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ABSTRACT

Lin, Jun. M.S.E.C.E., Purdue University, December 2018. Radar Characteristics
Study for the Development of Surrogate Roadside Objects. Major Professor: Stanley
Y.P. Chien.

Driving safety is a very important topic in vehicle development. One of the biggest

threat of driving safety is road departure. Many vehicle active safety technologies

have been developed to warn and mitigate road departure in recent years. In order to

evaluate the performance of road departure warning and mitigation technologies, the

standard testing environment need to be developed. The testing environment shall

be standardized to provide consistent and repeatable features in various locations

worldwide and in various seasons. The testing environment should also be safe to the

vehicle under test in case the safety features do not function well. Therefore, soft,

durable and reusable surrogates of roadside objects need to be used. Meanwhile, all

surrogates should have the same representative characteristics of real roadside objects

to different automotive sensors (e.g. radar, LIDAR and camera). This thesis describes

the study on identifying the radar characteristics of common roadside objects, metal

guardrail, grass, and concrete divider, and the development of the required radar

characteristics of surrogate objects. The whole process is divided into two steps. The

first step is to find the proper methods to measure the radar properties of those three

roadside objects. The measurement result of each roadside object will be used as

the requirement for making its surrogate. The second step is to create the material

for developing the surrogate of each roadside object. In the experimental results

demonstrate that all three surrogates satisfy their radar characteristics requirements.
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1. INTRODUCTION

1.1 Background

Safety is one of the most important topics throughout the history of car develop-

ment. Many people are killed in car accidents each year. According to the Fatality

Analysis Reporting System (FARS) [1], there were more than 37,000 fatal crashes each

year in the United States before 2009. This number goes down a little bit after 2009

but still is around 30,000 per year. Government, colleges and automotive companies

are spending lots of time and money to develop new technologies to keep improving

car safety. Autonomous Emergency Braking (AEB) was introduced in 2009 [2]. It

automatically stops the vehicle at some emergency situations when the driver does

not apply to brake. Since the year 2000, Lane Keep Assist System (LKAS) [3], Lane

Departure Warning System (LDWS) [4] are quickly developed. They warn the driver

when the car moves out of the lane. These systems require the road to have clear lane

marking. However, many roads in suburban of USA do not have clear lane marking

or even do not have lane marking at all. Therefore, a new technology, called Road

Departure Warning System (RDWS) is being developed [5]. RDWS helps a vehicle

to keep running on the road by detecting road edges. While these technologies are

being developed, there emerges a need to develop a standard way to test these new

technologies.

1.2 Motivation

Test the effectiveness of new vehicle technologies is essential for technology de-

velopment. Some companies use software simulation to test their new technologies.

However, software simulation can only test the system to a certain extent. Since the
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simulated environment is not equal to real environment testing, some potential prob-

lem may not be revealed. Some companies directly test their vehicle on the real road.

Although testing results are reliable, the scenarios may not be repeatable and the

test itself creates potential safety hazards. Therefore, creating a controllable testing

environment is necessary. Actually, the Euro New Car Assessment Program (Euro

NCAP) has worked on car safety performance assessment since 1997 [6]. Since the

RDW technology is new, there is not a standard testing environment and methodology

defined anywhere in the world yet.

In a standard controllable road-departure testing environment, the testing environ-

ment should be representative of the real road and roadside objects. However, some

roadside objects, such as grass, change their appearance to vehicle sensors throughout

the year. Since the color, density and height of grass commonly change in different

seasons and different locations. Testing in different site and time of the year causes

the testing results hard to compare. In this case, representative surrogate roadside

objects are needed as a standard for RDW testing anywhere in the country. Addi-

tionally, the vehicle testing environment should be safe to the vehicle and driver. It

means that the vehicle under test (VUT) will not be damaged and the driver will

not be injured when a test fails. Therefore, many real roadside objects such as metal

guardrail, concrete divider are not suitable for RDW testing. One approach is to

create surrogates of these roadside objects and use them on the test track for RDW

testing. These surrogates should have the same properties as real roadside objects as

seen by commonly used automotive radar, LIDAR, and camera. Surrogates should

also be light weight, soft, and durable to prevent the damage of VUT and itself in

failed tests.

1.3 Structure of the Thesis

The rest of this thesis are planned as follows:

• Chapter 2 reviews radar theories.
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• Chapter 3 introduces the preparatory work of radar measurement.

• Chapter 4 gives the details of measurement methods of roadside objects.

• Chapter 5 focuses on the generation and verification of the surrogate objects.

• Chapter 6 is the conclusion of the whole thesis.



4

2. REVIEW OF THEORY

2.1 Review of Radar

The basic principle of Radar is simple [7]. Radar generates electromagnetic (EM)

waves [8]. EM waves travel forward at the speed of light until they hit an object.

Depend on an objects property, part of the waves are absorbed by the object; some of

the waves travel through the object, and rest of the waves are reflected back. Based

on the difference between the transmitted waves and the reflected waves, Radar can

determine the distance between the Radar and the object, the moving speed of the

object, the property (such as shape, material) of the object, etc.

There are many different types of Radar [9]. Based on the frequency, there are

L-band Radar, S-band Radar, C-band Radar, X-band Radar, etc. Based on the

waveform, there are Frequency Shift Key (FSK) Radar, Continuous Wave (CW)

Radar, Frequency Modulated Continuous Wave (FMCW) Radar, etc. Based on the

applications, there are Tracking Radar, Weather Radar, Automotive Radar, etc.

This research focus on Automotive Radar [10]. Typically, the Automotive Radar

usually uses two frequency bands, one is 24GHz and the other is 77GHz. 24GHz

Automotive Radar is a Short Range Radar (SRR), it is mostly used for side looking

applications. Its measurement range is around 20m [11]. 77GHz Automotive Radar is

a Long Range Radar so it is mostly used as forward-looking Radar. Its measurement

range could reach 150m [12].

2.2 Frequency Modulated Continuous Wave (FMCW)

As mentioned before, there are many types of Radar waveform, such as CW, FSK,

FMCW, etc. CW Radar [13] can easily measure targets moving speed, but cannot
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tell the distance between Radar and object. FSK Radar [14] is good at measuring

moving objects but does not work well for stationary objects. Typically, Automotive

Radar chooses Frequency Modulated Continuous Wave (FMCW) as the waveform. It

can measure both moving and stationary objects. Moreover, FMCW Radar has very

high range resolution.

For FMCW Radar [15], the frequency of the transmitted signal changes period-

ically over time. In other words, time is marked by frequency. By knowing the

frequency change of received echo signal, the system can calculate the time difference

between transmitted and received signals. Equation 2.1 shows the calculation of the

distance between the Radar and object according to the time change. Equation 2.2

shows the calculation of the distance between the radar and object according to the

frequency change.

R =
C ∗ ∆t

2
(2.1)

Where R is the distance between Radar and object. C is light speed (3∗ 108m/s).

∆t is delay time between transmitting and receiving. Since ∆t equals to ∆f/(df/dt),

following formula can also be used to calculate the distance.

R =
C ∗ ∆f

2 ∗ (df/dt)
(2.2)

Where f is a measured frequency difference between transmitting and receiving

signals, and df/dt is frequency shift per unit of time.

2.3 Polarization Consideration

It is necessary to consider the polarization of radar wave in Radar measurement

since polarization will affect the measurement result [16]. The Radar wave is an

Electromagnetic (EM) wave, which consists of an electric field and a magnetic field.

Two fields are perpendicular to each other. The direction of polarization of the

wave is determined by the electric field. There are two basic polarization directions.

One is vertical polarization; the other is horizontal polarization. Based on these two
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polarization, any other degrees polarization can be calculated. Therefore, normally

Radar measurement only needs to consider these two kinds of polarization.

For vertical radar polarization, the antenna filament is perpendicular to the ground

(Fig. 2.1). For horizontal radar polarization, the antenna filament is in parallel with

the ground. Different polarization measurements will get the same result when the

target object is symmetric about the origin, such as a sphere.

Fig. 2.1. Radar Vertical Polarization (specific to TASIs antenna).

2.4 Radar Property of Objects

In general, an object having higher electrical conductivity will get stronger Radar

response than the same shaped object that has lower electrical conductivity. The

shape of the object also affects the Radar response. For example, an object with

cone shape has higher Radar response than an object that just has a flat surface.

Moreover, the Radar response is affected by the smoothness of the objects surface

as well. Usually, if the Radar center beam is perpendicular to the surface, then

the smoother surface gets higher Radar response than the rough surface since rough

surface will let some of the waves reflect to other directions and will not be received by

the antenna. However, if the Radar center beam is not perpendicular to the surface,
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then the smoother surface gets lower Radar response than the rough surface since

most of the waves that shoot on a smooth surface will not reflect back.

2.5 Radar Cross Section (RCS)

Radar Cross Section (RCS) shows the ability of a target to reflect radar energy [17].

The unit of RCS is decibel square meter (dBsm). RCS is related to the Radar

frequency and the radar-viewing angle. It is also affected by the shape and material

of objects. When the material is the same, the larger sized object will have a higher

RCS. When the size is the same, the object made of higher conductive material will

have a higher RCS value. In addition, (if an object is not flat and does not have

uniform curvature,) measuring the object from different angles will get different RCS

values unless the object shows the same shape when viewing from different angles,

such as a sphere. The theoretical formula to calculate RCS is:

Pr =
PtGtGrλ

2σ

(4π)3R4
(2.3)

Where Pr (watts) is the power received by Radar, Pt (watts) is transmitted power,

Gt (dimensionless) is the gain of transmitting antenna, Gr (dimensionless) is gain

of receiving antenna, R (meters) is the distance between Radar and the surface of

object that is aimed by Radar, (meters) is Radars wavelength, and (meters squared)

is RCS. Based on Equation 2.3, RCS is affected by Radar wavelength. However,

most of Automotive Radar use FMCW waveform whose frequency (wavelength) is

periodically changed. In this case, center frequency (wavelength) is used to calculate

the RCS. For instance, if the frequency of FMCW is changed between 24GHz and

26GHz (2GHz bandwidth), then 25GHz is used to calculate the RCS.

For practical RCS measurement, the formula can be converted to

σtarget =
P target
r

P reference
r

σreference (2.4)

In order to use this formula, one reference object is required, and the ideal RCS of

that reference object can be calculated. Then by knowing Pr of the target and Pr of
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the reference object, RCS of the target object can be quickly obtained. In addition,

if Equation 2.4 is used in dB scaling, then the equation will become as follows:

σtarget(dBsm) = 10 ∗ log10(
P target
r (W )

P reference
r (W )

∗ σreference(m2)) (2.5)

σtarget(dBsm) = P target
r (dB) − P reference

r (dB) + σreference(dBsm) (2.6)

2.6 Radar Reflectivity

Reflectivity is a material property of the object [18]. To be more precise, re-

flectivity refers to the electrical conductivity of the object. Since radar signal is

electromagnetic (EM) wave, the higher conductive material has higher reflectivity.

When resistivity is as low as in metals, the resistivity differences of different metals

are too small to be detected by 24GHz and 77GHz automotive radar. Therefore,

Radar cannot distinguish between different metals. In other words, when using radar

to measure different metals, the power strengths of responses of different metal are

not distinguishable. The reflectivity of metal is defined as 0 dB. The power response

that gets from the flat and smooth metal plate is usually used as a reference of reflec-

tivity measurement. The Reflectivity measurement will be used when the object has

infinite sized flat surface. Ground, wall, etc. can be considered having infinite flat-

sized surface practically for reflectivity measurements. Moreover, when doing Radar

reflectivity, the Radar center beam should be perpendicular to the surface (Fig. 2.2).

The equation for calculating Radar reflectivity is similar to equation 2.6. The main

difference is their units. The unit of RCS is dBsm, but the unit of Radar reflectivity

is dB. The equation of Radar reflectivity is shown below:

σtarget(dB) = P target
r (dB) − P reference

r (dB) + σreference(dB) (2.7)

Where σtarget(dB) is the Radar reflectivity of the target, P target
r (dB) is the power in-

tensity of the target, P reference
r (dB) is power intensity of reference, and σreference(dB)
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is Radr reflectivity of reference. Additionally, since the metal plate is used as the

reference and the reflectivity of metal plate is 0dB, equation 2.7 can be written as:

σtarget(dB) = P target
r (dB) − P reference

r (dB) (2.8)

Fig. 2.2. Radar reflectivity measurement

2.7 Far Field and Near Field RCS Measurement

RCS relates to the distance between Radar and target object. Based on the dis-

tance, RCS measurement is divided into two types. One is near field measurement;

the other one is far-field measurement [19]. The field distribution changes as the

distance changes in near field range. In far-field range, the field distribution is almost

consistent. Therefore, RCS measurement result changes as distance change in near

field range, but the RCS keeps the same as the distance changes in far field range.

In this case, far-field RCS measurement is preferred. Just point out that current
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technology can predict far field RCS measurement result from near filed RCS mea-

surement result [20]. The boundary distance, R, between near field and far filed can

be calculated by using Fraunhofer distance [21]:

R =
2 ∗D2

λ
(2.9)

Where D is the maximum linear dimension of an antenna, and λ is the frequency of

Radar. For example, Fig. 2.3 shows that the maximum linear dimension of antenna-1

for a 24GHz Radar is about 3.5cm, and the maximum linear dimension of antenna-2

for a 77GHz Radar is about 1.5cm. Based on the Fraunhofer distance, the far field

distance is about 0.19m for antenna-1; and about 0.12m for antenna-2.

Fig. 2.3. The maximum dimension of antenna-1 used for 24GHz Radar
(left) and antenna-2 for 77GHz Radar (right)

2.8 Summary

This research focuses on both 24GHz and 77GHz Automotive Radar. FMCW

waveform will be used for these two types of Radar. Radar reflectivity measure-

ment and far filed RCS measurement will be applied for target objects. For RCS

measurement, horizontal and vertical polarization are both considered.
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3. PREPARATORY WORK OF RADAR MEASUREMENT

3.1 Introduction

This chapter provides the detailed information of 24GHz and 77GHz Radar that

were used in measurements and explains how to set up Radar parameters on its soft-

ware interface. At the end of this chapter, two kinds of calibration will be introduced.

One is RCS calibration. The other one is reflectivity calibration.

3.2 24GHz Radar

The 24GHz Radar we used is a Software-Defined Radar (SDR) (shown in Fig.

3.1). The model of this Radar is SDR-RF 2400AD. Low power consumption and high

performance are the key advantages of this module. The bandwidth of this radar

is 2 GHz. It can support three operating modes: FMCW (Frequency Modulated

Continuous Wave), FSK (Frequency-shift keying), and CW (Continuous Wave).

Two high gain antennas (transmitter and receiver) are connected to this radar.

The model of these two horn antennas is VT220SGAH20+K2.92K. The antenna gain

is 22 dB when Radar is operated at 24-26 GHz. The beam width of these antennas

is 18-degrees. The high gain and narrow beam width antenna make the radar focus

easily on the target and reduce background influence.

Fig. 3.1. Top view (left) and side view (right) of 24GHz Radar
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3.3 77GHz Radar

As shown in Fig. 3.2, 77GHz Radar has two components. One is SDR-RF 2400AD,

which is the 24GHz Radar kit. The other one is an up/down converter. Table. 3.1

shows the specifications of this up/down converter. The 24GHz Radar kit generates

24-26 GHz Radar signal and sends the signal to the up/down converter. The up/down

converter converts that signal to 76-78 GHz Radar signal.

Fig. 3.2. Two components of 77GHz Radar (left), side view of
up/down converter (right)

Table 3.1.
77GHz p-converter specifications

Specifications

RF Frequency 76 to 78 GHz

LO Frequency 52 GHz, Internal

Tx RF Output Power +20 dBm

IF Frequency 24 to 26 GHz

Rx Conversion Loss 8 dB

Tx IF Input Power +16 dBm

Low Side Band Rejection 40 dB

DC Bias +12V (420 mA), +8V (990 mA)
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3.4 Parameters Setting on GUI of SDR-RF 2400AD

SDR-RF 2400AD can be configured by the software of a PC that is connected

to the SDR-RF 2400AD through a USB interface. The set up uses the Graphical

user interface. As shown in Fig. 3.3, FMCW is selected as the operating mode. As

mentioned in Chapter 2, FSK can only detect moving objects, and CW cannot mea-

sure the distance between Radar and object. FMCW does not have those drawbacks

and can provide high detection accuracy. The bandwidth can determine the range

resolution. The wider bandwidth, the higher range resolution. The 2GHz bandwidth

is selected. It is the maximum bandwidth shows on this interface. In this case, the

frequency of Radar wave changes from 24 GHz to 26 GHz within one sweep. Sweep

time and Samples per Sweep determine how many data are generated within recording

time. In our case, sweep time is set to be 1ms and using 512 for Samples per Sweep.

Therefore, Radar generates 512 sample data each millisecond. The upper limit of

this setting is 1024 sample data each millisecond. However, too many data will slow

down data processing speed, and sometimes cause the device not work to properly.

Moreover, 512 sample data each millisecond already provides very high measurement

accuracy.

Fig. 3.3. Parameter setting
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3.5 Calibration of RCS Measurement

There are two main reasons for doing RCS calibration. First, RCS calibration is

used to check if the Radar works correctly or not. It needs to check if the difference

between the measured RCS value of a reference object matches its ideal RCS within

1 dBsm or not. Second, RCS calibration is used to get reference data (P reference
r as

shown in equation 2.6). The reference data is used to convert raw target data to RCS

value (as in equation 2.6). Since the raw target data collected by a Radar always

relate to the Radar type, antenna pattern, distance, etc. The same object measured

by different Radar will get different raw data. However, after calibration, their RCS

value will be the same.

The key point of RCS calibration is to measure some reference objects with known

theoretical RCS values. These reference objects are known as reflectors. There are

many types of reflectors, such as a trihedral reflector, sphere reflector, cylinder reflec-

tor, etc.

In this research, trihedral corner reflector (Fig. 3.4 left image) and sphere reflector

(Fig. 3.4 right image) were used to do the calibration. The trihedral corner reflector

(model: SAJ-060-S1) is made of aluminum. The outer dimension (the blue line in

Fig. 3.1.5-2 left image) is: 6” x 6” x 6” (6” = 15.24 cm); and the inner dimension

(the red line in Fig. 3.1.5-2 left image) is: 4.21” x 4.21” x 4.21” (4.21” = 10.7 cm).

The theoretical RCS value of trihedral corner reflector (dBsm) is:

σ = 10 ∗ log10(
4πL4

3λ2
) (3.1)

Where L is the inner dimension value (meters), and λ is the wavelength (meters). By

calculation, the RCS value of this trihedral corner reflector is 5.8 dBsm for 24GHz, and

15.6 dBsm for 77GHz. The sphere reflector (item 710-S) is also made of aluminum.

The diameter is 10” (10” = 25.4 cm). The theoretical RCS value of sphere reflector

(dBsm) is:

σ = 10 ∗ log10(πr
2) (3.2)
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Where r is the radius of the sphere (meters). The RCS value of the sphere does not

relate to wavelength. By calculation, the RCS value of this sphere reflector is -12.95

dBsm for any frequency wave.

Fig. 3.4. Trihedral corner reflector (left) and sphere reflector (right)

RCS calibration for Radar checking purpose includes five steps (24GHz Radar is

selected in following measurement. 77GHz Radar RCS calibration follows exactly the

same process).

1. Measure the trihedral corner reflector:

As shown in Fig. 3.5, the trihedral corner reflector is placed on a tripod. The

geometric center of trihedral corner reflector to the ground is about 55cm. There

is no special requirement for the height. However, the height should be reason-

able. If the height is too low, Radar will receive many noises from the ground.

If the height is too high (e.g. Higher than normal people’s height), then it is not

easy to do the measurement. After fixing the trihedral corner reflector, Radar

is placed 3m away from the trihedral corner. The distance between Radar and

target object should not be too short. Otherwise, the measurement result will

be affected by antenna coupling. However, long distance is also not a good

choice, since Radar signal becomes weaker as distance increases. The center of

the antenna to the ground should also be the same height as the height of the

center of the reflector. Moreover, the antennas central beam should aim to the
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geometric center of a trihedral corner reflector. The absorb foams are placed

between the middle of the Radar and the trihedral corner reflector to reduce

the ground reflection. Use PC software interface to record 2 seconds data. This

data is called P Trihedral
r . The trihedral corner reflector measurement is done.

Fig. 3.5. Trihedral corner reflector measurement

2. Measure the background of trihedral corner reflector:

Slowly remove the trihedral corner reflector from the tripod. Make sure the

position of the tripod is not shifted. Record 2s data. This data is called

P TrihedralBackground
r .

3. Measure the sphere reflector:

This step is similar to step one. The only difference is that sphere is mounted

on a foam cup since the tripod is not able to hold sphere (Fig. 3.6). The

center of the sphere to the ground is still about 55cm, and the distance between

Radar and sphere maintains at 3 m. Record 2 seconds data. This data is called

P Sphere
r .
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Fig. 3.6. Sphere reflector measurement

4. Measure the background of sphere reflector:

Similar to step 2, slowly remove the sphere reflector from the tripod. Make sure

any of other equipment’s position is not shifted. Record 2-seconds data. Give

a name to this data: P TrihedralBackground
r .

5. Data analysis:

Fig. 3.7 shows the 2-seconds data plot of the trihedral corner reflector measure-

ment. The x-axis is the time (ns). The y-axis of this figure is the magnitude (dB)

of the response signal. Trihedral corner reflectors background measurement is

shown in the blue plot. The red plot is the total signal response minus the

background measurement response (the background effect has been eliminated

so that the pure signal response of trihedral corner reflector can be found). The

maximum peak which pointed by the horizontal yellow arrow in this figure is

generated by antenna coupling. Antenna coupling happens when two antennas

(transmitter and receiver) are placed too close. However, the antenna coupling

will not affect measurement result, as long as the target object is not too close

to antennas so we can tell which signal is due to antenna coupling and which

signal is from the object measured. Normally, it is good enough if the distance

between antenna and target is greater than 1m.
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The peak response of the red plot pointed by the vertical yellow arrow is the

signal response of trihedral corner reflector. The peak responses of both the

red plot and blue plot pointed by the horizontal yellow arrow are the antenna

coupling effect. In this measurement, P Trihedral
r is 57.9 dB. Fig. 3.8 is the plot

of the measurement of the sphere reflector (red line) and its background (blue

line). Based on this figure, P Sphere
r is 39.8 dB. Knowing the theoretical RCS

value of sphere reflector (P idealsphere
r = −12.95dB), the measured RCS value of

trihedral corner reflector can be calculated using equation 2. 6. In this case,

the measured RCS value of trihedral corner reflector is: (57.9dB - 39.8dB) +

(-13.0dBsm) = 5.1 dBsm.

The ideal RCS value of this trihedral corner reflector is 5.8 dBsm. Since the

difference between the ideal RCS value and measured RCS value is less than 1

dBsm, the Radar is considered working property. The collected data of both

trihedral corner reflector and sphere reflector can be used to calibrate other

objects.

Fig. 3.7. Reflected signal of the trihedral reflector and its background
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Fig. 3.8. Reflected Signal of the sphere reflector and its background

If RCS calibration is just for getting reference data, then doing step 1, 2 and 5 is

enough.

3.6 Calibration of Reflectivity Measurement

Reflectivity Calibration cannot check if Radar works well or not. Therefore, the

meaning of calibration here is just that using reference data (received power intensity

from reference) to calibrate the raw data of the target (received power intensity from

the target). Equation 2.8 in chapter 2 can be used to calculate Radar reflectivity.

However, the received power intensity from a reference metal plate should be measured

first. This reference data will be used to calculate the reflectivity of the surface of other

targets. The Radar reflectivity calibration has five steps (the reflectivity measurement

of the 24GHz Radar is described below. The reflectivity measurement of the 77GHz

Radar follows exactly the same process.
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1. Set the reference object:

Put a big metal plate on the big flat surface to be measured. For example, to

measure the radar reflectivity of the concrete divider, the reference metal plate

is placed on the surface of the concrete divider (Fig. 3.9).

Fig. 3.9. Radar reflectivity calibration

2. Set radar height:

Mount the radar on the tripod. Set the radar to the same height as the height

of the center of the metal plate.

3. Adjust the distance between the Radar and the metal plate:

Adjust the distance between the radar and the reference metal plate in following

steps until Radar can only see the metal plate. Put an absorber foam on the

right side of the metal plate. Slowly move the absorber from right to left until

the Radar peak response dropping down. Mark there as the right boundary

of Radar viewing area. Using the same way to find the left boundary, top

boundary, bottom boundary. This four boundary will define the Radar view

area of Radar viewing area. If the Radar viewing area is only on a metal plate,

then the distance is correct. If the distance is too long, the radar viewing area

contains the area outside of the metal plate so the data will be incorrect. If the

distance is too short, the target signal will be too close to the coupling signal,

so it will be difficult or impossible to distinguish these two signals.
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4. Adjust the Radar aiming angle:

Following steps describe how to set the Radar beam perpendicular to the surface

of the metal plate. This is essential to ensure that the radar can receive the

maximum power response. Firstly, rotate the Radar left and right horizontally

to find the maximum power response, and stop the radar at that horizontal

aiming angle. Then rotate radar up and down to find the maximum power

response and keep the radar vertical aiming angle there. Record radar response

data of the metal plate for 2 seconds.

5. Plot the recorded data:

In the plot (Fig. 3.10), the highest peak is antenna coupling. The second-

highest peak is the signal response of the metal plate. In this measurement, the

signal response of the metal plate (P
metalplate
r ) is 93.7 dB. Now, equation 2.8 can

be used to calculate other material’s Radar reference.

Fig. 3.10. Signal response of the metal plate
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3.7 Summary

A Software-Defined Radar (SDR) module, SDR-RF 2400AD, is used as a 24GHz

Radar. It can connect to a 77GHz up/down converter to form a 77GHz Radar. No

matter SDR-RF 2400AD is used as 24GHz Radar or 77GHz Radar, on the software

interface, set parameters as following: bandwidth = 2GHz, operating mode = FMCW,

sweep time = 1ms, and samples per sweep = 512. Using RCS calibration method to

check if the Radar works properly before doing real measurements. Additionally, RCS

calibration can provide reference data that is needed to determine the RCS value of

an object. Reflectivity calibration gets the reference data that is needed to find the

radar reflectivity of an object.
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4. RADAR CHARACTERISTICS OF ROADSIDE

OBJECTS

4.1 Introduction

This Chapter describes the discovery of the 24GHz and 77GHz Radar property

of common road edge and road boundary objects. The Transportation Active Safety

Institute (TASI) at Indiana University-Purdue University Indianapolis (IUPUI) has

done a pre-study of the roadside boundaries and objects. 24,762 Google street view

images that randomly sampled in the U.S. were used in the study. According to the

study result, the top five roadside objects are grass (54.65%), curb (16.02%), metal

guardrail (8.7%), concrete divider (4.17%) and traffic cone (0.28%). This research will

focus on measuring Radar property of grass, metal guardrail and concrete divider.

Note that curb and concrete divider are made of the same material. Therefore, Radar

property of curb can be interpreted from the Radar property of concrete divider.

Moreover, it is hard to measure curb directly, since curb is fixed at very low position

(about 6 inches against the ground). The environment (ground, vegetation, etc.)

around the curb will strongly affect curbs measurement result.

The Radar property can be described in two parameters. One is radar reflectivity,

and the other is RCS. Reflectivity is a property of the object’s material but will be

affected by the surface condition. Typically, if the surface smoothness level is closed

to the radar wavelength, then it will not affect the radar reflectivity value much.

The other parameter of radar property is RCS. RCS describes not only the object’s

material property but also the shape property of the object. In another word, the

result of RCS measurement is an aggregative indicator. When an object has an

irregular shape and occupies a fraction of the field of view of the radar, reflectivity is

hard to measure, and RCS is the parameter to use.
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The radar reflectivity of the metal guardrail is already known since it is made

of galvanized steel. As mentioned in Chapter 2, the reflectivity of all metals can be

approximated as 0 dB. Since metal guardrail occupies a fraction of the field of view

of the radar, the radar property should also be described by its RCS. Since metal

guardrails shape is complex, it needs to be measured from different possible radar

viewing angles. Therefore, RCS of the metal guardrail is a function of radar viewing

angle.

The grass is a very special object. It varies in type, height, shape, color, etc.,

in different locations and seasons. It is difficult to measure and describe the Radar

reflectivity of grassland since each grass blade is small and different grass blades

are in different orientations and may be different colors. The color of the grass

usually implies the water content of the grass and water content affects the electrical

conductivity that in turn affect radar reflectivity. Since the grassland is not uniform

in shape and reflectivity, it is also difficult to describe grassland in RCS. In this study,

we proposed to use the mean RCS of numerous grassland locations to describe the

overall Radar property of grassland.

The concrete divider will focus on the reflectivity measurement. As mentioned

before, reflectivity measurement requires target object has big flat surface. Moreover,

the smoothness level of the surface should be close to Radars wavelength level. The

concrete divider can perfectly satisfy these requirements. In addition, RCS measure-

ment is not necessary for the concrete divider. The key reason is that the shape of

the concrete divider is very simple. The majority part of the concrete divider is just a

big flat surface. In this case, the shape property is not important for the concrete di-

vider. Therefore, the result of reflectivity measurement is enough to describe concrete

dividers Radar property.

The method for finding the radar characteristics of metal guardrail, concrete di-

vider, and grass are described in following subsections.
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4.2 Metal Guardrail RCS Measurement

The purpose of this task is to define the 24GHz and 77GHz radar characteristics

of metal guardrail based on forward-looking measurement and side-looking measure-

ment. The Metal guardrail consists of three parts: the horizontal W-beam, the I-beam

posts, and spacers between the W-beam and I-beam. The spacers are behind the W-

beam and mostly made of plastics or wood, and their RCS are considerably lower

than the metal parts. Therefore, the effect of spacers in the radar characteristics of

the metal guardrail is negligible and do not need to be considered.

Since the shape of the metal guardrail is standard all over the US, the age of the

metal guardrail is a potential factor that could affect the RCS of the metal guardrail.

Therefore, two guardrails (Fig. 4.1) of quite different ages (3 months old and over 20

years old) were used to find the RCS of the metal guardrail.

Fig. 4.1. Old (left) and new (right) metal guardrail

During vehicle motion, the radar can see the W-beam and I-beam from various

angles. For further description, the viewing angles are defined as follows:

• Forward-looking: as Fig. 4.2 shown, Radar looks forward. Therefore, Radar

beam and the extension direction of metal guardrail form an angle. This angle

is defined as forwarding angle. When Radar beam is parallel with a metal
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guardrail, the forwarding angle is 0-degree. When Radar beam is perpendicular

with a metal guardrail, the forwarding angle is 90-degree.

Fig. 4.2. Forward-looking measurement

• Side-looking: as the blue arrow is shown in Fig. 4.3, the 0-degree of side-looking

angle is defined when the Radar beam is perpendicular to the front surface of

the metal guardrail. When Radar beam. Similarly, 90-degree of side-looking

angle means Radar beam is perpendicular to the top surface of metal guardrail

(orange arrow).

Fig. 4.3. Side-looking measurement
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4.2.1 W-beam Forward-Looking Measurement

Measurement Method

1. Do the RCS calibration (Chapter 3) to check if Radar works property or not.

2. Save the data of signal response of trihedral corner reflector. It will be used to

calibrate the signal response of W-beam.

3. Place W-beam horizontally on two supporting stands (Fig. 4.4 left image) at

55cm above the ground. Set the radar 55cm above the ground and 3m away from

the geometric center of the W-beam. Aim the Radar center beam perpendicular

to W-beam (defined as 90-degree) and record data for 2 seconds.

4. Rotate W-beam counterclockwise about the red dash line. Each time rotate 5

degrees (right image of Fig. 4.4 shows the W-beams placement after 6 of 5 degree

or 30-degree rotations from 90-degree reference). The original plan is rotating

18 times (change measurement angle from 90-degree to 0-degree). However,

the response signal cannot be detected after 9 rotations (from 90-degree to 45-

degree). Therefore, the measurement has to stop at 45-degree. The measured

RCS results are shown in Table. 4.1.2.1.2-1. and Fig. 4.1.2.1.2-1.

Fig. 4.4. W-beam forward-looking measurement
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Measurement Result

Table 4.1.
W-beam forward-looking measurement RCS results

Degree RCS (dBsm)

90 7.1392

85 8.4361

80 6.4926

75 2.6698

70 -0.20219

65 -5.1326

60 -8.0857

55 -11.1592

50 -14.5538

45 -15.9037

Fig. 4.5. W-beam forward-looking measurement RCS result plot
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Result Discussion

Fig. 4.5 shows that the RCS value drops down quickly as the measurement angle

deviates further away from 90-degree. The key reason leads to this phenomenon is

that Radar can only see the area, which is perpendicular to the Radar beams. As

shown in Fig. 4.6, if the W-beam is not perpendicular to the radar center beam

(signal 1), then signal 1 (center beam) will be reflected to the right side and will not

be returned back to the radar. In this case, signal 2 (side beam) is perpendicular to

the W-beam, so signal 2 will be reflected back to the radar. Therefore, in this case,

radar is looking at position B instead of position A. Note that the center beam of

Radar is much stronger than the side beam. Therefore, the 90-degree measurement

result is stronger than other degrees measurement result, and the measurement result

keeps decreasing as forwarding angle decreasing. Moreover, if the antenna beam width

is very narrow, for example, the radar beam cannot reach points between A and B,

then the guardrail cannot be detected by the radar. As shown in Fig. 4.7, during the

Fig. 4.6. Area of W-beam looked by radar

rotation of the W-beam about the red dash line, the radar center beam does not keep

reaching the middle area of the metal guardrail! At position 1 (90-degree), Radar

beam reaches the middle area. At position 2, the radar beam reaches a small area

on the left side of the middle area. At position 3, the radar beam reaches a small

area on the right side of the middle area. The angular bisectors of angle ACB, ACB,
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ACB are perpendicular to the metal guardrail! In this case, antenna beam width

and beam pattern will directly affect the measurement result. Therefore, RCS of W-

beam measured at horizontally varying angles cannot be used to describe W-beams

property! RCS of W-beam measured at a horizontally fixed angle (especially at 90

degrees) may be used to describe W-beams property!

Fig. 4.7. W-beam at different positions

4.2.2 W-beam Side-Looking Measurement

Measurement Method

1. Put the Radar on a tripod (Fig. 4.8 shows the vertical polarization (left) and

horizontal polarization (right) measurement of a 24GHz Radar. Fig. 4.9 shows

the vertical polarization (left) and horizontal polarization (right) measurement

of a 77GHz Radar). The radar is 55 cm above the ground.

2. Do the RCS calibration to check if Radar works property. Choose 3m as the

distance between Radar and reflector (Chapter 3).

3. Record the trihedral corner reflectors power response, which will be used to

calibrate W-beams power response.
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Fig. 4.8. Vertical polarization (left) and horizontal polarization (right)
measurement at 24GHz Radar

Fig. 4.9. Vertical polarization (left) and horizontal polarization (right)
measurement at 77GHz Radar

4. After aiming angle calibration, replace the trihedral reflector by a W-beam and

a rotating table. Let the W-beam stand in the middle of the rotating table.

Use a level to ensure the W-beam be perpendicular to the ground.

5. Start the rotator, and adjust the speed, so that the W-beam can rotate at least

90 degrees within the 30s.

6. Start recording the data of W-beams signal response from 0-degree (Figure 4.10

left image) faces to Radar to 90-degree faces to Radar (Figure 4.10 right image).

Click record button about 2s earlier, so that can guarantee 0-degree data to be

recorded.)



32

Fig. 4.10. W-beam at 0-degree (left) and 90-degree (right)

7. Plot the recorded raw data and calculate the RCS value of the W-beam for

each angle (0 to 90 degrees). Figure 4.11 is the raw data color map of W-beams

vertical polarization measurement at a 24GHz Radar. The x-axis is the number

of Radar scan. It has linear relationship with recording time (e.g. x=8000 is

corresponding to 8000/500 = 16s). Note that this plot does not show full 30s

data. The plot after x=9000 is not plotted since the rest of the data is just

repeating the previous data. The y-axis is the distance (1.5 to 5 meters) from

the radar to the measuring object. The data from 0 to 1.5 meters is not plotted

since the data in that range is more related to antenna coupling. The dark red

in the figure means the signal response is very strong. The lighter color means

the weaker signal response (Dark blue is the background color. It means signal

response is close to zero). In addition, since the target (W-beam) is rotating

over time in a constant speed, angle and time has a linear relationship. There-

fore, the x-axis (scan times) also has a linear relationship with the angle. In

another word, this figure actually shows how the signal response change at a

different angle of W-beam. In order to convert x-axis from scan times to angle,

the user has to help MATLAB program to figure out where the 0-degree and

90-degree are. First, the 0-degree measurement is at 2-second (x=1000) (the

straight thin black line has pointed there). There are three pieces of evidence

to prove it. First, the recording started right before the 0-degree facing to the
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Fig. 4.11. Color map of W-beam rotation data

radar. Therefore, the 0-degree position should appear at an early time. Sec-

ond, W-beam is perfectly symmetric. Therefore, the power response before the

0-degree and after the 0-degree should be symmetric as well. This figure shows

that signal response from x=0 to x=1000 (0s to 2s) is the same as the signal

response form x=1000 to x=2000 (2s to 4s). Lastly, at 0-degree, the middle

flat surface of W-beam directly faces to Radar. In another word, the radar will

receive a strong power response at this position, and the figure shows there is

a local maximum power response (dark red) at x=1000. Next, the 90-degree

is at x=8000 (16s) (pointed by the straight thick black line). The reason is

that the signal response almost disappeared after 16- second. It is noticed that

radar will not see the front side of W-beam after 90-degree. In another word,

after 90-degree, part of the backside of W-beam faces to radar (Fig. 4.12). In

addition, when W-beam rotates over 90-degree, most of the radar wave will be

reflected to the left side, and will not be received by the radar. This is why the

signal response suddenly disappears after 90-degree (16-second).
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Fig. 4.12. W-beam at around 100-degree

With the knowledge of P reference
r (power response from trihedral corner reflec-

tor), σreference (RCS of trihedral corner reflector), and P target
r (Power response

from W-beam at each angle), the RCS plot of W-beam can be calculated using

calibration equation 2.6 (Fig. 4.13). The x-axis is the angle (degree). The

y-axis is RCS value (dBsm). The W-beam RCS measurement at is done.

Fig. 4.13. RCS plot of a W-beam at various angles
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Measurement Result

Fig. 4.14. 24GHz radar vertical polarization RCS (left) and horizontal
polarization RCS (right) of a W-beam

Fig. 4.15. 77GHz radar vertical polarization RCS (left) and horizontal
polarization RCS (right) of a W-beam

Result Discussion

1. Effect of W-beam Age

Fig. 4.16 shows how W-beams RCS changes from 0-degree to 90-degree. The

left plot is measured by using a very old W-beam at least 20 years old. The

right plot is measured by using a brand new W-beam.
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Fig. 4.16. Old (left) and new (right) W-beams RCS plots

By comparing these two results, they are almost the same. At 0-degree, both

of their RCS are around 5dBsm. Between 0 to 50 degrees, both of them show

unstable RCS response. From 50 to 90 degree, the shape and value of two plots

are highly matched, especially their maximum response appear at the same

angle (52-degree), and the values are so close (the old one is about 10 dBsm,

the new one is about 11 dBsm). Therefore, the conclusion is that the age of

W-beam does not affect W-beams RCS (as long as it is not rusted).

2. Maximum RCS Response

The maximum RCS appeared is at around 52-degrees. It is because the W-beam

is a better corner reflector at 52-degree (Fig. 4.17).

Fig. 4.17. W-beam at 52-degree
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3. 24GHz Vertical and Horizontal Radar Polarization Results Comparison

• As shown in Fig. 4.14 and Table 4.2, 24GHz horizontal and vertical po-

larization measurement have similar results. The biggest difference is at

0-degree.

• Horizontal polarization: RCS at 0-degree is 10 ± 2 dBsm.

• Vertical polarization: RCS at 0-degree is 5 ± 2 dBsm.

• Between 0 to 50 degrees, the RCS response for both horizontal and vertical

polarization oscillate between -10 to +5 dBsm.

• From 50 to 90 degrees, the RCS of both horizontal and vertical polarization

are smooth, and includes three peaks at about 55-degree (10 ± 2 dBsm,

maximum peak), 60-degree (between 5 to 10 dBsm, local peak) and 75-

degree (between 0 to 5 dBsm, local peak). Three valleys at about 58 degree

(between 5 to 10 dBsm), 65 degree (−5±2 dBsm) and 90 degree (-between

-10 to -15 dBsm).

Table 4.2.
Comparison of Vertical and Horizontal 24GHz radar polarization results.

0-degree 0 to 50 degree Between 50 to 90 degree

Vertical

Polarization

Local peak

(5 ± 2dBsm)

Oscillate between

-10 to +5 dBsm

Smooth plot;

3 peaks (1 maximum peak

and 2 local peaks); 3 valleys

Horizontal

Polarization

Maximum Peak

(10 ± 2dBsm)

Oscillate between

-10 to +5 dBsm

Smooth plot;

3 peaks (1 maximum peak

and 2 local peaks); 3 valleys

4. 77GHz Vertical and Horizontal Radar Polarization Results Comparison

• As shown in Fig. 4.15 and Table 4.3, 77 GHz RCS of W-beam at the

vertical and horizontal polarization are similar.
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• At 0 degree, both of their RCS are closed to 10(±2) dBsm.

• Between 0 to 50 degrees, the RCS response for both horizontal and vertical

polarization are oscillated between -10 to +5 dBsm.

• From 50 to 90 degrees, the RCS for both horizontal and vertical polar-

ization should be smooth, and includes three peaks at about 55-degree

(15 ± 2dBsm, maximum peak), 60-degree (between 10 to 15 dBsm, local

peak) and 75-degree (between 5 to 10 dBsm, local peak). Three valleys

at about 58-degree (between 0 to 5 dBsm), 65-degree (0 ± 2 dBsm) and

90-degree −15 ± 5dBsm).

Table 4.3.
Comparison of Vertical and Horizontal 77GHz radar polarization results.

0-degree 0 to 50 degree Between 50 to 90 degree

Vertical

Polarization

Local peak

(10 ± 2dBsm)

Oscillate between

-10 to +5 dBsm

Smooth plot;

3 peaks (1 maximum peak

and 2 local peaks); 3 valleys

Horizontal

Polarization

Maximum Peak

(10 ± 2dBsm)

Oscillate between

-10 to +5 dBsm

Smooth plot;

3 peaks (1 maximum peak

and 2 local peaks); 3 valleys

5. Comparison of 24GHz and 77GHz Vertical Radar Polarization

The left images of Fig. 4.14 and Fig. 4.15 show that RCS plots of vertical

polarization at 77GHz Radar and 24 GHz Radar have the similar shape. RCS

plots between 0 to 50 degrees also have similar values. Both of them oscillate

between -10 to 5 dBsm. However, RCS plot at 77GHz is about 5 dBsm higher

than RCS plot at 24 GHz at 0-degree and from 50 to 90 degrees. More details

of comparisons are shown in Table 4.4.
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Table 4.4.
24GHz and 77GHz vertical Radar polarization results comparison.

0-degree 0 to 50 degree Between 50 to 90 degree

24GHz
Local peak

(5 ± 2dBsm)

Oscillate between

-10 to +5 dBsm

Smooth plot;

3 peaks (1 maximum peak

and 2 local peaks); 3 valleys

77GHz
Maximum Peak

(10 ± 2dBsm)

Oscillate between

-10 to +5 dBsm

Smooth plot;

3 peaks (1 maximum peak

and 2 local peaks); 3 valleys

6. Comparison of 24GHz RCS and 77GHz RCS at Horizontal Polarization

Right images of Fig. 4.14 and Fig. 4.15 show that the 77GHz and 24GHz hori-

zontal polarization RCS plots have similar shape except at 0-degree. Although

their RCS values are the same at 0-degree, their meanings are different. At

0-degree, 24GHz Radar receives a global maximum response, but 77GHz Radar

just receives a local maximum response. Between 5 to 50 degrees, both of them

are oscillating between -10 to +5 dBsm. From 50 to 90 degrees, their shapes are

the same, but 77GHz Radar gives 5 dBsm higher RCS response than 24 GHz.

Table 4.5.
24GHz and 77GHz horizontal Radar polarization results comparison.

0-degree 0 to 50 degree Between 50 to 90 degree

24GHz
Local peak

(10 ± 2dBsm)

Oscillate between

-10 to +5 dBsm

Smooth plot;

3 peaks (1 maximum peak

and 2 local peaks); 3 valleys

77GHz
Maximum Peak

(10 ± 2dBsm)

Oscillate between

-10 to +5 dBsm

Smooth plot;

3 peaks (1 maximum peak

and 2 local peaks); valleys
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Summary and RCS Recommendation of Metal Guardrail W-beam

RCS of the W-beam of the metal guardrail is not affected by their age. The

vertical polarization measurement result is similar with horizontal polarization result

at 77GHz Radar. However, they are slightly different at 24GHz Radar. The vertical

polarization measurement result is about 5 dB lower than the horizontal measurement

result at 0-degree. The recommend vertical and horizontal RCS plots at 24GHz and

77GHz Radar are shown below.

1. 24GHz Vertical Polarization RCS Recommendation

For 24GHz radar vertical polarization measurement, the radar should be put at a

distance of 3m distance away from the W-beam. The height of the radar should

focus on the middle point of the W-Beam. The surrogate RCS response should

have a similar shape as in Fig. 4.18, and satisfy the following requirements:

Fig. 4.18. Recommended 24GHz Radar RCS in vertical polarization for W-beam

• Be 5 ± 2dBsm at 0-degree;

• Between 5dBsm to -10dBsm between 0 to 50 degrees;
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• Have the maximum of 10 ± 2dBsm around 55-degree;

• Be smooth from 50 to 90 degrees;

• Include three peaks at about 55-degree, 60-degree and 75-degree;

• Include three valleys at about 58-degree, 65-degree and 90-degree.

2. 24GHz Horizontal Polarization RCS Recommendation

For 24GHz radar horizontal polarization measurement, the radar should be put

at a distance of 3m away from the W-beam. The height of the radar should

focus on the middle point of the W-Beam. The surrogate RCS response should

have the similar shape as in Fig. 4.19, and satisfy the following requirements:

Fig. 4.19. Recommended 24GHz Radar RCS in horizontal polarization for W-beam

• Be 10 ± 2dBsm at 0-degree;

• Between 5dBsm to -10 dBsm between 0 to 50 degrees;

• Have the maximum of 10 ± 2dBsm around 55-degree;

• Be smooth from 50 to 90 degrees;
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• Include three peaks at about 55-degree, 60-degree and 75-degree;

• Include three valleys at about 58-degree, 65-degree and 90-degree.

3. 77GHz Vertical Polarization RCS Recommendation

For 77GHz radar vertical polarization measurement, the radar should be put at a

distance of 3m distance away from the W-beam. The height of the radar should

focus on the middle point of the W-Beam. The surrogate RCS response should

have a similar shape as in Fig. 4.20, and satisfy the following requirements:

Fig. 4.20. Recommended 77GHz Radar RCS in vertical polarization for W-beam

• Be 10 ± 2dBsm at 0-degree;

• Between 5dBsm to -10dBsm between 0 to 50 degrees;

• Have the maximum of 15 ± 2dBsm around 55-degree;

• Be smooth from 50 to 90 degrees;

• Include three peaks at about 55-degree, 60-degree and 75-degree;

• Include three valleys at about 58-degree, 65-degree and 90-degree.
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4. 77GHz Horizontal Polarization RCS Recommendation

For 77GHz radar horizontal polarization measurement, the radar should be put

at a distance of 3m away from the W-beam. The height of the radar should have

focused on the middle point of the W-Beam. The surrogate RCS response should

have a similar shape as in Fig. 4.21, and satisfy the following requirements:

Fig. 4.21. Recommended 77GHz Radar RCS in horizontal polarization for W-beam

• Be 10 ± 2dBsm at 0-degree;

• Between 5dBsm to -10dBsm between 0 to 50 degrees;

• Have the maximum of 1 ± 2dBsm around 55-degree;

• Be smooth from 50 to 90 degrees;

• Include three peaks at about 55-degree, 60-degree and 75-degree;

• Include three valleys at about 58-degree, 65-degree and 90-degree.
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4.2.3 I-beam Forward-Looking Measurement

On the real road environment, I-beam is placed behind W-beam. Therefore, half

part of I-beam is not visible. Typically, the side-looking radar is not able to detect

I-beam. In this case, I-beam side-looking measurement (defined at the beginning of

this section) is not considered. However, the forward-looking radar is able to detect

I-beam as shown in Fig. 4.1.2.3-1. Also, depending on the positions (such as A,

B, C shown in Fig. 4.22) of the vehicle, Radar will look at I-beam from different

angles. Therefore, the following measurements will try to figure out how the I-beam

RCS changes when Radar scan the I-beam from the 0-degree surface to the 90-degree

surface.

Fig. 4.22. I-beam forward-looking top view

Measurement Method

1. Put the Radar on a tripod (Fig. 4.23 shows the 24GHz RCS at the vertical

polarization (left) and the horizontal polarization (right). Fig. 24 shows the
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77GHz RCS at the vertical polarization (left) and the horizontal polarization

(right). The radar is 55 cm above ground.

Fig. 4.23. Vertical polarization (left) and horizontal polarization
(right) measurement at 24GHz Radar

Fig. 4.24. Vertical polarization (left) and horizontal polarization
(right) measurement at 77GHz Radar

2. Use RCS calibration method to check if radar works property or not. Choose

3m as the distance between Radar and reflector (Chapter 3).

3. Record the signal response of trihedral reflector that will be used to calibrate

the signal response of I-beam.
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4. After calibration, replace the trihedral reflector with a rotating table and let

I-beam stand on the middle of the rotating table. Use a level to make sure

I-beam is perpendicular to the ground.

5. Start the rotator, and adjust the speed, so that the I-beam can rotate at least

90 degrees within the 30s.

6. Start recording the data of I-beams signal response from 0-degree (Fig. 25 left

image) faces to Radar to 90-degree faces to Radar (Fig. 25 right image). Click

record button about 2s earlier, so that can guarantee 0-degree to be recorded.

Fig. 4.25. I-beam at 0-degree (left) and 90-degree (right)

7. Plot the recording raw data and calculate I-beam RCS value at each angle (0

to 90 degrees). Fig. 4.26 shows the continuous measurement of the I-beam.

Similar to W-beams color map, the x-axis is the number of Radar scan times,

which related to recording time (recording time=scan times/500). The y-axis is

the distance (1.5 to 5 meters). In this figure, the 0-degree of I-beam is measured

around x=2000 (4s) (pointed by a thin straight black line). The reason is that

there is a wide flat surface (Fig. 4.1.2.3.1-3 left image) perfectly facing the

Radar, so the Radar receives a very strong power response. When this flat

surface does not perfectly face the radar, it will reflect most of the radar waves
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Fig. 4.26. Color map of I-beam rotation data

to left/right side. The same idea applies for 90-degree (Fig. 4.25 right image),

its strong signal appears at around x=11800 (23.6s) (pointed by a thick straight

black line).After raw data calibration, the RCS plot of I-beam is calculated (Fig.

4.27). The x-axis is the angle (degree). The y-axis is RCS value (dBsm). The

I-beam RCS measurement is done.

Fig. 4.27. RCS plot of an I-beam at various angles
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Measurement Result

Fig. 4.28. 24GHz radar vertical polarization RCS result (left) and
horizontal polarization RCS result (right).

Fig. 4.29. 77GHz radar vertical polarization RCS result (left) and
horizontal polarization RCS result (right).

Result Discussion

1. Maximum RCS Response

Fig. 4.28 and Fig. 4.29 show that the two maximum RCS values are at 0-

degree and 90-degree for all four types of measurements. This is because that

when I-beam is placed at 0-degree or 90-degree, the flat surface of I-beam is
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perpendicular to the Radar center beam. Moreover, there is a local maximum

around 50-degree. Fig. 4.30 shows that a right angle corner is facing to radar

at 50-degree. This corner will generate a strong signal response.

Fig. 4.30. I-beam at 50-degree

2. 24GHz Vertical and Horizontal Radar Polarization Results Comparison

Fig. 4.28 shows that the vertical and horizontal polarization RCS results of

I-beam at 24 GHz Radar are almost the same. At 0-degree and 90-degree, both

of their RCS are 13 ± 2 dBsm. Around 50-degree, both of them show a local

maximum which is about 7 ± 2 dBsm.

3. 77GHz Vertical and Horizontal Radar Polarization Results Comparison

Similar to the comparison of 24GHz RCS measurement results, 77GHz RCS

measurement results of vertical and horizontal polarization of I-beam are almost

the same (Fig. 4.29) as well. At 0-degree and 90-degree, both of their RCS

values are 20±2 dBsm. Around 50-degree, both of them show a local maximum

which is about 15 ± 2 dBsm.
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4. 24GHz and 77GHz Vertical Radar Polarization Results Comparison

Left images of Fig. 4.28 and Fig. 4.29 show that the shapes of 24GHz and

77GHz RCS vertical polarization plots of I-beam do not have a big difference.

The main difference between them is the value. 77GHz radar measurement

results are about 7 dBsm higher than 24GHz radar measurement results.

5. 24GHz and 77GHz Horizontal Radar Polarization Results Comparison

Again, the shapes of 24GHz and 77GHz RCS horizontal polarization plots of

I-beam do not have a big difference (right images of Fig. 4.28 and Fig. 4.29),

but 77GHz radar measurement results are about 7 dBsm higher than 24GHz

radar measurement results.

Summary and RCS Recommendation of Metal Guardrail I-beam

As proved in Section 4.2.2, RCS of metal guardrail W-beam does not affect by age.

Since metal guardrail I-beam and W-beam are made of the same material, RCS of

I-beam should not affect by age as well. The vertical polarization measurement result

is similar with horizontal polarization result at both 24GHz Radar and 77GHz Radar.

The recommend vertical and horizontal RCS plots at 24GHz and 77GHz Radar are

shown below.

1. 24GHz Vertical Polarization RCS Recommendation

This result works for vertical polarization measurement at 24GHz Radar. The

Radar should be placed 3 meters away from the I-beam. The height of the

Radar should be set at the middle point of the I-Beam. The surrogate RCS

response does not need to be the same as the following figure (Fig. 4.31) but

should have a similar shape. The need to be compared at three critical points:

at 0-degree, the RCS should be 13± 2 dBsm; at 50-degrees, the RCS should be

7 ± 2 dBsm; and at 90-degrees, the RCS should be 11 ± 2 dBsm.
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Fig. 4.31. Recommended 24GHz Radar RCS in vertical polarization for I-beam

2. 24GHz Horizontal Polarization RCS Recommendation

This result works for horizontal polarization measurement at 24GHz. The Radar

should be placed 3 meters away from the I-beam. The height of the Radar

should be set at the middle point of the I-Beam. The surrogate RCS response

should have a similar shape as in Fig. 4.32 and needs to satisfy the requirement

at three critical points: at 0-degree and 90-degree, the RCS should be 13 ± 2

dBsm; at 50-degrees, the RCS should be 7 ± 2 dBsm.

Fig. 4.32. Recommended 24GHz Radar RCS in horizontal polarization for I-beam
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3. 77GHz Vertical Polarization RCS Recommendation

This result works for vertical polarization measurement at 77GHz. The Radar

should be placed 3 meters away from the I-beam. The height of the Radar

should be set at the middle point of the I-Beam. The surrogate RCS response

should have a similar shape as in Fig. 4.33 and needs to satisfy the requirement

at three critical points: at 0-degree and 90-degree, the RCS should be 20 ± 2

dBsm; at 50-degrees, the RCS should be 15 ± 2 dBsm.

Fig. 4.33. Recommended 77GHz Radar RCS in vertical polarization for I-beam

4. 77GHz Horizontal Polarization RCS Recommendation

This result works for horizontal polarization measurement at 77GHz. The Radar

should be placed 3 meters away from the I-beam. The height of the Radar

should be set at the middle point of the I-Beam. The surrogate RCS response

should have a similar shape as in Fig. 4.34 and needs to satisfy the requirement

at three critical points: at 0-degree and 90-degree, the RCS should be 20 ± 2

dBsm; at 50-degrees, the RCS should be 15 ± 2 dBsm.
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Fig. 4.34. Recommended 77GHz Radar RCS in horizontal polarization for I-beam

4.3 Grass RCS Measurement

The purpose of this subtask is to find the representative 24 GHz and 77 GHz radar

characteristics of grass. RCS is used for describing the radar characteristics.

4.3.1 Sample Selection

How to select grass samples to study grass radar property is one of the most

difficult parts in this research. Theoretically, the study should include all possible

kinds of grass. However, in nature, grass grow randomly. Therefore, the number of

kinds of grass is uncountable. One of the solutions is to make a classification for grass

based on some key features of grass. Then selecting the high-ranking types of grass

to be the grass samples. Four parameters are defined to classify grass: color, color

evenness, height, and height evenness. 2,443 Google Street View images that show

grass road edge have been studied. The result from the study shows that the most

common color of grass is green and yellow mixed. In addition, only short (less than

5”) and medium (6” to 10”) grass can be easily seen on the road edge. Therefore,

the research focus on short and medium grass. Furthermore, most grasses that grow
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next to the urban road are even, but grasses that grow on the edge of the suburban

road are usually uneven. In this case, even and uneven are both important. Note

that the color evenness and height evenness are combined as one parameter (called

evenness) since the study result shows they are highly correlated. Eventually, three

grass samples are picked for the study of grass radar property.

Table 4.6 and Fig. 4.35 shows the samples of grass used in RCS measurements.

Table 4.6.
Grass samples

Object Height Color
Surface

Condition
Type

Grass 1
Short

(2-4 inch)
Green and Yellow

Somewhat

even
Wild

Grass 2
Medium

(8-10 inch)
Green and Yellow Uneven Wild

Grass 3
Short

(2-4 inch)
Green Very even

Well

maintained

Fig. 4.35. Grass 1 (left), Grass 2 (middle), Grass 3 (left)

Table 4.6 shows three grass samples. Grass 1 (Fig. 4.35 left) is wild grass of mixed

green and yellow colors. It is short, only about 2 to 4 inches tall. The height and

color distribution looked pretty even. Grass 2 (Fig. 4.35 middle) is also wild grass.

The overall color is a mix of green and yellow, but more in green side. Majority grass

is about 8 to 9 inch tall. The height and color of the Grass 2 are not even. Green 3
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(Fig. 4.35 right) is well-maintained grass located on IUPUI campus. Therefore, it is

almost pure green and very even. The height of the grass is 2 to 4 inch.

4.3.2 Measurement Method

Since there are infinite numbers of grass shapes variations, the RCS of any specific

grass location cannot represent the grass. Therefore, we measure the RCS of a grass

area through a 15 feet long line and take the average as the grass RCS. Following are

the process of grass RCS measurements.

1. As shown in Fig. 4.38 side view, a tripod was placed on a moving cart.

24GHz/77GHz radar was vertically/horizontally mounted on the tripod ( see

Fig. 4.36 and Fig. 4.37).

Fig. 4.36. 24GHz Vertical (left) and horizontal (right) polarization set up

Fig. 4.37. 77GHz Vertical (left) and horizontal (right) polarization set up
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Fig. 4.38. Grass measurement top view (left) and side view (right)

2. Use a level to set the radar pitch angle (Fig. 4.38 side view). One measurement

was taken every 5 degrees. The pitch angle varied from 35-degree to 10-degree

referenced to the horizontal line parallel to the ground. Therefore, 6 measure-

ments were taken for one set of measurement for each radar polarization.

3. Move the cart to position C (Fig. 4.38 top view). Position C is roughly the

middle point of AB. A is the start point, and B is the end point of measurement.

The length of AB is at least 15 ft. The longer, the better.

4. 36 inch is used as radar height, which is from antennas middle point to the

ground (Fig. 4.38 side view). The measurement height is not necessary to be

36-inch, but this height is a reasonable height when the radar is placed on the

car.

5. Adjust trihedral corner reflector. Place the trihedral corner reflector on the

ground and move it until we can see the center of the trihedral reflector through

the pipe that was placed on the top of the radar. Therefore, the radar center

beam is aimed at the trihedral (Fig. 4.38 top view).

6. Move the cart to position A (Fig. 4.38 top view), and get ready to start the

measurement.
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7. Set data recording time to be 25 seconds. Start data recording and push the

cart from A to B at a constant speed. The time for moving from A to B should

be within 25 seconds. Therefore, the cart moving speed depends on the length

of AB.

8. Plot the recording raw data and calculate the RCS value of grass over distance

changing. The left image of Fig. 4.39 is the color map of raw data of grass

signal response. The x-axis is the number of Radar scan times, which related to

the recording time (recording time = scan times/500). Note that the full x-axis

range is from 0 to 12500. The starting data (0-2500) and ending data (10000

to 12500) are cut since those data are affected by objects which are placed on

grassland to indicate the starting position and ending position. The y-axis is

the distance (1 to 15 meters). Note that the data from 0 to 1 meter is cute

since those data are affected by antenna coupling. The signal of the trihedral

corner reflector is clearly visible in the display. Click the up left corner of the

trihedral area such as position A and bottom right corner such as position B

to define a box that covered the signal response of trihedral corner reflector.

The Matlab program will automatically find the maximum value within this

box. This maximum value was the trihedral response. It would be used as the

reference for calibrating the grass response and getting the RCS value of grass.

After the box was defined, the rest parts were used to calculate grass maximum

response, minimum response, and mean response at each distance (Fig. 4.39

right image). Therefore, it is important to make sure that the box is big enough

so that no trihedral response is mixed into grass response. Otherwise, the grass

response will be corrupted. In Fig. 4.39, the yellow plot, red plot, dark blue

plot, and green plot are corresponding to the maximum RCS plot, mean RCS

plot, medium RCS plot, and minimum RCS plot of grass at each distance. The

most important plot is the mean RCS plot. It indicates the average RCS level of

the grass. The straight blue line is corresponding to the location of a trihedral

corner reflector. The values shown on the right top corner are the maximum,
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minimum and mean grass RCS at the same distance of trihedral corner reflector.

The most important part of Fig. 4.39 is the plots between the blue line and the

black line. The plots before the blue line are affected by antenna coupling. The

plots after the dark black line are just background noise. The plots between the

blue line and black line show how the grass’ RCS changes as range increases.

Fig. 4.39. Color map of grass raw data (left) and RCS result (right)

4.3.3 Measurement Result

Following are the measurement results under different conditions. The title of each

figure indicates the measurement conditions. For example, 24GHz-V-Pol-35-degree

means the result is measured under 24GHz Radar, vertical polarization, 35-degree

depression angle.
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Fig. 4.40. 24GHz Radar vertical polarization measurements from 35-
degree to 10-degree for 3 grass samples
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Fig. 4.41. 24GHz Radar horizontal polarization measurements from
35-degree to 10-degree for 3 grass samples
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Fig. 4.42. 77GHz Radar vertical polarization measurements from 35-
degree to 10-degree for 3 grass samples
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Fig. 4.43. 77GHz Radar horizontal polarization measurements from
35-degree to 10-degree for 3 grass samples
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4.3.4 Discussion

1. Are the grass RCS different between different kinds of grass?

The mean RCS plots are shown in Fig. 4.40 to Fig. 4.43 indicates that these

three different samples of grass (wild vs. man maintained, short vs. medium,

green yellow vs. pure green, even vs. uneven) have very similar RCS value

when they are measured under the same condition (same radar type, same

polarization, and same depression angle). Moreover, those figures also show

that three types of grasses almost have the same RCS plot (RCS vs. Range)

under any measurement condition. Therefore, grass type, height, color, and

evenness will not affect grass RCS a lot.

2. Are the grass RCS different under different radar frequency (24/77 GHz)?

As Fig. 4.40 and Fig. 4.42 show, the shape of the RCS plot generated by 24

GHz Radar vertical polarization measurement is almost the same as the shape of

the RCS plot generated by 77 GHz Radar vertical polarization measurement at

any depression angle. However, the magnitude of the whole RCS plot of 24GHz

Radar measurement is lower than that of the 77GHz Radar measurement at any

depression angle. The same conclusion will be applied for comparing the 24GHz

horizontal polarization RCS plot and 77GHz horizontal polarization RCS plot

(Fig. 4.41 and Fig. 4.43).

3. Are grass RCS different when using different radar polarization?

By comparing the vertical (Fig. 4.40)and horizontal polarization (Fig. 4.41)

RCS plots, it is easy to see that not only the shape of RCS plots but also the

magnitudes of RCS plots are very similar for 24GHz Radar measurement at

any depression angle. This is also true for comparing the 77GHz Radar vertical

polarization measurement results (Fig. 4.42) and the horizontal measurement

results (Fig. 4.58 to Fig. 4.43). Therefore, the grass RCS are almost the same

under different radar polarization.
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4.3.5 Summary and RCS Recommendation of Grass

• Type, height, color, and evenness of grass will not affect grass RCS a lot.

• 24GHz measurement results have a similar shape as the 77GHz measurement

results, but the amplitudes are lower than 77GHz measurement results.

• The horizontal and vertical RCS measurement result are very similar at both

24GHz and 77 GHz Radar.

By plotting the maximum of maximum, average of mean, minimum of minimum

of RCS plots of all three grass samples under the same measurement conditions,

the requirements for surrogate grass under different measurement conditions can be

defined. The surrogate grass RCS plot should be between the corresponding maximum

plot and minimum plot; it is better to close to the mean plot. Again, the most

important part of each plot is the slanting section that starts from the blue bar, since

the plot before the blue line is affected by antenna coupling, and the flat tail part

is just background noise. More details are showing below (the name format of each

figure is frequency-polarization-depress angle)

1. Recommended 24GHz Radar Vertical Polarization RCS for Surrogate Grass

(Fig. 4.44)

2. Recommended 24GHz Radar horizontal Polarization RCS for Surrogate Grass

(Fig. 4.45)

3. Recommended 77GHz Radar Vertical Polarization RCS for Surrogate Grass

(Fig. 4.46)

4. Recommended 77GHz Radar horizontal Polarization RCS for Surrogate Grass

(Fig. 4.47)
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Fig. 4.44. Recommended 24GHz vertical polarization RCS for surrogate grass
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Fig. 4.45. Recommended 24GHz horizontal polarization RCS for surrogate grass
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Fig. 4.46. Recommended 77GHz vertical polarization RCS for surrogate grass
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Fig. 4.47. Recommended 77GHz horizontal polarization RCS for surrogate grass
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4.4 Concrete Divider Reflectivity Measurement

The purpose of this task is to find the representative 24GHz and 77GHz Radar

characteristics of concrete dividers. Reflectivity is used for describing the Radar char-

acteristics. After doing reflectivity measurement, the material property of concrete

divider from radar point view will be found.

4.4.1 Sample Description

Table 4.7 describes six samples of concrete dividers. Concrete divider 2 (Fig. 4.49)

is standard New Jersey Shape. Others are all standard F-shape. Only the surface of

Concrete divider 1 (Fig. 4.48) is coated by some types of white coat/paint. Concrete

dividers (1 to 4) have good smooth surface. There are some holes on the surface of

Concrete divider 5. For Concrete divider 6, the majority part of the surface (Fig.

4.52) has been damaged. On the color side, Concrete dividers 2 and 3 have similar

brownish color. Concrete divider 1 is white. Rest of the concrete dividers are in gray

color. On the age side, the Concrete divider 1 looks new. Rest of them are old, but

Concrete divider 2 and 3 looks newer than Concrete divider 4, 5 and 6.

Fig. 4.48. Concrete Divider 1
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Fig. 4.49. Concrete Divider 2

Fig. 4.50. Concrete Divider 3

Fig. 4.51. Concrete Divider 4

Fig. 4.52. Concrete Divider 5
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Fig. 4.53. Concrete Divider 6

Table 4.7.
Concrete Divider Samples

Object Type Color Age
Surface

Condition
Coating Location

Concrete

Divider 1
F-shape White Half-old smooth

White

paint

coating

Indianapolis

Highway I-65

Concrete

Divider 2

New

Jersey

Shape

Brown Old smooth No
Indianapolis

old airport

Concrete

Divider 3
F-shape Brown Old smooth No

Indianapolis

old airport

Concrete

Divider 4
F-shape Gray Very old smooth No

Indianapolis

old airport

Concrete

Divider 5
F-shape Gray

Very old

and unused

some big and

deep holes
No

City wide

paving, Inc.

Concrete

Divider 6
F-shape Gray

Very old

and unused
worn down No

City wide

paving, Inc.

4.4.2 Concrete Divider Forward-Looking Measurement

The meaning of forward-looking is defined in the metal guardrail section (see

Section 4.2). Also, based on the experience (radar can see the object only when
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the surface of the object is perpendicular to radar beams) get from metal guardrail

forward-looking measurement, the forward-looking measurement may not detect con-

crete divider very well. Only the area that is perpendicular to the Radar beams can

be detected. The main purpose of the following measurement is to verify this predic-

tion. 77GHz radar is used in the following experiment since it is usually used as a

forward-looking radar.

Measurement Steps

1. Place the 77GHz Radar at 1m away from the concrete divider. Set the mea-

surement angle to be 15-degree from the normal line of concrete divider surface

(Fig. 4.54). Record 2s data for this measurement (Measurement-1). Fig. 4.55

shows the measurement result. The x-axis is time (ns). The maximum peak in

each figure is antenna coupling (pointed by horizontal blue arrow). The peak

pointed by the vertical blue arrow in each figure is the signal response generated

by a concrete divider. In this case, the concrete signal response is about 44.9

dB.

Fig. 4.54. Measurement-1 of the Forward-looking measurement setup
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Fig. 4.55. The measurement result of Measurement-1

2. Use a radar absorber foam to cover area A (Fig. 4.56 left image). Record 2s

data for this measurement (Measurement-2). In this case, the concrete signal

response is about 45.2 dB (Fig. 4.56 right image).

Fig. 4.56. Measurement-2 setup (right) and result (right)

3. Move the absorber foam forward, so that area B can be covered as well (Fig.

4.57 left image). Record 2s data for this measurement (Measurement-3). In
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this case, the concrete signal response is about 34.2 dB (Fig. 4.57 right image).

Fig. 4.57. Measurement-3 setup (right) and result (right)

Summary of Measurement Result

Table 4.8.
Forward-looking measurement results

Measurement

ID
Area A Area B

Power

Response (dB)

Measurement-1 Not cover Not cover 44.9

Measurement-2 Cover Not cover 45.2

Measurement-3 Cover Cover 34.2

Result Discussion

As Table 4.8 shown, the concrete signal response is about 44.9 dB in Measurement-

1, and the concrete signal response is about 45.2 dB in Measurement-2. The difference
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between these two results is only 0.3 dB. In another word, when area A was covered

by absorber foam, the radar power response of concrete divider does not reduce.

Therefore, the radar response did not come from area A. In brief, although radar

center beam is looking at area A, there is no response from there.

However, if comparing the Measurement-1/Measurement-2 with Measurement-3,

then it is easy to see that the signal response from concrete divider drop down about

10 dB after area B is covered by radar absorber foam. The signal response of the

concrete divider in Measurement-3 (the left image of Fig. 4.57) almost disappeared.

Therefore, it proves that the radar response of concrete divider comes from area B

where is perpendicular to the radar side beam.

Fig. 4.58 shows that when the antennas center beam is not perpendicular to

concrete divider surface, the center beam will not bounce back. Instead, the side

beam, which is perpendicular to the concrete divider is measuring the concrete divider.

One point must be taken care of, every antenna has its own maximum beam width

(the angle between the center beam and the side beam). If the measurement angle

is greater than the maximum beam width, then no side beam can be perpendicular

to the concrete divider surface. In this case, the radar cannot detect the concrete

divider!

Fig. 4.58. Concrete divider forward-looking measurement analyzation
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4.4.3 Concrete Divider Side-Looking Measurement

Concrete divider side-looking measurement only needs to consider one case: radar

center beam perpendicular to the surface of the concrete divider (Fig. 4.59). This

case also is the requirement of radar reflectivity measurement. There is another

reason why this research only consider the perpendicular case. The main area of the

concrete divider is just a flat surface. Therefore, only the perpendicular case can get

the strongest signal response. The measurement details are described below.

Fig. 4.59. Concrete divider side-looking measurement

Measurement Method

1. Do the reflectivity calibration (Fig. 4.60) by putting a big metal plate on the

concrete divider. Usually, the metal plate is 24ft x 24ft. The distance between

Radar and metal plate is 1m. Make sure the Radar center beam is perpendicular

to the surface of a metal plate. More details about Radar reflectivity calibration

are described in Chapter 3.
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Fig. 4.60. Reflectivity calibration using an aluminum plate

2. After collecting the reference (metal plate) data, remove the metal plate from

the concrete divider surface. Then, record 2s data of concrete divider.

Fig. 4.61. Concrete divider measurement using 24GHz (left) and
77GHz (right) Radar

3. Plot the 2s recording data. Fig. 4.62 shows the concrete divider measurement

result and metal plate measurement result. Again, the y-axis of each figure is

the magnitude of signal response (dB). The x-axis relates to time (ns). The

maximum peak is antenna coupling and the peak pointed by vertical arrows
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is the signal response of concrete divider/metal plate. The targets Radar re-

flectivity equals the difference between the signal response (dB) of the target

(concrete divider) and the signal response (dB) of reference (metal plate). In

this example, the calculated Radar reflectivity of the concrete divider is -7.3211

dB (Fig. 4.63).

Fig. 4.62. Concrete divider measurement result (left) and aluminum
plate measurement result (right)

Fig. 4.63. 24 GHz radar reflectivity of concrete divider 2

Measurement Result

1. 24GHz Measurement Results
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Fig. 4.64. Summary of the 24 GHz reflectivity of all concrete divider samples.

2. 77GHz Measurement Results

Fig. 4.65. Summary of the 77 GHz reflectivity of all concrete divider samples.
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Result Discussion

1. Effect of Color, Shape and Surface Coating

Based on the measurement results shown in Fig. 64, the average reflectivity of

Concrete dividers 2 to 4 are almost the same (-7.2774, -7.3313, -7.5565). Note

that concrete dividers 2 and 3 have a similar color, and both of them have a

good surface. The only difference between them is the shape. Concrete divider 1

is New Jersey shape and concrete divider 2 is F-shape. Since the measurements

only focus on the flat faces, the shape does not affect the reflectivity. Moreover,

concrete dividers 2 and 3 have different color compared to concrete divider 1

and 4 (1 is white; 2, 3 is brown; 4 is gray). Therefore, the color should not

affect the reflectivity of concrete divider either. In addition, Concrete divider

1 is the only one that has been coated by some kind of white painting, but it

does not show different reflectivity either.

2. Effect of Concrete Age

The concrete dividers used in previous measurements are various ages but all

old. They did show similar reflectivity. It is necessary to find a new concrete

divider to determine the age effect to reflectivity. Unfortunately, it is very dif-

ficult to find a new concrete divider. However, since both curb and concrete

divider are made of Portland concrete, and it happened that there is a brand

new curb under construction. Therefore, the reflectivity for that new concrete

curb (Fig. 4.66) is measured. The results are in Table 4.9. It shows that the

reflectivity range of concrete curb is between -7 dB to -8 dB; and the average

reflectivity is -7.3655 dB. This result is the same as the old concrete dividers,

which have smooth surfaces. Note that reflectivity is used to describe the ma-

terial property. In this case, the difference of average reflectivity between new

concrete and old concrete is within 1dB. Therefore, the age of concrete does not

affect the Radar reflectivity.
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Fig. 4.66. Curb reflectivity measurement

Table 4.9.
24GHz Radar Reflectivity of a Curb

Measurement locations Reflectivity (dB)

1 -7.0299

2 -8.0154

3 -7.1347

4 -7.2818

Average -7.3655

3. Effect of Humidity

Concrete divider 5 has a litter bit higher reflectivity (-6.8076) than other mem-

bers of Group 1. It might be caused by those big and deep holes on the surface

(Fig. 4.67). Those holes may have higher humidity than the surface, especially

those deep holes. After the rain, water will go into these holes. Holes will take

much longer time than the surface to be dry. For some deep holes, they even

not able to be completely dry.
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Fig. 4.67. Surface of Concrete Divider 5

A humidity experiment was designed to check how humidity affects concrete

dividers reflectivity. As Fig. 4.68 shows, after spraying water on the concrete

divider surface, the reflectivity quickly increase to -3.8 dB (about 4 dB higher

than dry concrete divider). As concrete divider surface gets drier, the reflectivity

slowly gets lower. After 30 minutes, the surface looks almost dry. However,

Fig. 4.70 clearly shows that the area around holes still very wet! Therefore,

even though the majority part of the concrete divider is dry, the reflectivity

is still about 1 dB higher than the reflectivity when the surface is completely

dry. Theoretically, this is correct. Reflectivity directly relates to the resistivity

of the object. The lower resistivity, the higher reflectivity. The resistivity of

concrete is quite different when it is wet and dry. During the raining, the

concrete divider can be treated as a semiconductor. The resistivity is around

105 ohm-mm. However, the dry concrete divider acts as an insulator. The

resistivity is around 1012 ohm-mm. Therefore, the humidity will significantly

affect concrete dividers reflectivity.
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Fig. 4.68. Spray water on concrete divider surface-1

Fig. 4.69. Spray water on concrete divider surface-2

Fig. 4.70. Spray water on concrete divider surface-3

4. The average reflectivity of the concrete divider at 24GHz Radar

Based on Fig. 4.64, six concrete dividers can be divided into 2 groups (Fig.
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4.71). Group one includes concrete dividers 1 to 5 whose data are mostly

measured from a smooth surface. Their reflectivity are close, and the range is

between -6.5 dB to -8 dB. The average reflectivity of this group is -7.3089 dB.

Group 2 only includes Concrete divider 6 whose data are mostly measured from

the damaged surface. The reflectivity of Group 2 is lower than Group 1. The

reflectivity range of this group is between -9.5 dB to -8 dB, and the average

reflectivity is -8.6755 dB.

Fig. 4.71. Groups of concrete divider samples

5. 77GHz and 24GHz Smooth Surface Reflectivity Comparison

Fig. 4.65 shows that reflectivity of smooth surface of concrete divider 3 and 4

measured by 77GHz radar are very similar. All of them are about -7.31 dB.

These results matched with 24 GHz Radar measurement results. In another

word, if the surface of the concrete divider is smooth, then the reflectivity is

similar at 24GHz Radar and 77GHz Radar, which is about -7.31 dB.

However, the 77GHz average reflectivity measured from the smooth surface of

concrete divider 2 is about -9 dB. It is lower than the 24 GHz Radar measure-

ment result (-7.3 dB). By looking closely, it is easy to see that there are some

gravels visible on the surface of concrete divider 2 (Fig. 4.72). These gravels

could be the reason that causes 77GHz Radar gets a lower signal response.
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Fig. 4.72. Gravels visible on the surface of concrete divider sample 2

6. Smooth and Rough Surface Reflectivity Comparison

The measured 77GHz reflectivity of the rough surface of Concrete divider 4

is -7.3 dB. Although the surface has many bumps and hole (Fig. 4.73), the

measured 24GHz and 77GHz Radar reflectivity is still similar to that of a smooth

concrete surface. Therefore, if the diameter of those bumps and hollows are not

greater than 1 cm, then the surfaces reflectivity should not be affected.

Fig. 4.73. The rough surface of Concrete Divider 4
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7. Smooth and Broken Surfaces Reflectivity Comparison

Fig. 4.71 shows that concrete divider 6s average reflectivity (-8.6755) measured

by 24GHz Radar is much lower than any other samples. It can be caused by

the worn down surface. One of the possible reason is that some of the radar

waves are reflected to other directions after shooting on this uneven surface (Fig.

4.74), then the receiving antenna receives less power response. Fig. 4.65 also

shows that the reflectivity of the broken surface of Concrete divider 4 (Fig. 4.75)

is only -18.7 dB measured by 77GHz Radar. Again, this result is much lower

than other smooth surfaces reflectivity measured by 77GHz Radar. Therefore,

if the surface is damaged, and the damaged surface is big, then the reflectivity

will be low. The accurate relationship between broken surface and reflectivity

needs more study, and that could be another research topic.

Fig. 4.74. Surface of Concrete Divider 6

Fig. 4.75. Concrete Divider 4 rough surface (left) and broken surface (right)
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4.4.4 Summary and Reflectivity Recommendation of Concrete

Divider

• The color, coating, and age of the concrete divider do not affect the Reflectivity,

• The surface smoothness, material (e.g., the stone on the surface) and humidity

can affect the reflectivity.

• The radar only sees the reflection from the area where the surface of the divider

that is perpendicular to the radar beam.

• The representative radar reflectivity for dry and smooth concrete divider is

−7.3 ± 1 dB at both 24GHz and 77GHz.

4.5 Conclusion

This Chapter described the methods of measuring the Radar property of metal

guardrail, grass, and concrete divider. Both W-beams and I-beams RCS values have

been measured from 0-degree to 90-degree. The average mean RCS plot of grassland

has been determined. The average reflectivity of concrete divider has been calculated

which is around −7.3 ± 1 dB at both 24GHz and 77GHz.
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5. SURROGATE ROADSIDE OBJECTS

5.1 Introduction

Chapter 4 determined the Radar specifications of metal guardrail, grass, and con-

crete divider. This chapter focus on finding soft and durable material to create the

surrogate roadside objects. All surrogates are measured using the same method as

measuring the real objects. The final products of surrogates have similar Radar prop-

erties as the real objects.

5.2 Surrogate Metal Guardrail

As mentioned in Chapter 4, RCS is used to describe the radar properties of the

metal guardrail. We used two steps to create a surrogate metal guardrail. First,

develop a skin with the required radar reflectivity, and then attach the skin to W-

beam shaped foam.

5.2.1 Surrogate W-beam

Skin Development

A three-layer skin is developed for surrogate metal guardrail (Fig. 5.1). The first

layer is a plastic film to provide the proper surface smoothness, the second layer is

a layer of zinc to provide correct color and IR reflectivity, and the third layer is the

aluminum film to provide radar property. Table 5.1 shows that the measurements of

both 24GHz and 77 GHz reflectivity of this skin are around -0.3 dB, which is very

close to required 0 dB radar reflectivity for W-beam.
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Fig. 5.1. Surrogate metal guardrail skin

Table 5.1.
Reflectivity of surrogate metal guardrail skin and galvanized steel

Surrogate

guardrail skin

Galvanized

steel

24GHz radar

reflectivity (dB)
−0.3 ± 0.5 0 ± 1

77GHz radar

reflectivity (dB)
−0.3 ± 0.5 0 ± 1

RCS Comparison between Real and Surrogate of W-beam

Fig. 5.2 and Fig. 5.3 shows the RCS measurement of surrogate W-beam. The

left side and right side of Fig. 5.4 shows RCS of real W-beam and surrogate W-beam

of 24GHz radar under vertical polarization, respectively. The left side and right side

images of Fig. 5.5 shows RCS of real W-beam and surrogate W-beam of 24GHz

radar under horizontal polarization, respectively. By comparing with RCS of the real

and surrogate W-beams, it is easy to see that their shapes are similar from 0-degree

to 90-degree. The difference of each critical peak RCS value between the surrogate

W-beam and the real W-beam is less than or equal to 2 dB. Therefore, this surrogate

W-beam design can meet our 24GHz requirement.
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Fig. 5.2. Surrogate vertical (left) and horizontal (right) polarization
measurement at 24GHz Radar

Fig. 5.3. Surrogate vertical (left) and horizontal (right) polarization
measurement at 77GHz Radar

Fig. 5.4. Real W-beam RCS result (left) and surrogate W-beam RCS
result (right) under vertical polarization at 24GHz Radar
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Fig. 5.5. Real W-beam RCS result (left) and surrogate W-beam RCS
result (right) under horizontal polarization at 24GHz Radar

77GHz RCS measurement results of the surrogate W-beam are also similar to that

of real W-beam. The left side and right side of Fig. 5.6 shows 77GHz RCS of real W-

beam and surrogate W-beam under vertical polarization, respectively. The left side

and right side images of Fig. 5.7 shows 77GHz RCS of real W-beam and surrogate

W-beam under horizontal polarization, respectively. Their shapes and values match.

Fig. 5.6. Real W-beam RCS result (left) and surrogate W-beam RCS
result (right) under vertical polarization at 77GHz Radar
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Fig. 5.7. Real W-beam RCS result (left) and surrogate W-beam RCS
result (right) under horizontal polarization at 77GHz Radar

Summary

In summary, both the 24GHz and 77GHz radar reflectivity of the surrogate W-

beam skin are very good (-0.3 dB compare to required 0 dB). Moreover, both the

24GHz and 77GHz RCS of the surrogate W-beam are close to that of the real W-

beam. Therefore, surrogate W-beam satisfies its radar requirements.

5.2.2 Surrogate I-beam

I-beam frame

I-beam frame is made of foam in the shape of I-beam

Skin Development

Since I-beam and W-beam are made of the same material (Galvanized steel), the

three-layer surrogate skin for W-beam can be used for I-beam as well.
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RCS Comparison between the Real and Surrogate W-beams

Fig. 5.8 and Fig. 5.9 show set up of the 24GHz and 77GHz Radar measurement for

the surrogate I-beam. The left side and right side of Fig. 5.10 show the 24GHz RCS

Fig. 5.8. Surrogate vertical (left) and horizontal (right) polarization
measurement at 24GHz Radar

Fig. 5.9. Surrogate vertical (left) and horizontal (right) polarization
measurement at 77GHz Radar

of the real I-beam and the surrogate I-beam under vertical polarization, respectively.

The left side and right side images of Fig. 5.11 show 24GHz RCS of the real I-beam

and the surrogate I-beam under horizontal polarization, respectively. We can see that

their shapes are similar. The RCS difference of each critical peak value between the

surrogate and real I-beams is less than or equal to 2 dB. Therefore, this surrogate

I-beam design can meet our 24GHz radar requirement.
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Fig. 5.10. Real I-beam RCS result (left) and surrogate I-beam RCS
result (right) under vertical polarization at 24GHz Radar

Fig. 5.11. Real I-beam RCS result (left) and surrogate I-beam RCS
result (right) under horizontal polarization at 24GHz Radar

Measured 77GHz RCS of the surrogate I-beam is also similar to that of real I-

beam. The left side and right side of Fig. 5.12 show 77GHz RCS of real I-beam and

surrogate I-beam in vertical polarization, respectively. The left side and right side

images of Fig. 5.13 show the 77GHz RCS of the real I-beam and the surrogate I-beam

under horizontal polarization, respectively. Their shapes and values match with that

of the real I-beam.
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Fig. 5.12. Real I-beam RCS result (left) and surrogate I-beam RCS
result (right) under vertical polarization at 77GHz Radar

Fig. 5.13. Real I-beam RCS result (left) and surrogate I-beam RCS
result (right) under horizontal polarization at 77GHz Radar

Summary

In summary, both the 24GHz and 77GHz radar reflectivity of surrogate I-beam

skin are very good (-0.3 dB compare to required 0 dB). Moreover, both the 24GHz

and 77GHz RCS of surrogate I-beam are close to real I-beam. Therefore, making

surrogate I-beam is successful.
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5.3 Surrogate Grass

It is beyond our ability financially to custom design specific surrogate grass to

satisfy the color, IR and radar requirements. Therefore, the basic idea of making

grass surrogate is that modifying the commercially available artificial turf.

5.3.1 Artificial Turf

Based on the grass type study, we need to find artificial turf with high blades.

Two artificial turfs (Fig. 5.14 and Fig. 5.15) made of the same material are selected

for this study. The key differences between these two turfs are the density and height

of the blade. The details about two artificial turfs are described in Table 5.2.

Fig. 5.14. Front side and back side of the Artificial turf

Fig. 5.15. Artificial turf top close view (left) and side close view (right)
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Table 5.2.
Specification of two artificial turfs

Artificial

Turf
Weight

Blade

height
Color

Sample 1
65

Qz/sqft

Uniform

2.25 inch
Green

Sample 2
70

Qz/sqft

Uniform

2.00 inch
Green

5.3.2 RCS of two different artificial turfs

It is necessary to check if two artificial turfs have different RCS or not since their

density and height of blades are different. Moreover, it is interesting to check if

two layers of artificial turf mimicking long grass will give different radar response.

Therefore, the following three measurements are designed to check them out. All

measurements are at 24GHz radar vertical polarization at 10-degree depression angle.

1. Two artificial turfs are placed together (Long blade turf up, short blade turf

down as fig. 5.16 shows) on asphalt ground.

Fig. 5.16. Two artificial turfs put on together (Long blade turf up,
short blade turf down)



98

2. Two artificial turfs are placed together (Short blade turf up, Long blade turf

down) on asphalt ground.

3. Single short blade artificial turf is placed on asphalt ground.

Fig. 5.17 shows that three plots: two layers of artificial turf (long blade turf on top

of the short blade turf) (black), two layers of artificial turf (short blade turf on top

of long blade turf) (yellow), one layer of short blade artificial turf (blue) are almost

the same. Therefore, two conclusions can be drawn here:

1. Two different artificial turf samples have similar radar property.

2. Two layers of artificial turf (one stacked on the other) have similar radar re-

sponse as one single layer of artificial turf.

Fig. 5.17. Measurement results of three experiments
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Artificial turf measurement along different sides

Since the grass blade leans in the same direction due to the rolled turf during stor-

age, it is necessary to check if it affects the RCS when viewed in different directions.

Therefore, the following measurements are conducted. As shown in Fig. 5.18, the

grass blades of the artificial turf fall down uniformly on the direction indicated by the

blue arrow. The artificial turfs are measured along sides 1, 2 and 3. All measurements

are in 15-degree pitch angle with asphalt underneath. The measurements are under

24 GHz radar vertical polarization.

Fig. 5.18. Artificial turf measurement alone different sides

Fig. 5.19 shows that the results of a measurement taken along Side-1 (black),

Side-2 (yellow) and Side-3 (blue) are very similar. Therefore, artificial turf can be

measured along any side. (The metal fence caused the yellow spikes, and turf roller

causes blue spikes as Fig. 5.18 shows).
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Fig. 5.19. RCS plots of measurement alone different sides

5.3.3 RCS Comparison between Grass and Artificial Turf

24GHz RCS Comparison

As shown in Fig. 5.20, artificial turf is placed on different underneath (clay, sand,

asphalt, and concrete). This task not only checks if artificial turf has similar RCS

plot as real grass, but also checks if the underneath material affects the RCS of the

surrogate turf.

The RCS plot is shown in Fig. 5.21 can be interpreted as follows. The horizontal

axis is the distance from the antenna (longer than the actual distance since it is not

calibrated). The vertical axis is the RCS. The vertical blue line is the location of

trihedral corner reflector where the center beam of the radar aimed. The part before
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Fig. 5.20. Turf on clay (left top), on sand (right top), on asphalt (left
bottom), on concrete (right bottom)

the blue line is covered by the radar center beam and downward side beam, which

is not useful since it is affected by antenna coupling and near side ground reflection.

The useful information is in the slant section of each plot starting from the straight

blue line and ending at the beginning of the flat tail part. This section of data is

covered by radar center beam and valid upward side beam. It can best describe the

grass/turf property. It is noted that the real ending line of antenna coupling and near

side ground reflection is not the blue line (trihedral location), and it should be in front

of the blue line. However, the real ending line is hard to define, even if under the same

measurement setup, the position of that line may be different. Therefore, in order to

guarantee the correctness of the grass data analysis, the blue line (trihedral location)

is just chosen as the dividing line. The flat tail part is actually just background

measurement. Therefore, the flat tail part can be ignored.
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Fig. 5.21. The measurement result of Turf on clay (black) on sand
(blue) on asphalt (pink) on concrete (cyan) at different pitch angle
under 24 GHz vertical polarization
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There are two important information shown in Fig. 5.21 for the 24 GHz radar:

1. At any depression angle, artificial turf has almost the same RCS plot when it

is placed on different underneath. Only the plot of turf on concrete is a little

bit lower when the pitch angle is 15-degree and 10-degree, but is still close to

others. Therefore, underneath may not significantly affect artificial turf RCS.

At least, the conclusion can be that the turf put on clay, sand, and asphalt will

show the same radar RCS property.

2. At depression angles 35, 30, 25 and 20, the artificial turf gives the same RCS plot

as real grass! However, at depression angle 15 and 10, the RCS plot of artificial

turf becomes lower than the mean RCS plot of the real grass. In other words,

the artificial turf has similar RCS response with real grass at high depression

angle, but their RCS response becomes different if the Radars depression angle

is lower than 15-degree. In reality, low depression angle is commonly used when

Radar is installed on the vehicle. In this case, artificial turf could not be a good

choice of grass surrogate.

77GHz RCS Comparison

In this experiment, the artificial turf was placed on asphalt ground. The results

of 77GHz RCS measurement at different pitch angles under horizontal polarization is

shown in Fig. 5.22.

Fig. 5.22 shows that the RCS of artificial turf (black plot) is higher than the mean

RCS of the real grass plot at high pitch angles from 35 to 20. Especially at 30-degree,

the RCS plot of the surrogate turf is close to the maximum RCS of the real grass

(but still slightly lower than the maximum RCS). However, the RCS of the artificial

turf matches with the mean RCS of the real grass at lower pitch angles (15-degree

and 10-degree)!

As mentioned before, low depression angle is commonly used for forward-looking

Radar setting. In this case, artificial turf can be used as grass surrogate.
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Fig. 5.22. The measurement result of Turf on Asphalt (black) at
different pitch angle under 77 GHz horizontal polarization
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5.3.4 Summary

A special type of artificial turf is selected as the candidate of grass surrogate. The

experiments prove that density and blade height of this kind of turf will not affect its

RCS much. Moreover, measuring this kind of artificial turf from different sides will

get similar RCS response. In addition, this artificial turf can be used as surrogate

grass when it is measured by 77GHz forwarding Radar at low depression angle (lower

than 15-degree).

5.4 Surrogate Concrete Divider

Based on the study described in Chapter 4, the required 24GHz and 77GHz RCS

for the concrete are both −7.3 ± 1 dB. Therefore, the goal of this task is to find or

create a soft and durable material with reflectivity equals to −7.3 ± 1 dB for both

24GHz and 77GHz Radar. For light weight and durability in vehicle testing, the

surrogate concrete divider is made of foam and skin.

5.4.1 Skin Development

It was a big challenge of developing the surrogate skin of concrete divider. Many

different materials were tested such as conductive fabric, non-conductive fabric, non-

conductive fabric with metallic paint, etc. None of them can satisfy 24GHz and

77GHz requirements at the same time. The latest and most promising skin design is

also a three-layer structure. The front layer is concrete colored paint with proper IR

reflectivity, the middle layer is plastic to keep the strength and back layer is conductive

paint, which controls the 24GHz and 77GHz radar reflectivity.
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Fig. 5.23. Final surrogate concrete divider

5.4.2 Reflectivity Comparison between Real and Surrogate Concrete Di-

vider

Fig. 5.24 shows that the signal response (pointed by green arrow) of the surrogate

concrete divider is the same as that of the real concrete divider measured by 24GHz

Radar (x-axis is the time in ns, and the y-axis is the power intensity in dB). Similarly,

Fig. 5.25 shows that 77GHz signal response of the surrogate concrete divider and real

concrete divider are the same as well.

Fig. 5.24. Measurement data of real concrete divider and surrogate
concrete divider at 24GHz Radar
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Fig. 5.25. Measurement data of real concrete divider and surrogate
concrete divider at 77GHz Radar

A driving measurement was conducted to prove the similarity of the real concrete

divider with concrete divider surrogate from Radar point view using 24GHz Radar.

As shown in Fig. 5.26, the surrogate concrete divider was placed between real concrete

dividers (5 real concrete dividers, 1 surrogate concrete divider). Fig. 5.27 shows that

a 24GHz Radar was put on a pickup truck. The height of Radar against the ground

was about 33 inch. The Radar depression angles changed from 0-degree to 20-degree

(change 5 degrees each time). A pickup truck was 3m away from the concrete divider.

It moved straightforward and scanned 6 concrete dividers (include surrogate) within

the 30s.

Fig. 5.26. Concrete divider surrogate is placed between real concrete dividers
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Fig. 5.27. Moving measurement setup

The top image of Fig. 5.28 is the color map of raw data. The x-axis is the number

of Radar scanning times. It is corresponding to the pickup trucks driving path. The

y-axis is the distance between the radar and object in meters. The color in the figure

from light blue to dark red corresponds to the magnitude of signal response from

20dB to 90dB. The weak response around 7m distance are the ghost data that are

generated by Fast Fourier Transform (FFT), so we can ignore it. The bottom image

of Fig. 5.28 is the maximum response between 2.5m to 5m distance. This image

shows the maximum response of concrete divider at each scanning position.

The magnitudes of all measured concrete divider at each depression angle have

about 10dB oscillation. This is because that it is hard to guarantee the measurement

distance and angle to be consistent during measurement.

When the depression angles are set as 5-degree and 10-degree (Fig. 5.29 and

Fig. 5.30), all concrete dividers have a higher signal response than other depression

angles. The reason is that the surface of the concrete divider is not perpendicular to

the ground, and there is about 6-degree angle between the surface and the normal

line to the ground. Therefore, when the depression angle is between 5-degree and

10-degree, the Radar center beam is more perpendicular to the surface of concrete

divider.

When the depression angle is set as 20-degree (Fig. 5.32), the signal response of

concrete dividers becomes very weak. Moreover, Radar receives a lot signal reflection
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from the ground. Therefore, it is better not to set the depression angle more than

20-degrees. 5-degree to 10-degree is recommended.

According to each pair of figures (from Fig. 5.28 to Fig. 5.32), the surrogate

concrete divider has a very similar signal response to that of the real concrete divider.

However, it is necessary to point out that the non-flat surface of the left segment of the

surrogate concrete divider makes its signal response lower. Therefore, it is important

to make sure the surface is flat.

Fig. 5.28. Measurement result at 0-degee
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Fig. 5.29. Measurement result at 5-degee

Fig. 5.30. Measurement result at 10-degee

Fig. 5.31. Measurement result at 15-degee
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Fig. 5.32. Measurement result at 20-degee

5.4.3 Summary

The measured 24GHz Reflectivity is about -7.3 dB and measured 77GHz Reflectiv-

ity is about -7.5 dB. Therefore, the concrete divider skin design satisfies both 24GHz

and 77GHz reflectivity requirement (−7.3 ± 1 dB).

5.5 Conclusion

This Chapter describes the material and methods of making surrogates for each

roadside objects. For metal guardrail, the foam is used to make the body frame of

W-beam and I-beam. Then a skin is attached to the frame. The 24GHz and 77GHz

RCS plots of both W-beam and I-beam surrogates are similar to that of the real

W-beam and I-beam. For grass, artificial turf can be used as grass surrogate when

77GHz Radar is used and the Radar depression angle set to be 15-degree or lower. For

concrete divider, a special three-layer skin is developed. It can satisfy both 24GHz

and 77GHz requirements.
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusions

This thesis described how to develop surrogate metal guardrail, grass, and con-

crete divider that have the same representative characteristics as real objects from

automotive radar point view.

In Chapter 2, the radar theories that used in this research were summarized.

24GHz and 77GHz FMCW waveform were chosen for the study. Since radar measure-

ments are affected by object’s material property, shape property, and the smoothness

of the surface, radar reflectivity measurement is used if an object has a big flat sur-

face and the smoothness level of the surface is close to the wavelength of the radar.

Otherwise, RCS measurement is used.

Chapter 3 was about preparatory work of radar measurement. This chapter gave

detailed information of 24GHz and 77GHz radar. It also introduced the methods

of doing RCS calibration and reflectivity calibration. The purpose of doing these

calibrations was to find reference data that can be used to calibrate raw data of the

target object.

Chapter 4 and Chapter 5 were the main sections of this thesis. Chapter 4 de-

termined the radar measurement methods for metal guardrail (RCS measurement),

grass (mean RCS measurement), and concrete divider (reflectivity measurement).

The measurement results were discussed. According to these results, the requirement

of each surrogate object was determined.

Chapter 5 focused on the generation and verification of the surrogate objects. A

three-layer skin (plastic film, zinc, and aluminate film) is developed for the surrogate

metal guardrail. A special type of artificial turf that can be used as grass surrogate

is found. A three-layer skin (concrete colored paint, plastic, conductive paint) is



113

created for the surrogate concrete divider. The radar characteristics of all of these

surrogates were measured. The results verified that three surrogates have similar

radar properties to the real objects.

6.2 Main Contributions of This Thesis

This thesis proposed radar measurement methods for roadside objects and de-

termined the radar properties of the three most common roadside objects, metal

guardrail, grass, and concrete divider. According to those radar properties, soft,

durable, and reusable materials were found/created for making surrogate roadside

objects. Three developed surrogates have the same characteristics as real represen-

tative objects. These surrogates can be used to replace the real roadside objects to

create a safe and consistent vehicle-testing environment for better testing and scoring

the new generation of vehicle technologies.

6.3 Future Work

This research developed three types of roadside objects surrogates: metal guardrail,

grass, and concrete divider. In the future, more types of roadside surrogates such as

traffic cone, traffic pole, fences, can be developed using the same process described in

this thesis.
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