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 Speech quality is a demand in voice commanded systems and in telephony [1]-[5]. The 

voice communication system in real time often suffers from audible echoes. In order to cancel 

echoes, an acoustic echo cancellation system is designed and applied to increase speech quality 

both subjectively and objectively. 

 

 In this research we develop various nonlinear adaptive filters wielding the new channel 

sparsity-aware recursive least squares (RLS) algorithms using a sequential update. The 

developed nonlinear adaptive filters using the sparse sequential RLS (S-SEQ-RLS) algorithm 

apply a discard function to disregard the coefficients which are not significant or close to zero in 

the weight vector for each channel in order to reduce the computational load and improve the 

algorithm convergence rate. The channel sparsity-aware algorithm is first derived for nonlinear 

system modeling or system identification, and then modified for  application of echo 

cancellation. Simulation results demonstrate that by selecting a proper threshold value in the 

discard function, the proposed nonlinear adaptive filters using the RLS (S-SEQ-RLS) algorithm 

can achieve the similar performance as the nonlinear filters using the sequential RLS (SEQ-RLS) 

algorithm in which the channel weight vectors are sequentially updated. Furthermore, the 

proposed channel sparsity-aware RLS algorithms require a lower computational load in 

comparison with the non-sequential and non-sparsity algorithms. The  computational load for the 

sparse algorithms can further be reduced by using data-selective strategies.  
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CHAPTER 1 INTRODUCTION 

1.1 Motivations     

 Speech is the most important mode of human communication. Voice communication is 

an integral part of voice commanded systems and in telephony, hence the issue of speech quality 

is more critical. One of the difficult artifacts to eliminate in real time is the audible echo. 

Acoustic echo cancellation (AEC) is one of efficient techniques for application in 

telecommunication. The AEC applies the adaptive filter [1]–[6] to cancel a small portion of the 

received signal which is designated as the echo signal and may be leaked for transmission during 

two-party or multi-party voice communications. The echo impairment can be very annoying to 

customers. It is necessary to design an effective acoustic echo cancellation system to increase 

speech quality both subjectively and objectively. For echo cancellation application, a linear echo 

path usually is assumed so that an adaptive finite impulse response (FIR) filter can be adopted to 

model the linear echo path. However, for low cost and power efficient mobile devices, there exits 

nonlinear distortion due to low-quality and overdriven audio components such as converter, 

amplifier, loudspeaker, and microphone, the linear adaptive filter cannot perform well with 

leading to strong residual echoes, which greatly degrade communication quality. Though echo 

cancellation has been studied for several decades, some fundamental challenges are still needed 

to be addressed. One of them is the non-linearity in the acoustic echo path. Recently, the 

diagonal-structure Volterra and functional link adaptive filters [7], [8] had been introduced to 

improve the nonlinear processing capability for echo cancellation using the RLS algorithm. The 

main problem of echo cancellation is estimating and modeling non-linear echo path accurately in 

order to suppress distortions. 

 

 In order to tackle problems of nonlinear echo cancellation (NAEC), several nonlinear 

filters have been investigated [6]-[13], which include linear FIR filter with non-linear 

preprocessor, static power filter, cascade and parallel dynamic power filter, hybrid Taylor-

Volterra model and exponential functional link neural network and so on. However, these filters 

either cannot effectively model the non-linear distortion introduced by the system or are 

prohibitively intense computationally. These nonlinearities are introduced by low quality and 
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overdriven audio components (e.g., amplifiers, loudspeakers etc.). In this research we try to 

develop new nonlinear adaptive filters for nonlinear acoustic echo cancellation that is 

computationally feasible and is robust to model nonlinearity of the echo path, and to validate the 

developed nonlinear adaptive filters with suitable investigations and simulation results. 

1.2 Objectives 

 In this thesis work, one of the tasks is to design efficient nonlinear adaptive filters for 

NAEC with realizable computational complexity and robust system modeling ability. Although 

the improvement using a nonlinear filter for NAEC is validated, most of the filter coefficients 

that need to be estimated are not significant or close to zero. This sparsity in the echo path 

property can be exploited while modeling. Hence the non-significant coefficients can be ignored 

while updating filter coefficients [9]-[14]. Usually, to improve the algorithm convergence rate, 

the RLS algorithm is often used [6] at a cost of a large computation load. Exploiting the sparsity 

property, the number of coefficients which are required to model the echo path can be minimized 

and furthermore can be updated sequentially for each channel in the nonlinear filter using the 

RLS algorithm. It is well known that the RLS type algorithm [6], [20] offers faster convergence 

rate and lower mean square error over the LMS type algorithm [1], [6]-[7], [19]. But it suffers a 

high computational load. Therefore, by exploiting the sparsity property and channel selectivity, 

we intend to design nonlinear adaptive filters that use the sparse sequential RLS (S-SEQ-RLS) 

algorithm for effective NAEC. 

1.3 Echo Cancellation Problem  

 In telephony, the near end speakers echo is the time delayed version of the near end 

speakers signal transmitted to the far end speaker, which is received along with the far end 

speakers’ signal as noise. There are two major types of echo: 

 

1. Hybrid echo 

This type echo is due to different electrical connections of the telephonic system 

between the two speakers. 
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2. Acoustic echo 

The more common type of echo in a phone call between two speakers is the 

acoustic echo, which occurs due to the near end speakers’ voice getting reflected across 

the receiving far end speakers surrounding and then returning back to the near end 

speaker as unwanted noise. Figure 1.1 depicts a typical echo cancellation system. 

 




( )y n

( )x n

( )e n ( )d n

( )h n

( )y n
( ) ( )s n v n

 
 
 

Figure 1.1. Block diagram of an echo cancellation system. 
 

With reference to Figure 1.1, the following terms can be defined at any given time n: 

 

1. Far End Signal: ( )x n  is the far end signal, which becomes the echo signal when reflected 

around the acoustic environment of the near end speaker.  

2. Acoustic Echo Path: ( )H n  is the echo path of the near end speaker to the microphone at 

the near end as shown in Figure 1.1, and acts as a tapped filter, which delays the far end 

signal ( )x n  to produce the echo signal. The echo path is the unknown system to be 

estimated. 

3. Echo Signal: ( )y n  is the echo signal produced when the far end speaker’s signal goes 

through the echo path, which can be estimated as 

                                              * ( )Ty n X n W n                                                         (1.1) 

where ( )W n  is the vector of filter coefficients, and it is also designated as the echo path 

estimate. 
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4. Background Noise: ( )v n   is the background noise, in addition to the near end speakers’ 

signal, ( )s n , which gets added to the echo signal and needs to be taken into consideration 

when calculating the estimate of the echo path. 

5. Measured Signal: ( )d n  is the measured signal, which is the summation of the echo signal 

and the background noise for a single talk case. 

                                                  ( )d n y n v n                                                         

(1.2a) 

For a double talk case, the measured signal becomes 

                                             ( ) ( )d n y n s n v n                                                    (1.2b) 

6. Echo Path Estimate:  W n  is the estimate of the echo path that is calculated by the mean 

square error (MSE) filter or the adaptive filter. 

7. Estimated Signal: ( )y n , defined in Equation (1), is the estimate of echo signal obtained 

by passing the far end speaker’s signal through the estimate of the echo path. 

8. Error Signal: ( )e n  is the difference between the actual measured signal and the estimated 

echo signal. 

 

            Optimal signal estimation involves estimation of the unknown quantity or coefficient 

vector ( )W n  (in this case the echo path)  using data from other related signals of interest, namely 

input signal ( )x n and unknown systems output or echo signal ( )d n . All these type  algorithms 

work on minimizing the square of the error signal ( )e n   i.e. to minimize the difference between 

the signal estimate and the actual signal. Another important factor that influences the 

performance of the estimator is the measurement or background noise that is added to the output 

signal,  v n . 

      

           The mean squares error (MSE) estimators, such as the Wiener filter,  look at the entire 

history of the present and past samples of input data to make an ensemble estimation at the 

present instance of time.  
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           The minimum mean square MMSE estimators such as the least mean square (LMS) and 

recursive least squares (RLS), are time varying estimators, which means that at every given 

instant of time, the estimate of the unknown variable is estimated and updated based on the 

existing present and past values of input data. Such estimators are also known as recursive mean 

square estimators. 

       

            Depending on whether the estimators are ensemble estimators or recursive estimators,  

( )W n  as the estimate of ( )H n , is either predicted once based on the causal history of the data, or 

is estimated at every time  iteration by updating filter parameters. The difference in the update 

equations is what gives rise to the different types of MMSE adaptive filters, which are further 

discussed in detail in the following sections. 

1.4 Echo Cancellation Equation     

 This section describes the context and usage of the equations and various signals that are 

defined in the previous section. As shown in Figure 1.1, at any given discrete time index n, the 

acoustic echo path of the near end speaker, of length L, is given by. 

                                            0 1 2 3, , , ,.....
T

LH h h h h h                                                                                 (1.3) 

where L is the memory length. The input signal vector which then goes through the echo path or 

the far end signal vector is then given by 

                                  1 2 3 ... 1
T

X n x n x n x n x n x n L                                                         (1.4) 

The echo signal of the far end speaker can expressed as 

                                             *Ty n X n H                                                                 (1.5) 

Let v(n) be the background noise or the near end speaker’s signal accordingly for a single 

talk case (during the scenario of double talk, the combined signal of v(n) +s(n) will be the near 

end speaker’s signal [2]) The variance of the background noise is given by σv2(n). The total 

microphone signal for single talk is given by   

                                                      d n y n v n                                                         (1.6) 

The objective of the echo canceller is to estimate the echo path as  

                                                                         0 1

T

LW w w w                                                                           (1.7) 
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The estimated echo signal can then be calculated as.  

                                                         Ty n X n W                                                       (1.8) 

The error between the estimated echo and the actual echo is the residual error, given by 

                                                           e n d n y n                                                     (1.9) 

This error needs to be subject to the MMSE condition, which will be discussed in the next 

section.  

1.5 Principle of Orthogonality   

 The cost function for optimization of the MMSE estimator, J, is chosen to minimize the 

mean square error, given by 

                                                     2| |J E e n                                                             (1.10) 

where E denotes the expectation operator, and |  | refers to the magnitude. In order to 

minimize this cost function, a gradient operator  is defined on the basis of the coefficients of the 

filter. Hence, for the ith filter coefficient, iw , we define 

                                                              i
iw


 


                                                         (1.11) 

Applying the gradient operator  to the cost function J, the gradient vector i J  is 

obtained and is written as 

                                                             i
i

J
J

w


 


                                                       (1.12) 

To minimize the cost function, the  elements of the vector in Equation (1.12) must all be 

set to zero, that is, 

                                                  0 for 0,1,2,3,..i J i                                               (1.13) 

Hence, to minimize the cost function J, with regards to Equation (1.10), simplifying the 

partial derivatives results in the following equation solution [3] at any given time instant n yields 

                                             * 0i J E x n i e n                                                     (1.14) 

Note  that Equation (1.14) specifies the operating conditions required for the minimization 

of the cost function J, that is,                                 

                                                     * 0E x n i e n                                                     (1.15)  
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This is known as the principle of orthogonality, since two signals are known as orthogonal 

signals when the correlation between them is zero. Here the condition for optimal linear filtering 

is that the estimated error is orthogonal to all L input samples that are involved in the estimation 

of the echo path. 

1.6 Wiener Solution 

Expanding on Equation (1.15) for the principle of orthogonality, with a definition of 

   *
( )ex nr E x n i e n     as the cross correlation between the error signal and the input signal at 

any given time instant n and for a given filter coefficient W(n), the following can be deduced. 

Hence, the deduced equation at any given instant of n for the cross correlation now looks as 

shown below: 

                           *
( ) ( ( ) ( )) 0ex nr E x n i e n E x n i d n y n                               (1.16) 

Simplifying Equation (1.16) results in an expression given below: 

                    ( ) ( ) ( ) ( )y n X n d n X nR P                                             (1.17) 

 where ( ) ( )y n X nR is the correlation between the input signal and the estimated echo signal; 

and ( )dX nP   is the correlation between the received echo and input signal. From observing above 

equation and noting that the estimated output ( )y n  is calculated by passing the input signal ( )x n  

through the estimated echo path impulse response  W n , the following relationship can be 

obtained;                   ( ) ( )*T
XX n dX nW n R R                                               (1.18)                        

where                                           

 ( )

[ ( ) ( )] [ ( ) ( 1)] [ ( ) ( )]

[ ( 1) ( )] [ ( 1) ( 1)] [ ( 1) ( )]

[ ( ) ( )] [ ( ) ( 1)] { ( ) ( )]

XX n

E x n x n E x n x n E x n x n L

E x n x n E x n x n E x n x n L
R

E x n L x n E x n x n E x n L x n L

  
      
 
     





   



               (1.19)                        

and 

               
( )

[ ( ) ( )]

[ ( ) ( 1)]

[ ( ) ( 1)]

dX n

E d n x n

E d n x n
R

E d n x n

 
  
 
  

                              (1.20)
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Solving for ( )W n , we have                                              

                                                       
1

o XX n dX nW R R                                                        (1.21) 

Hence, it is seen from Equation (1.18) that the estimated echo path ( )W n  at any given 

instance of time n depends on the cumulative correlation matrices  XX nR  and  dX nR  until that 

instance of time n. 

1.7 Organization of Thesis 

To evaluate the performance of the proposed nonlinear adaptive filters, a series of 

simulation experiments are conducted, including nonlinear system identification and nonlinear 

AEC in single-talk and double-talk scenarios. 

 

 The structure of this paper is organized as follows. Chapter 2 proposes the new channel 

sparsity aware sequential RLS (S-SEQ-RLS) algorithm. In Chapter 3, we introduce various 

polynomial expansion filters for effective nonlinearity acoustic impulse response (AIR) 

modeling. Analysis of the sparsity and computational complexity is made in Chapter  3. Chapter 

4 presents the simulation results. Finally, conclusions are presented in Chapter 6. 
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CHAPTER 2 LEAST MEAN SQUARE ALGORITHM, AND 

SPARSE SEQUENTIAL RECURSIVE LEAST SQUARE         

ALGORITHM 

2.1 Sparse Least Mean Square (S-LMS) Algorithm 

 In Section 1.6, we have derived the optimal solution for the parameters of the adaptive 

filter. The solution leads to the minimum mean-square error for estimating the measured signal 

 d n , echo signal and background noise The optimal (Wiener) solution is given by Equation 

(1.18), where the  matrix inversion is required. A steepest descent based algorithm can be used to 

search the Wiener solution as follows: 

                                ˆ1 ( ) 2wW n W n g n W n P n R n W n                         (2.1) 

where  P n  and  R n   are the best estimate of R and P, note that 

          [ ]TR E X n X n         

(2.2a) 

                                                         [ ]P E d n X n                                                   (2.2b) 

For n=0,1,2,3,…, ˆ ( )wg n  represents an estimate of gradient vector of the objective 

function with respect to the filter coefficients. If we estimate the instantaneous gradient, then 

following results are given: 

                                       22 TJ e n d n W n X n                                                   (2.3) 

  
               

     2 2
T

T
d d n W n X ndJ

d n W n X n e n X n
dW n dW n


                   (2.4)                        

Substituting the instantaneous gradient 
dJ

dW
  into Equation (2.1), we get  

                                  1 2W n W n e n X n                                                           (2.5) 

where   is the convergence parameter controlling the speed of convergence and must be 

within the range max0 1/   , where max is the maximum eigenvalue of the autocorrelation 

matrix ( ) ( )TR E X n X n    . Equation (2.5) is referred to the least mean square (LMS) algorithm. 
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We conclude the implementation of the LMS algorithm by the following steps: 

1. Initialize 0 1 2, , ,..., Nw w w w  to arbitrary values 

2. a discard function is considered, that is  

                       ( )
0

w w
f w

w




   
 

3. Read ( )d n   and ( )x n , and perform digital filtering 

         0 1 2 ... 1Ny n w x n w x n w x n w x n N         

4. Compute the output error 

     e n d n y n    

5. Now update the coefficient using equation 

For 0,1, , 1k N   

   2k kw w e n x n k     

Vector Form:    2k kw w e n x n k    

2.2 Sparse Sequential Recursive Least Squares (S-SEQ-RLS) Algorithm    

 The recursive least squares (RLS) algorithm aims to minimize the sum of the squares of 

the difference between the desired signal and the filter output signal using the new samples of the 

incoming signal. The RLS algorithm updates filter coefficients in a recursive form at each 

iteration. The RLS algorithm is well known for its fast convergence even when the eigenvalue 

spread of the input signal correlation matrix is large. These algorithms offer excellent 

performance at the cost of larger computational complexity. However, there exists a problem of 

stability in comparison with the LMS algorithm. In this section, we will develop the sparse 

sequential-RLS(S-SEQ-RLS) algorithm [9]-[10] that aims to reduce the computation but still 

maintain the performance. Considering the channel sub filters for system modeling, the error at 

past time index is expressed as  

For 1 i n                                       

         
0

( ) ( ) ( )
M

T
k k

k

e i d i W n X i


                                                        (2.5) 

where the kth channel sub filter has its weight vector and input vector defined below: 
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                              0 1 1( ) [ ( ) ( ) ( )]
k

T
k MW n w n w n w n                                                    (2.6) 

                             ( ) [ ( ) ( 1) ( 1)]T
k kX i x i x i x i M                                                  (2.7) 

For the standard SEQ-RLS algorithm [11], the following objective function is minimized: 

                              
2

1 0

1
( ) ( ) ( ) ( )

2

n M
n i T

k k
i k

n d i W n X i  

 

   
 

                                               (2.8) 

where 0 1  .  For the sparse sequential-RLS (S-SEQ-RLS) algorithm, if a discard function is 

considered that is, 

                                                 ( )
0

w w
f w

w




   
                                                                  (2.9) 

 where   is the small number, then the objective function in is changed to 

                                           
2

1 0

1
( ) ( ) ( ( )) ( )

2

n M
n i T

k k
i k

n d i f W n X i  

 

   
 

                               (2.10) 

Taking derivative of the j-th sub filter coefficient vector  jW n   and setting the result to zero 

lead to 

                          

 

1

0,

0

( )
[ ( ) ( ) ( ( ))

( )

( ( )) ( ) ( ) ( ( ))]

( ( )) ( ) ( ) ( ( )) 0.

n
n i

j j
ij

M
T

j j k k
k k j

n
n i T

j j j j
i

n
d i X i F W n

W n

F W n X i X i f W n

F W n X i X i f W n

 







 






 





 







                                              (2.11) 

Assuming that each sub filter coefficients are time slow varying, that is, ( ) ( 1)k kW n W n    for 

k j   , the cross-correlation matrix in Equation (2.11) is derived as 

1 0,

1
1

1 0,

0,

( ) [ ( ) ( ( )) ( ) ( ( 1) ( ) ( ) ( ( 1))]

[ ( ) ( ( 1)) ( ) ( ) ( ) ( 1)] ( ) ( ( )) ( )

( ( 1)) ( ) ( ) ( ( 1)).

n M
n i T

j j j j j k k
i k k j

n M
n i T

j j j k k j j
i k k j

M
T

j j k k
k k j

P n d i F W n X i F W n X i X i F W n

d i F W n X i X i X i W n d n F W n X n

F W n X n X n f W n



 



  


 

  

 

   

    

  

 

 



                                    

                            (2.12) 
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Its recursion can be expressed below: 

                 

1

0,

( ) ( 1) ( ) ( ( )) ( )

( ( 1)) ( ) ( ) ( ( 1)).

j j j j

M
T

j j k k
k k j

P n P n d n F W n X n

F W n X n X n f W n

 

 

  

  
                                                        (2.13) 

Again, the autocorrelation matrix is expressed as 

                   

1

1

1
1

1

( ) ( ( )) ( ) ( )

( ( )) ( ) ( ) ( ( ))

( ( 1)) ( ) ( ) ( ( 1))

( ( )) ( ) ( ) ( ( )).

n
n i T

j j j j
i

n
n i T

j j j j
i

n
n i T

j j j j
i

T
j j j j

R n F W n X i X i

F W n X i X i F W n

F W n X i X i F W n

F W n X n X n F W n





 










 







  








                                            (2.14) 

Exploiting the recursion yields 

                       ( ) ( 1) ( ( )) ( ) ( ) ( ( ))T
j j j j j jR n R n F W n X n X n F W n                             (2.15) 

The Wiener solution is then given by 

                                           1( ) ( ) ( ) ( ) ( )j j j j jW n R n P n Q n P n                                                  (2.16) 

By using the inversion lemma, we obtain 

               
1

1

( 1) ( ( )) ( )
( )

1 ( ) ( ( )) ( 1) ( ( )) ( )
j j j

j T
j j j j j

Q n F W n X n
k n

X n F W n Q n F W n X n











 
                                 (2.17) 

                     1 1( ) ( 1) ( ) ( ) ( ( )) ( 1)T
j j j j j jQ n Q n k n X n F W n Q n                                          (2.18) 

Since 

                     
1

1

( ) ( 1) ( ( )) ( )

( ) ( ) ( ( )) ( 1) ( ( )) ( ),

j j j j

T
j j j j j j

k n Q n F W n X n

k n X n F W n Q n F W n X n









 

 
                                           (2.19) 

The gain vector is also expressed as 

                                    ( ) ( ) ( ( )) ( )j j j jk n Q n F W n X n                                                               (2.20) 

Substituting Equations (2.13) and (2.20) in (2.16) yields the following: 

     1,

( ) ( 1) ( )[ ( ) ( ) ( ( 1))]

( ) ( ( )) ( 1).

M
T

j j j j k
k k j

T
j j j

W n W n k n d n X n f W n

X n F W n W n

 

    

 


                                       (2.21) 

In fact, for time slow varying coefficients, we assume 
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                          ( ( )) ( 1) ( ( 1)) ( 1)j j j jF W n W n F W n W n                                                       (2.22) 

We obtain 

              
0

( ) ( 1) ( )[ ( ) ( ) ( ( 1))]
M

T
j j j j k

k

W n W n k n d n X n f W n


                                         (2.23) 

Define the innovation as 

                                  
0

( ) ( ) ( ) ( ( 1))
M

T
k k

k

n d n X n f W n


                                                        (2.24) 

The update equations become 

                                    ( ) ( 1) ( ) ( )j j jW n W n k n n                                                               (2.25) 

Then the sparse sequential RLS (S-SEQ-RLS) algorithm is summarized as 

For 0,1, ,j L   

    
1

1

( 1) ( ( 1)) ( )
( )

1 ( ) ( ( 1)) ( 1) ( ( 1)) ( )
j j j

j T
j j j j j

Q n F W n X n
k n

X n F W n Q n F W n X n








 


   
                                   (2.26) 

               1 1( ) ( 1) ( ) ( ) ( ( 1)) ( 1)T
j j j j j jQ n Q n k n X n F W n Q n                                  (2.27) 

                                  
0

( ) ( ) ( ) ( ( 1))
M

T
k k

k

n d n X n f W n


                                                        (2.28) 

                                    ( ) ( 1) ( ) ( ).j j jW n W n k n n                                                               (2.29) 

Note that ( ( ))jF W n   denotes the Jacobian matrix of ( ( ))jf W n . It is a diagonal matrix with 

elements being either ones or zeros. 
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CHAPTER 3 FUNCTION EXPANSION ADAPTIVE FILTERS 

 In order to model a nonlinear echo path due to signal companding and/or due to over 

driven amplifiers near to saturation, we apply the sparse LMS and sparse SEQ-RLS algorithm to 

the functional expansion filters. 

3.1  Third-Order Volterra Filter 

 Let ( )x n
 
and ( )y n  be input and output signals respectively. The second-order Volterra 

series expansion [7],[11], [13] with a memory length of 1N   in terms of the diagonal channel 

based structure is given by 

                                
2

0 0
1

( ) ( ( )) ( ) ( ( )) ( )
N

T T
k k

k

y n f W n X n f W n X n


                                           (3.1) 

where 2N  is the number of significant second-order channels, 0 ( )W n  and 0 ( )X n  are the 

linear filter coefficient vector and linear input while ( )kW n
 
and ( )kX n

 
for  20 k N   are the 

kth second-order Volterra diagonal channels. By selecting 2 1N N  , we can achieve the 

computational load reduction. The third-order Volterra filter according to the diagonal channel 

structure can be developed similarly, that is, 

      
2 32

2

0 0
1 1

( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( )
N NN

T T T
k k k k

k k N

y n f W n X n f W n X n f W n X n


  

                               (3.2) 

where ( )kW n  and ( )kX n  for 2 2 3N k N N    designate the kth third-order Volterra 

channel coefficient vector and the corresponding input vector.   All input vectors for the third-

order Volterra filter are listed in Table 3.1.1. 
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Table 3.1.1. Channel input vectors in the third-order Volterra filter 

Input	
vector	

Elements	

0 ( )X n 	 ( ), ( 1), , ( )x n x n x n N  	

1( )X n 	

2 ( )X n 	

…	

2
( )NX n 	

2 2 2( ), ( 1), , ( )x n x n x n N  	

( ) ( 1), ( 1) ( 2),..., ( 1) ( )x n x n x n x n x n N x n N      	
…	

2 2( ) ( 1), ( 1) ( ),x n x n N x n x n N     	

2 1( )NX n 	

2 2 ( )NX n 	
…	
	

2 31 ( )N PX n 

	

2 32 ( )N PX n 

 
	
…	
	

2 31 2 ( )N PX n 

	

2 32 2 ( )N PX n 

 
	
…	
	

2 3
( )N NX n

	

3 3 3( ), ( 1), , ( )x n x n x n N  	
2 2 2( ) ( 1), ( 1) ( 2), , ( 1) ( )x n x n x n x n x n N x n N     

	
…	

2 2
3 3( ) ( ), ( 1) ( 1),x n x n P x n x n P    

	
	

2 2 2( ) ( 1), ( 1) ( 2), , ( 1) ( )x n x n x n x n x n N x n N     

			
	
…			
	

2 2
3 3( ) ( ), ( 1) ( 1),x n x n P x n x n P    

	
	
	

	
( ) ( 1) ( 2), ( 1) ( 2) ( 3),

, ( 2) ( 1) ( )

x n x n x n x n x n x n

x x N x n N x n N

    
    

	

…	
	

3 3 3 3( ) ( 1) ( ), ( 1) ( ) ( 1),...x n x n P x n P x n x n P x n P      
	

 

Note that 3 3 3 3 3 31 2 ( 1) / 2 ( 1)( 2) / 2N P P P P P        is the number of the third-order 

Volterra diagonal channels and 3P  is the maximum delay in the first signal element in the 

invariant third-order diagonal channel as shown in Table 3.1.1. Since  3 ( 1)( 3) / 2N N N N   

(total number of third-order diagonal channels), a significant reduction of the computational load 

can be achieved.  The signal vectors for time-invariant channels are listed in Table 3.1.1. 

3.2   Functional Link Artificial Neural Network (FLANN) Filter 

 Although the Volterra filter has a property of being universal approximation for causal, 

time invariant, finite-memory, continuous nonlinear systems, but modeling the echo path will 

require a large number of filter coefficients.  

An alternative choice is the functional link artificial neural network (FLANN) adaptive 

filter [8]. The relationship between the input and output for an FLANN filter with an order of P  

is given by 
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                   0 0
1

( ) ( ( )) ( ) ( ( )) ( )
M

T T
k k

k

y n f W n X n f W n X n


                                                  (3.3) 

where 1 2 1M P    and the channel input vectors are listed in Table 3.2.1. 

 

Table 3.2.1. Channel input vectors in the FLANN filter ( 2P  ) 

Input		
				vector	 Elements	

0 ( )X n 	 ( ), ( 1), , ( )x n x n x n N  	

1( )X n

2 ( )X n

3( )X n

4 ( )X n 	

sin[( ( )],sin[ ( 1)],...,sin[ ( )]x n x n x n N  
	

cos[ ( )],cos[ ( 1)],..., cos[ ( )]x n x n x n N   
	

sin[2 ( ))],sin[2 ( 1)],...,sin[2 ( )]x n x n x n N   
	

cos[2 ( )],cos[2 ( 1)],..., cos[2 ( )]x n x n x n N    	

3.3   Even Mirror Function Nonlinear (EMFN) Filter 

           The FLANN filter is based on the expansion of the trigonometric basis functions. This 

expansion does not satisfy Stone-Weierstrass theorem [15]. Thus, the FLANN filter cannot 

perfectly model the nonlinear functions with cross product terms, that is, multiplication terms 

with different time shift units, because the expansion of FLANN basis function does not contain 

cross product terms. In order to improve echo path modeling, an even-mirror Fourier nonlinear 

(EMFN) filter recently reported in [15] can be applied  to approximate the input–output 

relationship of the nonlinear echo path. A third-order EMFN Filter system using the least mean 

square (LMS) and SEQ-RLS algorithms has been developed for NAEC. Table 3.3.1 lists the 

EMFN second- and third- order input vectors. 
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Table 3.3.1. Channel input vectors in the EMFN filter 

Input	
vector	

Elements

0 ( )X n 	 ( ), ( 1), ( 2),..., ( )x n x n x n x n N  

1( )X n 	

	
	
	

2 ( )X n
	

	
…	
	

2
( )NX n 	

     cos ( ) ,cos ( 1) ,...,cos ( )x n x n x n N     

	
	

   
   

sin ( ) / 2 sin ( 1) / 2 ,...,

sin ( 1) / 2 sin ( ) / 2

x n x n

x n N x n N

 

 



  
	

…	
	

   2sin ( ) / 2 sin ( 1) / 2 ,...x n x n N    	

2 1( )NX n 	

	

2 2 ( )NX n 	

	
…	
	
	

2 31 ( )N PX n  	

	
	

2 32 ( )N PX n  	

	
	
	

2 31 2 ( )N PX n  	

	
	
	

2 32 2 ( )N PX n  	

	
	
	
	

2 3
( )N NX n 	

     sin 3 ( ) / 2 ,sin 3 ( 1) / 2 ,...,sin 3 ( ) / 2x n x n x n N    	

 

   
 

cos ( ) cos ( 1) / 2 ,

...,cos[ ( 1)]sin ( ) / 2

x n x n

x n N x n N

 

 



  
	

…	
	

   
   

3

3

cos ( ) cos ( ) / 2 ,

cos ( 1) cos ( 1) / 2 ,...

x n x n P

x n x n P

 

 



  
	

	

   
 

sin ( ) / 2 cos ( 1) ,

...,sin[ ( 1) / 2]cos ( )

x n x n

x n N x n N

 

 



  
	

…	

   
   

3

3

sin ( ) / 2 cos ( ) ,

sin ( 1) / 2 cos ( 1) ...

x n x n P

x n x n P

 

 



  
 

	

     
     

sin ( ) / 2 sin ( 1) / 2 sin ( 2) / 2 ,

sin ( 1) / 2 sin ( 2) / 2 sin ( 3) / 2 ,...

x n x n x n

x n x n x n

  

  

 

  
	

…	
	
 

     
     

3 3

3 3

sin ( ) / 2 sin ( 1) / 2 sin ( ) / 2 ,

sin ( 1) / 2 sin ( ) / 2 sin ( 1) / 2 ,...

x n x n P x n P

x n x n P x n P
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CHAPTER 4 COMPUTATIONAL COMPLEXITY 

4.1 Sparse Least Mean Square (LMS) Algorithm  

 Let us denote js  as the sparsity of channel j  at time n , where the sparsity is the ratio of 

the number of non-zero elements over the total number of elements in the diagonal channel. We 

can determine the multiplications and additions per iteration for the general S-LMS algorithm. 

The results are listed in Table 4.1.1 and Table 4.1.2, respectively. To simplify our comparisons, 

we omit the computation load for generating the first element of input signal in each diagonal 

channel. Therefore, both Volterra and EMNF algorithms have the same computational 

complexity. 

 

Table 4.1.1. Multiplications in the sparse LMS Algorithm 

Items	 Multiplications	

 y n 	 0

M

j j
j

s N



 e n 	 None	

 jW n 	
0

M

j
j

N



Total	
0

( 1)
M

j j
j

s N



Total	for	

1js  	
0

2
M

j
j

N



 

 

Table 4.1.2. Additions in the sparse LMS Algorithm 

Items	 Additions	

 y n 	 0

( 1)
M

j j
j

s N




 e n 	 1 	

 jW n 	
0

M

j
j

N



Total	
0

[( 1) 1]
M

j j
j

s N


  	

Total	for	
1js  	

0

(2 1)
M

j
j

N
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Note that the sparsity changes at the different channel and iteration. To simplify our 

estimation by assuming 1js   and applying results in Tables 4.1 and 4.2, we achieve the number 

of multiplications per iteration for the third-order Volterra and EMFN filters as 

 

               

 

   

2

3 3

1

3 3

1, 2 2, 2

Number of multiplications 3[2( 1) ] 2 1

2 2 1 ( 1) 2 1 .

N

j

P P

j P j P

N N j

N j j N j



   

 
     

 
             



 
                                 (4.1) 

To calculate the number of multiplications using the standard LMS algorithm (see Table 4.1.1.), 

the required total number of elements can be determined by 

                            

 

   

2

3 3

/
1

3 3

1, 2 2, 2

3( 1) 1

2 1 ( 1) 1 .

N

T Voterra EMFN
j

P P

j P j P

N N N j

N j j N j




   

    

      



 
                        (4.2) 

For the FLANN filter, we yield the load for multiplications as 

                   Number of multications=( 1)[2( 1) ]M N                                                             (4.3) 

where 2M P  is the number of channels and P  is the order of the FLANN filter. Given the 

total number of elements in the FLANN filter as 

                                          ( 1)( 1).T FLANNN M N                                                     (4.4) 

Figure 4.1.1 shows the comparison of multiplications per iteration versus the filter memory 

length with 1js  . 
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Figure 4.1. Number of multiplications per iteration versus the filter memory length  

with 1js  ; for the Volterra filter (VT): 2 2N  and 3 3P  ;  

for the FLAAN filter: 2P  ; for the EMFNfilter: 2 2N   and 3 3P  . 

 

Using Table 4.1.2, the required additions for the Volterra/EMFN and FLANN filters can be 

determined, respectively, and listed below. 

 

 

     
2

3 3

3 3

1 1, 2 2, 2

Number of additions

3[2( ) ] 2 2 2 ( 1) 2 .
N P P

j j P j P

N N j N j j N j
    



                 
              (4.5)                        

For the FLANN filter, we yield the load for multiplications as 

           Number of additions=( 1)(2 )M N                                                          (4.6) 

The number of additions by using the standard LMS algorithm in Volterra, EMFN, and FLANN 

filters can be determined using the results in Table 4.1.2, Equations (4.2), and (4.4). Figure 4.2 

displays the comparisons. 
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Figure 4.2 Number of additions per iteration versus the filter memory length 

 with 1js  ; for the Volterra filter (VT): 2 2N  and 3 3P  ;  

for the FLAAN filter: 2P  ; for the EMFN filter: 2 2N   and 3 3P  . 

 

From Figures 4.1 and 4.2, we see that the computational complexity using the significant 

diagonal channels in LMS algorithms versus the memory length are very close. The further 

reduction of computation can be achieved when the sparsity factor is taken into account. 

4. 2 Sparse Sequential RLS Algorithm (S-SEQ-RLS) 

 By denoting js  as the sparsity of channel j  at time n , similarly, we can determine the 

multiplications and additions per iteration for the S-SEQ-RLS algorithm. The results are listed in 

Table 4.2.1 and Table 4.2.2, respectively. To simplify our comparisons, we omit the computation 

load for generating the first element of input signal in each diagonal channel. Therefore, both 

Volterra and EMNF algorithms have the same computational complexity. 
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Table 4.2.1. Multiplications in the S-SEG-RLS algorithm 

Items	 Multiplications	

 jk n 	 2

0

( ) ( ) 2
M

j j j j j
j

s N N s N


  	

 jQ n 	 2

0

( ) ( ) 1
M

j j j j
j

s N N N


  	

 y n 	 0

M

j j
j

s N



 n 	 None	

 jW n 	
0

M

j
j

N



Total	 2 2 2

0

( 1) ( 1) 3
M

j j j j
j

s N s N


   
Total	for	

1js  	
2

0

4 2 3
M

j j
j

N N


 

Standard	
RLS	

24 2 3T TN N  ,	
0

M

T j
j

N N


 

 

Table 4.2.2. Additions in the S-SEG-RLS algorithm 

Items	 Additions	

 jk n 	
0

( 1) ( 1) 1
M

j j j j j
j

s N N s N


    	

 jQ n 	 2

0

( 1)
M

j j j j
j

s N N N


  	

 y n 	 0

( 1)
M

j j
j

s N




 n 	 1 	

 jW n 	
0

M

j
j

N



Total	
2

0

(2 1) (2 1)
M

j j j j
j

s N s N


   	

Total	for	
1js  	

2

0

3
M

j j
j

N N




Standard	
RLS	

23 T TN N ,	
0

M

T j
j

N N


 
 

Note that the sparsity changes at the different channel and iteration. To simplify our 

estimation by assuming 1js   and applying results in Table 4.2.1, we achieve the number of 

multiplications per iteration for the third-order Volterra and EMFN filters as 



33 
 

   

   

   

2

3

3

22

1

3
2

1, 2

3
2

2, 2

Number of multiplications

3[4( 1) 2( 1) 3] 4 1 2 1 3

2 4 1 2 1 3

( 1) 4 1 2 1 3 .

N

j

P

j P

P

j P

N N N j N j

N j N j

j N j N j



 

 



 
           

 
 

       
 

         







                                                  (4.7) 

To calculate the number of multiplications using the standard RLS algorithm (see Table 4.2.1.), 

the required total number of elements can be determined 

      
2

3 3

3 3

/
1 1, 2 2, 2

3( 1) 1 2 1 ( 1) 1 .
N P P

T Voterra EMFN
j j P j P

N N N j N j j N j
    

                      (4.8)                  

For the FLANN filter, we yield the load for multiplications as 

       2Number of multications=( 1)[4( 1) 2( 1) 3]M N N                                                      (4.9) 

where 2M P  is the number of channels and P  is the order of the FLANN filter. Given the 

total number of elements in the FLANN filter as 

                                                ( 1)( 1)T FLANNN M N                                                            (4.10) 

We can determine the complexity of multiplications via Table 4.2.1. Figure 4.1 depicts 

the multiplication complexity for each nonlinear chancellor versus the filter memory length of 

( 1)N  .  
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Figure  4.3. Number of multiplications per iteration versus the filter memory length  

with 1js  ; for the Volterra filter (VT): 2 2N  and 3 3P  ;  

for the FLAAN filter: 2P  ;for the EMFN filter: 2 2N   and 3 3P  . 

 

Using Table 4.2.2, the required additions for the Volterra/EMFN, and FLANN filters can be 

determined, respectively, and listed below.  

 

   

   

   

   

2

3

3

22

1

3
2

1, 2

3
2

2, 2

Number of additions(Volterra/EMFN)

3[3( 1) ( 1)] 3 1 1

2 3 1 1

( 1) 3 1 1

N

j

P

j P

P

j P

N N N j N j

N j N j

j N j N j



 

 



 
         

 
 

      
 

        







                                      (4.11) 

 

       2Number of additions (FLANN) ( 1)[3( 1) ( 1)].M N N                                             (4.12) 
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The number of additions by using the standard RLS algorithm in Volterra, EMFN, and 

FLANN filters can be determined using the result in Table 4.2.2, Equations (4.11), and (4.12). 

Figure 4.4 displays their comparisons. 

 

Figure 4.4. Number of multiplications per iteration versus the filter memory length  

with 1js  ; for the Volterra filter (VT): 2 2N  and 3 3P  ; 

 for the FLAAN filter: 2P  ; for the EMFN filter: 2 2N   and 3 3P  . 

 

From Figures 4.3 and 4.4, we see that using the significant diagonal channels and SEQ-RLS 

algorithm can significantly reduce the computational load when the filter memory filter length 

increases. Clearly, the further reduction of computation is achieved when the sparsity factor is 

taken into account. 
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CHAPTER 5 SIMULATION AND RESULTS  

5.1 System Identification 

 To validate the developed algorithms, we first perform system identification for a non-

linear system given in Equations (5.1) and  (5.2), and compare the performances with the 

Volterra, FLANN and EMFN adaptive filters using the sparse LMS and SEQ-RLS algorithms 

respectively. Next, we further investigate the effect of sparsity.  

To begin with, we assume that the echo path is presented by the following system: 

       

  0.3 ( 1) 0.5 ( 3) 0.4 cos[ ( )] cos[ ( 3)]

sin[ ( 1) / 2]sin[ ( 2) / 2] sin[3 ( ) / 2]

0.9sin[3 ( 2) / 2] 0.5cos[ ( )]sin[ ( 1) / 2]

0.6sin[ ( 1) / 2]cos[ ( 3)]

sin[ ( 1) / 2]sin[ ( 2) / 2]si

d n x n x n x n x n

x n x n x n

x n x n x n

x n x n

x n x n

 

  

  

 

 

      

   

   

  

   n[ ( 3) / 2] ( )x n v n  

                            (5.1) 

and 

        

  2 2

3 3 2

2

0.3 ( 1) 0.5 ( 3) 0.4 ( ) ( 3)

( 1) ( 2) ( ) 0.9 ( 2) 0.5 ( ) ( 1)

0.6 ( 1) ( 3) ( 1) ( 2) ( 3) ( )

d n x n x n x n x n

x n x n x n x n x n x n

x n x n x n x n x n v n

      

       

       

                                        (5.2) 

where ( )x n  is the uniformly distributed white noise and ( )v n  is the random noise with a 

Gaussian distribution. The signal to noise power ratio (SNR) of 30 dB is used for all our 

simulations. Each adaptive filter with a memory size of 10 is adopted. 

We obtain the normalized mean square error (NMSE) for performance comparisons. The NMSE 

is ensemble over 100 runs versus the number of iterations defined below: 

                                         
2

10 2

{ ( )}
10 log

d

E e n
NMSE


 

  
 

                                                           (5.3) 

where 2
d  is the power of signal ( )d n .  

For all the simulations, we use the following parameters in the algorithms: 
 

RLS algorithm: 1 0.1/( 1)N    ;  LMS algorithm: 0.01  ; Volterra filter: 2 2N   and 

3 3P  ; FLANN filter: 2P ;  EMFN filter: 2 2N   and 3 3P  . 
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Figures 5.1 and 5.2 show the plots of NMSEs for system in Equation (5.1) and system in 

Equation (5.2), respectively. It can be seen that the EMFN filter with a sequential RLS algorithm 

and LMS algorithm are the best performing systems for Equation (5.1) while the Volterra filter 

with a sequential RLS algorithm and volterra LMS algorithm perform the best for identifying 

system in Equation (5.2). The EMFN filter  performs the best when the system is the even-mirror 

Fourier expanded memory system while the Volterra filter works the best for the polynomial 

expanded memory system. 

 

 

Figure 5.1. NMSE performance comparisons of system identification 
for Equation (5.1) with LMS and Sequential-RLS algorithms. 
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Figure 5.2. NMSE performance comparisons of system identification 
for Equation (5.2) with LMS and Sequential-RLS algorithms. 

 

5.2 Effect of Sparsity 

 The effect of sparsity in these two systems is investigated by plotting the NMSE for 

various values of  (threshold value for the discard function) ranging from 0.00001 to 0.1. 

Figures 5.3-5.6 depict the plots for the sparse-SEQ-RLS and sparse-LMS algorithms. It is 

evident that the sparse-SEQ-RLS and sparse-LMS algorithms have large performance 

degradation when the threshold of   is larger than 0.001 in the discard function. The EMFN 

filter is more sensitive to the threshold value since the system model is the EMFN type. 
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Figure 5.3 NMSEs versus   (threshold in the discard function) 
for the RLS based algorithms for Equation (5.1). 

 

 

Figure 5.4 NMSEs versus   (threshold in the discard function) 
for the LMS based algorithms for Equation (5.1). 

 

A similar trend can be seen in the NMSE performance comparison as shown in Figure 

5.4. Since the system model is Volterra type, the Volterra filter is more sensitive to the threshold 

value. 
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Figure 5.5 NMSEs versus  (threshold in the discard function) 
for the RLS based algorithms for Equation (5.2). 

 

 
Figure 5.6 NMSEs versus   (threshold in the discard function) 

for the LMS based algorithms for Equation (5.2). 
 

5.3 Nonlinear Echo Cancellation 

 For nonlinear echo cancellation, we adopt the far end and near end speech segments with 

a sampling rate of 8000 Hz shown in Figure 5.7. 
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Figure 5.7. Speech signal used in the simulation (Fs=8000 Hz). 

 

The nonlinear echo path consists of the nonlinear function and linear acoustic impulse response 

(AIR) echo path shown in Figure 5.8, which is a 150th order polynomial model extracted from 

the AIR multichannel impulse response database [21], [22]. 

 

Figure 5.8. Echo cancellation path (FIR model). 
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For performance evaluation, the ERLE, ensemble over 100 runs versus the number of 

iterations defined in Equation (5.4) is used: 

                                       
2

10 2

{ ( )}
10 log

{ ( )}

E d n
ERLE

E e n

 
  

 
                                                              (5.4) 

Note that ( )d n  is the echo to be cancelled while ( ) ( ) ( )e n d n y n   is the residual signal from 

the nonlinear echo cancellation. 

5.3.1 Single Talk Simulations for Memoryless Nonlinear System 

 The memoryless nonlinearity is introduced before the linear echo path model, which is a 

piecewise nonlinear system defined below: 

                   2

2 /(3 )

( ) ( ) 3 (2 / ) ) / 3 2

( ) 2 1

x x

f x sign x x x

sign x x

 

  



 


    
  

                                                 (5.5) 

where   is the controlling factor and is set to 0.4. The system input and output relation is shown 

in  Figure 5.9. 

 

Figure 5.9. Input and output of the nonlinear system without memory. 
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In our single talk scenario, a SNR of 30 dB is adopted at the near end. The performance of 

ERLEs are obtained and displayed in Figures 5.10 and 5.11 for the S-LMS and S-SEQ-RLS 

algorithms, respectively. 

 

Figure 5.10. ERLE performance comparisons of single talk scenario  
with S-LMS algorithm and memoryless system. 
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Figure 5.11. ERLE performance comparisons of single talk scenario  
with S-SEQ-RLS algorithm and memoryless system. 

 

From Figures 5.10 and 5.11, it is evident that the third-order Volterra filter using the S-LMS 

gives a best performance when compared with that of the third-order Volterra filter using the S-

SEQ-RLS algorithm performance. This might be due to the fact that the S-SEQ-RLS algorithm is 

a sub-optimal and is also due to the large size of Q  matrix. The other two filter systems using 

both the algorithms give a similar performance. The S-SEQ-RLS algorithm provides the 

expected results for a memoryless nonlinearity, i.e., the FLANN giving the best performance 

followed by the EMNF and third-order VT filters. 

 

5.3.2 Single Talk Simulations for Nonlinear System with Memory 

 The memory nonlinearity is introduced before the linear echo path model, which is a 

piecewise nonlinear system with the cross product term up to the third-order components defined 

below. 
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 The system input and output relation is  shown in Figure 5.12. 

 

 

Figure 5.12. Input and output of the nonlinear system with memory. 

 

In our single talk scenario, a SNR of 30 dB is adopted at the near end. The performance 

of ERLEs are obtained as displayed in Figures 5.13 and 5.14 for the S-LMS and S-SEQ-RLS 

algorithms, respectively. 
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Figure 5.13. ERLE performance comparisons of single talk scenario  
with the S-LMS algorithm and Memory system. 

 

Figure 5.14. ERLE performance comparisons of single talk scenario 
 with the S-SEQ-RLS algorithm and memory system 

 

As shown in Figures 5.13 and 5.14, it is evident that the third-order volterra filter using 

the S-LMS algorithm gives a much better  performance when compared with that of third-order 
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Volterra filter using the S-SEQ-RLS algorithm. The S-SEQ-RLS algorithm gives a better 

performances from the EMFN and FLANN filter system over the Volterra filter. Also, the S-

LMS algorithm provides the expected result for a memory nonlinearity, i.e. third-order Volttera 

filter offers the best performance followed by EMNF and FLANNfilters. 

5.3.3 Double Talk Simulations for Memoryless Nonlinear System 

 In this simulation, we repeat the previous experiments by using the same echo path in the 

double talk situation. The parameter settings are the same as those in the single talk case. The 

residue signal, that is, ( ) ( )e n s n , which is the difference between echo cancelled signal and 

near end signal is examined. Figure 5.15 depicts the far end, near end and observed signals 

(echo+near end signal) for the nonlinear ACE without memory. 

 
Figure 5.15. Far end, near end and observed signals  

for the nonlinear ACE without memory. 

 

According to the plotted residual signals, the method which gives the minimum amplitude is the 

best performing NAEC system for the double talk scenario. 
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Figure 5.16. Residual signal of memoryless system with S-LMS algorithm. 

 
From the residual signal plot in Figure5.16. It can be noted that the EMFN filter system has the 

lowest amplitude when compared with the other two filter systems. Hence, the EMFN adaptive 

filter works best for the double talk scenario for memoryless nonlinear system using the S-LMS 

algorithm. 
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Figure 5.17. Residual signal of memoryless system with the S-SEQ-RLS algorithm. 

 
From the residual signal plot as shown in Figure 5.17. We see that the EMFN and third-order 

Volterra filter systems have the small amplitude. Clearly, the EMFN adaptive filter works best 

for the double talk scenario for the memoryless nonlinear system using the S-SEQ_RLS 

algorithm. 

5.3.4 Double Talk Simulations for Memory Nonlinear System 

 In this simulation, we repeat the previous experiments by using the same echo path in the 

double talk situation. The parameter settings are the same as those in the single talk. The residue 

signals ( ( ) ( )e n s n ) are plotted and investigated. Figure 5.18 depicts the far end, near end and 

observed signals (echo+near end signal) for the nonlinear ACE with memory. 
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Figure 5.18. Far end, near end and observed signals for the nonlinear ACE with memory 

 
 

 
Figure 5.19. Residual signal of memory system with the S-LMS algorithm. 
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From the residual signal plot in Figure 5.19. We observe that the EMFN filter system has the 

lowest amplitude when compared with the other two filter systems. The same conclusion can be 

drawn as for the single talk case for the memory nonlinear system using the S-LMS algorithm. 

 

 
Figure 5.20. Residual signal of memory system with the S-SEQ-RLS algorithm. 

 
From the residual signal plot in Figure 5.20. It can be seen that the EMFN and third-order 

Volterra filter systems have small residue amplitude. Furthermore, the EMFN adaptive filter 

works best for double talk scenario for the memory nonlinear system using the S-LMS 

algorithm. 
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CHAPTER 6 CONCLUSION AND FUTURE WORK 

In this thesis, the significance and problem of echo cancellation are introduced in Chapter 

1 and the general Wiener solution is described. In Chapter 2, the sparse-LMS and sparse 

sequenctail -RLS algorithms have been developed. In chapter 3, the Volterra, FLAAN and 

EMFN adaptive filter structures are introduced and corresponding algorithms are developed by 

applying the sparse LMS algorithm and sparse sequenctial RLS algorithm. The computation 

complexity for each nonlinear filter is derived. Their computational loads are compared. In 

chapter 5, the simulations are performed for the single talk and double scenarios and the all the  

performances are validated. It is concluded that the EMFN adaptive filter offers the performance 

by either using the sparse LMS algorithm or sparse sequential RLS algorithm. But Volterra filter 

gives close performance in comparison with the EMFN filter by using the sparse LMS algorithm.  

Future work could involve developing a convex combination of adaptive filters for system 

identification and eventually apply it to for nonlinear acoustic echo.  
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