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ABSTRACT

Puttur Lakshminarayana,Sukshitha Achar M.S, Purdue University, December 2018.
Generation of Ultra-packed Thermal Greases and Evaluation of their Effective Prop-
erties. Major Professor: Ganesh Subbarayan.

Thermal Greases are gap-filling interface materials that are used in semiconductor

packages to efficiently transfer heat from the component to the heat sink or spreader.

Thermal greases are typically particle filled composite materials comprising of highly

conducting fillers in a poorly conducting, but mechanically soft, silicone or epoxy

base matrix. Generally, the effective conductivity of the greases increases with in-

creasing volume fractions of fillers. However, the fillers also have high elastic modulus

that induces undesirable thermal stresses on the brittle silicon device. Therefore, as

device power density increases, there is a need to increase particle volume loading,

which in turn necessitates optimally balancing the material’s thermal and mechanical

characteristics.

In this thesis, procedures are developed to simulate packed microstructures of par-

ticles so as to identify the optimal trade-off between thermal and mechanical behavior.

Experimental and numerical simulations of microstructures that have been generated

as reported in the literature were found to have volume fractions of around 60%. How-

ever, as commercially available thermal greases have volume fractions in the range of

60 − 80%, there is a need to develop an efficient algorithm to generate microstruc-

tures numerically. The particle packing is initially posed as a nonlinear programming

problem and rigorous optimization search algorithms are systematically applied to

generate particle systems that are compactly packed, but without particle overlap.

Since the packing problem is computationally expensive, the algorithms are system-

atically evaluated to improve computational efficiency as measured by the number
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of particles in the system, as well as the time to generate the microstructure. The

evaluated algorithms include the inefficient penalty function methods, best-in-class

sequential programming method, matrix-less conjugate gradient method as well as

the augmented Lagrangian method. In addition, heuristic algorithms are also evalu-

ated to achieve computationally efficient packing. The evaluated heuristic algorithms

are mainly based on the Drop-Fall-Shake method, but modified to more effectively

simulate the mixing process in commercial planetary mixers. With the developed

procedures, Representative Volume Elements (RVE) with volume fraction as high as

74% were achieved.

After the microstructurs were generated, the effective thermal conductivity and

effective elastic modulus were estimated using a ‘Random Network Model (RNM)’

that was previously developed. The RNM solves the near-percolation heat conduction

problem with hundreds of thousands of particles in minutes compared to hours or days

that a full-field simulation requires. The approximations inherent in the RNM are

valid if the particulate composite has widely different matrix and particle properties,

which is true in the case of thermal greases. In the present thesis, the previously

developed RNM was modified to account for the fact that the generated RVEs contain

sides with cut particles.
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1. INTRODUCTION

Thermal Interface Material, abbreviated as TIM, is used to efficiently dissipate heat

from a heat generating component to a heat sink in an electronic package. Most

of these interface materials comprise of a base material (e.g. polymer) with highly

conducting filler particles (e.g, boron nitride, alumina or sometimes conducting metals

such as aluminum or silver) to improve the overall thermal performance of the package.

With decreasing size and increasing power and performance of the semiconductor

devices, the importance of an efficient thermal management system in the overall

product design process is continually increasing. The design of an optimal TIM for

desired thermal and mechanical performance is a crucial part of the design of the final

product.

1.1 Functionality of TIMs

Heat generated in a semiconductor component needs to be removed efficiently in

order to ensure that the operating temperature of the component is within the spec-

ified limit. This heat removal process involves transfer of heat from the component

surface to a heat sink or heat spreader. For efficient heat transfer, the mating surfaces

between the two components need to be in close contact. However, due to limitations

in machining processes, the surfaces of the mating components are rough. It is shown

that the actual area of contact between the two surfaces is only 1−2% of the apparent

contact area [1], as shown in Fig. 1.1.

Hence, when two such components are in contact, only the high points are in

actual contact and the rest of the area is occupied by air gaps. The presence of these

air gaps in the interstitial medium leads to a significant resistance to the heat flow

path due to poor conductivity of air. The resistance induced by the air gaps in the
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Fig. 1.1.: Presence of interstitial air gaps between contact surfaces

interstitial medium is reduced by using Thermal Interface Materials which conform

to the rough and uneven surfaces of the components in contact as shown in Fig.

1.2. A typical heat removal process consists of three modes of heat transfer namely

conduction, convection and radiation. However, in the immediate proximity of semi-

conductor devices, the heat removal is mainly facilitated by conduction through the

mating surfaces.TIMs are usually made of highly conducting filler particles dispersed

in a polymer base and hence have a higher effective conductivity than air thereby

significantly decreasing the resistance across the interface.

Fig. 1.2.: Conforming TIMs reduce the interstitial air gaps between contact surfaces

and decrease thermal resistance
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1.2 Thermal Greases and their Modeling

There are various types of TIMs used in the industry based on their application

namely thermal greases, thermal gels, thermal pads, thermal adhesive tapes, phase

change materials, solders etc. Thermal Greases have the advantages of high bulk

conductivity, thin minimal attach pressures and no need for curing [2]. Hence they are

used in various fields such as semiconductor packaging, aerospace industry, biomedical

industry and automotive industry to name a few [3]. Thermal greases are silicone or

hydrocarbon oil based matrices loaded with highly conducting filler particles. Hence

the bulk conductivity of the greases increases with increasing volume fractions of fillers

in the base matrix. However, as the filler particles have high stiffness, increasing

the fillers leads to an increase in the effective stiffness of the matrix and leads to

undesired thermal stresses. Hence, there is a need to model the effective thermal

conductivity and effective elastic modulus of these particulate composites numerically,

so an optimal trade-off between thermal and mechanical response may be achieved.

1.3 Modeling Effective Behavior of TIMs

The majority of research work on TIMs was experimental until late 1990s. Ex-

amples of this research include those by Marotta and Fletcher [4], Mirmira et al. [5],

Zhou et al. [6]. Thereafter, there have been multiple attempts to estimate the bulk

thermal conductivity of TIMs based on classical models, percolation models, finite

element models, as well as network models. These modeling approaches are described

in detail in Chapter 2.

1.4 Microstructure Generation

In order to estimate the effective properties using the above-mentioned models,

numerical simulations need to be performed on microstructures. This in turn requires

one to numerically generate microstructures of thermal greases. While factors such as
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topology, or particle size distribution, can be used to characterize the microstructure,

volume fraction is statistically proven to be a first order descriptor of the microstruc-

ture [7]. While early TIMs comprised of filler volume fractions of ∼ 40− 50%, newer

thermal greases have filler fractions of ∼ 60− 80% [3] [8]. Therefore, there is a need

to generate microstructures with these ultra-high volume fractions.

There are multiple methods discussed in prior literature to generate microstruc-

tures numerically. The problem of packing spheres to generate maximally packed

structure dates back to the 17th century. Kepler in 1611 conjectured that the maxi-

mum packing density of identical spheres that could be achieved was ≈ 0.74 in a face

centered cubic (FCC) arrangement. However, there has been no rigorous mathemati-

cal proofs to state the maximum volume fraction of randomly dispersed polydisperse

spheres in a closed configuration. In this work, we evaluate various microstructure

generation techniques in order to reach the volume fraction of realistic thermal greases.

While dynamic methods such as molecular dynamics and discrete element method

based simulations [9] can also generate particle-filled microstructures, they are sig-

nificantly more time consuming since pair-wise particle collision. The static methods

discussed in Chapters 4 and 5, on the other hand, are simple to implement and are

efficient in terms of computational time.

1.5 Evaluation of Effective Properties

In order to estimate the effective behavior of ultrapacked thermal greases using

these newly generated microstructures, the Random Network Model, developed by

Kanuparthi et al. [10] was modified in order to incorporate the contributions of the

cut particles in the system. In summary, this thesis demonstrates the technique to

generate ultrapacked microstructures representing thermal greases and estimate the

effective thermal conductivity and elastic modulus of these systems.
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2. EVALUATION OF EFFECTIVE PROPERTIES OF

PARTICULATE COMPOSITES

Thermal greases are used to expel heat generated from the chip to the heat sink in

microelectronic packages as mentioned in Chapter 1. Highly conductive fillers are

usually added to a polymer matrix to improve the performance of these thermal

greases. The effective thermal conductivity of these particulate TIMs depend on

factors such as volume fraction of fillers, morphology of the fillers and distribution of

filler materials in the matrix. Significant work has been done in the past to model

the effective behavior of such composite materials. The pioneering work in this field

was done by Maxwell (1873) and Raleigh (1892). Numerous efforts have since been

done to model the effective medium behavior more accurately for a wide range of

applications. This chapter provides a review of the classical models as well as the

Random Network Model that captures near-percolation behavior of high-contrast

particulate composites.

2.1 Classical Models to Evaluate Effective Behavior of Composite Mate-

rials

2.1.1 Maxwell’s Model

Maxwell, through his ‘Treatise on Electricity and Magnetism, 1873’, [11] was the

pioneer in deriving the effective thermal resistivity of composites. The electric poten-

tial (temperature in case of heat conduction) satisfies the Laplace Equation. Maxwell

proposed the effect of far-field conditions to have no effect on the near-field region,

i.e, the effect of placing a sphere with a radius of a (with thermal conductivity kf )

in an infinitely homogeneous medium (with thermal conductivity km) was considered
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to have no effect at a distance far away from the sphere, as shown in Fig. 2.1. The

governing equations and boundary conditions are described in Eqs. (2.1) - (2.5).

Governing equation : ∇ · q = 0 (2.1)

where,

q - heat flux inside the sphere

Fourier′s Law : q = −k · ∇T (2.2)

from (2.1) and (2.2),

∇2T = 0 (2.3)

Boundary conditions :

T |r=a− = T |r=a+

kp
∂T

∂r

∣∣∣∣
r=a−

= km
∂T

∂r

∣∣∣∣
r=a+

(2.4)

kp− Thermal conductivity of the filler particle in W/(m-K)

km− Thermal conductivity of the matrix in W/(m-K)

Far − field conditions :

∂T

∂r

∣∣∣∣
r=∞

= constant (2.5)

Solving the governing equation together with the boundary conditions,

T∞ =

(
C0R +

C1

R2

)
cosθ

where C1 =
km − kp
2km + kp

R3C0

(2.6)

Maxwell extended this result to a system of a large spheres of radius r containing n

smaller spheres of radius a using the principle of superposition. The effective conduc-

tivity, keff was then solved for by applying the boundary conditions and considering

the volume fraction, φ =
na3

R3
as:
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Fig. 2.1.: Particle of radius a in infinite medium

keff =
1 + 2βφ

1− βφ
kp where β =

kp − km
kp + 2km

(2.7)

Eq. (2.7), known as the Maxwell-Garnett equation, gives the effective conductivity of

n spherical filler particles in a continuous matrix. This equation however is valid only

for “dilute” systems, where inter-particle interactions may be ignored. Numerous

models have since been developed that modify and extend this model to evaluate the

effective behavior of particulate systems.

2.1.2 Rayleigh Model

Rayleigh [12] considered the effect of filler particles by considering a system of

spherical inclusions arranged periodically in a simple cubic arrangement as shown

in 2.2. This model accounts for inter-particle interactions by evaluating contribu-

tions of every inclusion from its neighbors. The formula for calculating the effective

conductivity derived by Rayleigh is:
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keff
km

=


1 +

3φ

kp − 2km
kp − km

− φ+ 1.569

(
kp − km

3kp − 4km

)
φ

10

3 + . . .


(2.8)

Fig. 2.2.: Regular arrangement of spheres in a simple cube

It can be seen that when the higher order terms are ignored, Eq. (2.8) reduces

to Maxwell’s formula. Rayleigh also extended this to model cylindrical inclusions

placed in parallel in a cubic cell. However, Rayleigh’s model only applies for regular

arrangement of equi-sized fillers. McKenzie et al.(1978) [13] extended Rayleigh’s

model to include alternative periodic arrangements such as face-centered cubic and

body-centered cubic.

2.1.3 Hasselman-Johnson Model

Hasselman and Johnson [14] model accounts for the influence of interfacial thermal

resistance (
1

hc
) due to the presence of gaps between particles. The temperature

continuity equation at the interface is modified to include the effect of the interfacial

thermal resistance and hence this model also accounts for the influence of radius of

the fillers on the effective conductivity of the composites. The Hasselman-Johnson

model which is a modification to the Maxwell and Rayleigh models is described in

Eq. (2.9) :
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keff
km

=

[
2

(
kp
km
− kp
ahc
− 1

)
φ+

kp
km

+ 2
kp
ahc

+ 2

]
[(

1− kp
km

+
kp
ahc

)
φ+

kp
km

+ 2
kp
ahc

+ 2

] (2.9)

2.1.4 Bruggeman’s Asymmetric Model

The Bruggeman’s Asymmetric Model (BAM) [15] is a differential effective medium

approximation (DEM) method of incremental homogenization. Bruggeman through

his DEM method assumed that the composite may be constructed incrementally by

introducing infinitesimal changes to already existing medium. The differential form

is given by Eq. (2.10)

dK = 3K
dφ
′
[Kd(1− α)−K]

(1− φ′) [Kd(1 + 2α) + 2K]

where α =
ak
a

and ak = Rintkm.

(2.10)

α is a dimensionless parameter which depends on the Kaptiza radius, ak .

BAM allows the modeling of multi-phase components and is accurate for high vol-

ume fraction systems. Every and Tzou [16] extended BAM to incorporate interfacial

thermal resistance. The equation to calculate the effective conductivity is given by:

(1− φ)3 =
km
keff

1 + 2α

1− α

 [
keff − kp(1− α)

km − kp(1− α)

] 3

1− α


(2.11)

2.2 Percolation Based Models

Network based percolation models aim to numerically simulate percolation the-

ory in composite mediums containing high volume fraction of filler particles. In a

system with high volume fraction, percolation theory probabilistically determines a

continuous path that connects the particles to form a chain of flow for the heat flux

as shown in Fig. 2.3. Devpura et al. [17] showed that the probability of forming these

continuous paths is dependent on the volume fraction. On reaching a percolation
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threshold of volume fraction, the continuous chain is almost certainly formed. It is

seen that once such a continuous chain is formed, the heat flow predominantly occurs

through these chains as opposed to the heat flow across the matrix materials. This

assumption, and hence network-based percolation models are strictly valid only in

cases where the ratio of
kp
km
→∞. While this model cannot handle random arrange-

ment and distribution of fillers, Devpura performed simulations on spherical particles,

rods and flakes and reported that the systems which had these filler particles along

the direction of heat flow where found to have better effective thermal behavior.

Fig. 2.3.: Percolation: Formation of continuous chain of highly conducting particles

(Devpura et al. [17])

2.3 Full-field Meshless Simulations

Natekar et al. [18] and Zhang et al. [19] developed a multi-scale meshless modeling

technique termed as Hierarchical Partition of Unity Field Compositions (HPFC) to

perform geometry-based meshless analysis where complex geometries are constructed

through Boolean operations on simple primitive geometries. The analysis is carried

out over the primitives by using NURBS (Non-uniform rational B-spline) based mesh-

less discretization. The temperature and displacement fields are approximated on the

primitives and then composed appropriately to obtain solution fields on complex ge-
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ometries. These are full-field simulations as they do not make network or lumped

approximations in modeling the temperature fields in the system. These models

promise greater accuracy, but are computationally very expensive.

Fig. 2.4.: Constructive modeling strategy that enables hierarchical operations on

geometry, analysis fields and materials (source: Zhang et al. [19]).

Kanuparthi [20] carried out full-field simulations of 3D microstructures for high

contrast particle filled TIMs using an object-oriented symbolic framework for in-

tegrated mesh-less analysis and optimal design called jNURBS. The results of the

simulations were shown to be in excellent correlation with experiments of particles

with identical volume fraction. In the simulations, large fluxes in the neighborhood

of points of contact in particles in near proximity was observed, as shown in Fig.

2.5. Kanuparthi then inferred that energy transfer happens predominantly through

these near-contact points (for high contrast systems) and the full-field simulations

were accurate because they accurately captured the spatial arrangement of the parti-

cles, which in turn allowed the model to capture the near-percolation behavior. The

simulations were accurate relative to the experiments even though the simulated mi-

crostructures were different from those in the experiments because the statistics of
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the gap between particles (matrix exclusion probability) matched that of the particles

in the experimental system.

Fig. 2.5.: (a) Temperature and (b) heat flux fields obtained at the midplane of the

(c) microstructure (y = 0.5) using jNURBS.(source: Kanuparthi et al. [20]).
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3. RANDOM NETWORK MODEL

The classical models and percolation models, as explained in Sec. 2.1 and Sec. 2.2,

assume a uniform particle size and a regular arrangement of particles. The values

predicted using these models become less accurate for systems with volume fraction

> 30%. As commercial TIMs have fillers with volume fractions > 55%, an alter-

native model is required to estimate the effective properties. Kanuparthi et al. [20]

recognized that the particle systems mostly exhibit near-percolation behavior that

can be captured accurately with full-field simulations provided the matrix exclusion

probability in simulated microstructures matched that in the experiment. However,

the full-field simulations were computationally very expensive, hence Kanuparthi et

al. [10] developed a computationally efficient network model to efficiently capture the

near-percolation transport by capturing the pairwise interactions. The model utilizes

an analytical estimate of the gap conductance between two spherical particles to es-

timate the effective conductance of two particles in near percolation configuration.

This configuration is then extended into a network considering pair-wise particle in-

teractions. The RNM was validated both against full-field simulations and against

experiments. It was shown to be very efficient in predicting the effective thermal

conductivity of particulate composites. RNM seeks to replace the system of fillers

in a matrix with an equivalent network of resistors as shown in Fig. 3.1. The RNM

was extended by Vaitheeswaran et al. [21] to estimate the effective elastic modulus of

the particulate composites, thus aiding in designing of thermal greases with optimal

thermal and mechanical properties. A brief description of the RNM is provided in

this section.
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Fig. 3.1.: Network of resistors (source: Kanuparthi [10])

3.1 Development of RNM

Consider the case of one-dimensional heat transfer in a uniform bar of thermal

conductivity, k with a cross-sectional area A and length L (conductance K = kA
L

).

The conductance matrix for this is given by:

 K −K

−K K

T1
T2

 = −

q1q2
 (3.1)

In order to consider a system with many particles in a matrix, Kanuparthi et

al. [10] formulated an expression for the local inter-particle conductance matrix from

Batchelor’s analytical model for gap conductance estimation. Batchelor [22] proposed

that the heat flux between spherical fillers is approximately confined to a cylindrical

zone of radius R12 and gap h12 as shown in Fig. 3.2.

The value of conductance due to the fillers and the matrix was derived as shown

in Eq. (3.2):

Kgap = πkma12 log

(
1 +

R2
12

a12h12

)
(3.2)

where

Kgap− Conductance in the gap between two spherical particles as shown in Fig.

3.2
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km− Conductivity of the matrix material

h12− Gap between two particles

a12− Mean curvature of radius given by Eq. (3.2)

a12 =
2R1R2

R1 +R2

(3.3)

and

K1 =
kpπR

2
12

R1

K2 =
kpπR

2
12

R2

(3.4)

where K1 and K2 are the conductance of particle 1 and 2.

Fig. 3.2.: Cylindrical zone of heat transfer (source: Kanuparthi [10])

The local conductance of inter-particle system can now be written as:

1

K
=

1

K1

+
1

Kgap

+
1

K2

(3.5)

In a similar manner, instead of Particle 2, the conductance corresponding to inter-

action with the wall is also estimated (described below and in detail in [10]) Once

the local conductance matrices for the inter-particle and the wall interactions are
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calculated, the global conductance matrix for the microstructure is assembled. Con-

stant temperature boundary condition is applied on the top and the bottom of the

microstructure, while the sides are considered adiabatic. The nodal temperatures is

solved for, which gives the value of flux that enters and leaves the microstructure.

This is then used to calculate the effective thermal conductivity of the matrix.

Now that an expression for the interaction between particles has been derived,

the expression for interaction of a particle with a wall (or edge of the microstructure)

needs to be derived. This is done by approximating the wall as a particle with infinite

radius.

Two particles are said to be interacting if the gap between two particles is less

than a specified threshold. Similarly, the interaction of the particle with a wall is

considered if the particle is less than a threshold distance away from the wall.

Dan et al. [23] extended this derivation to modify the cylindrical region to a system

with semi-spherical regions connected with a cylindrical zone by as shown in Fig. 3.3.

The conductance of the system with the semi-spherical region is as shown in Eq.

(3.6).

1

K1

=
1

2πR1kp
log

(
R1 +

√
R2

1 −R2

R1 −
√
R2

1 −R2

)
1

K2

=
1

2πR2kp
log

(
R2 +

√
R2

2 −R2

R2 −
√
R2

2 −R2

)

1

Kgap

=
1

πkma12h12 log

(
1 +

R2

a12h12

)
(3.6)

3.1.1 Validation of Random Network Model

Kanuparthi performed extensive experimental and numerical simulations in order

to compare the results of the Random Network Model described in reference [10].

Fifteen samples each of two different systems (alumina fillers in silicone matrix and
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Fig. 3.3.: Semi-spherical zone of heat transfer in the fillers (source: Vaitheeswaran et

al. [21])

aluminum fillers in silicone matrix) with 58% filler fractions were prepared. The bulk

conductivity of the these samples were measured using Laser Flash test methodology

as shown in Fig. 3.4.

Fig. 3.4.: Experimental effective thermal conductivity of samples (source: Kanuparthi

[10])
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Full field simulations using jNURBS were then performed using thirty microstruc-

tures of the same filler-matrix combination with 58% filler fractions in order to com-

pare the accuracy of these numerical simulations against that of the experimental

results as shown in Fig. 3.5. The results of the numerical simulations were found to

be in very good agreement with the experimental values and the mean value of the

simulations of these microstructures was within 10% of the mean of the experimental

values.

After having validated the results of the full-field simulations, Kanuparthi per-

formed the Random Network Model analysis using twenty microstructures represent-

ing the system of Alumina fillers in Silicone matrix at 58% volume fraction. The

results of this analysis using the RNM were compared with those of the full-field

simulations results (using jNURBS) as shown in Fig. 3.4. The values were found to

be in close agreement and within 10% variation as compared to the numerical simu-

lations. Thus, the results of the Random Network model were found to capture the

near-percolation physical behavior of the real systems reliably.

3.2 Estimation of Effective Elastic Modulus Using Random

Network Model

Highly conductive fillers are embedded in a base matrix in order to increase the

overall conductivity of the system. But the filler particles are usually much stiffer

than the matrix material leading to undesirable thermal stresses on the brittle silicon

device. Hence, in order to estimate the effective modulus, Vaitheeswaran et al. [21]

developed formulation analogous to thermal conductance for elastic stiffness of partic-

ulate systems. As in the case of heat conduction, the force transfer between particles

is assumed to be restricted to a cylindrical zone of interaction as shown in Fig. 3.7.

In order to obtain a local stiffness matrix, the gap stiffness was obtained using the

procedure followed in Batchelor’s derivation mentioned earlier [22]. Thus, Eq. (3.7)
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(a)

(b)

Fig. 3.5.: Comparison of numerical simulations with experimental results of (a) alu-

mina fillers in silicone matrix (b) aluminum fillers in silicone matrix (source: Kanu-

parthi [10])
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Fig. 3.6.: Comparison of RNM results with Full-field simulations (source: Kanuparthi

[10])

estimates the stiffness of the filler particles for the semi-spherical zone shown in Fig.

3.3.

Fig. 3.7.: Force transfer across the matrix layer (source: Vaitheeswaran et al. [21])
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1

E12

=

{ log

(
R1 +

√
R2

1 −R2

R1 −
√
R2

1 −R2

)
2πR1Ep

+
1

πEma12h12 log

(
1 +

R2

a12h12

) +

log

(
R2 +

√
R2

2 −R2

R2 −
√
R2

2 −R2

)
2πR1Ep

}
(3.7)

The global stiffness matrix is then assembled as before. The displacement bound-

ary conditions are applied on the top and bottom surfaces while the sides are assumed

to fixed. The nodal displacements are calculated, which gives the force transmitted

across the top and bottom surfaces. The effective modulus is then calculated using

these values.

3.3 Extension of RNM for Modified Microstructures

The Random Network Model discussed thus far describes the procedure to eval-

uate the effective properties of random microstructures. The microstructures consid-

ered previously comprised of complete spherical fillers in a base matrix. However,

typical volumetric subregions of thermal greases have partially cut particles along the

edges of the microstructure as depicted in Fig. 3.8. The contribution of these partial

particles needs to evaluated in order to calculate the effective conductivity of these

representative volume elements (RVEs) accurately. This section describes the exten-

sion to the RNM in order to evaluate the contribution of the partially cut particles

in the microstructure.

3.3.1 Derivation of Limits for Inter-particle Conductance

Sec. 3.1 described the motivation and detailed formulation of the Network Model

to estimate the effective conductivity of particulate thermal greases. Eq. (3.2) and

(3.5) gives the effective conductance of two interacting particles and the interactions
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Fig. 3.8.: Network of resistors in the RVE

with walls by considering the radius of the wall to be infinite. Further, it was stated

that Dan et al. [23] extended the model to consider a semi-spherical zone of conduc-

tance within the interacting particles. A brief derivation of this model is first provided

before deriving the extended model for cut particles.

One dimensional heat conduction is assumed across the interface in order to cal-

culate the conductance of the semi-spherical region. The area of the semi-spherical

region is obtained by integrating a small strip of length dx along the center of the

particle as shown in Fig 3.9 and described in Eq. (3.8).

Fig. 3.9.: Integrating a strip of length dx across the x- axis
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1

K1

=
n∑

i=1

1

Ki

=
1

kpπ

n∑
i=1

∆xi
R2

i − x2i
=

1

kpπ

∫√R2
1−R2

0

dx

R2
1 − x2

where

R1 − Radius of the first filler particle

R− Radius of the cylindrical zone

(3.8)

Here, the bounds of integration are from the center of the particle to the point

where the cylindrical zone of matrix conductance ends as shown in Fig 3.10. The

conductance of filler particle is now calculated by integrating Eq. (3.8). The result

of the integration is Eq. (3.9)

Fig. 3.10.: Integration limits for the semi-spherical zone of conductance

1

K1

=
1

2πR1kp
log

(
R1 +

√
R2

1 −R2

R1 −
√
R2

1 −R2

)
(3.9)

3.4 Extension of Derivation for Cut Particles Along Edges

In order to consider the effect of cut particles along the edges, a modification is

made to the derivation explained in Sec. 3.3.1. In the previous derivation, the limits

of the integration start at the center of the particle and end at the point where the

cylindrical zone begins as shown in Fig. 3.10. But in order to consider the effect
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of particles cut along all edges, the limits of integration vary based on the extent of

interaction of the cut particle with the wall as shown in Fig. 3.11.

Fig. 3.11.: Semi-spherical model for cut particles

The bounds on the integration in this case needs to be evaluated based on the

direction of interaction with the wall as shown in Fig. 3.11. Thus, in case of cut

particles, the interaction with all the edges of the RVE needs to evaluated in order to

account for the contribution of conductance from the cut particles(the green shaded

region in Fig. 3.11). The new modified integral is described in Eq. (3.10)

1

Kcut

=
1

kpπ

∫ ub

lb

dx

R2
1 − x2

1

Kcut

=
1

2πR1kp
log

(
R1 + ub

R1 − ub
× R1 + lb

R1 − lb

) (3.10)

where

lb = Center of filler particle (xi)

ub - Distance from the center of the filler to the edge (xwall)

1

K
=

1

K1

+
1

Kgap

+
1

K2

+
1

Kcut

(3.11)

The local conductance matrix for these new systems is now calculated as described

by Eq. (3.11). The total flux and force in the RVE is calculated using these new

equations for cut particles and assembled into the global conductance and stiffness

matrix in order to calculate the effective conductivity and elastic modulus of the
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(a) (b)

Fig. 3.12.: Modified particle conductance (a) integration of the strip from center of

the particle to the edge (b)conductance of the cut particle

thermal grease. Chapter 4 and Chapter 5 describe the various numerical techniques

to generate microstructures in order to carry out the RNM simulations. The effective

behavior of the simulated systems estimated using the Modified Random Network

Model are also discussed in Chapter 5.
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4. COMPARATIVE EVALUATION OF ALGORITHMS

FOR MICROSTRUCTURE GENERATION

The Random Network Model (RNM), as described in Sec. 3 evaluates the effective

thermal and mechanical properties of a composite medium consisting of spherical filler

particles in a matrix. In order to use the Random Network Model, a microstructure

representing the composite medium (e.g, thermal greases) needs to be numerically

generated. A structure in which the microscopic length scale is much larger than the

molecular dimensions, but much smaller than the length of the macroscopic sample

is called a microstructure [7]. This chapter gives a description of the preliminary

algorithms used to generate microstructures.

Microstructures are used as Representative Volume Elements (RVEs) to perform

numerical simulations in order to estimate the effective behavior of the particulate

systems. In order to calculate the effective properties of thermal greases using Ran-

dom Network Model as described in Sec. 3, and to validate the results with the

classical models, ‘random’ microstructures need to be generated with varying volume

fractions. The volume fractions of commercially used thermal greases are often as

high as 60 − 80% [3]. Hence, algorithms need to be developed that can generate

microstructures with high volume fractions in this range.

The problem of finding the configuration that provides the maximal packing effi-

ciency has long confounded researchers. One of the earliest geometrical explanations

was provided by Kepler in 1611. He conjectured that the maximum packing density

of identical spheres that could be achieved was φmax = π/
√

18 ≈ 0.74 by consider-

ing a face centered cubic (fcc) arrangement. Centuries later, Hales [24] presented

a rigorous proof for Kepler’s conjecture, which is still under evaluation. While this

provides the maximum limit for regularly packed spheres, the problem of randomly

packing spheres in a closed region remains an open problem. The limit of random
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close packing (rcp), otherwise termed as ‘Maximally Random Jammed (MRJ)’ state

by Torquato [25] claims the maximum volume fraction of non-overlapping 3D spheres

to be ≈ 0.64. While the above predictions hold good for infinitely large systems, real

systems often contain limited number of particles confined by boundaries. These re-

strictions lower the value of numerically achievable maximum volume fraction. With

this limit as a target, suitable Optimization Techniques and Random Sequential Ad-

dition based algorithms have been evaluated in this Chapter in order to generate

random microstructures.

4.1 Optimization Techniques to Generate Microstructures

‘Sphere Packing Problems’ refer to the set of mathematical problems that attempt

to pack 3-D spheres into containers. Microstructure generation can be be posed as a

Sphere Packing Problem by formulating it as an optimization problem. The objective

of this problem is to minimize the gap between every particle in a container or box,

in order to obtain a microstructure with a very high volume fraction. A constraint

is applied to ensure no overlap between any pair of particles in the system. This is

pictorially represented in Fig. 4.1.

Fig. 4.1.: Optimization technique to pack spheres in a cube

The general formulation of this optimization problem is as shown below:
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minimize
x

n∑
i=1

n∑
j=i+1

‖xj − xi‖ (4.1a)

subject to ‖xj − xi‖ − [Rj +Ri] ≥ 0 ∀ i = 1, 2 . . . n & j = i+ 1, i+ 2, . . . n

(4.1b)

bounds xi −Ri ≥ 0 & xi +Ri ≤ a (4.1c)

where,

xi − position vector of the ith particle of the form 〈x, y, z〉

n− number of particles in the microstructure

Ri −Radius of the ith particle

a− dimension of the outer box

As seen in Eq. (4.1), this formulation is a nonlinear constrained optimization prob-

lem. As both the objective function and constraints are nonlinear, the complexity of

the problem increases with the number of particles. For n particles, the number of

constraints is of the order n2 as shown in Table 4.1. Hence, the posing of constraints

and their evaluation is an important contributing factor to the solution of the opti-

mization problem. Accordingly, different algorithms that are commonly used to solve

the nonlinear optimization problem were evaluated, to arrive at the maximum vol-

ume fraction. Sub-chapters 4.1.1 - 4.1.4 describe the methodology and results of the

different algorithms.

4.1.1 Exterior Penalty Method

Penalty Methods are one of the simplest algorithms belonging to the group of

sequential unconstrained minimization techniques (SUMT) used to solve constrained

optimization problems [26]. In the SUMT techniques, the constrained minimization

problems are converted into a sequence of unconstrained minimization problems that

are easier to solve with readily available unconstrained solvers. The general approach
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Table 4.1.: Design variables and constraints

# of Particles # of Design Variables # of Constraints

2 6 1

50 150 1225

1000 3000 499500

10000 30000 ∼ 5× 107

is to minimize the objective function as an unconstrained function by providing a

penalty for every violation of a constraint. The problem might turn out to be nu-

merically ill-conditioned owing to the “penalty” imposition. In order to avoid this,

the penalty is moderately imposed initially, and increased sequentially to drive the

solution towards the constrained minimum. Thus, the procedure requires solution to

a sequence of unconstrained minimization problems each starting with the solution

to the previous unconstrained problem until eventually the constrained minimum is

reached.

General form of optimization problem is written as:

minimize f(x) (4.2a)

subject to: gj(x) ≤ 0 j = 1, 2, . . . ,m (4.2b)

hk(x) = 0 k = 1, 2 . . . l (4.2c)

Exterior Penalty Method is one of the many SUMT algorithms used to solve

constrained minimization problems. In this method, an initial guess for the design

variable is chosen and if the solution lies in the infeasible region, a penalty is added

to the objective function. Thus, the method generally starts with the variables in the

infeasible region and subsequent addition of penalty leads to the optimum solution

which typically lies on the constraint boundaries. The general form of an optimization

problem as shown in Eq. ((4.2)) is now rewritten with a new function called the pseudo
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objective function is formulated which comprises of both the objective function and

the penalty, which is described in Eq. (4.3).

The pseudo objective function, Φ is now written as:

minimize Φ(x) = f(x) + rp Ψ(x)

where Ψ(x) =
m∑
j=1

[max (0, gj(x))2] +
l∑

k=1

[hk(x)]2

Ψ− Penalty Function

rp − Penalty Parameter

(4.3)

The formulation stated in Eq. (4.3) is used in our problem to generate the mi-

crostructures with maximum volume fraction as described in Eq. (4.4). This for-

mulation stands as a template for all the subsequent algorithms described in Sec.

4.1.

The exterior penalty method was implemented in MATLAB for a system with

monodisperse particles using the formulation stated in Eq. (4.4). In order to en-

sure that all the constraints are satisfied, it was observed that the quadratic penalty

parameter needs to be very high of the order of 108 for a system with 50 particles.

With increasing number of particles, the value of penalty parameter needs to be even

greater making the problem ill-conditioned. Hence the maximum volume fraction

reached using the Exterior Penalty Method was 40% with a system of 50 particles as

shown in Fig. 4.2.

minimize Φ(x) = f(x) + rp Ψ(x)

where f(x) =
n∑

i=1

n∑
j=i+1

‖xj − xi‖

Ψ(x) =
m∑
l=1

[max (0, gl(x))2]

gl(x) = [Rj +Ri]− ‖xj − xi‖

∀ i = 1, 2, . . . , n and j = i+ 1, i+ 2, . . . , n

bounds : xi −Ri ≥ 0 & xi +Ri ≤ a

(4.4)
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Fig. 4.2.: Microstructure generated with exterior penalty method

4.1.2 Sequential Quadratic Programming Algorithm

The Sequential Quadratic Programming method is commonly considered as one of

the most efficient methods for solving nonlinear constrained optimization problems.

This method involves iterative generation of solutions for a quadratic subproblem until

the solution to the nonlinearly constrained problem is reached. It is a generalization of

the quasi-Newton method for constrained minimization as it seeks to find the descent

direction, p by minimizing a quadratic subproblem of the form described in Eq. (4.5).

minimize qk = ∇f(x)Tp+
1

2
pTHp

subject to: ∇gi(x) = −gi i ∈ IA

∇hk(x) = −hk k = 1, 2, . . . l

(4.5)

where, IA is the current estimate of active inequality constraints and H = ∇2L(x, µi, λi)

with

L(x, µk, λi) = f(x) +
m∑
i=1

λigi(x) +
l∑

k=1

µkhk(x) (4.6)

H is the Hessian matrix of the Lagrangian function L defined in Eq. (4.6). However, in

practical implementations, a positive definite, symmetric approximate is made to the
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Hessian matrix. BFGS method [27] is one of the most commonly used rank-2 quasi-

Newton methods for updating the Hessian approximation. A line-search procedure is

performed to calculate the step length in the descent direction of the merit function.

The design variable is updated after the resulting step.

In the present study, the SQP method was implemented using the MATLAB

Optimization toolbox. It was observed that the maximum volume fraction that could

be reached using the SQP algorithm was ∼ 50% for a system of 100 particles as

shown in Fig. 4.3. While the SQP algorithm is efficient in terms of number of

iterations required for arriving at the solution, the need to estimate and store the

Hessian matrix limits the number of design variables that it can handle. Since in our

case where there are large number of design variables and constraints, this algorithm

becomes very memory intensive. Thus SQP method (implemented in MATLAB)

is impractical for systems with a large number of particles. In order to overcome

this problem, the ”matrix-less” Conjugate Gradient Method was next evaluated as

described in Sec. 4.1.3.

Fig. 4.3.: Microstructure generated with sequential quadratic programming method
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4.1.3 Conjugate Gradient Method

Conjugate Gradient Method is one of the many descent or gradient based algo-

rithms used to solve unconstrained nonlinear optimization problems. As with the

previously described algorithms, starting from an initial guess, the iterations pro-

gressy until the convergence criterion is met. The Conjugate Gradient Method uses

the concept of “conjugate directions” to arrive at the optimum point in n iterations

(for quadratic functions) as opposed to ∞ iterations in Steepest Descent Method. n

here refers to the dimension of the problem. The algorithm is briefly described below.

We begin with a brief description of the concept of H-conjugacy.

1. Two directions pi and pj are said to be H-conjugate if pi
THpj = 0 ∀i 6= j

2. All H-conjugate directions are linearly independent. Hence, a vector x can be

expressed as x = β1p1 + . . .+ βnpn

The Conjugate gradient method is an iterative method for solving a linear system

of equations of the form:

Ax = b

by solving an equivalent minimization problem of the form:

minimize φ(x) =
1

2
xTAx− b (4.7)

where A is symmetric and positive definite. Thus, it is also a technique to minimize

convex quadratic functions. The minimization procedure includes an exact line search

along a search direction that is a linear combination of the steepest descent direction

at the current iterate and the previous search direction. In this method, the property

of H-conjugacy facilitates the calculation of new search direction with the help of

the residual r and the previous search direction, p. As the search direction vectors

are H-conjugate, they are linearly independent with the previous search directions,

thus eliminating the need for storing all previous search directions. The various steps

involved in the algorithm are described in Algorithm 1. [28].
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Algorithm 1 Conjugate Gradient Algorithm

r0 ← Ax0 − b , p0 ← −r0 , k ← 0

while rk 6= 0 do

xk+1 ← xk + αkpk

rk+1 ← rk + αkApk

βk+1 =
rk+1

T rk+1

rTk rk
pk+1 = −rk+1 + βk+1pk

k ← k + 1

end while
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Fletcher and Reeves [29] extended the Conjugate Gradient method to solve nonlin-

ear functions by modifying the residual r to be the gradient of the nonlinear function

(φ from Eq. (4.4) for our case) and performing a line search by minimizing the

function along pk to find the optimum step length, α∗.

The Conjugate Gradient algorithm described above was implemented in FOR-

TRAN programming language using a open-source numerical package called ‘CG+’

[30]. The number of particles in the system was initially increased to 1000 as the

algorithm was implemented in a stand-alone FORTRAN code as opposed to being

solved within the MATLAB environment with its memory limitations. The maxi-

mum volume fraction for this system was ∼ 32% and took ∼ 17 hours to complete.

In order to increase the efficiency of the algorithm and to decrease the computational

time, a nearest neighbor detection method termed Cells was implemented. A de-

tailed description of this method is provided in the Sec. 4.2.1, but the idea was to

sub-divide the domain into cells and to label the particles with the cells to which

they belonged. This in turn eliminates the need to do a pair-wise nearest neighbor

check for all the particles, as only particles within any given cell needs to be checked.

By implementing this method, a microstructure with 10000 particles and a maximum

volume fraction of ∼ 41% was generated in just 20 minutes. The Conjugate Gradient

method is well suited for large optimization problems as it only requires the evalua-

tion of the objective function and its gradient, without the need for tedious matrix

operations necessary for the SQP algorithm (Sec. 4.1.2). On the other hand, as the

objective function and constraints are nonlinear, the Conjugate Gradient method in

turn requires the iterative imposition of constraint penalty resulting in a relatively

inefficient solution to the constrained optimization problem.
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4.1.4 Augmented Lagrangian Method

The Augmented Lagrangian Method (ALM) also called as the Method of multi-

pliers, is a modification to the quadratic penalty methods described in Section 4.1.2.

The general form of Lagrangian function is shown in Eq. (4.8).

L(x, µk, λi) = f(x) +
m∑
i=1

λigi(x) +
l∑

k=1

µkhk(x) (4.8)

The use of Lagrange multipliers, λi and µk ensure the necessary conditions for opti-

mality, also called the Karush-Kuhn-Tucker(KKT) conditions. However, the neces-

sary conditions do not ensure that the stationary points are minima of the function.

In order to ensure that the solution is the minimum of original function, second or-

der conditions need to be satisfied. In order to satisfy the second order conditions,

a quadratic penalty term is augmented to the Lagrangian function such that the

Hessian of the Lagrange is positive definite, and hence the name of the algorithm.

In order to augment the Lagrangian for inequality constraint problems, slack vari-

ables are added to convert the formulation to equality constraints. However, the

Fletcher’s substitution as shown in Eq. (4.9) eliminates the need for slack variables.

The Augmented Lagrangian formulation, L(x, λ, rp) is shown in Eq. (4.9).

L(x, λ, rp) = f(x) +
m∑
j=1

[λjψj + rpψ
2
j ] +

l∑
k=1

[λk+mhk + rph
2
k]

where ψj = max[gj,
−λj
2rp

]

(4.9)

The Augmented Lagrangian function uses the pseudo objective function which has

the Lagrange multipliers in addition to the penalty parameters. The solution of the

function can be arrived at if the Lagrange multipliers are known. But in practice, the

values of λ∗i is often not known beforehand; the process of solving for exact solution

of λ∗i increases the number of design variables significantly. Hence, most numerical

implementations start with initial guess of λi and update the value of λi along with

the penalty parameter in each iteration.
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By augmenting the Lagrangian with the quadratic penalty parameters, the num-

ber of iterations and the order of penalty imposition significantly decreases. Hence

this method leads to well posed formulation of our optimization problem. The Aug-

mented Lagrangian Method was implemented in FORTRAN using an open source

numerical software called ALGENCAN [31,32]. The formulation was suited for pack-

ing monodisperse spheres in a spherical container. A maximum volume fraction of

∼ 60% was achieved for a monodisperse system in a spherical configuration as shown

in Fig. 4.4(a). However, when the formulation was modified to pack monodisperse

spheres in a cubic container, the volume fraction decreased to 56%. In order to

increase the computational efficiency of the algorithm, Cells method was adopted

and the formulation was modified to handle polydisperse (lognormal distributions)

spheres. In conclusion, a microstructure was generated with a system of 10000 log-

normally distributed spheres with a maximum volume fraction of 60% as shown in

Fig. 4.4(b).

(a) (b)

Fig. 4.4.: Microstructure generated with ALM (a) in a spherical container (b) in a

cubic container
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4.1.5 Summary of Optimization Techniques

The Optimization Problem of packing three-dimensional spheres efficiently in a

cube was implemented using four different algorithms as described in Sec 4.1.1 - 4.1.4.

The programming environment of these algorithms was changed from MATLAB to

FORTRAN in order to efficiently handle the large number of optimization variables.

Starting with a monodisperse system of 50 particles, the size of the problem was in-

creased to handle ∼ 10000 particles with a lognormal distribution of particle sizes that

was solved within reasonable computation time of 3− 4 hours on a desktop personal

computer (3.6 GHz Intel Core 2 Duo Processor with a memory of 4 GB). Accord-

ingly, the maximum volume fraction was increased from 40% to 60% as summarized

in Table 4.2.

Table 4.2.: Summary of optimization techniques

Algorithms Used
# of Parti-

cles
Run Time

Volume

Fraction

Achieved

Exterior Penalty Method 50 40 mins 40%

SQP 100 60 mins 50%

Conjugate Gradient 1000 1020 mins 32%

Conjugate Gradient with Cells 1000 20 mins 43%

Augmented Lagrangian Method 1000 110 mins 55%

Augmented Lagrangian with Cells 100,000 100 mins
60 %(Log-

normal)
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4.2 Heuristic Algorithm: Drop-Fall-Shake

Having investigated the efficiency of various nonlinear optimization algorithms in

Sec. 4.1, we now move on to evaluate heuristic algorithms that sequentially drop

particles into a container to maximally pack the container. One of the simple static

methods to generate a random microstructure is to place the particles randomly in

the matrix. This is done by sorting the size of particles and then by randomly placing

the non-overlapping particles inside the container. A random position is generated

for every particle; an overlap check is done to ensure there is no overlap between

particles. If an overlap is detected, this position is discarded and a new random

position is generated until there is no overlap. If this process exceeds a limit on

the number of random positions tested, the code is said to have failed. While this

method is easy to implement, it only appears to reach volume fractions of up to

35% for three-dimensional microstructures with 50 particles and is very inefficient in

system containing large number of particles.

The Drop-Fall-Shake (DFS) method, developed by Smith and Midha [33], de-

scribed in this section, generates three-dimensional microstructures of required vol-

ume fraction by simulating the physical process of dropping and shaking a container

with particles in order to maximally pack all the particles. The outline of the method

is described below and illustrated in Fig. 4.5.

1. Insert particles into a long container with a low initial volume fraction by ran-

domly placing particles ensuring no overlap between any pair.

2. Sort the particles according to their positions along the z axis and drop particles

sequentially to the lower interface of the container. In every step, described by

a step length, a random direction is assigned to the particle, ensuring drop in

the −z direction.

3. The new position is checked for overlap with other particles; if an overlap is

detected, and if a limit on the number of generations of new positions is reached,

then the step length is further reduced.



40

4. If the step length is smaller than a specified value, the particle is assumed to

have reached its lowest position.

5. The steps 3 and 4 are repeated for all the particles sequentially.

6. The particles are then given a random shake towards the bottom, albeit with a

slight possibility of moving up.

7. Once the required volume fraction is reached, the particles are shaken with an

equal probability to move in all directions. This results in random and uniformly

distributed microstructure.

Fig. 4.5.: Schematic representation of Drop-Fall-Shake method.( Source: Zhang. X

et al. [19] Smith, LN and Midha, PS [33])

In the DFS procedure, the order of computation for detecting overlaps between

n particles is O(n2). With increasing number of particles, this calculation becomes

very time consuming. Hence, a method to detect overlap only between neighboring

particles, named Cells is used (mentioned in Sec. 4.1.3 and 4.1.4). With the addition

of cells, the overall computation time decreases to O(n) and makes DFS quite efficient.

4.2.1 Description of the Cells Method:

The region inside the container is divided into a regular set of smaller cells that

maintain a list of particles that are either completely or partially in the cell. Every

particle is associated with a cell-list that contains all the cells in which this particle
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belongs. Every time a new random position is generated for a particle, the overlap

detection is only done between this particle and all particles that are linked to the

cell in which it now belongs. This procedure is illustrated in Fig. 4.6.

(a) (b)

Fig. 4.6.: Cells method to detect overlap only between neighboring particles. (a) cell

1 stores particles p0 and p2 (b) subdivision of 3D microstructures into cells

The cells procedure was used to generate microstructures that were analyzed for

effective properties by Kanuparthi [20] and Vaitheeswaran [21]. The maximum volume

fraction achieved using Drop-Fall-Shake was 60%.

4.3 Summary of Comparative Algorithm Evaluations

The Sections 4.1 and 4.2 describe the various algorithms and techniques used to

generate microstructures with high volume fraction. While the maximum volume

fraction of 60% achieved using Optimization Techniques and Drop-Fall-Shake with

polydisperse distribution of particles is higher than the reported volume fractions of

microstructures using static methods, the need to generate microstructures with very

high volume fraction to simulate realistic TIM systems with filler volume fractions
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of upto 80% still remains a challenge. The Chapter 5 describes modifications to the

DFS algorithm to generate Ultrapacked Microstructures.
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5. DEVELOPMENT OF ALGORITHMS FOR

GENERATING ULTRAPACKED MICROSTRUCTURES

In Chapter 4, after extensive evaluation, it was observed that both the mathematically

formulated optimization techniques and sequential random packing using Drop-Fall-

Shake could only generate microstructures with volume fractions of ∼ 60%. However,

the TIMs used in the industry have been found to have filler volume fractions of

∼ 70−80%. This chapter describes modifications to the Drop-Fall-Shake algorithm to

achieve ultrapacked microstructures. The generated microstructures are then analyzed

to estimate the effective conductivity as well as modulus using the earlier described

random network model.

The commercially produced TIMs use a planetary mixer as shown in Fig. 5.1 to

mix particles into the matrix. The dynamic mixing process using rotating double

impellers to ensure even mixing and in turn maximal packing of fillers in the matrix

material. While the Drop-Fall-Shake algorithm described in Sec. 4.2 incorporates

a shake procedure to ensure a random microstructure, the drop procedure attempts

to pack particles in the −z direction and does not capture emulate the mixing of

particles in a planetary mixer. Therefore, attempt is made to modify DFS algorithm

to emulate the mixing process in this chapter.

5.1 Drop-Fall-Mix

The numerical simulations of flow of particles and fluid in a planetary mixer with

impellers is complex and challenging [35]. It would require modeling of the relative

motion of the fillers with respect to the matrix material. Since the process is dynamic

with non-Newtonian flow of the matrix, simulations would entail grid regeneration at

every time step. Instead, if one tries to capture a snap shot in time of the mixing,
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Fig. 5.1.: Ross Planetary Mixer (source: [34] )

the process may appear to involve flow of the particles through the side walls of the

container (which represents a control volume) and re-inserting them at the center of

the container from the top.

The Drop-Fall-Mix algorithm aims to simulate this flow out of the container

through the side walls and re-insertion at the center of the container. This is done by

modifying the Drop-Fall-Shake procedure. The steps involved in this algorithm are

described below and illustrated in Fig. 5.2.

1. The steps 1−5 from the Drop-Fall-Shake algorithm are performed just as before.

2. The microstructure is divided into four equal blocks along the x direction. The

particles (completely and partially) belonging to the outer two blocks close to

the edges of the container are removed and their radii are stored separately.

3. The particles remaining in the original microstructure, in the central blocks are

now pushed towards the wall on both sides.

4. The removed particles are inserted back into the microstructure by extend-

ing the central blocks along the z direction and by generating random non-

overlapping locations for particles within these extended blocks.

5. The steps 2 − 7 of the Drop-Fall-Shake procedure are repeated again in order

to obtain a random microstructure.
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6. The steps 2 − 5 are repeated either until a desired volume fraction or until a

limit on the iterations is reached.

Fig. 5.2.: Schematic representation of Drop-Fall-Mix procedure

This algorithm was evaluated with varying number of particles and sizes of spher-

ical particles with a lognormal distribution. While this algorithm was efficient with

less than a thousand particles, the efficiency of the algorithm was limited by the effi-

ciency of the Drop procedure of the Drop-Fall-Shake algorithm for systems with more

than 1000 particles. A representative microstructure generated using the Drop-Fall-

Mix Procedure is shown in Fig. 5.3. The maximum volume fraction generated by

Drop-Fall-Mix algorithm for a system with 10, 000 particles was found to be again

60% - not significantly different from that of Drop-Fall-Shake algorithm.

5.2 Modified-Drop-Fall-Shake

The Drop-Fall-Mix algorithm simulates the dynamic process of the planetary mix-

ers by removing the particles in blocks adjoining the side walls of the container and

dropping them back in the blocks at the center. But the results of the algorithm were

found to be limited by the efficiency of the Drop step. This indicates that in order to

maximally pack the particles as in the case of planetary mixers, the algorithm needs
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Fig. 5.3.: Microstructure generated with Drop-Fall-Mix method

to be effective in allowing the particles to look for gaps efficiently. This can be facili-

tated by allowing the particles to move more rapidly along the x and y directions. In

the Drop-Fall-Shake procedure, the particle is given a random position by allowing

it to move along the x, y and −z directions with equal probability. However, with

increasing volume fractions, the gap between particles reduces and, therefore, the

probability of efficiently finding the gap reduces. Hence, the algorithm tries to gen-

erate a new feasible direction along the −z direction for a certain allowable number

of iterations and then moves on to the next particle.

In order to simulate the mixing procedure, a modification is made on the Drop-

Fall-Shake procedure. In Step 2 of Drop-Fall-Shake, instead of allowing the particle to

move along x, y and −z directions with equal probabilities, the particles are allowed to

move with higher probability along the x and y directions as shown in Fig. 5.4. The

slower drop in turn allows for the smaller particles to efficiently move around the larger

ones in the x and y directions, allowing them to occupy the gaps in the microstructure

efficiently. This modification to Drop-Fall-Shake is termed as the Modified Drop-Fall-

Shake Algorithm (MDFS). This new algorithm was able to generate microstructures

with ultra-high volume fractions of ∼ 68% with a system of 2×105 particles as shown

in Fig. 5.5.
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(a) (b)

Fig. 5.4.: Modified Drop-Fall-Shake method (a) original Drop-Fall-Shake method

(b)modification to allow higher probability to move along x and y directions

Fig. 5.5.: Microstructure generated using the modified Drop-Fall-Shake method

5.3 Modified-Drop-Fall-Shake with RVE

While the MDFS method can generate microstructures with volume fraction of

68%, there exist regions within the container where the packing is even more efficient

as shown in Fig. 5.6. These regions are denoted as representative volume elements

(RVE) in the present section. The computation of the actual volume fraction of the
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Fig. 5.6.: Presence of gaps along the edges of the microstructure

new RVE is not straight forward since particles are cut by the boundaries of the

RVE. Therefore, one-point statistical correlation was used to calculate the volume

fraction of the newly generated microstructure with the RVE by dropping random

point in the microstructure to determine the probability of the point being inside the

microstructure. The microstructure of a RVE with cut particles is shown in Fig. 5.7.

The maximum volume fraction of microstructures generated using the RVE rises to

∼ 74% for a system with 2× 105 particles

Fig. 5.7.: RVE generated by cutting particles across the edges
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5.4 Summary of Algorithms to Develop Ultrapacked Microstructures

It is clear that the use of MDFS and the RVE is efficient in packing particles

within a container. The algorithms developed in this study were capable of generating

microstructures with volume fraction of ∼ 74%, which is in line with the packing in

commercially used TIMs but is greater than that achieved in other microstructure

simulations reported in the literature. The summary of the maximum volume fraction

reached using various Random Sequential Addition based algorithms is tabulated in

Table 5.1.

Table 5.1.: Summary of Random Sequential Addition based Algorithms

Algorithm φmax φmax φmax φmax φmax

(Np ≈ 104)
(Np ≈ 2 ×

104)

(Np ≈ 5 ×

104)
(Np ≈ 105)

(Np ≈ 2 ×

105)

DFS 43% 53% 58% 61%

DFS-Mixing 40% 44% 50% 54%

MDFS 48% 58% 63% 67% 68%

MDFS-

Mixing
43% 53% 60% 64%

MDFS (RVE) 69% 70% 70% 73% 74%

Having generated ultra-packed microstructures, the next step is evaluate the ef-

fective properties of the material using the random network model. This as described

next.

5.5 Evaluation of Effective Properties of Ultrapacked Microstructures

The microstructures generated as described in Sec.5.3 were evaluated using the

Extended Random Network Model as described in Sec.3.3. In order to evaluate the
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effective properties at increasing volume fractions, five sets of microstructures with a

fixed value of volume fraction and polydispersity (characterized by the mean=1 and

standard deviation=0.7 of the lognormal distribution of particle radii) was generated

and evaluated as shown in Fig. 5.8. As an illustrative example, a system of aluminum

particles (kp = 237 W/m-K and Ep = 70GPa) in epoxy matrix material (km = 0.3

W/m-K and Em = 4GPa) was simulated using microstructures with varying volume

fractions. The values of normalized effective conductivity and effective elastic modulus

are plotted in Fig. 5.9. It can be seen that values of effective properties are in close

agreement with each other for the five microstructures.

In order to evaluate the effect of variation in polydispersity, eight sets of mi-

crostructures were generated for a fixed value of volume fraction, mean and standard

deviation of the particle distribution. The mean value of radii was fixed to be 1 and

the standard deviation was varied from 0.1 − 2.5. As shown in Fig. 5.10, there is a

slight variation in the values of effective properties for a fixed value of volume frac-

tion, particle size mean and standard deviation. This is attributed to the calculation

of standard deviation which corresponds to the particle distribution of the original

container (and not the RVE). However, the variation of the effective properties with

polydispersity is found to be a second order effect as shown in Fig 5.8 in comparison

to the effect of the volume fraction.
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(a)

(b)

Fig. 5.8.: Variation of Effective Properties (a) Effective Conductivity (b)Effective

Elastic Modulus
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(a)

(b)

Fig. 5.9.: Variation of Effective Properties with volume fraction. Five random

microstructures were generated at each volume fraction (a) Effective Conductivity

(b)Effective Elastic Modulus
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(a)

(b)

Fig. 5.10.: Variation of effective properties with polydispersity (a) effective conduc-

tivity (b)effective elastic modulus
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6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Optimization and heuristic algorithms were evaluated in order to generate mi-

crostructures with ultrapacked filler particles. It was observed that both the non-

linear programming algorithms and heuristic methods such as Drop-Fall-Shake could

reach volume fraction of around 60% considering lognormally distributed full spheres

in a box configuration. However, within a Representative Volume Element of the

simulated container, with 2×105 particles such that the spherical particles cut across

the edges, a maximum volume fraction of 74% could be reached. The Tables 4.2 and

5.1 summarize the results of Optimization Techniques and Heuristic Algorithms to

generate microstructures. The method of considering a RVE with particles cutting

across the edges was found to be the most efficient algorithm to generate ultrapacked

cubic microstructures as shown in Fig. 6.1. The Random Network Model was ex-

tended to evaluate the RVE with partially cut particles. Thus realistic simulations of

Thermal Greases were performed by generating microstructures and evaluating their

effective properties.

Fig. 6.1.: Microstructures generated with various algorithms
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6.2 Future Work

The mathematical formulation of minimizing the gap between spheres can be ex-

tended to calculating the shortest distance between ellipsoids. Using this formulation,

the optimization algorithms can be used to generate microstructures with ellipsoidal

particles. The Random Network Model can be modified in order to capture the inter-

particle interactions between ellipsoids in order to evaluate the effective properties of

Thermal Greases with ellipsoidal particles.



REFERENCES



56

REFERENCES

[1] M. Yovanovich and E. Marotta, “Thermal spreading and contact resistances,”
Heat Transfer Handbook, vol. 1, pp. 261–394, 2003.

[2] R. Prasher, “Thermal interface materials: historical perspective, status, and
future directions,” Proceedings of the IEEE, vol. 94, no. 8, pp. 1571–1586, 2006.

[3] C. Zweben, “Advances in composite materials for thermal management in elec-
tronic packaging,” Jom, vol. 50, no. 6, pp. 47–51, 1998.

[4] E. Marotta and L. Fletcher, “Thermal contact conductance of selected polymeric
materials,” Journal of Thermophysics and Heat Transfer, vol. 10, no. 2, pp. 334–
342, 1996.

[5] S. Mirmira, E. Marotta, and L. Fletcher, “Thermal contact conductance of ad-
hesives for microelectronic systems,” Journal of thermophysics and heat transfer,
vol. 11, no. 2, pp. 141–145, 1997.

[6] P. Zhou and K. E. Goodson, “Modeling and measurement of pressure de-
pendent junction-spreader thermal resistance for integrated circuits,” ASME-
PUBLICATIONS-HTD, vol. 369, pp. 51–58, 2001.

[7] S. Torquato, Random heterogeneous materials: microstructure and macroscopic
properties. Springer Science & Business Media, 2013, vol. 16.

[8] W. Yu, H. Xie, L. Yin, J. Zhao, L. Xia, and L. Chen, “Exceptionally high thermal
conductivity of thermal grease: synergistic effects of graphene and alumina,”
International Journal of Thermal Sciences, vol. 91, pp. 76–82, 2015.

[9] L. Pournin, T. M. Liebling, and A. Mocellin, “Molecular-dynamics force models
for better control of energy dissipation in numerical simulations of dense granular
media,” Physical Review E, vol. 65, no. 1, p. 011302, 2001.

[10] S. Kanuparthi, G. Subbarayan, T. Siegmund, and B. Sammakia, “An efficient
network model for determining the effective thermal conductivity of particulate
thermal interface materials,” IEEE Transactions on Components and Packaging
Technologies, vol. 31, no. 3, pp. 611–621, 2008.

[11] J. C. Maxwell, A treatise on electricity and magnetism. Clarendon press, 1881,
vol. 1.

[12] L. Rayleigh, “Lvi. on the influence of obstacles arranged in rectangular order
upon the properties of a medium,” The London, Edinburgh, and Dublin Philo-
sophical Magazine and Journal of Science, vol. 34, no. 211, pp. 481–502, 1892.



57

[13] D. R. McKenzie, R. McPhedran, and G. Derrick, “The conductivity of lattices
of spheres-ii. the body centred and face centred cubic lattices,” Proc. R. Soc.
Lond. A, vol. 362, no. 1709, pp. 211–232, 1978.

[14] D. Hasselman and L. F. Johnson, “Effective thermal conductivity of compos-
ites with interfacial thermal barrier resistance,” Journal of composite materials,
vol. 21, no. 6, pp. 508–515, 1987.

[15] D. Bruggeman, “Dielektrizitatskonstanten und leitfahigkeiten der mishkorper aus
isotropen substanzen,” Ann. Phys.(Leipzig), vol. 24, pp. 636–664, 1935.

[16] A. G. Every, Y. Tzou, D. Hasselman, and R. Raj, “The effect of particle size
on the thermal conductivity of zns/diamond composites,” Acta Metallurgica et
Materialia, vol. 40, no. 1, pp. 123–129, 1992.

[17] A. Devpura, P. E. Phelan, and R. S. Prasher, “Percolation theory applied to
the analysis of thermal interface materials in flip-chip technology,” in Thermal
and Thermomechanical Phenomena in Electronic Systems, 2000. ITHERM 2000.
The Seventh Intersociety Conference on, vol. 1. IEEE, 2000, pp. 21–28.

[18] D. Natekar, X. Zhang, and G. Subbarayan, “Constructive solid analysis: a hier-
archical, geometry-based meshless analysis procedure for integrated design and
analysis,” Computer-Aided Design, vol. 36, no. 5, pp. 473–486, 2004.

[19] X. Zhang, M. Rayasam, and G. Subbarayan, “A meshless, compositional ap-
proach to shape optimal design,” Computer methods in applied mechanics and
engineering, vol. 196, no. 17-20, pp. 2130–2146, 2007.

[20] S. Kanuparthi, M. Rayasam, G. Subbarayan, B. Sammakia, A. Gowda, and
S. Tonapi, “Hierarchical field compositions for simulations of near-percolation
thermal transport in particulate materials,” Computer Methods in Applied Me-
chanics and Engineering, vol. 198, no. 5-8, pp. 657–668, 2009.

[21] P. K. Vaitheeswaran and G. Subbarayan, “Estimation of effective thermal and
mechanical properties of particulate thermal interface materials by a random
network model,” Journal of Electronic Packaging, vol. 140, no. 2, p. 020901,
2018.

[22] G. K. Batchelor and R. O’brien, “Thermal or electrical conduction through a
granular material,” Proc. R. Soc. Lond. A, vol. 355, no. 1682, pp. 313–333, 1977.

[23] B. Dan, B. G. Sammakia, G. Subbarayan, and S. Kanuparthi, “An improved
efficient network model for determining the effective thermal conductivity of
particulate thermal interface materials,” Journal of Electronic Packaging, vol.
135, pp. 031 003–031 003–8, 2013.

[24] T. C. Hales, “Historical overview of the kepler conjecture,” in The Kepler Con-
jecture. Springer, 2011, pp. 65–82.

[25] S. Torquato, T. M. Truskett, and P. G. Debenedetti, “Is random close packing
of spheres well defined?” Physical review letters, vol. 84, no. 10, p. 2064, 2000.

[26] G. N. Vanderplaats, “Multidiscipline design optimization,” Applied Mechanics
Reviews, vol. 41, no. 6, pp. 257–262, 1988.



58

[27] S. G. Nash and J. Nocedal, “A numerical study of the limited memory bfgs
method and the truncated-newton method for large scale optimization,” SIAM
Journal on Optimization, vol. 1, no. 3, pp. 358–372, 1991.

[28] J. Nocedal and S. J. Wright, Nonlinear Equations. Springer, 2006.

[29] R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,”
The computer journal, vol. 7, no. 2, pp. 149–154, 1964.

[30] J. C. Gilbert and J. Nocedal, “Global convergence properties of conjugate gra-
dient methods for optimization,” SIAM Journal on optimization, vol. 2, no. 1,
pp. 21–42, 1992.

[31] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt, “On aug-
mented lagrangian methods with general lower-level constraints,” SIAM Journal
on Optimization, vol. 18, no. 4, pp. 1286–1309, 2007.

[32] ——, “Augmented lagrangian methods under the constant positive linear depen-
dence constraint qualification,” Mathematical Programming, vol. 111, no. 1-2, pp.
5–32, 2008.

[33] L. Smith and P. Midha, “A computer model for relating powder density to com-
position, employing simulations of dense random packings of monosized and
bimodal spherical particles,” Journal of materials processing technology, vol. 72,
no. 2, pp. 277–282, 1997.

[34] ROSS: Double Planetary Mixer, May, 2015 (accessed May, 2018),
https://www.ceramicindustry.com/articles/94720-ross-double-planetary-mixer.

[35] M. Poux, P. Fayolle, J. Bertrand, D. Bridoux, and J. Bousquet, “Powder mixing:
some practical rules applied to agitated systems,” Powder Technology, vol. 68,
no. 3, pp. 213–234, 1991.


