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ABSTRACT

Qinghua Li Ph.D., Purdue University, December 2018.
GEOSPATIAL PROCESSING OF AIRBORNE FULL WAVEFORM LIDAR DATA.
Major Professor: Jie Shan.

This thesis focuses on the comprehensive and thorough studies on the geospatial

processing of airborne (full) waveform lidar data, including waveform modeling, direct

georeferencing, and precise georeferencing with self-calibration.

Both parametric and nonparametric approaches of waveform decomposition are

studied. The traditional parametric approach assumes that the returned waveforms

follow a Gaussian mixture model where each component is a Gaussian. However,

many real examples show that the waveform components can be neither Gaussian

nor symmetric. To address the problem, this thesis proposes a nonparametric mix-

ture model to represent lidar waveforms without any constraints on the shape of the

waveform components. To decompose the waveforms, a fuzzy mean-shift algorithm

is then developed. This approach has the following properties: 1) it does not assume

that the waveforms follow any parametric or functional distributions; 2) the wave-

form decomposition is treated as a fuzzy data clustering problem and the number of

components is determined during the process of decomposition; 3) neither peak se-

lection nor noise floor filtering prior to the decomposition is needed; and 4) the range

measurement is not affected by the process of noise filtering. In addition, the fuzzy

mean-shift approach is about three times faster than the conventional expectation-

maximization algorithm and tends to lead to fewer artifacts in the resultant digital

elevation model.

This thesis also develops a framework and methodology of self-calibration that

simultaneously determines the waveform geospatial position and boresight angles.
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Besides using the flight trajectory and plane attitude recorded by the onboard GPS

receiver and inertial measurement unit, the framework makes use of the publically

accessible digital elevation models as control over the study area. Compared to the

conventional calibration and georeferencing method, the new development has min-

imum requirements on ground truth: no extra ground control, no planar objects,

and no overlap flight strips are needed. Furthermore, it can also solve the problem

of clock synchronization and boresight calibration simultaneously. Through a devel-

oped two-stage optimization strategy, the self-calibration approach can resolve both

the time synchronization bias and boresight misalignment angles to achieve a stable

and correct solution. As a result, a consistency of 0.8662 meter is achieved between

the waveform derived digital elevation model and the reference one without system-

atic trend. Such experiments demonstrate the developed method is a necessary and

more economic alternative to the conventional, high demanding georeferencing and

calibration approach, especially when no or limited ground control is available.
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1. INTRODUCTION

Lidar (Light Detection and Ranging) is a direct 3-D geospatial data collection tech-

nique and is extensively used in routine topographic mapping (Shan and Toth, 2018).

Lidar systems can be classified into four categories according to the carrying plat-

forms. They are static terrestrial laser scanning (TLS), mobile laser scanning (MLS),

airborne laser scanning (ALS), and spaceborne laser scanning (SLS) (Popescu et al.,

2011; Bye et al., 2017). Lidar systems can also be classified in other ways: from the

temporal behavior of the laser signal, it can be classified as pulse lidar and continuous

lidar; from the aspect of operation mode, it can be classified as Geiger mode, single-

photon lidar, or linear lidar; from the aspect of the laser beam divergence, it can

be classified as small-footprint and large-footprint lidar; from the aspect of digitizer

format, it can be classified as discrete and full waveform lidar, etc.

Exploring information with higher accuracy and higher resolution has been the

main effort of lidar industries and academic societies. On one hand, software engineers

and academic researchers have been working on the algorithms for lidar data process-

ing: lidar waveform decomposition (Hofton et al., 2000; Mallet et al., 2010), filtering

and classification (Reitberger et al., 2009; Meng, et al., 2010; Hovi et al., 2016), DEM

generation (Liu, 2008), etc. On the other hand, recent advanced development on the

hardware leads to new lidar systems: full waveform lidar, Geiger-mode lidar (Stoker,

2016), single-photon lidar (Li et al., 2016), adaptive lidar, etc. The focus of this thesis

is to develop geoprocessing algorithms and methodology that can take advantage of

the new features of modern lidar systems for scientific and engineering applications.
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1.1 Research Context

1.1.1 Full Waveform Lidar

Among the advanced lidar systems, the most noticeable common technique is the

full waveform lidar (Mallet and Bretar, 2009; Pirotti, 2011). The system is named

full waveform lidar as contrary to the discrete lidar system (Sumnall, et al., 2016).

The difference between the discrete lidar and the waveform lidar can be seen in Fig.

1.1. In Fig. 1.1(a), the time that the laser light is emitted is recorded by a discrete

time tin; similarly, the time that the laser light is returned will be recorded by a

discrete time tout. The difference between the two times will be utilized to calcu-

late the range between the lidar platform and the target. In practice, however, the

emitted signal is realized by a continuous wave with duration from a few picoseconds

to several nanoseconds. Instead of recording the discrete emitted/returned time, a

full waveform lidar system samples and records the entire backscattered signal at a

temporal resolution of nanoseconds or sub-nanoseconds. The recorded signal, referred

to as a (returned) waveform, consists of a series of temporal waves, with or without

overlap, where each corresponds to an individual reflection from an object (Wang, et

al., 2015). Some system even provides the whole emitted signal at the same temporal

resolution. Example of an emitted signal from a full waveform recorder is shown in

Fig. 1.1(b).

Besides the sampled waveforms, the full waveform lidar data also provides a series

of systematic parameters. In the airborne full waveform lidar system, such informa-

tion includes: (1) the start time of each waveform; (2) the temporal trajectory and

orientation of the airplane; (3) the temporal position and orientation of the sensors.

They are collected by the laser scanner and GPS/INS system aboard. A lidar point

cloud or other relative lidar product can be obtained by integrating and processing

all these measured data. In most cases, working with the full waveform lidar data

needs more effort than directly working on the lidar point cloud.
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(a) The emitted time recorded by dis-

crete lidar.

(b) The emitted signal recorded by full

waveform lidar.

Fig. 1.1. The emitted lidar signals.

The existence and extent of the advantages of the full waveform lidar is a frequently

discussed topic (Anderson et al., 2016; Sumnall, et al., 2016). Such discussion exists

because the prototype of waveform processing is not standardized. It is also because

that most existing methods may not take full advantages of the full waveform data.

To date, the full waveform lidar is mainly applied in forestry and natural resources

related fields (Bretar et al., 2008; Mücke et al., 2013; Hancock et al., 2015). For

example, the features of waveforms have the potential to estimate ecological and

environmental parameters. The usefulness of full waveform in general scenarios is

rarely mentioned (Tran et al., 2015). At the same time, the cost of the full waveform

lidar system is higher than the traditional discrete lidar. Taking these factors into

consideration, it may be intuitive to choose a discrete lidar system if the study area

is free of canopy coverage or the ecological parameters are of no interest. As a result,

the potentials of the full waveform lidar are far from being exploited.

Can we use the full waveform data to improve the quality of a general lidar prod-

uct? Will the waveform data output a point cloud that matches the ground truth

better? Can we use the waveform data to improve the efficiency of topographic in-

vestigation? These are the questions we would like to discuss in this dissertation.

Specifically, this thesis focuses on the comprehensive and thorough study of the air-

borne full waveform lidar data. We intend to answer these questions by exploring the
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main steps of the airborne full waveform data processing, namely, waveform decom-

position, georeferencing and calibration.

1.1.2 Waveform Decomposition

The range between the sensor and the target is derived from a procedure called

waveform decomposition. As the name suggests, it decomposes the original waveform

to one or a few waveform components. Each of the significant components corresponds

to a point in the point clouds.

Waveform decomposition plays a very important role in generating high quality

lidar products (Parrish et al., 2011). Researchers proposed many different approaches

to deal with the problem. Most of them assume the waveform is generated from a

parametric function and design algorithms to solve the parameters of the function.

A Gaussian mixture model (GMM) is used in this part of the work, and a minimum

description constrained EM (Expectation-Maximization) algorithm is proposed to

decompose the waveforms. We will study this topic in Chapter 4.

We also propose a nonparametric approach to model and decompose the wave-

forms. One of the main features of this approach is that the limitation of parametric

functions is removed. We will introduce a nonparametric mixture model (NMM)

and a fuzzy mean-shift (FMS) algorithm. The results and the performance of both

approaches will be compared in Chapter 5.

1.1.3 Georeferencing and Calibration

People can calibrate the lidar system before or after the data is collected. Conven-

tionally, the manufacturer or data provider will pre-calibrate the systematic parame-

ters prior to data collection. The pre-calibration needs hardware, on-site measurement

and ground truth (Skaloud and Lichti, 2006). The cost of such calibration is usually

very high, so it is difficult to routinely re-conduct after the first calibration. Fur-
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thermore, results from lab calibration may considerably vary during flight. As such

in-flight or post-calibration is necessary.

On the other hand, researchers developed algorithms to calibrate the system after

the point cloud data is delivered (Pfeifer et al., 2005). Post-calibration is desired

because the quality of the data may be significantly improved through this process.

However, the conventional calibration has a few limitations. For example, multiple

strips of lidar points acquired from the same platform are needed to conduct the

point cloud-based calibration. It becomes challenging when no exact correspondence

for ground control points exists.

This thesis discusses the possibility of calibrating systematic parameters with full

waveform lidar data. It models the calibration as an optimization problem that

minimizes the difference between the lidar-generated DEM and a reference DEM.

Working with DEM relieves the need of ground control points and multiple strips.

Plus, it can be routinely re-conducted. In the experiments, both particle swarm

optimization and convex optimization are used in solving the problem.

1.2 Related Works

Many algorithms are proposed to decompose full waveform lidar data. They can

be classified into three categories: peak/edge detection (Bretar et al., 2008; Wagner

et al., 2007), deconvolution (Wu et al., 2011; Azadbakht et al., 2016; Shen et al.,

2017; Zhou et al., 2017), least-square optimization (Hofton et al., 2011; Xu et al.,

2016; Wang et al., 2017; Zhao et al., 2018) and statistical method (Hernandez-Marin

et al., 2007; Zhou and Popescu, 2017).

The peak/edge detection method is the simplest and fastest algorithm for wave-

form decomposition. It is attractive because the waveform components can simply

be detected by applying a threshold. However, peak/edge detection method does

not take mixture into consideration. As a result, it sacrifices the high accuracy and

fidelity which come with advanced lidar systems.
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Deconvolution methods improve the accuracy, but they are sensitive to the noise

level (Li et al., 2014). Some deconvolution methods require the system impulse re-

sponse to be known (Wu et al., 2011), which is often not provided by the data vendors.

Statistical method models lidar waveforms as the histogram of samples of a ran-

dom variable (Parrish et al., 2014) so that many clustering algorithms can be applied

to classify those samples. In the statistical approaches, a Gaussian mixture model

(GMM) and corresponding algorithms are among the most popular waveform decom-

position methods (Parrish and Nowak, 2009; Wagner et al., 2006; Jung and Crawford,

2008; Wang, 2012; Wang et al., 2013; Qin et al., 2015). They are supposed to be

more accurate since they consider the mixture of waveform components. However,

the Gaussian mixture model is unable to precisely model non-Gaussian waveform

components, especially asymmetric waveform components that have been frequently

reported by researchers.

GMM can also be solved by Levenberg-Marquardt algorithm (Hofton et al., 2000;

Xu et al., 2016; Zhao et al., 2018), a nonlinear least-square method. The main

challenge of such nonlinear optimization approach is its convergence being sensitive

to the initial values of the unknown parameters.

Some other works consider modeling the waveforms with more complex distribu-

tions (Hernandez-Marin, et al., 2007; Mallet et al., 2010). They build a library of

models and choose the most suitable ones with Bayesian analysis. However, their

effectiveness is constrained by the creation of a comprehensive model library and the

complexity in selecting one or more best models for a specific application. As a re-

sult, such methods are not practical to handle large volume of lidar data and meet

the need of diverse applications.

1.3 Structure of the Thesis

The rest of this thesis is organized in the following way. Chapter 2 introduces the

basic concepts of laser scanners and the data structure that is used in our research.
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Chapter 3 introduces the theoretical framework of processing full waveform data.

Chapter 4 discusses the parametric waveform decomposition algorithms. Chapter

5 proposes a nonparametric waveform decomposition approach. Chapter 6 studies

georeferencing and a self-calibration method. In the end, the work will be summarized

in Chapter 7.
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2. AIRBORNE LIDAR SYSTEMS

An isolated lidar cannot obtain valid surveying results. We use the phrase “lidar

system” to describe the set of functional units during lidar surveying. A typical

airborne lidar system includes:

• Lidar;

• Position and orientation system (POS) that usually contains an onboard INS

(Inertial Navigation System), an airborne GPS, and ground GPS reference sta-

tions;

• Airborne platform that carries the onboard instruments.

Correspondingly, the full waveform lidar data of the airborne lidar systems in-

cludes the following independently collected and sampled datasets: (1) the time-

tagged, digitized waveforms, (2) the coordinate and direction of the sensor in the

lidar coordinate system, and (3) the temporal trajectory and orientation of the air-

plane.

This chapter will briefly introduce each component of an airborne lidar system.

The system used in this thesis will be introduced at the end of the chapter.

2.1 Laser Scanner

The ranging unit of a lidar system is a laser scanner (LS), or a laser rangefinder

(LRF). It is a major component in the entire lidar system. It emits a light signal,

illuminates the target and measures the slant range between the target and the sensor.

As a matter of fact, this is where the name “lidar”, light detecting and ranging, comes

from.
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2.1.1 Laser in Lidar Systems

A laser is a device that emits light through a process of optical amplification

based on the stimulated emission of electromagnetic radiation. In general, the input

of a laser could be either electrical or optical. For lidar sensors, the power source is

electrical power. The output of the laser could be a continuous wave (CW) or a pulse

wave. The continuous-wave lasers produce a continuous, uninterrupted beam of light.

They can be utilized to determine the range with the phase shift of the signal. Higher

resolution can be obtained with continuous-wave lasers. However, such systems suffer

the limitation of high power consumption and phase ambiguity; thus, they are used

more in terrestrial lidar sensors. A pulsed laser sensor produces laser pulses with a

limited time duration. High energy can be realized in short intervals (Wehr and Lohl,

1999), which is desirable for far range surveying. Hence, most airborne lidar systems

fall in the category of pulse wave.

The pulsed lasers are mainly generated from two different optics cavities: a mode

locked cavity and a Q-switched cavity (Milonni and Eberly, 2010), where “Q” means

the Q factor, or quality factor, which is a dimensionless parameter that characterizes a

resonator’s bandwidth relative to its center frequency. The mode locked cavity has an

extremely high Q factor, and it can produce an ultrafast laser with the duration of 5fs

to 100ps. On the other hand, the Q-switched cavity can increase its Q factor rapidly

by actively or passively reducing the losses of the cavity. Its pulses bandwidth has a

range from 0.5 to 500 nanoseconds. Compared to mode-locked lasers, Q-switched laser

have lower pulse repetition rate, higher pulse energy, and longer pulse duration, so it is

widely utilized in the airborne lidar systems. (https://ocw.mit.edu/courses/electrical-

engineering-and-computer-science/6-977-ultrafast-optics-spring-2005/lecture-notes/)

From publically accessible sources, many airborne lidar systems applied the Q-

switched laser pulses. Examples are NASA’s research laser scanners in Laser Veg-

etation Imaging Sensor (LVIS), Geoscience Laser Altimeter System (GLAS), Shut-

tle Laser Altimeter (SLA), Scanning Lidar Imager of Canopies by Echo Recovery
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(SLICER), and Raster Scanning Airborne Laser (RASCAL). It also includes the ex-

perimental laser scanner developed by Bridger Photonics.

(https://sbir.nasa.gov/SBIR/abstracts/16/sbir/phase2/SBIR-16-2-S1.01-7662.html)

2.1.2 Emitted Signals

A typical pulse from actively and passively Q-switched laser is plotted in Fig.

2.1(a) and (b) (https://www.rp-photonics.com/q switching.html on 9/19/2018). The

left part of the peak value is proportional to the net gain after theQ factor of the cavity

is switched to a high value and the right part mostly depends on the cavity decay time.

Since the arising time and the decreasing time depend on different characteristics of

the cavity, the shape of the pulse may or may not be symmetric.

Although the main commercial lidar system manufacturers, such as Riegl, Optech,

and Leica, do not provide technical details about their products, the digitized emitted

signal and/or the returned waveform are available in the delivered raw data (Pirottia,

et al., 2012). Fig. 2.2. shows an emitted signal of Riegl Q680i. It shares the same

characteristics as the Q-switched laser signals: first, the duration time is around 10-20

nanoseconds; second, the emitted signal is asymmetric. These features will be further

addressed in the chapters of waveform decomposition.

2.2 Positioning and Orientation Systems (POS)

The positioning and orientation systems (POS) use positioning technology (GPS,

GNSS) and INS to determine the position and orientation of the aircraft that carries

the laser scanner. The ground reference GPS, onboard GPS/GNSS and INS are the

main components of POS.

The ground GPS stations provide references to the GPS measurement of the

airborne platform. They are usually required to be located within 25km of the flight

line (Shan and Toth, 2018). During flight mission, the ground stations collect GPS

carrier phases at known positions. At the same time, the onboard POS records the
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(a)

(b)

Fig. 2.1. The pulse shape of an (a) active (b) passive Q-switched laser.

GPS carrier phases and the INS orientation data on the airborne platform. With

differential GPS (DGPS), the trajectory of the airborne platform can be obtained

with centimeter to decimeter accuracy.

Each of the on-board instruments (GPS antenna, IMU box, and the lidar scan-

ner) has its own coordinate system and its own sampling rate. The measurements

are transformed to one common coordinate system and aligned with the same time

interval. Temporally, the data with low sampling rate is usually interpolated before

being aligned to the data with high sampling rate. Spatially, the relative distances

between the GPS, IMU, and laser scanner should be measured. These distances are

called lever arms and the user must input them into the POS processing software

(Shan and Toth, 2018).
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Fig. 2.2. An emitted signal of Riegl waveform lidar scanner.

After the POS data is interpolated, time-registered, and transformed, the coor-

dinates of the target can be determined by incorporating all the measurements from

the lidar system:

1. the sampled position and orientation of the platform, which is obtained by POS;

2. the sampled pointing direction of the sensor, which is directly measured by laser

scanner;

3. the range between the laser scanner and the target, which is measured by the

laser scanner and derived from waveform decomposition algorithms.

2.3 Airborne Platform

The flight platform of the airborne lidar system is the aircraft that carries all the

on-board components. Flight altitude and speed should be determined according to

the specification of the mission.
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2.3.1 Flight Height and Multiple-Time-Around (MTA)

The flight height is one of the important factors that control the acquisition range

and point density along the scan direction. Increasing the flight height will expand

the scan range but the accuracy will be degraded. More importantly, the multiple-

time-around (MTA) will appear when the slant range is higher than c/(2 ·prr), where

c is the speed of light and prr pulse repetition rate of the laser scanner.

MTA occurs because the emitted signals and the returned waveforms are not reg-

istered. A second-time-around return can be received after a time delay exceeding one

pulse repetition interval but less than two pulse repetition intervals. Similarly, a third-

or a fourth-time-around return may happen, too. MTA will inevitably introduce the

problem of range ambiguity (Rieger, 2014; Sitar, 2015). Without appropriate pro-

cessing, some ranges of the lidar points can be miscalculated. In such cases, a ghost

patch may appear either high in the sky or far beneath the ground, as is shown in

Fig. 2.3.

In Fig. 2.3., the laser signals are emitted with a constant time interval after the

initialization stage (t <2675.059192 sec). Due to the high pulse repetition rate of the

system, the returned waveform may not be associated to the closest emitted signal

ahead of it. An effort for matching the return waveform to the corresponding emitted

signal is required for the correct calculation of ranges and point locations.

2.3.2 Aircraft Speed and Ground Point Density

Aircraft speed affects the point density along the flight direction. It is usually

desired that the points can be evenly distributed in directions both parallel and

perpendicular to the flight lines. After the point density on the scan line is determined

by the flight height and the pulse repetition rate of the scanner, the flight speed can

then be determined.



14

Fig. 2.3. An example of miscalculated point locations due to MTA.

2.4 An Example System

The main algorithms and methodologies developed in this thesis will be tested

by the full waveform lidar data collected by the airborne lidar system with the laser

scanner of Riegl Q680i.
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2.4.1 Characteristics of the Laser Scanner

The photo of the sensor and one of the emitted signals are shown in Fig. 2.4(a)

and (b), respectively. From Fig. 2.4(b), the signal is right skewed. Its duration is

around 10 nanoseconds.

(a) (b)

Fig. 2.4. (a)Riegl Q680i; (b)An emitted pulse of Riegl Q680i.

The specifications that are released by Riegl are listed in Table 2.1. Among them,

the accuracy is defined as the degree of conformity of a measured quantity to its

actual (true) value, and precision is the degree to which further measurements show

the same result (Datasheet of Riegl Q680i).

2.4.2 Data Structure of the Laser Scanner

In the experiment, the waveform data contains approximately 50,000,000 recorded

waveforms and is about 8 GB in size. The full waveform binary file is accessible via

the RiWaveLib C++ waveform extraction library provided by Riegl as an interface

to extract information from the waveform data. One record of the full waveform lidar

data mainly consists of the following information:

1. index information such as record number, internal time, and external time.

2. spatial information such as the vector of sensor origin and sensor orientation.
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Table 2.1.
Specifications of the Riegl Q680i

Parameter Value

Laser Beam Divergence ≤ 0.5 mrad

Scan Angle Range ±30◦ = 60◦ total

Angular Step Width ≥ 0.002◦(0.03◦ in our data)

Pulse Repetition Rate (PRR) 80/200/300/400kHz

Maximum Operating Flight Altitude 800m@400kHz PRR

Time Interval of Sampling 10−9 second

Accuracy 20mm

Precision (reproducibility, repeatability) 20mm

3. reference time or the sampled emitted signal.

4. the sampled returned waveform.

The structure of a record is listed in Table 2.2. A specific waveform dataset

consists of all sample blocks of the waveforms detected by the receiver and additional

information, e.g., the beam direction. Both the emitted signals and the returned

waveforms (not necessarily corresponds to the emitted signal in the same block) are

sampled and recorded. A time stamp for the start of each sample block is recorded,

which allows to determine the time of all samples in the same sample block using the

sample interval.

2.4.3 Platform Trajectory

The GPS and IMU measurements are integrated in a binary SBET (Smoothed

Best Estimate of Trajectory) file in .out format. The file contains a 136 byte standard

navigation record, which stores the trajectory and flight dynamics of the airplane: the

time, position, speed, orientation, platform heading, etc. We access this binary file by
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Table 2.2.
Data structure of Riegl Q680i

Name Type Length

Record index Int 1

Internal time Float 1

External time Float 1

Vector of sensor origin float 3

Vector of sensor direction float 3

# of samples of emitted pulse int 24

# of samples of the returned waveform int 60, 120 or 240

using the IceBridge Applanix SBET file Perl reader provided by the National Snow

and Ice Data Center (NSIDC).

The lidar data was collected in a forest area of Shenandoah National Park, VA,

USA. The flight trajectory of the sensor platform together with its location is ex-

tracted from the .out file and is plotted in Fig. 2.6. In the figure, the black lines are

the trajectory of the airplane and the single orange line in the middle highlights the

section where the lidar sensor collected the data. The part of the trajectory file that

corresponds to the acquisition of this laser scan dataset consists of approximately

45,000 trajectory points and other related records, e.g., speed and orientation of the

platform for each trajectory point.

2.4.4 Ground Density of the Waveforms

The altitude and the speed of the airplane should be carefully designed to match

the pulse repetition rate of the laser scanner and generate an evenly distributed point

cloud with a desired point density.
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Fig. 2.5. An example of data structure of Riegl Q680i.

The laser scanner works with a pulse repetition rate of 400kHz. This can also be

verified from the fact that there are around 1,570 emitted pulses per scan line. The

line repetition rate is then 255 lines per second. The speed of the aircraft is around

80 meters per second, which leads to the scan line density of 400k/1570/80=3.2 lines

per meter.

The flight height above ground is about 500 meters and the scan angle is 60

degrees. The point density along the scan line is approximately 1570/60/500/sin(1◦)

= 3.0 points per meter.

The point distribution can be examined from a section of ground points as is

shown in Fig. 2.7. In the figure, one 3×3 m2 ground square and two 1×1 m2 ground
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Fig. 2.6. Flight trajectory over the Shenandoah National Park. (Left)
The park map (http://www.nps.gov/shen/planyourvisit/maps.htm
by National Park Services) and (Right) flight trajectory of the sensor
platform over the study area.

squares are highlighted in red. It can be observed that the ground point density

is around 10 points per square meter. Furthermore, the points can be regarded as

evenly distributed along the scan line and the flight direction.
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Fig. 2.7. Ground point distribution of the example lidar system.
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3. THEORETICAL FRAMEWORK

The raw digitized lidar waveform and the position and orientation of the aircraft

should be processed and integrated to output final lidar products such as point cloud

and digital elevation model (DEM). Waveform decomposition, georeferencing and cal-

ibration are the common steps of processing the waveform data. During waveform

decomposition, the algorithm determines the accuracy of the range measurement

between the lidar scanner and the detected object. During georeferencing, the cali-

bration results determine the estimated position of the target. Developing or choosing

an appropriate method in each step is crucial to the quality of the final product. Ac-

curacy, cost, efficiency, repeatability, and complexity are the factors to be considered

in designing a processing protocol.

Depending on the specific applications, the exact steps of geospatial processing of

airborne waveform lidar data may be different case by case. Generally, they include

the following steps:

• Waveform decomposition. This step deals with the recorded waveform acquired

by the laser scanner. Each waveform will be decomposed into one or several

components, each of which in turn corresponds to a detected target. These

waveform components can be used to determine the ranges between the laser

scanner and the targets.

• Direct georeferencing. The purpose of georeferencing is to calculate the co-

ordinates in the mapping frame of all the range measurements from the laser

scanner. The GPS/INS measurements together with the orientation measure-

ments recorded by the laser scanner will be integrated in this step. During the

process, either the laser scanner and the INS unit are assumed to be perfectly

aligned, or the relative position and orientation of the components are given.
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• Calibration. The angular displacement between the laser scanner and the IMU

unit exists, and it is difficult to determine from direct measurements in the

lab. Such angular displacement, usually referred to as boresight misalignment

or boresight angle, is estimated in a calibration process. In many cases, a

specially designed flight plan will be conducted to estimate the boresight angles.

Such flight is called boresight flight. Usually, the one-time boresight flight is

conducted before the data acquisition.

• Classification of lidar point cloud. Classification is a conventional technique in

analyzing the digitized lidar data. This step is also included in the full waveform

lidar processing because many calibration schemes use specific building points.

In our work, the study area is a forest area where buildings or similar control

points are absent. In such case, the ground points that are obtained by ground

filtering will be used for calibration.

In this chapter, the methodology of each main step will be discussed. The frame-

work of our work will be summarized at the end of this chapter.

3.1 Waveform Modeling and Decomposition

Waveform modeling and decomposition are the common steps for exploitation

of full waveform lidar data. There are several alternative approaches to detect and

estimate the characteristics of each return from the digitized waveform signal. Ex-

amples are peak detection, leading edge detection, constant fraction detection, center

of gravity detection, deconvolution, etc. (Shan and Toth, 2018)

3.1.1 Peak Detection

An effective waveform decomposition needs both simplicity and accuracy. The

simplest and most widely adopted decomposition method is peak detection (Bretar,

et al., 2008; Wagner, et al., 2007). It is attractive because the waveform components
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can simply be detected by applying a threshold. It has the desired high efficiency for

coping with large volumes of lidar data but does not take mixtures into consideration.

As a result, it sacrifices the intrinsic high accuracy and fidelity of advanced lidar

systems in exchange for such simplicity.

3.1.2 Parametric Waveform Decomposition

Parametric waveform decomposition first models the returned waveform as a mix-

ture function of several parametric components. Different functions, including Gaus-

sian, generalized Gaussian, lognormal, Weibull, Nakagami, Burr, have been proposed

to model lidar waveforms (Mallet, et al., 2010; S lota, 2014). Among them, the Gaus-

sian Mixture Model (GMM) has prevailed for many years and is widely adopted

(Parrish and Nowak, 2009; Hofton et al., 2000; Wagner et al., 2006; Jung and Craw-

ford, 2008; Wang, 2012; Wang et al., 2013). It models the returned waveform y(t) as

a weighted sum of several Gaussian components,

y(t) =
J∑
j=1

yj(t) =
J∑
j=1

wj · exp[−(t− µj)2

2σ2
j

] (3.1)

where t is the sampling time, y the intensity of the waveform, (µj, σj) the mean

and the standard deviation of the j-th Gaussian component, and J the total number

of Gaussian components. Both J and θ = [µ1, σ1, w1, µ2, σ2, w2, . . . , µJ , σJ , wJ ] are

parameters to be estimated.

Many algorithms were proposed to decompose the waveform data based on GMM.

For example, Hofton et al. (2000) used the Levenberg-Marquardt optimization algo-

rithm. The main challenge of such a nonlinear optimization approach is its conver-

gence being sensitive to the initial values of the unknown parameters. Another widely

used and cited approach is the Expectation-Maximization (EM) method (Dempster,

et al, 1977; Jung and Crawford, 2008; Pan, et al., 2015). In both approaches, the

number of waveform components needs to be predefined and may vary from waveform
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to waveform. To cope with this problem, we will introduce a minimum description

length (MDL) constrained waveform decomposition in the next chapter.

3.1.3 Nonparametric Waveform Decomposition

In the framework of a nonparametric mixture model, lidar waveform is the sum

of data clusters. Each cluster is composed of a collection of data samples xn:

y (t) =
J∑
j=1

yj (t) =
J∑
j=1

 1

Nj × h

Nj∑
nj=1

wnj · k
(
t− xnj
h

) (3.2)

where k(·) is a kernel function of the model and h is the bandwidth (Fukunaga and

Hostetler, 1975).

The nonparametric clustering problem is solvable with a fuzzy mean-shift algo-

rithm, where it determines the modes in the data and clusters all the data samples

accordingly. The implementation details of FMS will be introduced in Chapter 5.

3.2 Range Determination

3.2.1 Range Calculation

Once the decomposition is complete, the range between the target and the sensor

is calculated by using the time the laser signal takes to travel to and from the target

and the speed of light

ρ =
c

2
(tin − tout) (3.3)

where ρ the range between the sensor and the target, and c the speed of light. tout and

tin are the time that the signal is emitted and returned from the target, both of which

can be determined from the result of waveform decomposition. For EM approach,

the mean value of the Gaussian component of the emitted signal corresponds to tout,

and the mean value of each Gaussian component in the returned waveform is tin.
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For FMS, we can take the peak or the mass center of each waveform component to

determine its time. The mass center is calculated by

tin =

∑Nj
n=1wn · xn∑Nj
n=1wn

(3.4)

Similarly, for the corresponding emitted signal, its outgoing time by mass center

is

tout =

∑Nout
n=1 zn
Nout

(3.5)

where zn is defined the same way as we define xn except that zn is for the emitted

signal. Nj and Nout are respectively the number of samples within the j-th waveform

component and the emitted signal.

3.2.2 Solution to Range Ambiguity

In cases where both high repetition rate and high flight height are desired, and

where MTA exists, the range ambiguity should be solved either by the software toolkit

provided by the manufacturer or by some specially designed algorithms (Krichel, et

al., 2010; Rieger and Ullrich, 2011; Rieger, 2014).

In our work, the very first scan strip was visually examined and adjusted to allow

the unambiguous calculation of the first measurement range. Based on this initial

value, each further consecutively received waveform will be associated to the emitted

signal with the least difference in distance between successive range measurements.

The ranges that are already resolved in the previous scan line become the new initial

values for the allocation of ranges of the subsequent scan line. The iteration continues

until all the returned waveforms are associated with an appropriate MTA zone.

3.3 Direct Georeferencing

The GPS, INS, and the laser scanner all have their respective coordinate frames, as

is shown in Fig. 3.1. Calculating the coordinates of the target points in the mapping
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coordinate system using the calculated ranges, beam direction, and the trajectory

information requires dealing with different coordinate systems of the involved compo-

nents. This process is commonly referred as direct georeferencing, where GPS/IMU

provides the necessary position and orientation information and no additional ground

control is needed. Often it is the first step towards final, precise georeferencing (Shan

and Toth, 2018).

The direct georeferencing process has the following main steps. The first step is

to determine the ranges between the laser scanner and the targets. The second step

is to calculate coordinates of the targets in the sensor’s (laser scanner’s) frame. The

third step is to incorporate the data collected by ground GPS, onboard GPS and

INS component, and to generate a trajectory file that includes the GPS time, the

position and orientation of the aircraft. These three steps are independent, so they

can be separately conducted with a customer-designed algorithm or a given software

package. However, the results are in their own coordinates: the lidar data is in a

sensor frame, the GPS data in the mapping frame, and the IMU data in the airplane

frame.

The final step of direct georeferencing is to incorporate all the results from previous

stages and to output the point cloud in the mapping frame. A series of coordinate

conversions are required in this step.

3.3.1 Point Coordinate Calculation in the Scanner Frame

The scanner frame is the airborne laser scanner’s own coordinate system (SOCS).

Let oooS (tS) be the position vector of the laser scanner at the instant tS, dddS (tS) the

direction of the laser beam. As is shown in Fig. 3.1., the target location rStarget (tS) is

calculated in the lidar frame by

rrrStarget (tS) = oooS (tS) + dddS (tS) · ρ (tS) (3.6)

where ρ(tS) is the frame-independent range between the sensor and the target.
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Fig. 3.1. Laser scanner, GPS, and IMU are amounted at different
positions of the aircraft. Each of them has its own coordinate system.

As is mentioned in Section 3.2, there are several alternative approaches to detect

and estimate the returns from the digitized waveform signal. If not otherwise stated,

the ranges in this thesis are all generated with the nonparametric mixture model and

the fuzzy mean-shift algorithm described in Section 3.2.3. Details will be discussed

in Chapter 4.

3.3.2 GPS/IMU Incorporation and Conversion

The GPS and the IMU are measured at different sampling rate, and they will be

integrated and interpolated. At the same time, the integrated results are converted

to the laser frame, i.e. the body frame. The conversion requires the knowledge of the

two distances between the origin of the body frame and the local frames. Specifically,

the distance between the GPS antenna and the laser scanner is defined as the GPS

lever arm; the distance between the IMU instrument and the laser scanner is the IMU

lever arm.
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Fig. 3.2. Target location in the sensor’s coordinate system.

Usually, it is difficult to place the GPS antenna close to the lidar sensor because

the GPS antenna should be placed on the top of the airplane so that the LOS (line

of sight) signals can be received, while the lidar sensor is usually placed on the floor

of the aircraft facing the ground below the plane.

On the other hand, the IMU measurement unit could be directly attached to

the lidar sensor for maximum stability. The axes of the scanner’s coordinate frame

should exactly coincide with the IMU coordinate frame, but it cannot be guaranteed.

As a result, the mounting misalignment angles δω, δφ, δκ for roll, pitch and yaw,
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Fig. 3.3. Lever arm offsets. oooGPS, oooIMU and oooLS are the origins of the
GPS frame, IMU frame, and laser scanner frame, respectively.

exist. These misalignment angles are called boresight misalignments. They will be

determined in the calibration stage.

3.3.3 Coordinate Transformation to the Mapping Frame

There are a series of transformations to be applied for georeferencing the calculated

target positions into the ground coordinate system (mapping frame). Fig. 3.4. shows

a graphical representation of the transformations that need to be performed. After the

lever arm offsets are incorporated in the GPS/INS integration, ab can be omitted. The

sequence of transformations may be represented by multiple rotation and translation

operations on the initial position vector in matrix notation as

rmtarget(tS, tIMU) = rmplatform (tIMU)+Rm
H (tIMU)·RH

IMU (tIMU)·RIMU
S ·rStarget (tS) (3.7)

where rStarget (tS) is the position vector of the target point in the scanner frame,

rmplatform (tIMU) is the interpolated coordinates of the GPS/INS integrated solution

for trajectory in the mapping frame and rmtarget(tS, tIMU) is the position vector of the

target point in the mapping frame. Rm
H , RH

IMU , RIMU
S are matrices that transform

the coordinates from the sensor frame to the IMU frame, from the IMU frame to
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the horizontal frame (Shan and Toth, 2018), and from the horizontal frame to the

mapping frame, respectively.

Fig. 3.4. Transformations for georeferencing the position vectors of
the targets. (Shan and Toth, 2018)

The first transformation to be applied for georeferencing the target positions is the

transformation of the target’s position vector calculated in the scanner’s coordinate

frame to the IMU frame represented by a rotation as RIMU
S · rStarget (tS).

The transformation from the IMU frame to the mapping frame Rm
IMU consists of

two consecutive rotations. The first one is the rotation from the IMU frame to the

local horizontal NED (North-East-Down) frame and then to the WGS84 geocentric

ECEF (earth-centered, earth-fixed) mapping frame. The matrix Rm
IMU(tIMU) can be

written as

Rm
IMU (tIMU) = Rm

H (tIMU) ·RH
IMU (tIMU) (3.8)

RH
IMU (tIMU) is the rotation matrix established with the roll, pitch, and yaw an-

gles represented by ω(tIMU), φ(tIMU), and κ(tIMU). For convenience, we omit the t

variable in the entry of the matrix:
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RH
IMU (tIMU) =


m11 m12 m13

m21 m22 m23

m31 m32 m33

 (3.9)


m11

m21

m31

 =


cos (κ) cos (φ)

sin (κ) cos (φ)

−sin (φ)



m12

m22

m32

 =


cos (κ) sin (φ) sin (ω)− sin (κ) cos (ω)

sin (κ) sin (φ) sin (ω) + cos (κ) cos (ω)

cos (φ) sin (ω)



m31

m32

m33

 =


cos (κ) sin (φ) cos (ω) + sin (κ) sin (ω)

sin (κ) sin (φ) cos (ω)− cos (κ) sin (ω)

cos (φ) cos (ω)


The latter rotation matrix Rm

H (tIMU) is defined by the geographic latitude, Φ0 (tIMU),

and longitude, Λ0 (tIMU), which is established as

Rm
H (tIMU) =


− cos Λ0 sin Φ0 − sin Λ0 − cos Λ0 cos Φ0

− sin Λ0 sin Φ0 cos Λ0 − sin Λ0 cos Φ0

cos Φ0 0 − sin Φ0

 (3.10)

Again, the time variance is omitted for all the entries in the matrix.

3.4 Calibration

The result of direct georeferencing is usually not satisfying such that considerable

displacement between overlapping strips can be observed. Thus, we need to consider

the error sources during the direct georeferencing and develop calibration schemes to

correct the main error sources.

The error sources of a lidar system can be grouped as intrinsic and extrinsic

ones. Examples of the intrinsic errors are the inherent INS drift, the noise of scanner
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mirror, etc. Extrinsic errors include boresight misalignment, lever arm offsets, and

the synchronization among GPS, INS, and laser scanner. In this thesis we assume

that the intrinsic errors of the lidar system are minimized by the manufacturer, so

we focus mainly on the determination of the extrinsic errors.

Among the extrinsic errors, the lever arm offsets are constant regardless of the

range. Once the system is assembled, the lever arm offsets can be determined by

surveying instrument or design drawing (Vallet and Skaloud, 2004; Skaloud and Lichti,

2006; Bender et al., 2013). Generally, the accuracy is sufficient so that the remaining

errors are negligible compared to other influences (Hebel and Stilla, 2012). On the

contrary, the impact of the boresight misalignment to the measurements raises with

the increased range. For example, an angular error of only 0.1 degree can result in

measurement errors of over 1m at a flight height of 600m. In airborne lidar systems,

the platform usually operates at an altitude of hundreds of meters. The boresight

misalignment can therefore be substantial.

The boresight angles δω, δφ, δκ for roll, pitch, and yaw are difficult to obtain from

direct laboratory measurement. They can only be calculated indirectly (estimated

by least squares calibration) (Chan, 2011). Traditionally, they can be solved by

a calibration process prior to data acquisition or an adjustment after the data is

acquired.

The pre-calibration process needs calibration toolkit, ground truth, and a spe-

cially designed flight plan. Such a flight plan is referred to as boresight flight. The

requirement of the boresight flight includes the configuration of opposing flight di-

rections, crossing flight lines, different flight heights, and multiple flight strips with

significant overlapping. Furthermore, the selected area for the boresight flight should

have large numbers of control points such as houses with shingle roof tops (Fowler

and Kadatskiy, 2010).

The data users usually have little control over the pre-calibration process unless

they closely work with the data provider. Instead, the post-adjustment could be

conducted after the data is collected and delivered, under the condition that the data
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is collected with overlapped strips and large amounts of regularly shaped objects

(Rentsch and Krzystek, 2012). In such cases, an algorithm can be developed to

determine the extrinsic errors by co-registering the buildings in different lidar strips.

As a new development, a single flight strip calibration is proposed in this disser-

tation. The novel approach makes use of the full waveform data together with the

publicly accessible DEM to estimate the boresight angles by solving an optimization

problem

(δω, δφ, δκ)∗ = argmin
(δω,δφ,δκ)

||DEMlidar (δω, δφ, δκ)−DEMref || (3.11)

where DEMlidar (δω, δφ, δκ) is the DEM model obtained from the full waveform lidar

data with the given values of (δω, δφ, δκ) and DEMref is the reference DEM.

With the proposed calibration approach, the boresight parameters can be solved

with a single strip of waveform data. Furthermore, the new approach can be applied

with the data obtained over the areas such as mountains, forests, where the regularly

shaped objects can be rarely found.

3.5 Processing Flowchart

The flowchart of waveform geospatial processing is shown in Fig. 3.5. Having the

ranges and the directions of the emitted laser signals, we can calculate the coordinates

of the targets in the sensor coordinate frame. Using the positions of the platform

recorded in the SBET file, a series of coordinate transformations described in Section

3.3 are then carried out to calculate the coordinates of the targets. It should be noted

that the flight trajectory is not available at the same frequency as the pulse repetition

rate of the lidar sensor. The pulse repetition rate of the lidar system is 400 kHz while

the trajectory is available at 200 Hz. Only one trajectory position is available for

approximately every 2,000 laser pulses due to this difference in data frequency. The

position and the orientation of the sensor platform are calculated by interpolation

of the trajectory at each time instance of laser pulse emission. As is mentioned, the
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boresight angles will be estimated by comparing the lidar point cloud with a reference

DEM through an optimization procedure.

Fig. 3.5. Flowchart of waveform lidar data processing.
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4. PARAMETRIC WAVEFORM DECOMPOSITION

In lidar measurement, the distance between the laser scanner and the target is derived

from the waveform decomposition result. A suitable waveform model and decompo-

sition algorithm is indispensable to assure the accuracy and quality of lidar products.

The emitted signal from the laser scanner is continuous wave. In many airborne

lidar systems, the duration of emitted signal is several nanoseconds. The duration of

the returned waveform is usually at the similar length or longer. The waveform can

be modelled with parametric approach or with nonparametric approach (Hartzell et

al., 2015; Li et al., 2016). Correspondingly, waveform decomposition is a common

step for exploitation of full waveform lidar data. Much effort has been focused on

designing algorithms based on the assumption that the returned waveforms follow a

Gaussian Mixture Model (GMM) where each component is a Gaussian.

As is observed from Chapter 2, the emitted signal usually has a bell-shaped main

component and a noise floor. The parametric approach models the bell-shaped main

component as a parametric function. The simplest example is a Gaussian function.

As a sequence, the returned waveform will become a mixture of several parametric

functions, e.g., Gaussian functions. Gaussian-mixture model and corresponding al-

gorithms have been the dominant approach for parametric waveform decomposition.

Their principle and the performance will be studied in this chapter.

4.1 Gaussian Mixture Model (GMM)

The Gaussian mixture model (GMM) is the most widely adopted model for lidar

waveforms. First, it assumes that the emitted signal has the Gaussian form of
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yemitted (t) = Y · exp

[
−(t− µ)2

2σ2

]
(4.1)

where the emitted signal y(t) is a variable of t, the sampling time. Y is a constant,

µ corresponds to the emitted time, and σ models the width of the waveform.

When the emitted signal hits an object and reflects towards the lidar sensor, a

returned waveform will be received. The returned waveform also has a noise floor

and a main component that is bell-shaped as the emitted signal. When more than

one object is encountered, there will be multiple bell-shaped components in the re-

turned waveform and some of them may be convoluted or mixed. This phenomenon

is described by a mixture model:

yreturned (t) =
J∑
j=1

wj · yj (t) (4.2)

where yj(t) is the curve function of the j-th component, and wj is its weight. J is

the total number of components, or the number of detected targets.

The bell-shaped components in the returned waveform are then approximated

by Gaussian curves as well. Under this assumption, the returned waveform can be

expressed as a Gaussian mixture model:

yreturned (t) =
J∑
j=1

wj · yj (t)

=
J∑
j=1

wj · exp

[
−(t− µj)2

2σ2
j

] (4.3)

where µi and σi model the position and the width of each Gaussian component. J is

also called the order of the Gaussian mixture model.

4.2 Expectation-Maximization (EM) algorithm

The waveform decomposition problem under GMM is to find the parameters

θ = [J, θJ ] where θJ = [w1, µ1, σ1, . . . , wJ , µJ , σJ ]. Many algorithms are proposed to
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decompose the waveform data based on GMM. The most widely used and cited para-

metric approach to decompose the waveform is the Expectation-Maximization (EM)

method (Dempster et al., 1977; Vlassis et al., 2002). It is an algorithm that classifies

a group of random variables at the same time of estimating the sufficient statistics

with maximization likelihood method. The first step of applying EM to waveform

decomposition is to model the waveform as the histogram of a random variable. Let

a (returned) waveform be collected along time t from tag 1 to T . We regard the

waveform Y = {y(t) : y(t) ≥ 0, 1 ≤ t ≤ T} as the histogram of samples of a random

variable x, X = {xn : 0 ≤ xn ≤ T, 1 ≤ n ≤ N}, where n is the sample index and N

the total number of samples. The total number of samples will be N =
T∑
t=1

y (t). Each

observation xn is classified as one or more of the clusters j = [1, . . . , J ] with weight

w = [w1, . . . , wJ ] and
J∑
i=1

wj = 1. If each cluster follows a Gaussian distribution

N
(
µj, σ

2
j

)
, the likelihood of xn in cluster j will be 1

(2πσ2
j )

1
2

exp
[
− (xn−µj)2

2σ2
j

]
.

Under the framework of EM, the following likelihood function should be maxi-

mized:

p (x|θJ , J) =
N∏
n=1

J∑
j=1

wj(
2πσ2

j

) 1
2

exp

[
−(xn − µj)2

2σ2
j

]
(4.4)

where the parameter vector of the J-mixture distribution is given by θJ = [w1, µ1, σ1,

. . . , wJ , µJ , σJ ]. J is assumed known for EM. The expected sufficient statistics of this

distribution, when θ is given, can be computed for the j-th component as

Nj =
N∑
n=1

P
{
xn ∈ the j − th component|θ̂J

}
t1,j =

N∑
n=1

xn · P
{
xn ∈ the j− th component|θ̂J

}
t2,j =

N∑
n=1

x2n · P
{
xn ∈ the j− th component|θ̂J

} (4.5)

The maximum likelihood (ML) estimate of θJ , given (4.5), is
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µ̂j =
x1,j
Nj

,

σ̂2
j =

x2,j
Nj

−
x21,j
N2
j

,

ŵj =
Nj

N
.

(4.6)

The expected statistics and the parameter estimation will be iteratively calculated

until the likelihood function described in (4.4) converged or the maximum number of

iteration is reached.

4.3 Method of Model Selection

The number of clusters J in a waveform cannot be directly estimated with the

EM approach. The problem of estimating J , the order of a model, is called order

identification. Order identification methods generally require the addition of a penalty

term in the log likelihood to account for the over-fitting of high order models.

There exist different approaches to determine the optimal value of J , such as

Akaike information criterion (Akaike, 1974), Bayesian Information Criterion (Schwarz,

1978), Minimum Description Length (Rissanen, 1983). The comparison of different

model selection methods is beyond the scope of this study. In our work, we arbitrarily

employ an order identification/model selection method based on the Minimum De-

scription Length (MDL) principle to choose J . The MDL criterion tries to find the

optimal model order, which minimizes the number of bits that would be required to

code both the data samples xn and the parameter vector θ. It is given by

MDL (θJ , J) = − log px (x|θJ , J) +
1

2
L log (N ·D) (4.7)

where L is the number of continuously valued real numbers required to specify the pa-

rameter θJ , and D is the dimension of the data. It can be observed that the MDL(J)

is essentially the negative log-likelihood function NLL(J)= − log px (x|θJ , J) with

an addition of a linear penalty term 1
2
L log (N ·D).
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In the case of lidar waveform decomposition, we have L=3J-1 and D=1. Under

the MDL criterion, J is chosen by

Ĵ = arc min
J
MDL

(
θ̂J , J

)
= arc min

J

[
− log px

(
x|θ̂J , J

)
+

1

2
L log (N ·D)

]
(4.8)

Rigorously, it requires all the values of MDL
(
θ̂J , J

)
, J=1,2, ..., to be calculated.

Since the calculation of MDL
(
θ̂J , J

)
involves the value of estimated θ̂J , all θJ ,

J=1,2,..., need to be estimated in order to optimize J .

4.4 Experiments

In this section, the mechanism of EM will be demonstrated with the data that is

described in Section 2.4.

4.4.1 Noise Filtering

The first step of processing waveform data usually is to filter out its noise. Since

the waveform components in our study are smooth enough, the effort of further

smoothing is not necessary. Instead, the noise can be filtered out by simply ap-

plying a noise threshold (Fig. 4.1.). However, the waveform decomposition result

may be sensitive to the selection of this threshold. This phenomenal can be shown

by a waveform decomposition example. Fig. 4.1. shows the original waveform. The

decomposed results under different noise thresholds are summarized in Table 4.1. In

the table, not only the parameters θJ but also the number of waveform components

J vary as the noise threshold changes.

An ideal threshold should be right above the noise floor so that it can keep the main

information embedded in the waveform at the same time of filtering out the noises.

Over-filtering will make the result deviate from the correct value or lose points, while

under-filtering will introduce noise points. In our experiment, a threshold of 15 is

applied to all the original waveforms.
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Table 4.1.
Decomposition result of a sample waveform with different noise thresholds

Noise

threshold
J

θJ

µ σ w

µ1 µ2 µ3 σ1 σ2 σ3 w1 w2 w3

5 3 17.87 23.34 31.42 1.94 2.28 2.40 0.33 0.60 0.07

6 3 17.88 23.34 31.04 1.94 2.28 2.14 0.33 0.61 0.06

7 3 17.87 23.35 31.12 1.94 2.30 2.31 0.34 0.62 0.05

8-9 2 17.86 23.40 - 1.95 2.40 - 0.34 0.66 -

10-11 2 17.84 23.31 - 1.73 2.44 - 0.31 0.69 -

12-18 2 17.94 23.33 - 1.76 2.22 - 0.34 0.66 -

19-20 2 17.99 23.25 - 1.76 1.99 - 0.36 0.64 -
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Fig. 4.1. Noise filtering with a threshold.

4.4.2 Determine the Number of Clusters

We applied the MDL to the EM-decomposed lidar waveforms. One of the sample

results is presented in Fig. 4.2. The initial guess of the number of Gaussian compo-

nents is 4, as illustrated in Fig. 4.2(a). By minimizing the MDL curve, the number

of components is determined to be 5, as is shown in Fig. 4.2(b). We observe that

a missing component located at the left shoulder of the first pulse is found. It is

noted from Fig. 4.2(c) that the search range of J is [1, 30], meaning that EM was

conducted 30 times to search for a global minimum point. This conservative search

range is determined by the fact that the minimal value of J could be 1 (at least 1 tar-

get detected) and the maximal value of J could be b((N + 1))/3c , where b·c denotes

round down. In our data, there are 120 samples in each block and only 91 of them

are non-zero samples, meaning that maxĴ = b((91 + 1))/3c = 30. In other words, the

possible range of J is [1, 30]. We observed from Fig. 4.2(c) that MDL(J) behaves

like a convex function. This can be explained by the observation that the MDL(J)

is the sum of the negative log-likelihood function NLL(J) and an addition of a linear
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penalty term. A convex-like MDL(J) implies a convex-like NLL(J). NLL(J) will

be convex if its first derivative is negative and its second derivative is positive. Since

the performance of J+1 components are always no worse than that of J components,

NLL(J) therefore has a negative first derivative. On the other hand, the improve-

ment of likelihood given by a further increasing J usually becomes less, meaning that

the second derivative of NLL(J) is ideally negative. Based on the above evaluation,

we search for the local minimum of MDL(J) from J0, which is determined by simply

detecting local peaks in the waveform.

Using this strategy, we analyzed the sample waveform in Fig. 4.3(a). The MDL

criterion was applied in such a way that it searched for a local minimum at both sides

of the initial value of J . The initial guess of the number of Gaussian components

was 5 and the number of components determined by EM-MDL was 3. Only four

EM-MDL iterations were applied to determine the local minimum.

4.4.3 Results

We applied the EM-MDL method to estimate the number of Gaussian components

for the entire data. In most cases, three iterations are sufficient to find out the

local minimum. When there is single Gaussian component, only two iterations are

necessary. The histogram for the number of iterations is shown in Fig. 4.4(a), from

which it is clear that 88% of the data can be converged within three iterations.

We can see from Fig. 4.4(b) that 88% of the waveforms have 1-4 Gaussian com-

ponents. Even though our test data has a small footprint of 2.5cm, 12% of returned

waveforms have 5-12 components.

4.5 Discussion

The GMM-based waveform decomposition method is based on two assumptions:

(1) the emitted lidar signal is a Gaussian waveform; (2) the returned waveform is

also a sum of Gaussian, though its mean (intensity), standard deviation, and the
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Fig. 4.2. EM-MDL decomposition results with global search. The
optimal point is circled in red in (c).

number of Gaussian waveform components may vary from waveforms to waveforms.

However, these assumptions are not always true. First, the emitted signal of the
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Fig. 4.3. EM-MDL decomposition results with local search.

widely adopted Q-switched laser scanner usually exhibits asymmetric non-Gaussian

curves, as can be seen in Section 2.1. Even though the laser sensors can generate an
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Fig. 4.4. Histograms of MDL-based estimation of J: (a) Number of
iterations; (b) Number of Gaussian components.

electromagnetic wave that leads the intensity of emitted signals close to a Gaussian,

the intrinsic noise in the electrical device will introduce flat tails to the actual signal,

as is shown in Fig. 4.6(a). The tails make the curve look more like a Cauchy curve

than a Gaussian (Casella and Berger, 2001). Moreover, the transmission path and/or

the reflectance of a target can also alternate the signal in a way that further deviates

from Gaussian. It is common for a single waveform component to be asymmetric,

skewed and non-Gaussian, as is shown in Fig. 4.6(b). As a result, the GMM is un-

able to precisely model non-Gaussian waveform components, particularly asymmetric

waveform components that have been frequently reported by researchers (S lota, 2014;

Chauve, et al., 2007; Montes-Hugo, et al., 2014).

Besides this unrealistic GMM assumption, most parametric decomposition tech-

niques, e.g., EM and Levenberg-Marquardt methods have the following limitations:

(1) the number of total decomposed components, J , should be prescribed in the stage

of initialization. To determine the optimal J , peak detection could be applied and
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Fig. 4.5. Point clouds generated in our work: (a) the entire profile of
the point cloud; (b) Two sample waveforms, each with four compo-
nents, corresponding to four points (in red dots); (c) a zoom-in view
of the point cloud.

the algorithms need to run multiple times to compare the results from different J ’s;

(2) a filtering process is desired prior to waveform decomposition because the involve-

ment of noise will deteriorate the performance of decomposition. However, there is

no standard way to filter out the noise floor (Page-Jones, 2003) in the waveform. In

our experiment, the simple and popular way of a constant noise threshold is applied.

As a result, the parametric algorithms are sensitive to the threshold value and the

waveform is often either over filtered or under filtered. Furthermore, the complexity

of the parametric algorithms is greatly increased not only because the algorithms
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Fig. 4.6. Non-Gaussian signal in lidar. (a) An emitted lidar signal of
Riegl Q680i. The flat tails (non-informative) are highlighted in boxes.
(b) The right-skewed returned waveform of (a).

themselves are iterative but because a preprocessing for estimating the number of

components and/or a postprocessing for optimizing this number are often needed.

In lidar waveform decomposition, any additional preprocessing and/or postprocess-

ing are computationally expensive because they ought to apply to each and every

individual waveform.
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5. NONPARAMETRIC WAVEFORM DECOMPOSITION

Since GMM is not capable of modeling the asymmetric lidar waveforms and other

parametric models are also constrained by the pre-defined library, it is necessary to

explore the possibility of new models to describe lidar waveforms. The objective of the

new model is: (1) takes possible asymmetric waveform components into account; (2)

allows the popular GMM model to be its special case; and (3) yields a high-quality,

high-efficiency decomposition. To address the first two properties, we introduce a

nonparametric mixture model (NMM); whereas, for achieving the third property, we

propose a fuzzy mean-shift (FMS) clustering algorithm.

The nonparametric model does not restrict the shape of the waveform components

so that asymmetric, non-Gaussian waveform components can be included. Specifi-

cally, we model a waveform as a histogram of a collection of random samples of x,

X = {xn : 0 ≤ xn ≤ T, 1 ≤ n ≤ N}. Under this nonparametric model, the procedure

of waveform decomposition will be realized by clustering techniques. Considering the

number of waveform components, J , as an unknown parameter besides the waveform

components themselves, we introduce a fuzzy mean-shift (FMS) algorithm so that this

number can be simultaneously estimated during the process of waveform decomposi-

tion. As a result, the waveform is decomposed into several clusters, either symmetric

or asymmetric, either informative (useful signal) or non-informative (noise). Compar-

ing with existing methods, the significant advantages of this development is that it

assumes neither the waveform components be a Gaussian or of any parametric form,

nor the number of waveform components be known beforehand. Moreover, the noise

floor can be filtered out at the same time of waveform decomposition.
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5.1 Nonparametric Mixture Model (NMM)

The waveform y(t) can be modeled by a nonparametric function as

y (t) =
1

N × h

N∑
n=1

k

(
t− xn
h

)
(5.1)

A function with the form of equation (5.1) is called nonparametric because it is

not assumed to follow any specific distribution. Instead, each sample of x contributes

to the waveform through a kernel function k(·), which satisfies

sup |k (x)| <∞

∫
R
|k (x)| <∞

lim
|x|→∞

|x| · k (x) = 0

∫
R
|k (x)| dx = 1

(5.2)

and the parameter h is the bandwidth of the kernel function, which determines the

density of the lidar point cloud to be generated through this decomposition. Ex-

amples of the kernel functions include a rectangle function, a triangle function, or

a Gaussian function. A complex kernel function like a Gaussian can make the his-

togram smoother, while a simple kernel function like a rectangle may consume less

computation time.

When more than one target is encountered by an emitted lidar signal, there will be

multiple components y1(t), y2(t), ..., yJ(t) in the (returned) waveform. Each waveform

component yi(t) is a cluster of x samples. It can be described by a mixture model as

y (t) =
J∑
j=1

yj (t) =
J∑
j=1

 1

Nj × h

Nj∑
nj=1

k

(
t− xnj
h

) (5.3)

where yj(t) is the j-th component. Here yj(t) is modeled as a summation of a number

of kernel functions evaluated at each point in cluster j. Depending on the clustering

result, yj(t) could fit a Gaussian or any other forms, either symmetric or asymmetric.

It is noted that the yj(t) could be either informative laser energy or non-informative



50

noise, as is depicted in Fig. 5.1. It is desired that an algorithm can determine and

filter the noise levels at the same time as decomposing the waveforms.

Fig. 5.1. In a returned waveform, the non-informative noise is high-
lighted in boxes and the possible mixture positions of two clusters are
in dots.

In (5.3), the samples of x are clustered in a way that each sample belongs to a

single component yj; therefore, all the waveform components are separated without

overlap. However, in most cases, lidar waveform components do convolute and are

mixed. For example, the waveform intensity at the dots in Fig. 5.1. is contributed

by two adjacent, mixed waveform components. To model such phenomenon as GMM

does, a mixture weight wn is introduced and (5.3) is evolved to a mixture model, i.e.,

y (t) =
J∑
j=1

yj (t) =
J∑
j=1

 1

Nj × h

Nj∑
nj=1

wnj · k
(
t− xnj
h

) (5.4)

where a sample xn can be assigned to multiple clusters with the weight wnj . The

nonparametric mixture model (NMM) in (5.4) is the one we introduce for waveform

decomposition. We will design an algorithm to determine J , wnj , and yj(t), with a

preset bandwidth h.
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5.2 Fuzzy Mean-Shift (FMS) Algorithm

With NMM, the problem of waveform decomposition becomes a kernel-based clus-

tering problem. Some popular kernel-based clustering methods include the kernel k-

means (Dhillon et al., 2004), spectral clustering (Shi and Malik, 2000), support vector

machine clustering (Ben-Hur, et al., 2001), and mean-shift clustering (Fukunaga and

Hostetler, 1975). Among the different clustering methods, the mean-shift algorithm

offers the advantage of being simple and able to estimate the number of clusters at

the same time the clustering is performed. This is a desired property for waveform de-

composition because the number of waveform components is unknown, varying from

waveform to waveform, and most of the existing methods have to put extra effort

to estimate it. Moreover, the traditional mean-shift algorithm is a “hard” clustering

algorithm suitable for problems described by (5.3), but not suitable for the mixture

problems defined in (5.4). Here, we will adapt the traditional mean-shift algorithm

to a fuzzy mean-shift (FMS) so that it can be utilized to decompose waveforms with

NMM.

The traditional mean-shift algorithm estimates the local modes of the histogram

from a random variable x, as we described in (5.1) and (5.3). At any t, the gradient

of the waveform function (5.1) and (5.3) can be calculated using the following:

∂y (t)

∂t
=

J∑
j=1

 1

Nj × h2

Nj∑
nj=1

k′
(
t− xnj
h

) (5.5)

Next, we define ~m (t) as the mean-shift vector shown in (5.6). Its sign indicates

the direction of the gradient of the waveform function, i.e., it points towards the

region where the majority points of a waveform component reside. In practice, the

kernel function k(·) is chosen in such a way that only the data points within the

neighborhood (∂t) of xn contribute to ~m (t). Thus, ~m (t) can be written as

~m (t) =

∑
xn∈∂t xnk

(
t−xn
h

)∑
xn∈∂t k

(
t−xn
h

) − t (5.6)
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The algorithm starts from an initial point x0 and moves along the mean-shift

vector until it converges at ~m (t) = 0. The center of the first waveform component

(either informative or noise) is found at this point. During the process, all the data

points of xn that are once located within the search neighborhood will contribute to

the vector ~m (t) and form the first waveform component y1(t). After that the process

will be conducted on the rest of the data points and search for the second waveform

component y2(t). The algorithm continues until all the xn samples are used to form

one of the waveform components. In the end, the algorithm returns all the waveform

components y1(t), ..., yJ(t) together with J , the number of found components.

As pointed earlier, the traditional mean-shift algorithm conducts a hard clustering

by assigning each data point xn to a single component and returns a result where all

the waveform components are separated without overlap or mixture. To resolve the

mixture of waveform components, we adapt the traditional mean-shift to an FMS to

conduct “soft” clustering. We notice that the sample points at the border of adjacent

waveform components are visited multiple times by different clusters during the mean-

shift process. We define such a point as a mixture point and assign it through a fuzzy

weight function to all the clusters that once visited the point, i.e.,

wi (xn) =
vi∑J
j=1 vj

(5.7)

where vi is the number of times that xn is visited by cluster i. In most cases, a

mixture point will be visited by only two adjacent components.

5.3 Experiments

This section will examine the asymmetric properties of the waveform, discuss the

selection of bandwidth h of the kernel function, explore the mixture of waveform

components, and evaluate the waveform decomposition by comparing its resultant

DEM with reference to the USGS National Elevation Dataset (NED) 1/3” DEM.



53

5.3.1 Skewness of the Emitted Signals and the Returned Waveforms

Since both the sampled emitted pulse and the returned waveform are provided,

their symmetry can be evaluated. Let t be the time stamp from 1 to T and y(t) the

intensity at t, we can calculate the skewness of the signal according to the Pearson’s

moment coefficient of skewness γ (Parrish et al., 2014)

γ =
m3

m
3/2
2

(5.8)

where

t̄ =

∑T
t=1 t · y (t)∑T
t=1 y (t)

ml =

∑T
t=1 (t− t̄)l · y (t)∑T

t=1 y (t)

(5.9)

A positive γ suggests a right skewed waveform and a negative γ a left skewed one;

γ = 0 represents a symmetric waveform.

As examples, two emitted signals and their returned waveforms are shown in Fig.

5.2(a)(b) and (d)(e), respectively. Fig. 5.2(c) exhibits the distribution of γ’s for all

the 10,000 emitted signals, while Fig. 5.2(f) is the distribution of γ’s for the returned

one-component waveforms. The emitted signals are slightly right-skewed, whereas

their skewness has a mean 0.0563 and standard deviation 0.0194. It coincides the

fact that most of the known airborne laser scanners utilize Q-switched lasers. The

returned waveforms are considerably skewed with a mean 0.1489 and standard devia-

tion=0.239. Compared to Fig. 5.2(c) for the emitted signals, Fig. 5.2(f) demonstrates

that the skewness of 34% of the returned waveforms are greater than 0.15. In other

words, right skewed returned waveforms dominate this subset. This demonstrates the

need for the nonparametric approach.
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Fig. 5.2. Skewness of lidar emitted signals and returned waveforms.
(a-c) Emitted signals: (a) #8267, γ=0.04; (b) #7467, γ=0.08; (c) the
distribution of skewness of the emitted signals. (d-f) Returned wave-
forms: (d) #8267, γ=0.62; (e) #7467, γ=0.92; (f) the distribution of
skewness of the returned one-component waveforms.
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5.3.2 Selection of the Kernel Function

Application of the kernel density model in the waveforms starts from choosing a

kernel function k(·). A few tests on some common kernel functions are shown in Fig.

5.3.

The role of a kernel function is to adjust the contribution of neighboring points

to the mean. Based on the distances to a (tentative) mean, they may have different

effect to the calculation. However, the mean in our problem is the weighted average

or mass center of all data points, where the weighting is taken from the lidar inten-

sities. The data points with higher intensities will contribute more to the final mean

determination. In (5.1) we expect N is as large as hundreds, under this situation,

different kernel functions are less sensitive to waveform decomposition. In the tests,

we select rectangle kernel function because: (1) in our application, the data points

are not only dense but also with high intensity, so different kernel functions generate

similar results, as is shown in Fig. 5.3.; (2) the simplicity of rectangle kernel makes the

mean-shift consume much less time than the case where complicated kernel functions

are applied.

5.3.3 Selection of the Bandwidth

The kernel bandwidth, h, is another important factor that controls the density

of the point clouds to be generated. Some of the techniques for bandwidth selection

include asymptotic expansion (AMISE) minimization (Sheather and Jones, 1991),

stability maximization, and isolation-connectivity optimization. In the application of

lidar waveform processing, a larger bandwidth will yield a smaller volume of point

cloud and a narrower one will lead to a denser point cloud.

In our experiment, we choose h=3.3 as the bandwidth, where h is measured by the

number of sampling time intervals or data points. The following facts are considered

for selecting such value: (1) the bandwidth essentially determines the minimum width

of a waveform component. Since we need at least three data points to determine a
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Fig. 5.3. Waveform decomposition examples with (a) rectangle kernel;
(b) Gaussian kernel; (c) triangle kernel.
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bell-shaped or second order waveform component so that a meaningful peak can exist,

the bandwidth should satisfy h ≥ 3, i.e. a waveform component should have minimum

three data points; (2) the bandwidth also determines the minimum separable distance

between targets in ranging by ∆r = h× c×∆t/2, where ∆r is the minimal separable

distance, c is the speed of light, and ∆t = 1ns is the sampling time interval. We let

∆r ≤ 0.5m, which leads to h ≤ 2∆r/(c × ∆t) = 3.33; (3) an inappropriate small

bandwidth may mistakenly generate artifacts. Combing all above considerations, h

=3.3 is chosen.

Cautions should be taken when waveforms are stretched by the high slope of the

terrain and the multipath effect. Below, we address this phenomenon by demonstrat-

ing the decomposition result of one such broadened waveform. The original waveform

is illustrated in Fig. 5.2(d) and as dash-lined in Fig. 5.4. Its decomposition results

under two different bandwidths are also shown in Fig. 5.4. The plot plates in Fig.

5.4 are ordered horizontally and plots within each plate are ordered vertically. It de-

picts the time sequence the clusters are found through the FMS algorithm. Different

cluster types are shown in different line styles. In Fig. 5.4(a), a bandwidth h=2.6

yields 16 waveform components, among which four are informative (in solid lines)

and 12 non-informative (star lines). Apparently, the algorithm mistakenly generates

false components for this waveform. A more realistic decomposition result can be

obtained when h=3.3, as is shown in Fig. 5.4(b). It is noticed that adjacent clusters

often overlap, i.e., one waveform data point can belong to more than one cluster, as

suggested by the principle of the FMS clustering approach.

5.3.4 FMS Clustering

The position of the initial point x0, as described in Section 5.2, does not affect

the decomposed result. We start the FMS algorithm from t0 = 1. The algorithm

moves towards right until the mean-shift vector equals to zero. All the points visited

during the moving process are plotted as stars, as shown in the upper-left plot in Fig.
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Fig. 5.4. Effects of the bandwidth of the kernel function on waveform
#8267 (Fig. 5.2(d)) decomposition. (a) an inappropriately small
bandwidth h=2.6 wrongly leads to four (4) informative clusters and
12 non-informative clusters; (b) a proper bandwidth h=3.3 correctly
leads to one (1) informative cluster and seven (7) non-informative
clusters.
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5.5. FMS then restarts from the left most point of the remaining points and finds

out the other clusters. We can see that there is overlap between the adjacent clusters

because the point in the overlapped area contributes to the mean-shift vectors for

both clusters. As an example, the decomposed waveform (#8269) is illustrated in

Fig. 5.5. There are altogether eight clusters (components) as plotted in stars or solid

lines. The informative (useful signal) and non-informative (noise) clusters can be

distinguished by setting a threshold on the cluster size Ni in (5.4), which is chosen as

100 in this study. The informative clusters (size ≥ 100) are plotted in solid lines and

the non-informative ones (size < 100) in stars.

Fig. 5.5. Waveform decomposition and noise floor filtering on wave-
form #8269 with the FMS method. There are eight (8) components
found, starting from the upper left ordered in vertical direction first.

Decomposing a waveform where mixture exists is the most meaningful use of

waveform decomposition. Here, we illustrate another example of FMS applied on

such case. The original waveform is plotted in Fig. 5.6(a). There may be three

waveform components, one isolated and two mixed, as would be suggested by the

EM algorithm. The FMS algorithm returns the decomposed results in Fig. 5.6(b-d).

The mixed component is plotted in solid bold lines in Fig. 5.6(c). Each component

could be fine-tuned by applying a threshold on the intensities so that only the points

above the threshold are utilized to generate the point clouds. Since the waveform
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is decomposed, the threshold will be much lower than the one used in traditional

pre-filtering. There are nine waveform components found by the FMS method; their

weighted sum will be the original waveform.

Fig. 5.6. FMS decomposition of a waveform where the mixtures exist:
(a) the waveform; (b-d) the decomposed components.
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5.4 Comparison of Parametric and Nonparametric Approaches

In this section, we evaluate the effectiveness of the parametric and nonparamet-

ric approaches on decomposing lidar waveforms with both simulated and real data.

Firstly, GMM is used to simulate lidar waveforms. Then we apply both EM and FMS

to decompose the simulated waveforms. Finally, we use both algorithms to analyze a

real airborne lidar dataset.

5.4.1 Experiment with Simulated Data

We simulated lidar waveforms under the assumption of GMM since it is widely

accepted in many waveform decomposition algorithms. In the simulation, J , µ, σ and

w were given and the waveforms were generated according to

y (t) =
J∑
j=1

wj · yj (t) =
J∑
j=1

wj · exp

[
−(t− µj)2

2σ2
j

]
(5.10)

Two representative waveforms are illustrated in Fig. 5.7. There are, respectively,

one (a) and two (b) Gaussian component(s) in the waveforms. The solid lines are the

simulated waveforms and the dashed lines the Gaussian components. Each Gaussian

component corresponds to an object detected by the lidar sensor, hence a point in

the point cloud. The positions of the Gaussian components are marked as “+”. The

position estimates are used to calculate the ranges between the detected objects and

the lidar sensor.

Firstly, we studied the case where J=1 with an experiment. In this case, there

is only one single Gaussian component in the waveform. We generated 15 Gaussian

waveforms, each at a random position with widths ranging from 3 to 10 in 0.5 in-

crements. Next, we used EM and FMS to estimate the position of the waveform

component. Since EM already assumes GMM, it directly estimates the Gaussian

mean as the unknown position. On the other hand, FMS has no knowledge on the

shape of the waveforms. It outputs the clustering result where each cluster is regarded
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(a) (b)

Fig. 5.7. A simulated lidar waveform with (a) one Gaussian compo-
nent; (b) two Gaussian components.

as a waveform component. The position can be calculated by the mean or peak of the

cluster. At this stage, we used both the cluster mean and peak indicated as NMM1

and NMM2 respectively to estimate the position. The estimation error is measured

by e = |µ− µ̂|, where µ and µ̂ are the position of the simulated Gaussian compo-

nent and the estimated value, respectively. The errors from different approaches are

summarized in Fig. 5.8.

Fig. 5.8. EM and FMS comparison on simulated waveform with one
Gaussian component.
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In this experiment, NMM1 returned identical results with GMM. Compared with

NMM2, the estimation error of NMM1 is higher and less stable for waveform widths

greater than 6. Since real lidar waveforms often have a large variation on width,

NMM2 should be a better solution than NMM1. In the following experiments, we

exclusively used cluster peak in NMM to estimate the position of the waveform com-

ponents.

In the second experiment, we generated a sequence of waveforms, each with two

Gaussian components. The following cases were studied:

• The distances between the two components were varied, while their variances

and weights were fixed.

• The variance of one waveform component was changed while other parameters

were fixed.

• The weights of the two components were varied while their position and variance

were fixed.

We generated 10 waveforms for each case. The results with GMM and NMM

(cluster peak as the position) are presented in Fig. 5.9. In the figures, component 1

and 2 are the first and the second waveform components received by the sensor. For

each component, the estimation error with GMM and NMM is plotted. The values

of fixed parameters are also listed in the caption.

In Fig. 5.9(a) and (b), the estimation error decreases as the distance between

the two components increases and the width of the component decreases. It can be

explained by the fact that the two components are more separable in such cases. In

Fig. 5.9(c), the estimation error of NMM decreases as the weight of the first waveform

component rises. It conforms to the fact that we ran the mean-shift algorithm from

the first component. In all three plots, we find that the estimation error returned

by GMM has larger variation than NMM. Finally, in most scenarios, the estimation

error with either model is lower than 0.4. For a lidar system with a sampling rate of

one nanosecond, such estimation error will introduce a range error of less than 6cm.
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(a) (b)

(c)

Fig. 5.9. Estimation error of GMM and NMM along (a) the distance
between waveform components; (b) the width of a waveform compo-
nent; (c) the weight of waveform components.

5.4.2 Experiment with Real Lidar Data

The study of algorithm comparison needs the knowledge of ground truth to some

extent. The number of waveform components J may be obtained even without on-

site investigation. For example, the emitted lidar signal is directly reflected by bare

ground or building roof so that a single waveform component is expected in the

returned waveform. In other scenario such as forests and grasses, the footprint of

the lidar signal may cover multiple targets such as leaves, trunks and ground. The

returned waveform could be either a single component or multiple components. As
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is shown in Fig. 5.10., the whole experimental dataset is mainly composed of two

classes: bare ground and forest. For bare ground, the emitted lidar signal is directly

reflected by the around surface so that a single waveform component is expected in

the returned waveform. For forest, the footprint of the lidar signal may cover multiple

targets such as leaves, trunks, and ground. The returned waveforms could be either a

single component or multiple components. In other words, the number of waveform

components (J) is known to be 1 for the bare ground, but unknown for the forest

area. For this reason, we performed our tests on the bare ground area only.

Fig. 5.10. The bare ground in: (Left) World Imagery of Esri, where
the 10 × 10m2 study area is highlighted in red; (Right) Google
EarthTM Digital Globe image, where the locations of two waveform
examples are marked with blue pin icons.

We selected a 10×10m2 area from the bare ground as highlighted in Fig. 5.10(a).

There are altogether 5,031 waveforms in the area, so the waveform/point density is

50 per square meter. Two waveform examples are selected to study in the following

experiments as pinpointed in Fig. 5.10(b). In the experiment, we didn’t use the

estimation error to evaluate the algorithms since the ground truth was not available

at the time of the experiment. Instead, we checked the residuals between the original
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waveform and the reconstructed waveform from EM or FMS. Also, we visually checked

the fitness of the two approaches.

The decomposition results of two example waveforms are plotted in Fig. 5.11.

First, it is noted that the original lidar waveforms have a noise floor that is not

introduced in the simulated waveforms (Fig. 5.7). Such noise may be generated by

the sensor, atmosphere, or sampling, and they are inevitable in real lidar data. For

EM, a threshold pre-filtering was applied to remove the noise. FMS classifies such

noises as non-informative clusters and removes them after waveform decomposition.

In both Fig. 5.11(a) and (b), the decomposition results from EM is plotted on

the left and the results from FMS is on the right. It can be observed that the lowest

intensity of the EM decomposed component is 20, which is equivalent to the threshold

in the pre-filtering process. The Gaussian component from EM obviously deviates

from the original waveform, meaning that the assumption of GMM doesn’t hold in

(a)
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(b)

Fig. 5.11. Decomposition result of (a) waveform #1170908, and (b)
waveform #1073866. The results with GMM are plotted on the left
and that with NMM on the right.

this situation. As a result, the difference between the residuals of the two sides of the

main component is more than 40. Increasing the number of the Gaussian components

may reduce the residual deviation. However, it will generate more than one point on

the ground, contradicting the fact that such waveforms are returned from the bare

ground. On the right, the results from FMS are plotted. The waveform components

fit the original waveforms well because most part of the signal falls into the main

cluster. The residual of the informative component has the intensity in the range 0-

15. Such residuals are clustered as non-informative clusters and removed thereafter.

The two waveform examples are quite representative in our dataset. We ran EM on

all the waveforms (5,031 in total) in the 10 × 10m2 study area. For each waveform,
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we refer to the residual on the left side of the peak position as Residualleft, and the

residual on the right side as Residualright. The histogram of the residual difference,

Residualleft−Residualright, is shown in Fig. 5.12. Among all waveforms, 1,907 have

a residual difference greater than 35. We conclude that the fitness of GMM is quite

limited in the dataset.

Fig. 5.12. Histogram of difference of EM residual.

5.4.3 Comparison of Computation Time

We ran both EM and FMS for the entire data and extracted the ground points

using a filter implemented in the LAStools (http://rapidlasso.com/) software. It uses

a variation of the Axelsson’s (Axelsson, 2000) triangulated irregular network (TIN)

refinement algorithm that avoids some of the trigonometry overhead. We used the

default parameter settings to filter the point clouds resultant from the FMS and EM,

respectively. The number of points and computing time of both EM and FMS are

summarized in Table 5.1.

Notice from Table 5.1 that the ground point density after filtering is 1.5 (EM)

and 1.6 (FMS) points per square meter, respectively. Both are suitable to generate
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a DEM at one-meter resolution. DEMs at a resolution of 1 meter were then created

with ArcGIS 10.3.1. The ground elevation of the DEM ranges from 422 to 1,008

meters.

5.4.4 DEM Comparison

Since one of the applications for waveform decomposition is to create digital eleva-

tion model (DEM) using the waveform-generated discrete point clouds, we generated

DEMs with ground points obtained from both approaches. As shown in Fig. 5.12.,

hillshading of six 195×230 m2 sites in the study area were selected to highlight the

terrain details from the two decomposition methods. Circles of solid and dashed lines

are respectively used to label locations of apparent artifacts in the EM and FMS re-

sults. As a general observation, the two DEMs have comparable qualities. Both can

satisfactorily reflect the terrain morphology and almost all topographical details. On

the other hand, both results have a few noticeable small scale pits. These artifacts,

both in size and in number, are actually minimal, considering the fact that the terrain

is under heavy canopy. Examining the hillshading in a closer view, the FMS approach

created slightly fewer artifacts (Site 2, 3, 5 and 6) than EM. It should be noted that

the artifacts in both DEMs were likely introduced by imperfect filtering. As many

studies reported (Mücke et al., 2013; Langridge et al., 2014; Lin et al., 2013), high

quality DEM generation under dense forest canopy is still a challenging task for lidar

data processing.

As a primary study to the vertical accuracy of the resultant FMS DEM, its hill-

shading is stacked over the USTopo (ground) in Fig. 5.14. The waveform DEM

significantly reveals more detailed terrain features. For example, a road under the

forest can be successfully detected in the waveform DEM, whereas it is not visible in

the NED 1/3” DEM, which has a resolution of approximate eight (8) meters. The

pixel by pixel differences between the two DEM’s show a very good normal distribu-

tion with a mean of 0.89 meters and a standard deviation of 6.99 meters. This result
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Fig. 5.13. Hillshading of six (6) DEM samples (195×230 m2) gener-
ated by EM (left) and FMS (right).
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basically shows that there is no significant systematic bias existing in our waveform

DEM. According to the specification of this NED 1/3” DEM dataset, it was from

compilation of the NED 1” DEM, which has a nominal vertical accuracy of 7.0 me-

ters. Other topographic features, including ridges, valleys, gullies are also clearly

presented. On the other hand, suspicious striping effect in west-east (perpendicular

to the flight) direction is noticed. Such artifacts are caused by the unsynchronized

time between the GPS and the laser scanner, which will be discussed and corrected

in next chapter.
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Fig. 5.14. Hillshading generated from NED 1/3” DEM (left) and FMS
DEM (right). A road should exist as indicated by the red boxes. Many
fine topographic features are also clearly visible in FMS DEM. The
background map is USTopo map. The size of this area is about 770
m wide and 2,600 m tall.
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6. GEOREFERENCING AND SELF-CALIBRATION

Georeferencing is the process by which the 3-D points in the laser scanner coordinate

system are transformed into the 3-D points in the mapping coordinate system. Both

the POS measurements and the relative position and orientation between the onboard

components of lidar, IMU, and GPS antenna will be utilized in the transformation.

In most cases, the laser scanner and the POS are independent units from different

manufacturers. The accuracy of the georeferenced data is dependent on synchro-

nization and calibration of the lidar and POS. During the process of georeferencing,

calibration means determination of the exterior orientation described by boresight

misalignment angles in roll, pitch, and yaw (Shan and Toth, 2018). Ground con-

trol points (GCP), boresight flight plan, and multiple flight strips with overlap are

commonly required for the conventional calibration methods.

In this chapter, we first use the POS measurements to directly georeference the

lidar data. Then the problem of calibration will be studied. We develop a framework

of self-calibration that calibrates the boresight angles and performs precise georefer-

encing at the same time. The method is based on a single strip of data without GCP

or a special flight plan.

6.1 Model

6.1.1 Georeferencing

The purpose of georeferencing is to transform the target’s coordinate from the

laser scanner’s frame to the mapping frame. This process can be described as

rmtarget(tS, tIMU) = rmplatform (tIMU)+Rm
H (tIMU)·RH

IMU (tIMU)·RIMU
S ·rStarget (tS) (6.1)

where
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- rmtarget(tS, tIMU) and rStarget (tS) are the coordinates in the mapping frame and

the laser scanner’s frame, respectively,

- rmplatform (tIMU) is the position of the lidar platform, and

- Rm
H (tIMU) and RH

IMU (tIMU) are the transformation matrix between the different

coordinate systems.

In (6.1), there are two sets of variables that need to be resolved in the process

of calibration. The first one is the time misalignment ∆t = tS − tIMU , where tS

and tIMU are the clock time of the laser scanner and the POS unit, respectively. A

synchronized system assumes ∆t = 0; otherwise, ∆t should be determined during the

calibration process. The second set of parameters is the boresight angles (δω, δφ,

δκ) in the time-invariant matrix RIMU
S . In the initial stage of direct georeferencing,

these angles are assumed to be known, often either 0 or 90 degrees depending on the

specific definition of the onboard coordinate frames.

There are several different coordinate frames in the airborne lidar system. The

origin of the entire lidar platform is also called the origin of the body frame. Riegl

USA recommends the laser scanner be the reference point of the IMU navigation

coordinate frame so the origin of the scanner frame is also the origin of the body

frame of the lidar system. Specifically, in our experiment, the x axis of the lidar

frame points to the nadir direction of the aircraft, the y axis is the flight direction,

and z axis is wing-to-wing direction of the airplane. On the other hand, the x axis

of the IMU frame points to the nadir direction of the aircraft, the y axis is the flight

direction, and z axis is wing-to-wing direction of the airplane. See Fig. 6.1. for

illustration.

From the laser scanner’s coordinate system and the IMU coordinate system in

Fig. 6.1., the time-invariant conversion matrix between the two coordinate systems,

RIMU
S , has the form

RIMU
S = MS

y

(π
2

)
·MS

x

(π
2

)
, (6.2)
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Fig. 6.1. Illustration of the laser scanner’s coordinate system and the
IMU coordinate system.

where Mf
k (θ) represents a rotation in the f frame, along axis k, and with a rotation

angle θ, so that

MS
y

(π
2

)
=


cos
(
π
2

)
0 − sin

(
π
2

)
0 1 0

sin
(
π
2

)
0 cos

(
π
2

)
 (6.3)

MS
x

(π
2

)
=


1 0 0

0 cos
(
π
2

)
sin
(
π
2

)
0 − sin

(
π
2

)
cos
(
π
2

)
 (6.4)
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6.1.2 Self-Calibration with DEM

In practice, the axes of the scanner’s coordinate system and the navigation co-

ordinate are not parallel. The mounting misalignment angles δω, δφ, δκ (for roll,

pitch, and yaw), if available from lab calibration, are used to perform the rotation

between these two frames. The rotation matrix for applying the transformation due

to the boresight misalignment is as follows:

RIMU
S = MS

x (δκ) ·MS
y

(π
2

+ δφ
)
·MS

x

(π
2

+ δω
)

(6.5)

It is noted that two MS
x (θ) matrices are applied as the coordinate systems are

defined in Fig. 6.1.

Taking the problems of both synchronization and boresight calibration into con-

sideration, the coordinate of the lidar point p is expressed as

rmtarget, p (POSp,WFp; θ)

= G
[(
rmplatform,R

m
H ,R

H
IMU

)
p
, rStarget,p ; (∆t, δω, δφ, δκ)

]
= rmplotform (tS,p −∆t ) + Rm

H (tS,p −∆t) ·

·RH
IMU (tS,p −∆t) ·RIMU

S (∆ω, ∆φ, ∆κ) · rStarget,p (tS)

(6.6)

where ∆ω = π/2 + δω,∆φ = π/2 + δφ,∆κ = δκ. tS is set as the reference time of

the lidar system. The georeferencing process G(·) is a one-to-one mapping. It maps

each original waveform record, WFp, and POS record, POSp, to a unique lidar point

rmtarget, p.

In our work, we propose to use an existing quality ground DEM as the reference.

Let {}N denote a set of N lidar points, the objective function is the mean of squared

deviation (MSD) between the ground points of lidar and the reference DEM:

fN (θG; θg) = MSD
(
{rmtarget, pgrnd(θg) (θG)}

Ngrnd(θg)
,DEMref

)
(6.7)

In (6.7), {rmtarget, pgrnd(θg) (θG)}Ngrnd(θg) is the set of Ngrnd (θg) ground points. They are

obtained by applying a waveform filtering in the following way. First, the entire N

lidar points {rmtarget, p (θg)}N are generated with θg. A traditional ground filter, as is
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described in Chapter 5, classifies the points as “ground” and “non-ground”. Since

the georeferencing is one-to-one, the original waveform data
{
rStarget,p

}
N

and POS

data
{(

rmplatform,R
m
H ,R

H
IMU

)
p

}
N

will also be labelled. Finally, the original waveform

and POS data that are labeled as “ground”,
{

(WF, POS)pgrnd(θg)

}
Ngrnd(θg)

, will be

extracted to generate a set of new ground points under θG.

With waveform filtering, the coordinates of the ground points and the selection

of those points may come from different parameters θG and θg. When θg ≈ θG, the

filtering results are equivalent, so that

{pgrnd (θg)}Ngrnd(θg) = {pgrnd (θG)}Ngrnd(θG) (6.8)

Such assumption doesn’t hold if θg and θG are far away from each other because

the geometry and relative position between the lidar points may change significantly

and the filtering results vary.

The classification error introduced by the ground filtering will inevitably affect the

objective function. Let the true ground points be {rmtarget, pgrnd}Ngrnd ; the estimated

ground points in (6.7) can be expressed as

{rmtarget, pgrnd(θg) (θG)}Ngrnd(θg)

= {rmtarget, pgrnd (θG)}Ngrnd

− {rmtarget, pε1nongrnd(θg) (θG)}Nε1(θg) + {rmtarget, pε2grnd(θg) (θG)}Nε2(θg)

(6.9)

where

- {rm
target, pε1nongrnd(θg)

(θG)}Nε1(θg) is the set of ground points that are mistakenly

classified as non-ground points by applying the ground filter.

- {rm
target, pε2grnd(θg)

(θG)}Nε2(θg) is the set of nonground points that are mistakenly

classified as ground points by the ground filter.

Both Nε1(θg) and Nε2(θg) are variables of θg. The optimization strategy should

take consideration of the impact of this fact.



80

6.2 Solution

With the function (6.7), the process of self-calibration can be modeled as an

optimization problem of minimizing the objective function fN (θG; θg):

θ∗G = (∆t, δω, δφ, δκ)∗

= argmin
θG

fN (θG; θg)

= argmin
θG

MSD
(
{rmtarget, pgrnd(θg) (θG)}

Ngrnd(θg)
,DEMref

) (6.10)

The self-calibration process is the procedure of solving the optimization problem of

(6.10). It consists of three steps: initial optimization, synchronization, and boresight

calibration. A heuristic optimization will be applied in the initial calibration. After

a relatively small searching area around the optimal solution is located by the initial

optimization, a fixed set of ground points will be chosen in the objective function. A

fine optimization can be then conducted in the subsequent steps.

6.2.1 Heuristic Optimization

In the initial stage of optimization, the initial value θ0 may be far away from the

optimum solution. The ground filtering should be conducted whenever θ changes to

avoid the classification errors introduced by the unsynchronized data and the mis-

aligned boresight angles. In such case, the filtering process is equivalent to a conven-

tional ground filter that directly works on the lidar points. The objective function

becomes

fN (θG; θG) = MSD
(
{rmtarget, pgrnd(θG) (θG)}

Ngrnd(θG)
, DEMref

)
(6.11)

A consideration of (6.11) is that the set of the estimated ground points, Ngrnd (θG)

will change as θG changes. This will in turn affect the objective function. Therefore,

the problem becomes non-convex and cannot be solved by a gradient-based searching

algorithm.
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We utilize a heuristic optimization method of particle swarm optimization (PSO)

(Kennedy, 1995; Golbon-Haghighi, M.H., et al., 2018) to optimize the objective func-

tion fN (θG; θG). The basic idea of the particle swarm optimization can be expressed

in the following: first, we randomly generate some initial solution candidates such as

θ0 = {θ0,1, θ0,2, . . . , θ0,M}. We define these candidates as population and an individ-

ual candidate as a particle. Next, each candidate will evolve according to

∆θi+1,d = w ·∆θi,d + c1 · r1 · (θ∗d − θi,d) + c2 · r2 · (θ∗i − θi,d) (6.12)

θi+1, d = θi,d + ∆θi+1, d (6.13)

where

- ∆θ∗,d is the particle velocity,

- θ∗d is the best value that the d-th candidate has achieved so far,

- θ∗i is the best value that is obtained by any particle in the population,

- c1 and c2 are constant nunbers of learning factors, and

- r1 and r2 are random numbers between 0 and 1.

The “fitness” of a particle is evaluated according to the objective function

fN (θG; θG). The algorithm converges when the best candidate cannot be further

improved within a given number of iterations.

In our problem, one of the challenges of particle swarm optimization is that the

cost of calculating fN (θG; θG) for each candidate θG could be very high. As is shown

in Chapter 5, it takes up to a few hours to obtain the DEM from the raw waveform

data. In particle swarm optimization, the number of candidates in each iteration

could be as many as a few dozens, and it may need hundreds of iterations before the

algorithm converges. From the aspect of time efficiency, it is unwise and unnecessary

to evaluate the objective function with all of the lidar points (N >50,000,000 in our

case). Instead, a subset of the entire data will be selected to quickly find out the

region in which the optimal solution may exist.
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6.2.2 Convex Optimization

After the initial optimization, a searching range is narrowed down to a rela-

tively small region by particle swarm optimization. In this range, {pgrnd (θPSO)} =

{pgrnd (θG)} or

{rmtarget, pgrnd(θPSO) (θG)}Ngrnd(θPSO) = {rmtarget, pgrnd(θG) (θG)}Ngrnd(θG), so the objective

function becomes

fN (θG; θPSO) = MSD
(
{rmtarget, pgrnd(θPSO) (θG)}

Ngrnd(θPSO)
, DEMref

)
(6.14)

Comparing to (6.11), the objective function in (6.14) is evaluated on a fixed set

of points {pgrnd (θPSO)}. Since Ngrnd (θPSO) is not varying with reference to θG,

the selection of the ground points will be stable. To further guarantee the correct

convergence of the objective function, the problem of synchronization and boresight

calibration are solved separately.

6.3 Data

6.3.1 IMU Measurements

The GPS and the INS are measured at different sampling rate, and they will be

integrated and interpolated. At the same time, the integrated results are converted

to the laser frame, i.e. the body frame. The conversion requires the knowledge of the

two distances between the origin of the body frame and the IMU frame. Specifically,

the distance between the GPS antenna and the laser scanner is defined as the GPS

lever arm; the distance between the IMU instrument and the laser scanner is the

IMU lever arm. In our work, the lever arm measurement and GPS/INS integration

is conducted by the data provider. The part of the trajectory file that corresponds to

the acquisition of the laser scan dataset consists of approximately 45,000 trajectory

records at a sampling rate of 200 Hz. From Fig. 6.2., we can see that the airplane

kept heading north when range data was collected by the scanner and the roll and

heading remained similar.
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Fig. 6.2. The platform directions shown in tIMU tag. The section
where lidar sensor collected data is highlighted in red.

6.3.2 Reference DEMs

We collect three DEMs for our study. The first one is a 5m DEM (NAD 1983

UTM zone 18N) obtained from USGS National Geologic Map Database (NGBMDB);

the second one is a 10m DEM (GCS North America 1983/NAVD88 geoid) obtained

from NED (National Elevation Dataset); the third one is an ASTER (Advanced

Spaceborne Thermal Emission and Reflection Radiometer) GDEM (Global Digital

Elevation Model) version 2 with 30m resolution (GCS WGS 1984/EGM96 geoid)

from USGS earth explorer. Among them, the highest resolution reference dataset in

the study area that was available to us at the time of the study is the DEM with 5m

ground sampling distance collected by the USGS for geological studies in the Paine

Run watershed (https://ngmdb.usgs.gov/Prodesc/proddesc 70841.htm 10/23/2018).
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We conduct a pairwise comparison among the three DEMs. The difference is

shown in Fig. 6.3.

Ideally the three DEMs should agree with each other where the random er-

rors/noises are attributed to cell resolution. In Fig. 6.3., however, the differences

among them are quite high. This may be explained by the measurement errors,

canopy effects, etc. Relatively, the difference between the 5m and 10m DEM is small.

We will opt out of the 30m DEM since the canopy effects of ASTER GDEM can be

very large.

The height difference of the 5m and 10m references over the study area is shown

in Fig. 6.4. In most of the study area, the 10m DEM is lower than 5m DEM. This

may be caused by the canopy effect. However, such phenomenon reverses in the

southwestern corner, where the two sides of a ridge have opposite DEM difference

(highlighted in purple circle).

(a) DEM5m −DEM10m
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(b) DEM5m −DEM30m

(c) DEM10m −DEM30m

Fig. 6.3. Comparison of all the three reference DEMs (m).
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Fig. 6.4. (Left) The study area shown in the World Imagery of
Esri; (Right) The difference (m) of the 5m and 10m reference DEMs:
DEM10m−DEM5m. In both images, the area covered by lidar points
is marked as gray.
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(a) 5m DEM

(b) 10m DEM
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(c) 5m DEM (d) 10m DEM

Fig. 6.5. Hillshaded reference DEMs: (a) 5m DEM; (b) 10m DEM;
(c) the study area in the 5m DEM; (d) the study area in the 10m
DEM.

6.4 Experiment

6.4.1 Direct Georeferencing

In direct georeferencing, the laser scanner and the IMU are assumed to be well

aligned so that [∆ω0, ∆φ0,∆κ0] = [90◦, 90◦, 0◦]. Also, the system is assumed to be

synchronized as ∆t0 = 0s. Under these assumptions, we have θ0 = [∆t0, ∆ω0, ∆φ0,
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Table 6.1.
Results of particle swarm optimization

Reference DEM 5m DEM 10m DEM

Optimization results ∆t1 14.8471s 14.9224s

∆ω1 91.8591◦ 89.2209◦

∆φ1 88.5384◦ 89.8452◦

∆κ1 -0.8713◦ 1.7304◦

∆κ0] = [0s, 90◦, 90◦, 0◦] as is shown in Fig. 6.6. The generated point cloud under

θ0 is compared to the 5m reference DEM.

There is a significant difference between the lidar DEM and the reference DEM.

The mean difference of 91.16m is very uncommon even for the case that the boresight

misalignment is considered, so it is necessary to calibrate both the boresight and the

time misalignment according to the objective function described in previous section.

6.4.2 Heuristic Optimization

First, we sample 90,000 points from the data over the study area. An initial

estimation of the parameters will be obtained by minimizing the objective function

of f90000 (θG; θG).

As is shown in Fig. 6.7., we selected three strips of data as the sample points.

Each strip includes 30,000 points. They are: points 1-30,000; points 450,001-480,000;

points 900,001-930,000. We then run particle swarm optimization with both 5m and

10m reference DEMs. The difference between the lidar DEM and both reference

DEMs are calculated. The results are summarized in Table 6.1., Fig. 6.8., and Fig.

6.9.

After the initial optimization, the hillshaded DEM is significantly improved as

the horizontal strips become much less obvious, as is shown in Fig. 6.8(a) and Fig.
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(a) The hillshaded DEMlidar. (b) DEMlidar −DEM5m

(c) The histogram of the DEM difference

Fig. 6.6. DEM differences (m) between the lidar points and the ref-
erence. The lidar data is generated with the initial guess of θ0.
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Fig. 6.7. The sampled 90,000 points used in the initial optimization.

6.9(a). From the view of DEM differences, the 5m DEM matches the lidar point

clouds better. This can be reflected from both the maximum and minimum DEM

differences, as is shown in Fig. 6.8(b) and Fig. 6.9(b), and the mean difference, as

is shown in Fig. 6.8(c) and Fig. 6.9(c). In contrast, the DEM differences between

the lidar DEM and the 10m reference DEM has the mean of 9.130m, which is ten

times higher than the mean difference of 0.884m between the lidar DEM and the

5m reference DEM. In the next steps of optimization, we will exclusively use the 5m

DEM as the reference.

Comparing Fig. 6.6. and Fig. 6.9., we observe the mean difference between the

5m reference DEM and the lidar DEM decreases from 91.16m to 0.86m. It means that

most errors in the direct georeferencing are removed by particle swarm optimization.

The result shows that the estimated time misalignment is greater than 14.84 seconds

and the estimated boresight angles are around 1 to 2 degrees deviated from the
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(a) The hillshaded DEMlidar (b) DEMlidar −DEM10m

(c) The histogram of the DEM difference

Fig. 6.8. Particle swarm optimization result with 10m DEM reference (in meters).
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(a) The hillshaded DEMlidar (b) DEMlidar −DEM5m

(c) The histogram of the DEM difference

Fig. 6.9. Particle swarm optimization results with 5m DEM reference (in meters).
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initial guess. We conclude that the main error before optimization during the direct

georeferencing comes from the unsynchronized clocks between the laser scanner and

POS.

The particle swarm optimization result could be further improved for the following

reasons: (1) the particle swarm optimization uses a series of random numbers in

the search process. It is a good strategy to avoid the local minimal trap, but it

cannot guarantee that the output result is the global optimal; (2) the performance

of the solution is restricted by the number of the lidar points; (3) since the objective

function is fN (θG; θG), the ground filtering process is embedded in each iteration. In

the study area, the forest area has dense leaves so that many lidar signals cannot

penetrate the canopy and reach the ground. Errors are inevitable in the filtered

ground. Furthermore, such errors fluctuate as Ngrnd(θG) changes so that the results

of parameter estimation are affected.

6.4.3 Synchronization

With the result of the initial optimization, we obtained the solution θ1 as the first

approximation to the global optimal solution. The following search process will be

conducted in a relatively small neighborhood on the objective function fN (θG; θ1).

As is discussed in Section 6.1.3, the result of waveform filtering is applied to select

the ground points so that the selection of the ground points is no longer a variable

of θG. Hence, a convex optimization such quasi-Newton algorithm can be utilized to

find out the local minimal around the result of particle swarm optimization.

In the process of synchronization, we fix the boresight angles to be [∆ω0, ∆φ0,∆κ0]

and conduct the BFGS quasi-Newton algorithm (Broyden, C. G, 1970; Fletcher, R.,

1970; Goldfarb, D., 1970; Shanno, D. F., 1970) with different initial values of ∆t0.

We ran 11 experiments by changing the initial value from 14.50 to 15.50 seconds with

an increment of 0.10 seconds. The results are summarized in Table 6.2.
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Table 6.2.
Optimization result of time calibration

Experiment # Initial value ∆t0 Converged value ∆t2

1 14.50 14.9990

2 14.60 14.9991

3 14.70 14.9989

4 14.80 14.9988

5 14.90 15.0605

6 15.00 14.9990

7 15.10 14.9991

8 15.20 15.0605

9 15.30 14.9991

10 15.40 14.9989

11 15.50 14.9991

Regardless of the initial value, the time misalignment ∆t always converges to 15

seconds. We conclude that ∆t2=15 seconds is the stable solution of our synchroniza-

tion process. On the other hand, the leap seconds of civil time Coordinated Universal

Time (UTC) on the data collection day is 15 seconds. It means the two data use a

different system: the GPS/IMU units use a GPS time while the scanner uses UTC

time. And this has not been considered when deriving the trajectory. We then set

∆t= 15.0 second and conduct the further optimization for boresight angles.

6.4.4 Boresight Calibration

After the synchronization, the problem of self-calibration is reduced to a problem

of boresight optimization on fN ((∆ω,∆φ,∆κ)G; θ1, ∆t2) for a given set of ground

points {pgrnd (θ1)}Ngrnd(θ1). When selecting the number of ground points, we strive
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for balance between the time consumption and the fact that the lidar points should

be adequate to reflect the ground shape. In our experiment, we choose one tenth of

all the ground points in the optimization, so that Ngrnd (θ1) =25,637.

With the initial value [∆ω0, ∆φ0,∆κ0] = [90◦, 90◦, 0◦] and the calibrated time

∆t2 = 15s, the distribution of the points and their distance to the reference DEM

is shown in Fig. 6.10. In the figure, both the color and the radius of each point is

coded by the difference between the lidar estimated height and the reference height.

We can see the height difference is not evenly distributed: most of the lidar ground

points are higher than the reference DEM in the upper half map and lower than the

reference DEM in the lower half map. The histogram of the height difference is shown

in Fig. 6.11. It represents two peaks, one is positive and one negative, which can

happen if the system is not well calibrated and the quality of the ground filtering is

not satisfying.
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Fig. 6.10. The 25,637 ground points that are included in the opti-
mization for boresight calibration (m).
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Fig. 6.11. The histogram of height (m) difference between the 25,637
ground points and the reference DEM. The lidar estimated heights
are obtained after the time synchronization is calibrated.



99

With the boresight angles obtained from the initial optimization[∆ω1,∆φ1,∆κ1] =

[91.8591◦, 88.5384◦, −0.8713◦] and the calibrated time ∆t2 = 15s, the distribution of

the points and their distance to the reference DEM is shown in Fig. 6.12. The his-

togram of the height difference is shown in Fig. 6.13. From both the 2-D distribution

and the histogram, the height difference is still not evenly distributed.
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Fig. 6.12. The 25,637 ground points after the calibration of time
synchronization and the initial optimization of boresight angles (m).
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Fig. 6.13. The histogram of height (m) difference between the 25,637
ground points and the reference DEM after the calibration of time
synchronization and the initial optimization of boresight angles.

For multiple initial values, we run the quasi-Newton algorithm for the boresight

calibration. Some results are summarized in Table 6.3.

Table 6.3.
Optimization result of boresight calibration.

Initial value (◦) Converged value (◦)
√
MSD(m)

90 90 0 90.8804 89.0024 -0.1561 1.0303

90 90 -5 90.8804 89.0024 -0.1561 1.0303

90 90 5 90.8804 89.0024 -0.1561 1.0303

85 90 0 90.8804 89.0024 -0.1561 1.0303

95 90 0 90.8804 89.0024 -0.1561 1.0303

90 85 0 90.8804 89.0024 -0.1561 1.0303

90 95 0 90.8804 89.0024 -0.1561 1.0303

The experiments are repeated 1,000 times with the random initial values in the

range of {[∆ω,∆φ,∆κ] : ∆ω ∈ [85◦, 95◦],∆φ ∈ [85◦, 95◦],∆κ ∈ [−5◦, 5◦]} . When

the initial offset is no greater than 5◦ from [90◦, 90◦, 0◦], the algorithm converged
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to [90.8804◦, 89.0024◦, −0.1561◦], which is the stable solution of our algorithm. Fig.

6.14. shows the difference between the 25,637 lidar ground points and the reference

DEM is overall evenly distributed. The histogram in Fig. 6.15. shows that the mean

of the height difference is reduced to 0.8462m with the standard deviation of 0.5876m.

With the calibrated parameter θ∗ = [15s, 90.8804◦, 89.0024◦, −0.1561◦], the final

point cloud and digital elevation model are generated. After the calibration, the west-

east linear undulations that appear in Fig. 6.6(a), Fig. 6.8(a) and Fig. 6.9(a) are

removed, as is shown in the hillshaded DEM of Fig. 6.16(a). Fig. 6.16(b) shows that

the height difference between the lidar DEM and the reference DEM is quite evenly

distributed over the study area. The histogram of the height differences is plotted in

Fig. 6.16(c). Compared to the initial optimization results, the mean is reduced from

0.884m to 0.866m, and the standard deviation is reduced from 1.892m to 1.375m.

The DEM difference of 0.866m could possibly be caused by the errors of the ground

filtering or the GPS/INS measurement and integration. Comprehensive comparison

and more convincing evaluation based on additional independent data remains to be

a future effort.

6.5 Summary

Conventionally, boresight calibration is conducted either by comparing lidar points

with known ground control points or the co-registration of multiple lidar strips. It

becomes challenging when no exact correspondence for ground control points exists.

Furthermore, such conventional calibration often requires large amounts of regularly

shaped objects, which may be absent in many cases. The self-calibration method

proposed in this work makes use of the publicly accessible DEM as control over

the entire study area. Compared to the conventional method, the new method has

minimum requirements on the flights and ground control over the study area. As such,

our method provides a single strip, GCP free solutions to the boresight misalignment

calibration.



103

Fig. 6.14. The height difference (m) of the 25,637 points georeferenced
with the optimized boresight angles.
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Fig. 6.15. The histogram of height (m) difference between the 25,637
ground points and the reference DEM after the boresight is calibrated.
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(a) The hillshaded DEMlidar. (b) DEMlidar −DEM5m

(c) The histogram of the DEM difference

Fig. 6.16. DEM difference (m) after self-calibration.
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The robustness of the new approach is verified from the experiments. For both

time synchronization and boresight misalignment, a stable result can be obtained

regardless of the initial values of optimization.

The new method consists of two steps to assure a correct and stable solution. In

the first step, we use heuristic optimization to find a good initial solution. The sec-

ond step involves fine optimization conducted in a small neighborhood of the global

optimal solution. This two-step strategy is developed to address the specific problem

encountered in our experiments where the time synchronization is far from the com-

mon value of ∆t = 0. In our example, the heuristic optimization technique, particle

swarm optimization, is utilized. In many other cases, the time synchronization is not

as severe as in our case or the system may already be synchronized so that θG ≈ θg

and {pgrnd (θg)} = {pgrnd (θG)}. In such cases, the ground filtering in each iteration

and the particle swarm optimization may be skipped.
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7. CONCLUSION

This thesis studied the geospatial processing of the airborne full waveform lidar data,

which is both comprehensive and thorough. We developed new methodologies on the

two main steps of full waveform data processing. Our contribution is twofold. For

the range measurements, we introduced a nonparametric mixture model that can fit

the real lidar signals better than the conventional Gaussian mixture model. We also

developed a fuzzy mean shift algorithm to decompose the lidar waveforms. Compared

to the conventional methods such as EM, the new approach is not only faster, able to

generate more details, but also more robust because the range measurements are not

affected by the process of noise filtering. For calibraing the boresight angles, we took

advantage of the abundant information of the full waveform data and developed a

self-calibration method based on a reference DEM. The new self-calibration approach

works without the need of multiple flight strips and planner objects. The boresight

calibration can be conducted with a single strip over dense forest area.

7.1 Waveform Decomposition

We introduced a nonparametric mixture model to describe asymmetric lidar wave-

form components. Compared with the traditional GMM, the nonparameter mixture

model successfully models a variety of waveform components, regardless of whether

they are Gaussian or non-Gaussian and symmetric or asymmetric. As a general ap-

proach to waveform decomposition, the proposed fuzzy mean shift essentially is a

density-based data clustering approach, which does not assume that waveforms fol-

low any functional or parametric distribution. Unlike many existing practices, the

FMS algorithm does not need peak detection prior to decomposition and can simul-

taneously determine the number of waveform components during the decomposition
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process. Furthermore, the point density of the decomposed waveforms largely relies

on one single parameter, i.e., the kernel bandwidth, for which three to four waveform

sampling intervals has been shown suitable in our work.

Our tests over a dense forest area have validated the noticeable asymmetry of

the returned waveforms and demonstrated satisfactory performance of the proposed

FMS method. A detailed DEM with minimum artifacts can be produced through the

subsequent filtering. Compared with the conventional EM method under an optimal

implementation, the FMS approach is about three times faster, whereas the resultant

DEM is very similar and tends to have fewer artifacts. We not only develop a novel

theoretical model and general solution to the waveform decomposition problem but

practically provide a promising satisfactory approach to terrain generation under

heavy canopy. This is useful for studies in geomorphology, hydrology, and other

Earth science subjects.

7.2 Self-Calibration

We developed a novel self-calibration method which requires no ground control

points, no planner objects, and no overlap flight strips. The boresight angles can be

estimated with a single flight strip over the forest area. Compared to the conventional

boresight calibration method, which is conducted either by comparing the lidar points

with the known ground control points or the coregistration of multiple lidar strips,

our approach significantly reduces the cost of boresight calibration. With the reduced

cost, the boresight calibration can be conducted routinely and more frequently, so that

it potentially makes the lidar measurement results more reliable and more precise.

Other advantages of the new self-calibration method include: (1) it synchronizes

the time clocks after the lidar data is delivered. Before our work, the soft synchro-

nization was rarely reported. (2) it calibrates the boresight misalignment without

ground control points and boresight flight plan. The restriction of the self-calibration
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approach has the least limitation among all the existing methods. (3) it solves the

problems of synchronization and boresight calibration when they both exhibit.

The uniqueness of our self-calibration method is the use of the waveform filtering

and publicly accessible DEM, which takes advantage of the development of both

hardware manufacturers and professional geomatics community. With the growing

adoption of full waveform lidar and the increasing availability of high resolution,

high quality DEMs, more broad applications and more reliable results from the new

self-calibration method can be expected.

7.3 Future Work

Future studies can be carried out in a few topics. They may include: optimal ker-

nel selection, bandwidth selection, and alternative fuzzy clustering algorithms. There

is also a need to comprehensively evaluate the proposed waveform decomposition ap-

proach. To be specific, further studies may look into the benefit of the consideration

of asymmetry and the adoption of nonparametric mixture model in urban areas. For

vegetation, forestry, and bathymetry studies, further exploration is needed to examine

the ability of the FMS method to extract near-ground returns under low vegetation

and dense canopy for subsequent DEM construction.

The decomposed waveform components can be further utilized for vegetation clas-

sification, biomass estimation, and single tree detection. Unlike the conventional

GMM, the decomposed waveforms may not necessarily be Gaussian or symmetric

under the nonparametric modeling. Asymmetry, revealed by the nonparametric ap-

proach, is a unique property that GMM-based methods lack and do not directly

provide. Waveform signature, including the skewness property, may be examined in

terms of different terrain features or objects.

More interesting results are expected from the extension of self-calibration. For

example, the lidar data can be divided into many sections according to the acquisition

time. The boresight angles can be estimated for each section, so the behavior of the
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boresight drift can be studied. In addition, blocks of multiple flight strips may also

be evaluated as comparison to the developed self-calibration method.
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