{c+

1 + f(x), f(x+ e2)}

= TDR+
1
f(x+ e2 + e1) + TDR+

1
f(x+ e1).

Similarly, proving TDR+
1
f(x + 2e2) − TDR+

1
f(x + e1 + e2) ≥ TDR+

1
f(x + e2) −

TDR+
1
f(x+ e1) can imply that Tf(x+ e2)− Tf(x+ e1) is increasing in x2. We need

to consider two cases to prove the above relation.

If TDR+
1
f(x+ e1) = c+

1 + f(x), then

TDR+
1
f(x+ 2e2) + TDR+

1
f(x+ e1) = f(x+ 2e2) + c+

1 + f(x)

≥ f(x+ e2) + c+
1 + f(x+ e2)

≥ TDR+
1
f(x+ e2) + TDR+

1
f(x+ e1 + e2),

where the first inequality follows from the convexity of f(x) in x2.

If TDR+
1
f(x+ e1) = f(x+ e2), then

TDR+
1
f(x+ 2e2) + TDR+

1
f(x+ e1) = f(x+ 2e2) + f(x+ e2)

≥ TDR+
1
f(x+ e2) + TDR+

1
f(x+ e1 + e2),

where the inequality comes from the minimum operator in TDR+
1
f(x+e1 +e2). There-

fore, we can conclude the result in this lemma. �

Lemma 9 For the departure operator T on function f : Z2
+ → R, defined as

Tf(x) =

 c2 + f(x− e2) if x2 > 0;

f(x) if x2 = 0.

If f(x) ∈ I ∩ Super ∩ SuperC and f(0, 1) − f(0, 0) ≥ c2 is satisfied, then Tf(x) ∈

I ∩ Super ∩ SuperC.
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Proof. Note that when x2 > 0, the results follow directly from induction. Thus,

we focus on the proof when x2 = 0. It is easy to see that Tf(x + e1) ≥ Tf(x) by

induction, and

Tf(x+ e2) = c2 + f(x) ≥ Tf(x),

where the inequality comes from the nonnegativity of c2. Therefore, Tf(x) ∈ I when

x2 = 0.

It is easy to see that Tf(x + e1 + e2) + Tf(x) = Tf(x + e1) + Tf(x + e2) when

x2 = 0, which implies Tf(x) ∈ Super when x2 = 0.

The last part of the proof is to show Tf(x) ∈ SuperC when x2 = 0, which consists

of proving Tf(x+e2)−Tf(x+e1) is decreasing in x1 and increasing in x2. Note that

Tf(x+ e2)− Tf(x+ e1) = c2 + f(x)− f(x+ e1)

≥ c2 + f(x+ e1)− f(x+ 2e1),

where the inequality comes from the convexity of f(x) in x1.

Next is to prove that Tf(x+ e2)− Tf(x+ e1) is increasing in x2.

Tf(x+ 2e2)− Tf(x+ e1 + e2) = c2 + f(x+ e2)− c2 − f(x+ e1)

≥ c2 + f(x)− f(x+ e1)

= Tf(x+ e2)− Tf(x+ e1),

where the inequality comes from the convexity of f(x) in x1 and the assumption that

f(0, 1)− f(0, 0) ≥ c2, thus f(x1, 1)− f(x1, 0) ≥ c2 for any x1 ≥ 0. �

With the above three lemmas, we can now present the proof for the optimality of

the threshold policy.

Theorem 5 (Threshold policy) Suppose J = 1, Assumption 2, 3 and 4 are satis-

fied, and h1(1) ≥ (1− λ− µ2) max{c+
1 , c

−
1 }, h2(1) ≥ αc2.

1. [Arrival routing.] For a given s1, there exists a threshold a(s1), as a function of

s1, such that an arriving patient is routed to station 2 if and only if s2 ≤ a(s1).
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2. [Departure routing.] For a given s1, there exist thresholds d+(s1) and d−(s1)

such that a patient with a positive (negative, respectively) test results at station

1 is routed to station 2 if and only if s2 ≤ d+(s1) (s2 ≤ d−(s1), respectively).

3. [Action structure.] a(s1) is increasing in s1, and d+(s1) and d+(s1) are decreas-

ing in s1.

Proof of Theorem 5. Let us first rewrite the optimality equation (4.8) when J = 1

and µi(si) = µi, i = 1, 2.

Vn(x) = h1(s1) + h2(s2) + λTARVn+1(x) + µ1TD1Vn+1(x) + µ2TD2Vn+1(x)

+µ1Is1=0Vn+1(x) + µ2Is2=0Vn+1(x), (4.17)

where TAR, TD1 and TD2 are defined in (4.10), (4.11) and (4.12), respectively. Define

V1 to be the set of functions f ∈ R+ on x = (s1, s2) ∈ Z2
+, such that:

1. f(x) ∈ I, i.e., f(x) is increasing in s1 and s2;

2. f(x) ∈ Super, i.e., f(x) is supermodular in (s1, s2);

3. f(x) ∈ SuperC, i.e., f(x+ e2)− f(x+ e1) is decreasing in s1 and increasing in

s2.

Note that if Vn(x) ∈ V1, the results of the switching curves can be derived accord-

ingly. The result that the arrival routing switching curve sn(s1) is increasing in s1

can be immediately derived from the property of SuperC. According to (6.2) in [85],

which is Super(i, j)∩SuperC(i, j) ⊂ Cx(i), we can get that Vn(x) is also component-

wise convex in s1 and s2 if Vn(x) ∈ V1. Therefore Vn(x − e1 + e2) − Vn(x − e1) is

increasing in s2 because of the convexity in s2, and increasing in s1 due to the super-

modularity in (s1, s2), which implies the departure routing switching curves dn(s1, c)

are decreasing in s1. Thus, we are left with proving Vn(x) ∈ V1 by induction.

Suppose Vn+1(x) ∈ V1, Vn+1(1, 0) − Vn+1(0, 0) ≥ max{c+
1 , c

−
1 }, and Vn+1(0, 1) −

Vn+1(0, 0) ≥ c2. We next prove that h1(s1) + h2(s2) ∈ V1. The monotonicity in s1
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and s2 immediately comes from our assumption that hi(si) is increasing in si, and

the supermodularity follows from h1(s1) + h2(s2) is separable in s1 and s2. For the

proof of “SuperC ′′, note that

h1(x+ e2) + h2(x+ e2)− h1(x+ e1)− h2(x+ e1)

= h2(s2 + 1)− h2(s2)− (h1(s1 + 1)− h1(s1)),

which is increasing in s2 (respectively, decreasing in s1) due to the convexity in s2

(respectively, s1), thus h1(s1) +h2(s2) ∈ SuperC, and consequently h1(s1) +h2(s2) ∈

V1.

Applying Lemma 8, 9, and Theorem 7.2 in [85], we get Vn(x) ∈ V1. To finish the

induction, it remains to show that Vn(1, 0) − Vn(0, 0) ≥ max{c+
1 , c

−
1 } and Vn(0, 1) −

Vn(0, 0) ≥ c2.

Vn(1, 0)− Vn(0, 0)

= h1(1) + λmin{Vn+1(2, 0), Vn+1(1, 1)} − λmin{Vn+1(1, 0), Vn+1(0, 1)}

+µ1l
+
1 min{Vn+1(0, 0) + c+

1 , Vn+1(0, 1)}+ µ1l
−
1 min{Vn+1(0, 0) + c−1 , Vn+1(0, 1)}

−µ1Vn+1(0, 0) + µ2Vn+1(1, 0)− µ2Vn+1(0, 0)

≥ h1(1) + (λ+ µ2)(Vn+1(1, 0)− Vn+1(0, 0))

≥ max{c+
1 , c

−
1 }.

To see the first inequality, we note that Vn+1(x) ∈ V1, therefore min{Vn+1(0, 0) +

cr1, Vn+1(0, 1)} − Vn+1(0, 0) ≥ 0, for r = +,−, and

min{Vn+1(2, 0), Vn+1(1, 1)} −min{Vn+1(1, 0), Vn+1(0, 1)}

≥ min{Vn+1(2, 0)− Vn+1(1, 0), Vn+1(1, 1)− Vn+1(0, 1)}

≥ Vn+1(1, 0)− Vn+1(0, 0).
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The proof for Vn(0, 1)− Vn(0, 0) ≥ c2 is similar.

Vn(0, 1)− Vn(0, 0)

= h2(1) + λmin{Vn+1(1, 1), Vn+1(0, 2)} − λmin{Vn+1(1, 0), Vn+1(0, 1)}

+µ1(Vn+1(0, 1)− Vn+1(0, 0)) + µ2c2

≥ h2(1) + (λ+ µ1)(Vn+1(0, 1)− Vn+1(0, 0)) + µ2c2

≥ c2.

Therefore we can conclude that for the optimal value function Vα, i.e.,

Vα(x) = lim
n→∞

Vn(x),

we have Vα(x) ∈ V1. �

The optimal policy characterized in Theorem 5 is a threshold routing policy. Un-

der this optimal policy, for a given number of patients in station 1, s1, there exists

threshold value a(s1) such that the arriving patient is routed to station 2 only when

the number of patients in station 2, s2, is less than the threshold a(s1). Similarly,

there exist two threshold values d+(s1) and d−(s1) for the departure routing decision.

These thresholds depend on the state s1, which are referred as the switching curves.

The arrival routing switching curve a(s1) is increasing in s1. This implies that as s1

increases, a new arrival is more likely to be routed to station 2, which is intuitive. The

departure routing switching curves d+(s1) and d+(s1) are decreasing in s1, which is

less intuitive. A patient after station 1 test is less likely to get a second test at station

2 when s1 is large, because under a large s1, more future arrivals will be routed to

station 2 (from the arrival routing), and the optimal departure action subsequently

routes fewer departures to station 2 to alleviate the congestion.

Note that the assumptions in Theorem 5 are made to prove the optimality of the

threshold policy. In next subsection, those assumptions are relaxed and we present

the structural properties of a general multi-class case.
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4.4.2 Dominance among Classes in the Multi-class Case

Note that the service rate function in Assumption 2 in Section 4.4.1 is a special

case of the processor sharing queue. This is a necessary assumption because, even

in a single-class problem, the optimality of the threshold routing policy remains an

open question when using other service rate functions [85]. Thus, it would be even

more challenging to characterize the optimal routing policy in the multi-class setting.

Instead, we present a dominance among different classes of patients in the optimal

policy in Theorem 6.

To begin with, V is defined to be the set of functions f ∈ R+ on x ∈ ZJ+3
+ , such

that:

1. f(x) ∈ I(x0
2) ∩ I(x1

2), i.e., f(x) is increasing in x0
2 and x1

2;

2. f(x) ∈ UD(xj1), for j = 0, . . . , J − 1, i.e., f(x+ ej1) ≤ f(x+ ej+1
1 ).

Define Ṽ to be the set of functions f ∈ R+ on x ∈ ZJ+3
+ , such that:

1. f(x) ∈ I(x0
2) ∩ I(x1

2), i.e., f(x) is increasing in x0
2 and x1

2.

2. f(x) ∈ UI(xj1), for j = 1, . . . , J − 1, i.e., f(x+ ej1) ≥ f(x+ ej+1
1 ).

3. f(x+ eJ1 ) ≥ f(x+ e0
1).

Lemma 10 Suppose the upper bounds su1 , su2 are finite.

1. Suppose mj ≥ supx |f(x + e0
2) − f(x + e1

2)|. If f(x) ∈ V, then TARjf(x) ∈ V,

j = 1, . . . , J ;

2. Suppose mj ≥ supx |f(x + e0
2) − f(x + e1

2)|. If f(x) ∈ Ṽ, then TARjf(x) ∈ Ṽ,

j = 1, . . . , J ,

where TARj is defined in (4.10).
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Proof. We prove statement (1) using induction, and the proof of statement (2) is

similar. To begin with, We prove that TARj ∈ I(e1
2) and TARj ∈ I(e0

2) for j = 1, . . . , J .

Depending on the state x1 and x2, we need to consider four cases.

Case 1: s1 < su1 and s2 + 1 < su2 . For k = 1, 2,

TARjf(x+ ek2) = min{f(x+ ej1 + ek2), f(x+ e1
2 + ek2)}

≥ min{f(x+ ej1), f(x+ e1
2)}

= TARjf(x),

where the inequality comes from the induction that f(x) is increasing in xk2 and the

minimum operator.

Case 2: s1 = su1 and s2 +1 < su2 . For k = 1, 2, using a similar induction argument

as in the first case, we can immediately get

TARjf(x+ ek2) = f(x+ e1
2 + ek2) ≥ f(x+ e1

2) = TARjf(x).

Case 3: s1 < su1 and s2 + 1 = su2 . For k = 1, 2, using similar arguments as in the

first case, we have

TARjf(x+ ek2) = f(x+ ej1 + ek2) ≥ min{f(x+ ej1), f(x+ e1
2)} = TARjf(x).

Case 4: s1 = su1 and s2 + 1 = su2 . We prove TARjf(x) ∈ I(e1
2) first, which follows

from

TARjf(x+ e1
2) = mj + f(x+ e1

2) ≥ f(x+ e1
2) = TARjf(x).

The inequality comes from the nonnegativity of mj.

To prove TARjf(x) ∈ I(e0
2), we note that

TARjf(x+ e0
2) = mj + f(x+ e0

2) ≥ f(x+ e1
2) = TARjf(x),

where the inequality comes from the assumption that mj ≥ supx |f(x+e0
2)−f(x+e1

2)|.

Therefore, we prove that TARj ∈ I(e1
2) ∩ I(e0

2). Next step is to show TARj ∈ UD(xk1)

for k = 0, . . . , J − 1. We need to consider four cases: (1)s1 + 1 < su1 , s2 < su2 ;
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(2)s1 + 1 = su1 , s2 < su2 ; (3)s1 + 1 < su1 , s2 = su2 ; (4)s1 + 1 = su1 , s2 = su2 . Each case

follows via similar arguments as those in the proof of TARj ∈ I(e1
2) ∩ I(e0

2), which we

omit for brevity. �

Lemma 11 Define operator T on function f : ZJ+3
+ → R as Tf(x) = µ2(s2)TD2f(x)+

(µ̄2 − µ2(s2))f(x), where TD2 is defined in (4.12).

1. If f(x) ∈ V, then Tf(x) ∈ V;

2. If f(x) ∈ Ṽ, then Tf(x) ∈ Ṽ,

Proof. We exhibit the proof of statement (1), and that of statement (2) is similar.

To prove statement (1), we first show that Tf(x) is increasing in x0
2. If s2 > 0,

Tf(x+ e0
2)− Tf(x)

=
µ2(s2 + 1)

s2 + 1

(
(x0

2 + 1)TD0
2
f(x+ e0

2) + x1
2TD1

2
f(x+ e0

2)
)

+ (µ̄2 − µ2(s2 + 1))f(x+ e0
2)

−µ2(s2)

s2

(
x0

2TD0
2
f(x) + x1

2TD1
2
f(x)

)
+ (µ̄2 − µ2(s2))f(x)

≥
(
µ2(s2 + 1)(x0

2 + 1)

s2 + 1
− µ2(s2)x0

2

s2

)
TD0

2
f(x+ e0

2)

+

(
µ2(s2 + 1)

s2 + 1
− µ2(s2)

s2

)
x1

2TD1
2
f(x) + (µ2(s2)− µ2(s2 + 1))f(x)

≥ (µ2(s2 + 1)− µ2(s2))(TD0
2
f(x+ e0

2)− f(x))

≥ 0.

Note that TD0
2
f(x + e0

2) ≥ TD0
2
f(x) and TD1

2
f(x + e0

2)) ≥ TD1
2
f(x) can be proved by

induction, and thus we can get the first inequality. To get the second inequality, we

first observe that

TD0
2
f(x+ e0

2) = c2 + f(x) ≥ c2Ix12>0 + f((x− e1
2)+) = TD1

2
f(x).

This observation together with the assumption that µ2(s2)/s2 is nonincreasing in s2

suggest the second inequality. The third inequality comes from the assumption that

µ2(s2) is nondecreasing in s2 and the relation that TD0
2
f(x+ e0

2) = c2 + f(x) ≥ f(x).
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If s2 = 0, using similar arguments, we have

Tf(x+ e0
2)− Tf(x)

= µ2(1)TD0
2
f(x+ e0

2) + (µ̄2 − µ2(1))f(x+ e0
2)− µ̄2f(x)

≥ µ2(1)(TD0
2
f(x+ e0

2)− f(x)) + (µ̄2 − µ2(1))(f(x+ e0
2)− f(x))

≥ 0.

Therefore we prove that Tf(x) is increasing in x0
2. Note that x0

2 and x1
2 are symmetric

in the operator T , thus the proof of Tf(x) is increasing in x1
2 can be established in

a similar way. The remaining proof of Tf(x) ∈ V is to show Tf(x) ∈ UD(xj1), for

j = 0, . . . , J − 1, which follows directly from the induction argument, and we omit

the rest proof for brevity. �

Lemma 12 Suppose the expected diagnostic costs defined in (4.5) and (4.6) satisfy

(i) cj,+1 ≥ cj,−1 ;

(ii) lj,−1 cj,−1 is increasing in j;

(iii) lj,+1 cj,+1 + lj,−1 cj,−1 is increasing in j,

for j = 1, . . . , J . Define operator T on function f : ZJ+3
+ → R as Tf(x) =

µ1(s1)TD1f(x) + (µ̄1 − µ1(s1))f(x), where TD1 is defined in (4.11). If f(x) ∈ V,

then Tf(x) ∈ V.

Proof. Recall the definition of TD1 in (4.11), which is

TD1f(x) =


∑J

j=1 x
j
1/s1(lj,+1 TDRj,+

1
f(x) + lj,−1 TDRj,−

1
f(x)) + x0

1/s1TD0
1
f(x), if s1 > 0,

0, if s1 = 0,

where the operators TDRj,+
, TDRj,− and TD0

1
are defined in (4.13) and (4.14) respec-

tively. It is easy to prove that Tf(x) ∈ I(x0
2) ∩ I(x1

2) using induction, which we omit

for brevity.
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Next is to prove Tf(x) ∈ UD(j) for j = 1, . . . , J−1, i.e., Tf(x+ej+1) ≥ Tf(x+ej).

We first prove the result when j = 2, . . . , J − 1.

To compare each term between Tf(x + ej+1) and Tf(x + ej), we first prove the

following relation

xj1
s1 + 1

(
lj,+1 TDRj,+

1
f(x+ ej+1) + lj,−1 TDRj,−

1
f(x+ ej+1)

)
+
xj+1

1 + 1

s1 + 1

(
lj+1,+
1 TDRj+1,+

1
f(x+ ej+1) + lj+1,−

1 TDRj+1,−
1

f(x+ ej+1)

)
≥ xj1 + 1

s1 + 1

(
lj,+1 TDRj,+

1
f(x+ ej) + lj,−1 TDRj,−

1
f(x+ ej)

)
+
xj+1

1

s1 + 1

(
lj+1,+
1 TDRj+1,+

1
f(x+ ej) + lj+1,−

1 TDRj+1,−
1

f(x+ ej)

)
, (4.18)

which can be further broken down into proving the following three inequalities:

xj1T
′f(x+ ej+1) ≥ xj1T

′f(x+ ej) for T ′ = TDRj,+
1

and TDRj,−
1

; (4.19)

xj+1
1 T ′f(x+ ej+1) ≥ xj+1

1 T ′f(x+ ej) for T ′ = TDRj+1,+
1

and TDRj+1,−
1

; (4.20)

lj+1,+
1 TDRj+1,+

1
f(x+ ej+1) + lj+1,−

1 TDRj+1,−
1

f(x+ ej+1)

≥ lj,+1 TDRj,+
1
f(x+ ej) + lj,−1 TDRj,−

1
f(x+ ej). (4.21)

Applying the induction argument that f(x + ej+1) ≥ f(x + ej), we can obtain

inequalities (4.19) and (4.20). We next show the proof of (4.21) when s1 > 0, and it

is easy to check (4.21) holds when s1 = 0. We first consider the case when s2 < su2 ,

and (4.21) can be rewritten as

lj+1,+
1 min{f(x) + cj+1,+

1 , f(x+ eJ+2)}+ lj+1,−
1 min{f(x) + cj+1,−

1 , f(x+ eJ+2)}

≥ lj,+1 min{f(x) + cj,+1 , f(x+ eJ+2)}+ lj,−1 min{f(x) + cj,−1 , f(x+ eJ+2)}. (4.22)

We need to consider two cases to prove this inequality.
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Case 1: When the optimal departure routing decisions are aj,+dep(x+ej+1) = 1 and

aj,−dep(x+ ej+1) = 1,

lj+1,+
1 min{f(x) + cj+1,+

1 , f(x+ eJ+2)}+ lj+1,−
1 min{f(x) + cj+1,−

1 , f(x+ eJ+2)}

= lj+1,+
1 (f(x) + cj+1,+

1 ) + lj+1,−
1 (f(x) + cj+1,−

1 )

≥ f(x) + lj,+1 cj,+1 + lj,−1 cj,−1

≥ lj,+1 min{f(x) + cj,+1 , f(x+ eJ+2)}+ lj,−1 min{f(x) + cj,−1 , f(x+ eJ+2)},

where the first inequality comes from condition (iii), i.e., lj,+1 cj,+1 +lj,−1 cj,−1 is increasing

in j, and the second inequality comes from the minimum operator.

Case 2: Suppose aj,+dep(x+ ej+1) = 2 and aj,−dep(x+ ej+1) = 1.

lj+1,+
1 min{f(x) + cj+1,+

1 , f(x+ eJ+2)}+ lj+1,−
1 min{f(x) + cj+1,−

1 , f(x+ eJ+2)}

= lj+1,+
1 f(x+ eJ+2) + lj+1,−

1 (f(x) + cj+1,−
1 )

= f(x) + lj+1,+
1 (f(x+ eJ+2)− f(x)) + lj+1,−

1 cj+1,−
1

≥ f(x) + lj,+1 (f(x+ eJ+2)− f(x)) + lj,−1 cj,−1

≥ lj,+1 min{f(x) + cj,+1 , f(x+ eJ+2)}+ lj,−1 min{f(x) + cj,−1 , f(x+ eJ+2)}

where the first inequality comes from the assumption that lj+1,+
1 ≥ lj,+1 and the

induction that f(x) is increasing in x2, which together gives the inequality lj+1,+
1 (f(x+

eJ+2)− f(x)) ≥ lj,+1 (f(x+ eJ+2)− f(x)), and the assumption that lj+1,−
1 cj+1,−

1 (−) ≥

lj,−1 cj,−1 .

When aj,+dep(x+ ej+1) = 2 and aj,−dep(x+ ej+1) = 2, proving (4.22) is straightforward.

Since we assume that cj+1,+
1 ≥ cj+1,−

1 , the case when aj,+dep(x+ ej+1) = 1 and aj,−dep(x+

ej+1) = 2 is not possible in the optimal policy. Thus, we prove (4.22) when s2 < su2 .

Similar reasoning as in case 1 can be used to show (4.22) holds when s2 = su2 .
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It is easy to prove the following inequalities by induction,

lk,+1 TDRk,+
f(x+ ej+1) + lk,−1 TDRk,−f(x+ ej+1)

≥ lk,+1 TDRk,+
f(x+ ej) + lk,−1 TDRk,−f(x+ ej),

TD0
1
f(x+ ej+1) ≥ TD0

1
f(x+ ej),

(µ̄1 − µ1(s1))f(x+ ej+1) ≥ (µ̄1 − µ1(s1))f(x+ ej),

where k = 1, . . . , J( 6= j, j + 1). Therefore, combing (4.18), we can conclude Tf(x) ∈

UD(j) for j = 2, . . . , J − 1.

The last part is to prove Tf(x) ∈ UD(1), i.e., Tf(x+ e1) ≥ Tf(x+ e0). As in the

proof of Tf(x) ∈ UD(j) for j = 2, . . . , J − 1, it suffices to show that

l1,+1 TDR1,+
1
f(x+ e1) + l1,−1 TDR1,−

1
f(x+ e1) ≥ f(x) = TD0

1
f(x+ e0),

where the inequality follows from the nonnegativity of the diagnostic costs c1,+
1 and

c1,−
1 and the induction that f(x) is increasing in x2. Therefore, we prove Tf(x) ∈

UD(j) for j = 1, . . . , J − 1, and conclude the result that Tf(x) ∈ V . �

Theorem 6 Suppose test sensitivity bj,+1 and specificity bj,−1 are independent of j,

and the diagnostic costs satisfy

(i) cj,+1 ≥ cj,−1 , for j = 1, . . . , J , and

(ii) cFN1 (1− b+
1 ) ≥ cTN

1 b−1 , and

(iii) cFN1 (1− b+
1 ) + cTP

1 b+
1 ≥ cTN

1 b−1 + cFP1 (1− b−1 ).

Then,

1. aj1arr(x) ≤ aj2arr(x), for 1 ≤ j1 < j2 ≤ J .

2. aj,+dep(x) ≥ aj,−dep(x), for 1 ≤ j ≤ J .

Proof of Theorem 6. First note that the second result of this theorem can be

directly proved by cj,+1 ≥ cj,−1 . To prove the first result, we need to prove Vα(x) ∈ V

by induction, then the results can be implied by Vα(x) ∈ UD(xj1) for j = 0, . . . , J−1.



97

We first prove the following inequality using a sample path argument.

|Vα(x+ e0
2)− Vα(x+ e1

2)| <∞. (4.23)

We construct two processes on the same probability space. Process 1 begins at

state (x+ e0
2) and follows the optimal policy π, while process 2 starts at state (x+ e1

2)

and follows the same decision as process 1 for each event. Under this construction,

process 1 and 2 are “parallel” to each other until two following events occur:

• Process 1 is in state (x1, 1, x
1
2) and process 2 is in state (x1, 0, x

1
2+1) or (x1, 0, x

1
2).

Process 1 sees a service completion in station 2 from an external patient, and

it is not observed by process 2.

• Process 1 is in state (x1, x
0
2+1, 0) or (x1, x

0
2, 0) and process 2 is in state (x1, x

0
2, 1).

Process 2 sees a service completion in station 2 from a class 1 to J patient, and

it is not observed by process 1.

After both events happen, two processes couple and behave identically from this

time onward. Denote ∆ as the difference in cost between two processes before coupling

occurs, and we have E∆ = V π
α (x+e1

2)−Vα(x+e0
2). We observe that the cost differences

for events 1 and 2 are −c2 and c2 (modulo discounting effect) respectively. Other than

above two events, the cost difference only lies in the station 2 holding cost, which is

obviously finite. This implies ∆ <∞ pathwise. Therefore, we can conclude that

Vα(x+ e1
2)− Vα(x+ e0

2) ≤ E∆ <∞.

Using a similar argument, we can show Vα(x+e0
2)−Vα(x+e1

2) <∞, and complete

the proof for Equation (4.23).

Suppose Vα(x) ∈ V . We first show that TA0
1
Vα(x) ∈ V . We omit the proof for

TA0
1
Vα(x) ∈ I(x0

2) ∩ I(x1
2) since it can be easily proved by induction. Next we prove

that TA0
1
Vα ∈ UD(xj1), for j = 0, . . . , J − 1. When s1 + 1 < su1 , induction argument

immediately gives

TA0
1
Vα(x+ ej+1

1 ) = Vα(x+ ej+1
1 + e0

1) ≥ Vα(x+ ej1 + e0
1) = TA0

1
Vα(x+ ej1).



98

When s1 + 1 = su1 ,

TA0
1
Vα(x+ ej+1

1 ) = m0
1 + Vα(x+ ej+1

1 ) ≥ m0
1 + Vα(x+ ej1) = TA0

1
Vα(x+ ej1).

Thus we prove TA0
1
Vα(x) ∈ V .

Next we prove TA0
2
Vα(x) ∈ V . The proof of TA0

2
Vα(x) ∈ I(x0

2) and TA0
2
Vα(x) ∈

UD(j) for j = 0, . . . , J − 1 follow directly from induction argument, and we focus on

proving TA0
2
Vα(x) ∈ I(x1

2). When s2 + 1 < su2 , using induction that Vα(x) ∈ I(x1
2), we

have

TA0
2
Vα(x+ e1

2) = Vα(x+ e0
2 + e1

2) ≥ Vα(x+ e0
2) = TA0

2
Vα(x).

When s2 + 1 = su2 ,

TA0
2
Vα(x+ e1

2) = m0
2 + Vα(x+ e1

2) ≥ Vα(x+ e0
2) = TA0

2
Vα(x).

Due to Equation (4.23), we can always find a large enough m0
2 to ensure the above

inequality.

The last part in our proof is to check the conditions in Lemma 12. Note that

lj,−1 cj,−1 = pj0(1− bj,+1 )cFN
1 + (1− pj0)bj,−1 cTN

1 , (4.24)

lj,+1 cj,+1 = pj0b
j,+
1 cTP

1 + (1− pj0)(1− bj,−1 )cFP
1 . (4.25)

Assume bj,+1 and bj,−1 are independent of j, then condition (ii) in this theorem gives

lj,−1 cj,−1 is increasing in j, and condition (iii) gives lj,+1 cj,+1 + lj,−1 cj,−1 is increasing in j.

Applying the results in Lemma 10, 11 and 12, we can conclude the results. �

For condition (i) to be satisfied, the negative test result should be more

accurate than a positive result at station 1, which is the case for the D-dimer

test in our study for the PE disease. In result (2) of the theorem, a patient is more

likely to be discharged from the system after a negative test result at station 1, than

that after a positive test result. This also explains result (1) of the theorem: if the

negative test result is more accurate, then it is preferable to use the test on low risk

patients to rule out the disease. In other words, if a low risk patient is routed to

station 2 upon arrival, a high risk patient must also be routed to station 2.
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In the next proposition, the opposite result is presented when the positive test

result at station 1 is more accurate than a negative result. In this case, it is preferred

to using the test on high risk patients to confirm the disease.

Lemma 13 Suppose the expected diagnostic costs defined in (4.5) and (4.6) satisfy

(i) cj,+1 ≤ cj,−1 ;

(ii) lj,+1 cj,+1 is increasing in j;

(iii) lj,+1 cj,+1 + lj,−1 cj,−1 is decreasing in j,

for j = 1, . . . , J . Define operator T on function f : Z3
+ → R as Tf(x) = µ1(s1)TD1f(x)+

(µ̄1 − µ1(s1))f(x), where TD1 is defined in (4.11). If f(x) ∈ Ṽ, then Tf(x) ∈ Ṽ.

Proof. The result can be proved in a similar way as in Lemma 12. �

Proposition 6 Suppose bj,+i and bj,−i are independent of j, and the diagnostic costs

satisfy

(i) cj,+1 ≤ cj,−1 for j = 1, . . . , J , and

(ii) cTP
1 b+

1 ≤ cFP1 (1− b−1 ), and

(iii) cTP
1 b+

1 + cFN1 (1− b+
1 ) ≤ cFP1 (1− b−1 ) + cTN

1 b−1 .

Then,

1. aj1arr(x) ≥ aj2arr(x), for 1 ≤ j1 < j2 ≤ J .

2. aj,+dep(x) ≤ aj,−dep(x), for 1 ≤ j ≤ J .

Proof of Proposition 6. The results can be proved in a similar way as in Theorem

6 by applying the results in Lemma 10, 11 and 13. �
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4.5 Heuristic Algorithms

Due to the curse-of-dimensionality, the MDP model described in Section 4.3.2

becomes computationally challenging to solve when J ≥ 3. For example, when J = 3,

su1 = su2 = 20, the size of the state space is 206 = 6.4 × 107. Even storing all Vn(x)

is difficult, let alone computing the optimal value function and finding the optimal

policy. In the working paper [1], the authors develop a basic heuristic algorithm

and an refinement based on the decomposition idea to address this challenge. We

describe their basic heuristic algorithm in Section 4.5.1. In Section 4.5.2, we conduct

numerical experiments to validate the performance of their heuristic algorithms.

4.5.1 Heuristic Description

The curse-of-dimensionality of the original MDP model is caused by the fact that

the number of patients in station 1 for each of the J classes needs to be kept track

of. To address this challenge, a heuristic algorithm is developed in [1] that obtains

the arrival and departure routing decisions for each class j using a class-specific two-

dimensional MDP, which only keeps track of the total number of patients in station

1 and station 2, (s1, s2). For the two-dimensional MDP of each class j, the routing of

other classes is approximated by a static policy that routes class k patients to station

1 with a fixed probability pkr , referred to as fixed-probability routing policy.

Specifically, the heuristic gives the class j arrival and departure routing decisions,

which comes from first solving V j(s1, s2) from

V j(s1, s2)

= h1(s1q1) + h2(s2q2) + λjTARjV j(s1, s2)

+(λex1 +
∑
k 6=j

λkpkr)TA0
1
V j(s1, s2) + (λex2 +

∑
k 6=j

λk(1− pkr))TA0
2
V j(s1, s2)

+µ1(s1)TD̃1
V j(s1, s2) + µ2(s2)TD̃2

V j(s1, s2)

+(µ̄1 − µ1(s1))V j(s1, s2) + (µ̄2 − µ2(s2))V j(s1, s2), (4.26)
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and obtaining the arrival routing or departure routing action from

ãjarr(s1, s2) =


0 if TARjV j(s1, s2) = mj + V j(s1, s2),

1 if TARjV j(s1, s2) = V j(s1 + 1, s2),

2 if TARjV j(s1, s2) = V j(s1, s2 + 1);

for s1 > 0 and r = +,−,

ãj,rdep(s1, s2) =

 1 if TDRj,r
1
V j(s1, s2) = cj,r1 + V j(s1 − 1, s2),

2 if TDRj,r
1
V j(s1, s2) = V j(s1 − 1, s2 + 1).

Here, in Equation (4.26), s1q1 = (s1q
0
1, . . . , s1q

J
1 ) and s2q2 = (s2q

0
2, s2q

1
2).

The operators TA0
i

and TARj remain the same as in (4.9) and (4.10), respectively.

The main approximations for Equation (4.8) are replacing the departure operators

TD1 and TD2 with the following two:

TD̃1
f(s1, s2) =



∑J
k=1 q

k
1(lk,+1 TDRk,+

1
f(s1, s2)

+lk,−1 TDRk,−
1
f(s1, s2)) + q0

1TD0
1
f(s1, s2), if s1 > 0,

0, otherwise,

(4.27)

TD̃2
f(s1, s2) =

 q0
2TD0

2
f(s1, s2) + q1

2TD1
2
f(s1, s2), if s2 > 0,

0, otherwise,

(4.28)

for a function f : Z2
+ → R. In TD̃1

and TD̃2
, the operators TDRk,r

1
, TD0

1
, TD0

2
and TD1

2

are defined in (4.11) - (4.14), respectively. pkr in (4.26) is an approximation for the

probability that a class k arrival will be routed to station 1. qj1 is an approximation

for the proportion of class j patients in station 1, and q0
2 (q1

2) is an approximation

for the proportion of exogenous patients (class 1 to J patients) in station 2. In the
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heuristic, the proportions q1 = (q0
1, . . . , q

J
1 ) and q2 = (q0

2, q
1
2) are obtained from the

routing probabilities (p1
r, . . . , p

J
r ) as follows.

q0
1 =

λex
1

λex
1 +

∑J
k=1 λ

kpkr
, (4.29)

qj1 =
λjpjr

λex
1 +

∑J
k=1 λ

kpkr
, j = 1, . . . , J, (4.30)

q0
2 =

λex
2

λex
2 +

∑J
k=1 λ

k(1− pkr)
, (4.31)

q1
2 =

∑J
k=1 λ

k(1− pkr)
λex

2 +
∑J

k=1 λ
k(1− pkr)

. (4.32)

This heuristic algorithm is developed in [1] based on the decomposition idea, and

we briefly describe how the heuristic approximates the original MDP model below;

see [1] for the detailed and formal explanations of the rationale of this decomposition

idea.

For class j’s two-dimensional MDP, it is essentially assumed that among the s1

patients that are currently in station 1, there are qj1s1 patients that are from class

j, i.e.,xj1 ≈ qj1s1, j = 0, . . . , J , and among the s2 patients in station 2, there are

q0
2s2 external patients and q1

2s2 patients that are from class 1 to J . Therefore, the

holding cost h1(x1) +h2(x2) in Equation (4.8) is approximated by h1(s1q1) +h2(s2q2)

in Equation (4.26). This also explains the approximation for the departure operators

TD̃1
and TD̃2

.

In solving the heuristic for class j, a static routing policy with probability pkr

is assumed to be used for future arrivals of other classes k, where k 6= j, i.e., a

class k patients will be routed to station 1 with probability pkr , and to station 2 with

probability 1−pkr . In other words, patients in these J−1 other classes form exogenous

arrival processes. In Section 4.5.2, we show that our heuristic performance is robust

to different routing probabilities. Therefore a good approximation of (p1
r, . . . , p

J
r ) is

not required for the heuristic algorithm to perform well. See [1] for the reasons why

a fixed-probability routing policy is chosen in the approximation.



103

4.5.2 Validation

In this section, we compare the long-run average cost from the routing policies ob-

tained from the heuristic algorithms developed in [1] and the optimal policy obtained

from value iteration. We refer to the policy obtained from the heuristic algorithm

described in Section 4.5.1 as basic heuristic policy. In [1], the authors also develop

a refinement for the basic heuristic algorithm, which we refer to as refined heuristic

policy. Due to the curse of dimensionality, we can only use value iteration to solve

a three-class patient problem (i.e., J = 3) without arrivals of exogenous patients to

station 1 (i.e., λex
1 = 0).

Table 4.1 reports the average cost under different system load conditions. The

optimality gap for each heuristic policy is defined as (heuristic policy cost - optimal

cost) / optimal cost. We can observe that the optimality gaps are less than 1.5%

under all load conditions.

Robustness. Table 4.2 summarizes the impact of routing probabilities on the

heuristic performance. We take the heavily loaded setting in Table 4.1, and change

each class routing probability from 10% to 100%. We can observe that the optimality

gaps in all cases of both basic heuristic and refined heuristic remain smaller than

1.5%.

Impact of other parameters. In Table 4.3, we compare the optimality gaps

under a variety of system conditions, and we can observe that the optimality gaps of

the basic heuristic policy are less than 3% under most settings, and the maximum

optimality gap is 5.18%. The optimality gaps of the refined heuristic policy are less

than 1.50% under all settings.
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Table 4.1.: Long-run average daily costs of different policies

Lightly loaded Intermediately loaded Heavily loaded

Optimal 6.90± 0.01 11.49± 0.02 15.74± 0.03

Basic heuristic (Sec. 4.5.1) 6.98± 0.01 11.65± 0.02 15.86± 0.04

Optimality gap 1.29% 1.33% 0.76%

Refined heuristic ( [1]) 6.92± 0.01 11.50± 0.02 15.75± 0.02

Optimality gap 0.31% 0.05% 0.09%

Notes. We set J = 3, p10 = 0.05, p20 = 0.35, p30 = 0.65. For j = 1, 2, 3, bj,+1 = 0.9819, bj,−1 =

0.4249, λj = 0.2. λex1 = 0, λex2 = 0.6, µ1(x) = 0.9x0.5. cTP
1 = cTN

1 = c2 = 0, cFP1 = 100, cFN1 =

800, h1(x) = 6s1, h2(x) = 6s2. Routing probabilities for the heuristic policies are uniformly set as

(0.6, 0.6, 0.6). Left panel: µ2(x) = 2.2; Middle panel: µ2(x) = 1.7; Right panel: µ2(x) = 1.45. The

number after the ± sign is the half-width of the corresponding 95% confidence interval.

Table 4.2.: Impact of routing probability

p1r p2r p3r

0.1 0.3 0.6 1 0.1 0.3 0.6 1 0.1 0.3 0.6 1

Basic 0.80% 0.84% 0.76% 0.76% 0.93% 0.82% 0.76% 0.76% 1.03% 0.91% 0.76% 0.73%

Refined 0.22% 0.18% 0.09% 0.00% 0.24% 0.17% 0.09% 0.53% 0.96% 0.53% 0.09% 0.43%

Note. µ1(x) = 0.9x0.5, µ2(x) = 1.45. In each panel, the other two classes routing probabilities are

set as 0.6. Other parameters are the same as those in Table 4.1.

4.5.3 Scenarios where Refined Heuristic Policies Show a Large Improve-

ment

In this section, we compare the performance of the heuristic policy and other

simple routing policies under a numerical setting which is populated from the dataset

in [1]. In particular, we compare the long-run average costs from the following policies.

• Refined heuristic policy. The policy is obtained from the refined heuristic algo-

rithm proposed by [1].

• All first test. All suspected patients are sent to the first test upon arrival.
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Table 4.3.: Optimality gaps under different parameter settings

Basic heuristic
(from Sec. 4.5.1)

Refined heuristic
(from [1])

Change
unit holding cost

rate h

2 2.83% 0.19%

4 1.47% 0.17%

6 (base) 0.76% 0.09%

8 0.48% 0.16%

10 0.41% 0.20%

Change
false-negative cost

cFN
1

400 0.44% 0.09%

600 0.59% 0.10%

800 (base) 0.76% 0.09%

1000 1.08% 0.05%

1200 1.23% −0.01%

Change
pre-test prior

Base setting 0.76% 0.09%

Reduce medium prior 0.36% 0.06%

Reduce high prior 1.23% 0.08%

Change
patient mix of low-,

medium-, and
high-risk patients

Base setting 0.76% 0.09%

More low-risk 0.70% 0.15%

More medium-risk 0.78% 0.21%

More high-risk 0.68% 0.06%

Change proportion
between three classes
patients and external

arrivals

More external arrivals 0.31% 0.00%

Base setting 0.76% 0.09%

No external arrivals 3.59% 0.43%

Change station 2
service rate function

1.45 (base) 0.76% 0.09%

0.57x0.5 1.92% 0.01%

0.25x 1.31% 0.00%

Change
holding cost function

Linear (base) 0.76% 0.09%

Linear (different h for each class) 5.18% 1.40%

Quadratic 2.03% 0.24%

Note. µ1(x) = 0.9x0.5, µ2(x) = 1.45. Other parameters in each panel are the same as those in Table

4.1.
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• Class-dependent policy. All low- and medium-risk patients are routed to the

first test upon arrival and high-risk patients are routed to the second test.

• Point threshold policy. There is a set of (y1, y2, y3) such that a class j patient

is routed to the second test if s2 < yj.

For the “all first test” and class-dependent policies, the departure routing decision

is fixed. We consider two forms of threshold policies: with and without fixing the

departure routing decisions. Fixing the departure routing means that a patient with

a positive result from the first test is always sent to the second test, regardless of the

cost or occupancy of the second test, whereas a patient with a negative test result is

always sent home. This departure routing agrees with the current clinical practice of

diagnosing the specific disease studied in [1].

The value we report in Table 4.4 is the benefit gained by using the refined heuristic

policy, which can be calculated as:

Benefit of heuristic =
Vπ − Vrefine
Vrefine

, (4.33)

where Vrefine is the long-run average cost under the refined heuristic policy, and Vπ

is the long-run average cost under the other policies.

In most parameter settings, the benefits gained from the refined heuristic policy

against the threshold policy with fixed departure routing is the smallest, which is more

than 5%. The benefits against the other three policies are more than 10%. Note that

the policies under the fixed departure routing decisions perform better than the full

threshold policy, which validates the effectiveness of the current clinical practice.

4.6 Summary

In this chapter, we provide a case study for the framework developed in [1]. We

first describe the test routing problem in their framework. The optimal routing policy

is a threshold policy when the service process at each station is an M/M/1 queue. For
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Table 4.4.: Benefit gained by the refined heuristic policy

Fix departure routing (Fix DR) Relax DR

All first test Class-dependent Threshold Full threshold

Change
unit holding cost

rate h

2 6.33% 7.10% 6.43% 60.00%

4 7.33% 8.59% 0.46% 34.09%

6 (base) 10.76% 12.24% 6.43% 21.86%

8 14.48% 16.11% 10.26% 14.94%

10 18.51% 20.25% 14.29% 11.19%

Change
false-negative cost

cFN
1

400 10.39% 12.05% 6.56% 22.86%

600 10.52% 12.08% 6.43% 22.34%

800(base) 10.76% 12.24% 6.43% 21.86%

1000 10.95% 12.34% 6.38% 21.53%

1200 10.99% 12.30% 6.19% 20.94%

Change station 2
service rate function

1.91 (base) 10.76% 12.24% 6.43% 21.86%

1.20x0.3 1.96% 2.08% 0.22% 17.95%

0.90x0.5 1.48% 1.32% 0.02% 6.86%

Change
holding cost function

Linear (base) 10.76% 12.24% 6.43% 21.86%

Quadratic 36.12% 42.56% 33.07% 44.84%

Note. For the base setting, we set J = 3, p10 = 0.05, p20 = 0.15, p30 = 0.20. For j = 1, 2, 3, bj,+1 =

0.9819, bj,−1 = 0.4249, λj = 0.217. λex1 = 0, λex2 = 1.06, µ1(x) = 0.96x, µ2(x) = 0.9x0.5. cTP
1 =

cTN
1 = c2 = 0, cFP1 = 100, cFN1 = 800, h1(x) = 6s1, h2(x) = 6s2. Routing probabilities for the

heuristic policies are uniformly set as (0.6, 0.6, 0.6). The quadratic holding cost function is set as

h1(x) = 0.6s21, h2(x) = 0.6s22 in the last panel.

the general service rate functions, there exists a dominance among different classes in

the optimal policy when the model parameters satisfy proper conditions.

To overcome the curse of dimensionality in the multi-class MDP model, we de-

scribe a heuristic algorithm proposed in [1]. We numerically validate the performance

of the heuristic algorithm, and find that the largest optimality gap is less than 1.50%

in all the experiments.
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5. CONCLUSION AND DIRECTION FOR FUTURE

RESEARCH

In this chapter, we conclude the findings of this dissertation and discuss several im-

portant future research directions.

In the first part of this dissertation, we model a two-stage supply chain using

dynamic programming framework. We consider both centralized and decentralized

control. Under centralized control, the problem is a nonconcave optimization problem

because of the random supply. We extend the notion of stochastic linearity in mid-

point developed by [21] to a multi-dimensional problem and transfer the problem of

deciding the order quantity into one of deciding the distribution function of the sup-

ply. The objective function after transformation becomes concave, and the optimal

value function is concave and submodular in the echelon inventory level. The optimal

policy is a threshold policy. When the terminal value is separable in the inventory

positions, the associated profit function becomes separable, and the threshold policy

reduces to the echelon base-stock policy. We further show that our analysis can be

extended when the upstream production follow a general stochastic function, which

satisfies the single-crossing property for stochastic linearity in midpoint. Moreover,

we show that our analysis can be carried out for serial systems with multiple locations.

The structural properties and the optimal policy under the centralized control

are important for the contract design under the decentralized control. When the

supply information is not available to the retail store, we find a transfer payment to

coordinate the supply chain. The idea behind the transfer payment is to compensate

the retail store for the loss of future value caused by insufficient supply from the

manufacturing facility. In addition, the result is robust to any mis-specification of the

supply capacity from the retail store. When the demand information is not available

to the manufacturing facility as well as the supply information is not available to the



109

retail store, we show there exist transfer contracts to achieve coordination. We further

propose an iterative algorithm to compute the transfer contracts in our decentralized

setting, and prove the convergence of the decentralized total profit to the optimal

channel profit. The convergence does not depend on any information structure.

In summary, the developments from Chapter 2 and 3 expands our understanding

of supply uncertainty in multi-stage supply chains in both centralized and decentral-

ized systems. The coordinating mechanisms proposed here do not require sophisti-

cated knowledge structure, making them more practical compared with conventional

mechanisms.

In the last part of this dissertation, we provide a case study for the framework

developed in [1]. We describe their MDP model for the test routing problem. The

optimal policy is a threshold policy when the service process of each test corresponds

to anM/M/1 queue. For the general setting, there exists a dominance among different

classes: if the negative test result is more accurate, it is preferable to use the test on

low-risk patients to rule out the disease; on the other hand, it is preferred to using

the test on high-risk patients to confirm the disease if the positive test result is more

accurate. We describe an efficient heuristic algorithm developed in [1] to overcome the

curse of dimensionality of the MDP model. We validate the numerical performance

of their heuristic algorithm and find that the largest optimality gap is less than 1.50%

in all the numerical experiments conducted.

Next, we briefly discuss several interesting questions remain for further explo-

ration.

Integrate dynamic pricing decision. For the first problem under centralized

control, it would be interesting to add pricing decision to the model and analyze an

integrated decision-making process. There is very limited work looking at both the

dynamic pricing and inventory control under supply uncertainty, and most of these

studies focus on a single-stage system (e.g., [3], [18], [19]).

Incentive issues in the coordination. For the first problem under decentralized

control, we assume the retail store and manufacturing facility will follow the con-
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tract or iterative process to achieve coordination. An interesting question is to study

whether each individual will deviate and manipulate the reported value function in

the iterative process.

Continuous pretest probability. In our case study of the framework developed by

[1], the pretest probability for each class is assumed to be the same. This assumption

is mainly for analytical convenience. In reality, each class may be stratified based

on a threshold for the pretest probability. For example, any patients with pretest

probability lower than 5% are classified as low-risk patients. It would be interesting

to see how to incorporate this into the MDP model or address this issue in the heuristic

algorithm.
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