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ABSTRACT

Woodford, Nathaniel T. M.S., Purdue University, December 2018. Robust Sensor
Selection Strong Detectability. Major Professor: Shreyas Sundaram.

An unknown input observer provides perfect asymptotic tracking of the state of

a system affected by unknown inputs. Such an observer exists (possibly requiring a

delay in estimation) if and only if the system satisfies a property known as strong

detectability. In this thesis, we consider the problem of selecting (at design-time) a

minimum cost subset of sensors from a given set to make a given system strongly

detectable. We show this problem is NP-hard even when the system is stable. Fur-

thermore, we show it is not possible to approximate the minimum cost within a factor

of log n in polynomial-time (unless P = NP ). However, we prove if a given system

(with a selected set of sensors) is already strongly detectable, finding the smallest

set of additional sensors to install to obtain a zero-delay observer can be done in

polynomial time. Next we consider the problem of attacking a set of deployed sensors

to remove the property of strong detectability. We show finding the smallest number

of sensors to remove is NP-hard. Lastly through simulations, we analyze two greedy

approaches for approximating the strong detectability sensor selection problem.
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1. INTRODUCTION

There is an increasing need to design controllers and estimators for large-scale systems

in a variety of application domains, including computational biology, system of sys-

tems, intelligent traffic systems, communication networks, and power grids [1–4]. The

states of such systems can be (partially) measured by sensors deployed at various lo-

cations. However, there are many instances where it would be difficult or impractical

to measure all the states of the system. This could be due to initial implementation

cost or runtime energy cost of the sensors [5]. Therefore, a key challenge is finding

a subset of sensors with minimum cost to deploy on the system to achieve certain

performance objectives.

The problem of determining the minimal cost selection of sensors has been studied

extensively in recent years. Existing approaches can be broadly separated into dy-

namically switching (or scheduling) between different sensors at runtime (e.g., [6–9]),

and choosing sensors at design time (e.g., [10–17]). For instance, [10] considered the

problem of selecting the smallest number of sensors to make a system observable,

and showed this problem is NP-hard to approximate within a factor of log n. In the

context of sensor selection for Kalman filtering, the papers [13,14] showed selecting a

set of sensors (within a budget constraint) to minimize the trace of the steady state

mean square estimation error (MSEE) is NP-hard, and furthermore, the minimum

MSEE cannot be approximated within any constant factor in polynomial-time (un-

less P = NP ). Similarly, [15] sought to minimize the number of sensors to achieve

a certain estimation error, and to minimize the estimation error with a given num-

ber of sensors. The paper [16] studied minimal actuator placement for structural

controllability, and [17] took a geometric approach to optimal sensor design.

In this thesis, we consider the problem of (design-time) sensor selection for linear

time-invariant systems that are affected by unknown (and arbitrary) inputs. Such
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inputs can be used to represent faults, disturbances, model reduction errors, or mali-

cious attacks [18–20]. For instance, in large-scale critical infrastructure and industrial

plants, cyber-attacks can be injected at various points in the system, and the char-

acteristics of those attacks may not be known a priori; such attacks can thus be

modeled as unknown inputs [19–21]. In this case, the system operator’s task is plac-

ing sensors on the system in order to estimate the state despite the attacks injected

by the adversary. As another example, consider a diffusive process such as a gas

spreading over a given area [22], or temperature dynamics across a Multi-Processor-

System-on-Chip [23]. These diffusive dynamics are driven by source injections at

various locations, whose characteristics may not be known. In such cases, a limited

number of sensors must be carefully deployed to estimate the gas concentrations or

temperatures at all points in the space, despite lack of knowledge of the injected

quantities.

In order to obtain perfect (asymptotic) estimation of the state of systems driven

by unknown inputs (such as those described above), one must construct an unknown

input observer(UIO) which monitors the output of the system (provided by the de-

ployed sensors) and maintains an estimate of the state (possibly with some delay) [24].

Such observers also find applications in fault-detection and robust estimation [25,26].

For an unknown input observer to exist, the system must be strongly detectable (i.e.,

all invariant zeros of the system must be stable) [27, 28]. As a necessary condition

for strong detectability is detectability, and it was shown in [10] that it is NP-hard

to determine the minimum set of sensors to make a system detectable, the problem

that we consider in this thesis is trivially NP-hard as well. However, the fundamental

question that motivates this thesis is the following: is the NP-hardness of the sensor

selection problem for strong detectability solely due to the need to obtain detectabil-

ity? In other words, do the unknown inputs contribute to the computational

complexity of the problem?

We answer this latter question in the affirmative by showing it is NP-hard to

find a minimum cost selection of sensors to make a given system strongly detectable,
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even when the system is stable. In particular, by restricting our attention to stable

systems, we ensure that all sensor selections cause the system to be detectable, and

thereby eliminate the complexity of choosing sensors to satisfy that property. Our

NP-hardness proof relies on carefully constructed stable LTI system instances affected

by unknown inputs, along with sets of available sensors. Additionally, we show the

stronger result that the minimum cost cannot be approximated within a factor of

log n. This inapproximability result mirrors the corresponding result for minimal

sensor selection for observability provided in [10], but again arises from the need to

handle the unknown inputs (as opposed to ensuring detectability as in [10]). However,

we show once a set of sensors is selected to make the system strongly detectable, the

problem of finding the lowest cost set of additional sensors to obtain a zero-delay

unknown input observer can be solved in polynomial time.

After establishing the above complexity results for the sensor selection problem,

we turn our attention to the problem of attacking a deployed set of sensors in order to

remove the property of strong detectability from the system. Specifically, we consider

a scenario where an attacker can remove a given number of deployed sensors in an

attempt to cause the remaining system to not be strongly detectable. We prove it is

NP-hard for the attacker to find the minimum number of sensors to remove to achieve

this.

Finally, we propose two greedy selection criteria to select at design time a min-

imal cost subset of sensors such that the system is strongly detectable. We created

instances of our problem from known instances of Set Cover from paper [29]. Lastly,

we provide simulation results comparing the performance of the two greedy selection

criteria.

1.1 Motivating Problems

We present two examples of problems where an unknown input observer is re-

quired to provide asymptotic knowledge of the state of the system. The first example
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considers modeling the temperature of several processors and the second example

explores the use of an unknown input observer to determine the gas concentration at

various locations.

1.1.1 The Multi-Processor System-on-Chip Problem

Suppose a computer manufacturer is constructing a multi-processor system on

a chip. To avoid the system from overheating, the designer desires to know the

individual temperature of each processor on the chip.

When relatively few processors exist, the designer could potentially place a tem-

perature sensor on each processors. However, as the number of states increases (i.e.,

temperature of each processor), it becomes impractical to place a sensor on every pro-

cessor. This could be due to budget, time, or other constraints. We will not assume

the power consumed by all processors is known or accurate (the power consumed re-

lates to the heat output of each processor [30]). Without knowledge of these inputs,

a UIO must be designed to have full asymptotic knowledge of each state.

1.1.2 The Gas Diffusion Problem

US military personal wear Mission-oriented protective posture (MOPP) gear in

toxic environments. The bulky gear degrades soldiers’ performance and increases the

time required to complete the mission [31]. Consider a scenario where a commander

desires to estimate the concentration of a toxic gas over a large battlefield. By es-

timating the concentrations, only the soldiers at risk of exposure would be required

to wear the MOPP gear. The other soldiers would be able to continue the mission

unencumbered.

In the above scenario, the system’s states are the gas concentrations of evenly

spaced locations on the battlefield. The system’s state dynamics are determined

by gas diffusion equations. Although the location of each gas source is known, the
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amount of gas produced at each source is unknown. Thus this problem also requires

a UIO.

We assume due to budget constraints, the commander does not desire to place a

sensor over every area of interest on the battle field. Instead the commander desires

to know the minimum number of locations a sensor must be placed for a UIO to

provide perfect asymptotic tracking of the concentration of the gas at every location

of interest. Since the observer does not have access to the inputs (i.e., gas injections)

the chemical sensors must be deployed in such a way that a UIO can be constructed.

1.2 Notation and Terminology

The set of real numbers, complex numbers, and integers are denoted as R, C and

Z respectively. We denote restrictions of those sets via subscripts (e.g., R≥0 denotes

all nonnegative real numbers). Matrices are denoted in bold (e.g., A, B, C). The

identity matrix of dimension r × r is denoted Ir and the zero matrix is denoted as 0

(with subscripts to denote the dimensions, as needed). The notation A(i, j) indicates

the ith row and jth column of the matrix A. We denote the transpose of a matrix

A by A′. The notation diag() indicates a diagonal matrix with the values in the

parentheses along the diagonal. A binary indicator vector µ is a vector where each

element is either a 1 or a 0. The complement of an indicator vector is denoted µc,

where each 1 in µ becomes a 0 and vice versa. All vectors are column vectors, unless

otherwise noted. The symbol e represents Euler’s number.
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2. BACKGROUND KNOWLEDGE - CONTROL THEORY

2.1 The Dynamic System Model

In this thesis we will focus our attention on the discrete time linear system modeled

as follows:

x[t+ 1] = Ax[t] + Bu[t] (2.1)

y[t] = Cx[t], (2.2)

where t ∈ Z≥0 is the discrete-time index, x[t] ∈ Rn is the state vector, u[t] ∈ Rm is

the unknown input vector, y[t] ∈ Rp is the output vector, A ∈ Rn×n is the system

dynamics matrix, B ∈ Rn×m is the input matrix, and C ∈ Rp×n is the output matrix.

We assume without loss of generality throughout that B has full column rank.

As stated in (2.1), the state of the system x changes at each time step. This

change is affected by the system dynamics of the current state and also the inputs

into the system. The sensors of the system are represented in the C matrix. As

equation (2.2) states, the output of the sensors is a function of the sensor matrix and

the states of the system.

2.2 Unknown Input Observer (UIO)

A UIO is a state estimator that takes as input the output vector Y over several

time steps and outputs an asymptotic tracking of the system states with some delay.

In particular, the UIO does not know, or use, the input vector u. For α ∈ Z≥0, we

will denote the output of system (2.1), (2.2) over α time-steps by:

Y[t : t+ α] ,
[
y[t]′ y[t+ 1]′ · · · y[t+ α]′

]′
.
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The linear system:

z[t+ 1] = Ez[t] + FY[t : t+ α]

ψ[t] = z[t] + GY[t : t+ α],
(2.3)

where E, F and G are appropriate matrices, is said to be an unknown input observer

(UIO) with delay α for the system (2.1)-(2.2) if ‖x[t]− ψ[t]‖ → 0 as t→∞ [28].

2.3 Detectability and Observability

Four related but fundamentally different terms will appear throughout this the-

sis, detectability, observability, strong detectability, and strong observability. The

definition of these terms is as follows:

A system is detectable if and only if:

rank

(λI−A)

C

 = n ∀ λi ∈ C, |λi| ≥ 1. (2.4)

An observer on a detectable system identifies an output of y = 0 for all time as a

state x that is heading towards zero.

A system is observable if and only if:

rank

(λI−A)

C

 = n ∀ λi ∈ C. (2.5)

An observer on an observable system identifies an output of y = 0 for all time as

a state x that equals zero.

A complex number z0 satisfying:

rank

A− z0In B

C 0

 < n+m

is said to be an invariant zero of the system.

A system is strongly detectable if and only if:

rank

A− z0In B

C 0

 = n+m, ∀ z0 ∈ C, |z0| ≥ 1. (2.6)
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A system is strongly observable if and only if:

rank

A− z0In B

C 0

 = n+m, ∀ z0 ∈ C. (2.7)

Ideally an observer design will not require sensors measuring every state of the

system. Consequently, the C matrix will not be full rank. Some states x[t] will be in

the null space of C. The y vector in equation (2.2) could equal 0 for all time when

either x = 0 or there exist an x such that Cx = 0 for all time. For an observer

to distinguish between these two conditions the system must satisfy the property of

observability. If the observer does not use or have access to the inputs, the system

must satisfy the property of strong observability. A strongly observable system does

not have any invariant zeros.

A less demanding property is detectability. If a system is detectable, an observer

on the system given an output of 0 for all time would distinguish if x→ 0 or if there

exist an x such that Cx = 0. The state might not be necessarily 0 at any point

in time but it is heading towards zero. Similar to its observable counterpart, strong

detectability is required for observers that do not know or use inputs. A strongly

detectable system does not have any unstable invariant zeros (i.e., |z0| ≥ 1).

Theorem 2.3.1 ( [27,28]) An unknown input observer exists for system (2.1)-(2.2)

if and only if:

rank

A− z0In B

C 0

 = n+m ∀ |z0| ≥ 1. (2.8)

Furthermore, if this condition is satisfied, the delay required for the observer will

satisfy α ≤ n − 1. A zero-delay observer (i.e., with α = 0) exists if and only if

condition (2.8) holds, and in addition:

rank(CB) = rank(B). (2.9)

We will refer to condition (2.8) as the strong detectability condition, and to

(2.9) as the matching condition.
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2.4 Test for Strong Observability

For any L ∈ Z≥1, the observability matrix OL is defined as:

OL =

 C

OL−1A

 ,where O1 = C. (2.10)

For any L ∈ Z≥1The invertability matrix JL is defined as:

JL =

 D 0

OL−1B JL−1

 ,where J1 = D. (2.11)

The [O J]L matrix represents the concatenation of the OL and JL matrices (i.e.,

[OL,JL]). For ease of notation, at times the [O J]n, On, Jn matrices are represented

as [O J], O, and J respectively. To avoid having to test every value of z0 to determine

if a system is strongly observable, the following theorem is convenient.

Theorem 2.4.1 ( [32,33]) A system is strongly observable if and only if:

rank([O J]L)− rank(JL) = n for some L ≤ n (2.12)

where n equals the number of states.

2.5 Danger of Invariant Zeros

The following example illustrates the effect of an invariant zero on an observer.

Consider the following system matrices:

A =


1 1 0

1 −1 0

0 0 1

 , B =


0

1

0

 , C =
[
1 −1 1

]
.

We have:

O =


1 −1 1

0 2 1

2 −2 1

 and J =


0 0 0

−1 0 0

2 −1 0

 .
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The system is observable since the On matrix is full rank. However, the difference

between the rank of [O J]n and Jn is less than n and therefore the system is not

strongly observable. Suppose the initial state of the system and the following inputs

are as follows:

x[0] =


1

1

0

 , u[0] = 2 and u[t] = 2u[t− 1].

This carefully selected initial condition and sequence of inputs will cause the output

of the sensor to always equal zero although the state of the system is increasing

exponentially with each time step. The state of the system will progress as follows:

x[0] =


1

1

0

 , x[1] =


2

2

0

 , . . . , x[t] =


2t

2t

0

 .
The state of the system at each time step is orthogonal to the C matrix. Therefore,

the sensor output will remain zero as the state exponentially increases, thus giving

the observer no information about the increase of the state with each time step.

After studying the dynamics of the system the enemy could identify where the in-

variant zero exits and exploit this weakness. By injecting a series of carefully selected

inputs into the system, the system could be guided into a state that exponentially

grows without knowledge of the observer. In order to protect from such attacks, the

system must exhibit the property of strong observability or at least strong detectabil-

ity.
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3. BACKGROUND KNOWLEDGE - ALGORITHMS

The following definitions are adapted from Introduction to Algorithms by Cormen et

al. [34].

3.1 Complexity

Definition 3.1.1 Optimization Problem: A problem whose objective is to maximize

or minimize a value. The problem may be subject to various constraints.

Definition 3.1.2 Decision Problem: A decision problem where the solution is either

a “yes” or “no” or more formally a ‘1’ or a ‘0’. A decision problem can be viewed as

a mapping from an instance I to the set {1, 0}.

An optimization problem can usually be formulated as a related decision problem

by selecting a limit for the optimal value. A decision problem can provide an answer

to an optimization problem through multiple iterations of a binary search. Similarly,

a solution to an optimization problem can determine the answer to a corresponding

decision problem by comparing the optimal value to the decision problem. The com-

plexity classes P,NP, and NP− complete are defined only for decision problems.

Definition 3.1.3 Complexity Class P: The set of decision problems such that the

number of computations required for an algorithm to solve an instance of a decision

problem is O(nk) where n is the size of the instance and k > 0 is a problem dependent

constant.

Definition 3.1.4 Complexity Class NP: The set of decision problems such that a

“yes” answer to an instance of the problem can be verified in polynomial time.
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Definition 3.1.5 Complexity Class NP− complete: A problem P1 is NP− complete

if P1 satisfies the following two properties. 1) P1 ∈ NP 2) Any problem P2 in NP

can be reduced to an instance of P1 in polynomial time. If P1 satisfies property 2 and

not necessarily property 1, it is considered NP− hard.

There is currently no known polynomial-time algorithm that can solve problems

in the class NP− hard and NP− complete. However, no proof exists that states

that they cannot be solved in polynomial time. Generally when a problem is proven

to be of the class NP− complete or NP− hard, instead of working to build a

polynomial time exact algorithm for the problem a polynomial time approximation

algorithm is formulated instead.

3.2 Approximations

The exact solution to a problem can be found by trying every single possibility

until a solution is obtained. However, as the size of the problem increases it becomes

impractical to use such brute force methods. To find solutions to these problems,

approximation algorithms are generally used.

Definition 3.2.1 A f(n)-factor approximation algorithm: A polynomial-time algo-

rithm that guarantees a solution to a optimization problem within O(f(n)) of the

optimal solution where n is proportional to the size of an instance of the problem.

Another class of algorithms are heuristic algorithms. These algorithms may out-

perform a f(n)-factor approximation algorithm in practice. However, there may not

be a theoretical bound for the algorithms’ performance. In many actual applications,

a heuristic algorithm and a f(n)-approximation algorithm may be run side by side,

and the output of the algorithm that gives the best solution may than be chosen.
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4. THE STRONG DETECTABILITY SENSOR

SELECTION PROBLEM

4.1 Problem Formulation

Consider again system (2.1), and suppose that there are no sensors deployed on

the system (i.e., the output equation (2.2) is not initially given). Instead suppose

that we have a set S = {S1, . . . , Sp} of available sensors and a cost vector b ∈ Rp
≥0

assigning a nonnegative cost to each sensor. In other words, the ith element of b

denotes the cost of sensor Si, for each 1 ≤ i ≤ p.

Each sensor Si ∈ S provides a scalar measurement of the state given by:

yi[t] = Cix[t], (4.1)

for a row vector Ci. Let C =
[
C′1 C′2 · · · C′p

]′
. Given an indicator vector µ ∈

{0, 1}p, we denote C(µ) to be the submatrix of C consisting of the rows corresponding

to the sensors indicated by µ.

We consider the following problem.

Problem 1 (Strong Detectability Sensor Selection (SDSS)) Suppose we are given

the system matrix A ∈ Rn×n, the input matrix B ∈ Rn×m, a set of p available sensors

S whose measurements are given by the rows of matrix C ∈ Rp×n, and a cost vector

b ∈ Rp
≥0. The Strong Detectability Sensor Selection Problem (SDSS) is to solve:

min
µ∈{0,1}p

b′µ

s.t. rank

A− z0In B

C(µ) 0

 = n+m, ∀z0 ∈ C, |z0| ≥ 1.
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4.2 Complexity of SDSS

We start by showing the SDSS problem is NP-hard by providing a reduction from

Set Cover, stated below.

Problem 2 (Set Cover) Consider a tuple (U ,H, k), where U is a finite set of r

elements, H is a collection of sets {H1, H2, . . . , Hq} such that Hi ⊂ U for all i ∈

{1, 2, . . . , q}, and k is a nonnegative integer.

Question: Do at most k sets from H exist whose union is equal to U?

Set Cover is NP-hard [35]. We will now provide a reduction from Set Cover to

SDSS, prove certain useful properties of the created instance of SDSS, and conse-

quently prove that SDSS is NP-hard.

Polynomial-Time Reduction from Set Cover to SDSS

Given an instance of Set Cover (with r elements in the set U , and a collection H

containing q subsets of U), we will create an instance of SDSS as follows. Define the

matrices A, A1 and B as:

A =

0r×r A1

0r×r 0r×r

 , A1 = diag(1, 2, . . . , r),

B =

 Ir

−Ir

 .
(4.2)

Next, we define a q× r matrix S to encode the set H. Each column of S corresponds

to an element in U , and each row encodes one of the sets Hi in the collection H.

Specifically, element (i, j) of S is equal to 1 if set Hi ∈ H contains the element j ∈ U ,

and zero otherwise.
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Now we define the set of sensors for SDSS. Specifically, we create p = r+q sensors

to choose from. Each sensor i’s measurement matrix Ci consists of a single row; the

collection of the measurement matrices for all sensors is given by:

C =

Ir 0

0 S

 . (4.3)

Each sensor’s cost is defined by an element of the column vector b. In this instance,

we set the first r elements of b to ‘0’, and the remaining elements to ‘1’.

Properties of the Created Instance

Consider the set of available sensors in the created instance, given by the rows

of the matrix C in (4.3). Since the first r sensors all have zero cost (as specified in

b), they can always be included in any sensor selection without increasing the total

cost. Thus, the indicator vector µ for the sensor selection will be assumed to have a

‘1’ in each of its first r elements. The matrix C(µ) containing the rows of all sensors

selected by µ is given by:

C(µ) =

Ir 0

0 S(µ)

 . (4.4)

S(µ) is the matrix containing those rows of S that are included in the sensor selection

µ.

Lemma 1 Consider a sensor selection µ and the corresponding tuple (A,B,C(µ)),

where A and B are given by (4.2) and C(µ) is given by (4.4). All invariant zeros of

this tuple (if they exist) are unstable.

Proof Suppose z0 is an invariant zero of the tuple (A,B,C(µ)), i.e., there exists a

nonzero vector
[
X′0 U′0

]′
such that:A− z0I2r B

C(µ) 0

X0

U0

 =

0

0

 . (4.5)
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By substituting the expressions for A,B and C(µ) from (4.2) and (4.4) into equa-

tion (4.5) and partitioning X0 as
[
X1
′ X2

′
]′
, where X1 and X2 each have r elements,

the expression (4.5) becomes:
−z0Ir A1 Ir

0 −z0Ir −Ir

Ir 0 0

0 S(µ) 0




X1

X2

U0

 =


0

0

0

0

 . (4.6)

The above expression shows that X1 = 0 and U0 = −z0X2. The first block row in

(4.6) then leads to:

A1X2 = z0X2. (4.7)

This implies that either X2 is the zero vector, or that z0 and X2 are an eigenvalue and

corresponding eigenvector of A1. The former case is impossible, since then U0 would

also be zero in (4.6), contradicting the fact that all three of X1, X2 and U0 cannot

be zero. Thus, z0 and X2 must be an eigenvalue and eigenvector of A1 respectively.

Since all eigenvalues of A1 in (4.2) are unstable, the claim follows.

Lemma 2 The tuple (A,B,C(µ)) has no invariant zeros if and only if all columns

of S(µ) are nonzero.

Proof Suppose all columns of S(µ) are nonzero, and assume by way of contra-

diction that there exists an invariant zero z0. Thus, there exists a nonzero vector[
X′1 X′2 U′0

]′
satisfying (4.6). Furthermore, from the proof of Lemma 1, we know

that X2 is an eigenvector of A1. Since each eigenvector of A1 has exactly one nonzero

element (by design, from (4.2)), the quantity S(µ)X2 will be a scaled version of

a column of S(µ). However, if all columns of S(µ) are nonzero, then this contra-

dicts the last row of (4.5) and thus there cannot be any invariant zeros of the tuple

(A,B,C(µ)).

Conversely, suppose there is a column of S(µ) that is zero. Select X2 to be the

indicator vector with a ‘1’ in the position corresponding to that column, and zeros
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everywhere else. Set z0 to be the eigenvalue of A1 corresponding to the eigenvector

X2, X1 = 0, and U0 = −z0X2. We see that this choice of z0, X1, X2, and U0 satisfy

(4.5). Thus, the tuple (A,B,C(µ)) will have an unstable invariant zero.

NP-hardness of SDSS

Using the reduction from Set Cover given by the system (4.2), the set of sensors

(4.3) and cost vector b, along with the properties of such instances given above, we

obtain the following result.

Theorem 4.2.1 Given an instance of Set Cover and the associated instance of SDSS

(given by (4.2), (4.3) and the cost vector b), there exists a sensor selection of cost k

that makes the system strongly detectable if and only if a set cover of size k or less

exists. Thus, SDSS is NP-hard.

Proof Suppose there exists a set cover of size k or less. Let µ be the sensor selection

vector that selects the first r sensors from (4.3) and the k sensors from the bottom q

rows of b to correspond to the elements in the set cover instance. By the definition

of the costs in b, this selection has total cost k. Since each row of S encodes a

different subset in the given instance of Set Cover, we see that S(µ) will have no

empty columns. From Lemma 2, if there are no empty columns in S(µ) the tuple

(A,B,C(µ)) will have no invariant zeros, and thus will be strongly detectable.

Now suppose that there is no set cover of size k. Then, for any sensor selection

µ of cost k or less, there will be at least one column of S(µ) that is zero. From

Lemmas 1 and 2, we see that the tuple (A,B,C(µ)) will have an unstable invariant

zero, and thus will not be strongly detectable.

Thus, we see that given any instance of Set Cover, we can create an instance

of SDSS in polynomial-time, and solve the Set Cover instance by solving the sensor

selection instance. Since Set Cover is NP-hard, SDSS is as well.
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4.3 Complexity of Satisfying the Matching Condition

As the SDSS problem is NP-hard (as shown in Theorem 4.2.1), it is also NP-

hard to find a minimum cost selection of sensors in order to construct a UIO (by

Theorem 2.3.1). However, suppose that we consider a system that already has a set

of sensors deployed which make the system strongly detectable, but that the matching

condition (2.9) is not satisfied (so that a zero-delay UIO cannot be created). Suppose

that we wish to deploy additional sensors (from a given set) of lowest cost in order to

obtain a zero-delay UIO. This requires that the total set of deployed sensors satisfy

the matching condition (2.9). In this section, we show that when each sensor provides

a scalar measurement of the state (i.e., Ci in (4.1) is a row vector), a minimum cost

set of sensors to satisfy the matching condition can be found in polynomial time. We

will use the following result.

Lemma 3 ( [34]) Consider a set V = {v1, v2, . . . , vp} consisting of p vectors, and

a weight wi ∈ R≥0 for each vector vi ∈ V. The problem of finding the lowest cost

maximal linearly independent subset1 of vectors can be solved in polynomial time via

a greedy algorithm.

We will start by considering the general problem of selecting a subset of sensors of

lowest cost in order to satisfy only the matching condition (i.e., without considering

the strong detectability condition).

Theorem 4.3.1 Consider a set of sensors S = {S1, S2, . . . , Sp}, where each sensor

provides a scalar measurement of the form (4.1). Let the vector b ∈ Rp
≥0 contain the

cost of each sensor. Let C be the matrix consisting of all of the individual sensor

matrices. Then, the sensor selection vector µ ∈ {0, 1}p of lowest cost satisfying the

matching condition rank(C(µ)B) = rank(B) (if such a selection exists) can be found

in polynomial time via a greedy algorithm.

1A maximal linearly independent subset of vectors is a linearly independent subset of V such that
no additional vectors from V can be added to the subset without violating linear independence.
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Proof Define the matrix W = CB, where the ith row of W is given by CiB. Thus,

define the cost of the ith row of W to be bi, i.e., the cost of the corresponding sensor

Si.

For any sensor selection vector µ, define W(µ) = C(µ)B, which implies rank(W(µ)) =

rank(C(µ)B). Thus, finding a set of rows of C of minimum cost such that rank(C(µ)B) =

rank(B) (if it exists) is equivalent to finding a maximal linearly independent set of

rows of W of lowest cost. By Lemma 3 this can be done in polynomial-time via

a greedy algorithm. Thus, the lowest cost set of sensors to satisfy the matching

condition can be found in polynomial time.

Algorithm 1 is an example of a greedy algorithm that takes matrices B and C,

along with a cost for each row of C, and returns a lowest cost sensor selection µ

satisfying rank(C(µ)B) = rank(B) (if such a selection exists).

Algorithm 1 Greedy Selection for Matching Condition

Notation:µ ∪ {i} indicates setting the ith element of µ to 1.

Input: Sensor matrix C ∈ Rp×n, input matrix B ∈ Rn×m, and a vector b ∈ Rp
≥0

indicating the cost of each row of C.

Output: A sensor selection vector µ ∈ {0, 1}p that minimizes b′µ while ensuring

rank(C(µ)B) = rank(B).

1: Sort the rows of C to be in nondecreasing order by cost.

2: Initialize µ to the zero vector and i = 1

3: while rank(C(µ)B) < rank(B) do

4: if rank(C(µ ∪ {i})B) > rank(C(µ)B) then

5: µ = µ ∪ {i}

6: end if

7: i = i+ 1

8: end while

9: return µ
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Note that the sensor costs are allowed to be arbitrary nonnegative values in the

above result. Thus, this captures (as a special case) the scenario where we already

have a set of sensors installed on the system (e.g., to provide strong detectability),

and we only need to select an additional set of sensors in order to satisfy the matching

condition. Specifically, by setting the cost of all sensors that are already installed to

be zero, the algorithm is guaranteed to select from the installed set of sensors first (as

it checks the sensors in nondecreasing order of cost), and then to select the lowest cost

subset of additional sensors to install. This is encapsulated in the following corollary.

Corollary 1 Consider a linear system of the form (2.1). Suppose we are given a

set of p sensors S, where each sensor in the set provides a scalar measurement of

the form (4.1). Let C be the matrix whose rows contain the measurement matrices

of the sensors, and let b ∈ Rp
≥0 indicate the cost of each sensor. Suppose that some

subset of the sensors in S is already installed on the system. Then, the lowest cost

set of additional sensors to install so that the set of all installed sensors satisfies the

matching condition can be found in polynomial time.
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5. THE STRONG DETECTABILITY SENSOR ATTACK

PROBLEM

Having characterized the complexity of the sensor selection problem, we now turn

our attention to the problem of attacking a set of deployed sensors in order to re-

move the property of strong detectability. We formulate this problem next, and then

characterize its complexity.

5.1 Problem Formulation

Consider again system (2.1), and suppose that there are sensors deployed on the

system (i.e., the output equation (2.2) is initially given) such that the system is

strongly detectable. Instead of adding sensors to the system suppose one (i.e., an

attacker) desires to remove sensors. The cost vector v ∈ Rp
≥0 assigns a nonnegative

removal cost for each sensor. In other words, the ith element of v denotes the cost of

removing the ith row from the matrix C for each 1 ≤ i ≤ p.

As before, given an indicator vector µ ∈ {0, 1}p, we denote C(µ) to be the sub-

matrix of C consisting of the rows corresponding to the sensors indicated by µ. Fur-

thermore, the indicator vector µc ∈ {0, 1}p is the complement of µ (i.e. a ‘1’ in µ is

denoted as a ‘0’ in µc and vice versa).

We consider the following problem.

Problem 3 (Strong Detectability Sensor Attack (SDSA)) Suppose we are given

the system matrix A ∈ Rn×n, the input matrix B ∈ Rn×m, the output matrix C ∈

Rp×n, and a cost vector v ∈ Rp
≥0. The Strong Detectability Sensor Attack Problem

(SDSA) is to solve:

min
µ∈{0,1}p

v′µ
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s.t. ∃ |z0| ≥ 1 with rank

A− z0In B

C(µc) 0

 < n+m.

5.2 Complexity of SDSA

In this section, we will show that the SDSA problem is NP-hard. To do so, we

will provide a reduction from the MAX FLS= problem, stated below.

Problem 4 (MAX FLS=) Consider a set of d homogeneous equations with f vari-

ables denoted by matrix T ∈ Rd×f , and a nonnegative integer k.

Question: Is there a nonzero vector x ∈ Rf such that at least k equalities in the

equation Tx = 0 are satisfied?

The MAX FLS= problem is NP-hard [36]. We reduce MAX FLS= to SDSA, state

a useful property of the created instance of SDSA, and finally prove that that the

SDSA is NP-hard.

Polynomial-Time Reduction from MAX FLS= to SDSA

Given an instance of the MAX FLS= problem (with d equations and f variables

denoted by matrix T), we will create an instance of SDSA as follows. Define the

matrices:

A = 0f×f , B = If , and C = T. (5.1)

The cost vector v will consist of d elements, all equal to ‘1’.

Properties of the Created Instance

Lemma 4 Given system (2.1)-(2.2) with A, B and C defined in (5.1), consider a

sensor selection vector ν ∈ {0, 1}d. The tuple (A,B,C(ν)) has at least one unstable

invariant zero if and only if C(ν) is not full column rank.
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Proof Consider a sensor indicator vector ν ∈ {0, 1}d with associated matrix C(ν).

The tuple (A,B,C(ν)) will have an unstable invariant zero if and only if there is a

complex number z0 with |z0| ≥ 1, and a nonzero vector
[
X′0 U′0

]′
satisfying:A− z0If B

C(ν) 0

X0

U0

 =

0

0

 . (5.2)

Substituting (5.1) into (5.2) we obtain:

z0X0 = U0 (5.3)

C(ν)X0 = 0. (5.4)

If C(ν) is not full column rank, there will exist a X0 vector in the null space of C(ν),

thereby satisfying (5.4). This X0 vector can be paired with any unstable z0 value to

form the vector U0 in (5.3).

On the other hand, if C(ν) is full column rank, then the only solution to (5.4) is

X0 = 0, and thus, from (5.3), U0 = 0. In this case, the matrix pencil in (5.2) has no

nontrivial nullspace for any z0, and thus has no invariant zeros.

Therefore, the tuple (A,B,C(ν)) has an unstable invariant zero if and only if

C(ν) is not full column rank.

NP-hardness of SDSA

Using the reduction from MAX FLS= given by the system (5.1), and cost vector v

consisting of all 1’s, along with the property of such instances given above, we obtain

the following result.

Theorem 5.2.1 Given an instance of MAX FLS= (with a d×f matrix T and integer

k) and the associated instance of SDSA (given by (5.1)), it is possible to remove d−k

or fewer sensors from C to make the resulting system no longer strongly detectable

if and only if the answer to the instance of MAX FLS= is “yes”. Thus, SDSA is

NP-hard.
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Proof Suppose the answer to the instance of MAX FLS= is “yes” (i.e., there is

a nonzero vector x satisfying at least k of the equalities in the equation Tx = 0).

Let µc be the indicator vector that selects the k satisfied equations from Tx = 0.

Consequently since C = T in the created instance of SDSA (given by (5.1)), there

must exist some nonzero vector x such that C(µc)x = 0. Thus x is in the null space

of C(µc) and C(µc) is not full rank. By Lemma 4, the tuple (A,B,C(µc)) is not

strongly detectable if C(µc) is not full rank. Thus, the conjugate µ of µc represents

the sensors that once removed cause the system to lose strong detectability. Since

at most d − k sensors must be removed and each sensor has a cost of ‘1’, there is a

solution to the created SDSA instance that has cost at most d− k.

Now suppose that the answer to MAX FLS= is “no” (i.e., there are fewer than

k equalities in Tx = 0 that can be simultaneously satisfied). Therefore there must

be more than d − k sensors that must be removed for C to lose rank. By only

removing d− k sensors the system will remain strongly detectable. Thus, we see that

given any instance of the MAX FLS= problem, we can create an instance of SDSA

in polynomial-time, and solve the MAX FLS= instance by solving the sensor attack

instance. Since MAX FLS= is NP-hard, SDSA is NP-hard.

Additionally this result indicates that it is NP-hard to minimally break the match-

ing condition (2.9). This condition is satisfied if rank(C(µc)B) = rank(B). In the

instance where B is full rank the only way for condition (2.9) to hold is for the C(µc)

matrix to be full column rank as well. Therefore, once again, the task is to remove

the minimal amount of sensors from C such that it loses full column rank. Thus, as

a positive result, it is NP-hard for an attacker to optimally select sensors to remove

to break the matching condition (in contrast to the problem of selecting sensors to

satisfy the matching condition, as shown in Corollary 1).
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6. STRONG DETECTABILITY SENSOR SELECTION

PROBLEM APPROXIMATION

When dealing with NP-hard problems, it is of interest to find polynomial-time ap-

proximation algorithms which provide solutions within a certain factor of the optimal.

The following result provides a bound on the ability to approximate the minimum

sensor cost in polynomial time.

Theorem 6.0.1 For all ε > 0, SDSS cannot be approximated within a factor of

(1− ε) log n where n is the number of states, unless P = NP .

Proof By contradiction, suppose there is some ε > 0 and an approximation algo-

rithm for SDSS that always finds a set of sensors within a factor of (1 − ε) log n of

the minimum cost. By running this algorithm on the constructed instance of SDSS

given by (4.2), (4.3) and b, we would obtain a set of sensors that provide strong

detectability with a cost B that is within a factor (1 − ε) log n of the optimal cost.

However the optimal cost is precisely equal to the smallest size of a set cover (by

construction), and since the set of sensors yielded by the algorithm must be a set

cover (by Lemma 2), we see that the algorithm would yield an approximation to Set

Cover as well. Since Set Cover cannot be approximated within a factor of (1−ε) log n

of the optimal solution for any ε > 0 (unless P = NP ) [37], the result follows.

Consequently, the lower bound for the approximation ratio of SDSS is (1 −

ε) log(n). We will next prove that log(n) + log(m + 1) is the upper bound of the

SDSS problem (i.e., it can be achieved under certain conditions).
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6.1 Constant Factor Approximation

Lemma 5 A zero delay UIO (i.e. rank(CB) = rank(B)) with D = 0 is possible if

and only if:

rank([O J]n) = m(n− 1) + n. (6.1)

Proof Suppose a zero delay UIO exisits. Since each CB block of the Jn matrix is

full column rank and the last “m” columns are rank zero because D = 0 the Jn matrix

will have rank m(n−1). The columns of the On matrix must be linearly independent

from the columns of the Jn matrix. Thus, the On matrix will add rank n to the rank

of the [O J]n matrix. The total rank of the [O J]n matrix is then m(n− 1) + n.

Next, we will prove Lemma 5 in the other direction. Suppose the dimension of

[O J]n is m(n − 1) + n. Let [O J]v represent the matrix [O J]n without the last

m columns. Since D = 0 every column of [O J]v must be linearly independent for

[O J]n to have dimension m(n−1) +n. The first p(n−1) rows of the last m columns

of [O J]v are empty. The last p rows and m columns of [O J]v form CB. CB must

be full rank for the last m columns of [O J]v to be linearly independent.

Lemma 6 Consider a collection of row vector sets, where each row vector has length

q. The minimum number of sets required to create a full column rank matrix V can

be approximated within a factor of log(q) of the optimal number k.

Proof The following is an adaption of the proof found in [38]. Suppose V must have

rank q to be full column rank. Consider a greedy algorithm that iteratively selects

the set that increases the rank of V the most. On the first iteration of the algorithm,

there exists a set that will increase the rank of V by at least rank q
k
. The dimension

of the null space of V is now at most q(1− 1
k
). There is no guarantee that a set from

the optimal collection of sets was chosen. On the second iteration of the algorithm

there exists at sensor that will increase the rank at by least
q(1− 1

k
)

k
(i.e., the nullspace
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over k). After each iteration j of the algorithm, q(1 − 1
k
)j dimensions will remain

in the nullspace of V. Thus, the only guarantee is that the algorithm will select on

iteration j+ 1 a set that will increase the rank of V by at least
q(1− 1

k
)j

k
. After k log(q)

iterations, the null space has dimension less than 1 since q(1− 1
k
)k log q < q(1

e
)log(q) = 1.

Once the null space of V is less than ‘1’, the null space of V is empty and V is full

rank.

Theorem 6.1.1 The minimal number of sensors required for a zero delay UIO can

be approximated within a factor of log(n) + log(m+ 1) of the optimal.

Proof From Lemma 5 we know that the [O J]n matrix must have rank m(n−1)+n.

Since the last m columns of [O J]n remain zero they can be removed. There are

exactly m(n − 1) + n columns of [O J]n remaining. Therefore, for a UIO to exist,

[O J]n must be full column rank. Each sensor selected contributes a set of rows to

[O J]n. As proven in Lemma 6 the sensors that will create a full rank [O J]n matrix

can be selected greedily with a guarantee of the answer being within log(m(n−1)+n)

or on the order of log(n) + log(m+ 1) of the optimal.

6.2 Synergies

Another greedy approach is to select the sensor that increases the difference be-

tween rank([O J]) and rank(J) the greatest. However, the output of this approach

is complicated by the fact that an interesting synergistic effect between the sensors

can occur. By synergy we imply the combined value of two or more sensors is greater

than the sum of each sensor’s value individually.

For instance, consider the following example:

A =


1 1 1

0 1 1

0 0 1

 ,B =


1

0

0

 ,C1 =
[
1 0 0

]
,C2 =

[
1 1 0

]
.
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In case 1 only sensor C1 is selected:

O =


1 0 0

1 1 1

1 2 3

 , J =


0 0 0

1 0 0

1 1 0

 and rank([O J])− rank(J) = 3− 2 = 1.

In case 2 only sensor C2 is selected:

O =


1 1 0

1 2 2

1 3 5

 , J =


0 0 0

1 0 0

1 1 0

 and rank([O J])− rank(J) = 3− 2 = 1.

In case 3 both C1 and C2 are selected:

O =



1 0 0

1 1 0

1 1 1

1 2 2

1 2 3

1 3 5


, J =



0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 1 0 1 0 0

1 1 0 1 0 0


and rank([O J])− rank(J) = 6− 3 = 3.

Individually C1 and C2 increase the difference between rank([O J]) and rank(J)

by only ‘1’. Yet, the combined effect of selecting C1 and C2 is that the difference

between rank([O J]) and rank(J) is not ‘2’ but ‘3’. Due to this phenomenon, the

approximation bound for this greedy approach does not follow Theorem 6.1.1. In

Lemma 6 the assumption is that the sensor that increases the rank the greatest is

selected. Due to the synergistic effect in this algorithm the sensor that will increase

the rank the greatest is not known. Depending on different combinations of sensors a

sensor can cause a greater overall increase of rank. As of yet, no upper approximation

bound has been found for this algorithm. However we see that this algorithm performs

well in practice (in the next section).
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7. SIMULATIONS

The NP-hardness reduction of the SDSS problem was based upon Set Cover. The

paper [29] list the optimal solutions to a set of Set Cover instances. From these

instances we created instances of SDSS based upon the SDSS NP-hardness reduction.

The first 10 instances numbered 4.1 − 4.10 contain 400 states, 200 inputs and 1200

possible sensors. The second 10 instances numbered 5.1− 5.10 contain 400 states 200

inputs and 2200 possible sensors. The last 5 instances numbered 6.1 − 6.5 contain

400 states, 200 inputs and 1200 possible sensors. Instances in group 4 and 5 are built

from instances of Set Cover with 2% density (i.e., each element is in 2% of the sets).

Whereas instances in group 6 are built from instances of Set Cover with 5% density.

The code of each simulation was written in MATLAB and is displayed in Appendix

A. We used the Purdue Halstead cluster to run the programs on one node and 20

cores running in parallel. The node had two Kaby Lake CPUs running at 2.60 GHz

and 128 GB of memory.

Greedy 1 represents an algorithm that selects sensors to increase the rank of [O J]

to m(n−1)+n. Greedy 2 represents an algorithm that selects sensors to increase the

difference of rank([O J])− rank(J) to equal ‘n’. In both Greedy 1 and Greedy 2 the

most cost effective (i.e., rank increase
cost

) sensor is selected. Each instance of SDSS is formed

by reduction in Section 4. The reduction guarantees that rank(CB) = rank(B) for all

instances. Consequently the results of Greedy 1 and Greedy 2 both form zero-delay

observers.

In the following tables, the ratio between the computed value by each algorithm

and the optimal value of each instance is recorded. In every problem set, Greedy 2

outperforms Greedy 1. Although we have a approximation guarantee for Greedy 2

of log(n) + log(m + 1), Greedy 1 is outperformed by Greedy 2. In theory these two

algorithms could be run side by side and the algorithm that provides the lowest valued
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Table 7.1.
SDSS Approximation Over Problem Set 4: n = 400, m = 200, p = 1200,
and 2% density

Problem Greedy 1 Greedy 2

number optimal value value ratio value ratio

4.1 429 1848 4.31 463 1.08

4.2 512 2110 4.12 582 1.14

4.3 516 2097 4.06 598 1.16

4.4 494 1950 3.95 548 1.11

4.5 512 2006 3.92 577 1.13

4.6 560 2194 3.92 615 1.10

4.7 430 1859 4.32 476 1.11

4.8 492 2281 4.64 533 1.08

4.9 641 2316 3.61 747 1.17

4.10 514 1982 3.86 556 1.08

solution can be selected. By doing so, the user is guaranteed a log(n) + log(m + 1)

approximation bound when Greedy 2 may not approximate within log(n)+log(m+1)

of the optimal solution. The time required to solve each problem was roughly 1000 -

2000 seconds on the Purdue Halstead clusters.
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Table 7.2.
SDSS Approximation Over Problem Set 5: n = 400, m = 200, p = 2200,
and 2% density

Problem Greedy 1 Greedy 2

number optimal value value ratio value ratio

5.1 253 1096 4.33 289 1.14

5.2 302 1177 3.90 348 1.15

5.3 226 991 4.39 246 1.09

5.4 242 956 3.95 265 1.10

5.5 211 967 4.58 236 1.12

5.6 213 990 4.65 251 1.18

5.7 293 1211 4.13 326 1.11

5.8 288 1052 3.65 323 1.12

5.9 279 1106 3.96 312 1.12

5.10 265 1125 4.25 289 1.09

Table 7.3.
SDSS Approximation Over Problem Set 6: n = 400, m = 200, p = 1200,
and 5% density

Problem Greedy 1 Greedy 2

number optimal value value ratio value ratio

6.1 138 1811 13.12 159 1.15

6.2 146 2046 14.01 170 1.16

6.3 145 2047 14.12 161 1.11

6.4 131 1892 14.44 149 1.14

6.5 161 1973 12.25 196 1.22
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8. SUMMARY AND FUTURE WORK

In this thesis, we showed that it is NP-hard to select a set of sensors of minimum

cost in order to make a system strongly detectable. Our proof shows that this result

holds even for stable systems, and thus the computational complexity arises from the

effects of the unknown inputs in the system, as opposed to the need to ensure system

detectability. We also showed that it is not possible to approximate the minimum cost

within a factor that is logarithmic in the size of the problem. However, we showed

that if a set of sensors has already been chosen to make a system strongly detectable,

finding an additional set of sensors of minimum cost in order to obtain zero-delay

estimation can be done in polynomial time. Next, we considered the problem of

attacking a given strongly detectable system by removing a set of sensors to remove

the strong detectability property. We showed that this problem is also NP-hard.

Lastly, we provided simulation results indicating that Greedy 2 outperformed Greedy

1 although Greedy 2 does not have an upper bound for guaranteed performance.

There are a variety of avenues for future research, including determining instances of

the sensor selection and attack problems where optimal (or near-optimal) solutions

can be found in polynomial time.
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A. CODE

The following is the MATLAB code used for parsing the data files from [29].

1 function [A,B,C,cost] = Parsing(filename)

2 fid = fopen(filename);

3

4 line 1 = double(str2num(fgetl(fid)));

5 p = line 1(1);

6 n = line 1(2);

7 S = zeros(p,n);

8

9 cost = zeros(1,n+p);

10 size(cost)

11 indx = p+1;

12

13 for i = 1:ceil(n/15)-1

14 cost(indx:indx+14) = double(str2num(fgetl(fid)));

15 indx = indx+15;

16 end

17

18 cost(indx:end) = double(str2num(fgetl(fid)));

19

20 for j = 1:p

21 tot = double(str2num(fgetl(fid)));

22 for i =1:ceil(tot/15)

23 line = double(str2num(fgetl(fid)));

24 for i = 1:size(line,2)

25 S(j,line(i)) = 1;

26 end

27 end
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28 end

29

30 S = S';

31

32 n new = n;

33 p new = p;

34

35 n = p new*2;

36 p = n new*2;

37

38 A1 = zeros(n/2,n/2);

39 A2 = diag(linspace(1,n/2,n/2));

40 A3 = zeros(n/2,n/2);

41 A4 = zeros(n/2,n/2);

42

43 A = [A1,A2;A3,A4];

44

45 B1 = eye(n/2);

46 B2 = -eye(n/2);

47

48 B = [B1;B2];

49

50 C1 = eye(n/2,n/2);

51

52 C2 = zeros(n/2,n/2);

53

54 C3 = zeros(p/2,n/2);

55

56 C4 = S;

57

58

59 C = [C1,C2;C3,C4];

The following code was used to compute Greedy 1.
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1 parpool(20);

2

3 number = [4.1,4.2,4.3,4.4,4.5];

4

5 for name = number

6 filename = strcat('SCP',name,'.txt');

7 [A,B,C,cost] = Parsing(filename);

8 tic

9 A = sparse(A);

10 B = sparse(B);

11 C = sparse(C);

12

13 n = size(A,1);

14 p = size(C,1);

15 m = size(B,2);

16

17 num = zeros(1,n-1);

18 num tot = zeros(1,n-1);

19

20 parfor x = 1:n-1

21 mat = C*Aˆ(n-x-1)*B;

22 mat2 = C*Aˆ(n-x);

23 [i,~,~] = find(mat);

24 [i2,~,~] = find(mat2);

25 num(x) = size(i,1);

26 num tot(x) = size(i,1)*(x);

27 num2(x) = size(i2,1);

28 end

29

30 x = n;

31 mat2 = C*Aˆ(n-x);

32 [i2,~,~] = find(mat2);

33 num2(x) = size(i2,1);

34
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35 tot = sum(num tot);

36 tot2 = sum(num2);

37

38

39 I = zeros(1,tot);

40 J = zeros(1,tot);

41 V = zeros(1,tot);

42

43 I2 = zeros(1,tot2);

44 J2 = zeros(1,tot2);

45 V2 = zeros(1,tot2);

46

47 indx = 1;

48 indx2 = 1;

49

50 for x = 1:n-1

51 mat = C*Aˆ(n-x-1)*B;

52 mat2 = C*Aˆ(n-x);

53

54 [i,j,v] = find(mat);

55 [i2,j2,v2] = find(mat2);

56

57 i = i+(n-x)*p;

58 i2 = i2+(n-x)*p;

59

60 I2(indx2:indx2+num2(x)-1) = i2;

61 J2(indx2:indx2+num2(x)-1) = j2;

62 V2(indx2:indx2+num2(x)-1) = v2;

63 indx2 = indx2+num2(x);

64

65 for y = 1:x

66 I(indx:indx+num(x)-1) = i+p*(y-1);

67 J(indx:indx+num(x)-1) = j+m*(y-1);

68 V(indx:indx+num(x)-1) = v;

69 indx = indx+num(x);
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70 end

71 end

72

73 x = n;

74 mat2 = C*Aˆ(n-x);

75 [i2,j2,v2] = find(mat2);

76 i2 = i2+(n-x)*p;

77 I2(indx2:indx2+num2(x)-1) = i2;

78 J2(indx2:indx2+num2(x)-1) = j2;

79 V2(indx2:indx2+num2(x)-1) = v2;

80 indx2 = indx2+num2(x);

81

82 O = sparse(I2,J2,V2,p*n,n);

83 J = sparse(I,J,V,p*n,m*n);

84 OJ = [O,J];

85 r = 0;

86 k = 0;

87 C pick = zeros(1,n/2);

88

89 indx = 1;

90 for i = 1:n/2

91 C pick(indx:indx+n/2-1) =

92 linspace(1,n/2,n/2)+ones(1,n/2)*p*(i-1);

93 indx = indx+n/2;

94 end

95 pick = linspace(1,n/2,n/2);

96 T = 0;

97

98 rold = sprank(OJ(C pick,:));

99 rinc = zeros(1,p);

100

101 while r < n

102 parfor z = n/2:p

103 C test = [C pick, linspace(z,p*n-p+z,n)];

104 H1 = OJ(C test,:);
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105 H2 = J(C test,:);

106 rnew(z) = sprank(H1) - sprank(H2);

107 rinc(z) = (rnew(z)-rold)/cost(z);

108 end

109 rinc(pick) = 0;

110 [~,argmax] = max(rinc);

111 r = rnew(argmax);

112 rold = rnew(argmax);

113 pick = [pick, argmax];

114 C pick = [C pick,linspace(argmax,p*n-p+argmax,n)];

115 rinc = zeros(1,p);

116 end

117

118 goal = sum(cost(pick));

119 fprintf('For run %s: %d\n',filename,goal)

120 toc

121 end

The following code was used to compute Greedy 2.

1 parpool(20);

2

3 number = [4.1,4.2,4.3,4.4,4.5];

4

5 for name = number

6 filename = strcat('SCP',name,'.txt');

7 [A,B,C,cost] = Parsing(filename);

8 tic

9 A = sparse(A);

10 B = sparse(B);

11 C = sparse(C);

12

13 n = size(A,1);

14 p = size(C,1);
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15 m = size(B,2);

16

17 num = zeros(1,n-1);

18 num tot = zeros(1,n-1);

19

20 parfor x = 1:n-1

21 mat = C*Aˆ(n-x-1)*B;

22 mat2 = C*Aˆ(n-x);

23 [i,~,~] = find(mat);

24 [i2,~,~] = find(mat2);

25 num(x) = size(i,1);

26 num tot(x) = size(i,1)*(x);

27 num2(x) = size(i2,1);

28 end

29

30 x = n;

31 mat2 = C*Aˆ(n-x);

32 [i2,~,~] = find(mat2);

33 num2(x) = size(i2,1);

34

35 tot = sum(num tot);

36 tot2 = sum(num2);

37

38

39 I = zeros(1,tot);

40 J = zeros(1,tot);

41 V = zeros(1,tot);

42

43 I2 = zeros(1,tot2);

44 J2 = zeros(1,tot2);

45 V2 = zeros(1,tot2);

46

47 indx = 1;

48 indx2 = 1;

49
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50 for x = 1:n-1

51 mat = C*Aˆ(n-x-1)*B;

52 mat2 = C*Aˆ(n-x);

53

54 [i,j,v] = find(mat);

55 [i2,j2,v2] = find(mat2);

56

57 i = i+(n-x)*p;

58 i2 = i2+(n-x)*p;

59

60 I2(indx2:indx2+num2(x)-1) = i2;

61 J2(indx2:indx2+num2(x)-1) = j2;

62 V2(indx2:indx2+num2(x)-1) = v2;

63 indx2 = indx2+num2(x);

64

65 for y = 1:x

66 I(indx:indx+num(x)-1) = i+p*(y-1);

67 J(indx:indx+num(x)-1) = j+m*(y-1);

68 V(indx:indx+num(x)-1) = v;

69 indx = indx+num(x);

70 end

71 end

72

73 x = n;

74 mat2 = C*Aˆ(n-x);

75 [i2,j2,v2] = find(mat2);

76 i2 = i2+(n-x)*p;

77 I2(indx2:indx2+num2(x)-1) = i2;

78 J2(indx2:indx2+num2(x)-1) = j2;

79 V2(indx2:indx2+num2(x)-1) = v2;

80 indx2 = indx2+num2(x);

81

82 O = sparse(I2,J2,V2,p*n,n);

83 J = sparse(I,J,V,p*n,m*n);

84 OJ = [O,J];
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85 r = 0;

86 k = 0;

87 C pick = zeros(1,n/2);

88

89 indx = 1;

90 for i = 1:n/2

91 C pick(indx:indx+n/2-1) =

92 linspace(1,n/2,n/2)+ones(1,n/2)*p*(i-1);

93 indx = indx+n/2;

94 end

95 pick = linspace(1,n/2,n/2);

96 T = 0;

97

98 rold = sprank(OJ(C pick,:));

99 rinc = zeros(1,p);

100

101 while r < n*(m-1)+n

102 parfor z = n/2:p

103 C test = [C pick, linspace(z,p*n-p+z,n)];

104 H1 = OJ(C test,:);

105 rnew(z) = sprank(H1);

106 rinc(z) = (rnew(z)-rold)/cost(z);

107 end

108 rinc(pick) = 0;

109 [~,argmax] = max(rinc);

110 r = rnew(argmax);

111 rold = rnew(argmax);

112 pick = [pick, argmax];

113 C pick = [C pick,linspace(argmax,p*n-p+argmax,n)];

114 rinc = zeros(1,p);

115 end

116

117 goal = sum(cost(pick));

118 fprintf('For run %s: %d\n',filename,goal)

119 toc
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120 end
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