
LINKING URBAN MOBILITY PATTERNS WITH DISEASE CONTAGION IN

URBAN NETWORKS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Xinwu Qian

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2018

Purdue University

West Lafayette, Indiana



ii



iii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF APPROVAL

Dr. Satish V. Ukkusuri, Chair

Lyles School of Civil Engineering

Dr. Joaqúın Goñi
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ABSTRACT

Qian, Xinwu PhD, Purdue University, December 2018. Linking urban mobility
patterns with disease contagion in urban networks. Major Professor: Satish V.
Ukkusuri.

This dissertation focuses on developing a series of mathematical models to un-

derstand the role of urban transportation system, urban mobility and information

dissemination in the spreading process of infectious diseases within metropolitan ar-

eas. Urban transportation system serves as the catalyst of disease contagion since it

provides the mobility for bringing people to participate in intensive urban activities

and has high passenger volume and long commuting time which facilitates the spread

of contagious diseases. In light of significant needs in understanding the connection

between disease contagion and the urban transportation systems, both macroscopic

and microscopic models are developed and the dissertation consists of three main

parts.

The first part of the dissertation aims to model the macroscopic level of disease

spreading within urban transportation system based on compartment models. Non-

linear dynamic systems are developed to model the spread of infectious disease with

various travel modes, compare models with and without contagion during travel, un-

derstand how urban transportation system may facilitate or impede epidemics, and

devise control strategies for mitigating epidemics at the network level. The hybrid

automata is also introduced to account for systems with different levels of control

and with uncertain initial epidemic size, and reachability analysis is used to over-

approximate the disease trajectories of the nonlinear systems. The 2003 Beijing

SARS data are used to validate the effectiveness of the model. In addition, com-

prehensive numerical experiments are conducted to understand the importance of

modeling travel contagion during urban disease outbreaks and develop control strate-
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gies for regulating the entry of urban transportation system to reduce the epidemic

size.

The second part of the dissertation develops a data-driven framework to investi-

gate the disease spreading dynamics at individual level. In particular, the contact

network generation algorithm is developed to reproduce individuals’ contact pattern

based on smart card transaction data of metro systems from three major cities in

China. Disease dynamics are connected with contact network structures based on

individual based mean field and origin-destination pair based mean field approaches.

The results suggest that the vulnerability of contact networks solely depends on the

risk exposure of the most dangerous individual, however, the overall degree distribu-

tion of the contact network determines the difficulties in controlling the disease from

spreading. Moreover, the generation model is proposed to depict how individuals get

into contact and their contact duration, based on their travel characteristics. The

metro data are used to validate the correctness of the generation model, provide in-

sights on monitoring the risk level of transportation systems, and evaluate possible

control strategies to mitigate the impacts due to infectious diseases.

Finally, the third part of the dissertation focuses on the role played by infor-

mation in urban travel, and develops a multiplex network model to investigate the

co-evolution of disease dynamics and information dissemination. The model consid-

ers that individuals may obtain information on the state of diseases by observing

the disease symptoms from the people they met during travel and from centralized

information sources such as news agencies and social medias. As a consequence, the

multiplex networks model is developed with one layer capturing information perco-

lation and the other layer modeling the disease dynamics, and the dynamics on one

layer depends on the dynamics of the other layer. The multiplex network model is

found to have three stable states and their corresponding threshold values are ana-

lytically derived. In the end, numerical experiments are conducted to investigate the

effectiveness of local and global information in reducing the size of disease outbreaks

and the synchronization between disease and information dynamics is discussed.
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1. INTRODUCTION

1.1 Background

1.1.1 Urbanization and infectious diseases

Urbanization is the process where increasing number of people migrate to urban

areas from rural places. It is estimated that over 64% population of developing coun-

tries and 86% population of developed countries will reside in urban areas by the end

of 2050 [1], which is four times greater than the size of urban population by the end

of 20th century. The rapid urbanization process brings more intensive urban activi-

ties, vivid land use patterns, the developments of urban infrastructures as well as the

economy system. Meanwhile, urban population have access to better sanitary system,

cleaner water sources, and well-established system of personal health care. All these

benefits signify that urbanization may lead to the society with superior efficiency.

But challenges also arise with the fast-growing urban population. There are concerns

related to housing, education, energy consumption, urban waste, emission and pol-

lution. The traffic congestion and road accidents are also well-known byproducts of

the urbanization process. And significant efforts have been made during the past few

decades to address the above-mentioned issues for improving urban efficiency.

However, there is one additional challenge for the urban population, whose con-

sequence is likely to be underestimated, the spread of infectious diseases. The World

Health Organization (WHO) has listed urbanization as a major public health chal-

lenge in the 21st century. But major efforts were focused on physical activities and

mental health [2–4], where researchers were more concerned with the consequences
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Figure 1.1.: Total number of worldwide international tourism arrivals from 1995-2015

and treatments of road accidents, air pollution, obesity, and mental disorder con-

dition. And various studies have established the connections between urban plan-

ning and urban population health, and devised measures for promoting urban public

health [5, 6]. Under the impression of the availability of vaccines to major communi-

cable diseases, the accessibility to advanced urban health care system, and the devel-

opment of modern medicine and pharmacy, few studies explored the risk of infectious

diseases associated with the vast urban population.

Is infectious disease a major challenge to urban population? Perhaps the current

urban society is more vulnerable to the invasion of infectious diseases than any other

time in the history, and will be increasingly more vulnerable in the future. Proximity

and exposure duration are two deterministic factors for infectious diseases to spread

among population, and dense and heterogeneous urban population serve as an ideal

catalyst which facilitates the disease spreading process. In addition, the world is more

connected with improved accessibility to mobility services, and we have seen more

and more frequent world trades and travels taking place over the years. As shown

in Figure 1.1, the total number of worldwide tourism arrivals has almost tripled in

2015 than that in 1995. This implies that any local disease outbreaks may easily

turn into a global outbreak nowadays, and cause significant panic worldwide. And
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our memory of global panic caused by infectious diseases is still fresh, such as the

Zika virus epidemic in 2015-2016 [7] and the SARS outbreak in 2002 [8]. Both disease

outbreaks are representative examples where local diseases evolve into global endemic,

and the disease timeline of 2002 SARS is shown in Figure 1.4. Last but not least, the

leading causes of death in low income countries are reported to be lower respiratory

infections, HIV/AIDS, malaria, tuberculosis, and diarrhea disease [9], all belonging

to infectious diseases. While the most rapid urbanization is expected to take place in

low-income developing countries [10], the challenge of infectious disease should be one

of the major issues that needs to be properly addressed during urbanization processes

in these countries.

1.1.2 Impact of urban infectious diseases

Infectious diseases, also known as communicable or transmissible diseases, are

transmitted by healthy individual contact with an infected person or virus hosts such

as mosquitoes. There are over 200 different types of infectious disease nowadays [11].

It can be as minor as a common cold and flu where a person may be self-cured after

several days, or may be as deadly as SARS in 2002 when no effective vaccine nor

treatment was available.

Figure 1.2.: Annual influenza associated death in United States from 1976-2006. Data
source: CDC
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Figure 1.3.: Prevalent infected diseases in each decade since 1960s

Table 1.1.: Summary of vital infectious disease outbreaks

Time Disease Spread Consequence

1850s Measles Cough, tears 20 million cases worldwide
1950s Smallpox Face-to-Face contact 15 million cases each year, killed 500 million people
... ... ... . . .
2003 SARS Person-to-person 8,273 cases, 775 deaths
2009 H1N1 Person-to-person 300,000 deaths
2012 MERs Person-to-person 1,000 case reported, 40% death rate
2015 ZIKA Mosquitoes 1.5 million people infected in Brazil

Even the consequence of flu seems minor as compared to other deadly infectious

diseases, the cost of flu when it comes to the mast population may become mighty.

As presented in Figure 1.2, since 1976, the influenza has taken over 20,000 lives

on average each year, and the number death is in an overall growing trend even

though the disease can be easily prevented by vaccines or effectively treated. In

the year 2015, the flu was reported to account for $5.8 billion in health care and

lost productivity costs, and the pandemic outbreak of flu resulted in the GDP loss

between $34.4 billion and $45.3 billion [12]. And if we look back into the past five

decades, there were numerous infectious diseases which resulted in significant losses

of human lives and economy as shown in Figure 1.3. Most of these diseases were

transmitted through close human contact, such as measles, small pox, and plague,

and led to a large number of infected people and deaths due to limited accessibility

to health care infrastructures and underdeveloped modern medicine. Smallpox alone
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resulted in 500 million death during 1950s, and latter reappeared in 1970s. But

effective vaccines have been developed since then and such infectious diseases are no

longer major threats for modern human societies. The real challenges are introduced

by the infectious diseases with numerous variants (e.g., H1N1, H5N2, H3N2), having

periodical outbreaks, and most importantly, no effective vaccines or treatments being

available by the time that the disease was first identified. In this situation, a single

case of infected individual may lead to rapid growth of total infected population and

rapid synchronization of the disease all over the world.

Figure 1.4.: Timeline of SARS outbreak [13]
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Figure 1.5.: Thermal imaging camera used for screening suspicious travelers in Israel
during SARS. (source: Getty Image)

A notable example of the above mentioned scenario is the 2002 SRAS outbreak

(see Figure 1.4). The patient zero was believed to appear in Guangdong Province,

China, in November 2002. But not until the next February did people start to pay at-

tention to the disease, when there had been 305 suspicious cases reported and 5 people

had already lost their lives. While most of the cases were found local, on February

21, 2003, first case was identified in Hong Kong, which is one the largest cities in

the world famous for international trades and travels. Soon SARS outbreaks were

reported in many other major cities and countries around the world, including China,

Singapore, Vietnam, and Canada. The disease caused significant global panic during

its outbreak, and was transmitted at an unprecedented pace over the world. By the

time when most of the cities were removed by WHO from the list of areas with re-

cent local transmission, SARS had affected at least 8,000 people worldwide and taken

775 lives, most of them being medical workers. Apparently, the growth of regional

and global transportation networks played an important role in the rapid spread of

the disease. And during the global SARS outbreaks, we have seen at airports and

transit entrances the screening equipment (e.g., the use of thermal imaging cameras,

shown in Figure 1.5) being introduced for spotting suspicious travelers, which was
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believed to have significant contributions to lower the number of infected population

and deaths during the time. Such control procedures have also been used in later

global epidemic outbreaks, such as H1N1 and MERS.

As of today, the most reliable and practical method for addressing the invasion

of infectious diseases is through vaccination, whose development relies heavily on

the advances in pathology, pharmacy, and modern medicines. Vaccines have proven

to be effective for many infectious diseases such as smallpox and measles, and have

contributed significantly to the eradication of these diseases. Unfortunately, the draw-

back of vaccination is that it is a reactive strategy, and vaccines are usually developed

after significant costs of lives and human efforts being. For disease outbreaks such as

SARS and MERS, no effective vaccines were developed in a timely manner, and the

best strategy one may adopt is therefore to quarantine suspicious people and prevent

them from producing further infections. But quarantine as a proactive action is not

an easy task especially in urban areas, considering complex urban land use and ac-

tivities, large and heterogeneous population, and the rapid global synchronization of

newly emerged diseases. The effective implementation of quarantine strategy requires

in-depth understanding of the relationship between disease contagion and urban mo-

bility, and hence the structures of urban transportation systems, which is the main

objective of the dissertation.

1.2 Motivation

1.2.1 Urban travel

One of the key driving forces for the spread of infectious disease is intensive urban

travels. While we cannot restrain people from traveling, it is important to investigate

how people’s travel patterns contribute to the disease transmission so that we may

build a more resilient urban mobility system against disease contagion. In suburban

and rural areas where people are sparsely distributed and have access to limited num-
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ber of transportation modes, and the commuting patterns are stable and predictable,

the disease dynamics can be easily modeled through the classic compartment model

with high level of accuracy [14,15].

But an entirely different story emerges when it comes to modeling the spread of

infectious diseases within urban areas. And there are three notable characteristics

of urban travels that motivate the dissertation to explore the relationship between

disease transmission and urban transportation systems. First, the fact that urban

population are dense and highly heterogeneous violates the key assumption on homo-

geneous population of the classical compartment model. Second, urban population

have access to a wide collection of transportation modes, and each of these modes

has its distinct characteristics when associated with the spread of diseases based on

its capacity and level of mobility. But most importantly, urban population spend

significant amount of time during daily commuting. Recent report suggested that

New York City (NYC) residents spent an average of 6 hours and 18 minutes per

week for daily commuting [16], while this number is 52 and 51 minutes per day for

commuters in Beijing and Shanghai, China, respectively [17]. These statistics suggest

that urban population may spend around 10% of their active daily hours in the urban

transportation systems. More importantly, since disease contagion is a function of ex-

posure time and proximity, the high population density inside the mass transit system

has made the system an ideal place for infectious diseases to be transmitted over the

crowd. Taking Hong Kong as an example, the population density is reported to be

6.69×10−3 per square meter [18], while the typical population density of a classroom

is 0.018 per square meter and that of the office is 0.33 per square meter. However,

the metro passenger density may reach 4 people per square meter and that of the

bus may be up to 8 passengers per square meter. These clear imply that people in

urban transportation systems may be exposed much higher risk level for getting close

contacts than in other urban activities. This observation shapes a sharp contrast to

conventional epidemic models where the spread of diseases is only considered during
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human activities in a particular zone or node while the risk of disease transmission

during travel is totally ignored.

In conclusion, the mobility pattern in urban areas is very different and consider-

ably more complicated than in other areas, but our understanding of its relationship

with the spread of infectious diseases is still limited due to oversimplified assumptions

in conventional epidemic models. The dissertation is therefore motivated to develop

advanced models to investigate the role played by urban transportation systems in

the spread of infectious diseases.

1.2.2 The era of big data

The compartment model considers the spread of infectious diseases at the macro-

scopic level. Such level of aggregation is valuable for decision making at the regional

level, but it is also important to understand at the individual level on how disease

may propagate from one to the other based on individual contact patterns. And the

understanding of behavior changes at individual level is also a significant factor for

accurate interpretation of people’s reactions during disease outbreaks for developing

individual models.

While real-time information of human mobility was barely accessible in the past,

recent advances in location-based services, pervasive computing, and the dissemina-

tion of smart phones especially in urban areas provide us the opportunity to collect

high resolution data of human mobility and activities at individual level. In partic-

ular, the intensive use of social network applications such as Facebook and Twitter

enable us to construct virtual or even real-world contact networks. In addition, the

adoption of on-board GPS devices, the use of physical or mobile travel passes, and the

rise of on-demand mobility services provide the digital footprints of urban travelers

in fine detail. With all of these, we are now able to trace detailed individual travel

trajectories, restore daily activity sequences, and build contact networks among indi-
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viduals. This turns impossible ideas in the past into possible and valuable topics at

present.

The availability of big data provides us an unprecedented opportunity to model

the disease contagion at individual level, however, it also introduces new challenge

in modeling individual behavior during disease outbreaks. Specifically, the era of big

data implies that people are more connected than ever before and are exposed to

abundant information resources from social medias and news agencies. And people’s

behavior during disease outbreaks is unlikely to be independent from the information

they have access to. That being said, human behavior is no longer the same in the era

of big data: they are more likely to make rational decisions rather than greedy ones

due to the improved level of knowledge of the whole system state. In this regard, it

may no longer be reasonable to assume that contact networks and activity sequences

may remain the same as the disease proceeds over time. This imposes an additional

challenge for modeling disease contagion at individual level, and becomes the second

motivation of the dissertation.

1.2.3 Gap in the literature

Based on previous discussions, it can be seen that the spread of infectious disease is

closely related to urban mobility and urban transportation systems, and great oppor-

tunities and challenges coexist in the field for addressing the research problems from

both macroscopic and microscopic levels. However, existing studies in understanding

the dynamics of infectious diseases are mostly explored within the fields of biology

and pathology, or through mathematical models without considering the crucial com-

ponents of urban human mobility (detailed review of related mathematical models is

conducted in the following chapter). And there is an emerging need to investigate this

issue from transportation engineering perspective to build the connection between the

spread of infectious diseases and urban transportation systems.
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Figure 1.6.: Relationship between transportation engineering and public health, and
the number of studies on each topic since 2013. Data were collected from Google
Scholar.

In fact, the research idea on understanding the impact of transportation system on

public health is not new, and has already drawn attentions from many scholars. But

the studies almost exclusively focus on physical inactivity, personal safety, air pollu-

tion, and social isolation. There are only few studies exploring human mobility and

the spread of infectious diseases, mainly from the global air travel perspective [19–21].

And this research gap is visualized by summarizing most popular research fields in

transportation engineering, their relationship with public health, and the existing

number of related studies (using keyword ”transportation” with the corresponding

health risk exposure keyword searching through Google Scholar search engine) since

2013 in Figure 1.6. While there are over 200,000 studies on safety related topics alone,

and the number of studies on pollution and physical inactivity being well over 100,000,

there are fewer than 20,000 studies associated with the key word ”transportation +

infectious disease”, not mentioning that few of the 20,000 are indeed investigating

this topic. Clearly, infectious disease within urban transportation system is an un-

derstudied yet significant research field, which motivates the dissertation to make one

of the initial attempts to bridge this gap.
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1.3 Objectives of the dissertation

With the background that infectious diseases become a major challenge for urban

areas especially in developing countries, and that the spread of infectious diseases

is closely related to the functionality and structure characteristics of urban trans-

portation systems, the dissertation aims to investigate how urban mobility and urban

transportation system may promote or impede the spread of infectious diseases, and

devise control strategies and design directions in developing a more resilient and less

vulnerable urban transportation system to mitigate the threats from disease out-

breaks. To achieve this goal, four major objectives are proposed in this dissertation

as follows.

First, the dissertation will build the connection between the spread of the in-

fectious diseases and the overall structural of urban transportation system. Urban

transportation system is a complex system consisting of multiple travel modes and it

is not uncommon that the system serves tens of millions of daily passengers. In this

regard, it is important to take the multi-modal nature of urban transportation system

into consideration and treat the movement of such lager population size as passenger

flow at the network level. And from the network level, mathematical models and

computational tools will be developed to assess the functionality of the multi-modal

transportation system during disease outbreaks.

Second, the dissertation will build a data-driven framework to further investigate

the structure property of urban transportation system to gain insights in deriving

control strategies and design policies. Based on large-scale travel data, the disser-

tation will examine the structure of physical transportation networks such as metro

networks, and reconstruct the underlying contact networks to understand how indi-

vidual travelers meet each other in urban transportation systems. While the first

objective focuses more on the optimal coordination among different transportation

modes, the second objective helps to identify how vulnerable each individual travel

mode is to infectious diseases, and understand what measures can be taken to improve

the vulnerability of the particular travel mode.
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Third, the dissertation will study how individual travel behavior may change as

the disease proceeds, and reveal underlying implications on how change of individual

behavior may affect the dynamics of infectious diseases. The impacts of individual

behavior are often neglected when modeling diseases to reduce model and computa-

tional complexity. However, this is likely to result in over or under estimations of the

actual disease scales and false interpretation of disease dynamics. The dissertation

will consider how individuals may adjust their behavior and protect themselves when

observing the states of other travelers who they met during travel, and when exposed

to various information resources such as news agencies and social medias.

Finally, and most importantly, the dissertation will bring into attention the rela-

tionship between urban transportation system and the spread of infectious diseases to

the general public. The results and findings of the dissertation will help to understand

how our urban transportation system will contribute to the spread of infectious dis-

eases, and will improve our knowledge on possible control measures for transportation

systems to address the challenges of infectious diseases in urban areas.

1.4 Organization of the dissertation

The dissertation aims to develop mathematical models from both macroscopic

and microscopic levels, help to understand the disease spreading process with the

transportation system in urban areas, and assist future decision makings in identifying

critical nodes in transportation systems and frame control strategies during disease

outbreaks. The overall structure of the dissertation is shown in Figure 1.7.

The first part of the dissertation focuses on developing macroscopic models to

model regional spread dynamics of communicable diseases, which corresponds to the

regional and transportation system modeling branch in Figure 1.7. The main contri-

butions of the first part can be summarized as:
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Figure 1.7.: Dissertation framework

1. The dissertation develops the mathematical framework to understand the pop-

ulation movement and the contagion pattern between healthy and infected peo-

ple.

2. Various modes of urban transportation are explicitly modeled during the disease

spreading process, and the effectiveness of entry-control strategies are evaluated

based on different urban structures.

3. The selfish travel behavior of urban passengers are considered which result in

the hybrid system modeling scheme of the urban disease transmission with

transportation system.

4. The models not only focus on limiting behavior of the system, but also investi-

gate the intermediate process of disease transmission. And over-approximation

technique for the hybrid automata is developed which gives the upper-bound

for the peak value of number of infected population during disease outbreaks.

The second part of the dissertation, including contact network and information

dissemination models, focuses on developing microscopic tools to understand disease
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dynamics among individuals. The contributions of the second part can be summarized

as:

1. The dissertation develops a data-driven framework to construct the individual

contact network within transportation systems.

2. The dissertation develops individual based models to understand the percolation

of diseases in the constructed contact network.

3. The dissertation builds the connection between structure and functionality of

contact networks during disease outbreaks.

4. The dissertation incorporates individuals’ behavior change when being exposed

to various information resources related to disease states.

5. The dissertation reveals various stable system states for the spread of infectious

diseases in the contact network.

The dissertation is organized as follows. Chapter 2 reviews the basics of epidemic

models for both compartment models and contact network epidemiology, and sum-

marizes recent literature on both topics. Chapter 3 builds macroscopic models for the

spread of infectious diseases in urban transportation systems at regional level. In par-

ticular, this chapter develops the spatial model of urban activities with various travel

modes as the ODE system. Hybrid automata approach is also introduced to model

control strategies. Chapter 5 and 6 discuss the development of models at individual

level. Chapter 5 utilizes the smart card transaction data to reconstruct the contact

network of metro travelers, which is the mass transit mode with highest usage as well

as highest risk exposure. The data driven approach for building the network growth

model is introduced, and the vulnerability of the constructed travel contact network

is analyzed. Chapter 6 considers that individuals will change their behavior when

exposed to various information sources, and models the co-evolution of disease and

information dynamics in the multiplex networks setting. Three possible stable states
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for disease and information co-evolution are discussed, and the synchronization be-

tween disease and information spreading is investigated under different stable states.

Finally, chapter 7 concludes the dissertation and discusses future research directions.
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2. EPIDEMIC MODELING

2.1 The basics

Epidemic modeling is the subject of developing mathematical models to under-

stand the spreading process as well as the limiting state of infectious diseases. There

are two main approaches to accomplish the goal. First, the compartment model where

population are divided into independent compartments and the system dynamics is

usually modeled as the set of ordinary differential equations (ODE). Second, the con-

tact network epidemiology approach, which is based on complex network theories

where individuals are treated as nodes and their contact pattern shapes the topology

of the network. We next briefly introduce the classical models for each of the two

approaches.

2.1.1 The susceptible-infectious-recovery (SIR) model

Figure 2.1.: Illustration of the SIR model with contagion rate β and recovery rate γ.
(compartment model)

One of the simplest and mostly recognized compartment epidemic models is the

SIR model, derived from early papers by Kermack and McKendrick [22, 23]. The

key assumption of the SIR model as well as for other compartment models is that

all members within the same compartment are homogeneous, having equal chance of
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being infected. The main idea of the SIR model is that it separates population into

susceptible (S), infectious (I), and recovered (R) states, as shown in Figure 2.1. The S

population is also considered as the healthy population, and vulnerable to infections

upon contact with I population at the rate of β. And once people get infected, they

will be subtracted from the S population and added to the I population. The I

population has a chance of gamma to get recovered from the disease. And once the

person is recovered, he or she will be considered as gaining permanent immunity (or

death) and will never return to other compartments. This dynamic process can be

mathematically written as:
dS

dt
= −βSI

N
(2.1.1)

dI

dt
= β

SI

N
− γI (2.1.2)

dR

dt
= γI (2.1.3)

where N = S + I + R is the total population and is usually considered as fixed,

and the term I
N

captures the chance that a susceptible individual may get in contact

with infected people within population of size N . The initial condition of the SIR

system is that S, I > 0 and R = 0 at time t = 0. The classical SIR model can

be further extended to incorporate birth and death of population, include additional

compartments such as the exposed (E) compartment where people are infected but

not yet infectious, and introduce vertical transmissions in addition to the transmission

between compartments.

One of the most important characteristics of the SIR model is its threshold phe-

nomenon, where the threshold refers to the critical point determined by model pa-

rameters whether the disease is going to invade the whole population or eventually

die out. That is, if we rewrite dI
dt

as

dI

dt
= I(β

S

N
− γ) (2.1.4)
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and if S < γN
β

, then dI
dt
< 0 and the disease will die out. Otherwise all population will

become infected and eventually stay in the R compartment. In common practice, we

usually omit theN term and represent S/N directly as the single term - the proportion

of susceptible population. Then critical threshold β
γ

is usually termed as the basic

reproduction number, or R0. If R0 > 1, the disease will invade the population, and

the physical interpretation of R0 is the number of secondary infections an infected

individual may produce.

2.1.2 Disease over the network

The study of disease spreading over the network is a recent and innovative field

of research [24] as compared to the compartment model approach which has over

90 years of history. Different from the compartment models where the population

is assumed to be perfectly mixed, each individual is now treated as a single node

in the network, and the focus of the network approach is to understand the impact

of network topology on the disease diffusion process. Note that the SIR process or

its other variants are still applied in the contact network. But instead of using the

idea of compartments, each node in the network may have the state of S, I, and R

respectively. Figure 2.2 shows an example of disease diffusion on networks under the

SIR scheme.

Figure 2.2.: Illustration of the SIR model over networks.
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At each time step, each susceptible node has the probability λ of being infected if

it is connected to one or more infected nodes. Similarly, each infected nodes has the

probability of µ for recovery. While the focus of the network approach is to understand

the collective behaviors over the network, the disease transmission is modeled based

on the degree distribution of the network. For instance, Ik(t) refers to the proportion

of nodes of degree k that are in the infected states at time t, and we have the following

differential equations for capturing the full system dynamics:

dSk
dt

= −λkSk(t)Θ(t) (2.1.5)

dIk
dt

= λkSk(t)Θ(t)− µIk(t) (2.1.6)

dRk

dt
= µIk(t) (2.1.7)

where Θ(t) is the probability that any link in the network is adjacent to an infected

node. It can be seen that the network approach has a similar structure as compared

to the compartment model, but it distinguishes nodes with different degrees thus

allowing for individual heterogeneity and accounting for network structures.

The variable Θ(t) can be approximated as:

Θ(t) =

∑
k P (k)Ik(t)

< k >
(2.1.8)

where < k > is the average node degree. And the underlying assumption of this

approximation is that all links are independent in the given network, for the sake of

computational simplicity for the approximation, which therefore makes the differential

equations integrable.

And the idea of reproduction number also exists for the network approach, where

the interest lies in analyzing the critical threshold whether the disease is eliminated
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or becomes permanent at time t → ∞. And following above equations, the existing

results [25] suggested that the critical transmission threshold λc can be expressed as:

λc =
< k >

< k2 >
(2.1.9)

so that whether the disease may invade or not depends not only on the value of λ,

but also the topology of the network itself.

2.2 Literature review on compartment models for epidemic modeling

This section reviews the development of the compartment models for epidemic

modeling from both theoretical and practical aspects, and we refer to [26, 27] for

fundamentals and comprehensive review of this field.

As introduced in section 2.1.1, the compartment model of epidemic modeling is

based on the key assumption of homogeneous mixing of population within the same

compartment, and the sequences of studies are developed based on the pioneer works

by Kermack and Mckendrick [22,23]. Their studies developed a compartment model

based on simple assumptions regarding the rate of transmission between different di-

visions of population, and the prediction from the model showed the disease pattern

with intensive growth of infected population and eventually the disease disappeared.

There were part of the population being unaffected, and these patterns have been ob-

served in numerous epidemics in the history. Their results gave rise to the SIR model,

which is mainly used for modeling diseases that confer immunity against infection,

also the SIS model, which is mainly used for diseases where infected population are

subject to reinfection and will return to susceptible population upon recovery. One

concern related to the compartment model is the form of incident rate, which is usu-

ally used in regardless of the total community size (e.g., βSI/N instead of βN vSI/N).

Anderson and May [28] used data from five human diseases in communities, with var-

ious population size ranging from 1,000 to 400,000, to validate the correctness of this

incidence form. They reported that by using the incidence form βN vSI/N , the v lied
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in between 0.03 and 0.07, which implies that it is more reasonable to use v = 0 (where

community size plays no role) instead of taking v as 1. And the results suggested

that human beings are infected during their daily activities, which are barely affected

by the size of their community.

Significant efforts have been made in deriving meaningful variants of compartment

models for different kinds of diseases under different invasion conditions. There are

compartment models for general types of diseases such as SIR, SIS, SEIR, and SEIS

models. And there are also more specific models which consider the treatment state

where a portion of infected population may get cured by vaccines and are moved to

a different compartment [29], the models with latent period after which people may

either turn into infected state or asymptotic state with decreasing infectious rate

over time [30], and also models with quarantine and isolation states where infected

individual may be isolated from the mass population during the outbreaks of a new

disease when no vaccine has been developed [31]. Besides the transmission of dis-

eases between compartments of different states, the rate of infection and mortality

usually vary with different age structures which give rise to the age-structured mod-

els [32,33]. The age-structured models use the partial deferential equations (PDE) to

capture the variation of disease related coefficients as a function of time in addition to

the ODE system for compartment models. And Castillo-Chavez and Hethcote further

extended the age-structured model by considering the cross-immunity effects when

one strain of certain influenza may provide additional protection of other types of

influenzas [34]. Moreover, seasonality was found to be another important factor that

may have significant impact on the disease dynamics, which may result in the period-

ical outbreaks of infectious diseases and the existence of multiple equilibriums [35]. In

addition to the regular transmission between the compartments which is horizontal,

many diseases may also spread via vertical transmission by transplacental transferring

of disease agents. And this can be captured by the compartment model by consid-

ering that a certain portion of infectious population’s offspring are infected at birth,
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where Busenberg and Cooke provided a comprehensive review of related disease and

epidemic models of vertical transmission [36].

With the presence of infectious disease, the nature question to ask is what we can

do to impede or even eliminate the invasion of the diseases. Pulse vaccine is among

the most effective methods for controlling the diseases from spreading, by repeatedly

vaccinating target groups of people at risk. This method has been reported to con-

tribute to the eradication of measles at relatively low values of vaccination [37]. And

Shulgin et al. developed the SIR model with pulse vaccination strategy [38] to capture

the disease dynamics. They demonstrated that the effectiveness of pulse vaccination

under seasonal variation, and compared the effectiveness of different vaccination poli-

cies. Alberto [39] further improved the study by modeling vertical transmission of

diseases with pulse vaccination strategy. Finally, besides considering additional com-

partments and control strategies, the compartment models can be further improved

by incorporating spatial aspects of human activities. Instead of having homogeneous

behavior within the same compartment, people within the same disease state may

have very different activity patterns. A typical example is that an infected individual

goes to work during day time but returns to home at night, and the activity pattern

and therefore the contagion rate will be totally different at these two locations. In

light of this issue, Arino and Driessche proposed the multi-city epidemic model [40],

where the population dynamics was first modeled among multiple cities and the dis-

ease dynamics was investigated at the equilibrium of population movement. And this

study forms the basis for modeling the impact of urban transportation system during

disease outbreaks in the dissertation.

With rich and comprehensive extensions of the basic epidemic models, efforts have

also been made to understand important mathematical properties of these models and

have contributed to better understanding of complex disease dynamics. One impor-

tant property derived from the epidemic models is the herd immunity, which serves

as the basis for deriving effective control strategies of mass immunization [41]. Such

property suggests that immunization at individual level may map to the eradication
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of diseases at the community level once a threshold portion of individuals are immu-

nized. Another fundamental attribute of epidemic models is the basic reproduction

numbers, or R0, which serves as the indicator of disease free equilibrium or endemic

equilibrium states of infectious diseases. In light of the significance of R0, there exists

many studies exploring efficient ways of calculating R0 for complicated compartment

models. Diekmann et al. [42] introduced the guidelines on how to derive this num-

bers. And Diekmann et al. [43] further proposed the idea of next generation matrix

(NGM), which becomes the state-of-the-art methods for calculating R0 analytically

based on the largest eigenvalue of the NGM. As most of the interests of epidemic

modeling lie at understanding the asymptotic behaviors of the developed models, the

stability analysis of various equilibrium solutions has been comprehensively investi-

gated in this field. This includes but are not limited to proving the stability of SEIR

models [44], the global stability of SIR models with time delay [45], the stability when

pulse vaccination strategy is considered [46], and the use of Lyapunov functions to

prove global stability of equilibrium solutions for a collection of epidemic models [47].

While the bilinear incidence rate βSI is used in most of the studies, there are also

discussions on understanding the disease dynamics of nonlinear incidence rate βSaIb

based on different choices of a and b values [48,49].

Finally, based on the theoretical developments of epidemic models, there are also

a number of studies that validate the correctness of the developed models using his-

torical disease data. Rvachev and Longini applied the SEIR models at the global

level [50]. They considered that travelers can spread infection from city to city and

these cities are distributed across several continents. The model was implemented to

forecast the 1968-1969 influenza pandemic starting from Hong Kong, and the esti-

mated results were found to be mostly consistent with the time-space spread of the

actual data recorded by WHO. Arazoza et al. [14] applied the compartment models to

estimate the size of Cuban HIV epidemic, and their results suggested that the model

may well fit the historical data and the estimated values were close to the reported

size of HIV population. Riley et al. [51] used the 2003 SARS data to estimate the
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R0 value of SARS, and implemented the stochastic metapopulation compartmental

model to understand the disease dynamics and compare the future trajectories of

diseases under various control policies. Fraser et al. [52] used the data collected from

H1N1 influenza to fit the parameters for the age-structured disease transmission mod-

els, and the model was used for projecting future trajectories of the disease outbreak.

Fisman et al. [15] fitted disease parameters from the data of 2014 West Africa Ebola

outbreak, and introduced a simple two parameter mathematical models to estimate

the fate of the Ebola outbreaks. Their findings suggested that a small reductions

in the transmission rate may reduce tens of thousands of infected population and

therefore intervention strategies are highly desired.

2.3 Literature review on disease over networks

While there has been a rich literature in the theoretical development of compart-

ment epidemic models and such models have been shown to be accurate in predicting

disease dynamics in several case studies, the biggest drawback of the model comes

from its most fundamental assumption: the perfectly mixed population within each

compartment. As pointed out by Meyers [53], such assumption may lead to esti-

mations of disease outbreak being significantly biased: the R0 was estimated to be

between 2.2 and 3.6 but the spread of the disease was actually limited based on the

SARS record data. There also exists a huge discrepancy between estimated value

from the model and the actual cases: it was estimated to have 30,000 to 10 million

SARS cases in China while the actual number reported was only 782 cases [54]. And

this sheds the light on accounting for individual differences while modeling disease

dynamics, which gives rise to the study of disease dynamics over the networks.

This research field is still in its infancy as compared to the long history of com-

partment models for infectious diseases. Earliest works in this field were conducted

by Moore and Newmann [55] in 2000 on the percolation of epidemics in small-world

networks, and by Satorras and Vespignani in 2001 [24], where they studied the spread
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of epidemics in the scale-free network whose nodes degree follows the power-law dis-

tribution. One of the most significant findings from their study was the absence of

epidemic threshold, meaning that diseases may invade the scale-free network regard-

less of their infectious rate. On the other hand, the epidemic threshold still held for

networks with exponentially bounded connectivity [56]. Newman [57] presented the

first work on analytical solutions of epidemic modeling over the networks with arbi-

trary degree distribution based on percolation theory. Motivated by the idea of herd

immunity, Satorras and Vespignani further investigated the immunization issue for

complex networks [58]. And another surprising result was revealed that the scale-free

network may not acquire global immunity even if an unrealistic number of agents

in the network is immunized, which shapes a sharp contrast to the results of herd

immunity obtained from compartment models. Instead, target immunization should

be encouraged based on nodes’ connectivity properties rather than randomization

strategy, which was found to significantly improve networks’ vulnerability to infec-

tious diseases. One of the drawbacks of these studies is the homogeneous assumption

for the nodes with the same degree, which is an effort made to simply the analytical

difficulties related to the complex network approach. Under such assumption, nodes

with the same degree are considered independent from each other, which is unlikely

to be case in many real world networks. To address this drawback, Bogun et al. [59]

introduced degree correlation into the network approach, and they concluded that

the nodes correlation does not change the fact of the absence of epidemic threshold

in the highly vulnerable scale-free network. Due to the potential large network sizes,

it is usually intractable to conduct individual level analyses to derive meaningful

results. Instead, certain level of aggregation is needed to understand the collective

behavior over the networks, and the efforts made so far can be categorized into three

approaches [60]. The first approach follows the degree-based mean-field theory, where

statistically equivalence is assumed for nodes with the same degree and the primary

interests is on the disease dynamics over the given degree distribution. Examples of

studies adopting this approach include [56, 58, 59]. The second approach follows the
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individual-based mean-field theory, where the adjacency matrix of the network and

therefore the concrete topology of the network plays an explicit role in determining

the dynamics of disease spreading over the network. Representative works using this

approach include [61–63]. The third approach is based on the generating functions

that are motivated from the percolation theory. The philosophy of this approach

is to represent the probability that a link is connected to infectious and susceptible

individuals by derivatives of generating functions. Works by [53, 57, 64] fall into this

category. We refer readers to a more comprehensive review of the fundamental works

on the disease dynamics over the complex network in [60,65].

While the results of these theoretical developments are mainly derived from a

given network, which can be in the form of the adjacency matrix or through the

degree distribution. But in reality, the network structure barely stays fixed and is

likely to evolve over time. This gives rise to studies that focus on understanding how

the change of network topology may affect the disease dynamics. Gross et al. [66]

developed one of the early world on this topic by introducing the idea of adaptive

networks. In their study, susceptible nodes were assumed to avoid contact with in-

fected ones, and this process was realized through network rewiring. And a complete

different picture of disease dynamics emerged such as the existence of bifurcation and

state oscillation, which stressed the importance of studying disease spreading over

dynamic rather than static networks. Karsai et al. [67] used mobile phone data to

obtain the event contact duration between individuals, which resulted in different

weight on each edges representing their contact duration, and they studied the SI

process on the weighted network. Stehlé et al. [68] conducted a simulation of SEIR

model over the contact network, which was constructed based on the contact pattern

as well as contact duration data collected during a conference. Ren and Wang in-

troduced a different approach to model the change of network topology, where they

defined the behavior of individuals on their movements across different communities,

and they modeled the SIS epidemic process on the time varying network [69].



28

2.4 Summary

In this section, we introduce mathematical basics of compartment epidemic mod-

els and disease modeling over networks. We also review the theoretical development

of compartment epidemic models, including the variants of conventional SIR and

SIS models and the mathematical properties related to the variants of the developed

models. The application of the developed compartment models are also discussed.

For the disease models on networks, we review pioneer works that constructed the

theoretical foundations and the important findings that are in contrast to the results

obtained from compartment models. We summarize three major approaches for an-

alyzing disease dynamics over network, and review the literature which highlighted

the importance of varying network topology on the accurate understanding of actual

disease processes. While both compartment models as well as network approaches

have their pros and cons, each of these two category still has their own significance in

modeling and understanding the dynamics of infectious diseases. In particular, the

network approach is not viable for large scale modeling at regional or global scale,

due to lack of individual network data as well as the issues related to the scalability of

the approach, where the compartment models are needed to understand the trajecto-

ries of the diseases and perform future estimations. On the other hand, the network

approach accounts for individual heterogeneity and takes the network topology into

consideration, which complements the critical drawback of the compartment models

due to the unrealistic assumption of fully mixed population. And the results obtained

from network approaches may help to better calibrate the compartment models’ pa-

rameters at aggregate level to mitigate the issue due to unrealistic assumptions. As a

consequence, both modeling approaches are powerful and useful tools for understand-

ing disease dynamics and their usage will depend on different applications and the

typical kind of research questions to be answered. And the dissertation will therefore

develop macroscopic and microscopic models based on both kinds of approaches.

Based on the literature review, the drawbacks of existing studies are summarized

as follows, which lead to the topics that will be studied in this dissertation:
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1. The research field of compartment models almost focuses exclusively on de-

vising new compartments for various diseases and analyzing the corresponding

mathematical properties. But few efforts were made to account for the mixed

population and their heterogeneous behaviors. While the issue is not vital when

the population is better mixed and the activity patterns are more tractable in

rural places, the existing models are not viable for modeling infectious diseases

in urban areas.

2. Both compartment model approach and network approach focus on the dynam-

ics of the disease itself, while the component of human’s rational behavior is

missing in existing studies. That is, one drawback of the existing studies is the

implicit assumption that human’s behavior during diseases is the same as of the

daily patterns. But there is no doubt that people will behave differently if they

are aware of the outbreaks of the disease, and their behavior may vary based

on the level of information they access to related to the disease pattern.

3. Despite the recent development of theoretical literature on the network ap-

proach, there are very few studies that analyze how vulnerable is real world

systems to the invade of infectious diseases. One possible reason is due to lack

of data to reconstruct the network topology of real systems. But with recent

advances in pervasive computing, location based services, and the popularity of

smart phone and related applications, we have more information about individ-

ual activity patterns than ever before. And there is an emerging need to assess

the how disease may spread in real systems and whether or not the system is

controllable during the outbreak.



PART I: NETWORK MODEL FOR SPREADING OF INFECTIOUS DISEASES
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3. MODELING DISEASE CONTAGION IN URBAN

TRANSPORTATION SYSTEM

3.1 Introduction

Urbanization in the past few decades has attracted billions of people into the urban

areas. According to the United Nation, by the end of 2014, there were over 3.9 billion

people living in urban areas, and the number is estimated to reach 6.3 billion (70% of

total world population) in 2050 [70]. The increasing urban population gives rise to the

growth of global economy, the development of urban infrastructures, and improved

accessibility to service such as education and health care. But the rapid urbanization

with unplanned urban development also lead to unprecedented challenges, among

which WHO entitles the health risk as the most significant challenge for urban areas

in the 21st Century. In order to meet the challenges, it is encouraged that urban areas

should promote the urban planning for safety and healthy behavior, and facilities

should be designed to make urban areas resilient to emergencies and disasters. In

this study, we focus on one particular health challenge, the communicable infectious

disease (CID) in urban areas, and investigate how urban transportation system is

related to the spread and control of CIDs.

It is well-understood that urban traffic is the main contributor for road injuries,

and traffic emission is also identified as one of the major sources for urban air pollution

which lead to respiratory and chronic diseases [71, 72]. However, all these health

exposures are related to noncommunicable diseases, and the connections between

urban transportation and CIDs are often underrated. Despite the fact that we have

access to piped water, better waste management, and medical treatment due to the

urbanization, the infectious disease remains a major health threat and contributes to
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approximately 19% of global death and 76% of deaths are associated with infectious

diseases in Africa by the end of 2010 [73]. More importantly, while infectious diseases

emerged in rural areas may only reach limited people and remain local in the past,

increased mobility and activity intensity worldwide make it easier for infectious disease

to affect a large population and results in global pandemic. Among all the possible

factors, the development of transportation system and the amount of people traveling

within the system undoubtedly lies in the heart for the spread of CIDs. On one

hand, people are making more trips and traveling at longer distance at both local

and global level. At local level, the average annual person-mile traveled in united

states has increased by 169% from 1969 to 2009 [74]. And globally, the revenue

passenger-kilometer has doubled every 15 years during 1974-2014, and is estimated

to be doubled again in the next 15 years [75]. On the other hand, people are spending

more time in the transportation system, especially in urban areas. As for New York

City, the average commuting to work time exceeds 40 minutes for 69% of the city’s

neighborhoods, and 59% of New York commuters use mass transit as the tool for

commuting. Note that the two deciding factors for CIDs to spread is the close contact

and the contact duration. And the two aspects from the transportation system clearly

imply the risk exposures while travel for urban population. This motivates us to model

the process and understand how travel behavior may affect the spread of infectious

diseases in urban areas.

There are two main approaches in the literature for characterizing the dynamics

of the spread of infectious diseases. The first approach comprises of the compartment

model, where the initial SIR model (also known as Kermack-McKendrick model)

divides the population into compartments of susceptible, infected, and recovered,

and non-linear ordinary differential equations (ODE) are used to model the dynamics

among the compartments [22]. Based on the SIR model, a variety of models have been

developed to account for more realistic disease nature, including models which con-

sider the incubation period [44], the vertical transmission [76], the age structure [34],

and the vaccine strategy [38,39]. And extensive efforts were made to understand the
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property of the model and analyze the local and global stability of the non-linear

ODEs, where surveys of related works can be found in [48, 77]. One major criticism

for the compartment model is the unrealistic assumption, where the population in

each compartment is assumed to be fully mixed and therefore each individual has the

same behavior. Therefore, the model may fail to represent actual contact patterns

for many real-world diseases. To address this shortcoming, the second approach is

developed by modeling the disease propagation at individual level based on network

topology, where each individual is represented by a vertex and their contact pattern

is captured by the edge [53, 57]. The approach was developed based on the method

of bond percolation model, and the generation function was used for deriving the

important attributes of a certain contact network, including the average degree and

excessive degree, which later used to calculate the size of disease outbreaks. Danon

et al. [78] conducted a comprehensive review of the works in this approach. The

contact network model helps to capture diverse interactions among individuals with

given distribution, however, it is not applicable to understand the spread of disease

at urban level: it is computationally intractable to construct the individual contact

network for all urban populations and it is also impossible to obtain the necessary

input for the contact network as evaluating the individual’s contact pattern will be

very expensive.

As a consequence, to model the spread of CIDs for the urban area, the compart-

ment model is still the idea choice due to its simple math nature and the scalability

when it comes to model the mass urban population. However, the simplistic as-

sumption of homogeneous mixed population needs to be corrected as the population

dynamics is highly complex both spatially and temporally in large cities. In partic-

ular, human mobility is the decisive factor for the spread of infectious disease, and

the model needs to account for the nature of how population circulate around the

city. On one hand, the diverse land use pattern suggests that the spatial movement

is an essential aspect to be considered since people move from places to places to

participate in activities. On the other hand, the contagion during travel is another
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significant contributing factor to the spread of CIDs, which accounts for the cross-

infection between people to-and-from different directions. More importantly, people

have the highest chance of close contact with others during travel, especially when

using public transit.

In this study, we develop the epidemic model which models the traffic contagion

at urban level. The contributions of our paper are mainly two-fold. The first con-

tribution from our paper is from the modeling approach. The model is formulated

based on the conventional SEIR model, and the spatial population movement and

the contagion of people during travel are introduced to address the oversimplified

assumption of the basic model. We model the spread of CIDs in urban areas as a

system ODEs, and introduces two sub-models to capture the system dynamics. The

first sub-model is the mobility model, which determines the population in each area

and the amount of people moving between places. The second model is developed

upon the mobility dynamics, which captures the movement of susceptible, exposed,

infected, and recovered population. In particular, the disease dynamics involves two

parts: (1) the contagion that takes place at the destination areas and (2) the conta-

gion that takes place during travel. We further discuss the properties of both mobility

and disease models, and show the stability of the disease-free equilibrium (DFE) for

the ODE system. The second contribution of our paper that we investigate the safety

verification problem using the model developed.

3.2 Modeling preliminaries

3.2.1 Notation

We summarize the list of variables used in this section as follows:
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Table 3.1.: Table of notation

Notation Description

Variables

S Susceptible population.

E Exposed (latent) population.

I Infected population.

R The population who recovered from disease and got immunity.

Np
i Total amount of people who are current present at patch i.

N r
i Resident population at patch i.

Nij The amount of people who are residents of patch i and currently present

at patch j.

Fixed parameters

β Contagion rate between S and I.

1/σ Length of latent period for population E.

1/γ Length of infectious period for population I.

µ Death and birth rate.

P Total number of patches in the area.

αi Arrival (departure) rate of external population for patch i.

gi Total departure rate of patch i.

mij The rate of movement from patch i to patch j, where
∑

jmij = 1.

rij The rate of return from patch j to patch i

dM Control rate of travel mode M .
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3.2.2 Epidemic modeling

The well-known compartment model for capturing the dynamics of infectious dis-

eases was proposed by W.O.Kermack and A.G.McKendrick [22], where they consider

that the population may experience three states over time:

• Susceptible class or S(t) is used to represent the number of individuals not yet

infected with the disease at time t, or those susceptible to the disease.

• Infected class or I(t) denotes the number of individuals who have been infected

with the disease and are capable of spreading the disease to those in the sus-

ceptible category.

• Removed class or R(t) is the compartment used for those individuals who have

been infected and then removed from the disease, either due to immunization

or due to death. Those in this category are not able to be infected again or to

transmit the infection to others.

And the compartment model has several key assumptions: (1) each individual in

the population has an equal probability of contracting the disease with a rate of β, (2)

the population leaving the susceptible class is equal to the number of people entering

the infected class, (3) people recovered from the disease with a mean recovery of 1/γ

gain permanent immunity to the disease, and (4) the death rate is the same as the

birth rate so that the total population is fixed.

In reality, people who are infected by certain diseases may not present any symp-

toms until the end of the incubation period, and it is important to take this latent

period into consideration for more accurate representation of disease dynamics. Con-

sequently, the SEIR model was introduced with an additional compartment which is

known as the latent class (E(t)) [79]. The population of E are considered as exposed
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but not infectious, and will proceed into the infectious state with an average length

of latent period of 1
σ
. Such disease dynamics can be mathematically represented as:

dS

dt
= −βSI + µ(N − S) (3.2.1)

dE

dt
= βSI − µE − σE (3.2.2)

dI

dt
= σE − γI − µI (3.2.3)

dR

dt
= γI − µR (3.2.4)

3.2.3 Mobility model

The spread of infectious disease is closely interacted with the mobility pattern of

urban population. Before discussing the mathematical model for capturing disease

dynamics, we first present the mobility model that is followed by urban population.

The mobility model used in this study is developed from the intra-city mobility

model proposed by Sattenspiel and Dietz [80], where we explicitly captures the arrival

and departure of people from external areas. This is especially important considering

that infectious diseases are usually introduced into a certain area by external visitors.

For simplicity, we assume that the arrival and departure rate are equivalent for each

patch. We model the urban area as a collection of P patches, where people are divided

into two groups: residents and visitors. Let Nij be the population at patch j who are

residents of patch i, we have the following two equations to capture the total residents

and visitors for a given patch:

N r
i =

P∑
j=1

Nij,∀ i (3.2.5)
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Np
i =

P∑
j=1

Nji,∀ i (3.2.6)

Equation 3.2.5 suggests that the amount of residents at patch i can be calculated

as the summation of population who are residents of patch i and currently at patch

j. Similarly, equation 3.2.6 states that visitor population at patch i consist of the

residents of patch i who remain in i, as well as the population who reach patch i from

other patches.

People who are considered as residents are assumed to have a permanent residing

location at patch i. Additionally, external population are assumed to arrive at patch

i with a ratio of total residents of patch i. They are also modeled as the residents

of patch i, and they may leave the city from a different patch j. For residents at

patch i, they may visit patch j for various reasons (e.g., for work or entertainment)

with the rate of ρij, and will return to their home at the rate of rij. Denote the time

derivative dX
dt

as Ẋ, we have the following two ordinary differential equations (ODE)

for computing the mobility dynamics within a urban area:

Ṅij = −rijNij + gimijNii − αiNij (3.2.7)

Ṅii =
P∑
j=1

rijNij − giNii + αiN
r
i − αiNii (3.2.8)

Equation 3.2.7 captures the change rate of residents of patch i who are visitors in

patch j, which is measured by the population difference between residents who leave

i for j and the return of residents from j to i. Note that people leave i for j may also

depart the city with the rate of αi. And equation 3.2.8 characterizes the change of

residents remaining in patch i, which involves two component. The first component

captures the departing and returning of original residents of patch i, and the second

component refers to the population to and from external areas.
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Based on equation 3.2.7 and 3.2.8, we develop the rate of change formulations for

resident and visitor population as:

Ṅ r
i =

P∑
j=1

Ṅij

=
P∑

j=1,j 6=i

rijNij − giNii + αiN
r
i − αiNii +

P∑
j=1,j 6=i

[−rijNij + gimijNii − αiNij]

(3.2.9)

Ṅp
i =

P∑
j=1

Ṅji

=
P∑
j=1

rijNij − giNii + αiN
r
i − αiNii +

P∑
j=1,j 6=i

[gjmijNjj − rjiNji − αjNji]

=
P∑

j=1,j 6=i

(rijNij − rjiNji) +
P∑

j=1,j 6=i

gjmijNjj − giNii

(3.2.10)

Moreover, for equation 3.2.9, we have:

Ṅ r
i =

P∑
j=1,j 6=i

rijNij+
P∑

j=1,j 6=i

−rijNij−giNii+
P∑

j=1,j 6=i

gimijNii+αiN
r
i −αiNii−

P∑
j=1,j 6=i

αiNij = 0

(3.2.11)

which implies that total residents patch i is fixed.

Proposition 3.2.1 The system described by equation 4.1-4.9 has a unique equilib-

rium solution, and the solution is globally asymptotically stable (G.A.S). In particular,

at equilibrium, we have

N∗ii +
P∑

j=1,j 6=i

KijN
∗
ij = N r

i (3.2.12)

N∗ii =
1

1 +
∑P

j=1,j 6=iKij

N r
i (3.2.13)

where Kij =
gimij
rij+αi

.
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Proof The equilibrium solution of the system can be calculated by setting equa-

tion 3.2.7 and 3.2.8 to zero. From 3.2.7, we have:

N∗ij =
gimij

rij + αi
N∗ii (3.2.14)

Let Kij =
gimij
rij+αi

. Based on equation 3.2.5 and the fact that N r
i is fixed, we have:

N∗ii +
P∑

j=1,j 6=i

KijN
∗
ii = N r

i (3.2.15)

We therefore have

N∗ii =
1

1 +
∑P

j=1,j 6=iKij

N r
i (3.2.16)

which gives equation 3.2.12. And by combining the above equation equation 3.2.14

we arrive at equation 3.2.13.

To prove that the equilibrium solution is G.A.S, one can write the whole matrix

M for system dN/dt = MN , and it can be easily shown that the matrix M has all

negative real eigenvalues, which implies that the equilibrium point is G.A.S.

In the following sections, we will write Nij to denote equilibrium population flow

N∗ij for notation simplicity.

3.3 Modeling disease spreading with travel contagion

3.3.1 The basic model

1. Notation

We summarize the list of variables used in this section as follows
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Table 3.2.: Table of notation

Notation Description

Variables

Sij Susceptible population who are residents of patch i and currently in patch

j.

Eij Exposed (latent) population who are residents of patch i and currently

in patch j.

Iij Infected population who are residents of patch i and currently in patch

j.

Rij Recovered population who are residents of patch i and currently in patch

j.

tmij Induced travel time for moving from patch i to patch j using mode m.

Np
i Population at patch i.

Nij The amount of people currently at patch j who are the residents of patch

i.

Fixed parameters

M Total number of travel modes available.

m Travel mode m, where m = 1, 2, ...,M .

βinn Within zone disease transmission rate.

βmtra Disease transmission rate for travel mode m.

cmij The ratio of people who choose travel mode m between patch i and patch

j.

dml Rate of remaining infected people for travel mode m at control level l.
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2. System dynamics

An important component missing from the previously discussed SEIR model is the

spatial interaction. The model only considers local dynamics, but it is essential

for urban areas to model explicitly how population flow moving around the city.

In particular, these flows are driven by various activities, such as work, school, or

entertainment. And people get in contact with others by taking different activities

through various transportation tools. As long as some individuals are infected, their

activities and the urban transportation mobility will take the disease to every corner

of the city. This motivates us to understand the the spread of infectious disease in

urban area by modeling the system with the following 6 dynamics:

1. The mobility dynamics of urban population follows the model as discussed in

section 3.2.

2. Similar to the SEIR model, we consider Sij being affected by iij with the inner-

patch contagion rate βinn.

3. In addition to the spread due to within patch activities, we also consider people

get infected during travel. That is, Sij may be infected by contacting with Iij

if they use the same travel mode m, with the contagion rate of βmtra.

4. Once people in Sij are infected, they become Eij. They are not infectious until

the end of the latent period, and the length of latent period is characterized by

1/σ.

5. People in Eij become Iij at the end of the latent period. And the length of the

infectious period is characterized by 1/γ.

6. At the end of their infectious period, people in Iij become Rij. For simplicity,

we consider that they gain permanent immunity to the disease and will be no

longer infected.

In particular, the contagion process between susceptible and infected population

can be illustrated by the example of a 3-patch network as shown in Figure 3.1 There
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1 2 3

𝑆𝑆11 𝑆𝑆12 𝑆𝑆13 𝑆𝑆23𝑆𝑆22 𝑆𝑆33

𝐼𝐼11 𝐼𝐼12 𝐼𝐼13 𝐼𝐼23𝐼𝐼22 𝐼𝐼33

1 Patch Travel 
link

Within-patch 
contagion

Travel 
contagion

Legend

Figure 3.1.: Illustration of the disease contagion process in a 3-patch network

are 3 patches in the network, with two travel links 1-2 and 2-3 and three possible

routes: from patch 1 to patch 2, from patch 1 to patch 3, and from patch 2 to

patch 3. And we have two different contagions in this network. One is the inner-

patch contagion which takes place between S and I population in the same patch.

Additionally, there is travel contagion (shown in dashed line), which may happen if

two population share overlay segments in their travel routes. Consequently, we have

two possible travel contagions: between people travel from 1 to 2 and 1 to 3, and
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between people travel from 1 to 3 and 2 to 3. While this is only an illustration, the

overlay segment will be later differentiated based on the travel modes as well.

3. Formulation

Now we present the mathematical formulations which capture the dynamics of disease

spreading in urban area:

Ṡii = −giSii +
P∑

j=1,j 6=i

rijSij + αSi N
r
i − αiSii − βinn

Sii
∑p

j=1 Iji

Np
i

−
P∑

j=1,j 6=i

M∑
m=1

cmjiβ
m
trarijSij

∑P
k=1,k 6=i c

m
kiδ

m
ki,ji(rikIik + gkmkiIkk)∑P

k=1,k 6=i c
m
kiδ

m
ki,ji(rikNik + gkmkiNkk)

(3.3.1)

Ṡij = −rijSij + gimijSii − αiSij − βinn
Sij
∑p

k=1 Ikj
Np
j

−
M∑
m=1

cmijβ
m
tragimijSii

∑P
k=1,k 6=j c

m
kjδ

m
kj,ij(gkmkjIkk + rjkIjk)∑P

k=1,k 6=j c
m
kjδ

m
kj,ij(gkmkjNkk + rjkNjk)

(3.3.2)

Ėii = −giEii +
P∑

j=1,j 6=i

rijEij + αEi N
r
i − αiEii − σEii + βinn

Sii
∑p

j=1 Iji

Np
i

+
P∑

j=1,j 6=i

M∑
m=1

cmjiβ
m
trarijSij

∑P
k=1,k 6=i c

m
kiδ

m
ki,ji(rikIik + gkmkiIkk)∑P

k=1,k 6=i c
m
kiδ

m
ki,ji(rikNik + gkmkiNkk)

(3.3.3)

Ėij = −rijEij + gimijEii − αiEij − σEij + βinn
Sij
∑p

k=1 Ikj
Np
j

+
M∑
m=1

cmijβ
m
tragimijSii

∑P
k=1,k 6=j c

m
kjδ

m
kj,ij(gkmkjIkk + rjkIjk)∑P

k=1,k 6=j c
m
kjδ

m
kj,ij(gkmkjNkk + rjkNjk)

(3.3.4)

İii = −giIii +
P∑

j=1,j 6=i

rijIij + αIiN
r
i − αiIii + σEii − γIii (3.3.5)
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İij = −rijIij + gimijIii − αiIij + σEij − γIij (3.3.6)

Ṙii = −giRii +
P∑

j=1,j 6=i

rijRij + αRi N
r
i − αiSii + γIii (3.3.7)

Ṙij = −rijRij + gimijRii − αiRij + γIij (3.3.8)

While the system described by equations 3.3.1-3.3.8 may look complicated, it

can be easily understood by decomposing each equation into the part of mobility

dynamics and the part of disease dynamics. In particular, for equations characterizing

the dynamics of Sii, Eii, Iii, Rii, the first four terms on the right-hand-side (RHS)

capture the mobility dynamics, which are consistent with equation 3.2.8. Similarly,

the first three terms on the RHS of equations for Sij, Eij, Iij, Rij can be analogous to

equation 3.2.7.

The disease dynamics of equation 3.3.1 has two components. The first component

with the coefficient βinn characterizes the within patch spread of diseases, where∑
j Iji refers to total infected population in patch i and the contagion has the bilinear

incident form which is consistent with the SEIR model. The second component which

is associated with the coefficient βtra denote the spread of diseases during travel.

Specifically, this term describes how susceptible people who return from j to i get in

contact with infectious population. For the contagion to take place, S and I must

be in the same travel mode and share trip segment(s) in common. And the indicator

variable δmki,ji is introduced to indicate if trips made from k to i and from j to i using

travel mode m have overlapping parts. And the infected Sii are added to Eii as shown

in equation 3.3.3. Moreover, Eii and Iii (or equation 3.3.3 and 3.3.5) are connected

by the term σEii, which implies the end of latent period. Similarly, Iii and Rii (or

equation 3.3.5 and 3.3.7) are correlated by the term γIii.

On the other hand, the disease dynamics for equation 3.3.2 also involves two

components. The first component with the coefficient βinn captures how Sij gets
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infected during the contagion with other infected population. The second component

with the coefficient βtra describes the spread of diseases while people are traveling

from i to j. That is, only departed population gjmijSii may have the chance of being

infected during their travel to j. And the contagion may happen when they get in

contact with departed infectious population who have the same destination using

the same mode, which is captured by
∑P

k=1,k 6=j c
m
kjδ

m
kj,ijgkmkjIkk. And both parts of

infected Sij are added to Eij as shown in equation 3.3.4. Finally, we have the same

correlations between Eij and Iij, and between Iij and Rij, as discussed in the previous

paragraph. This concludes the basic model for characterizing disease dynamics with

travel contagion.

3.3.2 Stability of the transportation system

Considering that an infectious disease has been introduced, and people are aware

of the disease patterns in the city. An essential question to answer is that if the

disease will eventually invade the population. This requires the understanding of the

stability of disease free equilibrium (DFE). In other words, if the DFE is stable, then

the disease will be absent from the population, otherwise it is always possible for

disease outbreak.

Definition 3.3.1 The disease dynamic system characterized by equation 5.1-5.8 has

two equilibrium points. The first equilibrium point is the disease free equilibrium

(DFE):

Sij = Nij, Eij = Iij = Rij = 0 (3.3.9)

The second equilibrium point is the endemic equilibrium:

∑
ij

Sij = 0 (3.3.10)

such that no susceptible population available and all people are eventually infected.
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In this section we analyze the properties of the epidemic model with travel con-

tagion, and discuss the condition under which the DFE will be stable. Due to the

existence of bilinear terms, there are more than one equilibrium point in the system,

and the equilibrium points are unlikely to be G.A.S due to the nonlinearity of the

system. We first introduce the definition of reproduction rate R0, which is arguably

the most important quantity in infectious disease modeling.

Definition 3.3.2 (Basic Reproduction Number) The basic reproduction rate is

the the number of cases one case generates on average over the course of its infectious

period, in an otherwise uninfected population.

If R0 < 1, it indicates that on average each new infected person will affect less

than one uninfected person during his or her infection. Therefore, the disease will die

out in the long run, and reach the DFE point asymptotically. Consequently, in order

to show that the transportation system is stable at DFE, it is equivalent to show that

the R0 of the system is smaller than 1.

According to [43,81], the reproduction ratio R0 can be measured by the dominant

eigenvalue of the next generation matrix (NGM) [42], which is denoted by K. In

particular, the NGM can be calculated as:

K = −TΣ−1 (3.3.11)

where T is called the transmission matrix and Σ is the transition matrix [43]. Note

that for both T and Σ, only states associated with infections are taken into considera-

tion. As for our study, the states that will affect the NGM areE11, E12, ...Eij, I11, I12, ...Iij.

If there are P patches, the NGM takes the dimension 2P 2×2P 2. For the transmission

matrix, it captures all the dynamics related to newly infected population, while the

rest of the dynamics of the system are included in the transition matrix Σ.

If we linearize the transportation model at the DFE point (considering that all

Sijs are constant), the matrix T can be written as four blocks:
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T =

E I Nr


0 E → I 0 E

0 I → I N r → I I

0 0 0 Nr

(3.3.12)

where E → I and I → I are P 2×P 2 matrices, whose entry denotes the coefficient

values that matches an element of E or I to an element in I. Considering two variables

Ei,j and Ik,l, then the matrix E → I can be formally expressed by distinguishing the

following 4 scenarios:

1. i 6= j, k 6= l.

2. i 6= j, k = l.

3. i = j, k 6= l.

4. i = j, k = l

and

E → I(ij, kl) =



βinn
Nij
NP
j

+
∑M
m=1 c

m
ijβ

m
tragimijNiic

m
lkδ

m
lk,ijrkl∑P

k=1,k 6=j c
m
kjδ

m
kj,ij(gkmkjNkk+rjkNjk)

, case 1

βinn
Nij
NP
j

+
∑M
m=1 c

m
ijβ

m
tragimijNiic

m
lkδ

m
lk,ijgkmkj∑P

k=1,k 6=j c
m
kjδ

m
kj,ij(gkmkjNkk+rjkNjk)

, case 2

βinn
Nij
NP
j

+
∑P
j=1,j 6=i

∑M
m=1 c

m
jiβ

m
trarijSijc

m
lkδ

m
lk,jirkl∑P

k=1,k 6=i c
m
kiδ

m
ki,ji(rikNik+gkmkiNkk)

, case 3

βinn
Nij
NP
j

+
∑P
j=1,j 6=i

∑M
m=1 c

m
jiβ

m
trarijSijc

m
lkδ

m
lk,jigkmki∑P

k=1,k 6=i c
m
kiδ

m
ki,ji(rikNik+gkmkiNkk)

, case 4

(3.3.13)

Similarly, we can express the entries of I → I by distinguishing the following

scenarios:

1. i 6= j, k = l = i.

2. i = j, k 6= l, k = i.
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and

I → I(ij, kl) =


gimij, case 1

rkl, case 2

0, otherwise

(3.3.14)

Finally, for the matrix N r → I, we have:

N r → I(k, ij) =

α
I
i , if i = j and k = i

0, otherwise

(3.3.15)

This concludes the transmission matrix. And we next discuss the structure of the

transition matrix, as follows.

For the transition matrix Σ, it is more complicated and can be written as the

following block form:

Σ =

E I Nr


E → E 0 N r → E E

E → I I → I 0 I

δE δI 0 Nr

(3.3.16)

And each block matrices take the following form:

E → E(ij, kl) =



−gi − σ − αi, if i = j and kl = ij

rkl, if i = j and k = i

−rij − σ − αi, if i 6= j and ij = kl

gimij, if i 6= j and k = l = i

0, otherwise

(3.3.17)
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N r → E(k, ij) =

α
E
i , if i = j and k = i

0, otherwise

(3.3.18)

E → I(ij, kl) =

σ, if ij = kl

0, otherwise

(3.3.19)

I → I(ij, kl) =


−gi − αi − γ, if i = j and ij = kl

−rij − αi − γ, if i 6= j and ij = kl

0, otherwise

(3.3.20)

Proposition 3.3.1 If ρ(K) < 1, then the DFE is stable. If ρ(K) > 1, the DFE is

unstable. ρ refers to the spectrum radius of a matrix.

Proof The proof comes naturally from the definition of R0.

3.3.3 Control the spread of disease within transportation system

Since we have developed the model for infectious disease within transportation

system, the next question to ask is that if we can control the spread of disease by

placing entrance screening for transportation system. In particular, we have seen

the implementation of radiation thermometers during the 2003 SARS outbreak for

subway and bus systems, which aimed to screen out risky passengers with high body

temperature. And additional measures such as distributing masks and random in-

spection by medical workers may also be efficient to reduce the risk exposure during

travel. Meanwhile, placing entrance screening will also decrease system efficiency by

introducing entry delays, which in return affecting the travel behavior of passengers in

mode selection. This relationship is illustrated in Figure 3.2. Specifically, we assume

that the efforts (e.g., time and resource) required grows faster than the increments in

control effectiveness, so that a high detection rate of infected people will result in a

much higher entry delay.
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Figure 3.2.: Illustration of the passenger dynamics

While deriving the optimal control strategy will be intrinsically complicated for

the proposed model, we make the first attempt to understand if it is possible to

avoid the outbreaks of disease by placing controls on transportation system. In other

words, our objective is to assess if a given control strategy may eventually lead to

DFE state, and the problem falls into the field of safety verification. In the realistic

transportation system, it is hardly possible to place the entry control for all travel

modes. Instead, it is only viable to conduct such control over the medium and high

capacity travel modes, such as buses and metros. As a consequence, in our study, we

consider that passengers may choose from one or the following three travel modes:

1. Low capacity mode such as private vehicles and taxis

2. Medium capacity mode such as vans and buses

3. High capacity mode such as metro system

And passengers will choose the mode which maximize their utility (or the one with

the least travel time). We consider rational behavior of passengers, and introduce the

logistic function to quantify the model split ratio as:

Smij = mijSi
et
m
ij∑M

i=1 e
tiij

(3.3.21)
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Imij = mijIi
et
m
ij∑M

i=1 e
tiij

(3.3.22)

We assume that the low capacity mode is not controllable, but typically having fewer

passengers per vehicle and passengers having less chance of getting infected. On

the contrary, passengers using medium or high capacity mode are usually exposed

to much more people in a small compartment for a longer time, and are therefore

having much higher chances of being infected. This assumption leads to the following

requirement for the effective contact rate:

βlargetra > βmedtra > βsmalltra (3.3.23)

Based on the discussion above, we arrive at the model which explicitly incorporates

control over transportation system:

Ṡii = −giSii +
P∑

j=1,j 6=i

rijSij + αSi N
r
i − αiSii − βinn

Sii
∑P

j=1 Iji

Np
i

−
P∑

j=1,j 6=i

M∑
m=1

cmjiβ
m
trarijSij

∑P
k=1,k 6=i c

m
kiδ

m
ki,jid

m
l (rikIik + gkmkiIkk)∑P

k=1,k 6=i c
m
kiδ

m
ki,ji(rikNik + gkmkiNkk)

(3.3.24)

Ṡij = −rijSij + gimijSii − αiSij − βinn
Sij
∑P

k=1 Ikj
Np
j

−
M∑
m=1

cmijβ
m
tragimijSii

∑P
k=1,k 6=j c

m
kjδ

m
kj,ijd

m
l (gkmkjIkk + rjkIjk)∑P

k=1,k 6=j c
m
kjδ

m
kj,ij(gkmkjNkk + rjkNjk)

(3.3.25)

Ėii = −giEii +
P∑

j=1,j 6=i

rijEij + αEi N
r
i − αiEii − σEii + βinn

Sii
∑P

j=1 Iji

Np
i

+
P∑

j=1,j 6=i

M∑
m=1

cmjiβ
m
trarijSij

∑P
k=1,k 6=i c

m
kiδ

m
ki,jid

m
l (rikIik + gkmkiIkk)∑P

k=1,k 6=i c
m
kiδ

m
ki,ji(rikNik + gkmkiNkk)

(3.3.26)
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Ėij = −rijEij + gimijEii − αiEij − σEij + βinn
Sij
∑P

k=1 Ikj
Np
j

+
M∑
m=1

cmijβ
m
tragimijSii

∑P
k=1,k 6=j c

m
kjδ

m
kj,ijd

m
l (gkmkjIkk + rjkIjk)∑P

k=1,k 6=j c
m
kjδ

m
kj,ij(gkmkjNkk + rjkNjk)

(3.3.27)

İii = −giIii + αIiN
r
i − αiIii +

P∑
j=1,j 6=i

∑
m

rijd
m
l c

m
ij Iij + σEii − γIii (3.3.28)

İij = −rijIij − αiIij +
∑
m

gimijc
m
ijd

m
l Iii + σEij − γIij (3.3.29)

Ṙii = −giRii+α
R
i N

r
i −αiSii+

P∑
j=1,j 6=i

rijRij+γIii+
P∑

j=1,j 6=i

∑
m

rijc
m
ij (1−dml )Iij (3.3.30)

Ṙij = −rijRij + gimijRii − αiRij + γIij +
∑
m

gimijc
m
ij (1− dml )Iii (3.3.31)

3.4 Verification for the control strategies

In this section, we present two control strategies for preventing the spread of

disease, and then prove the correctness of them. We start with a simple strategy, the

controlled transportation system can be modeled by a diagram shown in Figure 3.3.

High
Con-
trol

Medium
Con-
trol

low
Con-
trol

∑
I = Im

∑
I = Il

Figure 3.3.: Controlled transportation system
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We briefly explain the behavior of the above system, the formal definition will

be given later. The system consists of 3 modes each of which corresponds to a

control level. Initially, the system is in the high control mode which means the total

infected population i.e.,
∑
I is higher than Im which is a threshold for activating

the medium control mode. When the infected population reaches Im, the system

switches immediately to the medium control mode to perform a less restrictive control.

Similarly, when a lower threshold Il is reached, the system switches immediately to

the low control mode in which
∑
I is expected to degenerate to a safe level in a

specified amount of time.

As we will introduce later that the system in Figure 3.3 can be formalized by a

hybrid automaton which is also called hybrid system in the paper. The correctness

of the controlled system can be specified as that there is no unsafe state reachable.

To prove this, we compute the reachable state set of the system in a bounded time

horizon and show that no unsafe state is included.

3.4.1 Hybrid automata

Hybrid automata [82] are formal models for the systems composed of a discrete

controller interacting with a physical environment. The definition of a hybrid au-

tomaton is given as below where we denote the set of reals by R, and the cardinality

of a set S is denoted by |S|.

Definition 3.4.1 A hybrid automaton is defined by a tuple A = 〈Loc,Var,Flow,Trans, Inv, Init〉

such that

- Loc is a finite set which consists of all discrete locations (or modes) of the system,

- Var is a finite set which contains all continuous variables of the system,

- Flow is a function associating each location a continuous dynamics which is defined

by an ODE,
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- Trans consists of finitely many discrete jumps among the locations. A jump from

` to `′ is defined by a tuple 〈`,G,R, `′〉 such that G ⊆ R|Var|, R : R|Var| → R|Var|

are called the guard and reset respectively. The jump is enabled, i.e., allowed to

take place, only if the guard G is satisfied by the variable values. After the jump is

made, the variable values are reassigned according to the reset R.

- Inv is a function that defines an invariant, i.e., a valid variable value range, Inv(`) ⊆

R|Var| for each location ` ∈ Loc,

- Init is a set which contains all initial states of the system.

A state of a hybrid automaton A is denoted by a pair (`, v) wherein ` is the current

mode and v is a constant vector whose components denote the current values of the

state variables. A state (`, v) can evolve to (`′, v′) in the following two ways:

• Continuous evolution, i.e., ` = `′ and there is a solution ϕ(t) of the ODE of `

such that v = ϕ(t1), v′ = ϕ(t2) for some 0 ≤ t1 ≤ t2, and ϕ(t) ∈ Inv(`) for all

t ∈ [0, t2]. In other words, v′ can be reached from v in the vector field defined

by the ODE.

• Discrete evolution, i.e., there is a jump 〈`,G,R, `′〉 such that v ∈ G and v is

updated to v′ according to R.

An execution of a hybrid automaton is a sequence of states such that for each

successive states, the former one can evolve to the latter one. The time duration

of an execution is the total amount of time spent in the continuous evolution, since

jumps are considered to take no time. We call a state reachable if it occurs in at least

one execution of the system. For succinctness, we collectively denote (`, V ) for the

state set {(`, v) | v ∈ V }.

Example 3.4.1 We consider a 2-dimensional hybrid automaton, i.e., a hybrid au-

tomaton with 2 variables, shown in Figure 3.4. Initially, the system is in mode `1

with the variable value set x ∈ [2, 2.2], t = 0. The continuous dynamics there is given
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by the ODE ẋ = x, ṫ = 1 which governs the change of the variables in the invariant

x ≤ 5. When x ∈ [4.8, 5], the system may take a jump to switch to mode `2 such

that x, t still keep their values unchanged, i.e., the reset is an identity mapping. In

mode `2, the variables still evolves in the invariant x ≤ 5 according to another ODE

ẋ = −x, ṫ = 1.

`1

ẋ = x
ṫ = 1

x ≤ 5

`2

ẋ =
−x
ṫ = 1

x ≤ 5

x ∈ [4.8, 5]

x’:= x, t’ := t

x(0) ∈ [2, 2.2]

t(0) = 0

Figure 3.4.: A 2-dimensional hybrid automaton

To prove the safety of a hybrid automaton according to an unsafe state set, we need

to explore all reachable states and prove that no unsafe state is reachable. However,

reachable set computation is a notoriously difficult task on hybrid automata, since

the reachability problem, i.e., to check whether a state is reachable or not, on hybrid

automata is not decidable (see [82]). Hence, we resort to approximation methods.

One popular way to prove the safety is to compute an overapproximation of the

reachable set, if the result has no intersection with the unsafe set then the system is

safe. In this paper, we use the tool named Flow* [83] to generate overapproximations

(flowpipes) for reachable set segments in a bounded time horizon. If there is no unsafe

state contained in the flowpipes, then the system is safe.

3.4.2 Reachability analysis using Taylor model flowpipe construction

We give an introduction of the high-level techniques for computing Taylor model

flowpipes for nonlinear hybrid automata. Since hybrid automata have two types of

evolutions, we first introduce the method on continuous dynamics which are consid-
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ered harder to handle, and then turn to jumps. In the remaining content, we call the

set of reals between some a, b ∈ R and a ≤ b an interval, and denote it by [a, b]. The

arithmetic on intervals are defined in [84].

Taylor models. Taylor models are proposed by Berz and Makino as a replacement

of intervals in rigorous computation (see [85]). A Taylor Model (TM) is defined by a

pair (p, I) such that p is a polynomial over a finite set of variables whose ranges are

intervals, and I is an interval. A continuous function f(x) over an interval domain D,

i.e., x ∈ D, can be overapproximated by a TM (p(x), I), i.e., ∀x ∈ D.(f(x) ∈ p(x)+I).

Figure 3.5 shows an example such that for all x ∈ D, there is f(x) ∈ p(x) + [a, b].

Usually, p can be computed as a Taylor expansion of f , and I is an interval enclosure

of the remainder term. If f is an analytical function then I can be arbitrarily reduced.

Vector-valued functions, such as ODE solutions, can be overapproximated by a vector

of single TMs, i.e., TMs whose range dimensions are 1. In this paper, we call TM

matrices and vectors also TMs. TMs are closed under many operations such as

addition, multiplication and integration, one may refer to [86] for more details.

Figure 3.5.: Example of a Taylor model
(p(x), [a, b])

Figure 3.6.: Example of domain contrac-
tion

Motivation of using TM flowpipes. One of the most important applications

of TMs is to perform validated integration for nonlinear ODEs. That is, given an

ODE ẋ = f(x), an initial condition x(0) ∈ X0, and a time horizon [0, T ], the exact

solution ϕf (x0, t) from a state x0 ∈ X0 at some time t ∈ [0, T ] can be overapprox-

imated by a TM using the technique called TM integration [87]. More precisely,

the TM integration method consecutively computes a TM flowpipe (p(x0, t), I) for
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the forward flowmap ϕf (x0, t) with x0 ∈ X0 over a time step interval in [0, T ] un-

til the whole time horizon is covered. For example, the method computes N TMs

(p1(x0, t), I1), . . . , (pN(x0, t), IN) such that (pi(x0, t), Ii) overapproximates ϕf (x0, (i−

1) T
N

+t) for x0 ∈ X0 and t ∈ [0, T
N

] for all i = 1, . . . , N . Then a state which is not con-

tained in any TM flowpipe is not reachable. TM integration usually has much better

accuracy than the interval-based methods on nonlinear ODEs (see [88]). Therefore,

we can use TM integration to produce high quality flowpipes in the reachability anal-

ysis under continuous dynamics. However, it leaves us a difficulty to deal with mode

invariants and jumps.

Flowpipe/guard and flowpipe/invariant intersections. We need to intersect

a TM flowpipe with a set in the following two situations. (1) When computing the

flowpipes in a mode, we need to intersect the flowpipes with the mode invariant in

order to eliminate the overestimation as much as possible, since any state outside

the invariant is not reachable. (2) We need to intersect a flowpipe with a jump

guard to obtain a tighter overapproximation for the reachable set on which the jump

is enabled. In the paper, both invariants and guards are defined by constraints of

the form p ≤ c wherein p is a polynomial over the state and time variables, and c

is a constant. Therefore, an intersection can be viewed as applying the constraints

defining the set to refine the TM flowpipe. Since the intersections are generally not

TMs, we use the domain contraction technique to derive a contracted TM for the

intersection. Figure 3.6 illustrates an example. The domain of the original TM

flowpipe is contracted according to the guard, so that the contracted flowpipe forms

an overapproximation of the intersection. Moreover, we may further overapproximate

the result and intersect it with the guard again to eliminate the part outside the guard.

One may refer to [88,89] for more details.

Now we turn to the main framework of the reachability analysis for nonlinear

hybrid automata. The abstract algorithm is presented by Algorithm 1. Each main

iteration alternates between the flowpipe computation for continuous and discrete

dynamics. The whole procedure terminates when the time horizon [0, T ] is covered or
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the maximum jump depth is reached. For each jump, we aggregate the intersections

to avoid state explosion. Figure 3.7 illustrates an example of intersecting a set of

flowpipes with a guard. We also give a running example as follows.

Algorithm 1: Flowpipe construction for hybrid automata

Input: A = 〈Loc,Var,Flow,Trans, Inv, Init〉 wherein Init = (`0, V0), T , k.
Output: Overapproximation of the state set which are reachable in the time [0, T ]

by at most k jumps.
1: Add (`0, V0, 0, 0) to Queue; # the queue keeping new initial sets
2: R ← ∅; # resulting flowpipes
3: while Queue is not empty do
4: Dequeue the first state set in Queue and keep it as (`, V, t0, n);
5: Compute the TM flowpipes F1, . . . ,Fm from V under the continuous

dynamics of mode ` for the time horizon [t0, T ];
6: R ← R∪ {F1, . . . ,Fm};
7: for all 〈`,G,R, `′〉 ∈ Trans do
8: C ← ∅; # aggregation set
9: for all i = 1, . . . ,m do

10: if Fi ∩G 6= ∅ then
11: Contract Fi to F ′i w.r.t. G; # domain contraction
12: C ← C ∪ {F ′i};
13: end if
14: end for
15: if C 6= ∅ then
16: Overapproximate C by a TM C ′ which covers the time interval [t′0, te]

such that t0 ≤ t′0 ≤ te ≤ T ;
17: if t′0 < T and n < k then
18: Compute CR as the image of C ′ under the mapping defined by R;
19: Add (`′, CR, t

′
0, n+ 1) to Queue;

20: end if
21: end if
22: end for
23: end while
24: return R;

Theorem 3.4.2 ( [88]) Algorithm 1 returns an overapproximation of the set of states

which are reachable in the time [0, T ] via at most k jumps.
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Figure 3.7.: An overapproximation for flow-
pipe/guard intersections

Figure 3.8.: Flowpipes for the 2-D
hybrid automaton

Example 3.4.3 We consider the previous example. Figure 3.8 shows some computed

TM flowpipes which are guaranteed to contain all executions which are impossible to

compute exactly in the time horizon [0, 1]. Since TMs are hard to be plotted exactly,

we show their octagon overapproximations. The four blue flowpipes are detected to

intersect the guard, and the red box is a TM overapproximation for their intersections

with the guard.

Complexity of a TM. The size of a TM is mainly determined by the polynomial

part, since the remainder only needs to be represented by its bounds. For a single

TM over n variables of order k, the polynomial part can have
(
n+k
k

)
many terms in

the worst case. Although this fact shows the inscalability of TMs, we still obtain

relatively low time cost on our large examples in the paper.

3.5 Results

3.5.1 Experiment setting

The numerical experiments are conducted on a desktop with @3.5 GHz CPU

and 32GB RAM. The codes are written in C++ and compiled with gcc in Linux

system. The MPFR library is used for interval arithmetic and the Flow* library

is used for doing TM flowpipe construction. The numerical experiments have three
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major parts. The first part is to compare the results on disease dynamics with and

without modeling urban transportation system, including the difference in disease

equilibrium patterns and the impact on R0 values. The second part focuses on the

performance of the reachability analysis, where the computational performances as

well as the tightness of the overapproximation is discussed. Finally, we investigate

how disease outbreaks evolution may vary based on different urban structures. For

the first two parts, we mainly focus on the test network as shown in Figure 3.9.

The network has 3 nodes and 9 OD pairs, meaning that each node is accessible

from the other. As each OD pair may have four states (S,E,I,R), the ODE system

of this test network therefore has 36 state variables and 36 system equations. We

consider the invasion of H1N1 influenza in 2009 as the case study for the test networks.

According to the literature [90], the disease has the contact rate β of 0.585, γ being

0.09, and σ being 0.47, which suggests that H1N1 has an average latent period of

2 days and recovery time of 10 days. And based on the epidemic parameters, our

objective is to compare how disease dynamics may vary in three different systems:

the SEIR system without travel contagion, the SEIR system with travel contagion

but no intervention strategies, and the SEIR system with travel contagion and entry

control strategies. In particular, for the control strategies, we consider three different

level of controls, namely the high level of control that may possibly eliminate 50%

of suspicious travelers from entering the system, the medium level of control that

may eliminate 30% of infected travelers, and the low control level where only 10%

of infectious population may be identified. And different control strategies may have

different impact on the travel time for the corresponding travel modes. The third

part of the experiment setting will focus on a different set of networks, as shown in

Figure 3.10. For this part, we consider networks that represent three different urban

structures: the stripe-shaped network such as Shenzehen, China, the single-centered

network including Paris and New York City, and the multi-centered networks (in

this study we consider dual centers for simplicity) such as Beijing and Shanghai,
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China. And we analyze how effective are various control strategies in controlling

these networks.

Figure 3.9.: Test network with 3 nodes

Figure 3.10.: Networks with three different urban structures

3.5.2 Case study: 2003 SARS outbreak in Beijing

One major difficulty related to mathematical modeling of infectious diseases is the

validity of the developed models. In general, it is not possible yet ethical to validate

the fidelity of the model with field experiments. And in this study, we investigate

the validity of our model by measuring the alignment of its predicted results with the

real-world ground data during the 2003 Severe Acute Respiratory Syndrome (SARS)

outbreak in Beijing, China.
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The 2003 Beijing SARS outbreak is one of the few disease outbreaks within urban

areas that has documented the daily progress of the disease pattern. There were 2523

probable cases of SARS reported from March 5, 2003 to May 29, 2003 [91]. Multiple

control measures had been implemented during the outbreak, including the set up

of dedicated SARS hospital, information dissemination of real-time SARS pattern,

and the closing of public facilities. As for the transit system, surveillance sites had

been set at the airport, major train stations, and 71 roads that connect Beijing

to peripheral areas. The metro system improved its ventilation system, and more

frequent and thorough disinfections were conducted for both metro compartments

and buses. In addition, staffs of bus and metro systems had been trained to identify

and take immediate actions against probable patients during travel.

(a) Disinfection of metro compartment taking
place on April 21, 2003

(b) Body temperature screening at the train
station

Figure 3.11.: Measures were taken in mass transit systems to identify probable cases
of SARS in Beijing

To model the SARS outbreak, we first divide Beijing into 5 areas as shown in

Figure 3.12. Among the 14 million population in Beijing by the end of 2003, 40% of

them reside inside the third ring road of Beijing (which corresponds to center area 3

in Figure 3.12). And we consider the rest 4 areas have similar population size, with

each accounts for 15% of total population of Beijing. Due to lack of daily commuting

data in 2003, we assume that the 70% of the activities for people living in area 3 are

within area 3, and 40% of the activities are within the same area for the other 4 areas.
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1 2

3

54

Figure 3.12.: The Beijing network with 5 nodes
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This gives the vector of departure rate g = [0.6, 0.6, 0.3, 0.6, 0.6]. For each OD pair,

we consider the return rate being 0.9. For residents of area 3 who leave the area for

daily activities, we assume that they have equal chances to reach all other 4 areas.

And for residents of area 1,2,4, and 5, we consider that they have 40% of chance

to visit area 3, and 20% for other three places. Three transit modes are considered

with capacity ranging from high to low, and the ratio of travel time for the same OD

pair are set to 5:8:6. Considering various efforts made in mitigating disease spreading

within transit system, we assume that the high capacity and medium capacity modes

have 20% probability for identifying the probable case during travel. For the disease

parameters, the typical incubation time for SARS is reported to be within 2-7 days,

with 3-5 days being most common [92]. Consequently, we set σ = 1/3 for the case

study. Different from the its typical definition, the recovery state R in this case

study should refer to the state where an infectious individual or probable case of

SARS is identified and isolated from the mass population. Due to the effectiveness of

information dissemination and increasing alertness of people to SARS, it is reasonable

to consider that any people with symptoms may get easily identified as long as they

take part in any social activities. This value along with the infectious rate β are

usually identified through curve fitting from real-world data. The recovery rate is set

to 0.6 in our study, meaning that in 60% of the cases the infectious individual will be

identified and hospitalized. The infectious rate β was reported to take values between

0.57 to 1 in various cases [93,94]. But this value is temporally varying and is sensitive

to the control measures being taken. In our study, we consider the infectious rate

being 0.71 for the entire population, and therefore the effective transmission rate per

contact being 5.07e−8. Based on the parameter setting, we constructed the epidemic

model of 100 dimensions for 25 OD pairs and the results are simulated using ODE45

simulator in MATLAB, as shown in Figure 3.13 and Figure 3.14.

We use the official data from Chinese Ministry of Health as the baseline observa-

tions, which gives the daily number of probable SARS cases starting from April 20,

2003 to June 12, 2003. While the number of infectious and latent population were
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Figure 3.13.: Cumulative SARS cases since April-20, 2013, Beijing, China
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Figure 3.14.: Daily increases of SARS cases since April-20, 2013, Beijing, China
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unknown, we assume E(0) = 420, I(0) = 223, and R(0) = 210, and these people are

evenly distributed in all 5 areas, where the simulated results well match the statistics

reported in the first day (April-20, 2003). It can be verified from the results that the

simulated curve for the number of cumulative cases may well approximate the actual

observations reported, especially within the first 15 days. Moreover, the total number

of cases based on the simulation is 2745, which is only 8.8% higher than the actual

total cases. As for the daily number of cases, though the deterministic model may not

be able to capture the stochasticity that takes place in the real-world, the simulated

results still follow the trend similar to the actual observations. It provides a very

good sense on how the disease may propagate over days with limited inputs, and the

differences between simulation results and observations for daily increases is smaller

than 15 cases in 47 out of the 65 days. In addition, if we only apply the conventional

SEIR model in this case, the corresponding R0 value is 0.71/0.6 = 1.183, which im-

plies that the disease will invade the entire population which is entirely different from

the actual observations. On the other hand, if we match the the R0 value of SEIR

model with our proposed model (R0 = 0.836 in this case), the limiting number of

cases will become 3774 cases, which is significantly higher than the observed value.

And the SEIR model may be able to give a closer estimation of 2472 cases only if

we set γ = 0.97, which implies that we are able to hospitalize the patients as soon

as they get infected and such scenario is barely possible for any real-world disease

outbreaks. Consequently, these results may well support the fidelity of our devel-

oped approach and reveal the potential of our model for predicting the propagation

of disease outbreaks that take place in urban areas.

3.5.3 The role of contagion within transportation system

We next assess the importance of modeling travel contagion during urban disease

outbreaks. We mainly focus on comparing the results from three different models: the

disease model without modeling travel contagion (MWOTC), the disease model that
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models travel contagion but no interventions introduced (MWTC), and the disease

model that model travel contagion and considers control measures over traffic modes

(MWTC-CM). Note that MWOTC ad MWTC are special cases of MWTC-CM, where

MWTC-CM reduces to MWTC when the vector d is set to unity, and the MWTC

can be reduced to MWOTC by let βtra = 0. We investigate the differences in the

disease dynamics among the three models from two aspects: the disease dynamics of

different infectious diseases and the change of R0 with respect to different diseases.

The same network as in the 2003 Beijing SARS case study is used in this section.

For simplicity, we set total population to be 1 instead of 4, and assume that at the

beginning only patch 1 has infectious people that account for 1% of the population,

and all remaining people are in the susceptible state.

We first present the propagation dynamics associated with highly infectious and

lowly infectious diseases. We assume that the incubation period is 4 days, and the

average time of recovery is 5 days. The highly infectious disease A has β = 0.7 and the

β for lowly infectious disease B is 0.25. In addition, we consider 20% of travel control

effectiveness for both diseases. The results of total infected population of the entire

urban area are presented in Figure 3.15. For disease A, the corresponding R0 values

for MWOTC,MWTC and MWTC-CM are 1.639, 2.013, and 1.834 respectively. And

those of disease B are 1.051, 1.172, and 0.998. These two cases prove the correctness

of our derivation of R0, where the disease is endemic and persists in the population

when R0 > 1, and the system converges to the DFE state when R0 < 1 (MWTC-CM

for disease B). And in both cases, we observe that the equilibrium points are stable.

As can be seen in both cases, without considering travel contagion, it is likely that

we will underestimate the peak number of infected population and obtain a delayed

prediction of the peak time. And such gaps are more obvious during the outbreak of

the less infectious disease B. It is not difficult to interpret the higher peak of infected

population, since by modeling travel contagion we are considering an additional layer

of interactions between susceptible and infected people during their travels. And

for the early arrival of the disease peak, it is due to the faster synchronization of
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disease pattern over the urban area with the help of travel contagion. This effect is

illustrated in Figure 3.16, where the total number of infected people in each patch

of the network is presented. At time step 0, the patch one start with 1% of infected

people and all other patches are free of disease. As time progresses, we observe the

infected population of patch 1 first drops and then starts to increase. But the point

where the change of gradient takes place is quite different in the two cases. Without

travel contagion, the infected population in patch 1 starts to increase around time step

30, while the corresponding time step is around time step 15 if the travel contagion is

modeled. In addition, since patch 1,2,4,and 5 have similar population size and travel

pattern, we observe that their disease dynamics start to converge after the initial

several steps. And model with travel contagion reaches this convergence earlier than

without modeling travel contagion. All of these suggest the faster synchronization

of disease pattern due to the existence of travel contagion. On the other hand, if

we place control measures to our transit system to make it more invulnerable to

infectious diseases, we are able to effectively reduce the peak size of the diseases, as

well as the total number of infected people over the entire disease outbreak. But

more importantly, it can be verified that by controlling the transit system through

moderate efforts, it is possible to change the state of the disease from endemic to

DFE, which results in the elimination of the disease overtime. This is especially

meaningful for diseases such as influenza where people are paying less attention to

due to comparatively insignificant consequences and we barely have effective measures

for its eradication besides mass annual vaccination.

We next evaluate how the two key parameters R0 and R∞ may differ in the three

models with respect to different disease infectious rates, as shown in Figure 3.17. It

is known that R0 = 1 is the threshold of disease invasion, and by modeling travel

contagions, it is likely that the disease tends to be endemic while the result reported

without travel contagion is disease free. And the gap between with and without travel

contagion in R0 tends to increase as β increase, meaning that it is even more crucial

to consider the travel contagion for diseases with higher transmission rate. Moreover,
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Figure 3.16.: Total number of infected people in each patch
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while disease pattern may change from DFE to equilibrium by considering travel

contagion, a moderate control intervention (eliminating 20% of infected population)

may driver bring the disease back to the DFE state, as shown in Figure 3.17(b). And

the control strategy is increasingly effective as β changes from 0.1 to 0.4, where we

may reduce the total infected population during endemic by over 50%.

(a) Change of R0 with different β values (b) Change of total infected population at equilib-
rium with different β values

Figure 3.17.: The change of R0 by modeling urban travel

Finally, we would like to evaluate how different control strategies may be effective

under different urban structures. That is, the way people travel and get in contact

may be different with different urban structures. We consider the three networks as

introduced before, and vary control effectiveness for medium and high capacity modes,

from 0% to 100% effective, and the results are shown in Figure 3.18. There are clearly

boundaries on the effectiveness of the controlling strategies, as increasing the effec-

tiveness will add extra travel times thus driving travelers to other modes. Therefore,

for the particular disease, we see that the least R0 achieved is approximately 0.7 in

Figure 3.18(c). And we can further see the decreasing marginal effectiveness of the

control strategies, e.g. with 80% control for mode 2 in single center network, the

effectiveness does not change at all if we increase the level of control for mode 1

from 40% to 0%. But most importantly, given the same level of control, there are
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clear differences of R0 value if the urban structure is different. In general, the city

with single center is more vulnerable to the invade of infectious diseases due to most

activities are centered in the middle of the city, which is reflected by both highest

R0 and lowest R0 possible in the figure. And without any intervention, the urban

structure with multiple nodes tend to have the lowest R0 of 1.0, while the value is 1.1

for stripe-shaped and single center networks.
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Figure 3.18.: Comparison of no-control scheme versus hybrid system setting
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3.5.4 Reachability analysis

We next discuss the impact of modeling parameters and their impacts on the

accuracy and computation time of the constructed flowpipe over-approximation. In

particular, we focus on the order of TMs and the precision of cut-off threshold, which

are the two major factors that may affect the tightness of the estimation.

Table 3.3.: Computational efficiency of the Taylor model approach with different
parameter settings

Case Network nodes Dimension Cut-off Taylor Order Time per step(s)

1 4 64 1.00E-06 5 812.73
2 4 64 1.00E-06 4 577.25
3 4 64 1.00E-06 3 515.25
4 4 64 1.00E-08 5 604.42
5 4 64 1.00E-08 4 533.53
6 4 64 1.00E-08 3 515.08
7 4 64 1.00E-10 5 1939.09
8 4 64 1.00E-10 4 493.98
9 4 64 1.00E-10 3 481.27

Table 3.3 presents the computational time spent for the four-network which has

64 dimensions and state variables, and we vary the parameter setting to compare the

resulting level of accuracy of the constructed flowpipes and the corresponding CPU

time in seconds. In all cases, the symbolic remainder approach [95] is adopted with

the queue length equals to one-third of the total number of estimation steps, for the

sake of reducing numerical errors due to wrapping effects. The 64-dimensional non-

linear ODE system is in general a huge system and often computational expensive

to evaluate numerically, but our results suggest that the TM approach complete the

over-approximation in an efficient manner, where the time required for computing

each time step (corresponding to one day in our case) ranges from 480 to 813 seconds

depending on the system parameter setting. That is, we may analyze the disease

outbreaks and predict the flowpipe of the disease trend for upcoming 100 days in

approximately 14 hours, which is a reasonable amount of time for any practical imple-
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mentation considering its property of guaranteed safety. And this computation time

may be significantly improved if the current sequential construction of TM model is

extended to allow for parallelization to make more sufficient use of the computing

power available.
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Figure 3.19.: Accuracy with different cutoff thresholds and Taylor model orders

Figure 3.19 illustrates the impact of different TM orders and cutoff sizes on the

tightness of the over-approximation results. Since the ODE system involves mostly
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bilinear terms, we start with TM order of 3 and cutoff size being 1e-6, and then

increase the TM order and reduce the cutoff threshold to compare the gain over the

level of accuracy versus the additional computation time spent. It is observed that

by increasing TM order from 3 to 4, there is a notable improvement on the tightness

of the over-approximation as shown in Figure 3.19(a)-(b). This suggests that TM

order 3 may produce overly conservative results and a higher order is expected. If

we further increase the TM order from 4 to 5, the gain is only minimal as compared

to over 40% increase in the computation time. These imply that TM order 4 is

sufficient to obtain accurate results for the ODE system that we study. On the other

hand, we fix TM order to 4 and investigate how the overapproximation results change

with respect to the cutoff threshold. As shown in Figure 3.19(c)-(d), a large cutoff

threshold (e.g., 10e-6) will lead to significantly overestimated upper and lower bounds.

But if we reduce the cutoff threshold by 2 orders, we may obtain a very tight over-

approximation, and the difference is hardly distinguishable if we use a even smaller

cutoff threshold. These results suggest higher TM orders and smaller cutoff threshold

will improve the tightness of the over-approximation, but the marginal gain may be

diminishing rapidly. Consequently, TM order of 4 and cutoff threshold being 10e-8

would be one of the optimal parameter settings for the flowpipe construction of our

ODE system. And similar evaluation approach may be adopted if the different ODE

systems are investigated.

For Figure 3.18 (a)-(d), they show the reachable set when starting from the in-

fected states, where the infected population ∈ [0.18, 0.2]. It can be verified that the

traffic control does help to eliminate the disease and reduce the spread of the disease.

In particular, for I11, it can be seen that at the end of the time interval the infected

population is reduced to [0.07, 0.09], while for the no control case there is a clear

sign of disease outbreak since there are 50% more infected people. Similarly, for I12,

the control helps to reduce the infected population to less than 0.02, and the overall

trend is monotonically decreasing, but the no control case has a larger population of

infectious people and the amount of infected people increases towards the end. As for
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I33, it starts from the DFE state, and the no control case clearly shows the pattern

of disease outbreak, while for the controlled system there are much fewer infected

population. Also, the amount of infected people tends to decrease if we enlarge the

time interval.

One key concern related to interval arithmetic approaches for over-approximating

ODE systems is the wrapping effect. And it is practically inevitable that the TM may

produce extra residuals due to overly wrapping the original system of equations at

each time step, unless the ODE system itself is exactly the TM. Since the numerical

residue may carry over to the calculations in following steps, a small wrapping residual

may have bull-whip effect on the constructed over-approximating flowpipe. Since we

have shown only the first 60 steps of the ODE system, readers may be curious to see

if the over-approximation flowpipe may eventually explode as the time progresses.

We investigate this issue numerically by comparing the constructed flowpipe with the

results from the ODE simulator and evaluating the residual error ēt at each time step

which is measured as:

ēt =
vmt − v′t
v′t

(3.5.1)

where vmt is the estimated upper bound of the ODE system from model m (e.g., model

with TM order 3 and cutoff threshold 10e−6) at time t, and v′t is the estimated upper

bound of the ODE system from the benchmark model. Since we shall never know the

exact upper bound of the flowpipe, we need to specify the benchmark model which

may produce highly tight estimation of the actually upper bound. In our numerical

experiments, we set the benchmark model to the one with TM order 5 and cutoff

threshold being 10e − 10, and compare all other models listed in in Table 3.3. The

results are shown in Figure 3.20. There are two important observations related to the

results. First, as compared to the benchmark model, it can be seen that the error ē

increases rapidly in the first few time steps, but has a concave shape which eventually

gets stabilized overtime. That is, while the rate of error is increasing initially, the error

is shown to converge to a certain value as time progresses. The second observation

is related to the value of such error. Since we consider a unit of population in our
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experiment, even an error of 1e-3 may lead to a difference of 10,000 infected people

to an urban area with over 10 million population, which may render the plausibility

of the over-approximation. From these experiments, it can be seen that for lower

TM order and larger cutoff size, such error may be as high as 0.1 as compared to the

base model, which is equivalent to around 7000 difference of infected population at

the disease peak for 10 million population. By improving the order of TM and cutoff

threshold, this error may be significantly reduced and may be as small as e−8 in our

case as compared to the base model, so that the difference is around 20 people at the

disease peak. These imply that the residual errors due to wrapping effects are very

well addressed with the TM approach and the resulting over-approximating flowpipe

has high fidelity when it is applied to estimate the upper and lower bound of infected

population size.
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Figure 3.20.: Evaluation of successive errors (in log scale) due to wrapping effect at
each time step

Finally, we compare the resulted over-approximation flowpipes with that gener-

ated from the ODE solvers in MATLAB. In particular, we choose the ode15s con-
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sidering the stiff nature of the disease models, where a small change in parameter

settings and initial conditions may result in very different system dynamics [96]. A

typical misconception regarding the numerical evaluation of the SEIR system is that

the constructed trajectory via numerical solver may accurately represent the disease

dynamics. However, in reality, we will never have the exact information on the initial

condition of the disease pattern. Instead, the decision maker may only have a rough

estimate of the total infected population at current time step, e.g., 100-200 people,

and this initial interval will be projected into a wide range regarding the number

of infected people at the disease peak. Under such circumstances, it may require

infinite number of trajectories to be constructed by originating from the initial set.

And the numerical solver also suffers from the remainder errors at each time step

which will be accumulated towards the target value of estimation. As stated before,

a small prediction error may result in a huge gap between the actual number of in-

fected people versus the predicted value, not mentioning that there is no guarantee

on the correctness of the solution from the numerical solver. On the contrary, the

TM overapproximation ensures that the eventual state of disease is within the con-

structed flowpipe, thus the decision maker may clearly tell if the scale of the disease

will be under control at certain time steps. We show the comparison of trajectories

constructed by the ode15s with the TM flowpipe in Figure 3.21. The initial set for the

reachability analysis is a box, where we consider the total initial infected population

is within the range [0.002375, 0.002625] and the initial set is box so that the total

population still sums to one. And we simulated 100 and 500 trajectories using ode15s

by starting from randomly selected points from the initial set. The computation time

for each trajectory is 20.6 seconds for the 60 time steps, so that the flowpipe con-

struction takes the time of approximately simulating 1450 trajectories. However, even

simulating such many trajectories may only result in a biased understanding of the

disease pattern, as we can seen from the gap between the trajectories and the shaded

area, and that some trajectories are lied outside of the boundary of the constructed

flowpipe. Therefore, we may falsely interpret the disease peak as well the time of
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the peak by simply using the numerical ode solvers. And this comparison clearly

illustrates the necessary of flowpipe overapproximation for real-world applications of

disease modeling in populated urban areas.
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(a) 100 Trajectories from ODE15s and the shaded
area of TM flowpipe
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Figure 3.21.: Accuracy with different cutoff thresholds and Taylor model orders
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3.6 Conclusion

In this chapter, a comprehensive mathematical model is presented for understand-

ing the spread of infectious disease in urban areas considering the inter-dependencies

among different transportation modes and the selfish behavior of urban travelers. The

model starts with the dynamic system to captures the population movement among

different patches, and derives the equilibrium flow pattern from the system. Based

on the stable commuting pattern, the spread of disease is formulated as a bilinear

S-E-I-R system, and different levels of controls on the urban transportation system

are modeled as a hybrid system. The main objective of the model is to understand

whether controlling an urban transportation system helps to eliminate or reduce the

speed of disease spreading by properly designing the hybrid system.

The 2003 Beijing SARS data and census data were used to calibrate the com-

muting and disease patterns, which contributes to the case study for validating the

effectiveness of the modeling approach. The model is shown to be able to predict the

terminal disease size as well as the ongoing daily dynamics of the disease accurately.

Further numerical experiments of the model suggest that failing to capture the travel

contagion while modeling the spread of infectious diseases tends to underestimate the

size of the disease outbreaks, and may false interpret the terminal states of certain

infectious diseases. Moreover, it is shown that by placing moderate control to regulate

the entrance of the urban transportation system, it is possible to turn into a possibly

endemic disease into the DFE state, and may contribute to significantly lower the

size of the disease outbreak when the disease is endemic. In addition, the urban

form is also found to have significant impact on the outcomes of infectious diseases,

where more decentralized urban structure with multiple commercial centers tend to

be more resilient to the invasion of infectious diseases. Finally, the constructed flow-

pipes of the disease system is found to be able to accurately over-approximate the set

of possible trajectories in an efficient manner. These results provide valuable insights

in understanding the role of urban transportation system in facilitating the pace of

disease transmission and its contribution to increase the size of the disease outbreaks.
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However, this chapter also shows the possibility for mitigating the risk of infectious

diseases if control strategies are properly designed. And the model developed in this

chapter will help to devise such strategies efficiently.



PART II: DISEASE SPREADING IN CONTACT NETWORK
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4. METRO CONTACT MODELING

4.1 Introduction

There are three key factors that lie at the heart of the design philosophy for ur-

ban transportation system: affordable, accessible, and efficient. In order to improve

the mobility of mass urban population and provide affordable and accessible tools

for urban commuters, it is inevitable that a large number of people should be trans-

ported at the same time. However, without carefully inspecting the structure of urban

transportation systems, such design philosophy is likely to turn the benefits of urban

transportation system into critical risk exposures that favor the spread of infectious

diseases from almost every aspect.

First, purely pursuing efficiency and seeking to transport as many people as pos-

sible at the same time can be translated into high population density within trans-

portation systems. This significantly increases the chance of close contact between

individuals and offer an ideal environment that facilities the disease spreading pro-

cess. Second, accessibility and affordability also come with the issue of travelers being

exposed to highly heterogeneous population during travel. Meanwhile, they have to

spend more time in transportation system as transit routes are likely to deviate from

their shortest paths. These suggest that the chance that an individual may get in-

fected will be much higher considering the diversity of potential contacts and exposure

duration during travel. Finally, the mass transit system mainly consists of buses and

metro trains where the ventilation may be poor and the potential airborne diseases

may float around in the closed compartments. The combination of these factors nat-

urally leads to the concern where an individual is susceptible to high risk exposure

while traveling in the transit system.
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Unfortunately, the compartment model discussed in the first part of the disser-

tation is not able to capture these risk factors. That is, heterogeneous individual

travelers will have very different travel time and origin and destination pairs, which

eventually affect their contact patterns during travel. This clearly violates the ho-

mogeneous population assumption within the same compartment for the compart-

ment model. And we have seen that increasing the number of compartments will

be extremely computational expensive. This motivates to introduce new modeling

approach to account for the heterogeneity of travel patterns at individual level.

The other difficulty for modeling individual contact pattern arises from the avail-

ability of data to reconstruct the travel activities within urban areas. It will be

intrinsically difficult to recover the complete trip chain for each individual at the

urban level, however, the availability of smart card transaction data provides us the

opportunity to at least rebuild individual’s trajectory within each travel mode. In this

chapter, smart card transaction data from three major cities in China are introduced.

The data capture passengers’ entry and exit information within the metro system,

and cover over 10 million daily passengers in all three cities. Web crawlers are further

developed to extract the metro network structures and timetables, which in combi-

nation with the smart card transaction data reconstruct the contact networks within

metro system at individual level. Based on the reconstructed contact networks, two

mean-field approaches are proposed to evaluate real-time risk levels of metro systems,

and reveal the underlying generation mechanism to explain how two individuals may

get in contact with each other and infer their contagion time.

The chapter is organized as follows. The second section introduces the smart

card transaction data and summary statistics of the metro networks of the three

major cities in China. The third section presents the algorithm for constructing

metro contact network (MCN) and the results and analyses of constructed MCNs.

Section four and five discuss the mathematical models and analyses for individual

based mean-field approach and OD based mean field approach. Section six presents

the generation model for the contact patterns of MCN. Finally, section seven delivers
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the results and insights of the models and section eight concludes the chapter with

the summary of contributions and findings.

4.2 Data

We introduce the metro card transaction data to build the contagion matrix from

travelers’ daily commuting patterns. The metro card transaction data cover three

major cities in China: Shanghai, Guangzhou, and Shenzhen. These data have similar

structure, with each piece of record in the data containing the information of smart

card ID, transaction ID, transaction time, station ID, and transaction type. The

transaction type indicates if the transaction is entry or exit at the transaction station.

Since each smart card is associated with a unique ID, we can therefore construct the

trip sequences for each individual (each card) based on the transaction time and

transaction type. A sample of smart card transaction data can be seen as follows:

• ....

• 326244087,22,22:40:07,1

• 660355429,22,23:13:11,1

• 684235395,21,22:35:47,0

• 880025090,22,22:21:20,1

• 667942666,22,22:40:17,1

• 880025090,21,21:58:40,0

• ...

For the data, the first column corresponds to smart card ID, the second column

represents the station ID, the third column is the time when the transaction took

place, and the last column refers to the transaction type, where 1 indicates exit and

0 is entry.
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For each city, we extract the data of five work days for further analysis. The

detailed statistics of the data is shown in Table 4.2.

Table 4.1.: Summary of metro card transaction data from three major cities in China

City Start date End date # metro
lines

# stations Average daily
records

Guangzhou 2017.04.13 2017.04.17 8 166 1.6 million
Shanghai 2015.04.13 2015.04.17 13 288 4.16 million
Shenzhen 2016.04.14 2016.04.18 5 118 2.13 million

The metro networks in these cities have quite different structures, which are pri-

marily tailored to the urban landscape of each particular city. Shanghai metro net-

work is the one with the longest mileage and most stations. It also has the highest

number of daily passenger volume. Guangzhou and Shenzhen are similar in terms of

the scale of their metro networks, however, the shape of the metro network differs

from each other. In particular, Shenzhen is a stripe-shaped city where commercial

areas are located in the middle and residential places are distributed at east and west

sides of the city. The shapes of metro networks, half-hourly passenger demand, and

distributions of passenger trip time of the three cities are presented in Figure 4.1.
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(a) Guangzhou metro network (b) Shanghai metro network (c) Shenzhen metro network

(d) Passenger demand
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Figure 4.1.: Metro network structures, passenger demand distributions, and passenger
travel time distributions of the three cities

4.3 Metro contact network

Smart card transaction data only provide information on entry and exit of pas-

sengers in the metro system. Based on the smart card transaction data for metro

networks, we next develop the algorithm for constructing metro contact network

(MCN). The contact network is constructed at individual level, where we define

contact as two individuals having positive probability that they will come

in contact within effective transmission range. By effective transmission range,

we refer to that two individuals are close enough so that the airborne transmission of

an infectious disease is feasible.

To construct the metro contact network, the following information is required:
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1. Weighted adjacency matrix of the metro network.

2. Schedule of metro trains.

The weighted adjacency matrix captures the travel time between two adjacent sta-

tions. For two stations where a transfer is required, the time of transfer is also added

to reflect the actual travel time between the two stations. As for the schedule of metro

trains, it provides valuable information on the likelihood that two individuals will get

in contact if their time of arrival at a particular station is k minutes apart, which we

denote as pi,j(k). This can be understood as the probability that two passengers will

get on the same train given their arrival time at the station.

To obtain these two data sources, we develop a set of web crawlers and extract the

metro network adjacency matrix from GaoDe Map API [97]. In addition, the time

tables of the three metro systems are extracted from their official websites [98], which

contain the travel time between two stations as well as the frequency of the metro

trains during different time periods. Finally, the transfer time required between a

pair of adjacency stations is calculated by first quoting the travel time between the

two stations using Google API and then subtracting the travel time between the two

stations based on the values obtained from the timetable.

We define the transmission rate between two passengers i and j as βi,j, and

βi,j = β
L̄i,jpi,j(|ti, tj|)

C
(4.3.1)

where β is the transmission strength of a particular disease per unit time if two

individuals are within effective transmission range, L̄i,j represents the expected travel

time of the overlapping trip segment between the two passengers, and pi,j(|ti, tj|)

represents the probability that two individuals will be on the same train, and C is a

scaling constant which accounts for the capacity of the metro train. For simplicity,

we consider C to be the same for all metro lines, but it can be easily extended to

account for the varying train capacity of different lines. As a result, we denote βi,j as

the expected contagion risk between two individuals i and j.
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To evaluate pi,j(ti, tj), we conducted simulation experiments to understand how

the probability may change as a function of the gap of arrival, and the result is shown

in Figure 4.2. This suggests that the chance of being on the same train decreases

linearly with increasing arrival gap, and the chance is bounded by the frequency of

the metro train, where any gap beyond the arrival interval of the metro train will

result in zero chance of contact.
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Figure 4.2.: Probability that two passengers will be on the same train as a function
of their gap of arrival time at the station

Given this information, we now introduce the algorithm for generating metro con-

tact network from the smart card transaction data. The algorithm takes the demand

distribution at each station, the trip split ratio among the stations, the weighted adja-

cency matrix, and the number of passengers N as inputs. The output of the algorithm

is a N by N weighted adjacency matrix G for the individual contact network, where

each entry Gi,j equals βi,j, the expected risk exposure between two individuals i and

j. We consider that the contagion process between any two individuals is symmetric.

As a consequence, the resulting matrix G is symmetric with all positive values.

The process for generating MCN is described as follows:

1. Generate the origin, destination, and departure time for N passengers.

2. Find the shortest travel path for each individual.
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3. For each pair of passenger i and j, determine if they have overlapping travel

segments L.

4. If L > 0, determine their first meeting location, station m, the duration of L,

and calculate their arrival time at the meeting station ti,m, tj,m respectively.

5. Compute the expected exposure risk βi,j, set Gi,j ← βi,j.

6. Repeat this process until all pairs of passengers are processed. Output G.

There are two computationally expensive steps in this algorithm. First, calculating

the shortest path between a pair of individuals. Since there is no congestion effect

when traveling in metro system (unlike road networks), the shortest path between any

pair of metro stations will not vary over time. We use Dijkstra algorithm to calculate

all pair shortest paths between all metro stations beforehand, and store the shortest

path matrix in memory to speed up this process. Second, determining the length of

overlapping travel segment L of two passengers and the corresponding first meeting

station m can be viewed as identifying the longest common subsequence (LCS) of

two strings, where the string corresponds to individual’s trip trajectory (in term of

stations) within the metro system. Finding LCS has the worst complexity of O(l1∗l2),

where l1 and l2 are the lengths of two paths respectively. And in worst case, LCS

will be executed O(N2) times. This becomes the bottleneck of the contact network

generation algorithm if we deal with millions of passengers, since the algorithm scales

quadratically with increasing number of passengers as well as the size of the metro

network.

Based on the MCN generation algorithm, we simulate the structure of MCNs using

the data from three cities. The results are shown in Figure 4.3.



91

(a) Guangzhou

(b) Shanghai

(c) Shenzhen

Figure 4.3.: Visualization of sample MCNs from the three cities, with 100, 500, and
1000 passengers from left to right, followed by their degree distributions
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Table 4.2.: Summary statistics of the generated contact networks

Hetero-
geneity

Clustering
coefficient

Centralization Diameter Radius
Characteristic
path length

Guangzhou 0.53 0.49 0.052 7 4 2.797
Shanghai 0.48 0.40 0.052 5 3 2.62
Shenzhen 0.53 0.56 0.057 7 4 2.829

The MCNs of the three cities have different network structures at first glance.

We see that with the same number of nodes in MCNs, the density of edges and the

weight on the edge are different among the three cities. In particular, edges with

higher weight are plotted with higher width and transparency. Shenzhen metro has

the highest edge density as compared to the other two cities, and the passengers are

observed to be more connected locally. Moreover, based on the edge distribution,

Shenzhen metro network also has a greater number of nodes with higher degree, and

the highest degree is also higher than other cities. This clear suggests that the shape

of metro network structure as well as the urban shape may have significant impacts

on the contact patterns of passengers within metro network.

However, despite the differences, the three cities have many similarities which

indicates the existence of a possibly universal generation pattern that governs the

mechanism on how people get into contact while travel. First, as shown in Fig-

ure 4.1(e), the travel time distributions have exponentially decayed tails across the

three cities, suggesting that the energy of human mobility is bounded by the size of

the metro network. Second, we observe that, though being different in scale, the de-

gree distributions are very similar in terms of the overall shape. Majority of the nodes

are observed to have relatively low degrees, and there are a few nodes with higher

degree. And the probability of high degree nodes drops rapidly with increasing de-

gree values. Finally, the similarities are also evaluated statistically with the results

shown in Table 4.2. MCNs of all three cities tend to have high clustering coefficients,

heterogeneity statistics, but also have low centralization, diameter, radius, and char-

acteristic path length (CPL) statistics. From these statistics, we can easily tell that
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all MCNs appear small-world alike network structure. This means that, in real world,

it may require little efforts for an infectious individual to reach the passenger that

are farthest from him in the metro system, and each passenger are connected to a

large number of other travelers during the trip. This implies that an initial infectious

person may quickly spread the disease across the network considering the small-world

property, and MCNs are therefore highly vulnerable to the risk of infectious diseases.

These observations propose the needs of in-depth investigations between the struc-

ture of the MCNs and the functionality of disease dynamics. And such relationship

is established in the next section.
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(a) Guangzhou
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(b) Shanghai
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Figure 4.4.: CCDF of unweighted and weighted degree distributions for MCNs of the
three cities.

The MCNs are generated by setting train frequency=5 minutes and N=1,000 passengers.
7 different time periods are plotted: 7AM, 8AM, 10AM, 2PM, 4PM, 6PM, and 9PM. For
each time period, the results are generated by combination the results of 20 MCN samples.

4.4 Individual based transmission model

The study focuses on investigating the vulnerability of metro network to the invade

of infectious disease. Based on the constructed MCNs, we next explore the risk level
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of the metro system by developing the individual based disease transmission model.

The individual based transmission model is derived from the individual-based mean

field approach (IBMF) [61]. In the model, each individual is considered as a node,

and the transmission will only take place between individuals who are connected

(Gi,j > 0). We introduce the classical susceptible-infectious-susceptible (SIS) model

to represent disease dynamics within the contact network in the metro system.

The IBMF model takes the following items as model input:

1. The weighted adjacency matrix of the MCN G.

2. The disease characteristics. In this study, the characteristics include the trans-

mission rate β and recovery rate γ.

One particular assumption of the IBMF model is that the transmission process

from each neighbors of i to i is independent from the other.

4.4.1 Disease transmission rate

In almost all literature, the transmission rate of a certain disease between two in-

dividuals is simply captured by a constant parameter β. However, for communicable

diseases that spread upon contact, it is well understood that the exposure duration

and contact distance between two individuals are two contributing factors to a suc-

cessful transmission. And these factors become non-negligible if the transmission is

modeled at individual level, and are accounted for in our study with the weighted

entries of the MCN matrix G. It measures the expected contact duration of two

individuals based on their travel profile, and scales the probability of contact by con-

sidering the chance if two individuals are within effective transmission distance when

they travel. As a consequence, we are able to measure the heterogeneous transmis-
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sion rate between each pair of individual i and j as Gi,j. And the recovery rate is

considered to have the same meaning as in other disease modeling literature.

4.4.2 Individual based transmission model

Now we introduce the IBMF for the contagion process giving the contact network

G(V,E,W ). We first introduce notation used:

Table 4.3.: Table of notation

Variables Descriptions

pi,t The probability that node i is infected at time t.

ρi,j The chance that node i will get in contact with node j.

di,j The duration that node i and node j will get in contact.

qi,t The probability that the neighbors of node i do not
transmit disease to node i.

N (i) The set of neighbor nodes of node i.

r Recovery rate of the given disease, r < 1.

βi,j The transmission rate between i and j per unit time.

When an individual i travels, the probability that i stays healthy at time t can be

written as:

1− pi,t = (1− pi,t−1)qi,t + pi,t−1r (4.4.1)

where the first term on right hand side of the equation implies the node was healthy

at time t − 1 and is not infected at time t, and the second term suggests that the

node was infected but gets recovered at time t.

The probability that all neighbors of i failed to transmit the disease can be written

as:

qi,t =
∏

j∈N (i)

(1− pj,t + (1− βi,j)pj,t) (4.4.2)

The right hand side also contains two parts: either the neighbor j is not infected at

current time t (1− pj,t), or if j was infected but fails to transmit the diseases.
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By rearranging equation 4.4.1, we can express the probability that node i is in-

fected at time t as

pi,t = 1− pi,t−1(qi,t − r)− qi,t,∀ i ∈ V (4.4.3)

And the entire system dynamics over the MCN can be expressed in the matrix form

as

Pt = G(Pt−1) (4.4.4)

So that the disease spreading on MCN is characterized as a non-linear dynamic sys-

tem.

The disease transmission system on MCN has two equilibrium states. One is the

disease free equilibrium (DFE), where each individual is in susceptible (healthy) state

and the disease is completely eliminated. On the contrary is the endemic equilibrium,

where there will always be a positive portion of individuals that are in infectious state.

Formally, the DFE can be defined as

Definition 4.4.1 (Disease free equilibrium (DFE)) The system reaches the dis-

ease free equilibrium if pi,t = 0 for all nodes.

The vulnerability of a metro system can therefore be analyzed by establishing the

stability condition for the IBMF of the MCN to be DFE. The basic idea of the stability

analysis is to start from the equilibrium point and introduce small perturbation. If

this perturbation diminishes and the system goes back to the equilibrium point, the

DFE point is said to be asymptotically stable, otherwise the MCN will reach the

endemic state. Before we establish the condition for DFE to be stable, we first

introduce the Gershgorin circle theorem [99] as follows

Theorem 4.4.1 (Gershgorin circle theorem) Every eigenvalue of a complete ma-

trix A lies within at least one of the Gershgorin discs D(ai,i, Ri):

|λ− ai,i| =

∣∣∣∣∣∑
j 6=i

ai,jxj

∣∣∣∣∣ ≤∑
j 6=i

|ai,j||xj| ≤
∑
j 6=i

|ai,j| = Ri. (4.4.5)
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where λ is the eigenvalue of A.

Based on Gershgorin circle theorem, we develop the following proposition for the

stability of the DFE:

Proposition 1 The DFE is asymptotically stable if maxi(
∑

j(βi,j) ≤ r.

Proof We proof the proposition by linearizing the non-linear dynamic system at the

DFE and measuring the partial derivatives K:

K =
∂Pt(0)

∂pt−1

(4.4.6)

where we have

Ki,j = −r + 1, if i = j (4.4.7)

Ki,j = βi,j, if i 6=j and i,j are adjacent (4.4.8)

Ki,j = 0, o.w. (4.4.9)

Therefore we have

K = (1− r)I +B (4.4.10)

And K is also known as the next-generation matrix (NGM), where the dominant

eigenvalue represents the reproduction number R0 of the disease system. For the

DFE to be stable, we should have

ρ(K) = R0 ≤ 1 (4.4.11)

So that the spectrum radius (largest eigenvalue) of K is smaller than 1, or each new

infected individual may produce smaller than one unit of secondary infection so that

the disease will eventually die out. Since all diagonal entries of K are identical, by

applying Theorem 4.4.1, we have

ρ(K) ≤ maxi(Ri(K)) +Ki,i = maxi(
∑
j

(βi,j) + 1− r (4.4.12)
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This gives that maxi(
∑

j(βi,j) ≤ r and completes the proof.

Note that the analysis establishes the upper-bound R̄0 for R0 of the MCN network.

We can guarantee that the system will reach DFE as long as R̄0 ≤ 1, and the system

is more vulnerable with increasing R̄0 value.

Proposition 1 has several important implications. The risk level of the MCN is

shown to be dictated by the individual who has the highest risk exposure. As long

as the exposure rate of this particular individual is smaller than the recovery speed,

the system will reach DFE. Otherwise the system may be either DFE or endemic.

However, in practice, if we would like to control the spread of infectious diseases,

it is unlikely that we may identify who exact the person is. Even if this person is

identified, vaccine/quarantine of the individual does not necessarily reduce the risk

level of the overall system, since the second riskiest person may have similar level of

risk exposure. This implies that we would also need to examine the structure of the

contact network to devise feasible control strategies. In addition, the model provides

the solution to monitor the vulnerability of metro systems at very fine scale and

identify the periods of time that are of particularly high risk level. But one significant

drawback of the IBMF model comes from its computational bottleneck. It will be

difficult to generate large-scale MCN that copes with the passenger demand level in

many real-world scenarios, where the MCN serves as the key input for the analysis

of the IBMF model. This motivates us to develop a more efficient solution based on

IBMF model for monitoring the risk level of our metro systems using passenger travel

data.

4.5 OD-level model

The individual model has one appealing insight: the vulnerability of the metro

contact network is determined by the individual of the highest risk exposure. And by

identifying the individual, we can assess if a certain disease may invade or eventually

be eliminated. However, the individual approach also has two major drawbacks. The



100

first drawback is the scalability of the approach. As for real-world metro contact net-

work, millions of passengers will be included and therefore simulated. It is extremely

expensive to construct a contact network of this scale and therefore difficult to assess

the impact for real-world scenarios. Second, even if we have the computational power

to construct the contact network of such details, it is difficult to provide measures for

improving the vulnerability of the metro network from the results at individual level.

These drawbacks motivate us to develop a scalable approach that is associated with

the physical structure of the metro network but also retains the high fidelity of the

individual level model. This gives rise to the origin-destination (OD) level contagion

model as described in the following.

The OD-level approach is developed at network level. Instead of considering

each individual as the node, the contact network at OD-level treats OD pairs as the

set of nodes and the contagion pattern between OD pairs as the set of edges. It

can be readily seen that the total number of OD pairs in a given metro network is

simply the square of number of stations, which is much more scalable as compared

to constructing contact networks for millions of passengers. Denote Si and Ii as the

susceptible population and infected population of OD pair i, and let P be the set of

OD pairs in the network, we have the following equations

Ei,j = βd̄j,iSiIj (4.5.1)

where Ei,j represents the proportion of susceptible population of i being infected by

the infectious population of j. d̄j,i is the expected contact duration between OD pairs

i and j. The disease dynamics at the OD level can therefore be written as:

dIi
dt

= −γIi +
∑
j∈P

Ei,j,∀i ∈ P (4.5.2)
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Moreover, since Ii +Si = Ni, where Ni is the total number of passengers for OD pair

i, equation 4.5.3 can be further rewritten as:

dIi
dt

= −γIi +
∑
j∈P

βd̄j,iNiIj −
∑
j∈P

βd̄j,iIiIj, ∀i ∈ P (4.5.3)

And the matrix form is therefore

dI

dt
= AI + b(I) (4.5.4)

where A is a V by V matrix with its entry: aii = βd̄i,iNiIi − γ and aij = βd̄j,iNiIj.

b(I) is a column vector with its entry being b(I)i = −
∑

j∈P βd̄j,iIiIj. Equation 4.5.4

gives the disease dynamics at the OD level, and we have the following theorem for

the OD level model.

Theorem 4.5.1 Let A be an irreducible square matrix, and assume that aij ≥ 0 for

every i 6= j. Then there exists an eigenvector ω of A such that ω > 0, and the

corresponding eigenvalue is s(A).

Theorem 4.5.2 (Theorem 3.1 in [100]) The DFE is asymptotically stable if s(A) ≤

0.

4.5.1 Equivalence between individual model and the OD level model

We now show that, by applying Gershgorin circle theorem, the estimated disease

threshold of the OD level model is equivalent to that of the expected disease threshold

of the individual level model. Note that for individual level model, we have the disease

threshold being estimated as:

maxm(
∑
n

(βm,n) <= r (4.5.5)
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and

Emaxm(
∑
n

(βm,n) = maxm E(
∑
n

(βm,n)) (4.5.6)

With each infection being independent from the other, we further have

maxm E(
∑
n

(βm,n) = maxm(
∑
n

(E(βm,n)) (4.5.7)

and

E βm,n = β E ρm,ndm,n = βd̄mp,np (4.5.8)

where mp denotes the OD pair of passenger m and np denotes the OD pair of passenger

n. Therefore, the expected contact time for any pair of individual in the metro contact

network is equivalent to the expected contact time between their trip OD pairs.

For |N | → ∞, for each passenger m, we have

∑
n

E βm,n =
∑
n

βd̄mp,np =
∑
j

βd̄mp,jNj (4.5.9)

and that maxm(
∑

n(βm,n) is equivalent to maxi(
∑

j βd̄i,jNj).

Now applying Theorem 4.4.1 to A, we have

|s(A)− aii| ≤
∑
j 6=i

|aij| = maxi
∑
j 6=i

βd̄i,jNj (4.5.10)

s(A) ≤ maxiaii +
∑
j 6=i

βd̄i,jNj = −γ +maxi
∑
j

βd̄i,jNj (4.5.11)

Combined with Theorem 4.5.2, we have the following result:

Corollary 1 The DFE of the OD-level model is asymptotically stable if maxi
∑

j βd̄i,jNj ≤

γ.

Moreover, based on equation 4.5.9 and Corollary 1, we now establish the following

proposition for the equivalence between OD level model and the individual level model
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Proposition 2 When |N | → ∞, the upper-bound of the disease threshold of the OD

level model is equivalent to that of the individual model.

The proof of the proposition comes naturally from the above discussions in this sec-

tion.

4.6 Generation model

By observing that multiple metro networks in different cities share very similar

degree distributions, and that the structure of the metro network will large affect the

vulnerability of the system to infectious diseases, we need to establish the connection

on how metro network structure will affect the resulting vulnerability. We develop

the following criteria for the growth of the MCN, which contributes to abstracting

the impact of physical metro network structure and constructing the MCN purely

based on travel profile of each passenger. For the input of the generation model,

the number of passengers and their corresponding travel distances are required. The

number of passengers provides the number of nodes in this network, and the set of

travel distances can be regarded as the weight of each node, which will be later used

to infer the number of edges as well as the edge weights.

The growth of MCN consists of determining if two individuals will get into contact

and then the duration of their contact. We consider that the number of contacts each

individual may have is proportional to his/her time of travel, trip duration, metro

operation schedules, and the physical metro network structure. If one spends more

time in the metro system, he/she is more likely to have a greater number of contacts

and therefore higher node degree. In addition, depending on the time of travel,

the potential set of destinations of all travelers will be either more smaller (such

as during morning peak hours) or larger (during off-peak time), which consequently

affects the chance of contact. Moreover, the operation schedule and physical metro

network structure should have significant impacts on the likelihood of contacts being

formed. If metro trains are of high frequency, the chance of two individuals getting
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into close contact should decrease. And this chance will be improved in smaller

metro networks (less total mileage and fewer number of lines and stations), since

the potential destinations of passengers are limited. Finally, if two people are within

contagious distance, the duration of their contagion time should be affected by all

these factors but operation schedule. And we consider that the contact duration is

proportional to smaller trip duration of the two passengers.

4.6.1 Generation rule

Based on these factors, we describe the generation model as follows:

Model input: number of nodes N , node weight vector Wn, metro net-

work structure coefficient α, temporal adjust coefficient γ, and frequency

parameter f

Model output: a weighted contact duration network G

1. Scale the node weight vector to obtain adjusted travel time Wα ← Wα.

2. Scale Wα to obtain the temporal adjusted weight vector Wα,γ ← W γ
α .

3. Initialize an empty network G with N nodes.

4. Calculate the number of edges M , where M ∝ fN
∑

iwα,γ,i.

5. Calculate the probability that a node will be selected pi ← wα,i∑
j wα,j

.

6. Select two nodes i and j based on their probability pi and pj. Connect i and j

with an edge, and assign edge weight Gi,j ∝ min(wα,γ,i, wα,γ,j).

7. Repeat Step 3 until all M edges are added. Output network G.

The idea behind the generation model is that the node attaching process is gov-

erned by the weight of the node. If a node has higher weight, which corresponds

to that a passenger will traverse through more stations in the metro network, it is



105

expected to have higher degree. This generation model is motivated by two observa-

tions. On one hand, the degree distribution of random network follows exponential

distribution, and it implies that the node attaching behavior is unlikely to be the

well-known preferential attachment behavior found in many real-world networks. On

the other hand, we observe that the degree distribution of real-world metro contact

network follows an exponential power-law distribution in the form of p(k) ∝ e−k
r
.

The presence of the power-law term within the exponential function suggests that

there may have certain preferential attachment alike behavior, which is most likely

driven by some endogenous factors. And this term is the travel distance (number of

stations as in metro network), as the distance itself follows a power-law distribution

p(d) ∝ dγ.

4.6.2 Analytical expression

Based on the generation rule of the MCN, we can derive the analytical form of

the generation model for the unweighted MCN. Note there will be one edge added

to the network at each time step, so the probability of a node having degree k is the

same as the number of times the node is selected out of the M edge additions. For

node i of weight wi, the probability that node i has degree k is given by:

p(k|wi) =

(
M

k

)
p(wi)

k(1− p(wi))M−k (4.6.1)

which follows the binomial distribution. For large M and small p(wi), the binomial

distribution is known to be well approximated by Poisson distribution, with mean

and variance λi = Mp(wi). Then equation 4.6.1 can be rewritten as:

p(k|wi) =
λki
k!
e−λi (4.6.2)

and

p(k) =
∑
i

p(k|wi)p(wi) =
Mk

k!

∑
i

p(wi)
k+1e−Mp(wi) (4.6.3)
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Since M ∝ fN
∑

iwα,γ,i and p(wi) ∝ wαi , we should therefore have

p(k) ∝
(fN

∑
j w

αγ
j )k

k!

∑
i

wαk+α
i exp(−fN

∑
j

wαγj wαi ) (4.6.4)

With Stirling’s approximation, denote C = fN
∑

j w
αγ
j , this can be further rewritten

as:

p(k) ∝ (
eC

k
)k
∑
i

wαk+α
i exp(−Cwαi ) (4.6.5)

Based on equation 4.4.4, we observer that the degree distribution is related to the

metro frequency f , the number of passengers N , the travel time W , and the scaling

parameters α and γ which accounts for the metro network structure and temporal

impacts. This analytic expression is consistent with our above analysis on possible

factors that may affect the number of contacts an individual may have in the metro

system.

4.6.3 Validation

To validate the correctness of our generation model, we introduce Kolmogorov–Smirnov

(KS) test [101] to compare the degree distribution of the MCN from the generation

model and the MCN by the contact network generation algorithm. The null hypoth-

esis of the KS test is that the two data samples for comparison are drawn from the

same continuous distribution. Specifically, we binned the degree distribution of each

MCN into 30 groups, using the same set of bin edges, and conduct KS test on the

probability distribution of the binned data. This makes it possible to apply KS test
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on both weighted degree distributions and unweighted degree distributions (discrete

integers).

4.6.4 Parameter fitting

For each city, we consider α being time invariant since it captures the impacts of

metro network structure, and γ will change over time to reflect temporal variations

of passenger trip patterns. We perform cross-validation to determine the optimal α

and γ for each city and for each time period, with the selection criteria being the

parameter combination that gives the lowest sum of KS test threshold for weighted

degree distribution and unweighted degree distribution of the MCNs. Note that since

we fit both type of degree distributions, the optimal parameters can be uniquely

determined since the number of parameters to fit matches with the degree of freedom

(two different degree distributions with two model parameters).

4.7 Results

4.7.1 Change of vulnerability over time

We set β = 0.001 and investigate the change of vulnerability of metro network at

different time of the day. All observations in the data are used to plot the variation

of infectious disease risk in metro network for the three cities, and the results are

shown in Figure 4.5. In the figure, the total risk level refers to the overall risk level

of the metro network at the timestamp obtained from the ODMF model, and the

individual risk level is calculated by diving the total risk level with the total number

of passengers travelling. In this regard, individual risk level can be considered as

the relative chance of being infected for each individual traveler in the metro system.

Based on the results in Figure 4.5, we notice that the total risk level is primarily

driven by the total number of passengers traveling. Shanghai metro has the highest
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total risk, followed by Shenzhen metro and Guangzhou metro. While during peak

hours, as shown in Figure 4.1(d), the peak demand of Shanghai metro is almost

three times higher than that of Shenzhen network, the total risk level is only two

times higher. The differences come from the risk level per individual, as a reflection

of the trip purposes and metro network structure of the particular city. And the

individual risk level for Shenzhen is 50% higher than Shanghai and 100% higher than

Guangzhou. This explains the differences in total risk level during peak hours despite

Shenzhen and Guangzhou have roughly the same passenger demand level. During off-

peak hours, both individual risk level and total risk level are significantly lower than

during peak hours, due to fewer passenger demand and more diverse trip purposes

and directions, which reduce the chance that two passengers may meet in the metro

system. In general, we report that the total risk level may be six times higher during

peak hours than off peak periods (Shenzhen metro), and individuals may experience

30% 100% more risk while traveling during peak hours.
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(a) Results of Guangzhou
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(b) Results of Shanghai
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(c) Results of Shenzhen

Figure 4.5.: Variation of risk level with respect to different time of the day, in all
three cities. Both overal risk as well as the risk per individual are presented.
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4.7.2 Control the metro network

We consider four different control strategies and investigate their effectiveness in

improving the vulnerability of metro network to infectious diseases. For MCN, the

random control and target control are implemented. In addition, we introduce the

path-based control which focuses on passengers of each OD pair, and the station

level control where passengers that enter a particular station will be screened and

vaccinated.

1. Random control

Random control is the method to select individuals from the MCN at random and

quarantine/vaccinate the selected person, so that he/she will not be infected.

2. Target control

Target control refers to select individuals from the MCN based on their node degree

in descending order. As a consequence, nodes with highest degree will be selected

and quarantined.

3. Path-based control

Path-based control is used at the OD-level, where the OD pairs contributing most

to total risk level will be selected and all passengers on selected OD pairs will be

considered as quarantined or vaccinated.

4. Station-based control

Station based control refers to that we screen passengers at the entrance of each

metro station and infectious individuals will be quarantined and vaccinated. In this

experiment we consider 100% rate of success in identifying infectious people so that
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all passengers enter a particular station are in susceptible state. The station-based

control is the most practical method in real world. We consider the station level

control is implemented based on the total passenger demand in descending order.

5. Results

The effectiveness of the control strategies is presented in Figure 4.6. Figure 4.6(a)-(b)

suggest the existence of 20-80 rules within metro system, where 20% of the stations

contribute to 80% of the passengers and 80% of total system risk is associated with

20% of the OD pairs. This may sounds promising when it comes to devise control

strategies for metro system, as it seems that only minimal efforts are required to

achieve a satisfactory control results based on the 20-80 rules. However, we observe

that, in order to control disease spreading and improve the vulnerability of metro

network, the most effective measure is the target control method, followed by the path

based control. However, among the four methods, only the station level control and

random control strategies are practical approaches in filtering infectious population,

while it will be extremely expensive and unreliable in identifying the riskiest person

for implementing target control or inquire each passenger of his trip destination for

path-based control. We find that the in many cases, the station level control is even

less effective as compared to the random control strategy. This clearly states the

challenge associated with controlling the disease from spreading within metro system.

The reasons behind the ineffectiveness of the station-level control are primarily due

to that riskiest people in the metro system depart from various metro stations, and

that eliminating a few of these people will not result in a significant reduction in risk

level due to the degree-based exponentially decaying tails of the degree distributions.

Based on the results, we conclude that though station level control strategy is shown

to be effective during disease outbreaks (as shown in Part I of the dissertation), it

is also among the most inefficient and expensive control strategies for mitigating the

risk due to infectious diseases. It is therefore important to devise better strategies
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from the operation of metro systems and by improving the structures of the metro

networks.
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(d) Results of Shanghai, 8AM -
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Figure 4.6.: Evaluations of effectiveness of various control strategies on improving the
vulnerability of metro network to infectious diseases.

For each results, we consider 5000 passengers and compare the control strategies on indi-
vidual contact networks, OD pairs, and at station level.

4.7.3 Fitting generation function to MCN

We choose four time periods of interest: 8:00-8:30, 12:00-12:30, 18:00-18:30, and

21:00-21:30 for each city, and report the fitting results of the generation model to

the weighted and unweighted degree distribution of the MCNs generated. The fitted
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results of the three cities are shown in Figure 4.7. As discussed in previous sections,

there are two parameters, α for the metro structure and γ for the temporal factors,

that need to be evaluated to finalize the generation model. These two factors are de-

termined by first calibrating and fixing α, then performing cross-validation to finalize

γ based on the time of the day. For cross-validation, the KS statistic is used and the

γ that results in the lowest combination of KS statistics for unweighted and weighted

distributions is selected. The fitted statistics correspond to the results shown in Fig-

ure 4.7 are shown in Table 4.4. It can be observed that for all experiments, we fail to

reject the null hypothesis for the two sample KS test with the lowest p-value among

these cases being 0.51. Even this lowest value is way higher than the significant

threshold for rejecting the null hypothesis (0.05), and in most of the cases the p value

is greater than 0.9 for both weighted and unweighted distributions. The statistics

along with the goodness of fits in Figure 4.7 are therefore strong evidences that the

proposed generation function may well capture the underlying mechanisms that gov-

ern the meeting of passengers and the duration of exposures during their travels in

metro system. And these evidences are further strengthened by varying the size of

N and f , as shown in Figure 4.8. With the same set of parameters for γ and α, we

only vary the frequency of metro trains and the total number of passengers in the

metro system. We observe that in all of these cases, the calibrated parameters fit

well to different frequency and population levels. As a consequence, the proposed

general model can be generalized to capture any operational frequency schedules and

any passenger demand level. This means that our understanding on the functionality

and structure of the MCNs is no longer restricted by the size of the passengers, and

such generation model can therefore be used to provide guidance on designing opera-

tion strategies and structure improvements for more resilient metro networks against

infectious diseases.
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(a) Results of Guangzhou
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(b) Results of Shanghai
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(c) Results of Shenzhen

Figure 4.7.: Visualization for the goodness of fit of the generation model to the MCNs
generated from the smart card data.

We consider four time periods of a day, which covers morning peak, off peak, evening peak,
and night time. For each city, we fix α and select γ using cross-validation. The results for
generated network is based on the average of 20 realizations of the generation algorithm
with the fitted parameter, and are compared with the scattered points representing the
degree distribution of 20 randomly sampled MCNs. All scenarios fail to reject the null
hypothesis of the K-S test with very high p-value, where detailed statistics of the K-S test
can model parameters can be found in Table 4.4.
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Table 4.4.: Summary of fitted results and model parameters from K-S test for three
cities.

Shanghai
time 8AM 12PM 6PM 9PM
unweighted p 0.95 0.68 0.84 0.84
weighted p 0.95 1.00 1.00 1.00
gamma 1.575 1.6 1.625 1.575
alpha 0.64 0.64 0.64 0.64

Guangzhou
time 8AM 12PM 6PM 9PM
unweighted p 0.68 0.68 0.51 0.68
weighted p 1.00 1.00 1.00 0.95
gamma 1.67 1.61 1.595 1.665
alpha 0.69 0.69 0.69 0.69

Shenzhen
time 8AM 12PM 6PM 9PM
unweighted p 0.84 0.95 0.51 0.84
weighted p 0.84 0.95 1.00 0.84
gamma 1.805 1.55 1.63 1.67
alpha 0.73 0.73 0.73 0.73
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(a) Varying train frequency from 2min, 5min, 10min to 15min.

(b) Passenger demand from 500, 1000, 2000, to 5000

Figure 4.8.: Validation of the generation model by varying train frequency and number
of passengers

4.7.4 Discussion

It has been shown that the proposed generation model may well fit the data of

the observed MCNs in all three cities across all time periods. The results indicate

that the generation model is of high fidelity in describing the mechanism that drivers

the contact of two individuals as well as their contact duration. We next discuss the

insights that can be obtained from the structure of the generation model.

Based on the analytical expression of the unweighted generation model (equa-

tion 4.6.5), there are two major factors that determine the shape of the degree dis-
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tribution. One is the weight of each node wi, which is given by the travel time of

each passenger, and the other is the degree of each node k. The probability that a

node has degree k drops rapidly with increasing node degree, which is much faster

than that of a power-law or random graph. We term this as the node-degree based

exponential decay, as the exponent term is the inverse of the node degree and the

probability decays exponentially with the power term being the node degree as well.

This analytical form is consistent with our observation of the fast decayed tail under

semilog-scale plot, and explains the difficulties for controlling the MCNs against the

spread of infectious disease. That is, while the node with highest degree dictates the

risk level of the network, there are still many other nodes that are of slightly lower

degree because of the degree-based exponential decay tail. Therefore, upon removing

the riskiest person in the network, the functionality of the network will not be much

affected. And only if a large amount of nodes being quarantined will we be able to

significantly lower the risk level of the entire transportation system.

Based on the structure of the MCN, one important question is to identify the

group of travelers who experience and introduce high risk exposure to the travel

system. To gain insights into this issue, the correlations among the travel time distri-

butions, distributions of number of contacts, and distributions of contact duration are

plotted, and the results are shown in Figure 4.9. Each row in this figure corresponds

to the observations of a particular city, and from top to bottom are the results of

Guangzhou, Shanghai, and Shenzhen respectively. Despite some outliers in the re-

sults, we can easily observe that each pair of the three metrics of interests shows a

strong positive correlation. And such observation is consistent across all three cities.

Based on the results, we can see that there is a wide range of travel time for passengers

having a high number of contact in the metro system. However, such range is much

narrower for contact duration, and passengers who have the highest contact duration

are those people who have the longest travel time. And the travel time of urban

commuters is closely related to their work and home locations, their income levels,

and eventually their lifestyle and health conditions. One recent study reported that
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Figure 4.9.: The correlations among travel time, number of contacts, and total con-
tagion duration in MCNs of three cities.

50 MCNs are generated for each plot using data from 8:00-8:30 AM, with each MCN having
1000 nodes. (a)-(c) are results of Guangzhou, (d)-(f) are results of Shanghai, and (g)-(i)
are results of Shenzhen.
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those commuters with the longest travel time in metro are likely to be low-income

migrates and they may change their home and work locations more frequently than

other urban commuters [102]. This finding suggests the another risk exposure for the

MCNs. If commuters with long travel time overlap with the low-income population,

then these people are more prone to infection when there is a disease outbreak. When

compared to other population groups, they usually have a more stressful life and pay

less attention to personal health and hygiene condition due to limited discretionary

income. Consequently, the riskiest group of travelers in metro system are likely to

be the most susceptible and vulnerable group of people during the disease outbreak.

And this may inevitably raise additional challenges associated with disease contagion

in urban transportation networks.

While it is difficult to stop the disease by controlling the passengers in the system,

the generation model provides valuable insights in improving the resilience of trans-

portation systems from the structure of the system. To reduce the risk of the MCNs

is equivalent to reduce the probability of the MCNs having high degree nodes. As a

consequence, the degree distribution that decays faster with increasing node degree

will be preferred during disease outbreaks. Based on equation 4.6.5, we see that the

possible approaches to reduce p(k) for large k are by lowering C value, reducing α

and γ values, and lowering wi for all the travelers. The commonality of the these

approaches is to segregate passengers during their trips to reduce the contact chance

of two individuals. That is, one may increase the frequency of metro trains, which is

linearly correlated with the value of C and thus having exponential contribution to

lowering the probability of high degree nodes. We could also increase the number of

transfer stations of reduce the detouring of passengers in the metro system to lower

the value of α, such as adding more ring lines to the metro system. Alternatively, we

may provide travel guidance to passengers to induce those of similar travel routes and

directions traveling at a different time, and motivate passengers with different travel

directions to leave at the same time. This approach can therefore lower the γ param-

eter and therefore reducing the contact probability as well as the contact duration.
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Finally, reducing the travel time of metro travelers eventually lead to the problem of

urban planning. This finding is consistent with our results from the network model,

where more decentralized urban structure will be less vulnerable to the risk of disease

exposure. The decentralized urban structure implies that people are more likely to

long distance travels across the city as they can find work or entertainment places

that are more close to their home locations. While increasing metro frequency will

only affect C value and the contact probability, the other two approaches will be

more effective in reducing both contact probability as well as the contact duration,

but would require much more efforts due to the changes needed in the structure of

the metro networks and the urban shapes.

4.8 Conclusion

This chapter develops the models for disease dynamics and the generation mech-

anism of contact patterns within urban transportation system at the individual level.

The methods introduced in this chapter shed the light on the impacts of structural

properties of individual contact network on the functionality of disease dynamics

over the network. Moreover, the chapter provides the approach for understanding

the factors that will affect the chance of two individuals meeting each other as well as

the duration they will be exposed to each other. Real-world smart card transaction

data are used to validate the developed models and comprehensive numerical exper-

iments are conducted. Based on the results, we find that, despite having different

metro network structures, the contact networks share many similar patterns across

different cities at different time periods of the day. This suggests the existence of

universal rule that governs the meeting pattern of individuals travel in metro net-

work. Moreover, the analysis of IBMF model implies that the person with highest

risk exposure dictates the vulnerability of the metro contact network, nevertheless,

the shape of the contact network degree distribution also matters as it determines

the level of difficulties in controlling the infectious diseases from spreading. While
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IBMF model is computationally expensive and impractical for real-world sized case

studies, the developed ODMF model addresses the computational bottleneck and is

shown to be an effective tool in monitoring the real time variation of disease risks

based on smart card data. The fitness of the generation model is further validated

based on two sample KS-test, and all fitting results fail to reject the null hypothesis

and reach high p-values. This implies that the proposed generation model is likely

to be the actual rule governing the growth of MCNs and the generation model can

therefore be used as a high-fidelity tool to guide the design and scheduling process of

urban transportation system.



PART III: MULTIPLEX NETWORKS FOR INFORMATION AND DISEASE

PERCOLATION AND CO-EVOLUTION
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5. DISEASE SPREADING WITH LOCAL AND GLOBAL

INFORMATION DISSEMINATION IN MULTIPLEX NETWORKS

5.1 Introduction

In the era of big data, people are more exposed to various information sources

than ever before. This implies that they have much better access to the state of

diseases during the disease outbreaks. And their behavior may therefore be different

with the change of disease dynamics. This highlights the significance for considering

the role of information dissemination while modeling the disease dynamics in urban

networks.

The dynamics of the spread of infectious diseases in networks has been extensively

investigated and there exists several discrepancies. Boguna et al. [65] modeled spread-

ing diseases using SIS model in uncorrelated and correlated networks. The research

yielded a concise equation for disease threshold in uncorrelated networks and used

eigenvalue of the network matrix to describe the disease threshold when network is

correlated. Correlation here implies degree correlation in the network. For correlation

between networks, Dickison et al. [103] divided people into two groups and focuses on

disease spreading inside and between the two networks. This model is suitable for cer-

tain two-group disease like sexual transmitted diseases. Sanz et al. [104] investigated

two concurrent diseases. They introduced six parameters to depict the relationship

of two diseases. Lacking realistic explanations to parameters is a shortcoming of the

work. In addition, disease spreading in two networks with common nodes was re-

searched by Buono et al. in 2014 [105]. This model was applied for specific situation

where disease spread between two countries via frequent international travelers, but

not under the scope of urban areas, or pubic transport.
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Besides the differences in modeling structure to account for disease dynamics in

networks, previous researchers also adopted different approaches to understand the

co-evolution of information and disease dynamics. In summary, there were five main

approaches: homogeneous mean field, heterogeneous mean field, individual-based,

generating function, and pair-based approaches [106]. Youssef et al. [107] introduced

the continuous Markov chain and individual-based SIR model. It was shown that

epidemic threshold is inversely proportional to the eigenvalue of the network. This

result agreed with those from other aggregated approaches. This conclusion was also

achieved by Granell et al. with a microscopic Markov chain approach [108]. Wang

et al. [109] modeled information and disease outbreak in communication and con-

tact layers, respectively. For vaccination, they assumed that one will be vaccinated

if and only if he is aware of the disease. Their extended work [110] introduced the

analytical threshold of disease-infected neighborhoods and thus improved the origi-

nal vaccination trigger. This change led to totally different conclusion: their early

work [109] revealed that information spreading may raise disease threshold and the

latter work [110] denied this result. In addition, Ruan et al. [111] used two parameters

to depict human’s response to diseases, and simulation was used for numerical results

which lacked realistic explanations.

In this chapter, the heterogeneous mean field model (HMF) is introduced which

is a widely used approach for understanding system dynamics in complex networks.

Compared with previous studies, this work has the following advantages: 1) the model

applies for most of the diseases; 2) both local information and global information

(mass media) are modeled; 3) the multiplex network approach is introduced which

avoids assuming overly-complicated individual behavior parameters; 4) three state:

DAFA, DFE-A, and endemic are analyzed both theoretically and numerically.

The chapter is organized as follows. Section two introduces the mathematical

notation used in this study. Section three describes the assumption made and section

four gives an overview of the UA-SIS model. Section five presents the mathematical

formulation of the UA-SIS model and section six delivers theoretical analysis of the
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stable states and conditions for the UA-SIS model. Section seven shows the numer-

ical experiments and insights obtained from the model. Section eight concludes the

chapter with summary and key findings.

5.2 Notation

The mathematical notation used in this study is summarized in Table 5.1.

Table 5.1.: Table of notation

Variables Descriptions
k Nodes with degree k
Uk Percentage of nodes in state U with degree k. U=unaware.
θA,k Percentage of nodes in state A with degree k. A=aware.
Sk Percentage of nodes in state S with degree k. S=susceptible.
θI,k Percentage of nodes in state I with degree k. I=infectious.
βU Transmission probability when a node is in U state.
βA Transmission probability when a node is in A state. βA << βU .
γ1 Recovery rate of the aware state, γ1 ≤ 1.
γ2 Recovery rate of the given disease, γ2 ≤ 1.
p Probability of a node changes from U to A by observing that one

of its neighbors is in A state.
N (i) The set of neighbor nodes of node i.

5.3 Assumption

The following assumptions are made to support the development of the UA-SIS

model:

1. It is assumed that nodes of the same degree have the same behavior. So that

we can make use of the heterogeneous mean field model (HMF), also known as

the degree-based mean-field model, to understand UA-SIS dynamics.

2. The discussion is currently limited to HMF without degree correlation. But the

framework discussed in this study can be easily adapt to account for correlated

degree sequences.
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3. It is consider that both UA process and SIS process have the same network

structure for the numerical experiments. Various network structures in different

layers will be considered in future work.

5.4 UA-SIS model

In the UA-SIS model, individuals are modeled as nodes and their pairwise con-

nections are captured by the edges. The UA-SIS model is capable of capturing the

dynamics of three processes that take place simultaneously:

1. The physical contagion process, where individuals get in contact with others

and the disease may spread upon contagion.

2. The observation process (local information), where individuals may observe the

behavior of his/her neighbors, and accumulate knowledge of the diseases. Each

valid observation will strength his understanding and increase the likelihood of

an individual migrating from U state to A state. Meanwhile, individuals may

move from A to U as time proceeds. This is known as the fading of memory.

3. The information gathering and dissemination process (global information). Dif-

ferent from many other studies, where information dissemination is assumed

to take place among neighbors only, this chapter considers the existence of a

central system which gathers the disease information from the population and

disseminates the compiled information back to the population within reach.

The interactions among these three processes can therefore be captured by a multiplex

network with three levels, as shown in Figure 5.1.
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B - Disease Network

A - Observation Network

(U) Unaware (A) Aware (S) Susceptible (I) Infectious

T1 T2

Figure 5.1.: Illustration of the UA-SIS modeling process.

In the figure, the system has two layers of networks: the disease network and the observation
network. The SIS process takes place on disease network while the UA process is on the
observation network. On the left (time=T1), the system starts with one infectious node
and two out of four of its neighbors are aware of his illness. On the right (time=T2), the
system evolves over time and one more node turns into A state. And the neighbor node
who is still in U state is infected by the infectious node.

In Figure 5.1, there are two correlated networks that represent the disease dy-

namics and the observation dynamics. In the observation network, nodes observe

their neighbors and obtain local information of the disease information. If one of the

neighbors is in A, then the node has certain probability that it will evolve into A as

well. As for the disease network, the classic SIS process is considered where the node

is either in susceptible or infectious state. A susceptible node may turn into an infec-

tious one upon physical contact with another infectious neighbor. However, since the

two networks are inter-correlated and having the same topology, a susceptible node
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may not be infected by its infectious neighbors in the disease network if it is in the

aware state in the observation network. This illustrates why using SIS model itself

may overestimate the outbreak scale of the disease and the necessity for including the

information layer (observation as the case in our study).

Up to now, only local information dissemination upon physical contact is con-

sidered. However, one major source for the general public to obtain information is

through online resources such as social medias and news agencies. People may value

these information differently, among which the most reliable source is the official data

and news. However, for any official media, it is in general difficult to understand the

whole picture of the disease pattern. As a consequence, the other important research

question is to understand how different levels of information may affect the disease

spreading dynamics over the disease network. This process is described in Figure 5.2.

Figure 5.2.: Illustration of the UA-SIS information dissemination process.

During the process, the central system (node G in yellow) obtains the disease information
from its neighbors in the disease layer at time T = 1, and the disseminates this information
to the same set of nodes in the observation layer. This in combination with the observed
information turns one of the nodes from U state to A state.
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5.5 Formulation

The HMF method is used which assumes that nodes of same degree are homo-

geneous. Mathematically, the interplay among the three layers can be written as

following.

5.5.1 Observation layer

The observation layer describes the dynamics where each individual observes from

his or her physical contacts and accumulating awareness of the disease states:

dUk
dt

=− [1− (1− p)kΘA(t) + λg(t) + βUkΘI(t)]Uk(t)

+ γ1θA,k(t)

(5.5.1)

dθA,k
dt

=[1− (1− p)kΘA(t) + λg(t) + βUkΘI(t)]Uk(t)

− γ1θA,k(t)

(5.5.2)

where ΘA(t) is the probability that the neighbor of a node is in state A at time t.

1 − p denotes the probability that the node will remain in U , so that (1 − p)kΘA(t)

gives the probability that node i will remain in U after observing all his neighbors in

A. As a consequence, the first term in equation 5.5.1 refers to the proportion of nodes

of degree k that migrates from state U to state A, and the second term describes the

decreasing level of awareness so that people moves from A back to U .

5.5.2 Disease layer

In disease networks, individuals are considered to be in one of the two states:

susceptible (S) and infectious (I). In particular, for individual in S, the chance of

being infected depends on if they are in A or U states, with different transmission

coefficient βA and βU respectively.
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dSk
dt

=− βAkΘI(t)Sk(t)θA,k(t)− βUkΘI(t)Sk(t)(1− θA,k(t))

+ γ2θI,k(t)

(5.5.3)

dθI,k
dt

=βAkΘI(t)Sk(t)θA,k(t) + βUkΘI(t)Sk(t)(1− θA,k(t))

− γ2θI,k(t)

(5.5.4)

where ΘI(t) is the probability that the neighbor of a node is in state I at time t.

Equations and characterize the contagion dynamics for susceptible nodes in A and U

states respectively.

5.5.3 Information layer

We next introduce the equation for the information layer, where it is assumed

that there is a central system that collects the information over the network. In

particular, we consider two types of information gathering schemes: the targeted

information fetching and the random information fetching. It is considered that the

central node can obtain the information over the disease network from the nodes that

are adjacent to it, and then compile the information and send back to the same set

of nodes on the observation network.

[Target] λg(t) = κ
∑
i∈T

ΘI,T (t) (5.5.5)

[Random] λg(t) = κα
∑
k

θI,k(t)P (k) (5.5.6)

where ΘI,T (t) denotes the probability that a node is infected within the target set T ,

κ is a discount factor that converts the total number of infectious nodes to the level
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of dangerous, and α is the ratio that accounts for the proportion of nodes that the

central node has connection to.

5.5.4 Probability of a node in infectious state

We now define the probability that a randomly selected neighbor of a node with

degree k is in A or I states, namely ΘA(t) and ΘI(t).

Define θA,k(t) as the probability that a node with degree k is in A state at time t,

we have:

ΘA(t) =

∑
k′ k
′P (k′)θA,k′(t)

< k >
(5.5.7)

where < k > is the average degree of the network. The reasoning behind this equation

is that high degree node usually have a much higher chance of being in the infected

states as compared to low degree nodes, so that such heterogeneity of node degree

should be taken into consideration [60].

Similarly, for infectious population, we should have

ΘI(t) =

∑
k′ k
′P (k′)θI,k′(t)

< k >
(5.5.8)

5.6 System equilibrium and stability analysis

SIS model is a well-studied epidemic model with two equilibrium states. One is

the disease free equilibrium (DFE) where all individuals are susceptible. This can

be analogous to that all individuals are in U and S states in our UA-SIS model,

where such state is named as the disease and awareness free equilibrium (DAFE).

The other equilibrium is known as the endemic equilibrium, where there will always

be a proportion of nodes in infectious state, and the size of infectious population is

equal to the size of the giant component in the graph. Finally, there is a special

equilibrium point for the UA-SIS model, where the state is free from disease invasion



132

but the awareness itself is permanent and strictly positive. This regime is named as

the disease free equilibrium with awareness (DFE-A).

5.6.1 Disease and awareness free equilibrium

We first discuss the first equilibrium state, the DAFE, so that when t→ 0 we have

θA,k(t) = 0 and θI,k(t) = 0 for all k. Equivalently, this gives Uk(t) = 1 and Sk(t) = 1

in their corresponding layers respectively. This reduces equations 5.5.2 and 5.5.4 to

dθA,k
dt

= 1− (1− p)kΘA(t) + λg(t)− γ1θA,k(t) (5.6.1)

dθI,k
dt

=

∑
k′ βUkk

′P (k′)θI,k′(t)

< k >
− γ2θI,k(t) (5.6.2)

In the neighborhood of DFE, we further know that kθA(t)→ 0 and we should have

(1− p)kΘA(t) ≈ 1 + ln(1− p)kΘA(t) (5.6.3)

so that we can rewrite equation 5.6.1 as:

dθA,k
dt

= −ln(1− p)kΘA(t) + λg(t)− γ1θA,k(t)

= −ln(1− p)kΘA(t) + κα
∑
k

θI,k(t)P (k)− γ1θA,k(t)
(5.6.4)

Let COD be the correlation matrix between observation layer and disease layer,

and COO and CDD be the matrices for observation layer and disease layer respec-

tively,where.

COO
k1,k2

= − ln(1− p)k1k2P (k2)

< k >
(5.6.5)

COD
k1,k2

= καP (k2) (5.6.6)

CDD
k1,k2

=
βUk1k2P (k2)

< k >
(5.6.7)
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We should therefore have

C =

COO COD

0 CDD

 (5.6.8)

We can therefore write equations 5.6.2 and 5.6.4 as the following linear system:

dθ

dt
= Cθ − γ.θ (5.6.9)

where θ = [θA,1, ..., θA,kmax , θI,1, ..., θI,kmax ]
T .

We should have the following proposition:

Proposition 5.6.1 The DAFE of the UA-SIS system is asymptotically stable if the

spectral radius of ρ(C)γ. In other words, if the maximum eigenvalue of C is smaller

than γ, then the DFE is asymptotically stable.

Since C is an upper-triangular matrix, we should have the maximum eigenvalue

of C as

λ = max(λ(COO), λ(CDD)) (5.6.10)

When t→ 0, according to [25], the disease transmission thresholds for observation

layer and disease layer can be written as:

λO = −ln(1− p)< k2 >

< k >
(5.6.11)

λD = βU
< k2 >

< k >
(5.6.12)

where we immediately observe that the spreading spread of awareness decays

exponential with the strength of individual perceptions of the disease, as shown in

Figure 5.3
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Figure 5.3.: Spreading rate of awareness with the change of individual perception of
disease

The second observation from the structure of C is that the availability of global

information does not affect the disease threshold in a network. That is, λg does

not determine the value of λO and λD, and hence λC . This observation may sound

counter-intuitive at first glance. However, when disease is approaching DFE, the

value of λg is nearly zero as there are barely any infected people in the network. As a

consequence, it is always of lower order as compared to the personal awareness of the

disease, which plays a major role in the spreading process. The individual perception
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level directly gives the duration that the awareness may persist, and therefore how

likely that people may stay in a safer state.

5.6.2 Disease free equilibrium with awareness

By observing the system equations, there are actually two different DFEs rather

than one for basic SIS model: the DAFE, which is disease and awareness free equi-

librium, and DFE-A, which is the disease free equilibrium with positive awareness

population. The DAFE state is discussed in the previous section. As for DFE-A, the

equilibrium point of interest is θI,k = 0, θA,k ≥ 0.

To calculate the equilibrium point of interest, we first note that at DFE-A, ΘI = 0

but ΘA > 0. By taking
dθA,k
dt

= 0 at DFE-A with above information, we should have

[1− (1− p)kΘA ](1− θA,k)− γ1θA,k = 0 (5.6.13)

and this yields

θA,k =
1− (1− p)kΘA

1− (1− p)kΘA + γ1

(5.6.14)

Introducing this equation to the equation for ΘA(t), we get a self-consistent equation

for ΘA as

ΘA =
1

< k >

∑
k′

kP (k′)
1− (1− p)k′ΘA

1− (1− p)k′ΘA + γ1

(5.6.15)

where 0 is an trivial solution that corresponds to the DAFE equilibrium. The function

f(ΘA) =
1

< k >

∑
k′

kP (k′)
1− (1− p)k′ΘA

1− (1− p)k′ΘA + γ1

−ΘA (5.6.16)

is a concave function, where we have

1− (1− p)k′ΘA
1− (1− p)k′ΘA + γ1

< 1 (5.6.17)
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This suggest that f(1) < 0 and df(x)
dx
|x = 0 > 0. As a consequence, ΘA admits a

positive solution within the interval (0, 1). Without loss of generality, consider the

DFE-A solution being (µ, 1− µ, 1, 0) where

µk =
γ1

1− (1− p)kΘ∗A + γ1

(5.6.18)

And the solution with positive awareness is stable as long as ρ(C) > γ1, based on

our analysis for the stability of DAFE. Now we know that γ1
1+γ1

≤ µk ≤ 1. More

importantly, for nodes with higher degree, µk → γ1
1+γ1

. Meanwhile, the higher the p

is, the lower the µk will be. And the value of µk is sensitive to γ1 value, which is the

fading rate of memory. If it takes longer for a disease to be forgot, then the γ1 value

should be smaller and there will be fewer people in U state.

We now linearize the UA-SIS system at DFE-A as:

dθA,k
dt

= [1− (1− p)kΘA(t) + λg(t) + βUkΘI(t)]µk − γ1θA,k(t) (5.6.19)

dθI,k
dt

= βAkΘI(t)(1− µk) + βUkΘI(t)µk − γ2θI,k(t) (5.6.20)

Rearranging the right hand side gives:

dθI,k
dt

= βAkΘI(t) + (βU − βA)µkkΘI(t)− γ2θI,k(t) (5.6.21)

To ensure that the DFE-A is a.s.s, I just need to ensure that I = 0 is stable solution,

which is equivalent to that

λDFE−A = βA
< k2 >

< k >
+ (βU − βA)

< µkk
2 >

< k >
< γ2 (5.6.22)

If we consider that βA = 0, which is equivalent to that those people who are

aware of the disease will be totally vaccinated or quarantined. Se know that λDFE−AD

is proportionally to (βU − βA)<µkk
2>

<k>
. This demonstrates that the local information

contributes significantly to lowering the disease threshold as compared to the state
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when there is no information available. But the marginal gain will be considerably

weaker as we keep increasing the value of p.

Based on these analysis, there will be two conditions for the disease to reach DFE-

A state. The first is the trivial case, where the disease system itself will stay in the

DFE state and the aware population is positive:

λO > γ1, λD < γ2 (5.6.23)

The second case is more interesting where the disease itself may eventually reach

endemic without awareness outbreak. However, the strength of the disease is weak-

ened by the spread of awareness so that the previously endemic disease will eventually

be eliminated. Mathematically, this requires the following condition to be satisfied:

λDFE−A < γ2, λO > γ1, λD > γ2 (5.6.24)

5.6.3 Size of endemic state

We are not only interested in DFE of the diseases, but also would like to explore

how local observation and global information may affect the speed of the infectious

diseases, and consequently the size of the outbreak (endemic state). This motivates

us to conduct further analysis.

When λDFE−AD > γ2 and λO > γ1, the disease will eventually reach the endemic

state. Following [60], we first calculate the size of the endemic disease. At endemic,

we should have the equilibrium point being (µ, 1− µ, s, 1− s). As a consequence, we

should have

dθI,k
dt

=(βAkΘI(t) + (βU − βA)µkkΘI(t))(1− θI,k(t))

− γ2θI,k(t)

(5.6.25)



138

At endemic state, we should have
dθI,k
dt

= 0, so that

γ2θI,k = [βA + (βU − βA)µk](1− θI,k)kΘI (5.6.26)

θI,k =
αkkΘI

γ2 + αkkΘI

(5.6.27)

where αk = βA + (βU − βA)µk. And

ΘI =

∑
k′ k
′P (k′)θI,k′

< k >
(5.6.28)

ΘI =
1

< k >

∑
k′

k′P (k′)
α′kk

′ΘI

γ2 + α′kk
′ΘI

(5.6.29)

Following the same analysis as for ΘA for DFE-A, we know that there will be a

positive ΘI in the interval (0, 1) which satisfies above equation.

Meanwhile, for θA,k, by setting

[1− (1− p)kΘA(t) + λg(t) + βUkΘI(t)](1− θA,k(t)) = γ1θA,k(t) (5.6.30)

θA,k = 1− γ1

1− (1− p)kΘA + λg + βUkΘI + γ1

(5.6.31)

Let G(k) = 1− (1− p)kΘA + λg, we have

θA,k = 1− γ1

G(k) + γ1 + βUkΘI

(5.6.32)

µk =
γ1

G(k) + γ1 + βUkΘI

(5.6.33)

Finally, we have

ΘA =
1

< k >

∑
k′

k′P (k′)(1− µ′k) (5.6.34)

ΘI =
1

< k >

∑
k′

k′P (k′)(1− γ2

γ2 + (βA + (βU − βA)µ′k)k
′ΘI

) (5.6.35)

Based on the equations, we observe that, for high degree nodes, the value of uk is

dominated by βUθI rather than the strength of the personal awareness. But for nodes
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with low degree, the strength of information dictates the value of µk. This suggests

that at endemic state, high degree nodes are less prone to being infected, while low

degree nodes are more vulnerable to the risk of infectious diseases.

5.7 Numerical experiments

The ODE45 solver in MATLAB is used to simulate the UA-SIS model described

in the dissertation. Unless otherwise mentioned, we consider the network follows the

scale-free network with p(k) ∝ k−γ, and the exponent is set to 3.5.

Figure 5.4.: Infectious population (left) and aware population (right) with varying β
and p.

Figure 5.4 shows how varying β and p may affect the final infectious and aware-

ness population. The figure depicts the state transition among the three equilibrium

states with different β and p values. In particular, when β < 0.1, the DFE can be

achieved without the help of information dissemination. Meanwhile, when β < 0.1

and p < 0.01, the strength of the awareness is not strong enough to promote a local

information outbreak. Under such circumstance, the system is in DAFE state with

disease and awareness population being 0. When β increases beyond 0.1, the local

disease outbreak starts to emerge, but may be eliminated with higher p value. Such
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state corresponds to the DFE−A equilibrium, where the awareness is strictly positive

but the disease is eradicated. Finally, when the disease strength exceeds λDFE−A, the

system will transit into endemic state and both disease and awareness are permanent

in the population.

(a) (b)

(c) (d)

Figure 5.5.: The impact of local information on disease spreading dynamics

Figure 5.5 reveals the effect of local information transmission on spreading dy-

namics. The blue line in Figure 5.5(a) presents that local information efficiently

suppresses disease outbreak, for the threshold increases as p increases. This conclu-

sion can also be drawn via equation 5.6.22 where µk is less than 1. For reaching
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higher infectious population (I = 0.1 and 0.2), increasing individual awareness is ob-

served to be less effective, as shown in green and red lines. Figure 5.5(b) shows that

increasing transmission probability β lowers the awareness outbreak threshold. An

interesting observation is the existence of “threshold drop”, which happens at around

p = 0.002 (awareness = 0), 0.007 (awareness = 0.20) and 0.01 (awareness = 0.40).

When p increases from lower value to above the observed threshold, the information

threshold drops rapidly. After the “threshold drop”, even a small percent of infection

will lead to awareness spreading very quickly. This finding demonstrates the essential

role of local information transmission related to infectious disease outbreak. On the

other hand, the blue line in Figure 5.5(c)-(d) present that local information transmis-

sion reduces the limiting size of infectious population and increases the limiting size

of aware population. This asymmetrical phenomenon is consistent with the results

shown in Figure 5.5(a)-(b). When β is high, p has little impact on final infectious and

aware population. In that case, β dominates the system dynamics for both infectious

and aware population.

Figure 5.6 reveals the role of global information. Figure 5.6(a) and (c) show that

global information has no impact on disease threshold. In particular, global informa-

tion is zero when there is no infectious population. This is because media agencies

release global information based on monitoring the progress of social events in a reac-

tive manner. After infectious disease breaks out, only very strong global information

is able to restrain disease efficaciously (e,g,when global information strength increased

by 10000 times). As β becomes larger, even strong global information is no longer

effective to inhibit diseases. Figure 5.6(b) and (d) display the similar results. Global

information exerts no influence on information outbreak threshold and only increases

ultimate awareness population when β is not very high In summary, global informa-

tion is not as useful as local information to control disease and stimulate information

spreading. And both local information and global information are no longer effective

for highly infectious diseases.
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(a) (b)

(c) (d)

Figure 5.6.: The impact of global information on disease spreading dynamics
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Figure 5.7.: Comparison between λD and λDFEA. DFE is achieved when λ < 0,
otherwise the disease process will reach the endemic state.

Figure 5.7 demonstrates the correctness of the derivation for λDFE−A and how

the strength of local observation may eventually change the disease threshold. We

observe that stronger local awareness p value will drive the disease from endemic to

the disease free equilibrium state, particularly when the transmission rate β is low

as shown in the figure(β < 0.35). When the disease outbreaks and one can not turn

endemic into disease free equilibrium, stronger local observation also contributes to

significantly lowering the actual threshold value. This in return reduces the speed of

the disease contagion as well as the final size of the disease outbreaks.



144

(a) DAFE

(b) DFE-A

(c) Endemic

Figure 5.8.: The rate of change for S and I in three different equilibrium states
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Figure 5.8 presents the relative growth rates and dynamics of I and A population

under different equilibrium states. For both DFE-A and DAFE, the information

population will reach its peak shortly after the increase rate of infectious population

reaches its minimum. Note that the synchronizations and disease dynamics during

DFE-A and DAFE are different even though the disease gets eliminated in both cases.

Under DAFE, the increasing rate of disease is in general faster than that of awareness.

When disease population reaches zero, we observe that the amount of information

also starts to drop. This implies that the growth of awareness population is primarily

driven by the disease spreading itself, and the strength of the information awareness

is not strong enough to persist. On the other hand, under DFE-A, we observe that

the growth of awareness population is faster than the infectious population, and the

relative growth rate of awareness population is always positive. And the increase

rate also drops with decreasing number of infectious population. Nevertheless, we

observe that the growth rates of awareness and infectious population are positively

correlated, and there exists a time lag for the two growth rates to be positively

correlated. This time lag is found to be shorter under DAFE, and much longer under

DFE-A. Finally, the synchronizations and dynamics when the disease is endemic also

differ from both DAFE and DFE-A. In particular, the growth of awareness and the

growth of infectious population are found to be almost perfectly synchronized, but

with awareness always spreading faster than the disease. This finding is found to be

consistent with the real world observation reported in [110], where the growth rate of

patient visit data (corresponding to infectious population) is perfectly synchronized

with the trend of Google Flu index (corresponding to awareness population). Based

on these findings, we conclude that when there is a large number of people that are

aware of the disease, the disease either should be either of minimum risk or it has

almost reached its endemic state.
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Figure 5.9.: Decay of disease threshold in scale free network with increasing number
of nodes (increasing maximum degree). (γ = −2.5)

Finally, Figure 5.9 presents how disease threshold changes with the size of the

network. An important and well-known finding for scale-free networks is that there

is a lack of disease threshold if the power term of the degree distribution 2 ≤ γ < 3.

The reason behind is that the moment of the variance of degree distribution diverges

with the growing size of the network. Nevertheless, with the help of information dis-

semination, even a small amount of local information will significantly improve the

resilience of the network and the disease threshold is found to be no longer diminish-

ing. This is a particularly important observation and articulates the effectiveness of

local information in preventing target attacks.

5.8 Conclusion

In this chapter, the multiplex network model for modeling co-evolution of infor-

mation and disease dynamics over the networks is presented. In particular, travelers

are assumed to change their behavior based on their observations of the states of
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their neighbors, and by obtaining information from global sources such as news agen-

cies and social medias. This percolation of information will have a direct impact on

the disease dynamics over the disease network, meanwhile, the state of the disease

spreading also affects the level of information released by global sources and the state

and behavior of each individual travelers. The HMF method is used to model the

co-evolution of the two dynamics, and obtained three possible stable states. Based on

these findings, threshold values for disease and information percolation that may re-

sult in one of the three stable states are also discussed and validated by the numerical

experiments.
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation makes initial efforts to connect urban mobility and urban trans-

portation systems with the spread of infectious diseases, and conducts thorough anal-

yses to understand the relationship between them. In particular, their relationship is

examined from the macroscopic level where travels within urban areas are modeled as

passenger flow between zones, to the microscopic level where the contagion process is

modeled among individual travelers. To support the modeling of infectious diseases

at different aggregation levels, the dissertation introduces hybrid system modeling,

reachability analysis, data-driven methods, and complex network theories, along with

domain knowledge in transportation engineering and the-state-of-the-art methods of

disease modeling, which combined with real-world datasets, to investigate how urban

transportation system may facilitate and further the spread of infectious diseases.

Based on theoretical analyses and comprehensive numerical experiments, the disser-

tation draws three major conclusions.

First, while the development of urban transportation systems improves the mo-

bility level for urban commuters, it also increases the pace of the spread of infectious

diseases, the highest number of people being infected, as well as the final size of dis-

ease outbreaks. These findings are supported by the results from regional level models

which consider the inter-dependency among various transportation mode and selfish

behavior of urban travelers. In particular, the increase in spreading pace is reflected

by sooner time it takes to reach the disease peak and also the faster synchroniza-

tion of disease dynamics among different urban areas. As for the size of the disease

outbreaks, existing urban transportation systems may turn certain diseases that will
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eventually reach DFE into endemic among urban population. It may also increase

the total number of infected urban population as well as the peak size of infected

people during disease outbreaks. These findings assert the emerging need to rethink

the philosophy behind the planning of urban transportation system, and encourage

the consideration of resilience for the design and operation of urban transportation

systems.

Second, there are multiple measures that can be taken to mitigate or even erad-

icate infectious diseases by properly designing urban transportation networks and

operating the systems. One possible measure is to place entrance control to decrease

the number of infected people getting into this system so as to lower the risk exposure

of urban commuters. But as indicated by the results from chapter four, such mea-

sure is barely effective considering the efforts and costs that it takes during practical

implementation, and the results are only comparable to random control strategies at

individual level. Instead, it will be more effective and sustainable to reduce the risk

of infectious diseases through redesign of transportation networks, or even structure

of urban forms. The results of chapter three and chapter four all suggest that the key

idea to reduce the risk exposure is by decreasing the chance and duration that indi-

vidual travelers get into contact, which may significantly improve the vulnerability of

urban transportation systems because it will directly alter the degree distributions of

individual contact networks during travel.

Finally, the availability of information on disease states and the dissemination of

information among the population are observed to have significant impacts on both

dynamics and final outcomes of infectious diseases in urban areas. The dissertation

introduces the multiplex network approach to model the co-evolution of information

and disease percolations on complex networks. The results indicate that personal

awareness of the risk of diseases will directly change the state of disease outbreaks,

from endemic to the state free of diseases. And the personal awareness can be im-

proved through general education on the prevention and treatment of the diseases,

which could be achieved at much lower cost as compared to directly measures for
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controlling diseases. However, increasing level of personal awareness also has ex-

ponentially decayed marginal gain with increasing disease transmission rate. As a

consequence, it is less effective to prevent the spread of diseases that are highly in-

fectious. On the other hand, the available of global information is found to have no

effect on altering the state of infectious diseases, nevertheless, it is effective to reduce

the size of disease outbreaks significantly and slow down the spread peed of infectious

diseases.

6.2 Future work

Based on the results and methods developed, there are two possible future direc-

tions which may further the works in this dissertation.

The first direction is to explore additional factors of urban transportation systems

that may contribute to the spread of infectious diseases. For instance, the investiga-

tion on contact networks can be extended to incorporate adaptive networks as well

as temporally varying networks. The adaptive nature of networks may model the

change of travel behavior due to awareness of the diseases, which results in change of

network topology as the disease proceeds. Moreover, the contact network may have

different characteristics at different time periods of the day, and the introduction of

temporal varying networks can model the transition of network structures over time

to capture more accurate disease dynamics. In addition to introducing different net-

work representation methods, the current modeling framework for individual contact

networks can be extended to incorporate more accurate and complicated network

models such as SEIR to further our understanding on the network structure on more

refined disease dynamics.

The second direction is to extend the research framework in this dissertation to

study research questions of similar characteristics. One particular example will be

to extend the modeling approach (individual based disease modeling framework) to

study the evolution of congestion on road networks. Note that the percolation of



152

traffic congestion follows a similar process as the disease spread process, but with

different medias (from human beings to road segments). In addition, the multiplex

network method can be used to model interdependency among different urban infras-

tructures. In this setting, we not only can model the dynamics for each individual

network, but also be able to capture the internal impacts of the dynamics of one

network on the others.
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