
COMPETITIONS AND DELEGATIONS ON NETWORK GAMES:

APPLICATIONS IN SUPPLY CHAIN AND PROJECT MANAGEMENT

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Tao Jiang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF DISSERTATION APPROVAL

Dr. Thành Nguyen, Chair
Krannert School of Management

Dr. Mohit Tawarmalani
Krannert School of Management

Dr. Yanjun Li
Krannert School of Management

Dr. Jitesh Panchal
School of Mechanical Engineering

Approved by:
Dr. Yanjun Li

Head of the School Graduate Program

iii

ACKNOWLEDGMENTS

I want to thank the members of my committee, especially my advisor, Dr. Thành
Nguyen, for all of his help, patience, and guidance over the past three years. Ph.D.
study is a long journey to me, and I have tried many different problems. I am glad
that I eventually found some interesting results.

I would also like to thank the bouldering wall at Purdue CoRec Center and all
the friends I have met over there (even though they may never read my thesis). I am
not sure what am I going to do ten years later, but I am pretty sure that I will be
climbing forever.

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES . viii

ABSTRACT . x

1 SUPPY CHAIN . 1

1.1 Introduction . 1

1.2 Model . 3

1.2.1 Sequential Decisional Game . 3

1.2.2 Series Parallel Graph . 6

1.3 Equilibrium Characteristics and Computation 6

1.3.1 Properties of Equilibrium . 6

1.3.2 Properties of Series Parallel Graphs 8

1.3.3 Equilibrium Computation . 9

1.4 Structural Analysis of Network Pricing Equilibria 16

1.4.1 Components’ Series Order . 17

1.4.2 Series Insertion, Parallel Insertion 19

1.4.3 Firm Location and Individual Utility 20

1.5 Equilibrium in Generalized Series Parallel Graph 21

1.5.1 Multiple Sources and Single Sink 21

1.5.2 Single Source and Multiple Sinks 22

1.5.3 Multiple Sources and Multiple Sinks 26

1.6 Conclusion . 28

2 DELEGATION STRUCTURE . 29

2.1 Introduction . 29

2.2 General Three Agents . 31

2.2.1 Model Description . 31

v

Page

2.2.2 Preliminary . 33

2.2.3 Delegation Threshold . 37

2.2.4 Comparative Statistics . 40

2.3 Path . 42

2.3.1 Path Model . 42

2.3.2 Preliminary . 45

2.3.3 Dynamic Programming Algorithm 50

2.3.4 Properties . 53

2.3.5 Example . 55

2.4 Tree . 57

2.4.1 Tree Model Description . 57

2.4.2 Preliminary . 61

2.4.3 Two Layers . 62

2.4.4 Three Layers . 64

2.5 Conclusion . 67

REFERENCES . 68

APPENDIX . 70

2.6 Proofs in Section 1.3 . 70

2.6.1 Proof of Proposition 1.3.3 . 70

2.6.2 Proof of Lemma 1.3.1 . 70

2.6.3 Proof of proposition 1.3.5 . 76

2.6.4 Proof of Lemma 1.3.2 . 77

2.6.5 Proof of Lemma 1.3.3 . 77

2.7 Proofs in Section 1.4 . 79

2.7.1 Proof of Proposition 1.4.1 . 79

2.7.2 Proof of Proposition 1.4.2 . 80

2.7.3 Proof of Lemma 1.4.1 . 80

2.7.4 Proof of Theorem 1.4.1 . 80

vi

Page

2.7.5 Proof of Proposition 1.4.3 . 81

2.7.6 Proof of Proposition 1.4.4 . 82

2.7.7 Proof of Theorem 1.4.2 . 83

2.7.8 Proof of Lemma 1.4.2 . 84

2.7.9 Proof of Lemma 1.4.3 . 85

2.7.10 Proof of Theorem 1.4.4 . 87

2.7.11 Proof of Corollary 1.4.1 . 88

2.8 Proofs in Section 1.5 . 88

2.8.1 Proof of Theorem 1.5.2 . 88

2.8.2 Proof of Remark 1.5.2 . 88

2.9 Proofs in Section 2.2 . 91

2.9.1 Proof of Lemma 2.2.1 . 91

2.9.2 Proof of Theorem 2.2.1 . 92

2.9.3 Proof of Theorem 2.2.2 . 93

2.9.4 Proof of Proposition 2.2.3 . 94

2.10 Proofs in Section 2.3 . 96

2.10.1 Proof of Theorem 2.3.2 . 96

2.10.2 Proof of Lemma 2.3.1 . 97

2.10.3 Proof of Lemma 2.3.2 . 98

2.10.4 Proof of Lemma 2.3.3 . 99

2.10.5 Proof of Lemma 2.13.2 . 101

2.10.6 Proof of Proposition 2.3.3 . 104

2.10.7 Proof of Proposition 2.3.4 . 106

2.11 Proofs in Section 2.4 . 106

2.11.1 Proof of Lemma 2.4.1 . 106

2.12 Examples . 108

2.12.1 Convex combination . 108

2.12.2 Price Function Computation 110

vii

Page

2.12.3 Non-SPG SM . 111

2.12.4 Non-SPG MM . 112

2.12.5 Decision Sequence . 114

2.12.6 Inactive Edges . 115

2.12.7 Multiple Equilibria . 116

2.12.8 Non-Equilibrium (Computation of Example 11) 120

2.13 Supplementary Materials . 122

2.13.1 Parallel Model . 122

2.13.2 Full Information . 124

2.13.3 Continuous Model . 130

2.13.4 Unbounded Depth . 133

2.13.5 Counter Examples . 136

VITA . 139

viii

LIST OF FIGURES

1.1 Decisions in a Supply Chain . 4

1.2 Flows in a Supply Chain at Equilibrium 7

1.3 Multiple Sinks Supply Network . 24

1.4 Piecewise Linear Price Functions of Supply Chain 2 24

1.5 Price Strategies Simulation . 25

2.1 Process Path . 31

2.2 Two Delegation Structures . 32

2.3 Timing of Contracting of Direct Control 33

2.4 Timing of Contracting of Delegation . 33

2.5 Production Chain . 42

2.6 Example of Invalid Delegation Structure 43

2.7 Example of Valid Delegation Structure . 44

2.8 Piecewise Linear Utility Function of Agent k 46

2.9 Direct Control . 47

2.10 Delegation with Depth d in a Process Path 49

2.11 Process path . 55

2.12 Optimal Delegation Tree . 55

2.13 Option 1 . 56

2.14 Option 2 . 56

2.15 Option 3 . 57

2.16 Process tree . 58

2.17 Delegation tree . 59

2.18 Two Layers Process tree . 63

2.19 Example of Efficient Delegation Structure 64

2.20 Three Layers Process tree . 65

ix

2.21 Update Step . 65

2.22 Combination Step . 66

2.23 Two Delegation Structures . 94

2.24 Expected Subcontract Utility of Agent k at Contract Stage 99

2.25 Expected Utility of Agent k at Contract Stage 100

2.26 Subcontract Utility Function of Agent k 102

2.27 Utility Function of Agent k . 103

2.28 Decision Tree In Delegation with Flexible Contract 125

2.29 Control set . 135

2.30 Example 1 . 136

2.31 Example 2 . 138

x

ABSTRACT

Jiang, Tao PhD, Purdue University, December 2018. Competitions and Delegations
on Network Games: Applications in Supply Chain and Project Management . Major
Professor: Thành Nguyen.

We consider the models of sequential games over supply chain networks and pro-
duction chain networks. In the supply chain model, we show that in particular, for
series-parallel networks, there is a unique equilibrium. We provide a polynomial time
algorithm to compute the equilibrium and study the impact of the network structure
to the total trade flow at equilibrium. Our results shed light on the trade-off between
competition, production cost, and double marginalization.

In the production chain model, we investigated sequential decisions and delegation
options over three agents, chain, and tree networks. Our main contribution is showing
the value of delegation and how to maximumly leverage the middleman’s aligned
interests with the principal. In particular, we provide a polynomial time algorithm
to find the optimal delegation structure and the corresponding necessary contract
payments for the principal. Furthermore, we analyzed the trade-off of the delegation
and gave a deeper insight into the value of delegation in different conditions. Several
questions are left for future research such as what’s the optimal delegation structures
in general tree and how to build the model that agents can try multiple times until
the task is successful.

1

1. SUPPY CHAIN

1.1 Introduction

Supply chain networks in practice are multi-tier and heterogeneous. A firm’s
decision influences not only other firms within the same tier but also across. The
literature on game theoretical models of supply chain networks, however, has largely
focused on two extreme cases: heterogeneous 2-tier networks (bipartite graph) [1, 2]
and a linear chain of n-tier firms [3, 4]. One main reason for this is that most models
of sequential decision making in multi-tier supply chain networks are intractable.
Sequential decision making is a well-observed phenomenon in supply chains because
firms at the top tier typically need to make decisions on the quantity to sell to firms in
the next tier and the buying firms then decide how much to buy from which suppliers,
and continue to pass on the goods by determining the quantity for firms at the next
level.

To study such models, one needs to analyze subgame perfect equilibria in which
a firm needs to internalize all the decision of all the firms downstream and compete
with all the firms of the same tier at the same time. Another factor that further
complicates models of general supply chain networks is that even the basic concept
of tiers is ambiguous because there are often multiple routes of different length that
goods are traded from the original producers to the consumers. Our paper studies a
model of sequential network game motivated by supply chain network applications.
Our main goal is to understand the effect of network structure on the efficiency of
the system.

When considering the efficiency of a supply chain network, there is a trade-off
between the length and the number of trading routes. On the one hand, a large
variety of options to trade indicates a high degree of competition, which leads to
a more efficient system. On the other hand, along the trading path causes double,
triple and higher degree marginalization problems. In this paper, to capture these
ideas, we consider a sequential game theoretical model for a special class of networks:
series-parallel graphs. We focus our analysis on these networks because they are rich
enough for studying the trade-off described above and simple sufficient for character-
izing the equilibrium outcomes. In particular, series-parallel networks have a natural
decomposition of parallel and serial insertions. A parallel insertion, which merges two
different sub-networks at the source and the sink, can capture the increase in compe-
tition. A serial insertion, which attaches two sub-networks sequentially, corresponds
to the increase in the length of trading paths.

Our first contribution is a result showing that the equilibrium is unique in these
networks. Furthermore, we provide a polynomial time algorithm to compute the
equilibrium. Our algorithm is nontrivial and combines a dynamic program captur-

2

ing the backward induction of an equilibrium computation and a convex quadratic
programming technique for calculating the flow and price functions.

Our second contribution is a set of comparative analysis on the influence of the
network structure and the two operations in series-parallel graphs to the total flow
at equilibrium. For example, we show that:

• Parallel insertion increases total flow, while serial insertion decreases total flow.

• Given two networks N1 and N2 the order of serial insertion to obtain N1N2 or
N2N1 network matters only when the production cost of at least one component
is positive. The total flow is larger if the component with a higher production
cost is closer to the source.

• In parallel insertion, adding a component to a longer range increases the flow
more than adding it to a shorter range. This means increasing competition
globally is more beneficial than increasing competition locally.

• An upstream firm that controls all the flow of goods of another downstream
firm has a location advantage. The utility of this upstream firm is at least twice
as much as the dominated downstream firm.

Finally, we show that extending the series-parallel graph to a slightly more gen-
eral class of network, series-parallel graphs with multiple producers or markets, the
problem may become intractable. With multiple producers and single market, our
technique extends to construct the unique equilibrium of the game. However, with
multiple producers and markets, there may exist multiple or no pure strategy equi-
libria.

The paper is organized as follows. In section 1.2 we introduce the model of com-
petition and series-parallel networks together with the composition. In section 1.3
we provide the algorithm to compute the unique equilibrium. Section 1.4 uses the
network composition and the algorithm to analyze comparative analysis on how net-
work structure influences the efficiency measured by the total trade flow. Section 1.5
discusses extensions to other classes of networks and shows that pure equilibrium
might not exist in general networks.

Related work: In our paper, we assume the consuming nodes are Cournot markets.
Thus, the structure of the game is closely related to the literature on Cournot games
in networks. [2, 5], for example, consider a Cournot game in two-sided markets.
[6] study Cournot game in three-tier networks. However, the 2-tier structure of the
network in these papers, and the assumption that only the middle tier make the
decision in [6] assumes away the complex sequential decision making considered in
our paper.

[7] studies a Cournot game in general networks. However, firms are assumed to
make simultaneous decisions. As discussed above, simultaneous games are easier to

3

analyze but do not capture the essential elements of sequential decision making of
firms in supply chain networks.

[8] considers assembly network where agents make a sequential decision but as-
sumes a tree network. The analysis for a tree network is substantially simpler, because
each firm has a single downstream node that it can sell the products to. In our game,
the network is more general, and each firm needs to make the decision of the goods
quantity to each firm that it is connected to. As we show, some of the quantities
on some of the links can be zero. Such “inactive” links make the analysis more
complicated.

Recently, [9] also considered a sequential game and used market clearing prices
like our paper. The network considered in this paper is however symmetric, and its
structure is linear. The focus of [9] is on the uncertainty of yields, which is different
from the motivation in our paper.

More broadly, our paper belongs to the growing literature of network games and
their applications in supply chains, including[4, 10, 11, 12]. These papers, however,
are different from ours in the main focus as well as the modeling approach. [10] for
example, assume a linear structure of supply chains, [11] consider price competition
in two-tier networks, and [4, 12] analyze bargaining games in networks with simpler
structures. The main contribution of our paper to this line of work is a tractable
analysis of sequential competition model in series-parallel graphs, which allows for
richer comparative analysis and deeper understanding of how basic network elements
influence market outcomes.

1.2 Model

In this section, we introduce the sequential decision mechanism in a supply chain
network and the definition of series-parallel graph.

1.2.1 Sequential Decisional Game

Let G = (V ∪ {s, t}, E) be a simple directed acyclic network that represents an
economy where s is the producer at the source, t is the sink market and V represents
intermediary firms. The edges of G represent the possibility of trade between two
agents. The direction of an edge indicates the direction of trade. The outgoing end
of the edge corresponds to the seller, and the incoming end is the buyer, while s has
only outgoing edges, and t has only incoming edges. The remaining vertices i ∈ V
representing intermediary firms has both incoming and outgoing edges. For a vertex
i, B(i) (buyer set) and S(i) (seller set) are the sets of agents that can be buyers and
sellers in a trade with i, respectively.

Assume every agent has full information about the structure of the network.
Agents start deciding their order quantities, and selling quantities after the output of

4

their upstream suppliers is determined. Furthermore, the market clearance price at i
is such that the total demand from i matches the total supply.

Each intermediate firm i decides on how much to buy from each of his sellers and
how much to sell to each of his buyers. Specifically, i’s decision includes:

• The buying quantity xinki > 0 for every k ∈ S(i);

• The selling quantity xoutij > 0 to every j ∈ B(i).

while the source only initializes the supplying amount and the sink will take all the
goods at the market price. Fig. 1.1 shows an example of decisions in the supply chain:

s a b

c

t
xoutsa xinsa xoutab xinab xoutbt

x
out

sc

x
in
sc

x outct

Fig. 1.1.: Decisions in a Supply Chain

For producer s, his unit cost of production ps is given and assumed to be an affine
function on Xs, the total amount of goods to sell.

ps = as + dsXs, where Xs =
∑
i∈B(s)

xoutsj , ds > 0 and as > 0.

Sink node t does not represent a firm, it corresponds to an end market. The price
function pt at sink node t is given and assumed to be an affine function on the total
amount of goods, Xt, sold to market t.

pt = at − btXt, where Xt =
∑
i∈S(t)

xinit =
∑
i∈S(t)

xoutit , at > 0, and bt > 0.

Note that the market must accept all the goods thus does not have a choice to
reject. That is, xinit = xoutit for each i ∈ S(t). Generally, for a trade ij ∈ E, the buyer
j cannot obtain more than what the seller i offers, thus xinij 6 xoutij . We assume that
each intermediary firm i cannot get goods from any other source besides his sellers.
Therefore the outflow of i cannot be more than the inflow of i,∑

j∈B(i)

xoutij 6
∑
k∈S(i)

xinki .

The price for intermediate goods for each node i ∈ V , denoted as pi, is determined
endogenously such that the corresponding intermediate market at i clears.

5

Furthermore, agents do not get any value from retaining the goods. They incur a
processing cost, which we assume to be quadratic in the quantity of goods the agents
sell.

The payoff of the source firm s is

Πs =
∑
j∈B(s)

pjx
in
sj − ps

∑
j∈B(s)

xoutsj −
cs
2

(
∑
j∈B(s)

xoutsj)2 where cs > 0. (1.1)

The utility of an intermediate agent i ∈ V is

Πi =
∑
j∈B(i)

pjx
in
ij − pi

∑
k∈S(i)

xoutki −
ci
2

(
∑
k∈S(i)

xoutki)2 where ci > 0. (1.2)

The formula decomposes the utility function into three terms: the total revenue
from j ∈ B(i), the total cost of materials from k ∈ S(i), and the processing cost.

The timing of the game is as follows. The producer (source) makes its decision
first. A firm makes his decision on the selling quantity to his downstream, once all of
his sellers have made decisions.1 When choosing their order quantities to maximize
their expected profits, firm i also needs to take into account the strategies of both the
competing firms and the firms downstream. When a firm makes its decision, it only
knows the quantities offered by the firms upstream and makes a prediction based on
the rational expectation of other firms’ strategies.

Here is a toy example for the equilibrium at a supply chain:

Example 1
Assume no processing cost in this example.

sps = 0 a t pt = 1−Xt
xoutsa xinsa xoutat

Suppose source s makes an decision to sell xoutsa = x amount of goods to agent a. Now
for agent a, since he has no benefit from unsold goods, his buying amount will be equal
to the selling amount, denoted as xa = xinsa = xoutat . Meanwhile, the utility function is

πa(xa) = (1− xa)xa − paxa

where pa is the market clearance price. And the optimal decision for a (∂πa
∂xa

= 0) is

xa =
1− pa

2

1By the market clearance price, at the firm’s optimal decision, it will consume all the supply from
upstream.

6

By the definition of the market clearance price, we have xa = xoutsa . Thus, the relation
between selling amount and market clearance price at agent a is

pa = 1− 2xoutsa

Now consider the utility function of the source,

πs = pax
out
sa = (1− 2xoutsa)xoutsa

Finally, we have the optimal supplying amount at the source xoutsa = 1/4, which will
result in a market clearance price pa = 1/2, and processing amount through a is also
1/4. Note that this is the unique equilibrium flow in this toy supply chain.

1.2.2 Series Parallel Graph

In this paper, we consider the case when G is a Series Parallel Graph (SPG). This
class of networks is well studied and has several applications in graph theory. (See
for example [13]). For completeness, we provide a formal definition as follows.

Definition 1.2.1 (SPG) A single-source-and-sink SPG is a graph that may be con-
structed by a sequence of series and parallel compositions starting from a set of copies
of a single-edge graph, where:

1. Series composition of X and Y : given two SPGs X with source sX and sink tX ,
and Y with source sY and sink tY , form a new graph G = S(X, Y) by identifying
s = sX , tX = sY , and t = tY .

2. Parallel composition of X and Y : given two SPGs X with source sX and sink
tX , and Y with source sY and sink tY , form a new graph G = P (X, Y) by
identifying s = sX = sY and t = tX = tY .

1.3 Equilibrium Characteristics and Computation

In this section, before describing how equilibrium can be computed, we observe
some properties of equilibrium and series-parallel graphs.

1.3.1 Properties of Equilibrium

First, observe that the best strategy for agent i is always to sell as much as bought
since it cannot benefit from paying more for those unsold goods. At the selling side,
suppose firm i is willing to offer xoutij quantity of goods to firm j, but part of the goods
got rejected, i.e. xinij < xoutij . However, this can never happen in equilibrium, because
i will be better off by rejecting xoutij − xinij amount of goods from its upstream at the
beginning.

7

The next proposition lists the properties of supplying quantities at an equilibrium:

Proposition 1.3.1 With market clearance price, where ps and pt are given, each
agent i ∈ V gets to decide xoutij where j ∈ B(i) and xinki where k ∈ S(i), and s gets to
decide xoutsj for j ∈ B(s). The equilibrium satisfies:

1. xoutij = xinij for ij ∈ E.

2.
∑

k∈S(i) x
in
ki =

∑
j∈B(i) x

out
ij , i.e. inflow is equal to outflow for agent i ∈ V .

For later notations, at the equilibrium, we will set xij as the flow along the edge
ij, i.e. xij = xoutij = xinij , and no longer use xinij and xoutij . Meanwhile, since each firm
accepts all the offers and sells everything they bought, we denote this sum of flow as
processing quantity for firm i, i.e. Xi =

∑
k∈S(i) xki =

∑
j∈B(i) xij. For market t, the

price is given as pt = at − btXt because t always accepts everything. For example, at
equilibrium, the flows of the supply chain in Fig. 1.1 is

s a b

c

txsa

xsc xsc

xsa xsa

Fig. 1.2.: Flows in a Supply Chain at Equilibrium

With the above new notations, by rewriting equation 1.2, the utility of agent i
becomes

Πi =
∑
j∈B(i)

pjxij − pi
∑
j∈B(i)

xij −
ci
2

(
∑
j∈B(i)

xij)
2. (1.3)

and by rewriting equation 1.1, the utility of source firm s becomes

Πs =
∑
j∈B(s)

pjxsj − ps
∑
j∈B(s)

xsj −
cs
2

(
∑
j∈B(s)

xsj)
2. (1.4)

For the flow activities along each edge, we define an edge ij ∈ E is active if xij > 0,
and inactive if xij = 0. Note that for every agent, the buying price should be at most
the selling price so that the agent can obtain non-negative utility, thus whenever ij
is active, pi 6 pj. Otherwise, i could have been better off by rejecting some goods
from upstream and choose not to offer any goods to j.

Proposition 1.3.2 For each ij ∈ E that is active, the market clearance price at an
equilibrium satisfies pi 6 pj.

8

1.3.2 Properties of Series Parallel Graphs

Consider a path lij = (i, v1, ..., vk, j) from i to j. If there is an edge ij ∈ E, then
we say ij is a shortcut of lij. The intuition is i always prefers selling to j directly than
through the intermediate agents along the path lij, and we prove it in the following
proposition. The proof is provided in Appendix 2.6.1.

Proposition 1.3.3 At an equilibrium of a series parallel graph G, if ij ∈ E is a
shortcut of a path lij, then there is no trade on lij. Thus, all the edges on the path lij
are inactive.

By this observation, without loss of generality, we can assume that G does not
have any shortcuts.

Here we introduce the node relations in SPG. Node k is called parent node of i
if there is a directed path from k to i. The set of parent nodes of i is denoted as
P (i). By a similar idea, we can define the child node and set of children C(i). If
consider the relation between direct parent and child i → j, i.e., ij ∈ E, there are
three possibilities in SPG:

• Single seller and single buyer, |S(j)| = |B(i)| = 1. (SS)

• Multiple sellers and single buyer, |S(j)| > 2, |B(i)| = 1. (MS)

• Single seller and multiple buyers, |S(j)| = 1, |B(i)| > 2. (SM)

i j

SS

i1

i2

im

j

MS

j1

j2

jm

i

SM

Sometimes there are multiple paths from a parent node to one of its children,
and we call these paths disjoint if they do not have any common intermediary nodes,
that is, all nodes except the starting and the ending ones are different. Base on this
definition, we can define the merging nodes with respect to node i.

Definition 1.3.1 (Self-merging Child Node) Node j ∈ C(i) is a self-merging
child node of i if there are disjoint paths from i to j. The set of such nodes j is
denoted as CS(i).

Definition 1.3.2 (Parent-merging Child Node) Node j ∈ C(i) is a parent-merging
child node of i, if there exist node k ∈ P (i), such that there are disjoint paths from k
to j. The set of such nodes j is denoted as CP (i).

9

We also introduce the special self-merging child nodes of i and its child j as
CT (i, j) = CS(i)∩C(j)\CP (i). This notation is useful because it helps us capture the
“internal” merging nodes that are responsible for the price of i and flow to j later on.

Proposition 1.3.4 A series parallel graph has the following properties:

1. CP (s) = CP (t) = ∅.

2. In SS case, for ij ∈ E, CP (j) = CP (i).

3. In SM case, for ij ∈ E, CP (j) = CP (i) t CT (i, j).

4. In MS case, for ij ∈ E, CP (i) = CP (j) t {j}.

Note that t stands for the disjoint set union.

Example 2

s a

b

c

d

e

f

g h

i

j

t

In this graph, for node a, CS(a) = {g, h}, because {g, h} ⊂ C(a) and there are
multiple disjoint paths from a to g and h, while t /∈ CS(a) because all the paths from
a to t must go through the common node h which are not disjoint paths; CP (a) = {h}
because h ∈ C(a), s ∈ P (a), and there are multiple disjoint paths from s to h;
CT (a, b) = ∅, while CT (a, c) = {g}.

For node c, CP (c) = {g, h}, while CS(c) = ∅; For node g, CP (g) = {h}, while
CS(g) = ∅.

Since a → c is the SM relation, by Proposition 1.3.4, CP (c) = {g, h} = CP (a) t
CT (a, c). Also, CP (c) = {g, h} = CP (g) t {g}, because c → g belongs to the MS
relation.

1.3.3 Equilibrium Computation

In this section, we present an algorithm to compute the equilibrium supplying
quantities at every edge. To do that, we first derive a closed-form expression for the
market clearance price at each firm through a backward algorithm in section 1.3.3.
Then, the unique optimal quantities for each firm can be solved following the decision
sequence from source to sink as in section 1.3.3.

10

Market Clearance Price Computation.

A vital characteristic of the equilibrium is that all edges are active. The market
clearance prices have closed-form expressions, and quantities can be computed based
on the composition of SPG.

Lemma 1.3.1 At equilibrium, if as < at, then all the edges are active. Also the
market clearance price at agent i is an inverse linear function of Xi and flows to its
parent-merging children nodes.

pi = at − biXi −
∑

k∈CP (i)

bkXk

where bi > 0,∀i ∈ V is a constant that only depends on the structure of G and
processing cost.

The above lemma shows a concise way to present the price function at equilibrium.
The last piece of work for price function computation is to find the value of bi for
i ∈ V . This is provided in the proof given in Appendix 2.6.2. By adapting the main
equations in that proof, here we introduce a backward Algorithm 1 to compute the
market clearance price at equilibrium (starting from ALG1(j = t, G)).

In each iteration, we just compute bi and this can be done in O(deg+(i)) time
where deg+(i) is the outdegree of i. Besides, we also store the convex coefficients
of each downstream node j ∈ B(i). The number of bi computation is bounded by
O(|V |). Therefore, it takes linear time to compute the price functions by Algorithm 1.

Below is an example of the price function computation, for the general form ex-
pression as in Algorithm 1, please check Example 15.

Example 3 (Price Function Computation)
Assume no processing cost in this example.

sps = 0

a

b

c
d

e

t pt = 1−Xt

x
y

z

x

y

z

x

y + z

From Proposition 1.3.1, we know that inflow must equal to outflow for each firm at
equilibrium. Therefore, we can set xsa = xae = xet = x, xsb = xbd = y, xsc = xcd = z,
and xdt = y + z.

Consider the utility of e,

Πe(x) = ptx− pex = (1− x− y − z)x− pex.
2If |CS(i)| > 2, the computation of bi is more complicated, the detail is provided in Appendix 2.6.2.

11

Algorithm 1 : Price Function Computation (Backward)

1: Given the downstream buyer j’s clearance price function pj, compute the up-
stream seller i’s clearance price case by case:

• Single seller and single buyer case,

bi = 2bj +
∑

k∈CP (j)

bk + ci. (SS)

• Multiple sellers and single buyer case, for each seller,

bi = bj +
∑

k∈CP (j)

bk + ci. (MS)

• Single seller and multiple buyers case (|CS(i)| = 1) 2,

bi =
2∑

j∈B(i)
1
bj

+ 2bh +
∑

k∈CP (j)\{h}

bk + ci. (SM)

2: Set the price function at seller i: pi = at − biXi −
∑

k∈CP (i) bkXk.
3: if seller i is the source then
4: Return.
5: else
6: Run ALG1(j = i, G).

Market clearance price function of e can be derived by solving the stable condition
of the utility maximization problem:

∂Πe(x)

∂xet
= 1− 2x− y − z − pe = 0⇒ pe = 1− 2x− y − z.

Similarly, we can obtain the following price functions:

pa = 1− 4x− y − z,
pd = 1− x− 2y − 2z,

pb = 1− x− 4y − 2z,

pc = 1− x− 2y − 4z.

Note that the above price functions can be written as the form of

pi = at − biXi −
∑

k∈CP (i)

bkXk.

12

As in Lemma 1.3.1, for example,

pb = 1− x− 4y − 2z = 1− bbXb − bdXd − btXt.

where bb = 2, bd = bt = 1, CP (b) = {d, t}.
The utility of s is

Πs(x, y, z) = pax+ pby + pcz − ps(x+ y + z).

Let psa be the price function that has to be satisfied if ∂Πs(x,y,z)
∂x

= 0, where psb and
psc are defined similarly. Hence, the following stable condition is obtained:

∂Πs(x, y, z)

∂x
= 0⇒ psa = 1− 8x− 2y − 2z,

∂Πs(x, y, z)

∂y
= 0⇒ psb = 1− 2x− 8y − 4z,

∂Πs(x, y, z)

∂z
= 0⇒ psc = 1− 2x− 4y − 8z.

Note that all above three equations are necessary conditions for ps, by using the
convex coefficients µ1 = 2

5
, µ2 = µ3 = 3

10
, we write ps as function of total flow

Xs = x+ y + z,

psabc = µ1psa + µ2psb + µ3psc

= 1− 22

5
(x+ y + z)

= 1− 22

5
Xs

Till here, we have the equilibrium price function at every node. Furthermore, we
can find the total flow at equilibrium Xs at source by solving

psabc = ps = 0⇒ Xs =
5

22
.

Base on the closed-form relation between seller and buyer as in SS, MS, and SM,
we can prove a stronger version of Proposition 1.3.2. The proof can be found in
Appendix 2.6.3.

Proposition 1.3.5 If an edge is active in an SPG, then the price at corresponding
seller is strictly less than the price at the buyer.

Equilibrium Quantities Computation.

After having the closed-form of the market clearance price function, we present
an algorithm that finds the unique supply quantities at equilibrium. Consider the

13

quantities decision for firm i to its downstream buyers j ∈ B(i). Suppose there is
only a single outflow for firm i, i.e., |B(i)| = 1, by Proposition 1.3.1, inflow equals
outflow at firm i, and firm j will take all the supplying quantities from i, formally,
xij = Xi. Hence, in the following analysis, we focus on the nontrivial case when
firm has multiple downstream buyers, i.e., |B(i)| > 2. How to optimally allocate the
supplying quantities to different buyers? In particular, firm i’s decision xij, where
j ∈ B(i), is to optimize its utility Πi. Recall the utility equation 1.3:

Πi =
∑
j∈B(i)

pjxij − pi
∑
j∈B(i)

xij −
ci
2

(
∑
j∈B(i)

xij)
2.

Note that before firm i makes decision, pi is determined by upstream flows, but
pj may be affected by xij where j ∈ B(i). By Lemma 1.3.1, we can write the price
function of seller j as

pj = at − bjxij −
∑

k∈CP (j)

bkXk. (1.5)

Note that by the property of SPG, |S(j)| = 1 when B(i) > 2. Thus, Xj = xij.
To find the optimal supply quantities to downstream firm j, take the derivative

of the utility function with respect to xij, and obtain

∂Πi

∂xij
= pj −

∑
l∈B(i)

∂pl
∂xij

xil − pi − ciXi. (1.6)

Expand the second term of equation 1.6 as

∑
l∈B(i)

∂pl
∂xij

xil = bjxij +
∑
l∈B(i)

(
∂
∑

k∈CP (l) bkXk

∂xij
)xil

= bjxij +
∑
l∈B(i)

(
∑

k∈CP (l)∩C(j)

bk)xil

= bjxij +
∑

h∈CT (i,j)

bhXh +
∑

k∈CP (i)

bkXi.

(1.7)

Plug equation 1.5 and equation 1.7 back into equation 1.6, we get

∂Πi

∂xij
= at − 2bjxij −

∑
k∈CP (j)

bkXk −
∑

h∈CT (i,j)

bhXh −
∑

k∈CP (i)

bkXi − ciXi − pi

= at − 2bjxij − 2
∑

h∈CT (i,j)

bhXh − pi − const.
(1.8)

14

Note that Xi and Xk where k ∈ CP (i) are given constant predetermined by
upstream supply. By point 3 of Proposition 1.3.4, CP (j) = CP (i) t CT (i, j) and we
have

const = (
∑

k∈CP (i)

bk + ci)Xi +
∑

k∈CP (i)

bkXk.

Observe the utility of firm i (equation 1.3) is concave. At the equilibrium, if
xij > 0, then ∂Πi

∂xij
= 0; if xij = 0, then ∂Πi

∂xij
6 0. This problem is equivalent to the

following linear complementary problem (LCP) with variables xij where j ∈ B(i).
∂Πi

∂xij
xij = 0,

∂Πi

∂xij
6 0,

xij > 0, ∀j ∈ B(i).

(LCP)

To solve the above system of equations LCP, we introduce a convex quadratic
program:

min
xij ,Xk

∑
j∈B(i)

bjx
2
ij +

∑
k∈CS(i)\CP (i)

bkX
2
k

subject to at − 2bjxij −
∑

k∈CT (i,j)

2bkXk − const 6 ps for j ∈ B(i),

xij > 0 for j ∈ B(i).

(CQP)

By examining the KKT conditions of the quadratic program, the independent
variables Xk satisfy Xk =

∑
j:k∈C(j) xij, which fits the definition of Xk. Besides,

equation LCP also holds. The proof of Lemma 1.3.2 is provided in Appendix 2.6.4.

Lemma 1.3.2 Problem LCP is equivalent to the convex optimization problem CQP,
and the solution is unique.

After the market clearance price function is computed by Algorithm 1, by solving
CQP directly, we have the optimal decision of each firm in polynomial time. In fact,
the algorithm can be sped up by distributing the flow from i to j ∈ B(i) proportionally
to the convex coefficients pre-computed in Algorithm 1. Besides, all the pj’s have the
same price value so that i has no preference about whom to sell to. The proof of
Lemma 1.3.3 is provided in Appendix 2.6.5.

Lemma 1.3.3 For the SM case, Πi is maximized by distributing the flow to j ∈ B(i)
proportionally to the convex coefficients pre-computed in Algorithm 1. Besides, all
the pj’s have the same price value.

15

Algorithm 2 : SPG Flow Computation (Forward)

1: (Initialize Xj = 0,∀j ∈ V . Start with Alg2(i = s, pi = ps, G).)
2: Distribute the flow xij where j ∈ B(i) proportionally to the convex coefficients.
3: for k ∈ CS(i) do
4: if Xk = 0 then
5: Xk =

∑
j:k∈CP (j) xij.

6: for j ∈ B(i) do
7: if Xj = 0 then
8: Xj = xij.

9: pj = at − biXj −
∑

k∈CP (j) bkXk.

10: Run Alg2(j, pj, G).

11: Return.

The algorithm starts with solving the equilibrium flow at source, then based on
the flow decision, each j ∈ B(i) is considered as the new source node, and their
equilibrium flow decisions were solved along the path to the sink, as demonstrated in
the following examples.

Example 4 (Flow Computation Order)
Consider the same instance as Example 2:

s a

b

c

d

e

f

g h

i

j

t

Algorithm 2 solves the flow quantities along the red edges first, then those along the
blue and orange edges. Note that the flow along the black edge is equal to the total
inflow to the upstream firm by the definition of market clearance price (e.g. xgh =
Xg = xcg + xfg).

Example 5 (Flow Computation)
Consider the same instance as Example 3:

sps = 0

a

b

c
d

e

t pt = 1−Xt

x
y

z

x

y

z

x

y + z

16

We already have Xs = 5
22

. By distributing the flow proportionally to the convex
coefficients µ1 = 2

5
, µ2 = µ3 = 3

10
, we have x = µ1Xs = 1

11
and y = z = µ2Xs = 3

44
.

We calculate the price values pa, pb, and pc from the flow values x, y, and z:

pa = 1− 4x− y − z = 1− 4× 1

11
− 3

44
− 3

44
=

1

2
,

pb = 1− x− 4y − 2z = 1− 1

11
− 4× 3

44
− 2× 3

44
=

1

2
,

pc = 1− x− 2y − 4z = 1− 1

11
− 2× 3

44
− 4× 3

44
=

1

2
.

Theorem 1.3.1 For SPG, there exists a linear time algorithm to solve the equilib-
rium flow and prices, and the equilibrium is unique.

Proof The equilibrium flow and prices can be found by Algorithm 1 and Algorithm 2
in linear time as aforementioned. The uniqueness of equilibrium can be proved by
encoding this problem into LCP and its corresponding CQP has a unique solution.

1.4 Structural Analysis of Network Pricing Equilibria

In this section, we compare the equilibria and analyze the influence of different
operations on SPG, e.g., switching the order of two components in SPG, or inserting a
new component to a given SPG. The criterion of the influence is the network efficiency
defined as follows:

Definition 1.4.1 (Efficiency) A supply chain network is more efficient if it has a
larger total flow value at equilibrium.

Following are some general results for SPG. The first proposition shows that the
direct selling from source to sink is the most efficient supplying network,

Proposition 1.4.1 Singe-edge graph is the most efficient SPG supplying network.

For single-edge graph, let p0
s be the source price, then p0

s = at − (2bt + cs)Xs. For
general SPG, by induction, we show that the market clearance price for every firm is
higher than p0

s. The induction step is similar to the proof of Lemma 1.3.1, and the
proof details can be found in Appendix 2.7.1.

Interpret at as the demand of the market, the following proposition shows the
relation between demand and efficiency.

Proposition 1.4.2 The market efficiency increases if the demand at the market in-
creases or material cost at the source decreases.

Proof From Lemma 1.3.1:

ps = at − bsXs = as + dsXs (the given source price).

17

It follows that Xs = at−as
ds+bs

, so the increasing demand at market (at) or decreasing cost
at the source (as or ds) will make the supply chain more efficient.

1.4.1 Components’ Series Order

In this section, we examine the relationship between efficiency and local structure
of an SPG, i.e., the order of components.

Definition 1.4.2 (Component) X is a component of G if X only contains one
node or X ⊆ G is an SPG whose head sX and tail tX satisfy tX ∈ CS(sX). Besides,
X contains all the nodes in P (tX) ∩ C(sX).

If component X’s tail is Y ’s head (or the reverse), then we say X and Y are series
components. Note that we can extend the definition of the component by treating
S(X, Y) as a component too, while all the results in this section still hold.

Obviously, the efficiency of a supply chain is highly related to its components, and
we define component efficiency as follows.

Definition 1.4.3 (Component Efficiency) Component efficiency of X is λ(X, btX) =
bsX
btX

.

We can see measures the changes of slopes by component X, and it has high
component efficiency if λ(X, btX) is small. Let us first consider the simpler case that
the processing cost is absent. As a result, the component efficiency is irrelevant to
btX . The proof is provided in Appendix 2.7.3.

Lemma 1.4.1 Assume no processing cost in component X, then

bsX = λ(X, btX) = λ(X)btX

where λ(X) > 2 is a constant only relevant to the graph structure.

Now consider the efficiency of series components S(X, Y) and assume no process-
ing cost in X and Y , by Lemma 1.4.1:

λ(S(X, Y), bt) = λ(X,λ(Y, bt))

= λ(X)λ(Y)bt

= λ(Y)λ(X)bt

= λ(S(Y,X), bt).

which means the order of series components does not matter, and we obtain the
following theorem (proof detail is provided in Appendix 2.7.4.)

Theorem 1.4.1 Assume no processing cost, switching the order of series components
does not change the efficiency.

18

Now consider the case with processing cost:

Πi =
∑
j∈B(i)

pjxij − piXi −
ci
2
X2
i , where ci > 0.

If we change the order of series components, the total flow and the slope efficiency
may vary as shown in this following example.

Example 6 Consider the price functions of source for the following two graphs,
where ca > 0, cb = 0, pt = a− bXt, and ps = 0:

a b t
x x

b a t
x x

Every edge is active in both graphs, price functions for the first graph are

pb = a− 2bx,

pa = a− (4b+ ca)x = 0.

As a result, the total flow is x1 = a−ps
4b+ca

. While the price functions for the second
graph are:

pa = a− (2b+ ca)x,

pb = a− (4b+ 2ca)x = 0.

As a result, the total flow is x2 = a−ps
4b+2ca

< x1. It follows that the first graph is
more efficient than the second one, and the series order of a and b does influence the
efficiency.

In the general case with processing cost, each component has a complex influence
on the ratio of bs to bt, and it is unclear to us what is the efficient algorithm to find
the optimal series order of the components. Nevertheless, for some simple cases, we
can see the pattern of optimal order.

Proposition 1.4.3 For a series composition of components X and Y , suppose there
is processing cost in X, but no processing cost in Y , then the composition with X
close to the source is more efficient than the composition with X close to the sink.

The proof is provided in Appendix 2.7.5.
One natural interpretation of the above result is the later the processing cost

occurs, the worse the efficiency. At equilibrium, upstream firms will consider the cost
from downstream. Therefore, the later cost hinders the incentive of upstream firms
to supply more goods.

Suppose the supply chain is a straight line, the pattern is clearer, the processing
cost ci is the only criteria to decide the optimal order. Without loss of generality,
denote the optimal order as firm 0, 1, ..., n− 1, n from source 0 to sink n.

19

Proposition 1.4.4 In the most efficient order arrangement of a straight line model,
firm i has higher order than firm j if and only if ci 6 cj, and this relation always
holds:

a0 = an,

b0 = 2nbn +
n∑
i=1

2ici.

The proof is provided in Appendix 2.7.6.
This indicates that it is always better to put the node with a higher cost closer to

the source, and the fact is the processing cost will be amplified (exponentially) along
the path from sink to source.

1.4.2 Series Insertion, Parallel Insertion

This section focuses on in which way and at what location, adding a component
to a given supply chain network will change the efficiency. The two operations we are
most interested in are series insertion and parallel insertion.

Definition 1.4.4 (Series Insertion) An SPG X is series-inserted into an SPG G
at node i by setting sX = i, tX = i.

Definition 1.4.5 (Parallel Insertion) An SPG Y is parallel-inserted into an SPG
G at component X by setting sY = sX and tY = tX .

The intuition is parallel insertion provides another path for the flow in the supply
chain, while series insertion just makes the supply chain redundant, and we have the
following theorem illustrating our intuition.

Theorem 1.4.2 Series insertion always decreases the total flow, while parallel inser-
tion always increases the total flow.

The proof is provided in Appendix 2.7.7.
Base on the fact that series insertion is always bad, while parallel insertion is

always good, the next question is, given components, where is the most efficient
location to insert?

To analyze the changes in efficiency from different parallel insertion location, we
can start with a special case, where G can be written as a series composition of two
components.

Lemma 1.4.2 Suppose G = S(X1, X2), then P (G, Y) is more efficient than parallelly
inserting Y at X1 and also more efficient than parallelly inserting Y at X2.

The proof is provided in Appendix 2.7.8 and it can be extended to general SPG
as mentioned in the following theorem.

20

Theorem 1.4.3 Parallel insertion into the entire SPG is more efficient than parallel
insertion into a component of the SPG.

Proof Proof by induction, starting from the smallest series of components, it is
always better off by parallel insertion at the head and tail nodes by Lemma 1.4.2,
and we can repeat this until stopping at the global parallel insertion.

This theorem can be interpreted as global parallel insertion will bring more com-
petition to the supply chain network than local parallel insertion. As a result, the
network is more efficient after global insertion.

1.4.3 Firm Location and Individual Utility

This section focuses on the firm’s utility at equilibrium. Specifically, how does the
position of a firm in the network influence its utility at equilibrium? To address this
question, we first check the result of a simple example.

Example 7 (Firm Utility in Straight Line)

sps = 0 a t pt = 1−Xt
x x

Assume processing cost is 0. Price at firm a and s are pa = 1−2x and ps = 1−4x.
Therefore, the utilities are Πa = (pt − pa)x = x2 and Πs = 2x2 = 2Πa.

The above example shows an intuition of the location advantage that the firm
closer to the source may have higher utility than its downstream buyers. However,
this is not always true in SPG, especially when there is strong competition among
upstream buyers (i.e., MS case). To gain a deeper intuition, we would say the up-
stream firm which controls all the flow of its downstream firm has a relatively better
utility at equilibrium. Therefore, we introduce the following new definition.

Definition 1.4.6 (Dominating Parent) i is a dominating parent of j if all the
flow from source to j must go through i.

As in Example 4, a is a dominating parent of b and g, but neither a dominating
parent of h nor a dominating parent of i.

For firm i, the utility is

Πi =
∑
j∈B(i)

(pj − pi)xij −
ci
2
X2
i

=
∑
j∈B(i)

(biXi +
∑

k∈CP (i)

bkXk − bjXj −
∑

k∈CP (j)

bkXk)xij −
ci
2
X2
i .

By using the coefficient relation between buyer and seller as in equation SS, MS,
and SM, we can find the closed-form of the utility. The proof is provided in Ap-
pendix 2.7.9.

21

Lemma 1.4.3 The utility at equilibrium can be written as

Πi =
1

2
(bi +

∑
k∈CP (i)

bk)X
2
i . (1.9)

Based on the utility function, we can prove the following key theorem which shows
the location advantage of a dominating parent. Namely, if a firm controls the other
firm’s flow in the supply chain, then its utility is at least twice as much as its child.
The proof is provided in Appendix 2.7.10.

Theorem 1.4.4 If firm i is a dominating parent of firm j, then firm i has at least
twice as much utility as firm j.

The following corollary shows that the seller benefits a lot from the competition
among the buyer side, and the proof is provided in Appendix 2.7.11.

Corollary 1.4.1 In the SM case, the utility of the seller is larger than the utility
sum of all the buyers.

To sum up, we proved a dominating parent always has better utility, and the
double utility rule will hold, which demonstrates the great value of controlling the
upstream flows in the real world.

1.5 Equilibrium in Generalized Series Parallel Graph

In this section, we discuss the equilibria properties in the extension cases when
the series-parallel graph has multiple sources or sinks. In particular, we will show:

• Multiple-sources-and-single-sink SPG: There exists a unique equilibrium, and
it can be found in polynomial time.

• Single-source-and-multiple-sinks SPG: Price function of a firm may be piecewise
linear under simple settings. Besides, there may exist multiple equilibria.

• Multiple-sources-and-multiple-sinks SPG: There may exist multiple equilibria,
or there is no equilibrium.

1.5.1 Multiple Sources and Single Sink

A series-parallel graph with multiple sources and single sink (MSPG) is defined
as follows.

Definition 1.5.1 (MSPG) G is multiple-source-and-single-sink SPG if it can be
constructed by deleting the source node of an SPG and setting the adjacent nodes of
the source as the new source nodes.

22

Assume every source producer makes decision simultaneously. In contrast to SPG
that all edges are active, there may exist inactive edges in MSPG.

Example 8 (Inactive Edges)

s1ps1 = 0

s2ps2 = 6
a t pt = 8− xt

x

y = 0

x

By Algorithm 1, Price functions at firm a is pa = 8 − 2Xa. By solving the LCP as
in section 1.3.3, the equilibrium flow is x = 2, y = 0, where firm s2 and edge xs2a are
inactive.

By the proof 2.6.2 of Lemma 1.3.1 (SM case), if a firm is active, all the sub-flows
are active too. Therefore, it is sufficient to identify all the inactive edges by check
the seller’s activity status, and here is an algorithm to identify all the inactive edges
in MSPG:

Algorithm 3 : Determinate Inactive Edges

1: Similar to Algorithm 1, compute the price function of all nodes.
2: Solve the convex optimization problem CQP at the source nodes, get the equilib-

rium flow xsj where j ∈ B(s) for each source node s.
3: For any firm k, if all of its inflow edges are red, also mark k and its outflow edges

as red. Repeat that until no new red firm or edge appears.
4: Firms and edges are inactive if and only if it is marked as red.

Similar to the SPG procedure, we can apply Algorithm 1 and Algorithm 2 to
compute the price and quantities at equilibrium.

Theorem 1.5.1 For MSPG, there exists a polynomial time algorithm to solve the
equilibrium flow and price, and the equilibrium is unique.

The proof is quite similar to Theorem 1.3.1 and is omitted here. Note that unique-
ness is because flow quantity is a solution of CQP (Lemma 1.3.2).

1.5.2 Single Source and Multiple Sinks

In this section, we focus on the extension of multiple sinks, and the definition is
similar to Definition 1.5.1.

Definition 1.5.2 G is single-source-and-multiple-sinks SPG if it can be constructed
by deleting the sink node of an SPG and setting the adjacent nodes of the sink as the
new sink nodes.

23

First, we consider a special case that all markets have the same demand at, then
all markets are active, i.e., every market has a positive incoming flow. The proof is
provided in Appendix 2.8.1.

Theorem 1.5.2 If all markets have the same demand, then all markets are active,
and there exists a unique equilibrium.

However, one major difference multiple sinks cast to SPG is that depending on
the selling price from upstream, and the ending markets may be inactive, that is, the
incoming quantity is zero, while the single ending market is always active in SPG.
For example,

Example 9 (Markets Activities)

s

t1

a

t2

t3

ps = 0

pt1 = 1−Xt1

pt2 = 2−Xt2

pt3 = 8−Xt3

Since at1 > ps, it is clear that market t1 is active. Suppose market t2 is active, market
clearance price function at a is pa = 5−Xa. When source s makes decision, note that
flow xst1 and xsa can be handled independently, it is easy to see the optimal decision
that maximizes the utility (5 − Xa)Xa of s from a is Xa = 2.5 and pa = 2.5 > at2,
contradicting to market t2 is active. Therefore, market t2 is inactive, even though it
has higher demand than market t1.

Note that, the above example is against the intuition that the market with higher
demand is more likely to be active (t2 is inactive while t1 is). While the truth is not
only market demand, but also the competitors and network structure influence the
market activity. Namely, market t2 is inactive because it has a longer supply chain
than t1 and a strong competition between t3. As a result, it is less favorable than t1
and t3.

Based on the activity status of the ending markets, we introduce two types of
processing strategies for upstream firms.

Definition 1.5.3 (Low Price Strategy) Firm processes relatively large quantity of
goods at a relatively low price, such that all the markets are active.

Definition 1.5.4 (High Price Strategy) Firm processes relatively small quantity
of goods at a relatively high price, such that some markets are inactive.

24

Note that the firm’s decision of strategies only depends on individual utility maxi-
mization. Because of various choice of strategies, we will see the price functions are
piecewise linear in this case. Furthermore, some counterintuitive results will occur,
i.e., the increase of demand may result in the decrease of total flow and social wel-
fare (comparing to Proposition 1.4.2). To understand these differences, it is helpful
to consider an example as in Figure 1.3, where the two supply chain networks have
identical structure but different market demands.

supply chain 1:

bpb = 7 a
t1

t2

pt1 = 19− x

pt2 = 12− y

Xa
x

y

supply chain 2:

bpb = 7 a
t1

t2

pt1 = 20− x

pt2 = 12− y

Xa
x

y

Fig. 1.3.: Multiple Sinks Supply Network

It seems that supply chain 2 with higher market demand should have larger flow
and social welfare. However, the truth is supply chain 1 is more efficient. To explain
this, let us check the market clearance price at b and a first as in Figure 1.4. Note
that the source firm b has two strategies when pb = 7, and both low and high price
strategies are feasible. Interestingly, when at1 = 20, the utility of b is maximized by
choosing high price strategy and only market t1 is active. However, when demand at
market t1 drops, low price strategy is preferred by b.

Xa

pa

pa = 20− 2Xa

pa = 16−Xa

4

12

Xa

pb

pb = 20− 4Xa

pb = 16− 2Xa

4

4

8

Fig. 1.4.: Piecewise Linear Price Functions of Supply Chain 2

25

By fixing demand at market 2 and adjusting the demand at market 1 (at1), Fig-
ure 1.5 shows the numerical results of firm b’s corresponding surplus, consumer sur-
plus, total flow, and social welfare. Note that the intersecting point at a1 ≈ 19.5
shows that increasing demand at market hurts the supply chain efficiency.

Fig. 1.5.: Price Strategies Simulation

Remark. For the supply chain networks in Figure 1.3, we have the following results:

• Supply chain under low price strategy is always more efficient than under high
price strategy.

• When the demand difference between two markets is small enough, low price
strategy gives better payoff for source firm b. If the difference is large enough,
high price strategy gives better payoff for source firm b.

• Low price strategy always produces a higher total surplus of firms and con-
sumers. Hence, social welfare is also higher.

In short, low price strategy is preferred by b if the demand difference is not sig-
nificant. Besides, with low price strategy, everyone is usually better off. For more
interpretation of these results, please check Appendix 2.8.2.

When upstream chooses the optimal strategy and flow, there may exist multiple
equilibria for downstream firms. Details are in Example 2.12.7.

26

1.5.3 Multiple Sources and Multiple Sinks

In the multiple sources and multiple sinks cases, the problem may become in-
tractable as shown in the following examples:

• Multiple pure strategy equilibria exist (Example 10).

• No pure strategy equilibrium exists (Example 11).

Therefore, it is difficult to analyze the behavior of the firms in the supply chain
without any further assumption in this case.

Example 10 (Multiple pure strategy equilibria)

s1

s2

ps1 = 0

ps2 = 0

c

t1

t2

pt1 = 4− u

pt2 = 1− v

x

y

u

v

Assume no processing cost. Πh
1 is the utility of s1 with high price strategy and Πl

1

is the utility of s1 with low price strategy. The notations for s2 are similar.

• Suppose restricted to high price strategy, the optimal quantities are x = y = 2
3
,

then

Πh
1 = Πh

2 =
8

9
.

If s2 increases supply to low price strategy level (y′ = 11
12

), his optimal payoff at
the new low price strategy is

Πl′

2 =
121

144
< Πh

2 .

Thus, exists equilibrium at high price strategy.

• Suppose restricted to low price strategy, the optimal quantities are x = y = 5
6
,

then

Πl
1 = Πl

2 =
25

36
.

If s2 decreases supply to high price strategy level (y′ = 7
12

), his optimal payoff
at the new high price strategy is

Πh′

2 =
49

72
< Πl

2.

Thus, exists equilibrium at low price strategy.

27

In summary, both high and low price strategies are equilibria. Computation details
can be found in Appendix 2.12.7

The following example shows that it is possible that no equilibrium exists in the
multiple sources and multiple sinks cases.

Example 11 (No pure strategy equilibrium)

s1

s2

ps1 = 2

ps2 = 0

c

t1

t2

pt1 = 5− 2u

pt2 = 1− v

x

y

u

v

Assume no processing cost. Πh
1 is the utility of s1 with high price strategy and Πl

1

is the utility of s1 with low price strategy. The notations for s2 are similar.

• Firm s1 never accepts low price strategy, because when market t2 is active pc
has to be smaller than 1, but ps1 > 1 > pc.

• If firm s1 is not active (x = 0), firm s2 will prefer high price strategy which
gives a higher utility,

Πl
2 =

49

32
<

50

32
= Πh

2 .

while the price function at c is greater than the material cost of firm s1,

pc = 2.5 > ps1 .

Therefore, this is not an equilibrium because firm s1 will prefer participating the
supply network and x > 0.

• If firm s1 is active (x > 0), then assume they agrees on a local optimal at high
price strategy. However, firm s2 will prefer increasing production and switching
to low price strategy because

Πh
2 =

49

36
<

50

36
= Πl

2.

Thus, it is not an equilibrium either.

In summary, neither high nor low price strategy exists equilibrium. Computation
details can be found in Appendix 2.12.8.

28

1.6 Conclusion

We considered a network model of sequential competition in supply chain net-
works. Our main contribution is that when the network is series-parallel, the model
is tractable and allows for a rich set of comparative analysis. In particular, we provide
a polynomial time algorithm to compute the equilibrium, and the algorithm helps us
to study the influence of the network to the total flow of the equilibrium. Further-
more, we show that slightly extending the network structure beyond series-parallel
graphs makes the model intractable. Several questions are left for future research such
as extending the model to capture uncertainty, risks, and asymmetric information.

29

2. DELEGATION STRUCTURE

2.1 Introduction

The decision of delegation structure affects the cost of the principal and the effort
status of every agent in the production chain in different ways. The principal may
prefer delegation because that saves the cost of monitoring. However, the conflict
interests between the middle agents with the principal may result in an insufficient
incentive for downstream agents under delegation. In this article, we investigate and
fully characterize the trade-off of the delegation, and provide algorithms to compute
the optimal delegation structure for the principal.

Our model has three main features. First, we consider the production chain as
a sequential process, where a product is processed from raw material at the initial
agent to the final product at the principal. During this process, the agents decide
the effort levels sequentially. Second, the effort level is unobservable, but it’s possible
to monitor the quality of the output product from each agent. Third, and most
importantly, the principal could access the intermediate product quality information
by signing a contract with the corresponding agent. Therefore, there is no information
advantage for the middleman.

In this setting, the principal first designs a delegation structure for the product
chain, and start signing contracts sequentially from the top to the down levels. After
received contracts, the agents begin exerting efforts sequentially along the production
chain. Due to the difficulty of monitoring the efforts, while the observable quality is
an aggregation of the effort, the predecessor’s output quality, and unknown environ-
mental effect, problems of free riding and moral hazard arise in this context. Hence,
how to design an efficient contract structure, at the minimum cost, to induce the
effort from every agent becomes the primary concern of the principal.

To find the optimal contract structure, we start our analysis with a three agents
model, including the principal, agent 1 and agent 2. A practical instance of this model
can be a production chain of building satellites: the power system must be finished
by agent 1 first. Then, after knowing the engine’s capability and the maximum
deliverable mass, agent 2 can start to design the rest of the satellite. In the end,
the principal expects a functional satellite ready to launch. To motivate every agent
along the production chain, the principal can sign a direct contract with both agents
and observes their output signals.

Meanwhile, it is also an option to give agent 2 more power and make him responsi-
ble for agent 1’s action. Specifically, in the delegation case, agent 2 not only needs to
decide his effort but also accountable for the subcontract with the downstream agent.
Otherwise, shirking may happen and eventually harms agent 2 task completeness.

30

One significant difference between our study with the other literature is that we
treat the principal and the delegating middle agent at the same fair position when
monitoring the downstream agents. For example, both of the principal and agent
2 can observe the same correct output signal from 1, and there is no additional
cost for the principal even if to control every agent directly. Under this setup, it
may appear to be that the delegation will not help since the middle agent does not
have any advantage on inducing the downstream agents’ effort but has a personal
objective inconsistent with the principal. However, we will show sometimes leaving
more responsibilities to the middle agents may help the principal save the cost of
incentive when signing contracts.

Our paper studies a model of sequential network game motivated by production
chain network applications. We consider the agents are risk neutral and can’t be
punished. To study such a delegation model, one needs to analyze subgame perfect
equilibria. After received a contract from the principal, to make an optimal decision
about personal effort and subcontract, agent 2 needs to internalize the decision of
agent 1.

Once the subgame equilibrium is solved, we can characterize the threshold for the
principal to decide whether direct control or delegation in a three agents model in
Section 2.2. Our primary goal is to understand the value of delegation and how to uti-
lize agents’ incentive through different contract structures fully. Moreover, our study
illustrates the trade-off of using delegation. On the one hand, through delegation,
the principal shifts the contract cost of the downstream agents to the middle agents.
On the other hand, the principal gives up the ability to observe those intermediate
signals and loses control over those delegated agents.

Our main finding in this paper is presenting a new approach to demonstrate the
value and trade-offs of the delegation. In contrast, the other work assuming asym-
metric information, i.e., [14, 15], we assume the principal can access full information
same as the middleman. Furthermore, we provide thresholds for the principal to make
the optimal decision between direct control and delegation under different conditions.
We explore the influence of various parameters over the delegation decision of the
principal in different situations through a comparative study.

After solving the problem in a three agents model in Section 2.2, under some mild
assumptions, we extend this model to various complex process structures, including
path and tree in Section 2.3 and 2.4. We also developed a polynomial time algorithm
to obtain the optimal delegation structure and contract payments.

Related work: Our paper assumes the effort is unobservable and concerning the
efficient contract structure based on the quality signals, which is closely related to
the literature on Moral Hazard on teamwork, including [16, 17, 18, 19]. Comparing
to their work, our paper focuses more on the sequential processing and optimal del-
egation structure along the production chain. However, [17] considers two identical
agents in the team and focus more on the benefits from different contract conditions.
Meanwhile, [16, 18, 19] stress on different types of agents in the group and the effects

31

of matching between different types. In contrast, the agents in our paper belong to
the same type but have different parameters about the success probability.

Our work focus on the value of delegation by using the middleman, [20, 21] also
investigate the role of middleman and its effects over the overall network. Our paper’s
setting is related to [22], which considers uncertainty over the agents preferences and
provide an optimal delegation set. However, he restricts the set of feasible delegation
sets to intervals. Our work is also related to the papers about relational contracts
within and between organizations. For instance, [23] studies the design of self-enforced
in the presence of moral hazard and hidden information.

For a similar network structure, [4, 12] analyze bargaining games. However, our
paper assumes zero bargaining power when the downstream agent receives the con-
tract from the upstream agent but considers more variation on contract structure by
delegation.

2.2 General Three Agents

2.2.1 Model Description

We consider a three agents sequential working process as in Fig. 2.1, where the
work is initiated at the agent 1. After agent 1’s task is done, it will be passed over
to agent 2, and eventually to the last agent (the principal). During the process, each
agent can decide making effort or not, while this effort is costly and unobservable to
the others. However, a binary signal sk ∈ {0, 1} which indicates the task completeness
is observable to the next node, More precisely, agent 2 can observe s1 and the
principal can observe s2 after the task of agent 1 or 2 is done.

P 2

e2

1

e1
s1s2

Fig. 2.1.: Process Path

For agent 1, the probability of success, P (s1 = 1), is related to

• Personal effort e1,

• Environmental random effect r1.

For agent 2, the probability of success, P (s2 = 1), is related to

• Signals from agent 1, s1,

• Personal effort, e2,

• Environmental random effect, r2.

32

We assume the success probability in each condition is a public information, and
the following values are given to every agents in the production chain,

P (s1 = 1|e1),where e1 ∈ {0, 1}, (2.1)

P (s2 = 1|s1, e2),where e2, s1 ∈ {0, 1}. (2.2)

Without loss of generality, we can rewrite the above probabilities in the following
form,

P (s1 = 1|e1) = α1e1 + γ1, (2.3)

P (s2 = 1|s1, e2) = α2e2 + β2s1 + τ2s1e2 + γ2. (2.4)

and the value of the parameters α, β, τ, γ are common information. It’s also fair to
assume that the effort and good signals indeed help complete the task,

P (s1 = 1|e1 = 1) > P (s1 = 1|e1 = 0),

P (s2 = 1|s1, e2 = 1) > P (s2 = 1|s1, e2 = 0),∀s1 ∈ {0, 1},
P (s2 = 1|s1 = 1, e2) > P (s2 = 1|s1 = 0, e2),∀e2 ∈ {0, 1}.

which is equivalent to assume α, β, τ > 0.
The priority goal of the principal is to achieve success at the final task, i.e.,

s2 = 1. Since agents’ effort is costly and unobservable, the only way for the principal
to induce the effort is by signing contracts based on the output signal s1, s2. There
are two options for the contract structure1, i.e., either directly control both of agents,
or delegate agent 1 to agent 2 as in Fig. 2.2, where the solid black line means contract
direction, and the blue dashed line means the process direction:

P

2

1

e2

e1

M2

M1

s2

s1

s1

Direct Control

P 2 1

e2 e1
M2 M1

s2 s1

Delegation

Fig. 2.2.: Two Delegation Structures

As in the Figure 2.2, the principal can direct control (sign contract with) agent
1, 2. In this case, because the contract with agent 1, the principal obtain the ability to

1delegate agent 2 to agent 1 is always inefficient, proved in next section.

33

monitor agent 1’s output signal s1. The decision time line of direct control is plotted
in Fig. 2.3.

P
offers contract

to 1 and 2

1
exert effort

or not

2
exert effort

or not

The contracts
are executed

time

t = 0 t = 1 t = 2 t = 3

M1&M2
s1 s2

Fig. 2.3.: Timing of Contracting of Direct Control

Another option is only signing contract with agent 2, and agent 2 has the freedom
to decide whether signs a subcontract to motivate agent 1. In another words, the
principal gives up all the control over agent 1, and cannot observe the contract detail
between agent 2 and 1. The decision time line of delegation is plotted in Fig. 2.4.

P
offers contract

to 2

2
offers contract

to 1

1
exert effort

or not

2
exert effort

or not

The contracts
are executed

time

t = 0 t = 1 t = 2 t = 3 t = 4

M2 M1
s1 s2

Fig. 2.4.: Timing of Contracting of Delegation

Assume agents are risk neutral and have zero liability. In the production chain,
agents make decisions sequentially to maximize the individual utility. The goal of
the principal is to maximize the success probability with the lowest cost. Namely,
the principal wants to minimize the cost under the condition that every single agent
in the process tree ha incentive to work. The question is how much is the necessary
contract payment that the principal should sign the agents, and what’s the best
structure, delegation or direct control?

2.2.2 Preliminary

Agent 1’s expected utility function is

π1(e1|M1) = P (s1 = 1|e1)M1 − c1e1.

34

Because agent has zero liability, the efficient contract always set the payment to 0
when the task is failed, and the contract to agent 1 has the following form:

r1 =

{
M1, if s1 = 1,

0, if s1 = 0.
(2.5)

We call M1 as the contract payment, and to induce agent 1 to make effort, M1 must
satisfy π1(e1 = 1|M1) ≥ π1(e1 = 0|M1). From the this condition, we can compute the
minimum contract payment to agent 1,

M0
1 =

c1

P (s1 = 1|e1 = 1)− P (s1 = 1|e1 = 0)
=
c1

α1

. (2.6)

When agent 2 is making effort decision, the expected utility function is,

π2(e2|s1,M2) = P (s2 = 1|s1, e2)M2 − c2e2.

In contrast to agent 1, the utility of agent 2 also depends on the result of s1. The
difference of effort is

∆π2(s1|M2) = π2(e2 = 1|s1,M2)− π2(e2 = 0|s1,M2)

= (P (s2 = 1|s1, e2 = 1)− P (s2 = 1|s1, e2 = 0))M2 − c2e2

= (α2 + τ2s1)M2 − c2e2.

By the incentive condition ∆π2(s1|M2) ≥ 0. When s1 = 0, the minimum contract
payment is

M+
2 =

c2

α2

. (2.7)

When s1 = 1, the minimum contract payment is

M−
2 =

c2

α2 + τ2

. (2.8)

Note that since we assume τ2 ≥ 0, we have M−
2 ≤M+

2 , and the following proposition.

Proposition 2.2.1 Minimum payment for agent 2 to make effort is larger when
s1 = 0.

Hence, both s1 and s2 are useful to design the contract with agent 2. In contrast,
for contract with agent 1, signal s1 is enough to motivate agent 1, and additional
information from s2 doesn’t save the expected cost for the principal.

Proposition 2.2.2 In the direct control case, signal s1 is sufficient for the principal
to design the minimum cost contract with agent 1.

35

After receiving incentive contract, and suppose everyone makes effort, We denote
P (1), P (2) as the success probability under effort,

P (1) = P (s1 = 1|e1 = 1), (2.9)

P (2) = P (s2 = 1|e1 = 1, e2 = 1)

=
∑
s1

P (s2 = 1|s1, e2)P (s1|e1). (2.10)

Recall the delegation options for the principal (Fig 2.2), here we prove, the prin-
cipal never considers delegating the upstream agent to the downstream agent,

Proposition 2.2.3 Delegate agent 2 to agent 1 is always inefficient.

The proof is provided in Appendix 2.9.4.
Since the principal knows all the information as the other agents, it seems to be

the principal has no benefit to delegate agent 1 under the control of agent 2. However,
this is not always true, and the following example shows that delegation may be better
than direct control.

Example 12 (Benefit of Delegation)
Setup: For agent 1, the effort cost is c1 = 1, α1 = 0.4, γ1 = 0.2 and corresponding
successful probabilities are,

P (s1 = 1|e1 = 0) = 0.2,

P (s1 = 1|e1 = 1) = 0.6.

For agent 2, the effort cost is c2 = 2, α2 = 0.2, β2 = 0.5, τ2 = 0, γ2 = 0.2 and
corresponding successful probabilities are,

P (s2 = 1|s1 = 0, e2 = 0) = 0.2,

P (s2 = 1|s1 = 1, e2 = 0) = 0.7,

P (s2 = 1|s1 = 0, e2 = 1) = 0.4,

P (s2 = 1|s1 = 1, e2 = 1) = 0.9.

Computation:
By Equation 2.6, 2.7, 2.8, the minimum effort payment for agent 1 and agent 2

is

M0
1 = 2.5,

M0
2 = M+

2 = M−
2 = 10,

and the successful probability when every agents commits effort by equation 2.9 is,

36

P (1) = P (s1 = 1|e1 = 1) = 0.6,

P (2) = P (s2 = 1|e1 = 1, e2 = 1) = 0.7.

In the direct control case,

P

2

1

e2

e1

M2

M1

Direct Control

the expected cost of direct control is,

cost = P (1)M0
1 + P (2)M0

2 = 8.5.

In the delegation case,

P 2 1

e2 e1
M2 M1

Delegation

in order to motivate agent 2, the payment needs to satisfy M2 ≥M0
2 . If agent 2 signs

subcontract with 1, we know the payment is M1 = M0
1 , and the following is the agent

2’s utility when sign or not sign contract with 1

π2(M1 = M0
1 |e2 = 1) = P (s2 = 1|e1 = 1, e2 = 1)M2 − P (s1 = 1|e1 = 1)M1 − c2

= 0.7M2 − 0.6M1 − c2,

π2(M1 = 0|e2 = 1) = P (s2 = 1|e1 = 0, e2 = 1)M2 − c2

= 0.5M2 − c2.

By the condition that π2(e2 = 1,M1 = M0
1) ≥ π2(e2 = 1,M1 = 0), we have a lower

bound for contract payment to agent 2 as M2 ≥ 7.5, which is already satisfied by
M2 = M0

2 = 10. Therefore, in the delegation case, if the principal signs contract with
payment M0

2 , the agent 2 will sign subcontract with agent 1 and exert personal effort.
Finally, the expect cost of delegation is

cost′ = P (2)M0
2 = 7 < cost.

Thus, delegation is better than direct control with a lower expected cost for the prin-
cipal.

37

2.2.3 Delegation Threshold

In this section, we consider two delegation structures, direct control and delegation
as in Fig 2.2. In the delegation case, the principal gives up the control over agent 1
and delegate him to agent 2. Therefore,s compared to the direct control, the principal
is only able to observe s2 in the delegation case. Here are a few trade-offs for choosing
delegation,

• pro: save the contract cost with agent 1;

• con: may increase the contract cost with agent 2;

• con: less efficient cost with agent 2, due to lack of information about s1.

To compare delegation with direct control, we also consider two direct control case

• with both signals, the principal can sign contract with agent 2 based on s1 and
s2;

• with a single signal, the agent 2 only accepts contract conditional on his per-
formance s2.

In the following part, we will analyze the expected cost in each case and the param-
eters and conditions that influence the principal’s decision over different structures.

Direct control with single signal.

Suppose the contract payment to agent 2 only depends on s2 as follows:

r2 =

{
M2, if s2 = 1;

0, if s2 = 0.

To cover the worst case scenario s1 = 0, and always induce agent 2’s effort, the
principal has to set the contract payment as M2 = M+

2 . Thus, the expect cost of the
principal is

cost1 = P (1)M0
1 + P (2)M+

2 . (2.11)

Recall that M0
1 = c1

α1
,M+

2 = c2
α2

are computed at Equation 2.6, 2.7.

38

Direct control with both signals.

Suppose the previous signal s1 can be leveraged to design the contract with agent
2, then agent 2’s contract payment is,

r2 =


M−

2 , if s1 = 1, s2 = 1;

M+
2 , if s1 = 0, s2 = 1;

0, if s2 = 0.

Recall that M−
2 = c2

α2+τ2
,M+

2 = c2
α2

are computed at Equation 2.8, 2.7. Meanwhile,

the contract payment to agent 1 is still M0
1 = c1

α1
.

The expected cost in this case is

cost2 = P (s1 = 1|e1 = 1)M0
1 + P (s2 = 1, s1 = 0|e1 = 1, e2 = 1)M+

2

+ P (s2 = 1, s1 = 1|e1 = 1, e2 = 1)M−
2

= P (1)M1 + P (s1 = 0|e1 = 1)P (s2 = 1|s1 = 0, e2 = 1)M+
2

+ P (s1 = 1|e1 = 1)P (s2 = 1|s1 = 1, e2 = 1)M−
2 . (2.12)

Since direct control with both signals allows the principal to design more flexible
and efficient contracts, we know cost2 ≤ cost1 always holds, and have the following
proposition,

Proposition 2.2.4 Direct control with both signals is always better than direct control
with a single signal.

Delegation.

In the delegation case, since the principal only observes s2, the contract structure
is

r2 =

{
M2, if s2 = 1;

0, if s2 = 0.

Because the principal only has contract with agent 2, the expected cost in this case
is

cost3 = P (2)M2. (2.13)

The question is what’s the minimum contract payment M2 such that agent 2 will
be motivated to sign subcontract with agent 1 and exert personal effort. Recall the
decision timeline in Fig 2.4, similar to the case of direct control with a single signal, the

39

minimum payment for agent 2 committing personal effort in the worst-case scenario
in the effort stage is

M2 ≥M+
2 .

Given this is satisfied, in the contract, agent 2 only needs to consider the expected
utility in the following two conditions when making subcontract decision to agent 1,

• No subcontract, and commits personal effort later

π2(M1 = 0|e2 = 1) = P (s2 = 1|e1 = 0, e2 = 1)M2. (2.14)

• Subcontract, and commits personal effort later

π2(M1 = M0
1 |e2 = 1) = P (s2 = 1|e1 = 1, e2 = 1)M2 − P (s1 = 1|e1 = 1)M1 − c2.

(2.15)

By the condition that π2(M1 = M0
1 |e2 = 1) ≥ π2(M1 = 0|e2 = 1), we get another low

bound for the contract payment for agent 2,

M2 ≥
P (1)M0

1

α1(β2 + τ2)
.

The following lemma gives the minimum contract payment to agent 2 in the delegation
case.

Lemma 2.2.1 In the delegation case, the minimum contract payment to agent 2 is

M2 = max{M+
2 ,

P (1)M0
1

α1(β2 + τ2)
}.

The proof details is provided in Appendix 2.9.1. Therefore, we have expected cost of
delegation as follows,

cost3 = P (2) max{M0
2 ,

P (1)M0
1

α1(β2 + τ2)
}. (2.16)

Given the expected cost in three cases 2.11, 2.12, 2.16, it’s clear that the principal
prefers delegation to direct control with single signal when cost1 ≥ cost3, and the
following theorem gives the specific threshold.

Theorem 2.2.1 The principal prefer delegation to direct control with single signal if
the following inequality is satisfied.

(α2 + (α1 + γ1)(β2 + τ2) + γ2)c2/α2

(α1 + γ1)c1/α1

≥ α2 + γ1(β2 + τ2) + γ2

α1(β2 + τ2)
. (2.17)

40

Similarly, if condition cost2 ≥ cost3 is satisfied, then the principal prefers delega-
tion to direct control with both signals, and we derive the thresholds in the following
theorem,

Theorem 2.2.2 The principal prefer delegation to direct control with both signals if
inequality 2.18, 2.19 is satisfied.

c1

α1σ2

≥ τ2c2

α2(α2 + τ2)
, (2.18)

(1− σ1)(α2 + γ2)
c2

α2

+ σ1σ2
c2

α2 + τ2

≥ σ1(α2 + γ2)

α1(β2 + τ2)

c1

α1

. (2.19)

where σ1 = α1 + γ1, σ2 = α2 + β2 + τ2 + γ2.

2.2.4 Comparative Statistics

Given the thresholds from the last section, this section will analysis the impact
of each parameters over the principal’s choice of delegation structure. Recall the
probability functions 2.3,

P (s1 = 1|e1) = α1e1 + γ1,

P (s2 = 1|s1, e2) = α2e2 + β2s1 + τ2s1e2 + γ2.

We first compare the delegation with direct control with single signal, whose
contracts to agent 2 both only depend on s2. The threshold 2.17 by Theorem 2.2.1
is,

(α2 + (α1 + γ1)(β2 + τ2) + γ2)c2/α2

(α1 + γ1)c1/α1

≥ α2 + γ1(β2 + τ2) + γ2

α1(β2 + τ2)
.

If α1, β2, τ2 or c2 increases, the left hand side increases and right hand side decreases.
Therefore, the principal prefers delegation if

• agent 1’s effort has a large impact on the success rate of the first task (α1);

• the success of the first task has a large impact on the final success (β2);

• the success of the first task makes the effort of agent 2 much more valuable: τ2;

• agent 2 has a high cost of effort (c2).

Meanwhile, if c1, γ1, or α2 increases the left hand side decreases and right hand
side increases. Therefore, the principal prefers direct control if

• agent 1 has a high cost of effort (c1);

• agent 1 has a high probability of success without effort (γ1);

41

• agent 2’s personal effort has a high impact on the final success (α2).

Now let’s compare the delegation with direct control with both signals. By The-
orem 2.2.2, when M2 = M+

2 or

c1

α1(α2 + β2 + τ2 + γ2)
≥ τ2c2

α2(α2 + τ2)
. (2.20)

only threshold 2.18 is active, and we call this threshold as efficient contract thresh-
old,

c1

α1

+ (α2 + β2 + τ2 + γ2)
c2

α2 + τ2

≥ (α2 + β2 + τ2 + γ2)
c2

α2

.

and when M2 =
P (1)M0

1

α1(β2+τ2)
or

c2

α2

≤ (α1 + γ1)c1

α2
1(β2 + τ2)

. (2.21)

only threshold 2.19 is active, and we call this threshold as subcontract incentive
threshold,

(1− α1 − γ1)(α2 + γ2)
c2

α2

+ (α1 + γ1)(α2 + β2 + τ2 + γ2)
c2

α2 + τ2

≥ (α1 + γ1)(α2 + γ2)

α1(β2 + τ2)

c1

α1

.

In these case, because direct control could sign more efficient contract with agent 2,
these parameters don’t have consistent impact as previous anymore.

For example, considering cross term τ2 in the delegation case, a large τ2 provides
more incentive to middle agent 2 to sign subcontract with agent 1, which benefits del-
egation. However, when the contract payment M+

2 for agent 2’s effort is high enough,
it already provides enough incentive for subcontracts. Meanwhile, threshold 2.19 be-
comes inactive, and threshold 2.18 becomes active. As a result, a higher τ2 decrease
the left-hand side but increase the right-hand side, which makes the principal prefers
direct control. The intuition is the principal cares more about efficient contract when
M2 = M+

2 , and a large τ2 can help save a lot cost when contract M2 can use additional
signal s1.

In summary, for delegation, the advantage of higher τ2 is a more significant in-
centive to middle agent 2 to sign subcontract, while the disadvantage is the contract
with agent 2 is less efficient by losing the information from s1. On the principal’s side,
the principal may consider more about how to leverage the aligned the interest and
use a middle agent for delegation when the cost of a middle agent is small. However,
when the cost of a middle agent is enormous, how to obtain more information and
design an efficient contract becomes more important to the principal.

42

2.3 Path

2.3.1 Path Model

We consider a principal-agent model with the working process on a directed path,
as in Figure 2.5. The work is initiated at the agent 1, after agent 1 exerts an unob-
servable effort, the task is passed over to agent 2 with an observable output signal s1.
After receiving this signal, agent 2 starts to decide the effort and so on so forth until
the final task is completed and handed over to the principal.

P 5
e5

4
e4

3
e3

2
e2

1
e1

s1s2s3s4s5

Fig. 2.5.: Production Chain

In this sequential production process, we assume the effort is costly and unob-
servable, and takes two possible values that we normalize respectively as a zero effort
level and a positive effort of one: e ∈ {0, 1} 2. Meanwhile, the output signal after
task is completed in each stage is observable and binary, which indicate the task
completeness, success or failure.

sk =

{
1, success,

0, failure.

Denote the set of agents as N . For the initial agent 1, the output signal s1 is a
random variable with probability function

P (s1|e1) = α1e1 + γ1,

where α1 is the positive impact form the effort and γ1 is the environmental influence.
For intermediate agent k > 1, the success of task is also depends on the task status
from the previous signal sk−1, and the probability function is as follows:

P (sk = 1|ek, sk−1) = αkek + βksk−1 + τksk−1ek + γk, (2.22)

where βk is the positive impact form the previous success, τ2 is the cross term, and
can be interpreted as a previous success will make current effort more valuable to the
project. We assume

2Our results can be extent to the case with multiple effort levels

43

αk, βk, τk, γk ≥ 0,∀k ∈ N ,
αk + βk + τk + γk ≤ 1,∀k ∈ N ,

and every coefficient αk, βk, τk, γk,∀k ∈ N are common information to everyone in
the production chain.

The primary goal of the principal is to maximize the success probability of the final
task, P (sn = 1). In other words, the principal wants every agent to make an effort.
Recall that effort are costly and unobservable, thus contracts with payment based on
task status can be used to induce agents’ effort. Our model assumes the agents has
zero liability. In other words, the agent cannot be punished in the contract if the
task is failed.

About the delegation structure, we have the following assumption,

Assumption 2.3.1 (Continuous Delegation) Every subtree in the delegation tree
is an interval in the production chain.

The motivation is, in practice, if an agent’s downstream and upstream supplier are
both under the control of another agent k, then most likely, this agent also under the
influence of agent k. To illustrate this assumption better, following are two examples
of invalid and valid delegation structure of production chain in Figure 2.5:

P

5

4

2

3

1M1

M3

M2

M4

M5

Fig. 2.6.: Example of Invalid Delegation Structure

The above structure is invalid, because agent 2 violate the continuous delegation
assumption and should also be delegated to agent 4 instead of 5.

In the Figure 2.7, the principal direct controls (signs contract with) agent 4, 5 and
delegates agents 1, 2, 3 to agent 4. After signed the contract with principal, agent 4
has the freedom to decide whether signs a subcontract with his children, based on his
contract payment M4 from the principal.

In summary, the model contains three stages:

• Design Stage: The production chain and parameters (α, β, γ, c) are given as
common information3, and the principal designs a delegation tree accordingly.

3every agent only needs to know its descendants’ information.

44

P

5

4

3

2 1
M1

M2

M3M4

M5

Fig. 2.7.: Example of Valid Delegation Structure

• Contract Stage: In the delegation tree, the principal initiates the contract
signing, and passing down until the leaves, a node

– receives contract from his parent;

– signs contract with his children.

• Effort Stage: In the production chain, the leaf starts working on the task,
and passing up until the root, a node

– receives the work and signal from his predecessor;

– decides to make effort or not (unobservable);

– passes over his task to the successor.

The goal of the principal is to maximize the success probability with the
lowest cost. Namely, the principal wants to minimize the cost under the condition
that every single agent has the incentive to work.

The utility function of every agent is assumed to be risk neutral and the expected
utility function includes three parts,

• expected contract reward from the successor or the principal;

• expected contract cost to the children in delegation tree;

• cost of personal effort.

For agent k ∈ N , the output signal of every descendant under his control may influ-
ence his utility. Hence, all of those signals may be used to design the contract with
k. For simplicity of the contract, we have the following assumption for the contracts,

Assumption 2.3.2 (Signal Condition) The contract payment only depends on
the output signal of whom received the contract.

45

In the other words, if someone wants to sign a contract with agent k, then the contract
payment can only depend on signal sk. For example, agent k’s contract payment rk
is

rk =

{
Mk, if sk = 1,

0, if sk = 0.
(2.23)

Note that for an efficient contract, the payment when project fails is always 0, and
we call Mk as the contract payment to agent k.

Because of the conflicting interests between the principal and the agents, the
question is what’s the optimal delegation structure and contract payment the principal
should choose? For the delegation structure, does direct control every agent the best
choice, or only do the delegation following the production chain structure? In the
next section, we will show the answers to the above questions is not fixed but depends
on the model parameters. Moreover, we will provide a polynomial time algorithm.

2.3.2 Preliminary

Recall the probability of success for agent k (2.22) is

P (sk = 1|ek, sk−1) = αkek + βksk−1 + τksk−1ek + γk.

Because we assume success of the previous signal always has a positive effects over
the current task (τk ≥ 0), agent k has more incentive to exert effort when observed
sk−1 = 1. Therefore, we define three effort status for agent k,

• Zero effort, never exert effort;

• Conditional effort, exert effort only when previous signal is positive;

• Full effort, always exert effort regardless the previous signal.

Given the contract payment Mk, the corresponding effort status for agent k can be
determined by the following theorem.

Theorem 2.3.1 For an agent k,

• the minimum payment for conditional personal effort is Mk(k̃) = ck
αk+τk

.

• the minimum payment for full personal effort is Mk(k) = ck
αk

.

If k choose to shirk, his expected payoff is

πk(0|sk−1,Mk) = (βksk−1 + γk)Mk −
∑
h∈T (k)

shMh.

46

If k makes effort, his expected payoff is

πk(1|sk−1,Mk) = (αk + βksk−1 + τksk−1 + γk)Mk −
∑
h∈T (k)

shMh − ck.

Thus, the utility function given sk−1,Mk is a piecewise linear function as in Fig. 2.8,

πk(Mk|sk−1) = max
ek∈{0,1}

πk(ek|sk−1,Mk).

Mk

πk(Mk|sk−1)

ek = 0

ek = 1

ck
αk+τksk−1

Fig. 2.8.: Piecewise Linear Utility Function of Agent k

We know the minimum incentive payment must satisfy πk(1|sk−1,Mk) ≥ πk(0|sk−1,Mk),
which gives

(αk + τksk−1)Mk ≥ ck. (2.24)

By the different values of sk−1, we prove the Theorem 2.3.1 by the above inequal-
ity 2.24. Note that the effort decision at effort stage is irrelevant to the subcontract
decisions in the contract stage.

By Theorem 2.3.1, we know the relation between personal effort ek and contract
payment Mk, and we can use it to solve a special case that the principal signs direct
contracts with every agent in the production chain. For example, the delegation tree
is Fig. 2.9 for a production chain as in Fig 2.5, where the solid black line represents the
contract direction, and the blue dashed line represents the original process direction.

47

P

5

4

3

2

1

M1

M2

M3

M4

M5

s1

s2

s3

s4
s5

Fig. 2.9.: Direct Control

For the contract payment to k, if it’s less than Mk(k), it’s not enough to provide
incentive for full effort. If it’s larger than Mk(k), it only increases the expected cost
of the principal. Hence, the expected cost in direct control case is

costp =
n∑
k=1

P (k)Mk(k).

Other than directly controlling every agent, suppose the principal decides to del-
egate a set of agents to agent k, while these agents are the descendants of k in the
delegation tree, we call them as the control set of k4.

By the Assumption 2.3.1, the control set of k must be a continuous set of agents
from i to k, where 1 ≤ i ≤ k. Thus, we use notation θik to denote the control set of k
including agents from i to k. Denote Θ(k) as the set of all possible control set of k.
For each control set, there are different delegation structures, denoted as η(θik).

In the case of delegation, the principal will not sign a direct contract with the
control set of k, and k’s subcontract decision will determine their effort status. The
next question is given Mk what would be the effort status of k’s descendants in the
delegation tree?

We first introduce some notations to describe the effort status of k’s control set
θik.

• ψ0
i,k, set of agents who make zero effort;

• ψ1
i,k, set of agents who make conditional effort (when the previous signal is

positive);

• ψ2
i,k, set of agents who makes full effort (regardless the previous signal).

4including k

48

and we defined the motivated level of every agent in the control set θik as the effort
status:

ψi,k = {ψ0
i,k, ψ

1
i,k, ψ

2
i,k}.

The set of all the possible effort status ψi,k under θik is denoted as Ψi,k.
By offering different contract payments to his children in the delegation tree, an

agent can manipulate the effort level ψi,k in his control set θik. Meanwhile, for the
agents out of his control set, he always believes the others will exert effort,

Proposition 2.3.1 Agents believe the agents not in his control set will make an
effort.

Proof Since it is common information that the principal’s priority is motivating
everyone to work. Every agent will believe who are not under his delegation are
motivated by the principal’s arrangement.

When all of the previous agents are willing to commit effort, the probability of
success of agent k, denoted as P (k), can be computed recursively as follows,

P (k) = αk + (βk + τk)P (k − 1) + γk (2.25)

=
k∑

h=1

(αh + γh)
k∏

j=h+1

(βj + τj), (2.26)

and P (0) = 0.
Given an effort status ψk, with the above belief, probability of success P (sk =

1|ψi,k) (also denoted as pk(ψi,k)) can be decomposed and computed in four parts,

• Impacts from agents before i, by Proposition 2.3.1, all of those agents are be-
lieved to be making effort,

p0
k = βi,kP (i− 1), (2.27)

where βi,k =
∏k

h=i βj;

• Impacts from zero effort agents among θik,

p1
k =

∑
h∈ψ0

i,k

βh+1,kγh; (2.28)

• Impacts from conditional effort agents among θik,

p2
k =

∑
h∈ψ1

i,k

βh+1,k

(
(αh + τh)ph−1(ψk|θik) + γh

)
; (2.29)

49

• Impacts from full effort agents among θik,

p3
k =

∑
h∈ψ2

i,k

βh+1,k

(
αh + τhph−1(ψk|θik) + γh

)
. (2.30)

In summary, the expected successful probability of k given effort status ψk over
contract set θik has the following close form expression,

pk(ψi,k) = p0
k + p1

k + p2
k + p3

k. (2.31)

For the impact from interval θik, we denote it as ∆pk(ψk|ηk),

∆pk(ψi,k) = p1
k + p2

k + p3
k. (2.32)

To measure the size of the possible delegation structure, we introduce the following
definition,

Definition 2.3.1 (Delegation Depth) For agent k, the distance to k’s the furthest
delegated agent is the delegation depth of agent k.

By assumption 2.3.1, since delegated agents are continuous on the process path, the
delegation depth of an agent is equal to the size of the control set of that agent
minus one. For example, the delegation depth of agent k in control set θk−dk is d as
in Fig 2.10.

P k k − 1 k − d 1

d

Fig. 2.10.: Delegation with Depth d in a Process Path

Suppose delegate agent k0 < k under k’s control, we can derive lower bound of
Mk.

Theorem 2.3.2 If delegate agent k0 < k under k’s control, then

Mk ≥
Mk0(k0)∏k

i=k0+1(βi + τi)
. (2.33)

Recall that Mk0(k0) is the minimum payment for k0’s personal effort. The proof is
provided in Appendix 2.10.1.

The above Theorem suggests that the contract payment grows exponentially with
the depth of delegation. To illustrate that, consider all the βk and τk, k ∈ N is equal,
we have the following Corollary as a special case of Inequality 2.33,

50

Corollary 2.3.1 Suppose β = βk, τ = τk, k ∈ N is a constant, the lower bound of
contract payment to motivate a agent k with delegation depth d is

Mk ≥
Mk−d(k − d)

(β + τ)d
.

Because of the exponentially increasing cost, the principal generally doesn’t consider
a delegation structure with too large depth. Therefore, in order to analysis the
optimal delegation structure in the process path, here we introduce an bounded depth
assumption

Assumption 2.3.3 The delegation depth for any agent is bounded by d.

With the above assumption, we can prove the delegation structure is bounded.

Lemma 2.3.1 If an agent has delegated a control set with size d, the possible delega-
tion substructure below this agent is O(2d

2
)

The proof is provided in Appendix 2.10.2. Based on this, we are going to propose
a polynomial time algorithm to find the optimal delegation structure in the next
section.

2.3.3 Dynamic Programming Algorithm

For agent k, given delegation structure ηi,k with control set θik and contract Mk.
The main question in this section is what’s the effort status ψi,k? We build the connec-
tion between Mk and ψi,k by induction, suppose k is a leaf agent, by Theorem 2.3.1,
the corresponding effort status of k is

• Zero effort, if Mk < Mk(k̃);

• Conditional effort, if Mk(k̃) ≤Mk < Mk(k);

• Full effort, if Mk ≥Mk(k).

Now consider middle agent k, for every child h ∈ T (k), by induction there is a
mapping from minimum contract payment Mh to ψh, and his expected utility function
at the contract stage is

πk(M~h|Mk, ηk) = pk(ek(Mk),M~h|ηk)Mk −
∑

hj∈T (k)

ph(Mhj |ηk)Mh − ckek

= pk(ψi,k)Mk −
∑

hj∈T (k)

ph(ψhj−1+1,hj)Mh − ckek,

51

By Equation 2.22, the expected probability pk(ψi,k) can be written as

pk(ψi,k) = αkek(Mk) + βkpk−1(ψi,k−1) + τkpk−1(ψi,k−1)ek(Mk) + γk

= αkek(Mk) +
∑
h∈T (k)

βh+1,k∆ph(ψi,k) + βi,kP (i− 1) + τkpk−1(ψi,k−1)ek(Mk) + γk,

(2.34)

recall that βh+1,k =
∏k

j=h+1 βj, and the second equality is from Equation 2.31.
For k’s personal effort ek(Mk), it’s not a decision variable at the contract stage,

but we have its expected value by Theorem 2.3.1,

ek(Mk) =


0, Mk ≤ ck

αk+τk
,

pk−1(ψi,k−1), ck
αk+τk

≤Mk ≤ ck
αk
,

1, Mk ≥ ck
αk
.

(2.35)

Therefore, we can rewrite the total utility function of agent k at contract stage as

πk(M~h|Mk, ηk) = πpk(ψi,k|Mk) +
∑
h∈T (k)

πsk,h(ψi,k|Mk) + (βi,kP (i− 1) + γk)Mk, (2.36)

where

πpk(ψi,k|Mk) = (αkek(Mk) + τkpk−1(ψi,k−1)ek(Mk))Mk − ckek (2.37)

=


0, Mk ≤ ck

αk+τk
,(

(αk + τk)Mk − ck
)
pk−1(ψi,k−1), ck

αk+τk
≤Mk ≤ ck

αk
,

αkMk − ck + τkpk−1(ψi,k−1)Mk, Mk ≥ ck
αk
.

(2.38)

πsk,h(ψi,k|Mk) = βh+1,k∆ph(ψi,k)Mk − ph(Mh|ηk)Mh. (2.39)

By picking the optimal ψi,k that maximize the above utility of k, we find a mapping
between Mk and ψi,k. The following lemma builds the one-to-one mapping and shows
the optimal ψi,k can be found by enumerating polynomial possibilities.

Lemma 2.3.2 For any agent k, given delegation depth d, there is an one-to-one map-
ping between minimum contract payments and effort status. And the choice of effort
status is bounded by 3d, i.e.,

|Ψk−d,k| ≤ 3d.

The proof is provided in Appendix 2.10.3. Besides the one-to-one mapping, the effort
status of k is monotone by inclusion, and the proof is provided in Appendix 2.10.4.

Theorem 2.3.3 The effort status satisfies monotone inclusion with the increasing of
the contract payment.

52

Denote the minimum contract payment for effort status as Mk(ψi,k).
By the computation in the proof, we define the optimal sub-delegation structure

as

ηi∗k = argminηik∈H(θik)Mk(θ
i
k|ηik),

and the optimal full incentive contract payment

Mk(θ
i
k) = min

ηik∈H(θik)
Mk(θ

i
k|ηik) = Mk(θ

i
k|η∗k).

Define the minimum expected cost till k is the minimum expect cost for the
principal to motivate agents from 1 to k, denoted as costk. Now we can provide the
algorithm to update the minimum cost at each stage.

It starts with cost1 = M1(1). Expected cost till k, for any 0 ≤ k − d ≤ i ≤ k,

costk,i = Mk(θ
i
k) + costi−1,

and the minimum cost is

costk = min
k−d≤i≤k

costk,i.

The optimal delegation till k is

η∗k = ηi∗k ∪ η∗i−1

In summary, DP along the working process path, while DP stores

• Control set of k, Θ(k).

• For each control set θik ∈ Θ(k), set of all delegation structures H(θik).

• For each delegation structure ηk ∈ H(θik), set of all possible effort status Ψk(ηk).

• For each effort status ψk ∈ Ψk(ηk), the corresponding minimum contract pay-
ment Mk(ψk).

• Minimum expected cost till k, costk, and the corresponding optimal structure
η∗k.

Theorem 2.3.4 Time complexity is O(nd2d
2
3d).

Proof As in Algorithm 5. There are n stages (n agents), and at stage k, there are
at most d control sets. For each control set θik, there are O(2d

2
) delegation structure.

For each delegation structure ηk, we plot the piecewise utility function from the
previous DP status and find the mapping between effort status and contract payment.
The number of pieces is bounded by O(3d).

Overall, the time complexity is O(nd2d
2
3d).

53

Algorithm 4 : Optimal Delegation Structure with Bounded Depth

1: for k = 1 to n do . agent k
2: costk ← 0.
3: for i = k − d to k do . control set θik
4: Ψi(θ

i
i) = {∅, {i}}.

5: Mi(∅) = 0.
6: Mi({i}|θii) = ci

αi
.

7: for ηk ∈ H(θik) do . DP from θij
8: Plot πk(Mk|θik, ηk) by Lemma 2.3.2.
9: Intersection points gives Ψk(θ

i
k, ηk) and Mk(ψk|θik, ηk).

10: costk(θ
i
k) = P (k)Mk(θ

i
k) + costi−1

11: if i = 1 or costk > costk(θ
i
k) then

12: costk ← costk(θ
i
k).

13: i∗ ← i
14: ηk = ηi∗ ∪ {k}

return Optimal Structure ηn and minimum expected cost costn

Space complexity is O(d22d
2
3d), since we only need the last d agents’ status infor-

mation to update in the DP algorithm.

2.3.4 Properties

Theorem 2.3.5 Expected cost till k is monotone increasing.

Proof Consider the expected cost till k, suppose the cost is minimized when the
principal delegate i, . . . , k − 1 to k, and the minimum expected cost is

costk = pkMk(θ
i
k) + costi−1,

while the utility of agent k is

πk = pkMk(θ
i
k)− pk−1Mk−1(θik−1)− ck ≥ 0.

Thus, pkMk(θ
i
k) ≥ pk−1Mk−1(θik−1), which infers

costk−1 ≤ pk−1Mk−1(θik−1) + costi−1

≤ costk.

54

Proposition 2.3.2 In the symmetric case with two agents, delegation is better than
direct control when

β(1 + β) ≥ 1.

Proof In the symmetric case, where α1 = α2, c1 = c2. For the computation sim-
plicity, assume γ = 0.

p2 − α1β2

α1β2

p1

p2

c1

α1

=
1

β

1

1 + β

c

α
.

Therefore, delegation will be better if and only if

β(1 + β) ≥ 1.

Lemma 2.3.3 In the symmetric case, the probability of success when every down-
stream agent is working converges to α+γ

1−β .

Proof The probability of success of agent k is

pk = f(pk−1) = α + γ + βpk−1.

Since 0 < β < 1, f(·) is a contractive mapping. By Banach Fixed Point Theorem, we
know the fix point exists and unique. Therefore, by solving

p∗ = α + γ + βp∗.

we have p∗ = α+γ
1−β .

Proposition 2.3.3 If every agent and task is identical, when an agent is far from
the initial agent on the process path, the principal prefers direct control to delegation.

The proof is provided in Appendix 2.10.6.

Proposition 2.3.4 In the symmetric case, suppose one agent has an effort cost t
times larger than the other agents’ cost, the delegation depth of this agent is bounded
by

d ≤ log t

log(β + τ)−1
.

The proof is provided in Appendix 2.10.7.

55

2.3.5 Example

Consider the process chain as in Fig. 2.5 with 6 nodes,

P 5
e5

4
e4

3
e3

2
e2

1
e1

s1s2s3s4s5

Fig. 2.11.: Process path

and we’ll show an example such that the optimal delegation is as follows,

P

5

4

3

2 1
M1

M2

M3M4

M5

Fig. 2.12.: Optimal Delegation Tree

Let τi = 0 for all the agent i. We also have Mi(i) = ci
αi

.
Let c1 = 1, α1 = 0.4. Then,

M1(1) =
5

2
, P (1) = 0.4.

Let c2 = 2, α2 = 0.2, β2 = 0.5. Therefore,

M2(2) = 10, P (2) = α2 + P (1)β2 = 0.4.

Let c3 = 1, α3 = 0.1, β3 = 0.25, γ3 = 0.4, then

M3(3) = 10, P (3) = α3 + P (2)β3 + γ3 = 0.6

Let c4 = 12, α4 = 0.1, β4 = 0.5,

M4(4) = 120, P (4) = α4 + P (3)β4 = 0.4.

Let c5 = 1, α5 = 0.5, β4 = 0.5,

M4(4) = 2, P (5) = α5 + P (4)β5 = 0.7.

56

For the sub-delegation tree below agent 4, we have the following three options.
Option 1:

4

3

2

1M1

M2

M3

Fig. 2.13.: Option 1

By comparing π4(1234) ≥ π4(234), we have a lower bound for M4,

M4 ≥
P (1)M1(1)

α1β2β3β4

+
M2(2)

β3β4

+
M3(3)

β4

= 40 + 80 + 20

= 140.

Option 2:

4 3 2 1
M1M2M3

Fig. 2.14.: Option 2

Minimum payment for 2,

M2 ≥
P (1)M1(1)

α1β2

= 5.

which is smaller than M2(2). For the minimum payment for 3,

M3 =
P (2)M2(2)

P (2)β3

= 40.

By comparing π4(34) ≥ π4(4), we have the lower bound for M4 in option 2,

M4 ≥
P (3)M3

(α3 + P (2)β3)β4

=
0.6 ∗ 40

0.2 ∗ 0.5
= 240.

Option 3:

57

4

3

2 1
M1

M2

M3

Fig. 2.15.: Option 3

By comparing π4(234) ≥ π4(24),

M4 ≥
P (3)M3(3)

α3β4

=
0.6 ∗ 10

0.1 ∗ 0.5
= 120.

By comparing π4(234) ≥ π4(34),

M4 ≥
M2(2)

β3β4

+
M3(3)

β4

=
10

0.25 ∗ 0.5
+

10

0.5
= 80 + 20

= 100.

Therefore, the minimum payment for personal incentive M4(4) is enough to make
every agents in option 3 be incentive.

Therefore, the principal will always choose option 3. Now consider the relation
between 4 and 5, if delegate 4 under the control of 5, the lower bound of payment to
agent 5 is

M5 ≥
P (4)M4(4)

P (4)β5

= 240

However, the cost of direct control 4 and 5 is only

costp = M4(4) +M5(5) = 122

In summary, the optimal delegation structure is the tree as in Fig. 2.12.

2.4 Tree

2.4.1 Tree Model Description

We consider the principal-agent model with a working process on a directed rooted
tree. Denote the set of agents as N . The work is initiated at the leaf agents, and

58

passed over to the parents and so forth, and finally ends at the principal. An example
of the process tree is given in Figure 2.16

4

1

0

2 3

7

5 6

P

Fig. 2.16.: Process tree

From leaves to the root, after received the completed tasks from his children, each
agent k can decide to put effort or not (binary variable) to his task and this effort
is unobservable to the others. However, after the task of agent k is done, a binary
signal sk ∈ {0, 1} indicating the task status will be observed by his parent or the
principal if he signed contract with k.

sk =

{
1, success,

0, failure.

For agent k ∈M, the success probability of his task is related to three elements,

• Personal effort ek;

• Task status from his children Sk = {si, i ∈ C(k)};

• Environmental influence rk.

where C(k) is the direct children of k in the process tree. We consider a linear success
probability function of task k, defined as follows:

P (sk = 1|ek, Sk) = αkek +
∑
i∈C(k)

βiksi + γk,where ek, si ∈ {0, 1}. (2.40)

For any agent ∀k ∈ M, coefficients αk, β
i
k, i ∈ C(k) are assumed to be strictly

positive. This is a fair assumption. If it doesn’t hold, for example, βik = 0, node i’s
task won’t influence the final project (at principal level), and i and his descendants
can be removed from the process tree. To ensure the successful probability (P (sk =
1|ek, Sk)) always between 0 and 1, we assume αk +

∑n
k=1 β

i
k +γk ≤ 1, γk ≥ 0,∀k ∈M.

59

Personal effort will increase the probability that sk = 1 (Equation 2.40), but it’ll
also result in an additional effort cost ck to agent k. Therefore, the agents generally
choose to shirk unless there is additional payment after the task is successful. To
motivate agents to work, the principal can sign contracts with downstream agents.
Since we assume the agents can’t be punished, an instance of agent k’s contract
payment rk can be

rk =

{
Mk, if sk = 1,

M ′
k, if sk = 0.

(2.41)

It’s easy to see that an efficient contract always sets M ′
k = 0, and we call Mk as the

contract payment to agent k. Meanwhile, it can be proved that for the principal,
signal sk is the only useful information for the contract with agent k.

Moreover, not only the principal can sign a contract directly with agents, and
every agent can sign a contract with the other agents but restricted to his children
set.

Assumption 2.4.1 Agents can only sign contracts with their children in the process
tree.

Agents may have the incentive to do that. For example, when the contract pay-
ment Mk to agent k is large, k may be better off by sign subcontracts to motivate his
children to put effort, and eventually increases his success probability (equation 2.40)
and expected payoff.

Besides that, the principal has the power to design the delegation structure (tree),
and the agents are only allowed to sign subcontracts with his direct children in the
delegation tree. Following is a possible delegation tree of the process tree in Fig-
ure 2.16, where the solid black line means contract direction, and the blue and orange
dashed line means the process direction:

4

1

0 2

3

75 6

P

Fig. 2.17.: Delegation tree

An the Figure 2.17, the principal direct controls (signs contract with) agent
0, 2, 4, 5, 6, 7 and delegates agents 1, 3 to agent 4. Therefore, agent 4 has the free-

60

dom to decide whether signs a subcontract with his children (in the delegation tree),
based on his contract payment M4 signed with the principal.

In summary, we break down the model in three stages:

• Stage 1: The process tree and parameters (α, β, γ, c) are given as common
information5, and the principal designs a delegation tree accordingly.

• Stage 2: In the delegation tree, the principal initiates the contract signing,
and passing down until the leaves, an intermediate node

– receives contract from his parent;

– signs contract with his children.

• Stage 3: In the process tree, the leaves start working first, and passing the
task up until the root, an intermediate node

– receives the work and signals from his direct children;

– decides to spend effort or not (unobservable);

– passes over his task to the parent.

The goal of the principal is to maximize the success probability with the lowest
cost. Namely, the principal wants to minimize the cost under the condition that every
single agent in the process tree has the incentive to work. While given the delegation
structure and contract payment (Mk) from the parent in delegation tree, the agent k
can decide

• contract payment to his children Mi, i ∈ T (k);

• personal effort ek.

where T (k) ⊆ C(k) is set of k’s children in the delegation tree.
Assume every agent is risk neutral, an agent’s utility function includes three

parts, contract reward from the parent, contracts payment to the children, and per-
sonal effort cost. When every agent makes subcontract decisions, they have the
following beliefs, similar to Proposition 2.3.1,

Proposition 2.4.1 Every agents k believes the other agents who are not under his
delegation are putting effort.

The question is what’s the optimal delegation structure and contract payment
the principal should choose? For the delegation structure, does direct control every
agent the best choice, or only do the delegation following the process tree structure?
In the next section, we will show the answers to the above questions is not fixed
but depends on the model parameters. Moreover, we will provide a polynomial time
algorithm when the tree depth is bounded.

5every agent only needs to know its descendants’ information.

61

2.4.2 Preliminary

The goal of the principal is to motivate every agent with the minimum the expected
cost. This section will analyze the property of delegation structure that may help save
the cost.

Given a delegation tree, the descendant of k is call the control set of k, denoted
as θk

6. Recall Assumption 2.4.1 that agents in the delegation tree are only able to
receive contract from his parent, and sign contract with his children. Therefore, the
delegation structure from k has an one to one mapping to the control set of k.
In the following sections, we’ll also use the control set θk to represent the delegation
structure of k.

Once given the delegation structure θk and contract payment Mk, recall that the
agent k’s decision is

• contract payment to his children Mi, i ∈ T (k);

• personal effort ek.

while the contract payments to his children will eventually influence the working
status of the agents in k’s control set. Denote the part of agents making effort as
the effort set as ψ(Mi, θk), for simplicity, we sometimes use ψk denote the effort set
directly. Denote the set of all possible effort sets under k as Ψ(θk).

Given the above information we can compute the utility function of k, the utility
function is a convex piecewise linear function, denoted as πk(θk,Mk).

πk(θk,Mk) = max
ψk∈Ψ(θk)

πk(ψk, θk,Mk)

= max
ψk∈Ψ(θk)

pk(ψk|θk)Mk − costk(ψk|θk).

Furthermore, we can define the minimum payment over effort set ψk under
structure θk, denoted as Mk(ψk|θk), which is a contract payment to agent k such
that all agents in effort set (ψk) are exerting effort. Based on that, denote Mk(θk) =
Mk(ψk = θk|θk) as the minimum full incentive payment under structure θk,
which is a minimum contract payment to agent k such that every agent in his control
set (θk) is incentive. In the other words, Mk(θk) is the minimum M∗

k satisfying the
following equation

πk(θk,M
∗
k) = πk(ψk = θk, θk,M

∗
k).

Delegation structure θk dominates θ′k if

θ′k ⊂ θk,

Mk(θk) ≤Mk(θ
′
k).

6includes k.

62

Here we introduce the efficiency in the delegation structure,

Definition 2.4.1 (EDS) A delegation structure is efficient if any other delegation
structure does not dominate it.

Similar to Theorem 2.3.1, agent’s decisions between personal effort and contracts
to each child-branch are independent.

Theorem 2.4.1 For any agent k, minimum payment for personal effort is Mk ≥ ck
αk

.

Proof Agent k makes decisions about effort once the previous tasks are passed to
him with signals. By Equation 2.40, given the previous signals, the difference of
utilities between effort and shirking is,

πk(ek = 1)− πk(ek = 0)

=αkMk − ck.

Therefore, the necessary and sufficient condition for agent k to put effort is

Mk ≥
ck
αk
.

Denote the minimum personal effort as M0
k = ck

αk
.

Because of the linearity of P (sk = 1|ek, si, i ∈ C(k)), we have the following theo-
rem,

Theorem 2.4.2 For any agent k, its delegation decision over siblings in process tree
is independent.

Proposition 2.4.2 Each sibling in the delegation tree makes the decision indepen-
dently.

Proof By the beliefs from Proposition 2.3.1.

By the above results, we can handle each branch independently, then merge the
decision and update the new contract payment, which sheds light to a polynomial
time dynamic programming algorithm.

2.4.3 Two Layers

This section we consider a process tree with two layers as in Fig. 2.18. The main
question is whether P should direct control k’s contract workers?

By the Theorem 2.4.1, for each leaf node, the minimum effort payment is

Mi(i) =
ci
αi
.

63

P

k

1 2 n

sk

sns2s1

Fig. 2.18.: Two Layers Process tree

By Theorem 2.4.2, for agents 1 ≤ i ≤ n, agent k consider the contract with them
independently. If k doesn’t sign it,

π0
k = pkMk − c.

If k signs with i,

πk(i) = (pk + αiβ
i
k)Mk − c− P (i)Mi(i).

In order to satisfy πk(i) ≥ πk, we have the minimum payment for k to motivate i,

Mk(i) ≥
P (i)Mi(i)

αiβik
.

Therefore, we proved the following results

Theorem 2.4.3 The minimum contract payment for k to motivate its children i ∈
C(k) is

Mk(i) =
piMi(i)

αiβik
.

Without loss of generality, we can rank the children of k by an increasing order
of Mk(i), that is Mk(i) ≥ Mk(j), i ≥ j. For an efficient delegation structure, if
Mk ≥ Mk(i), then we know any agent j < i will be delegated to agent k, instead
of direct controlled by the principal. We denote θkk = {k}, and θik = {k, 1, 2, . . . , i}
as the control sets of k. The intuition is the principal may principal may
delegate the easy to motivate agents to the middle agent k, while signs
direct contracts with the agents who only exerts effort given high rewards.

Theorem 2.4.4 There are n+ 1 efficient delegation structure for agent k, which are
θkk and θik, 1 ≤ i ≤ n.

64

P

k

1 i

i+ 1 n

Mk

MiM1

Mi+1 Mn

Fig. 2.19.: Example of Efficient Delegation Structure

Furthermore, it gives there is a linear number of efficient delegation structure for
the principal, as in Fig. 2.19

To compute the minimum payment Mk given an delegation structure,

Mk(θ
i
k) = max{Mk(k),Mk(i)}.

And the expected cost in each delegation structure is

costp(θ
i
k) = P (k)Mk(θ

i
k) +

n∑
j=i+1

P (j)Mj(j),

and minimum expected cost is

costp = min
i
costp(θ

i
k).

Therefore, we can enumerate all the delegation structure and select the optimal one
with the minimum expected cost in polynomial time.

2.4.4 Three Layers

This section we consider a process tree with three layers as in Fig. 2.20. The main
question is what the optimal delegation structure is with the minimum expected cost?

65

P

f

k

1 2 n

kh

h1 h2 hn

sf

sk skh

sns2s1 shnsh2sh1

Fig. 2.20.: Three Layers Process tree

Denote the top agent as f , and the principal expects task f is successful. By the
Theorem 2.4.4 in the previous section, we have the efficient delegation structures from
leaves to the second layer agent k, Θ(k). Without loss of generality, we can number
the children of k by an increasing order of Mk(i), that is Mk(i) ≥ Mk(j), i ≥ j. To
find the efficient delegation structure, we first consider the case that k is the only
child of f , as in Fig. 2.21.

f

k

1 2 n

sk

sns2s1

Fig. 2.21.: Update Step

We can construct a set of delegation structure for agent f by

θif = θik, θ
i
k ∈ Θ(k),

along with θff = {f}, we denote this set of delegation structure as Θ(f, k) and claim
this set includes all the efficient delegation structures through agent k.

66

Lemma 2.4.1 Θ(f, k) includes all the efficient delegation structures for agent f over
branch k.

The proof is provided in Appendix 2.11.1.
By Lemma 2.4.1, we restrict the efficient delegation structures to the set Θ(f, k)

with size bounded by n + 2. For each θif ∈ Θ(f, k), we compute Mf (θ
i
f) and remove

the inefficient structure if exists any. For simplicity, we still use Θ(f, k) to denote the
set of efficient delegation structure.

For each payment level M i
f = Mf (θ

i
f), we use θf (·) denote the inverse function of

Mf (·),

θif = θf (M
i
f).

Till now we have all the efficient delegation structures Θ(f, k), k ∈ C(f). The
next step is to combine all the branches and have the overall EDS.

f

k

1 2 n

kh

h1 h2 hn

sk skh

sns2s1 shnsh2sh1

Fig. 2.22.: Combination Step

In order to do that, we first gather all the possible efficient payment level to f ,

Mf = {Mf (θ
i
f)|θif ∈ Θ(f, k), k ∈ C(f)}.

Lemma 2.4.2 The size of efficient payment level is bounded by O(N).

Proof There are at most |C(k)+2| delegation structures in Θ(f, k) over each branch
k ∈ C(f), while each structure is corresponding to a payment level. Therefore, the
total payment level is bounded by O(n).

Given Mf ∈Mf , the efficient delegation structure is

θf (Mf) =
∑

k∈C(f)

θf,k(Mf),

67

and we can construct a delegation set by

Θ(f) = {θf (Mf)|Mf ∈Mf}.

By Lemma 2.4.2, |Θ(f)| = O(N).

Theorem 2.4.5 Θ(f) can be ordered by inclusion and is the set of efficient delegation
structures of agent f .

Denote costi as the expected minimum cost for the principal to motivate agent i
and his descendant in the process tree, call it as expected minimum cost till i.
Similar to Theorem 2.3.5, we can prove the costi is monotone increasing from leaf to
the root in the process tree.

For each Mf ∈ Mf , because costi is monotone increasing, the principal would
like to delegate as many agents as possible to f . Therefore, k’s control set is θf (Mf),
and it’s the largest one because Θ(f) can be ordered by inclusion. The corresponding
minimum cost given Mf is

costp(Mf) = Mf +
∑

i∈C(θf (Mf))

costi,

where C(θf) denotes the agents who don’t belong to θf but are the children of nodes
in θf . Meanwhile, i is either a leaf agent or a second level agent. If i is a leaf agent,
costi = Mi(i). If i is a second level agent, we can compute minimum cost till i by the
algorithm provided in the previous section.

Finally, the minimum expected cost is

costp = min
Mf∈Mf

costp(Mf).

In summary, we provide a polynomial time algorithm to find the optimal delegation
structure in three layers tree. Moreover, the result in this section also holds when the
delegation tree is bounded by three layers, while the process tree can be deeper.

2.5 Conclusion

We considered a network model of sequential decisions in production chain net-
works, specifically chain and tree networks. Our main contribution is showing the
value of delegation and how to maximumly leverage the middleman’s aligned interests
with the principal. In particular, we provide a polynomial time algorithm to find the
optimal delegation structure and the corresponding necessary contract payments for
the principal. Furthermore, we analyzed the trade-off of the delegation and gave a
deeper insight into the value of delegation in different conditions. Several questions
are left for future research such as what’s the optimal delegation structures in general
tree and how to build the model that agents can try multiple times until the task is
successful.

68

REFERENCES

[1] R. E. Kranton and D. F. Minehart, “A theory of buyer-seller networks,” Amer-
ican economic review, vol. 91, no. 3, pp. 485–508, 2001.

[2] K. Bimpikis, S. Ehsani, and R. Ilkilic, “Cournot competition in networked mar-
kets.” in EC, 2014, p. 733.

[3] R. Wright and Y.-Y. Wong, “Buyers, sellers, and middlemen: Variations on
search-theoretic themes,” International Economic Review, vol. 55, no. 2, pp.
375–397, 2014.

[4] T. Nguyen, “Local bargaining and supply chain instability,” Operations Research,
vol. 65, no. 6, 2017.

[5] J. Z. Pang, H. Fu, W. I. Lee, and A. Wierman, “The efficiency of open access in
platforms for networked cournot markets,” in INFOCOM 2017-IEEE Conference
on Computer Communications, IEEE. IEEE, 2017, pp. 1–9.

[6] K. Kannan and T. Nguyen, “Welfare implications in intermediary networks,”
Working paper, 2018.

[7] F. Nava, “Efficiency in decentralized oligopolistic markets,” Journal of Economic
Theory, vol. 157, pp. 315–348, 2015.

[8] S. M. Carr and U. S. Karmarkar, “Competition in multiechelon assembly supply
chains,” Management Science, vol. 51, no. 1, pp. 45–59, 2005.

[9] K. Bimpikis, O. Candogan, and S. Ehsani, “Supply disruptions and optimal
network structures,” 2017.

[10] C. J. Corbett and U. S. Karmarkar, “Competition and structure in serial supply
chains with deterministic demand,” Management Science, vol. 47, no. 7, pp.
966–978, 2001.

[11] A. Federgruen and M. Hu, “Sequential multiproduct price competition in supply
chain networks,” Operations Research, vol. 64, no. 1, pp. 135–149, 2016.

[12] T. Nguyen, V. Subramanian, and R. Berry, “Delay in trade networks,” Opera-
tions Research, vol. 64, no. 3, pp. 646–661, 2016.

[13] R. J. Duffin, “Topology of series-parallel networks,” Journal of Mathematical
Analysis and Applications, vol. 10, no. 2, pp. 303–318, 1965.

69

[14] R. Alonso and N. Matouschek, “Optimal delegation,” The Review of Economic
Studies, vol. 75, no. 1, pp. 259–293, 2008.

[15] ——, “Relational delegation,” The RAND Journal of Economics, vol. 38, no. 4,
pp. 1070–1089, 2007.

[16] G. Vereshchagina et al., “The impact of moral hazard and budget balancing on
sorting in partnerships,” working paper, Tech. Rep., 2016.

[17] Y.-K. Che and S.-W. Yoo, “Optimal incentives for teams,” American Economic
Review, vol. 91, no. 3, pp. 525–541, 2001.

[18] A. Kaya and G. Vereshchagina, “Partnerships versus corporations: Moral hazard,
sorting, and ownership structure,” American Economic Review, vol. 104, no. 1,
pp. 291–307, 2014.

[19] A. M. Franco, M. Mitchell, and G. Vereshchagina, “Incentives and the structure
of teams,” Journal of Economic Theory, vol. 146, no. 6, pp. 2307–2332, 2011.

[20] T. Nguyen and K. Kannan, “Welfare implications in intermediary networks,”
2018.

[21] T. Nguyen, “Coalitional bargaining in networks,” Operations Research, vol. 63,
no. 5, pp. 501–511, 2015.

[22] M. Armstrong, “Delegating decision-making to an agent with unknown prefer-
ences,” Mimeograph, University College London, 1995.

[23] J. Levin, “Relational incentive contracts,” American Economic Review, vol. 93,
no. 3, pp. 835–857, 2003.

70

APPENDIX

2.6 Proofs in Section 1.3

2.6.1 Proof of Proposition 1.3.3

Proof Suppose ij is a shortcut of path lij = (i, v1, ..., vk, j), and assume the path lij
is active, i.e., every edge has postive flow.

Since firms never loss money in the supply chain (otherwise just choose to buy
and sell nothing), we know

pv1 ≤ · · · ≤ pvn ≤ pj.

Considering the case that pv1 < pj at the equilibrium, by the property of series parallel
graph and market clearance price, all the flow from i to v1 will go through firm j. If
firm i moves all the flow xiv1 to xij, the total flow through j will keep the same, and
pj will remain the same price, too. Therefore, firm i is better off by

πi = pj(xij + xivi) > pjxij + pv1xiv1 = π∗i ,

which cannot happened at the equilibrium. Thus, pv1 = pj must hold, and

pv1 = · · · = pvn = pj.

Now consider the optimal decision for vn, given the market clearance price pvn ,
if he buys all the goods supplied to him and sell them to j, his profit is 0, because
pvn = pj. However, he would make a positive profit if processed less amount of goods.
Because this would decrease the flow to j and raise the market price at j,

p′j > pj = pvn ,

which contradicts to the fact that pvn is the market clearance price of firm vn. Hence,
the path lij is inactive.

2.6.2 Proof of Lemma 1.3.1

Proof Suppose j ∈ B(i) and by induction, assume

pj = at − bjXj −
∑

k∈CP (j)

bkXk.

71

Obviously it is true when j = t, where cP (t) = ∅.
Case 1 (SS): |B(i)| = 1 and |S(j)| = 1:

i j

Utility function of i is

Πi = pjxij − pixij −
ci
2
x2
ij.

To compute the price function at i, when Xi > 0, which means xij > 0, we have
∂Πi

∂xij
= 0 so that i can maximize its utility. Thus:

pi = pj +
∂pj
∂xij

xij − cixij

= at − bjxij −
∑

k∈CP (j)

bkXk − (bj +
∑

k∈CP (j)

bk)xij − cixij

= at − (2bj +
∑

k∈CP (j)

bk + ci)Xi −
∑

k∈CP (i)

bkXk

where Xi = xij, CP (i) = CP (j) in this case.
pi is the market clearing price since from above equation, given pi, we can solve

the optimal Xi too.
Summary SS:

bi = 2bj +
∑

k∈CP (j)

bk + ci,

CP (i) = CP (j).

Case 2 (MS): |B(i)| = 1 and |S(j)| > 1:

i

i1

im

j

Utility function of i is

Πi = pjxij − pixij −
ci
2
x2
ij.

72

To compute the price function at i, when Xi > 0, which means xij > 0, we have
∂Πi

∂xij
= 0 so that i can maximize its utility. Thus

pi = pj +
∂pj
∂xij

xij − cixij

= at − bjXj −
∑

k∈CP (j)

bkXk − (bj +
∑

k∈CP (j)

bk)xij − cixij

= at − (bj +
∑

k∈CP (j)

bk + ci)xij − bjXj −
∑

k∈CP (j)

bkXk

= at − (bj +
∑

k∈CP (j)

bk + ci)Xi −
∑

k∈CP (i)

bkXk

where Xi = xij, CP (i) = CP (j) t {j} in this case.
Summary MS:

bi = bj +
∑

k∈CP (j)

bk + ci,

CP (i) = CP (j) t {j}.

Case 3 (Simple SM): |B(i)| > 2, |S(j)| = 1, and CS(i) = {h}:

i

j1

j2

Remark. Xk where k ∈ CS(i) is a function of xij. This is because market clearance
price function ensures downstream firms will buy all the supply from upstream firms.
Therefore, xij is part of Xk.

Notice in this simple SM case, CP (j1) = CP (j2) (by induction based on the com-
positions of SPG). Thereby, we just denote them as CP (j) in the following proof, and
price functions are

pj1 = at − bj1Xj1 −
∑

k∈CP (j)

bkXk,

pj2 = at − bj2Xj2 −
∑

k∈CP (j)

bkXk.

73

and the corresponding derivatives with respect to xij1 are

∂pj1
∂xij1

= bj1 +
∑

k∈CP (j1)

bk, (2.42)

∂pj2
∂xij1

=
∑

k∈CP (j1)

bk. (2.43)

Utility function of i is

Πi = pj1xij1 + pj2xij2 − piXi −
ci
2
X2
i .

Because i has multiple sub-flows and it is possible that some sub-flows are inactive,
we will first prove the following claim.

Claim: For any firm i in SPG, its sub-flows are all active.
At equilibrium, by ∂Πi

∂xij1
6 0, combined with price derivative equations 2.42:

pi > pj1 +
∂pj1
∂xij1

xij1 +
∂pj2
∂xij1

xij2 − ciXi

= at − bj1xj1 −
∑

k∈CP (j1)

bkXk − (bj1 +
∑

k∈CP (j1)

bk)xij1 −
∑

k∈CP (j1)

bkxij2 − ciXi

= at − 2bj1xij1 − (
∑

k∈CP (j1)

bk + ci)Xi −
∑

k∈CP (j1)

bkXk

= pi1 .

Similarly by ∂Πi

∂xij2
6 0:

pi > at − 2bj2xij2 − (
∑

k∈CP (j2)

bk + ci)Xi −
∑

k∈CP (j2)

bkXk

= pi2

where Xj1 = xij1 , Xj2 = xij2 , and CP (j) = CP (j1) = CP (j2) in this case.
To prove both branches are active, first assume xij1 > 0 and xij2 = 0, then pi = pi1

and
pi2 − pi1 = 2bj1xij1 > 0⇒ pi2 > pi1 = pi,

a contradiction. Same argument leads to a contradiction if we assume xij1 = 0 and
xij2 > 0.

Suppose xij1 = xij2 = 0, then Xi = xij1 + xij2 = 0. By repeating that, we can
prove all the parent nodes including source s have zero flow, a contradiction. Thus,
both sub-flows are active, and pi = pi1 = pi2 . So far, the claim above is proved.

74

We know a convex combination of pi1 and pi2 is a necessary condition of pi. By
using the following convex combination coefficients:

α1 =

1
bj1

1
bj1

+ 1
bj2

; α2 =

1
bj2

1
bj1

+ 1
bj2

,

and pi can be written as function of Xi = xij1 + xij2 :

pi = α1pi1 + α2pi2

= at − b′ixij1 − b′ixij2 −
∑

k∈CP (j)

bkXk

= at − b′iXi −
∑

k∈CP (j)

bkXk (2.44)

where

b′i =
2

1
bj1

+ 1
bj2

+
∑

k∈CP (j)

bk + ci.

Since h is the only merging node (CS(i) = {h}), the flow from i will come through
h again, i.e. Xh = Xi. Also CP (j) = CP (i) ∪ {h} holds. Hence, coefficient bi is
obtained from b′i + bh:

bi =
2

1
bj1

+ 1
bj2

+ 2bh +
∑

k∈CP (j)\{h}

bk + ci.

Meanwhile, equation 2.44 can be written as the expected format:

pi = at − biXi −
∑

k∈CP (i)

bkXk (2.45)

Note that the above argument can be generalized to B(i) > 2 easily. Suppose B(i) =
{j1, ..., jm}, m > 3 and |CS(i)| = 1 (CP (jl) are all the same for l = 1, ...,m). By
similar argument as in the previous claim, ij, j ∈ B(i) must be active. The convex
combination coefficient from price pjl is

αl =

1
bjl∑

j∈B(i)
1
bj

.

Eventually, by similar reasoning:

bi =
2∑

j∈B(i)
1
bj

+ 2bh +
∑

k∈CP (j)\{h}

bk + ci.

75

Summary Simple SM:

bi =
2∑

j∈B(i)
1
bj

+ 2bh +
∑

k∈CP (j)\{h}

bk + ci where h is the merging node.

Case 4 (General SM): |B(i)| > 3, |S(j)| = 1, and |CS(i)| > 2 (there are
multiple self merging child nodes):

At equilibrium, by ∂Πi

∂xij1
6 0,

pi > pj +
∑
l∈B(i)

∂pl
∂xil

xil − ciXi

= at − bjxj −
∑

k∈CP (j)

bkXk − bjxij −
∑
l∈B(i)

∑
k∈CP (l)

bkxil − ciXi

= at − 2bjxij −
∑

h∈CT (i,j)

bhXh − (
∑

k∈CP (i)

bk + ci)Xi −
∑

k∈CP (j)

bkXk

= at − 2bjxij − 2
∑

h∈CT (i,j)

bhXh − (
∑

k∈CP (i)

bk + ci)Xi −
∑

k∈CP (i)

bkXk (2.46)

= pij .

Similarly we can prove every sub-flow is active, and

pi = at − 2bjxij − 2
∑

h∈CT (i,j)

bhXh − (
∑

k∈CP (i)

bk + ci)Xi −
∑

k∈CP (i)

bkXk. (GSM-p)

At the same time, we have

biXi = 2bjxij + 2
∑

h∈CT (i,j)

bhXh + (
∑

k∈CP (i)

bk + ci)Xi. (GSM-b)

To write pi as in the form of

pi = at − biXi −
∑

k∈CP (i)

bkXk,

first note that for different j ∈ B(i), CT (i, j) in equation 2.46 may be different.
Therefore, we cannot merge these flows all together directly as in the previous case.
Meanwhile, we can rank the nodes in CT (i, j) by the parent-child order as h1, · · · , hn
where ht is the parent of ht+1. By the property of merging nodes, we know:

• For every j, set CT (i, j) has the common last node h∗, and Xi = Xh∗ .

• For every j, there exists a set Bk(i) ⊆ B(i) whose nodes share the same CT (i, j).
Denote Bk(i) = {hk1, hk2, · · · , h∗}.

76

Instead of merging all the flows together, general SM case starts merging flows
among each set Bk(i). By similar reasoning to the simple SM case, merging among

Bk(i) can be done by using the convex coefficients αl =
1

bjl∑
j∈Bk(i)

1
bj

for jl ∈ Bk(i). We

create an aggregate variable bBk(i) = 1∑
j∈Bk(i)

1
bj

+ bhk1 to represent the coefficient for

flow Xhk1
=
∑

j∈Bk(i) xij. Afterwards, we group the new aggregated flows Xhk1
by the

same CT (i, hk1), and repeat the above merging operation again for h2, h3, and so on.
Once h∗ is reached, by applying equation SM, we have the final coefficient bi for node
i. Example 15 in the appendix shows the general SM computation.

Case 5 (MM): |B(i)| > 2, |S(j)| > 2:

i1

i2

j1

j2

This is impossible in an SPG, proved by induction since any SPG can be con-
structed by series and parallel insertion:

• Series insertion: it is easy to see MM will not appear after this.

• Parallel insertion: check the merging head and tail, and it is easy to see MM
will not appear either.

Therefore, MM never happens in an SPG.

2.6.3 Proof of proposition 1.3.5

Proof Suppose i sells to j, we finish the proof by discussion over case by case. For
the SS case, by equation SS:

pj − pi = (bj +
∑

k∈CP (i)

bk + ci)Xi.

If Xi = xij > 0, then pj > pi.
For the SM case, by equation GSM-p:

pj − pi = bjxij +
∑

h∈CT (i,j)

bhXh +
∑

k∈CP (i)

bkXi + ciXi.

If xij > 0, then we prove pj > pi.
For the MS case, if Xi = xij > 0, by equation MS:

pj − pi = biXi > 0.

77

2.6.4 Proof of Lemma 1.3.2

Proof Consider the Lagrangian function:

L(xij, Xs, Xk, λij) =
∑
j∈B(i)

bjx
2
ij +

∑
k∈CS(i)\CP (i)

bkX
2
k

−
∑
j∈B(s)

λij(at − 2bjxij −
∑

k∈CT (i,j)

2bkXk − const− ps).

Stationarity condition:

• Take the derivative with respect to xij:

∂L(xij, Xj, Xk, λij)

∂xij
= 2bjxij − 2bjλij = 0

infers xij = λij.

• Take derivative with respect to Xk where k ∈ CS(i)\CP (i):

∂L(xij, Xj, Xk, λij)

∂Xk

= 2bkXk −
∑

j:k∈CP (j)

2bkλij = 0

infers Xk =
∑

j:k∈C(j) λij =
∑

j:k∈C(j) xij, which is exactly the definition of Xk

(the total flow through k).

Complimentary condition:
∀j ∈ B(s) (recall xij = λij):

λij(at − 2bjxij −
∑

k∈CT (i,j)

2bkXk − const− ps) = xij
∂Πi

∂xij
= 0.

Combined with the primal feasibility conditions ∂Πi

∂xij
6 0 and xij > 0, we can see

the KKT condition of this convex programming is equivalent to the LCP. Meanwhile,
this problem is strictly convex, so the solution is unique.

2.6.5 Proof of Lemma 1.3.3

Proof We consider the SM case: B(i) = {j1, ..., jm} where m > 2.

i

j1

...

jm

78

The decision variables of i are xij’s where j ∈ B(i). Recall equation 1.8:

∂Πi

∂xij
= at − 2bjxij − 2

∑
k∈CT (i,j)

bkXk − pi − const.

Notice that Xk =
∑

j:j∈B(i) and k∈CP (j) xij and ∂Πi

∂xij
= 0 for all j ∈ B because ij’s

are all active, we can rewrite equation 1.8 as a linear system in the following form:

A~x = (at − pi − const)~1 (2.47)

where ~1 is a vector of m ones, ~x = [xij1 , ..., xijm]T , and A ∈ Rm×m.
First we prove that A is symmetric. Consider Al1l2 and Al2l1 where l1 6= l2, we

have

Al1l2 = 2
∑

k∈CS(i)∪(C(jl1)∩C(jl2))\CP (i)

bk = Al2l1 ,

so A is symmetric.
Recall that in Algorithm 1, before computing pi, we had pj = at − bjXj −∑
k∈CP (j) bkXk for j ∈ B(i). The utility of i is

Πi =
∑
j∈B(i)

pjxij − piXi −
ci
2
X2
i .

By Lemma 1.3.1 and equation 1.8, since ij’s are all active, we have ∂Πi

∂xij
= 0.

Therefore

pi = at − 2bjxij − 2
∑

k∈CT (i,j)

bkXk − [(
∑

k∈CP (i)

bk + ci)Xi +
∑

k∈CP (i)

bkXk].

Denote the later part, (
∑

k∈CP (i) bk + ci)Xi +
∑

k∈CP (i) bkXk, as L. Note that in
Algorithm 1, L is some unknown value different from the constant pre-computed in
Algorithm 2. However, L will not be effected by the convex coefficients, since we only
care about the nodes between i and the last self merging node of i.

Let pil be the price equation after taking derivative with respect to xijl . Then in
Algorithm 1, we had the convex coefficients α1, ..., αm such that

∑m
l=1 αl = 1 and

pi =
m∑
l=1

αlpil = at −
m∑
l=1

αlAl~x− L = at − biXi − L

where Al is the l-th row of A and Xi =
∑

j∈B(i) xij.

79

Note that for any j ∈ B(i), the coefficient of xij is
∑m

l=1 αlAlj = bi. Since A is
symmetric, this can be presented as the following:

AT ~α = A~α = bi~1 (2.48)

where ~α = [α1, ..., αm]T .
By comparing equation 2.47 and equation 2.48, we know ~x is proportional to ~α.
To prove that all the price value pj for j ∈ B(i) are the same, we can also rewrite

equation 1.8 to obtain a relation between ∂Πi

∂xij
and pj:

∂Πi

∂xij
= at − 2bjxij − 2

∑
h∈CT (i,j)

bhXh − pi − (
∑

k∈CP (i)

bk + ci)Xi −
∑

k∈CP (i)

bkXk

= 2(at − bjxij −
∑

k∈CP (j)

bkXk)− at − (
∑

k∈CP (i)

bk + ci)Xi +
∑

k∈CP (i)

bkXk − pi

= 2pj − const′ − pi
(2.49)

where const′ = at + (
∑

k∈CP (i) bk + ci)Xi −
∑

k∈CP (i) bkXk. From equation 2.49 and
the fact that all edges are active, we know that

0 = 2pj − const′ − pi.

Therefore, pj = pi+const
′

2
for any j ∈ B(i).

2.7 Proofs in Section 1.4

2.7.1 Proof of Proposition 1.4.1

Proof For simplicity, we just consider the case without processing cost, and the
proof can be extended to the case with processing cost easily. Suppose the market
price function is pt = at − btXt, for single-edge graph, the utility is Πs = ptx − psx.
At equilibrium, ∂Πs

∂x
= 0 infers ps = at − 2btXs.

For general SPG, proof by induction. From ij ∈ E, it is easy to see for the SS
case, bi > 2bj, and for the MS case bi > bj by the proof in Appendix 2.6.2. For the
simple SM case:

bi =
2∑

j∈B(i)
1
bj

+ 2bh +
∑

k∈CP (j)\{h}

bk > 2bh > 2bt

where h is the merging node.

80

Meanwhile, it is easy to show it also holds for general SM case. Therefore, it
always holds that bi > 2bt if ij ∈ E is the SS case or SM case. Note that s is the only
source so bs > 2bt for general SPG. The total flow satisfies

ps = as + dsXs = at − bsXs ⇒ XS =
at − as
ds + bs

.

bs = 2bt only holds in the single-edge graph and bs > 2bt in any other SPG.
Therefore, the single-edge graph is the most efficient SPG supply chain network.

2.7.2 Proof of Proposition 1.4.2

Proof From Lemma 1.3.1:

ps = at − bsXs = as + dsXs (the given source price).

It follows that Xs = at−as
ds+bs

, so the increasing demand at market (at) or decreasing
cost at the source (as or ds) will make the supply chain more efficient.

2.7.3 Proof of Lemma 1.4.1

Proof By Lemma 1.3.1, we know that ps = at − bsXs. While calculating the price
function from sink, bi where i ∈ V changes proportionally to bt since there is no
“offset” ci.

By Proposition 1.4.1, the most efficient network is the single-edge graph and bs =
2bt. For general SPG, bs > 2bt since it is less efficient and the source price is a given
value.

2.7.4 Proof of Theorem 1.4.1

Proof Consider series componentsX and Y , and the larger componentG′ = P (X, Y),
where tx = sy, s

′ = sX , and t′ = ty.
By lemma 1.4.1:

bs′ =
bsX
btx

btx
bty
bty

= λ(X)λ(Y)bt′ .

81

Now if we change the order of this components, and let sX = ty, s
′ = sy, t

′ = tx,
then

bs′ =
bsy
bty

bty
btx
btx

= λ(Y)λ(X)bt′ .

Thus, we can consider X and Y as one components and switching the inner order
does not change the slope

bs′ = λ(X)λ(Y)bt′ = λ(G′)bt′

and does not change the price function of the other components. Thus, the total flow
remains the same.

2.7.5 Proof of Proposition 1.4.3

For the case with processing cost, λ(·) is a function of bt, and we first prove the
following lemma.

Lemma 2.7.1 With processing cost, for any α 6 1,

λ(X,αbt) > αλ(X, bt).

For any α > 1,

λ(X,αbt) 6 αλ(X, bt).

Proof For any α 6 1, we proved it by induction, starts from t, and consider its
buyer, which must be SS or MS cases.

For the SS case, by equation SS:

b′i = 2αbt +
∑

k∈CP (t)

bk + ct > αbi.

For the MS case, by equation MS:

b′i = αbt +
∑

k∈CP (t)

bk + ct > αbi.

82

For the SM case, by induction, b′j > αbj, j ∈ B(i), by equation SM:

b′i =
2∑

j∈B(i)
1
b′j

+ 2b′h +
∑

k∈CP (j)\{h}

bk + ci

>
2α∑

j∈B(i)
1
bj

+ 2αbh +
∑

k∈CP (j)\{h}

bk + ci

> αbi.

Similar result applies to the general SM case. Therefore, λ(X,αbt) = b′s > αbs =
λ(X, bt).

The proof when α > 1 is very similar thus it is omitted here.

Now we begin to prove the proposition.

Proof Denote S(X, Y) and S(Y,X) as SPG 1 and SPG 2. By Lemma 1.3.1, let
at − b1

sXs be the source price of SPG 1 and at − b2
sXs be the source price of SPG 2.

We prove b1
s 6 b2

s as follows:

b1
s = λ(X,λ(Y, bt))

= λ(X,λ(Y)bt)

6 λ(Y)λ(X, bt)

= λ(Y, λ(X, bt))

= b2
s

where the second and second last inequality used Lemma 1.4.1, the third inequality
used Lemma 2.7.1 with λ(Y) > 1.

Then the flow of SPG 1 is X1
s = at−ps

b1s+ds
, which is larger than the flow of SPG 2

X2
s = at−ps

b2s+ds
. Hence, SPG 1 is more efficient.

2.7.6 Proof of Proposition 1.4.4

Proof Consider n agents in the straight line model, suppose the firms are labeled
by the order as 0, 1, . . . , n, where 0 is the source, and n is the sink.

Under market clearance price, every node has the same inflow and outflow, denoted
as x. The utility function for agent i is

Πi = (ai+1 − bi+1x)x− pix−
ci
2
x2,

and its derivative is
∂Πi

∂x
= ai+1 − (2bi+1 + ci)x− pi.

83

Since x > 0, ∂Πi

∂x
and we have

pi = ai+1 − (2bi+1 + ci)x,

the following update rule holds:

ai = ai+1,

bi = 2bi+1 + ci,

and we can use this to compute the source price function:

a0 = an,

b0 = 2nbn +
n∑
i=1

2ici.

The coefficient of ci is 2i with i (closer to the sink). Consequently, putting the
node with a higher processing cost ci closer to source results in better efficiency.

2.7.7 Proof of Theorem 1.4.2

We need to prove the following two lemmas first, based on the bi computation
from 2.6.2. Let b′i be the slope coefficient of i after the insertion.

Lemma 2.7.2 Series insertion on node i always increases the price function slope bk
where k ∈ S(i) ∪ i.

Proof After a series insertion on node i, we know b′i > bi since by Lemma 1.3.1,
bi > bj if ij ∈ E for the SS case and the SM case. By induction and the proof
of Lemma 1.3.1, we know b′k > bk,∀k ∈ S(i). Finally, b′s > bs infers the total flow
decreases.

Lemma 2.7.3 Parallel insertion on pathij always decreases the price function slope
bk where k ∈ S(i) ∪ i.

Proof After a parallel insertion on pathij, by case SM in Lemma 1.3.1, the new
slope b′i satisfies b′i < bi. By induction and the proof of Lemma 1.3.1, we know
b′k < bk,∀k ∈ S(i). Finally, b′s < bs infers the total flow increases.

Proof Suppose the original price function at source is ps = at − bsXs. If the raw
material is sold at price ps, then at equilibrium:

Xs =
at − as
ds + bs

.

84

By Lemma 2.7.2, after series insertion, b′s > bs, then we know the total inflow at
equilibrium is decreased:

X ′s =
at − as
ds + b′s

<
at − as
ds + bs

= Xs.

While after parallel insertion, b′s < bs by Lemma 2.7.3, thus the total inflow at
equilibrium is increased:

X ′s =
at − as
ds + b′s

>
at − as
ds + bs

= Xs.

2.7.8 Proof of Lemma 1.4.2

Proof For global parallel insertion, the only common child of two branches X, Y is
{t}, denote the new coefficient at s as bGs :

bGs =
1

1
bs−cs−2bt

+ 1
b

+ cs + 2bt

= f(b0
s, b)b

0
s + cs + 2bt

where b0
s = bs − cs − 2bt and define f(x, y) = y

x+y
.

• Local insertion on component X2, denote the new coefficient at s as bL2
s :

bL2
2 = f(b0

2, b)b
0
2 + c2 + 2bt

where b0
2 = b2 − c2 − 2bt.

Since bs − cs > b2, we know b0
s > b0

2. Thus, f(b0
s, b) < f(b0

2, b), and by induction
(similar to the proof of proposition 2.7.5), we can prove

bL2
s ≥ f(b0

2, b)b
0
s + cs + 2bt

> f(b0
s, b)b

0
s + cs + 2bt

= bGs .

Therefore, global parallel insertion is more efficient than local parallel insertion
P (X2, Y).

• Local insertion on component X1, denote the new coefficient at s as bL1
s :

bL1
s =

1
1

bs−cs−2b2
+ 1

b′

+ cs + 2b2.

85

Because b2 > bt, we have b′ > b, thus

bL1
s >

1
1

bs−cs−2b2
+ 1

b

+ cs + 2b2.

Furthermore, by the fact that (t < x),

1
1
x−t + 1

y

+ t ≥ 1
1
x

+ 1
y

.

Again, since bt < b2,

bL1
s ≥

1
1

bs−cs−2b2
+ 1

b

+ cs + 2b2

>
1

1
bs−cs−2bt

+ 1
b

+ cs + 2bt

= bGs .

Therefore, global parallel insertion is more efficient than local parallel insertion
P (X1, Y).

2.7.9 Proof of Lemma 1.4.3

Proof • For the SS case, Xi = Xj = xij, CP (i) = CP (j). Consider the utility of
i, by equation SS:

Πi = (pj − pi)xij −
ci
2
X2
i

= (biXi − bjXj)xij −
ci
2
X2
i

= (bi −
bi −

∑
k∈CP (i) bk − ci

2
)X2

i −
ci
2
X2
i

=
1

2
(bi +

∑
k∈CP (i)

bk)X
2
i .

• For the SM case, Xj = xij. Consider the utility of i, by equation GSM-p:

Πi =
∑
j∈B(i)

(pj − pi)xij −
ci
2
X2
i

=
∑
j∈B(i)

(bjxij +
∑

h∈CT (i,j)

bhXh +
∑

k∈CP (i)

bkXi + ciXi)xij −
ci
2
X2
i .

86

By equation GSM-b:

Πi =
1

2

∑
j

(biXi +
∑

k∈CP (i)

bkXi + ciXi)xij −
ci
2
X2
i

=
1

2
(bi +

∑
k∈CP (i)

bk)X
2
i .

• For the MS case, CP (i) = CP (j) ∪ j.

Πi = (pj − pi)Xi −
ci
2
X2
i

= (at − bjXj −
∑

k∈CP (j)

bkXk − at + biXi +
∑

k∈CP (i)

bkXk)Xi −
ci
2
X2
i

= biX
2
i −

ci
2
X2
i . (2.50)

By equation MS:

bi = bj +
∑

j∈CP (j)

bk + ci

=
∑

j∈CP (i)

bk + ci. (2.51)

Plug equation 2.51 into equation 2.50:

Πi =
1

2
(bi +

∑
k∈CP (i)

bk + ci)X
2
i −

ci
2
X2
i

=
1

2
(bi +

∑
k∈CP (i)

bk)X
2
i .

87

2.7.10 Proof of Theorem 1.4.4

Proof For the SS or SM case, since CP (i) ⊂ CP (j), Xi > Xj = xij. Plug equa-
tion GSM-b into the utility function of i as in equation 1.9:

Πi =
1

2
(biXi +

∑
k∈CP (i)

bkXi)Xi

>
1

2
(2bjxij + 2

∑
h∈CT (i,j)

bhXh +
∑

k∈CP (i)

bkXi +
∑

k∈CP (i)

bkXi)Xi

> (bjXj +
∑

k∈CP (j)

bkXj)Xj

= 2Πj

where the second inequality holds because Xi > Xj and CP (j) = CP (i) t CT (i, j).
Now suppose there is MS relation to j, consider the the closest dominate parent

i of j. Let l ∈ B(i), and j ∈ C(l). Then

CP (l) = CT (i, l) t CP (i) = CP (j) t {j}.

Combine this with equation 1.9:

Πi =
1

2
(biXi +

∑
k∈CP (i)

bkXi)Xi

>
1

2
(2

∑
h∈CT (i,l)

bhXh +
∑

k∈CP (i)

bkXi +
∑

k∈CP (i)

bkXi)Xi

> (bjXj +
∑

k∈CP (j)

bkXj)Xj

= 2Πj.

88

2.7.11 Proof of Corollary 1.4.1

Proof By equation GSM-p:

Πi =
∑
j∈B(i)

(pj − pi)xij −
ci
2
X2
i

=
∑
j∈B(i)

(bjxij +
∑

h∈CT (i,j)

bhXh +
∑

k∈CP (i)

bkXi + ciXi)xij −
ci
2
X2
i

>
∑
j∈B(i)

(bjXj +
∑

h∈CT (i,j)

bhXj +
∑

k∈CP (i)

bkXj)Xj

=
∑
j∈B(i)

(bj +
∑

k∈CP (j)

bk)X
2
j

=
∑
j∈B(i)

Πj

where the second last equality is because CP (j) = CP (i) t CT (i, j), and the last
equality is by equation 1.9.

2.8 Proofs in Section 1.5

2.8.1 Proof of Theorem 1.5.2

Proof Proof by contradiction to show all edges are active. Suppose there is an
inactive market t, then there exists an active firm i such that for any path from i to
t, the edges in the path are all inactive. Similar to the proof of Lemma 1.3.1, the
price of every firm j can be presented as a function like at minus the sum of some
constants time Xj and Xk where k ∈ CP (j). If ij ∈ E is on the path from i to t, then
pj = at since Xj = xij = 0 and by the structure of SPG, Xk = 0 for any k ∈ CP (j).
i as an active firm must have sold some goods to another firm k with price less than
at. However, i could have just sold the goods to j with a higher price to increase its
utility a contradiction.

From the fact that every edge is active, we have a unique price function for each
firm, and similar to Theorem 1.3.1, we can prove the supply quantities at equilibrium
is also unique.

2.8.2 Proof of Remark 1.5.2

We consider the following supply chain network:

bpb a
1

2

p1 = a1 − b1x1

p2 = a2 − b2x2

x1

y2

89

For convenience, we denote the first market price as p1 and the second market
price as p2. The production cost is a constant pb. Suppose the two price functions at
the markets are:

p1 = a1 − b1x1,

p2 = a2 − b2x2,

where a1 > a2 > pb.

• Supply chain under low price strategy is always more efficient than under high
price strategy.

Proof Optimal flow Xh at high price strategy is

pb = a1 − 4b1Xh,

Xh =
a1 − pb

4b1

.

Optimal flow Xl at low price strategy is

pa = (a1/b1 + a2/b2)B − 2BXl,

pb = (a1/b1 + a2/b2)B − 4BXl,

Xl =
(a1/b1 + a2/b2)B − pb

4B
,

where B = 1
1
b1

+ 1
b2

.

Then we have the difference of total flow between these two strategies:

Xl −Xh =
(a1/b1 + a2/b2)B − ps

4B
− a1 − pb

4b1

=
a2

4b2

− pb
4B

+
pb
4b1

=
a2

4b2

− pb
4b1

− pb
4b2

+
pb
4b1

=
a2

4b2

− pb
4b2

> 0.

• When the demand difference between two markets is small enough, low price
strategy gives better payoff for source firm. If the difference is large enough,
high price strategy gives better payoff for source firm.

90

Proof Let CS be the consumer surplus, PSa be the surplus of firm a, PSb be
the surplus of firm b, SW be the social welfare. At the high price strategy:

CS =
1

2
b1X

2
h,

PSa = b1X
2
h,

PSb = 2b1X
2
h =

(a1 − pb)2

8b1

,

SW = CS + PSa + PSs =
7

2
b1X

2
h =

7

2
b1(

a1 − pb
4b1

)2 =
7(a1 − pb)2

32b1

.

For social welfare at the low price strategy, let x1 be the inflow of the first
market and x2 be the inflow of the second market. From the flow relation:

a1 − 2b1x1 = a2 − 2b2x2,

x1 + x2 = Xh,

infers

x1 =
a1 − a2 + 2b2Xh

2b1 + 2b2

,

x2 =
2b1Xh − a1 + a2

2b1 + 2b2

,

Xh =
(a1/b1 + a2/b2)B − pb

4B
.

Therefore

CS =
1

2
b1x

2
1 +

1

2
b2x

2
2,

PSa = b1x
2
1 + b2x

2
2,

PSb = 2BX2
l = 2B[

(a1/b1 + a2/b2)B − pb
4B

]2 =
[(a1/b1 + a2/b2)B − pb]2

8B
,

SW = CS + PSa + PSb =
7

2
b1X

2
h.

Notice PSb 6 PSa in this case.

However, to prove this statement, we only need:

PShb
PSlb

=
b1X

2
h

BX2
l

=
b1 + b2

b2

Xh

Xh + ∆

91

where PShb is the surplus of b at high price and PSlb is the surplus of b at low
price, and ∆ = a2

4b2
− pb

4b2
is irrelevant to a1. Therefore, as a1 increases, value

PSh
s

PSl
s

increases from less than 1 to greater than 1.

• Low price strategy always produces a higher total surplus of firms and con-
sumers. Hence, social welfare is also higher.

Proof We will use a proof by picture. Consider the following figure:

Xa

pa

pa = a1 − 2b1Xa

pa = a2 − b2Xapb

pha

Xh

h1

h2

Xa

pa

pa = a1 − 2b1Xa

pa = a2 − b2Xapb

pla

Xl

l1

l2

– For high price strategy, the area of the upper triangle h1 is PSha , while the
area of the lower rectangle h2 is PShb .

– For low price strategy, we can compute x1, x2 from the intersecting point
first. The area of 1

2
b1x

2
1 and 1

2
b2x

2
2 is larger than l1, while the area of the

lower rectangle l2 is PSlb.

Comparing these areas, we can easily see

PSl = PSla + PSlb > l1 + l2 > h1 + h2 = PSha + PShb = PSh.

For consumer surplus, from the fact that the flow to the first and second market
is higher with low price strategy and the market prices are inverse linear, the
total market surplus is higher.

Social welfare is the sum of total firm surplus and total consumer surplus. This
is a direct result by the fact that low price strategy always produces a higher
total surplus of firms and consumers.

2.9 Proofs in Section 2.2

2.9.1 Proof of Lemma 2.2.1

Proof 1. For the incentive of agent 2 to put personal effort. Note that whether
signed the subcontract or not, when s1 is observed, the subcontract cost is a sink

92

cost, and will not influence agent 2’s decision on personal effort. Therefore, by
Equation 2.7, the minimum payment for agent 2 to make effort in any condition is

M2 ≥M+
2 .

2. For the incentive to sign subcontract, under the condition that agent 2 always
makes effort (M2 ≥ M+

2). Incentive for signing subcontract with agent 1, compare
2.15 with 2.14,

π2(M1 = M0
1 |e2 = 1)− π2(M1 = 0|e2 = 1) = α1(β2 + τ2)M2 − P (1)M0

1 .

And the minimum payment to satisfy π2(e2 = 1,M1 = M0
1) ≥ π2(e2 = 1,M1 = 0) is

M2 ≥
P (1)M0

1

α1(β2 + τ2)
.

2.9.2 Proof of Theorem 2.2.1

Proof Recall the cost of delegation 2.16, the condition for the principal to prefer
delegation is

cost1 − P (2)M+
2 ≥ 0

cost1 −
P (2)P (1)M0

1

α1(β2 + τ2)
≥ 0

Note the first inequality always holds, because cost1 − P (2)M+
2 = P (1)M0

1 ≥ 0. For
the second inequality

P (2)M+
2

P (1)M0
1

≥ P (s2 = 1|e1 = 0, e2 = 1)

α1(β2 + τ2)
.

and it’s equivalent to,

(α2 + (α1 + γ1)(β2 + τ2) + γ2)c2/α2

(α1 + γ1)c1/α1

≥ α2 + γ1(β2 + τ2) + γ2

α1(β2 + τ2)
.

93

2.9.3 Proof of Theorem 2.2.2

Proof If delegation is better than direct control with both signals, then it must
satisfy cost2 ≥ cost3, which is equivalent to

cost2 − P (2)M+
2 ≥ 0

cost2 −
P (2)P (1)M0

1

α1(β2 + τ2)
≥ 0

From the first inequality,

cost2 − cost3 = P (1)M1 + (1− P (1))P (s2 = 1|s1 = 0, e2 = 1)M+
2

+ P (1)P (s2 = 1|s1 = 1, e2 = 1)M−
2 − P (2)M+

2

= P (1)M1 + P (2)M+
2 + P (1)P (s2 = 1|s1 = 1, e2 = 1)(M−

2 −M+
2)− P (2)M+

2

= P (1)M1 + P (1)P (s2 = 1|s1 = 1, e2 = 1)(M−
2 −M+

2).

Therefore, delegation is better, cost2 − cost3 ≥ 0, if

c1

α1

+ (α2 + β2 + τ2 + γ2)
c2

α2 + τ2

≥ (α2 + β2 + τ2 + γ2)
c2

α2

.

Note that when this threshold is binding, we have M2 = M+
2 ≥

P (1)M0
1

α1(β2+τ2)
, and

c2

α2

≥ (α1 + γ1)c1

α2
1(β2 + τ2)

.

Equivalent to

c1

α1(α2 + β2 + τ2 + γ2)
≥ τ2c2

α2(α2 + τ2)
.

From the second inequality,

cost2 − cost3 = P (1)M1 + (1− P (1))P (s2 = 1|s1 = 0, e2 = 1)M+
2

+ P (1)P (s2 = 1|s1 = 1, e2 = 1)M−
2 − P (2)

P (1)M0
1

α1(β2 + τ2)
.

Equivalent to

(1− α1 − γ1)(α2 + γ2)
c2

α2

+ (α1 + γ1)(α2 + β2 + τ2 + γ2)
c2

α2 + τ2

≥ (α1 + γ1)(α2 + γ2)

α1(β2 + τ2)

c1

α1

.

94

Note that when the above threshold is binding, we have M2 =
P (1)M0

1

α1(β2+τ2)
≥M+

2 , and

c2

α2

≤ (α1 + γ1)c1

α2
1(β2 + τ2)

.

2.9.4 Proof of Proposition 2.2.3

Proof Consider the principal delegates agent 2 to agent 1 as in the following Fig 2.23,
in this case, the principal can’t observe s2 because of the delegation.

P 1 2

e2 e1
M1 M2

Delegation

Fig. 2.23.: Two Delegation Structures

If the contract is based on a single signal, then the principal’s payment to agent
1 is irrelevant to 2, and there is no incentive for agent 1 to sign any subcontract with
agent 2.

If the contract uses both signals, and agent 1’s contract payment is in the following
form,

r1 =


M1(1, 1), if s1 = 1, s2 = 1;

M1(1, 0), if s1 = 1, s2 = 0;

M1(0, 1), if s1 = 0, s2 = 1;

0, if s1 = 0, s2 = 0.

While payment to agent 2 is

r2 =


M−

2 , if s1 = 1, s2 = 1;

M+
2 , if s1 = 0, s2 = 1;

0, if s2 = 0.

95

Utility of agent 1 with effort and sufficient subcontract is,

π1(e1 = 1,M2|M1) = P (s1 = 1, s2 = 1|e1 = 1, e2 = 1)(M1(1, 1)−M−
2)

+ P (s1 = 0, s2 = 1|e1 = 1, e2 = 1)(M1(0, 1)−M+
2)

+ P (s1 = 1, s2 = 0||e1 = 1, e2 = 1)M1(1, 0)− c1e1

Utility of agent 1 with zero effort and no subcontract is,

π1(e1 = 0,M2 = 0|M1) = P (s1 = 1, s2 = 1|e1 = 0, e2 = 0)M1(1, 1)

+ P (s1 = 0, s2 = 1|e1 = 0, e2 = 0)M1(0, 1)

+ P (s1 = 1, s2 = 0||e1 = 0, e2 = 0)M1(1, 0)

By the condition that π1(e1 = 1,M2|M1) ≥ π1(e1 = 0,M2 = 0|M1), we have

cost4 ≥ cost2 − P (1)M0
1 + c1e1 + π1(e1 = 0,M2 = 0|M1)

≥ cost2 − γ1
c1

α1

+ γ1(α2 + β2 + τ2 + γ2)M1(1, 0)

+ γ1(1− α2 − β2 − τ2 − γ2)M1(1, 1) (2.52)

where cost4 is the expected cost for this reverse delegation,

cost4 = P (s1 = 1, s2 = 1|e1 = 1, e2 = 1)M1(1, 1)

+ P (s1 = 0, s2 = 1|e1 = 1, e2 = 1)M1(0, 1)

+ P (s1 = 1, s2 = 0||e1 = 1, e2 = 1)M1(1, 0),

and cost2 is the expected cost for direct control with both signals 2.12,

cost2 = P (s1 = 1, s2 = 1|e1 = 1, e2 = 1)M−
2

+ P (s1 = 0, s2 = 1|e1 = 1, e2 = 1)M+
2 + P (1)M0

1 .

Therefore, if we prove cost4 ≥ cost2, then reverse delegation is dominated by direct
control with both signals and it’s always inefficient. By Equation 2.52, the sufficient
condition is to show

(α2 + β2 + τ2 + γ2)M1(1, 1) + (1− α2 − β2 − τ2 − γ2)M1(1, 0) ≥ c1

α1

(2.53)

96

To prove the above inequality does hold, we use the condition that π1(e1 = 1,M2|M1) ≥
π1(e1 = 0,M2|M1), which gives

c1 ≤ α1(α2 + β2 + τ2 + γ2)(M1(1, 1)−M−
2)

+ α1(1− α2 − β2 − τ2 − γ2)M1(1, 0)

− α1(α2 + γ2)(M1(0, 1)−M+
2)

≤ α1(α2 + β2 + τ2 + γ2)M1(1, 1)

+ α1(1− α2 − β2 − τ2 − γ2)M1(1, 0) (2.54)

where the second inequality used the condition that M1(0, 1) −M+
2 ≥ 0 (otherwise,

agent 1 won’t be incentive to sign contract with agent 2 when s1 = 0).
In summary, inequality 2.54 implies inequality 2.53. Combine inequality 2.52 and

inequality 2.53, we eventually proves cost4 ≥ cost2, and shows delegate agent 2 to
agent 1 is dominated by direct control with both signals.

2.10 Proofs in Section 2.3

2.10.1 Proof of Theorem 2.3.2

Proof If k direct control agent k0, then

Mk ≥
pk0Mk0(k0) + ∆

δkk0

≥ pk0Mk0(k0)

αk0
∏k

i=k0+1(βi + τi)

≥ Mk0(k0)∏k
i=k0+1(βi + τi)

.

If agent k0 is not direct controlled by k, and denote the agent direct control him
as h1, then similar to the above derivation,

Mh1 ≥
Mk0(k0)∏h1

i=k0+1(βi + τi)
.

Suppose h1 is directly controlled by h2, utility of h2 with full incentive is

πh2 = ph2Mh2 − ph1Mh1 −
∑

i∈T (h2)\h1

piMi − ch2 .

97

Now consider the case that h2 choose to shirk the whole branch from h1, the new
utility function is

π′h2 = (ph2 − δh2h1)Mh2 −
∑

i∈T (h2)\h1

(pi − δih1)Mi − ch2 .

Note that if i < h1, δih1 = 0.
By πh2 ≥ π′h2 , we have a lower bound for Mh2 as

Mh2 ≥
ph1Mh1 +

∑
i δ
i
h1
Mi

δh2h1

≥ ph1Mh1

δh2h1

≥ ph1Mh1

ph1
∏h2

h1
(βi + τi)

≥ Mh1∏h2
h1

(βi + τi)

≥ Mk0(k0)∏h2
i=k0+1(βi + τi)

.

This can be repeated until the parent node is k, thus we have the lower bound of
k to motivate i in any delegation,

Mk ≥
Mk0(k0)∏k

i=k0+1(βi + τi)
.

2.10.2 Proof of Lemma 2.3.1

Proof Denote DS(d) as the size of possible delegation structures with control set
size d. The goal is to prove

DS(d) = O(2d
2

).

For agent k, given control set θk−dk . There are 2d ways to choose it’s direct control set
of agents T (k), denote the agents controlled by i ∈ T (k) as di. Then the number of
possible delegation under i is DS(di).

DS(d) ≤ 2d
∑
i∈T (k)

DS(di), (2.55)

98

where
∑

i di = d− 1.

Proof by induction. Assume DS(di) = O(2d
2
i), by Equation 2.55,

DS(d) ≤ 2d
∑
i∈T (k)

O(2d
2
i)

≤ 2dO(2(d−1)2)

≤ O(2d
2

).

2.10.3 Proof of Lemma 2.3.2

Proof Suppose the control set for agent k is θik, where i is the last agent under k’s
control and satisfies k − i ≤ d by Assumption 2.3.3.

By induction, for any descendants h of k, assume the size of effort status is bounded
as follows,

|Ψh| ≤ 3DS(h).

For his descendants, there are at most
∏

h∈T (k) 3DS(h) ≤ 3d effort status. There-

fore, agent k only need to enumerate 3d to find the optimal subcontract decision.
Meanwhile, the function of optimal benefit from subcontracts πsk(Mk|ηk) has at
most 3d pieces (Fig. 2.24),

πsk(Mk|ηk) = max
ψh∈Ψh(θih)

∑
h

πsk(ψh|Mk, ηk).

For agent k, the utility function at the contract stage (Eq. 2.36) is

πk(M~h|Mk, ηk) = πpk(ψi,k|Mk) +
∑
h∈T (k)

πsk,h(ψi,k|Mk) + (βi,kP (i− 1) + γk)Mk.

STEP 1: build one-to-one mapping
Overall, the optimal utility function of k can be decomposed as

πk(Mk|ηk) = max
ψk

πk(ψi,k|Mk)

= max
ψk

(πpk(ψi,k|Mk) + πsk(ψi,k|Mk)) + γkMk.

Because the personal effort benefit of k in Equation 2.37 is continuous and con-
cavity of function πsk(ψi,k|Mk), for two effort status ψh and ψ′h, if

πk(ψh|Mk, ηk) ≥ πk(ψ
′
h|Mk, ηk), interval i.

99

Mk

πsk(Mk|θik)

ck
αk+τk

ck
αk

Fig. 2.24.: Expected Subcontract Utility of Agent k at Contract Stage

Then the relation still holds in the next interval,

πk(ψh|Mk, ηk) ≥ πk(ψ
′
h|Mk, ηk), interval i.

Therefore, the utility function of k is a convex piecewise linear function (Fig. 2.25)
with pieces bounded by

|Ψi,k| ≤ 3 +
∏

h∈T (h)

3DS(h) ≤ 3 + 3d−1 ≤ 3d.

The intersection point over πk(Mk|ηk) gives the one-to-one mapping between the
minimum contract payment and effort status ψi,k.

STEP 2: the last intersection point is the minimum payment for the full effort.

2.10.4 Proof of Lemma 2.3.3

Proof Proof by induction. Easy to check Ψi(θ
i
i) = {∅, {i}} are monotone inclu-

sion with the increasing Mi. Now assume, effort status in Ψk−1(θik−1) are monotone
inclusion with the increasing Mk−1.

100

Mk

πk(Mk|θik)

ck
αk+τk

ck
αk

Fig. 2.25.: Expected Utility of Agent k at Contract Stage

For agent k, given any Mk ≤M ′
k, it’s equivalent to prove

ψ′k = ψk(M
′
k|θik) ⊆ ψk(Mk|θik) = ψk,

under any control set θik.
First we know

ψk(Mk|θik) = ψk−1(Mk|θik) + Ik(Mk),

ψk(M
′
k|θik) = ψk−1(M ′

k|θik) + Ik(M
′
k).

where ψk−1(Mk|θik) is the effort status in function πsk(Mk|θik). For simplicity, denote

ψk−1 = ψk−1(Mk|θik),
ψ′k−1 = ψk−1(M ′

k|θik).

Since M ′
k ≤ Mk, we have Ik(M

′
k) ⊆ Ik(Mk). Hence, it’s sufficient to prove the

theorem if we can prove

ψ′k−1 ⊆ ψk−1.

101

Because πsk(Mk|θik) is convex, with M ′
k ≤Mk, we know

pk(ψ
′
k−1) < pk(ψk−1),

which infers

pk−1(ψ′k−1) < pk−1(ψk−1).

Now because πk−1(Mk−1|θik−1) is also a convex function, we know

Mk−1(ψ′k−1) < Mk−1(ψk−1).

By induction assumption that Ψk−1(θik−1) are monotone inclusion with the increasing
Mk−1, we have

ψ′k−1 ⊆ ψk−1.

2.10.5 Proof of Lemma 2.13.2

Proof When control set is θii, agent i only has two effort status {i} or ∅.
By induction, let’s assume it’s true for agent k − 1 with θik−1, that exists an

mapping function

M = Mk−1(ψk−1|θik),where ψk−1 ∈ Ψk−1(θik).

such that M is the minimum contract payment to make agents in ψk−1 be incentive.
And the size of effort statuss of k − 1, Ψk−1(θik), is bounded by k − i+ 1.

For agent k, his expected utility function is the maximum among different decisions
over ψk−1 (Mk−1) and ek, which can be written as

πk(ek, ψk−1|Mk, θ
i
k) = (αkek + βkpk−1(ψk−1|θik−1) + γk)Mk − pk−1(ψk−1|θik−1)Mk−1(ψk−1)− ckek.

where pk−1 can be computed by Equation 2.31. The above utility can be divided into
three parts,

πk(ek, ψk−1|Mk, θk) = πpk(ek|Mk) + πsk(ψk−1|Mk, θk) + γkMk.

where πpk(ek|Mk) is benefit from making effort,

πpk(ek|Mk) = αkMkek − ckek, (2.56)

102

and πsk(Mk−1|Mk, θk) is benefit from subcontract,

πsk(ψk−1|Mk, θk) = βkpk−1(ψk−1|θik−1)Mk − pk−1(ψk−1|θik−1)Mk−1(ψk−1). (2.57)

1. Decision over ek is independent to ψk−1, and can be computed by Theorem 2.3.1,

• k ∈ ψk(Mk, θ
i
k), if Mk ≥Mk(k);

• k /∈ ψk(Mk, θ
i
k), if Mk < Mk(k).

and benefit from making effort, πpk(Mk) = maxek π
p
k(ek|Mk), is a piecewise linear

function with 2 pieces similar to Fig. 2.8.
2. Denote πsk(Mk|θk) as the benefit function from subcontract,

πsk(Mk|θk) = max
ψk−1∈Ψk−1(θik−1)

πsk(ψk−1|Mk, θk),

which is the maximum of |Ψk−1(θik−1)| = k − i+ 1 linear functions. So the benefit of
k from subcontract is a convex piecewise linear function with at most k− 1− i pieces
(Fig. 2.26).

Mk

πsk(Mk|θik)

ck
αk

Fig. 2.26.: Subcontract Utility Function of Agent k

103

Overall, the optimal utility function of k can be decomposed as

πk(Mk|θk) = max
ek,ψk−1

πk(ek, ψk−1|Mk, θk)

= max
ek

πpk(ek|Mk) + max
ψk−1

πsk(ψk−1|Mk, θk) + γkMk.

By the personal effort condition of k, we can rewrite it as,

πk(Mk, θk) =

{
πsk(Mk|θk) + γkMk, Mk ≤ ck

αk
,

αkMk − ck + πsk(Mk|θk) + γkMk, Mk ≥ ck
αk
.

(2.58)

Therefore, the utility function of k is a convex piecewise linear function with at most
k − i+ 2 = |Ψk(θ

i
k)| pieces (Fig. 2.27).

Mk

πk(Mk|θik)

ck
αk

Fig. 2.27.: Utility Function of Agent k

To show the one-to-one mapping between Mk and ψk, we first find the mapping
between Mk and ψk−1. Consider the piecewise linear function πsk(Mk|θik), each piece
is corresponding to an effort status ψk−1 that maximized the subcontract utility of k
at the given Mk. Therefore, we can build an one-to-one mapping between Mk and
effort status ψk−1,

104

M1
k (ψk−1|θik) = argminMk

0

s.t. πsk(Mk|θik) = πsk(ψk−1|Mk, θ
i
k).

Note that if the payment is lower than M1
k (ψk−1|θik), agent k will prefer another effort

status ψk−1. While a higher payment only brings an unnecessary cost.
Denote the inverse function ofM1

k (·|θik) as ψk−1(·|θik). GivenMk, the corresponding
effort status ψk is

ψk(Mk|θik) = ψk−1(Mk|θik) + Ik(Mk),

recall that

Ik(Mk) =

{
∅, Mk < Mk(k),

{k}, Mk ≥Mk(k).

Denote all the different ψk from Mk ≥ 0 as the set Ψk(θ
i
k), again easy to see any

effort combination other than these is impossible to happen. This is still an one-to-
one mapping, and denote minimum contract payment for effort status ψk, Mk(·|θik),
as an inverse function of ψk(·|θik).

2.10.6 Proof of Proposition 2.3.3

Proof Suppose delegate h agents to k. We first prove it’s better to direct control
k, and delegate h− 1 agents to k − 1. Which is equivalent to prove

p∗M(h) ≥ p∗M∗ + p∗M(h− 1), (2.59)

where M∗ is the minimum payment for personal effort, and M(h) is the minimum
payment to an agent to motivate him and his h sub-agents.

Consider agent k’s utility function at the optimal decision

π∗k = p∗M(h)− p∗M(h− 1)− ck.

Consider utility function under effort only enough for h− 1 agents,

πsk = (p∗ − αβh)M(h)− (p∗ − αβh−1)M(h− 1)′ − c
≥ (p∗ − αβh)M(h)− (p∗ − αβh−1)M(h− 1)− c.

From π∗k − πsk ≥ 0, we know

αβhM(h) ≥ αβh−1M(h− 1),

105

which means M(h) ≥ M(h−1)
β

, and

M(h) ≥ M∗

βh
.

Now for the utility function with single personal effort

πpk = (p∗ −
h∑
i=1

αβi)M(h)− c.

From π∗k − π
p
k ≥ 0, we know

p∗M(h)− p∗M(h− 1) ≥ (p∗ −
h∑
i=1

αβi)M(h)

≥ (p∗ −
h∑
i=1

αβi)
M∗

βh
.

To prove Equation 2.59, it’ll be sufficient if proved

(p∗ −
∑h

i=1 αβ
i)

βh
≥ p∗,

which is equivalent to

p∗(1− βh) ≥
h∑
i=1

αβi, (2.60)

and it’s true because p∗ ≥ αβ and 1− βh =
∑h−1

i=0 β
i.

Similarly we can prove

p∗M(h− 1) ≥ p∗M∗ + p∗M(h− 2),

and eventually we have

p∗M(h) ≥ np∗M∗.

Therefore, the principal always prefer direct control than delegation when k is far
from the initial agent.

106

2.10.7 Proof of Proposition 2.3.4

Proof Denote M∗ as the contract payment for personal effort in symmetric case
with normal cost. By Corollary 2.3.1, we have a lower bound for delegation payment,

Mk ≥
M∗

(β + τ)d
.

Meanwhile, the cost of direct control is

costdp = (t+ d)p∗M∗.

The necessary condition for delegation is better is

M∗

(β + τ)d
≤ (t+ d)M∗.

A necessary condition for above to hold is

M∗

(β + τ)d
≤ tM∗,

which gives

d ≤ log t

log(β + τ)−1
.

2.11 Proofs in Section 2.4

2.11.1 Proof of Lemma 2.4.1

Proof Now consider any delegation structure other than Θ(f), θ′f /∈ Θ(f). First
look at the most inefficient agent, i = max θ′f ∩ C(k), note that i is the leaf agent
with the highest Mk(i). Now we are going to prove θif dominates θ′f .

Subcontract benefit of f at contract stage when fully motivated under θif ,

πsf (θ
i
f |Mf , θ

i
f) = pf (θ

i
f |θif)Mf − pk(θik|θif)Mk(θ

i
k|θik)

= P (f)Mf − P (k)Mk(i).

Note that

πsf (θ
′
f |Mf , θ

′
f) = πsf (θ

i
f |Mf , θ

i
f).

107

Denote the next effort set of θif as ψjf , where j = maxψjf . The utility with effort

set ψjf is

πsf (ψ
j
f |Mf , θ

i
f) = pf (ψ

j
f |θ

i
f)Mf − pk(ψjk|θ

i
f)Mk(j).

Denote the next effort set of θ′f as ψhf , where h = maxψhf . The utility with effort set

ψhf is

πsf (ψ
h
f |Mf , θ

′
f) = pf (ψ

h
f |θ′f)Mf − pk(ψhk |θ′f)Mk(h).

By comparing πsf (θ
′
f |Mf , θ

′
f) ≥ πsf (ψ

h
f |Mf , θ

′
f), we have the minimum payment Mf (θ

′
f)

for control set θ′f

Mf (θ
′
f) =

P (k)Mk(i)− pk(ψhk |θ′f)Mk(h)

δhf − δ∗f

≥
P (k)Mk(i)− pk(ψjk|θ′f)Mk(j

′)

δjf − δ∗f

≥
P (k)Mk(i)− pk(ψjk|θ′f)Mk(j)

δjf − δ∗f
,

where j′ ∈ θ′f is the largest numbered leaf agent which satisfies j′ ≤ j, and we have
Mk(j

′) ≤Mk(j).
The agent’s direct controlled by the principal will influence k’s probability of

success too.

pk(ψ
j
k|θ
′
f) = pk(ψ

j
k|θ

i
f) + δ∗k,

where δ∗k = δ∗f/βf , and we have,

Mf (θ
′
f) ≥

P (k)Mk(i)− (pk(ψ
j
k|θif) + δ∗k)Mk(j)

δjf − δ∗f
.

On the other hand, by πsf (θ
i
f |Mf , θ

i
f) ≥ πsf (ψ

j
f |Mf , θ

i
f) we have

Mk(θ
i
k) =

P (k)Mk(i)− pk(ψjk|θif)Mk(j)

δjf
.

To prove Mf (θ
′
f) ≥Mf (θ

i
f), it will be sufficient if prove

P (k)Mk(i)− pk(ψjk|θif)Mk(j)

δjf
≤
P (k)Mk(i)− (pk(ψ

j
k|θif) + δ∗k)Mk(j)

δjf − δ∗f
.

108

Which is equivalent to

(δjf − δ
∗
f)
(
P (k)Mk(i)− pk(ψjk|θ

i
f)Mk(j)

)
− δjf

(
P (k)Mk(i)− (pk(ψ

j
k|θ

i
f) + δ∗k)Mk(j)

)
=− δ∗fP (k)Mk(i) + δ∗fpk(ψ

j
k|θ

i
f)Mk(j) + δjfδ

∗
kMk(j)

≤δ∗fMk(i)(−P (k) + pk(ψ
j
k|θ

i
f) + δjf/β

k
f)

=δ∗fMk(i)(−P (k) + pk(ψ
j
k|θ

i
f) + δjk)

=0.

Since θ′f ⊂ θif , but Mf (θ
′
f) ≥Mf (θ

i
f), we know θ′f is dominated by θif . Hence, any

delegation structure other than Θ(f) is not efficient.

2.12 Examples

2.12.1 Convex combination

Example 13 (Convex combination in price function computation)

scs a
b

c

pt = 1− 2x

pt = 1− y

Xa
x

y

Aim: show the unique market clearing price function is

pa = 1− 4

3
(x+ y) = 1− 4

3
Xa

ps = 1− 8

3
Xa = 1− 8

3
Xs

and Xs = Xa.
Proof: given pa < 1, first we know both x, y > 0, payoff of a,

Πa = (1− 2x)x+ (1− y)y − pa(x+ y)

Taking the derivative,

∂Πa

∂x
= 1− 4x− pa = 0

∂Πa

∂y
= 1− 2y − pa = 0

109

By convex combination, we know x+ y must satisfy,

pa =
1

3
(1− 4x) +

2

3
(1− 2y)

= 1− 4

3
(x+ y)

Also by the assumption, pa = f(Xa) = f(x+ y). Thus,

pa = 1− 4

3
Xa

Similarly,

∂Πs

∂Xa

= 0⇒ ps = 1− 8

3
Xa

⇒ ps = 1− 8

3
Xs

Example 14 (SPG with Shortcut) Consider the following network where path
(s, t) is a shortcut of path (s, v, t). Assume no processing and producing cost.

sps = 0

v

t pt = 1−Xt

x x

y

The utility of v is:

Πv = (1− x− y)x− pvx

Taking the derivative:

∂Πv

∂x
= 1− 2x− y − pv = 0⇒ pv = 1− 2x− y

The utility of s is:

Πs = pvx+ pty − ps(x+ y)

= (1− 2x− y)x+ (1− x− y)y

Taking the derivative:

∂Πs

∂x
= 1− 4x− 2y = 0

∂Πs

∂y
= 1− x− 2y = 0

The solution is x = 0 and y = 1
2
. sv and vt are inactive.

110

2.12.2 Price Function Computation

Example 15 (Price Function Computation General Form)

Assume that each node in the following has no processing or producing cost.

ps = 0 s

a

b

c
d

e

t pt = 1−Xt

Recall the equations in ALG1:
SS Case:

bi = 2bj +
∑

k∈CP (j)

bk + ci

MS Case:

bi = bj +
∑

k∈CP (j)

bk + ci

SM Case:

bi =
2∑

j∈B(i)
1
bj

+ 2bh +
∑

k∈CP (j)\{h}

bk + ci where h is the merging node.

Backward algorithm, MS case (t to its seller f , d , and e):

pd = 1−Xd −Xt

pe = 1−Xe −Xt

MS case (d to its seller b and c):

pb = 1− 2Xb −Xd −Xt

pc = 1− 2Xc −Xd −Xt

SS case (f to its seller a):

pa = 1− 3Xa −Xt

To compute the price function at s (SM case), utility function at s

Πs = paXa + pbXb + pcXc − ps(Xa +Xb +Xc)

111

Take the derivative with respect to Xa, Xb, and Xc:

∂Πs

∂Xa

= 0⇒ psa = 1− 6Xa − (Xa +Xb +Xc)−Xt = 1− 6Xa − 2Xt

∂Πs

∂Xb

= 0⇒ psb = 1− 4Xb − 2Xd − (Xa +Xb +Xc)−Xt = 1− 4Xb − 2Xd − 2Xt

∂Πs

∂Xc

= 0⇒ psc = 1− 4Xc − 2Xd − (Xa +Xb +Xc)−Xt = 1− 4Xc − 2Xd − 2Xt

Note that Xt = Xa +Xb +Xc, so ∂Xt

∂Xa
= ∂Xt

∂Xb
= ∂Xt

∂Xc
= 1.

For the merging order, note that CS(s) = {d, t}, by case 4 in the proof 2.6.2 of
Lemma 1.3.1. We start from merging flows with d:

psbc =
1

2
psb +

1

2
psc

= 1− 2Xbc − 2Xd − 2Xt

= 1− 4Xbc − 2Xt

where Xbc is a flow variable considering b and c together.
After this, merge flows with t:

psabc =
2

5
psa +

3

5
psbc

= 1− 12

5
Xabc − 2Xt

= 1− 22

5
Xs

Note that since t /∈ CP (s), we substitute Xt by Xs.
The aforementioned method is based on computing the convex coefficient. The fol-

lowing method applies aggregate variables. First, CS(s) = {d, t} and d is the merging
node. Therefore, bbc = 1

1
bb

+ 1
bc

+ bd = 1
1
4

+ 1
4

+ 2 = 4. bbc represents the coefficient of

nodes b, c, and d. Next move on to the merging node t, this is the simple SM case,
so:

bs =
2

1
ba

+ 1
bbc

+ 2bt =
2

1
3

+ 1
4

+ 2 =
22

5

Please compare it with the Example 3.

2.12.3 Non-SPG SM

For the parent-child relation, only SS, SM, MS three cases are possible. This
example shows the graph restricted to these three relations is not necessary an SPG
though.

112

Example 16 (Non-SPG SM)

s a b c t

d

e

x+ y

z

y
x

y

y + z

x

z

Note that when computing pa, CP (d) = {t} while CP (b) = {c, t}.

2.12.4 Non-SPG MM

The graph is non-SPG, since MM happens at {b, c} → {d, f}. However, the
equilibrium still exists and unique.

Example 17 (Non-SPG MM)

s

b

c

d

f

t pt = a− x− y − z
x+ y

z

x

y

z

x

y + z

About parent-merging child nodes, CP (b) = CP (c) = {f, t}.

pd = a− 2x− y − z
pf = a− x− 2y − 2z

pc = a− x− 2y − 4z

To compute price function at b, utility at b is

Πb = pdx+ pfy − pb(x+ y)

= (a− 2x− y − z)x+ (a− x− 2y − 2z)y − pb(x+ y)

Take its derivative with respect to x and y:

∂Πb

∂x
= a− 4x− 2y − z − pb

∂Πb

∂y
= a− 2x− 4y − 2z − pb

113

To write it as a function of inflow Xb = x+ y,

pb = 0.5(a− 4x− 2y − z) + 0.5(a− 2x− 4y − 2z)

= a− 3x− 3y − 1.5z

while CP (b) = {f, t}, the above result can’t be written as the form unless bf = 0,

pb = a− bbXb − bfXf − btXt

= a− bb(x+ y)− bf (y + z)− bt(x+ y + z)

Some relations about market clearing price:

pb = a− 4x− 2y − z = a− 2x− 4y − 2z

⇒
2x = 2y + z

We can rewrite pc as

4pc = 4a− 4x− 8y − 16z

4pc + 2x = 4a− 4x− 8y − 16z + 2y + z

4pc = 4a− 6x− 6y − 15z

pc = a− 3

2
(x+ y)− 15

4
z

So far, the utility of s can be written as,

Πs = pb(x+ y) + pcz − ps(x+ y + z)

= (a− 3

2
Xb −

3

2
Xs)Xb + (a− 9

4
Xc −

3

2
Xs)Xc − psXs

Similar to the analysis in Section 1.3.3, to maximize the utility, the optimal decision
flow of source s is the solution of a system of LCP, and it’s equivalent to a convex
problem 1.4, which has unique solution.

An interesting point about the coefficients that

A

(
Xb

Xc

)
=

(
a− pb
a− pc

)
where

A =

(
3 3/2

3/2 15/4

)
For the solvable problem, the coefficient matrix A always satisfies

114

• A is positive.

• A is invertible.

• unique common coefficient (symmetric, eligible to write as a convex problem)

Example 18 (Non-invertible A)
An example that A is not invertible,

scs

a

b

t1

t2

pt1 = 1− 2(x+ y)

pt2 = 1− z − w

Xa

Xb

x
y

z
w

However, we can imaging this equivalent to

scs a, b
t1

t2

pt1 = 1− 2Xt1

pt2 = 1−Xt2

Xa +Xb

Xt1

Xt2

2.12.5 Decision Sequence

Example 19

t pt = 1− x− y
a

bc

x

yy

Assume raw material cost is 0 at both end. Price functions:

pa = 1− 2x− y; pb = 1− x− 2y,

and the relation holds at the equilibrium: x = 1−y
2
. The total flow is

x+ y =
1 + y

2
.

The utility of a is

Πa = ptx =
(1− y)2

4

1. Suppose c makes decision pb, y first, then a, b make decision x, pt based on the
belief over each other.

pb =
1

2
− 3

2
y; pc =

1

2
− 3y

115

and the optimal y = 1/6.
2. Suppose c, a makes decision pb, pt, x, y based on the belief over each other, then

a make decision (given pb and x, take y, accept pt).

pb = 1− x− 2y

pc = 1− x− 4y

pc =
1

2
− 7

2
y

and the optimal y = 1/7.
Note that the total flow is higher in the first case, and in the second case, the

utility of a is higher.
Summery: in our model

• parallel decision is case 2, decide simultaneously based on the belief over each
other (assume both act as the unique equilibrium).

• multiple branches is case 1, decide each sub-flows by himself, after a decision
any combination holds, thus any combination can be treated as the TRUE price
function.

2.12.6 Inactive Edges

One of the main difference between MSPG and SPG is the existence of inactive
flow; if the inactive edge is mistakenly assumed active, wrong price function will be
used for solving the equilibrium.

Example 20

s
cs = 4

a

b

t1 pt1 = 6− x

t2 pt2 = 2− y

t3 pt3 = 12− z

t4 pt4 = 6− w

x+
y

z +
w

x

y

z

w

When computing the price function, the challenge is we do not know which edges
are active at equilibrium (while in a single source and sink case, we proved every edge
is active).

Suppose we assume all of them are active,

pa = 4− x− y

116

pb = 9− z − w

Thus, at “equilibrium”, s makes decision not selling to a (x+y = 0), and decision
to b is pb = 6.5, xsb = 2.5, and edge bt4 is inactive (w = 0).

However, this is not the equilibrium. For a, since a will make a profit by buying
items at a higher price than pb, and sell them to t1, and s will be better off too. For b,
by solving the optimal solution at b, we know pb is too low and xsb is under demand.
Thus s can be better off by raising the price.

Actually, at equilibrium edge at2, bt4 are inactive, while at1, bt3 are active. So we
should delete edge at2, bt4 before the price computation, and the true income price
function at node a, b is:

pa = 6− 2x

pb = 12− 2z

Meanwhile, MSPG may also have inactive flow starts from the source.

Example 21

s1cs1 = 2

s2cs2 = 6
a b

t1 pt1 = 8− x

t2 pt2 = 2− y

u

v

x+ y = u+ v x

y

Due to the low profit at market t2, cs1 , cs2 ≥ pt2, it’s obvious that edge bt2 is
inactive at equilibrium, so the market clearing price,

pb = 8− 2x

pa = 8− 4x

Treat a as the market of s1, s2, by solving a standard bipartite Cournot game, we
know edge s2a is inactive at equilibrium, while s1a is active.

However, we do not need to worry about the inactive edges s2a since it does not
influence the price function computation of other branches. In other words, the equi-
librium can be solved even though we keep this type of inactive edges in the graph.
Notice this is always true by the property of series-parallel graph.

2.12.7 Multiple Equilibria

Multiple Sources and Multiple Sinks (Computation of Example 10)

s1

s2

ps1 = 0

ps2 = 0

c

t1

t2

pt1 = 4− u

pt2 = 1− v

x

y

u

v

117

Assume the processing cost is 0. For convenience, denote p1 = ps1 and p2 = ps2 .
1. High price strategy, since market 2 is inactive, pc = 4−2Xc, and prices function

at sources are

p1 = 4− 4x− 2y = 0,

p2 = 4− 2x− 4y = 0.

By solving the above equations, the optimal flows are x = y = a1/6 = 2
3
, double

check the price under the optimal flow:

pc = 4− 8

3
=

4

3
≥ a2.

It is a high price strategy and the payoffs are

Πh
1 = Πh

2 = 2x2 =
8

9
.

2. Low price strategy, since both markets are inactive, pc = 5
2
− Xc, and prices

function at sources are

p1 =
5

2
− 2x− y = 0,

p2 =
5

2
− x− 2y = 0.

By solving the above equations, the optimal flows are x = y = a+1
6

= 5
6
, double

check the price under the optimal flow:

pc =
5

2
− 5

3
=

5

6
≤ a2.

It is a low price strategy and the payoffs are

Πl
1 = Πl

2 = x2 =
25

36
.

Note that the high price strategy gives a higher payoff.
3. High price strategy is an equilibrium.
Recall the optimal flow x = 2

3
in part 1, let’s fix it for firm 1, while consider firm

2 increases y and try low price strategy:

pc =
5

2
−Xc,

p2 =
5

2
− x− 2y = 0.

118

The new flow is y = 11
12

, double check the price under these flows:

pc =
5

2
− 3

2
− 11

12
=

11

12
6 a2

It is a low price strategy and the new payoffs for firm 2 is

Π′2 = y2 =
121

144
< Πh

2 =
8

9

Thus, a high price strategy is an equilibrium.
4. Low price strategy is an equilibrium.
Recall the optimal flow x = 5

6
in part 2, let’s fix it for firm 1, while consider firm

2 decreases y and try high price strategy,

pc = 4− 2Xc,

p2 = 4− 2x− 4y = 0.

The new flow is y = 7
12

, double check the price under these flows:

pc = 4− 2(
5

6
− 7

12
) =

7

6
> a2.

It is a high price strategy and the new payoffs for firm 2 is

Π′2 = 2y2 =
49

72
< Πl

2 =
25

36
.

Thus, a low price strategy is an equilibrium. In summary, both high and low price
strategy are equilibria.

Single Source and Multiple Sources

sps = 0

1

2

c

t1

t2

pt1 = a− u

pt2 = b− v

x

y

x

y

u

v

1. High price strategy:

pc = a− 2Xc

p1 = a− 4x− 2y = 0

p2 = a− 2x− 4y = 0

ps = a− 6x− 6y ⇒ Xs =
a

6

119

Utility of b is

Πh
b = p1Xs =

a

2

a

6
=
a2

12

2. Low price strategy:

pc =
a+ b

2
−Xc

p1 =
a+ b

2
− 2x− y = 0

p2 =
a+ b

2
− x− 2y = 0

ps =
a+ b

2
− 3x− 3y ⇒ Xs =

a+ b

6

Utility of b is

Πl
b = p1Xs =

a+ b

4

a+ b

6
=

(a+ b)2

24

To make low price strategy more preferable:

Πl
b > Πh

b ⇒ b > (1−
√

2)a

Suppose b chooses low price strategy;

p1 = p2 =
a+ b

4

pc =
a+ b

3

To ensure it is a low price strategy:

pc < a2 ⇒ b > 0.5a

Given p1 and p2, for firm 1 and 2’s decision, it is equivalent to

s1

s2

ps1 = 0

ps2 = 0

c

t1

t2

pt1 = 3
4
a− 1

4
b− u

pt2 = 3
4
b− 1

4
a− v

x

y

u

v

Suppose

3

4
a− 1

4
b = 4(

3

4
b− 1

4
a)⇒ b =

7

13
a

120

which also satisfies the above requirements for a, b, and we can apply the previous
example’s result to show that the equilibrium for 1, 2 decision is not unique!

In summary, firm s will prefer a low price strategy. However, the decision of down-
stream firms 1, 2 will be unpredictable (multiple equilibria) if s choose the “optimal”
price for low price strategy.

2.12.8 Non-Equilibrium (Computation of Example 11)

s1

s2

ps1 = c

ps2 = 0

c

t1

t2

pt1 = a− bu

pt2 = 1− v

x

y

u

v

Assume:

ps1 = c = 2; ps2 = 0; a = 5; b = 2

1. High price strategy where market 2 is inactive, and price function at firm c is
pc = a− 2bXc, and price functions at sources are

p1 = a− 4bx− 2by = 0,

p2 = a− 2bx− 4by = 0.

Solve the above equations and flows at equilibrium

x =
a− 2c

6b
; y =

a+ c

6b

(a > 2c so that xh > 0)
Double check the price at c

pc =
a+ c

3
≥ 1

It is a high price strategy and the payoffs are

Πh
2 = 2y2 =

(a+ c)2

18b

2. Low price strategy where both markets are inactive, and price function at firm
c is pc = a+b

b+1
− 2b

b+1
Xc, and price functions at sources are

p1 =
a+ b

b+ 1
− 4b

b+ 1
x− 2b

b+ 1
y = 0,

p2 =
a+ b

b+ 1
− 2b

b+ 1
x− 4b

b+ 1
y = 0.

121

By solving the above equations, we got the flows as

x =
a+ b− 2c(b+ 1)

6b
; y =

a+ c(b+ 1)

6b
+

1

6

(a+ b > 2c(b+ 1) so that xl > 0)
Double check the price c

pc =
2

3

a+ b

b+ 1
+
c

3

It is a low price strategy, and the payoffs are

Πl
2 = y2

Note that the high price strategy gives a higher payoff.
3. High price strategy is NOT an equilibrium.
Suppose firm 2 increases y and try low price strategy:

p2 =
a+ b

b+ 1
− 2b

b+ 1
xh −

4b

b+ 1
y = 0

The new flow is

y′ =
a+ c

6b
+

1

4

Double check the price c

pc =
a+ b

b+ 1
− 2b

b+ 1
Xc 6 1

To prove high price strategy is not an equilibrium,

Πh
2 = 2by2 = 2b(

a+ c

6b
)2 < b(

a+ c

6b
+

1

4
)2 = by′2 = Πh→l

2

4. Low price strategy is NOT an equilibrium.
Suppose firm 2 decreases y and try high price strategy:

p2 =
a+ b

b+ 1
− 2b

b+ 1
x− 4b

b+ 1
y = 0

The new flow is

y′ =
a+ c(b+ 1)

6b
− 1

12

122

Double check the price at c,

pc = a− 2bXc ≥ 1

To prove low price strategy is not an equilibrium,

Πl
2 = by2 = b(

a+ c

6b
+
c

6
+

1

6
)2 < 2b(

a+ c

6b
+
c

6
− 1

12
)2 = 2by′2 = Πl→h

2

In summary, neither high nor low price strategy is equilibria.

2.13 Supplementary Materials

2.13.1 Parallel Model

This is a comparison with the three agents model in Section 2.2. In this section,
we consider the case that the first signal s1 is unobservable.

P 2

e2

1

e1
s2

Working Sequence

Actually this case is equivalent to the following parallel model.
In the parallel model, two agents work simultaneously over the same take, again

their effort is unobservable, but there will be an unique task signal indicates the
result, i.e., task succeeds or fails. In summary, the given probability information is

p(e1, e2) = P (s = 1|e1, e2),where e1, e2 ∈ {0, 1},

or equivalently,

P (s = 1|e1, e2) = α1e1 + α2e2 + τe1e2 + γ.

and the working sequence,

P 1&2
s

Parallel Working Sequence

In direct control case, each of them assumes the other is making effort. Denote
the effort cost for agent 1, 2 as c1, c2. For agent 1, given contract payment M1, the
utilities with and without effort are

π1(e1 = 1, e2 = 1) = P (s = 1|e1 = 1, e2 = 1)M1 − c1,

π1(e1 = 0, e2 = 1) = P (s = 1|e1 = 0, e2 = 1)M1.

123

Therefore, the minimum effort payment for agent 1 is

M0
1 =

c1

P (s = 1|e1 = 1, e2 = 1)− P (s = 1|e1 = 0, e2 = 1)
. (2.61)

Similarly, the minimum effort payment for agent 2 is

M0
2 =

c2

P (s = 1|e1 = 1, e2 = 1)− P (s = 1|e1 = 1, e2 = 0)
. (2.62)

Cost of direct control

ccp = P (s = 1|e1 = 1, e2 = 1)(M0
1 +M0

2).

WLOG, only consider delegate agent 1 to agent 2, and the following are the utility
functions in different decisions

π2(e2,M1) = p(e2, I(M1 ≥M0
1))(M2 −M1)− c2e2.

Specifically,

π2(e2 = 0,M1 = 0) = P (s = 1|e1 = 0, e2 = 0)M2,

π2(e2 = 0,M1 = M0
1) = P (s = 1|e1 = 1, e2 = 0)(M2 −M1),

π2(e2 = 1,M1 = 0) = P (s = 1|e1 = 0, e2 = 1)M2 − c2,

π2(e2 = 1,M1 = M0
1) = P (s = 1|e1 = 1, e2 = 1)(M2 −M1)− c2.

Suppose agent 2 decided signing subcontract with 1, the additional benefit from
personal effort is

π2(e2 = 1,M1 = M0
1)− π2(e2 = 0,M2 = M0

1) = P (s = 1|e1 = 1, e2 = 1)(M2 −M0
1)− c2 − P (s = 1|e1 = 1, e2 = 0)(M2 −M0

1),

and the low bound of M2 to make the additional benefit greater than 0 is

M2 ≥M0
1 +

c2

P (s = 1|e1 = 1, e2 = 1)− P (s = 1|e1 = 1, e2 = 0)

= M0
1 +M0

2 .

Therefore, the cost of delegation is always larger than the cost of direct control

cdp ≥ pM2 ≥ p(M0
1 +M0

2) = ccp.

This result can be generalized when there are n parallel agents,

Theorem 2.13.1 Direct control is always better than delegation in the parallel model.

Comparison between sequential model and parallel model

• Valuation of intermediate signal s1

124

• Sunk cost

• Valuation of middle man

Consider a sequential model without s1, basically a special case of the parallel
model. Same as the previous section, the lower bound of contract payment for agent
2 to make effort and sign contract is

M2 ≥M0
2 + M̃0

1 .

There are two disadvantage of missing s1. First, signal s2 is not a good way
to measure effort of agent 1, since the influence is α1β2. Therefore, the minimum
payment is M̃0

1 = c1
α1β2

. Instead of c1
α1

. Even though β2 = 1, observing signal s1 may
still help.

Specifically, in the delegation case, agent 2 not only needs to decide his personal
effort but also responsible for the subcontract with the downstream agent. Otherwise,
shirking may happen and eventually harms agent 2 task completeness. Therefore,
delegation gives a way to help the principal shift the cost of contract 1 to agent 2.

In contrast, if s1 is unobservable in the delegation case, it will be hard for 2 to
put effort, because higher success probability means a higher expected payment to 1.

While in the original model, note that agent 2’s effort decision is made after
observing s1 as in Figure 2.4. Therefore, at that time, the subcontract cost M1 is a
sink cost,

• No effort: π2(e2 = 0, s1) = P (s2 = 1|s1, e2 = 0)M2 − cost(M1).

• Effort: π2(e2 = 1, s1) = P (s2 = 1|s1, e2 = 1)M2 − cost(M1)− c2.

and the benefit of putting effort is

π2(e2 = 1, s1)− π2(e2 = 0, s1) = (P (s2 = 1|s1, e2 = 1)− P (s2 = 1|s1, e2 = 1))M2 − c2 ≥ 0,

which is not related with the subcontract. Hence, minimum effort payment to agent
2 is

M2 ≥
c2

P (s2 = 1|s1, e2 = 1)− P (s2 = 1|s1, e2 = 1)
.

2.13.2 Full Information

This is a supplementary material for Section 2.2 In this section, we consider the
principal can observe s1 even in the delegation case. The contract to agent 1 will be

125

the same, but the principal can use signal s1 to design a more flexible contract with
agent 2,

r2 =


M−

2 , if s1 = 1, s2 = 1;

M+
2 , if s1 = 0, s2 = 1;

0, if s2 = 0.

Note that s2 is useless to the contract with agent 1.
The main question will be

• How does the full information influence the principal’s decision over direct con-
trol or delegation?

• How does it influence the principal and the agents’ payoff?

Denote the minimum payment for agent 1 in direct control case is

M0
1 =

c1

α1

.

Denote agent 2’s contract payment as,

r2 =


M̂−

2 , if s1 = 1, s2 = 1;

M̂+
2 , if s1 = 0, s2 = 1;

0, if s2 = 0.

and this is the decision graph of the delegation case

P 2

1

1

2

2

2

2

P

P

P

P

e2

e1

M−
2 &M+

2
M1

= M
0
1

M
1 = 0

s1 = 1

s1 = 0

s1 = 1

s1 = 0

s2

s2

s2

s2

Fig. 2.28.: Decision Tree In Delegation with Flexible Contract

The cost of principal in the delegation case is

ˆcost3 = (1− P (1))P (s2 = 1|s1 = 0, e2 = 1)M̂+
2 + P (1)P (s2 = 1|s1 = 1, e2 = 1)M̂−

2 .
(2.63)

126

Following is the two potential decisions of agent 2:

• Effort, no subcontract

πs2 = P (s1 = 1|e1 = 0)P (s2 = 1|s1 = 1, e2 = 1)M̂−
2 (2.64)

+ (1− P (s1 = 1|e1 = 0))P (s2 = 1|s1 = 0, e2 = 1)M̂+
2 − c2. (2.65)

• Effort and subcontract

π∗2 = P (1)
(
P (s2 = 1|s1 = 1, e2 = 1)M̂−

2 − M̂1

)
(2.66)

+ (1− P (1))P (s2 = 1|s1 = 0, e2 = 1)M̂+
2 − c2. (2.67)

Lemma 2.13.1 In the delegation case, the minimum payment to agent 2 is

M̂+
2 = M+

2 ,

M̂−
2 ≥ max{M−

2 ,
P (1)

α1P (s2 = 1|s1 = 1, e2 = 1)
M1 +

P (s2 = 1|s1 = 0, e2 = 1)

P (s2 = 1|s1 = 1, e2 = 1)
M+

2 }.

and the bound is tight.

Proof 1. For the incentive of agent 2 to put personal effort. Note that whether
signed the subcontract or not, when s1 is observed, the subcontract cost is a sunk
cost, and will not influence agent 2’s decision on personal effort.

Hence, the minimum payment for agent 2 to make effort in any condition is

M̂+
2 ≥M+

2 ,

M̂−
2 ≥M−

2 ,

2. For the incentive to sign subcontract with agent 1 (only consider agent 2 always
puts effort). Compare 2.66 with 2.64,

π∗2 − πs2 = α1(P (s2 = 1|s1 = 1, e2 = 1)M̂−
2 − P (s2 = 1|s1 = 0, e2 = 1)M̂+

2)− P (1)M1.

In summary the optimization for the principal to solve under the delegation case
is,

min
M̂+

2 ,M̂
−
2

cp

subject to π∗2 − πs2 ≥ 0,

M̂+
2 ≥M+

2 ,

M̂−
2 ≥M−

2 .

(2.68)

127

It’s easy to see that M̂+
2 = M+

2 at the optimal. By solving π∗2 − πs2 ≥ 0, we have
another lower bound of M̂−

2 ,

M̂−
2 ≥

P (1)

α1P (s2 = 1|s1 = 1, e2 = 1)
M1 +

P (s2 = 1|s1 = 0, e2 = 1)

P (s2 = 1|s1 = 1, e2 = 1)
M+

2 .

Theorem 2.13.2 When the contract is conditional on both signals, the principal
prefers delegation if and only if,

γ1c1

α2
1

≤ β2 + γ2

α2 + τ2

c2 −
γ2

α2

c2. (2.69)

Proof Recall the cost of direct control 2.12 is,

cost2 = (1− P (1))P (s2 = 1|s1 = 0, e2 = 1)M+
2

+ P (1)P (s2 = 1|s1 = 1, e2 = 1)M−
2 + P (1)M1.

Cost of delegation is

ˆcost3 = (1− P (1))P (s2 = 1|s1 = 0, e2 = 1)M̂+
2 + P (1)P (s2 = 1|s1 = 1, e2 = 1)M̂−

2

= (1− P (1))P (s2 = 1|s1 = 0, e2 = 1)M+
2 + P (1)P (s2 = 1|s1 = 1, e2 = 1)M̂−

2 .

If M̂−
2 = M−

2 is the tight bound, it’s easy too see delegation is better. Now only
consider the case that

M̂−
2 =

P (1)

α1P (s2 = 1|s1 = 1, e2 = 1)
M1 +

P (s2 = 1|s1 = 0, e2 = 1)

P (s2 = 1|s1 = 1, e2 = 1)
M+

2 .

Delegation is better if ˆcost3 ≤ cost2,

P (1)P (s2 = 1|s1 = 1, e2 = 1)M̂2(s1 = 1) ≤ P (1)P (s2 = 1|s1 = 1, e2 = 1)M−
2 + P (1)M1,

which is equivalent to

P (s2 = 1|s1 = 0, e2 = 1)M+
2 +

P (1)

α1

M1 ≤M1 + P (s2 = 1|s1 = 1, e2 = 1)M−
2 ,

which is equivalent to (P (1)− α1 = P (s1 = 1|e1 = 0))

P (s1 = 1|e1 = 0)

α1

M0
1 ≤ P (s2 = 1|s1 = 1, e2 = 1)M−

2 − P (s2 = 1|s1 = 0, e2 = 1)M+
2 .

128

Equivalently,

γ1c1

α2
1

≤ (α2 + β2 + τ2 + γ2)
c2

α2 + τ2

− (α2 + γ2)
c2

α2

=
β2 + γ2

α2 + τ2

c2 −
γ2

α2

c2.

Otherwise, direct control is better.

When the environmental impact γ1 = γ2 = 0, threshold 2.69 becomes,

0 ≤ β2

α2 + τ2

c2,

which always holds. Therefore, we have the following result.

Corollary 2.13.1 When the environmental impact is zero, delegation always has
an expected contract cost than direct control.

Example 22 (Benefit of Delegation Under Full Information)
Setup: For agent 1, the effort cost is c1 = 1, and successful probabilities are,

P (s1 = 1|e1 = 0) = 0,

P (s1 = 1|e1 = 1) = 0.4.

where α1 = 0.4, γ1 = 0.
For agent 2, the effort cost is c2 = 2, and successful probabilities are,

P (s2 = 1|s1 = 0, e2 = 0) = 0,

P (s2 = 1|s1 = 1, e2 = 0) = 0.5,

P (s2 = 1|s1 = 0, e2 = 1) = 0.2,

P (s2 = 1|s1 = 1, e2 = 1) = 0.7.

where α2 = 0.2, β2 = 0.5, τ2 = 0, γ2 = 0.
Computation:
By Equation 2.7, 2.8, the minimum effort payment for agent 1 and agent 2 is

M1 = 2.5,

M+
2 = M−

2 = 10,

and the successful probability when all the previous agents have make effort by equa-
tion 2.9,

129

P (1) = P (s1 = 1|e1 = 1) = 0.4,

P (2) = P (s2 = 1|e1 = 1, e2 = 1) = 0.4.

In the direct control case,

P

2

1

e2

e1

M2

M1

Direct Control

the expected cost of direct control is,

ˆcost3 = P (1)M1 + (1− P (1))P (s2 = 1|s1 = 0, e2 = 1)M+
2 + P (1)P (s2 = 1|s1 = 1, e2 = 1)M−

2

= P (1)M1 + P (2)M2 = 5

In the delegation case,

P 2 1

e2 e1
M2 M1

Delegation

By Lemma 2.13.1,

M̂+
2 = M+

2 = 10,

M̂−
2 ≥ max{M−

2 ,
P (1)

α1P (s2 = 1|s1 = 1, e2 = 1)
M1 +

P (s2 = 1|s1 = 0, e2 = 1)

P (s2 = 1|s1 = 1, e2 = 1)
M+

2 }

= max{10,
0.4

0.4× 0.7
2.5 +

0.2

0.7
10}

= 10.

and the expected cost for delegation is,

cdcp = (1− P (1))P (s2 = 1|s1 = 0, e2 = 1)M̂+
2 + P (1)P (s2 = 1|s1 = 1, e2 = 1)M̂−

2

= P (2)× M̂2

= 4.

Thus, delegation is better than direct control with a lower expected cost for the prin-
cipal.

130

2.13.3 Continuous Model

This is a supplementary material for the three agents model in Section 2.2
Question:

• What’s the opt utility of direct control when it’s not concave, β2ξ ≤ 4 (condi-
tion 2.70).

• Careful about the boundary of e, by the condition that 0 ≤ pi ≤ 1.

In this section, we extend the binary effort level e to a continuous variable, while
the task signal is still binary7.

The main question is how does the principal make the delegation decision in this
situation?

For simplicity, we assume γ1, γ2 = 0, and

p1 = α1e1,

p2 = α1e1 + β2s2.

Different than the previous question, in order to have a non-trivial result, we use
a quadratic effort cost function,

cost1 =
c1

2
e2

1, cost2 =
c2

2
e2

2.

For agent 1, given M1,

π1(e1) = α1e1M1 −
c1

2
e2

1.

The optimal decision at π′1(e1) = 0 gives

e∗1 =
α1

c1

M1,

p∗1 =
α2

1

c1

M1,

p∗1M1 =
α2

1

c1

M2
1 .

Boundary condition,

(α1M1 − c1e1)(
1

α1

− e1) = 0

7If the transform function is linear, continuous task signal may work too.

131

Given M2, decision on personal effort is independent to contract to agent 1, simi-
larly

e∗2 =
α2

c2

M2,

p∗2 =
α2

2

c2

M2 + β2p1.

If the principal decides direct control,

πp(M1,M2) = p∗2(Mp −M2)− p∗1M1

= (
α2

2

c2

M2 + β2p
∗
1)(Mp −M2)− p∗1M1

= (
α2

2

c2

M2 + β2
α2

1

c1

M1)(Mp −M2)− α2
1

c1

M2
1

=
α2

2

c2

MpM2 + β2
α2

1

c1

MpM1

− α2
1

c1

M2
1 −

α2
2

c2

M2
2 − β2

α2
1

c1

M1M2.

Hessian matrix and condition for it to be concave!

4
α2

2

c2

≥ β2
2

α2
1

c1

. (2.70)

Denote

ξ =
α2

1

c1

/
α2

2

c2

.

and the above condition can be rewrite as

β2ξ ≤ 4.

Derivative over M1 and M2,

∂πp(M1,M2)

∂M1

= β2Mp − 2M1 − β2M2 = 0, (2.71)

∂πp(M1,M2)

∂M2

=
α2

2

c2

Mp − 2
α2

2

c2

M2 − β2
α2

1

c1

M1 = 0. (2.72)

and we can solve the optimal solution

M∗
1 (Mp) =

β2

4− ξβ2
2

Mp. (2.73)

132

And the optimal utility of the principal can be simplified by Equation 2.71,

π∗p = (
α2

2

c2

M2 + β2
α2

1

c1

M1)(Mp −M2)− α2
1

c1

M2
1

= (
α2

2

c2

M2 + β2
α2

1

c1

M1)
2

β2

M1 −
α2

1

c1

M2
1

=
2

β2

α2
2

c2

M2M1 +
α2

1

c1

M2
1

=
1

β2

M1(2
α2

2

c2

M2 + β2
α2

1

c1

M1)

=
1

β2

α2
2

c2

MpM
∗
1 .

By plug in Equation 2.73, we have the optimal utility in direct control case,

π∗p =
α2

2

c2

1

4− ξβ2
2

M2
p . (2.74)

Now consider the delegation, optimal effort is still the same,

π2(e2,M1) = p2M2 − p1M1

= (
α2

2

c2

M2 + β2p1)M2 −
α2

1

c1

M2
1

= (
α2

2

c2

M2 + β2
α2

1

c1

M1)M2 −
α2

1

c1

M2
1

= β2
α2

1

c1

M2M1 −
α2

1

c1

M2
1 +

α2
2

c2

M2
2 .

we can have the optimal delegation M1 given M2

M̃1(M2) =
β2

2
M2.

133

Utility of the principal is

πp(M2) = p2(Mp −M2)

= (
α2

2

c2

M2 + β2p̃1)(Mp −M2)

= (
α2

2

c2

M2 + β2
α2

1

c1

M̃1)(Mp −M2)

= (
α2

2

c2

M2 +
β2

2

2

α2
1

c1

M2)(Mp −M2)

= (
α2

2

c2

+
β2

2

2

α2
1

c1

)(Mp −M2)M2.

The optimal utility is

π̃p = (
α2

2

c2

+
β2

2

2

α2
1

c1

)
M2

p

4
, (2.75)

with M̃2(Mp) = Mp

2

Theorem 2.13.3 In the continuous effort case, the principal prefer delegation con-
dition, if β2ξ ≥ 2.

Proof Recall the utility function in direct control 2.74 and delegation 2.75. The
principal prefer delegation condition if π∗p ≥ π̃p. By comparing them, we have

β2ξ ≥ 2,

which is equivalent to

β2

2

α2
1

c1

≥ α2
2

c2

.

Note that the concave condition is β2ξ ≤ 4.

2.13.4 Unbounded Depth

This is a supplementary material for Section 2.3, when the delegation depth is not
bounded. First we know the size of control set is not d anymore, but still linear to
the number of agents.

Proposition 2.13.1 There are k possible control sets for agent k, i.e., |Θ(k)| = k.

To bound the number of possible delegation structure in each control set, we use
an additional assumption as follows.

134

Assumption 2.13.1 Agents can only sign contracts with their children in the pro-
cess tree.

With the above assumption, we know the delegation structure is fixed and unique
once given the control set, because the sub-structure in the delegation tree has to be
the same as the sub-structure in the process path.

Similar to the proof of Lemma 2.3.2, we show the one-to-one mapping still exists
by induction,

Lemma 2.13.2 In the linear probability model, for any agent k, given θik, 1 ≤ i ≤ k,
there is an one-to-one mapping between minimum contract payments and effort status.
And the choice of effort status is bounded by k − i+ 2, i.e.,

|Ψk(θ
i
k)| ≤ k − i+ 2.

Similar to the Theorem 2.3.3 in the more flexible delegation structure case, we
have the same monotone inclusion property for the effort status here.

Theorem 2.13.4 The effort status satisfies monotone inclusion with the increasing
of the contract payment.

Since this case fixes the delegation structure, we introduce a new and simplified
dynamic programming algorithm along the working process path, and DP stores

• Control set of k, Θ(k).

• For each control set θik ∈ Θ(k), set of all possible effort status Ψk(θ
i
k).

• For each effort status ψk ∈ Ψk(θ
i
k), the corresponding minimum contract pay-

ment Mk(ψk).

• Minimum expected cost till k, costk, and the corresponding optimal structure
ηk.

where the minimum expected cost till k is the minimum expect cost for the
principal to motivate agents from 1 to k, denoted as costk.

While the first three parts are computed in the previous section, now provide the
algorithm to update the minimum cost at each stage.

Set cost0 = 0. For the first agent, cost till 1 is simply

cost1 = P (1)M1(1) = (α1 + γ1)
c1

α1

.

Suppose costi, 1 ≤ i ≤ k−1 at previous stages are all know, and Mk(θ
i
k, 1 ≤ i ≤ k)

at current stage are all computed,
As showed in Fig. 2.29, the cost till k with control set θik can be updated by

costk(θ
i
k) = P (k)Mk(θ

i
k) + costi−1.

135

P

k k − 1 i

ηi−1

Fig. 2.29.: Control set

And the minimum expected cost till k is

costk = max
1≤i≤k

costk(θ
i
k)

= max
1≤i≤k

P (k)Mk(θ
i
k) + costi−1.

After find the optimal θi
∗

k . The optimal structure till k (recording the set of agents
directed controlled by the principal) is

ηk = ηi∗ ∪ {k}.

Therefore, we have the following algorithm to find the optimal delegation structure
and the corresponding minimum expected cost,

Algorithm 5 : Optimal Delegation Structure

1: for k = 1 to n do . agent k
2: costk ← 0.
3: for i = 1 to k do . control set θik
4: Given Ψk−1(θik−1), and Mk−1(ψk−1|θik−1).
5: Plot πk(Mk|θik) by 2.58.
6: Intersection points gives Ψk(θ

i
k) and Mk(ψk|θik).

7: costk(θ
i
k) = P (k)Mk(θ

i
k) + costi−1

8: if i = 1 or costk > costk(θ
i
k) then

9: costk ← costk(θ
i
k).

10: i∗ ← i
11: ηk = ηi∗ ∪ {k}

return Optimal Structure ηn and minimum expected cost costn

Theorem 2.13.5 Time complexity is O(n3).

Proof As in Algorithm 5. There are n stages (n agents), and at stage k, there are
k control sets.

136

For each control set θik, we use the status of θik−1 from previous DP to plot the
new piecewise linear function, with pieces bounded by O(k).

Overall, the time complexity is O(n3).

2.13.5 Counter Examples

These examples are supplementary materials for Section 2.4. The following one
shows smaller control set may have a larger expected cost

Example 23

P

5

4

1 2

Process tree

P

5

4

1 2

Delegation 1

P

5

4

1

2

Delegation 2

Fig. 2.30.: Example 1

Assume γi = 0 and αi = βi = 1/2 for every agent.

M0
i =

ci
α
.

At agent 4’s level,

M4(1) =
αM1

βα
=
M1

β
,

M4(12) =
M2

β
≥M4(1) ≥M4(4).

137

In the delegation 1, at agent 5’s level,

π1
5(5412) = p5M

1
5 − p4M4(412),

π1
5(541) = (p5 − δ5

2)M1
5 − (p4 − δ4

2)M4(41),

π1
5(54) = (p5 − δ5

1 − δ5
2)M1

5 − (p4 − δ4
1 − δ4

2)M4(4).

we have the payment lower bound for 5, from π1
5(5412) ≥ π1

5(541),

M1
5 (5412) ≥ p4M4(412)− (p4 − δ4

2)M4(41)

δ5
2

=
p42M2 − (p4 − δ4

2)2M1

δ5
2

.

and from π1
5(5412) ≥ π1

5(54),

M1
5 (5412) ≥ p4M4(412)− (p4 − δ4

1 − δ4)M4(4)

2δ5

=
p42M2 − (p4 − 2δ4)M4

2δ5
.

In the delegation 2, at agent 5’s level,

π2
5(541) = p5M

2
5 − p4M4(41),

π2
5(54) = (p5 − δ5

1)M2
5 − (p4 − δ4

1)M4(4).

we have the minimum payment for 5

M2
5 (541) =

p4M4(41)− (p4 − δ4
1)M4(4)

δ5
1

=
p42M1 − (p4 − δ4

2)M4(4)

δ5
1

.

By setting M2 close to M1 but larger than M4, we may have M2
5 (541) ≥M1

5 (5412).

The following example shows, control set update step is not enough and may not
be linear

Example 24

138

P

6

5

4

1 2 3

Process tree

P

6

5

4

1 2 3

Delegation 1

P

6

5

4

1

2

3

Delegation 2

Fig. 2.31.: Example 2

In the delegation 1, at agent 6’s level,

π1
6(654123) = p6M

1
6 − p5M

1
5 (54123),

π1
6(65412) = (p6 − δ6

3)M1
6 − (p5 − δ5

3)M1
5 (5412).

we have the minimum payment for 5

M1
6 (654123) =

p5M
1
5 (54123)− (p5 − δ5

3)M1
5 (5412)

δ6
3

.

In the delegation 2, at agent 6’s level,

π2
6(65413) = p6M

2
6 − p5M

2
5 (5413),

π2
6(6541) = (p6 − δ6

3)M2
6 − (p5 − δ5

3)M2
5 (541).

We have the minimum payment for 5

M2
6 (65413) =

p5M
2
5 (5413)− (p5 − δ5

3)M2
5 (541)

δ6
3

.

We know M2
5 (5413) = M1

5 (54123)+
(p4−δ43)(M4(12)−M4(1))

δ53
, but it’s possible that M2

5 (541) ≥
M1

5 (5412).

139

VITA

TAO JIANG

PERSONAL INFORMATION

DoB: September, 1993
Place: Fenyi, Jiangxi, China

EDUCATION

Ph.D. in Quantitative Methods, 2018
Krannert School of Management, Purdue University

M.S. in Computer Science, 2018
Department of Computer Science, Purdue University

B.S. in Statistics, 2013
School for Gifted Young, University of Science and Technology of China

OUTDOOR ASCENTS (SELECTED)

Super Mario Extension (V6), Stone Fort, TN
Smooth Shrimp (V6), Bishop, CA
Perfectly Chicken (V5), Bishop, CA
Turtle Rock (V5), Boulder, CO
Ketron Classic (V4), Bishop, CA
Super Mario (V4), Stone Fort, TN
Dragon Lady (V4), Stone Fort, TN

PROJECTS

Optimal Delegation Hierarchy in Project Management
with Thành Nguyen (In Preparation)

Quantity Competition in Multi-tier Supply Chain Networks
with Young-San Lin and Thành Nguyen (In Preparation)

Cocktail Sauce (V8), Bishop, CA
Every Color You Are (V6), Bishop, CA
The Hulk (V6), Bishop, CA

	LIST OF FIGURES
	ABSTRACT
	SUPPY CHAIN
	Introduction
	Model
	Sequential Decisional Game
	Series Parallel Graph

	Equilibrium Characteristics and Computation
	Properties of Equilibrium
	Properties of Series Parallel Graphs
	Equilibrium Computation

	Structural Analysis of Network Pricing Equilibria
	Components' Series Order
	Series Insertion, Parallel Insertion
	Firm Location and Individual Utility

	Equilibrium in Generalized Series Parallel Graph
	Multiple Sources and Single Sink
	Single Source and Multiple Sinks
	Multiple Sources and Multiple Sinks

	Conclusion

	DELEGATION STRUCTURE
	Introduction
	General Three Agents
	Model Description
	Preliminary
	Delegation Threshold
	Comparative Statistics

	Path
	Path Model
	Preliminary
	Dynamic Programming Algorithm
	Properties
	Example

	Tree
	Tree Model Description
	Preliminary
	Two Layers
	Three Layers

	Conclusion

	REFERENCES
	APPENDIX
	Proofs in Section 1.3
	Proof of Proposition 1.3.3
	Proof of Lemma 1.3.1
	Proof of proposition 1.3.5
	Proof of Lemma 1.3.2
	Proof of Lemma 1.3.3

	Proofs in Section 1.4
	Proof of Proposition 1.4.1
	Proof of Proposition 1.4.2
	Proof of Lemma 1.4.1
	Proof of Theorem 1.4.1
	Proof of Proposition 1.4.3
	Proof of Proposition 1.4.4
	Proof of Theorem 1.4.2
	Proof of Lemma 1.4.2
	Proof of Lemma 1.4.3
	Proof of Theorem 1.4.4
	Proof of Corollary 1.4.1

	Proofs in Section 1.5
	Proof of Theorem 1.5.2
	Proof of Remark 1.5.2

	Proofs in Section 2.2
	Proof of Lemma 2.2.1
	Proof of Theorem 2.2.1
	Proof of Theorem 2.2.2
	Proof of Proposition 2.2.3

	Proofs in Section 2.3
	Proof of Theorem 2.3.2
	Proof of Lemma 2.3.1
	Proof of Lemma 2.3.2
	Proof of Lemma 2.3.3
	Proof of Lemma 2.13.2
	Proof of Proposition 2.3.3
	Proof of Proposition 2.3.4

	Proofs in Section 2.4
	Proof of Lemma 2.4.1

	Examples
	Convex combination
	Price Function Computation
	Non-SPG SM
	Non-SPG MM
	Decision Sequence
	Inactive Edges
	Multiple Equilibria
	Non-Equilibrium (Computation of Example 11)

	Supplementary Materials
	Parallel Model
	Full Information
	Continuous Model
	Unbounded Depth
	Counter Examples

	VITA

