
CHROMOSOME 3D STRUCTURE MODELING AND

NEW APPROACHES FOR GENERAL STATISTICAL INFERENCE

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Rongrong Zhang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Michael Yu Zhu, Chair

Department of Statistics

Bruce A. Craig

Department of Statistics

Chuanhai Liu

Department of Statistics

Xiao Wang

Department of Statistics

Approved by:

Jun Xie

Head of the Departmental Graduate Program

iii

To my family.

iv

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude towards my advisor,

Professor Michael Yu Zhu, for his guidance and continuous encouragement during

my PhD study at Purdue University. His guidance not only helped me in my PhD

research, it will also have lasting impact on my future career.

I would also like to thank Professor Bruce A. Craig, Professor Chuanhai Liu, and

Professor Xiao Wang, for their time and effort serving as my committee members.

I thank them for their insightful comments, and valuable suggestions on my thesis.

I sincerely thank Professor Ming Hu at Cleveland Clinic Foundation for his incisive

suggestions and guidance in my research.

I am so grateful for being here at Purdue. I thank all the faculty members, the

staff, and my fellow students at the Department of Statistics. They made my time

at Purdue full of happiness, joy, and laughter. I am also so thankful to my fellow

students in Professor Zhu’s research group for their help on my research. I would

never forget the time when we learned Spark and Tensorflow together, which made

my study at Purdue more valuable.

Last but by no means the least, I must express my very profound gratitude to

my parents, and my grandparents for providing me with unfailing support and un-

conditional love throughout my years of study in the US and through the process

of writing this thesis. A special thank goes to my boyfriend, Bangda Zhou, for his

companionship during the challenges of graduate, and for him always being there

answering my coding related questions. I would never achieve this accomplishment

without them. Thank you!

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . x

ABSTRACT . xii

1 Inferring Spatial Organization of Chromsomes via Piecewise Helical Model . 1

1.1 Introduction . 1

1.2 Methods . 4

1.2.1 Piecewise helical curve representation 4

1.2.2 Piecewise Helical Model for Contact Frequencies within TAD . . 10

1.2.3 Piecewise Helical Model for Contact Frequencies within whole
Chromosome . 12

1.2.4 Heterogeneity and Mixture of Piecewise Helical Models 17

1.3 Simulation Studies . 19

1.3.1 Simulation study when Hi-C data is simulated from a single helix 19

1.3.2 Simulation study when Hi-C data is simulated from one piece-
wise helical curve . 23

1.3.3 Simulation study when Hi-C data is simulated from multiple
piecewise helical curves . 27

1.3.4 Simulation study when Hi-C data is simulated from mixture of
two piecewise helical curves . 30

1.4 Real Data Application . 32

1.4.1 Data description . 32

1.4.2 Results of PHM on TADs . 35

1.4.3 Model validation with gold standard FISH data 39

1.4.4 Results of PHM on whole Chromosomes 43

2 Deep neural network based Bayesian estimators and model selectors 45

vi

Page

2.1 Introduction . 45

2.2 Neural Bayes Estimator . 53

2.2.1 Proposed Method . 53

2.2.2 Simulation Studies . 55

2.2.3 Application in GLMM . 57

2.2.4 Selection of hyper parameters in training 67

2.3 Neural Model Selector and Parameter Estimator 68

2.3.1 Labeled data and loss functions 69

2.3.2 Two types of architectures . 71

2.3.3 Relationship between neural model selector and Bayes factor . . 73

2.3.4 Simulation results . 74

2.3.5 Neural selector for models with covariates 84

3 NECESSARY AND SUFFICIENT CONDITIONS FOR REGULAR CON-
DITIONAL INFERENTIAL MODELS . 97

3.1 Introduction . 97

3.2 Inferential Models . 98

3.2.1 Basic Inferential Models . 98

3.2.2 Conditional Inferential Models 100

3.3 The problem and Main results . 102

3.3.1 Differential equations-based technique for finding conditional
associations . 102

3.3.2 Single parameter case . 103

3.3.3 Multi-parameter case . 105

3.4 Discussion . 107

3.5 Proofs . 107

3.5.1 Existence of First Order Ordinary Differential Equations . . . 107

3.5.2 Method of Characteristics . 108

3.5.3 Proof of Theorem 1 . 108

3.5.4 Proof of n observations with single parameter 111

vii

Page

3.5.5 Proof for 3 observations and 2 parameters case 113

3.5.6 Proof for n observations and 2 parameters case 114

3.5.7 Independence theorem proof 118

3.5.8 Proof for 4 observations and 3 parameters case 119

4 Future work . 124

4.1 Future Research Topics for Modeling Chromosome Structures Using
Hi-C data . 124

4.2 Future Research Topics for Deep Neural Network based Automated
Statistical Analysis . 125

REFERENCES . 127

VITA . 135

viii

LIST OF TABLES

Table Page

1.1 Summary statistics of the posterior distribution of unknown parameters
in simulation study when Hi-C data is simulated from a single helix 22

1.2 Summary statistics of the posterior distribution of unknown parameters
in simulation study when Hi-C data is simulated from a piecewise helical
curve . 26

1.3 Summary statistics of the posterior distribution of main parameters in
simulation study when Hi-C data is simulated from multiple piecewise
helical curves . 29

1.4 Summary statistics of the posterior distribution of main parameters in
simulation study when Hi-C data is simulated from mixture piecewise
helical model . 31

1.5 Pearson correlation coefficients between the number of loops and the ge-
netic and epgenetic features. 38

1.6 Spearman correlation coefficients between the HindIII samples and the
NcoI samples. 38

1.7 Spearman correlation coefficients between inferred structures at different
resolutions. 41

1.8 Six pairs of genes with FISH measurement. 41

1.9 Topological domain annotation for genes with FISH measurement. 42

1.10 Pearson correlation coefficients with FISH data. 43

2.1 Simulation results of conjugate Bayesian estimation of Normal distribution 56

2.2 MSE for Gaussian mixed model with two variance components: compari-
son with R results, mean squared error over 1000 test cases. Sample size
= 100 . 61

2.3 MSE for Poisson mixed model with two variance components: comparison
with R results, mean squared error over 1000 test cases. Sample size for
the CNN training is denoted in the parenthesis. 64

ix

Table Page

2.4 MSE for Poisson mixed model with three variance components : compar-
ison with R results, mean squared error over 1000 test cases. Sample size
for the CNN training is denoted in the parenthesis. 66

2.5 MSE for Mixed effect Logistic regression with three variance components:
comparison with R results, mean squared error over 1000 test cases. Sam-
ple size for the training is denoted in the parenthesis. 67

2.6 Comparison of different sampling methods 68

2.7 List of 50 models used in the simulation study: part I 76

2.8 List of 50 models used in the simulation study: part II 77

2.9 Model selection results under all the combinations of SA architecture,
CNN architecture, number of candidate models K, and sample size N . . . 81

2.10 Comparison of model selection methods on model set with K = 20. 84

2.11 Parameter estimation results under all the combinations of SA architec-
ture, CNN architecture, number of candidate models K, and sample size
N . 90

x

LIST OF FIGURES

Figure Page

1.1 A piecewise helical curve consisting of two helices 5

1.2 Contour plot of log likelihood shows high correlation between curvature
and torsion in the single helix model . 13

1.3 Demonstration of how to cut the original square matrix to pieces for two-
step inference procedure. 15

1.4 Single helix simulation study: MCMC . 20

1.5 Single helix simulation study: model fitting 21

1.6 Posterior predictive check. The solid black line represents the summary
statistics calculated from the Hi-C data. 23

1.7 Piecewise helical curve simulation study: MCMC 25

1.8 Piecewise helical curve simulation study: model fitting 25

1.9 Two exactly same piecewise helical curve just with different starting ori-
entations . 29

1.10 Exploratory analysis of 40 KB resolution Hi-C contact matrix of a topo-
logical domain in mouse chromosome 18, 33,960,001 – 34,960,000 33

1.11 BACH-predicted 3D chromosomal structures under the beads-on-a-string
representation. 34

1.12 3D chromosomal structures predicted by the piecewise helical model 35

1.13 3D chromosomal structures predicted by the piecewise helical model 37

1.14 Reproducibility of inferred 3D chromosomal structure of 500-topological-
domain genomic regions between the HindIII sample and the NcoI sample. 37

1.15 Stability across resolutions: HindIII sample 39

1.16 Stability across resolutions: NcoI sample 40

1.17 Predicted spatial distance using the piecewise helical model vs. the gold
standard FISH data . 42

1.18 The predicted structure of chromosome 19 from mESC cells under 40kb
resolution. 44

xi

Figure Page

2.1 Histograms of squared errors of 1,000 test cases. 62

2.2 Mean squared error loss on the testing data over different number of iter-
ations under the Poisson model 2.10 . 69

2.3 SA Architecture, from top to bottom: NSA, FSA, PSA-1 72

2.4 Parameter estimation results on the test dataset with K = 50 80

2.5 Comparison between NSA and PSA-l . 82

2.6 Comparison between NSA and PSA-2 . 86

2.7 Comparison between NSA and PSA-3 . 87

2.8 Comparison between NSA and PSA-5 . 88

2.9 Information sharing comparison for medium and large CNN architectures,
K = 50 and N = 100 . 89

2.10 Confusion matrix based on large CNN and PSA-5 neural model selector
on test dataset with K = 20 . 91

2.11 Distribution wise performance of PSA-5 neural parameter estimator under
large CNN on the test dataset with N = 900. Part 1. 92

2.12 Distribution wise performance of PSA-5 neural parameter estimator under
large CNN on the test dataset with N = 900. Part 2. 93

2.13 Distribution wise performance of PSA-5 neural parameter estimator under
large CNN on the test dataset with N = 900. Part 3. 94

2.14 Distribution wise performance of PSA-5 neural parameter estimator under
large CNN on the test dataset with N = 900. Part 4. 95

2.15 Distribution wise performance of PSA-5 neural parameter estimator under
large CNN on the test dataset with N = 900. Part 5. 96

xii

ABSTRACT

Zhang, Rongrong PhD, Purdue University, December 2018. Chromosome 3D Struc-
ture Modeling and New Approaches For General Statistical Inference . Major
Professor: Michael Yu Zhu.

This thesis consists of two separate topics, which include the use of piecewise

helical models for the inference of 3D spatial organizations of chromosomes and new

approaches for general statistical inference.

The recently developed Hi-C technology enables a genome-wide view of chromo-

some spatial organizations, and has shed deep insights into genome structure and

genome function. However, multiple sources of uncertainties make downstream data

analysis and interpretation challenging. Specifically, statistical models for inferring

three-dimensional (3D) chromosomal structure from Hi-C data are far from their

maturity. Most existing methods are highly over-parameterized, lacking clear inter-

pretations, and sensitive to outliers. We propose a parsimonious, easy to interpret,

and robust piecewise helical curve model for the inference of 3D chromosomal struc-

tures from Hi-C data, for both individual topologically associated domains and whole

chromosomes. When applied to a real Hi-C dataset, the piecewise helical model not

only achieves much better model fitting than existing models, but also reveals that

geometric properties of chromatin spatial organization are closely related to genome

function.

For potential applications in big data analytics and machine learning, we pro-

pose to use deep neural networks to automate the Bayesian model selection and

parameter estimation procedures. Two such frameworks are developed under differ-

ent scenarios. First, we construct a deep neural network-based Bayes estimator for

the parameters of a given model. The neural Bayes estimator mitigates the compu-

xiii

tational challenges faced by traditional approaches for computing Bayes estimators.

When applied to the generalized linear mixed models, the neural Bayes estimator

outperforms existing methods implemented in R packages and SAS procedures. Sec-

ond, we construct a deep convolutional neural networks-based framework to perform

simultaneous Bayesian model selection and parameter estimation. We refer to the

neural networks for model selection and parameter estimation in the framework as the

neural model selector and parameter estimator, respectively, which can be properly

trained using labeled data systematically generated from candidate models. Simula-

tion study shows that both the neural selector and estimator demonstrate excellent

performances.

The theory of Conditional Inferential Models (CIMs) has been introduced to com-

bine information for efficient inference in the Inferential Models framework for prior-

free and yet valid probabilistic inference. While the general theory is subject to

further development, the so-called regular CIMs are simple. We establish and prove a

necessary and sufficient condition for the existence and identification of regular CIMs.

More specifically, it is shown that for inference based on a sample from continuous

distributions with unknown parameters, the corresponding CIM is regular if and only

if the unknown parameters are generalized location and scale parameters, indexing

the transformations of an affine group.

1

1. INFERRING SPATIAL ORGANIZATION OF

CHROMSOMES VIA PIECEWISE HELICAL MODEL

In this chapter, we focus on the problem of inferring spatial organization of chromo-

somes via piecewise helical models, both locally and globally. We start with a review

of comprehensive technique to capture the conformation of genomes - HIC techinique,

and reviewed advantages and disadvantages of existing methods of reconstructing the

struture of choromosomes in Section 1.1. Section 1.2 describes the proposed piece-

wise helical models. In Section 1.3 and 1.4, we explored the performance of proposed

approach under different simulation studies and a real data example.

1.1 Introduction

Spatial organizations of chromosomes form the three-dimensional (3D) structural

basis of gene expression regulation, DNA replication, and DNA repair [1]. Under-

standing how chromatin folds and its functional implications has attracted wide at-

tention of the scientific community for many decades. Since early 1980s, scientists

have been using microscopic-based methods, such as fluorescence in situ hybridization

(FISH) [2] to study the relative positioning of genomic loci in each cell. Although

very successful, these microscopic- based methods are limited by their low throughput

capacities. To achieve higher throughput, Dekker et al. developed the revolutionary

chromosome conformation capture (3C) technology, which simultaneously interro-

gates the entire cell population [3]. Lieberman-Aiden et al. further coupled 3C with

next generation sequencing technologies, named the resulting method as Hi-C, and ob-

tained the first genome-wide view of chromosome spatial organizations [4]. Recently,

Hi-C and the related technologies, such as ChIA-PET [5], TCC [6], and single-cell

2

Hi-C [7] have been widely used and shed deep insights into genome structure and

genome functions [8, 9].

In Hi-C experiments, two chromatin regions with close spatial proximity are first

cross-linked and then cut into fragments by restriction enzyme. The ends of two

nearby fragments are fused together to form a ligation product. Such ligation product

is further sheared into short pieces, and sequenced from both ends by next generation

sequencing technologies. Following sequencing, the resulting pairend reads are aligned

to the reference genome. Hi-C experiments measure chromatin interactions in millions

of cells simultaneously. A higher number of aligned pair-end reads indicates more

frequent chromatin interactions and closer spatial proximity.

A fundamental question in Hi-C data analysis is to study spatial organizations

of chromosomes. Biophysicists have proposed several polymer models to study bio-

physical principles governing chromatin folding [10–15]. The basic idea of polymer

models is that chromatin interaction energy, derived from the underlying biophysical

principles, determines the specific conformation of chromosome folding. However,

these polymer models cannot fully accommodate and explain the inherent random-

ness in Hi-C data. To fill in this gap, data-driven statistical approaches have been

developed to model uncertainties of Hi-C data and study chromatin dynamics in the

cell population [16, 17]. Despite from different perspectives, both polymer models

and statistical models characterize spatial organizations of chromosomes via simi-

lar beads-on-a-string representation: they first partition a genomic region of interest

into non-overlapped, consecutive bins (beads) based on their genomic order (string),

and then estimate the Euclidean coordinates of each bin (bead). Without any spe-

cific geometric assumptions, such a beads-on-a-string representation is highly over-

parameterized and sensitive to outliers. It is also difficult to take full advantage of

the knowledge of biophysical constraints on the resulting structure.

To overcome the limitations of the beads-on-a-string representation, we propose

a parsimonious, easy to interpret, and robust piecewise helical model for inferring

spatial organizations of individual topologically associated domains (TADs) from Hi-

3

C data. Similar helix models have been successfully applied to studies of protein

folding [18, 19] and gene expression regulation [20]. To the best of our knowledge,

such modeling strategies have not been employed in Hi-C data analysis yet.

The motivation of the proposed piecewise helical model comes from two per-

spectives. First of all, existing methods, such as BACH [17], ChromSDE [15] and

pastis [21], have showed that although large scale chromatin folding is highly dy-

namic, local scale chromatin folding, especially within topologically associated do-

mains (TADs) [22], can be very stable. Therefore, we assume that chromatin within

a TAD exhibits a consensus spatial organization among the cell population. No-

ticeably, two recent Hi-C studies [23, 24] have shown that the paternal allele and

maternal allele exhibit highly similar chromatin organization features for autosome

chromosomes. Therefore, in this work, we assume that two homologous autosome

alleles share the same 3D consensus structure, and do not account for allele-specific

chromatin spatial organizations. Additionally, it is known from geometry that any

3D curve can be uniquely determined by its local curvature and torsion. As a special

case, a constant curvature and constant torsion leads to a helical curve. Since any

continuous function can be approximated by piecewise constant function, the cur-

vature and torsion of an arbitrary 3D curve can be approximated in the same way.

Therefore, any continuous 3D curve can be approximated by several well-connected

helixes, which we refer to as a piecewise helical curve. From these two motivations,

we propose a piecewise helical model to characterize the consensus 3D chromosomal

structure within TADs.

We have performed exploratory analysis on a real Hi-C dataset [22] using the

existing method BACH, and the results confirmed our motivation for using piecewise

helical curve to locally characterize the 3D chromatin folding structure. Specially,

Fig. 1.11 in Section 1.4 of this chapter demonstrates a BACH-predicted 3D structure

of a 1Mb TAD (mouse chromosome 18,33,960,001 – 34,960,000) at 40kb resolution,

which can be well approximated by a piecewise helical curve. More importantly,

compared to the beads-on-astring model, our proposed piecewise helical model only

4

involves curvatures and torsions as primary unknown parameters, resulting in a highly

efficient computational algorithm with straightforward geometric interpretations. In

addition, genomic distance between any two loci could be easily incorporated in a

piecewise helical model as the arc length between them to protect against potential

outliers, leading to a robust 3D structural model for chromatin folding.

1.2 Methods

1.2.1 Piecewise helical curve representation

Let rrr represent a 3D curve, and rrr(s) = (r1(s), r2(s), r3(s)) represent the Euclidean

coordinates of a point on the curve, where s ∈ [0, S] is the arc length parameter such

that |rrr′(s)| = 1.

From curve geometry, the Frenet frame [25] as a local coordinate system deter-

mines the dynamics and geometry of a curve. The Frenet frame of rrr consists of the tan-

gent vector ttt(s) = (t1(s), t2(s), t3(s)), the normal vector nnn(s) = (n1(s), n2(s), n3(s)),

and the binormal vector bbb(s) = (b1(s), b2(s), b3(s)), and these three vectors are or-

thonormal to each other. At a given s, the collection of ttt(s), nnn(s), and bbb(s) , denoted

as {ttt(s),nnn(s), bbb(s)} is referred to as the orientation of the curve at s. Furthermore,

together with rrr(s) , the vectors satisfy a system of differential equations which are

called the Frenet equations and given as follows:

rrr′(s) = ttt(s),

ttt′(s) = κ(s)nnn(s),

nnn′(s) = −κ(s)ttt(s) + τ(s)bbb(s),

bbb′(s) = −τ(s)nnn(s).

Here ()′ denotes the differentiation with respect to the arc length parameter s.

κ(s) is the curvature of the curve at s, which represents how fast the curve deviates

from a straight line at s, and τ(s) is the torsion of the curve at s, which represents

how fast it twists from a flat plane at s. As noted previously, the geometry of the

curve is controlled by the Frenet frame, the curvature and the torsion. Once the

5

curvature function κ(s), the torsion function τ(s), the starting point rrr(0), and the

orientation {ttt(0),nnn(0), bbb(0)} at the starting point are given, the entire curve can be

constructed by solving the Frenet equations.

When both κ(s) and τ(s) are constants, the resulting curve is a helix. Helixes

are arguably the simplest 3D curves. They, however, can give rise to more complex

curves. One way to construct more complex 3D curves from helixes is to connect

the latter piece by piece, each of which may have different constant curvatures and

torsions. We denote a curve constructed in such way as a piecewise helical curve.

Fig. 1.1.: A piecewise helical curve consisting of two helices

Fig. 1.1 shows an example of a piecewise helical curve consisting of two helixes.

The first helix starts at rrr(0) and its orientation at s = 0 is given by {ttt(0),nnn(0), bbb(0)}.

The curvature and torsion of the first helix are 0.5 and 0.3, respectively. The

ending point of the first helix is rrr(c1) and the orientation at the ending point is

{ttt(c1),nnn(c1), bbb(c1)}) . The starting point of the second helix is rrr(c1). Therefore, the

two helixes are connected continuously. The initial orientation of the second helix at

rrr(c1) is {ttt(1),nnn(1), bbb(1)}. If it is identical to {ttt(c1),nnn(c1), bbb(c1)}) , then the two helixes

are set to be smoothly connected. Otherwise, they are set to be flexibly connected.

Note that the two helixes in Fig. 1.1 are flexibly connected. The curvature of the sec-

ond helix is 0.5 while the torsion is 0.2. The ending point is rrr(c2). In summary, a piece-

wise helical curve of two helixes are uniquely determined by the starting point rrr(0) ,

6

the location c1 where the two helixes are connected, the location c2 where the second

helix ends, a list of pairs giving the curvatures and torsions, {(κ(1), τ (1)), (κ(2), τ (2))},

and a list of triples giving the orientations, {(ttt(0),nnn(0), bbb(0)), (ttt(1),nnn(1), bbb(1))}. The curve

can be constructed by solving the Frenet equations.

We use the notations from the previous work [18] and define a 12-dimensional

vector:

YYY = (t1, n1, b1, t2, n2, b2, t3, n3, b3, r1, r2, r3),

whose entries are consisting of nine components of the three basis vectors in the Frenet

frame and three coordinates of the point on the curve. Then the Frenet equations

can be summarized into the following matrix form:

YYY ′ = M(s)(((Y),

where

M =


F 0 0 0

0 F 0 0

0 0 F 0

V1 V2 V3 0



F =


0 κ(s) 0

−κ(s) 0 τ(s)

0 −τ(s) 0



V1 =


1 0 0

0 0 0

0 0 0

 , V2 =


0 0 0

1 0 0

0 0 0

 , V3 =


0 0 0

0 0 0

1 0 0


For the first helix with constant curvature κ(1) and torsion τ (1) in Fig. 1.1, the

matrix M is a constant matrix, and the Frenet equations become a system of homo-

geneous first order linear differential equations with constant coefficients. Given the

initial value YYY (0), the solution [18] to the Frenet equations is given by:

YYY (1)(s) = A(κ(1), τ (1), s)YYY (0), 0 ≤ s ≤ c1.

7

where

YYY (0) = (t
(0)
1 , n

(0)
1 , b

(0)
1 , t

(0)
2 , n

(0)
2 , b

(0)
2 , t

(0)
3 , n

(0)
3 , b

(0)
3 , r

(0)
1 , r

(0)
2 , r

(0)
3),

and

A(κ, τ, s) =


a 0 0 0

0 a 0 0

0 0 a 0

b1 b2 b3 I3



a =


τ 2 + κ2 cos(αs)

α2

κ sin(αs)

α

κτ(1− cos(αs))

α2

−κ sin(αs)

α
cos(αs)

τ sin(αs)

α
κτ(1− cos(αs))

α2
−τ sin(αs)

α

κ2 + τ 2 cos(αs)

α2



b1 =


αsτ 2 + κ2 sin(αs)

α3

κ(1− cos(αs))

α2

κτ(αs− sin(αs))

α3

0 0 0

0 0 0



b2 =


0 0 0

αsτ 2 + κ2 sin(αs)

α3

κ(1− cos(αs))

α2

κτ(αs− sin(αs))

α3

0 0 0



b3 =


0 0 0

αsτ 2 + κ2 sin(αs)

α3

κ(1− cos(αs))

α2

κτ(αs− sin(αs))

α3

0 0 0


α =
√
κ2 + τ 2,

and I3 is the 3× 3 identity matrix.

YYY (1)(c1) explicitly gives the orientation at the ending point, and the coordinates

of the ending point of the first helix are rrr(c1) = (r
(1)
1 , r

(1)
2 , r

(1)
3).

8

If the starting point rrr(0) is the origin, i.e. rrr(0) = (0, 0, 0) and the orientation at

0 is given by the standard basis of R3, i.e. {ttt = {1, 0, 0},nnn = {0, 1, 0}, bbb = {0, 0, 1}},

the parametric expression of the first helix could be simplified as follows:

rrr(s) =


r1(s)

r2(s)

r3(3)

 =


κ

α2
cos(αs)

κ

α2
sin(αs)

τ

α
s

 , (1.1)

α =
√
κ2 + τ 2, 0 ≤ s ≤ c1

As discussed previously, to construct the second helix, rrr(c1) is served as the start-

ing point of the second helix and the orientation at starting point is {ttt(1),nnn(1), bbb(1)}.

The solution of the Frenet equations of the second helix is given by:

YYY (2)(s) = A(κ(2), τ (2), s− c1)YYY (c1), c1 ≤ s ≤ c2,

where

YYY (c1) = (t
(1)
1 , n

(1)
1 , b

(1)
1 , t

(1)
2 , n

(1)
2 , b

(1)
2 , t

(1)
3 , n

(1)
3 , b

(1)
3 , r

(1)
1 , r

(1)
2 , r

(1)
3)

The last three components of the vector YYY (2)(c2) give the coordinates of the ending

point rrr(c2).

It is straightforward to extend the piecewise helical curve with two helixes to that

with H helixes. Suppose the latter is defined for s ∈ [0, S], rrr(c0) = rrr(0) is the starting

point, c1, c2, · · · , cH−1 are the H − 1 locations where the H helixes connect to each

other consecutively, and rrr(cH) = r(S) is the ending point.

The j-th helix is defined from cj−1 to cj, rrr
(j−1) = rrr(cj−1) is the starting point, the

curvature and torsion are κ(j) and τ (j), the orientation at rrr(j−1) is {ttt(j−1),nnn(j−1), bbb(j−1)}.

By recursively applying the procedures used for two helixes, the solution to the Frenet

equations of the j-th helix is given by:

YYY (j)(s) = A(κ(j), τ (j), s− cj−1)YYY (cj−1), cj−1 ≤ s ≤ cj.

where

YYY (ci) = (t
(i)
1 , n

(i)
1 , b

(i)
1 , t

(i)
2 , n

(i)
2 , b

(i)
2 , t

(i)
3 , n

(i)
3 , b

(i)
3 , r

(i)
1 , r

(i)
2 r

(i)
3),

i = j − 1, j = 1, 2, · · · , H.

9

If all the helixes are smoothly connected, the recursive solution to the Frenet

equations could be simplified as

YYY (j)(s) = A(κ(j), τ (j), s− cj−1)

[
j−1∏
k=1

A(κ(k), τ (k), ck − ck−1)

]
YYY (0), (1.2)

cj−1 ≤ s ≤ cj, j ≥ 2.

Since, any arbitrary 1D function can be approximated by a piecewise constant

function, the curvature and torsion functions of any 3D curve can be approximated

in the same way. As discussed above, a curve with piecewise constant curvature

and torsion functions is a piecewise helical curve. Hence the piecewise helical curve

representation is flexible enough to model any 3D curve.

Compared with the over-parameterized beads-on-astring representation, the piece-

wise helical curve representation is much simpler. It is a parsimonious representation

with a finite number of parameters, which can be much smaller than the total number

of coordinates of loci in the domain of interest. Moreover, the piecewise helical curve

representation is mathematical tractable. The spatial distance between any two ge-

nomic loci can be expressed recursively as a function of a series of curvatures, torsions

and orientation vectors, and all these parameters have clear geometric interpretations.

The proposed piecewise helical representation is a model for 3D curve, and doesn’t

need additional spatial constraints. On the other hand, the beads-on-a-string model,

used by existing methods such as ChromSDE and pastis, do not impose any spatial

constraints and entirely rely on the spatial pattern present in Hi-C data, making the

model unstable and sensitive to outliers. Therefore, the piecewise helical model is

more preferable to the beads-on-a-string model in terms of model robustness.

10

1.2.2 Piecewise Helical Model for Contact Frequencies within TAD

Piecewise Helical Model

Topological associate domain (TAD), the basic unit of genome structure and

genome function, is much shorter domain compared with whole chromosome, and

can be approximated by the piecewise helical curve. Using the piecewise helical curve

representation, we propose a statistical model to link Hi-C data to pair-wise spatial

distances between genomic loci in a TAD.

We use the piecewise helical curve with H helixes to approximate the 3D structure

of the TAD of interest. Suppose the total number of loci in the TAD is N , and

their corresponding positions on the curve are rrr(s1), · · · , rrr(sN). Then, the Euclidean

distance between any two loci i and j , denoted as dij = d(si, sj), is given by:

dij =
√

(r1(si)− r1(sj))2 + (r2(si)− r2(sj))2 + (r3(si)− r3(sj))2.

Let Yij represent the number of pair-end reads spanning the two genomic loci i

and j, i, j ∈ {1, · · · , N}. To account for the over-dispersion in Hi-C data (see Section

4), we propose the following negative binomial model for Yij:

Yij ∼ NB(θij, φ).

In this model, Yij has mean θij, variance θij + θ2
ij/φ, and dispersion parameter φ.

Furthermore, we model the relationship between log θij and log dij and local genomic

features as follows:

log θij = log eij + β0 + β1(log dij),

where

eij = exp (βenz log(EiEj) + βgcc log(GiGj) + βmap log(MiMj)) .

In this model, Ei, Ej, Gi, Gj,Mi,Mj are the restriction enzyme cutting frequency,

GC content, and sequence mappability of loci i and loci j, respectively, and βenz,

βgcc, βmap, β0, and β1 are unknown coefficients. β0 represents the over-all sequencing

11

depth, and β1 represents the link coefficient between spatial distance and chromatin

interaction frequency. Note that β1 is expected to be negative.

We assume that all Yij’s are independent. The joint likelihood is given as follows:

L ({Yij}1≤i,j≤N |{dij}1≤i,j≤N , φ) =
∏

1≤i,j≤N

(
φ

φ+ θij

)φ
Γ(φ+ Yij)

Γ(φ)Yij!

(
θij

φ+ θij

)Yij
,

where log θij = log eij + β0 + β1 log dij.

Model Implementation

Since Hi-C data do not contain information about the absolute spatial distance,

piecewise helical models are not identifiable up to a scaling factor. For example, as-

sume that the helix has curvature κ, torsion τ and total arc length S. For any positive

constant C, two sets of parameters (β0, β1, κ, τ, S), and (β0+β1 logC, β1, Cκ, Cτ, S/C)

can achieve the same likelihood value in our posited negative binomial model. To re-

solve this non-identifiability issue without loss of generality, we normalize the absolute

scale of the piecewise helical curve such that∑
1≤i<j≤N

log dij = 0.

Recall the equation (1.1) for the helix starting from the origin. The first two

coordinates of the helix are periodical, and we refer to each period as a loop of this

helix. For a helix with curvature κ, torsion τ and total arc length S, the number of

loops, which is denoted as L, is given as follows:

L =

√
κ2 + τ 2 ∗ S

2π
.

For any helix that contains N genomic loci, we add the following constraint on L:

L ≤ N/2.

The purpose of imposing this constraint is to exclude helixes that have an excessive

number of loops. Equivalently, this constraint requires that on average each loop

contains at least two genomic loci.

12

Additional assumptions are imposed on the piecewise constant curvatures and

torsions in the piecewise helical model to avoid over-fitting. We require that the

helixes within a piecewise helical curve to have equal length, which is equivalent to

requiring that the helixes have an equal number of genomic loci. We use the Bayesian

Information Criterion (BIC) [26] to determine the number of helixes for a TAD. Note

that the curvatures and torsions for all helixes and orientation vectors ttt, nnn, bbb at

the connection points are collectively the primary parameters of the piecewise helical

model.

A fully Bayesian approach with Markov Chain Monte Carlo (MCMC) techniques

is adopted for fitting the piecewise helical model and performing the subsequent sta-

tistical inference. Uniform prior Unif [0.001, 1000] is chosen for curvature κ , torsion

τ and over-dispersion parameter φ . Non-informative priors are used for the other pa-

rameters in the piecewise helical model. The random walk Metropolis within Gibbs

algorithm [27] is implemented to sample the joint posterior distribution. Fig. 1.2

shows high correlation between curvature and torsion in the single helix model. In

order to improve the sampling efficiency, the multiple-try Metropolis algorithm [27]

is applied to sample curvature and torsion simultaneously. When fitting the piece-

wise helical model, we ran 50,000 MCMC iterations. The first 10,000 samples were

discarded as the burn-in stage, and then every 50th sample in the last 40,000 samples

were used for posterior inference.

1.2.3 Piecewise Helical Model for Contact Frequencies within whole Chro-

mosome

Depending on sequencing depths in Hi-C technique, the commonly used sizes of

bins can range from 1 kb to 1 Mb. The bin size of Hi-C interaction matrix is also

referred to as ’resolution’. Then the size of contact matrix could range from hundreds

to hundreds of thousands for different resolutions. It is clear that higher resolution

(smaller bin size) will provide more insights about the structure of chromosome,

13

Fig. 1.2.: Contour plot of log likelihood shows high correlation between curvature and

torsion in the single helix model. We simulate a Hi-C data from the posited helix

model with curvature 1.55 and torsion 0.76. The contour plot shows the log likelihood

of all combinations of 200 curvatures and 200 torsions. Red dot represents the location

of the combination of true curvature and true torsion used in the simulation, which

corresponds to the highest log likelihood.

14

but it also requires more computation. A critical hurdle in developing piecewise

helical curve for the whole chromosome is that the computation cost. In the PHM

model we proposed for TAD, we calculate the coordinates of the points on the helical

curve iteratively, and we recalculate the coordinates of all points once we update

one parameter in MCMC steps. The computation cost increases exponentially with

respect to the resolution We proposed a two-step procedure to infer the structure

for the whole chromosome. The main idea of this two-step procedure is divide and

combine, in which we will first divide the whole chromosome into pieces, apply PHM

to all pieces in parallel, and second find the way to connect all these pieces together

to make the whole structure.

To be more specific, suppose that in the Hi-C experiment the whole chromosome

is divided into N equally sized bins, and the size of the contact matrix is N × N .

We will use A = (aij) to denote this Hi-C contact matrix, where aij denotes the

number of pair-end reads between loci i and j for 1 ≤ i, j ≤ N . It’s assumed that

the structure of the whole chromosome is composed of contains H piecewise helical

curves. We describe the two-step procedure of reconstructing the structure of the

whole chromosome as follows.

Step 1: Parallel construction of the structures of domains. We first divide

the whole chromosome into H equally sized sub-pieces. We denote the center points

of these H pieces as p1, p2, · · · , pH , where p0 and pH+1 are the starting and ending

points of the whole chromosome. Then the distance from p0 to p1 is n/2, the distance

between pi and pi+1 is n for 1 ≤ i ≤ H − 1, and the distance between pH to the end

of the chromosome pH+1 is n/2, where n = N/M .

The first step is to reconstruct the structures of domains on the chromosome

between consecutive points pi and pi+1, i = 0, · · · , H. To reconstruct the structure of

domain i, we simply apply the PHM method to the contact matrix for bins between

15

Fig. 1.3.: Demonstration of how to cut the original square matrix to pieces for two-

step inference procedure.

pi and pi+1, which is the diagonal submatrix of the original contact matrix A from pi

to pi+1 and is denoted as Ai, refer to the red square matrix in Fig. 1.3.

A =


A0 · · · · · · · · ·

· · · A1 · · · · · ·
...

...
. . .

...

· · · · · · · · · AH

 . (1.3)

Since those sub-pieces do not overlap, reconstructions can be done in parallel to

save computation time. Note that the A0 and AH are just the half size of the others.

Fig. 1.3 shows an example in which the curve is cut into three pieces. We will apply

PHM method to red square matrices on the diagonal to reconstruct the structures of

three pieces in parallel.

Step 2: Connect sub-pieces. After reconstruction of structures of H+1 domains,

we will connect them continuously to make the structure for whole chromosome in step

two. We need to know how two consecutive domains are connected to each other. To

be specific, we need to know the relative orientation between two consecutive curves,

which are defined by Frenet frames.

16

Reconstruction procedure of piecewise helical curve returns the curvature vector,

torsion vector, and the Frenet frames at all junction points. For example, after Step

one, we obtain ~κ0, ~τ0 and a set of ttt0,nnn0, bbb0’s for domain from p0 to p1 as shown in

Fig. 1.3. For domain from p1 to p2, we obtain another set of ~κ1, ~τ1 and ttt1,nnn1, bbb1’s.

But we will need to rotate the domain from p1 to p2 before we continuous connect it

to domain from p0 to p1.

The off diagonal cells in the contact matrix A provide insights to the relative

structure of loci which are relatively far from each other. We will use these cells

to infer the rotation transformation matrix. We will fit PHM models to the blue

matrices as shown in Fig. 1.3 and set all pi’s as the change point. The size of blue

matrix does not need to be large, size of 50 to 100 will be enough to infer the relative

rotation. The relative transformation matrix from one set of {ttt1,nnn1, bbb2} to another

set {ttt2,nnn2, bbb2} is 
t21 t22 t23

n2
1 n2

2 n2
3

b2
1 b2

2 b2
3

 ·

t11 t12 t13

n1
1 n1

2 n1
3

b1
1 b1

2 b1
3


−1

. (1.4)

To connect the domain from p1 to p2 to the previous domain, we multiply the

relative transformation matrix inferred from the blue matrix to the {ttt,nnn,bbb} of the

last helix piece in the piecewise helical curve for the first domain. We modify the

all subsequent {ttt,nnn,bbb}’s repeatly following this procedure. By doing so, we use the

off-diagonal cells to connect all pieces together. Applying PHM model to all blue

matrices can be added in Step one in parallel to save computation time.

This two-step procedure of reconstructing the structure of whole chromosome

takes advantages PHM models. Further more, parallel computing the structures of

the domains saves the computation time when the size (resolution) of contact matrix

increases.

17

1.2.4 Heterogeneity and Mixture of Piecewise Helical Models

Although local chromatin folding, especially within TADs, can be very stable.

This assumption may not be true for modelling the 3D structure of the whole chro-

mosome in the cell population.The whole chromosome is highly dynamic, especially

its euchromatin /open chromatin regions. It is unclear whether the cell population

contains one dominant structure or multiple distinct 3D chromosomal structures with

comparable mixing proportions. The whole chromosome is likely to exhibit multiple

distinct 3D consensus structures among the entire cell population, and just using

one single helical curve to characterize the structure of the whole chromosome is not

adequate. Therefore, we propose to use a mixture of piecewise helical models to

characterize the structure variability of the whole chromosome.

Suppose the cell population consists of M distinct sub-populations, each of them

is a piecewise helical curve with curvature vector ~κm = (κm1 , · · · , κmnm
) and torsion

vector ~τm = (τm1 , · · · , τmnm
), m ∈ {1, 2, · · · ,M}, where nm is the number of helices

contained in m-th piecewise helical curve. The spatial distance between locus i and

locus j in the m-th helical curve is dmij = f(i, j, ~κm, ~τm). Here the link function f

can be derived iteratively according to formula (1.2), which is the same as the PHM

method. Let Yij represent the number of reads spanning locus i and locus j, which

is assumed to follow a negative binomial distribution with rate θij and a common

over-dispersion parameter φ:

Yij ∼ NB(θij, φ). (1.5)

We further impose an additive model on θij:

θij =
M∑
m=1

θmij , (1.6)

where θmij is the expected number of reads from the m-th sub-population. we further

assume a log linear model for θmij :

log θmij = log eij + β0 + β1 log dmij = log eij + β0 + β1f(i, j, ~κm, ~τm), (1.7)

18

where eij is the expected reads, which can be calculated from the local genomic fea-

tures, and β0 and β1 are two unknown parameters. β0 is the over-all sequencing

depth. β1 < 0 is the link coefficient between spatial distance and chromatin interac-

tion frequency. eij, β0, and β1 are shared by all sub-populations.

Combining the assumptions above, we have:

θij = eije
β0

M∑
m=1

f(i, j, ~κm, ~τm)β1 . (1.8)

We assume that all Yij’s are independent. Then the joint likelihood is:

P (Yij, 1 ≤ i < j ≤ N |θij, φ) =
∏

1≤i<j≤N

P (Yij|θij, φ)

=
∏

1≤i<j≤N

P (Yij|eij, β0, β1, φ, ~κ
m, ~τm, 1 ≤ m ≤M).

(1.9)

As mentioned previously, the mixture of piecewise helical models also faces the

problem of non-identifiability. To resolve the issue without loss of generality, we

impose similar constraints as in PHM. The number of loops L in every piecewise

helical curve satisfies L ≤ N/2, where N is the total number of loci. We also impose

a constraint on β0, such that exp(β0) is equal to the average of all read counts:

exp(β0) =

∑
1≤i<j≤N Yij

N(N − 1)/2
. (1.10)

All the other constrains in original piecewise helical curve are preserved.

The unknown parameters of interests include: β1, φ, M , ~κm, and ~τm,m =

1, · · · ,M . We adopted a fully Bayesian approach and used random walk Metropolis

within Gibbs sampler to iteratively sample each of them. To improve the sampling

efficiency, the multiple-try Metropolis algorithm is applied to sample curvature and

torsion simultaneously. We also start with different initial values of curvatures and

torsions in the implementation. Then the Bayesian Information Criterion (BIC) is

used to determine the number of sub-populations, the number of helices in each piece-

wise helical curve.

19

1.3 Simulation Studies

1.3.1 Simulation study when Hi-C data is simulated from a single helix

First, we conducted a simulation study to test the performance of the single helix

model using a TAD in mouse chromosome 18, 33,960,001 - 34,960,000. Each 40kb

bin is treated as a bead in the beads-on-a-string representation, and the chromatin

is assumed to fold as a single helix with curvature κ = 0.56 and torsion τ = 0.28.

The arc length between the center of the i-th bin and the center of the j-th bin is

proportional to the genomic distance between them (|i− j|). The parameters in the

negative binomial model are set as: β0 = 6, β1 = −1, φ = 20, βenz = 0.1, βgcc = −0.1,

βmap = 0.1. The local genomic features of each bin, including restriction enzyme

cutting frequency, GC content and sequence mappability, are calculated from the

UCSC reference genome mm9. The Hi-C contact matrix {yij}1≤i<j≤25 is then simu-

lated from the posited negative binomial model. The constant shifted log likelihood

of the simulated data at the true parameter values, referred to as true log likelihood,

is 142811.16. We normalize the absolute scale of the piecewise helical curve as men-

tioned previously and transform the curvature, torsion and arc length parameters

accordingly. After parameter transformation, curvature κ is 1.79, and torsion τ is

0.90.

The proposed algorithm is applied to the simulated Hi-C data, and statistical

inference is conducted on the unknown parameters. Fig. 1.4 (a) shows the conver-

gence of ten parallel chains. The Gelman-Rubin statistic [28] is 1.00, suggesting good

mixing. Among the ten parallel chains, chain 8 achieves the highest posterior mode

142813.94, which is higher than the true log likelihood 142811.16. Therefore, chain 8

is used for posterior inference. Fig. 1.4 (b) shows the autocorrelation plot of every

50th posterior sample in the last 40,000 iterations in chain 8. After thinning, the

posterior samples are independent. Table 1.1 lists the summary statistics of the pos-

terior distribution of all unknown parameters. For each parameter, the 95% credible

interval covers the true value. Fig. 1.5 (a) shows the structural alignment between

20

(a) (b)

Fig. 1.4.: Single helix simulation study. (a): Convergence plot of the log likelihood

of ten parallel chains. (b): Autocorrelation plot of the log likelihood in the chain 8.

21

(a) (b)

Fig. 1.5.: (a) Structural alignment of the inferred helix (blue) and the true helix (red).

Root mean square distance = 0.02. (b)Residual plot. The solid black line represents

that the standardized residual equals to zero. The two dashed black lines represent

that the absolute value of the standardized residual equals 1.96.

the inferred helix (blue line) and the true helix (red line). The root mean squared

distance [2] between the two structures is 0.02, suggesting high similarity. The resid-

ual plot (Fig. 1.5 (b)) shows no obvious trend between the standardized residuals

and the fitted values, suggesting good model fit.

Posterior predictive check [28] (Fig. 1.6) is also conducted to evaluate the good-

ness of fit. Nine summary statistics of the Hi-C contact matrix are used: minimal

value, 10% percentile, 25% percentile, median, 75% percentile, 90% percentile, max-

imum value, mean and variance. For every 50th sample in the last 40,000 iterations

in MCMC, a Hi-C contact matrix is simulated based on the posterior samples of

parameters, and the summary statistics of the simulated Hi-C contact matrix are

recorded. The summary statistics of the input Hi-C contact matrix are compared

with the distribution of the summary statistics of the simulated Hi-C contact matrix.

All p-values are between 0.05 and 0.95, suggesting good model fit.

22

Table 1.1.: Summary statistics of the posterior distribution of unknown parameters

in simulation study when Hi-C data is simulated from a single helix

Parameter Truth
Posterior

Mode
Posterior distribution

Min
2.5%

Percentile Mean
97.5%

Percentile Max

κ 1.79 1.86 1.49 1.66 1.84 2.03 2.12

τ 0.90 1.06 0.80 0.87 1.11 1.41 1.68

β1 -1.00 -0.95 -1.08 -1.03 -0.93 -0.85 -0.78

βenz 0.10 0.09 0.04 0.06 0.09 0.12 0.14

βgcc -0.10 -0.08 -0.13 -0.12 -0.09 -0.06 -0.03

βmap 0.10 0.12 0.08 0.09 0.12 0.15 0.17

φ 20.00 20.34 15.05 16.53 20.31 24.79 26.97

23

Fig. 1.6.: Posterior predictive check. The solid black line represents the summary

statistics calculated from the Hi-C data.

1.3.2 Simulation study when Hi-C data is simulated from one piecewise

helical curve

Next, we conducted a simulation study to test the performance of the piecewise

helical model using a TAD in mouse chromosome 1, 92,800,001 - 94,800,000. Each

40kb bin is treated as a bead in the beads-on-a-string representation, and chromatin is

assumed to fold as a piecewise helical curve, which consists of two equal-sized helixes

with curvatures and torsions listed below:

Helix 1: κ(1) = 0.60, τ (1) = 0.20;

Helix 2: κ(2) = 0.50, τ (2) = 0.10.

24

The arc length between the center of the i-th bin and the center of the j-th bin is

proportional to the genomic distance between them (|i− j|). Linear link function is

used to connect Hi-C data and spatial proximity, with β0 = 5, β1 = −1. We further

set φ = 15, βenz = 0.1, βgcc = −0.1, βmap = 0.1. The local genomic features of

each bin, including restriction enzyme cutting frequency, GC content and sequence

mappability, are calculated from the UCSC reference genome mm9. The Hi-C contact

matrix {yij}1≤i<j≤50 is simulated from the posited negative binomial model. The true

log likelihood is 179911.19. To account for the multi-collinearity in the regression, we

normalize the absolute scale of the piecewise helical curve as mentioned previously

and transform the curvature, torsion and arc length parameters accordingly. The

parameters become: β0 = 3.73, β1 = −1,

Helix 1: κ(1) = 2.13, τ (1) = 0.71;

Helix 2: κ(2) = 1.77, τ (2) = 0.35.

Our algorithm is applied to the simulated data, and statistical inference is con-

ducted on the unknown parameters. Fig. 1.7 (a) shows the convergence of ten parallel

chains. The Gelman-Rubin statistic is 1.00, suggesting good mixing. Among the ten

parallel chains, chain 5 achieves the highest posterior mode 179915.52, which is higher

than the true log likelihood 179911.19. Therefore, chain 5 is used for posterior in-

ference. Fig. 1.7 (b) shows the autocorrelation plot of every 50th posterior sample

in the last 40,000 iterations in chain 5. After thinning, the posterior samples are

independent. Table 1.2 lists the summary statistics of the posterior distributions of

some primary parameters. For each parameter, the 95% credible interval covers the

true value.

Fig. 1.8 (a) shows the structural alignment between the inferred helical curve

(blue line) and the true helical curve (red line). The root mean squared distance [16]

between the two structures is 0.06, suggesting high similarity. Fig. 1.8 (b) shows the

residual plot and suggests good model fit.

25

(a) (b)

Fig. 1.7.: Piecewise helical curve simulation study. (a): Convergence plot of the log

likelihood of ten parallel chains. (b): Autocorrelation plot of the log likelihood in the

chain 5.

(a) (b)

Fig. 1.8.: (a). Structural alignment of the inferred helical curve (blue) and the true

helical curve (red). Root mean square distance = 0.06. (b). Residual plot. The solid

black line represents that the standardized residual equals to zero. The two dashed

black lines represent that the absolute value of the standardized residual equals 1.96.

26

Table 1.2.: Summary statistics of the posterior distribution of unknown parameters

in simulation study when Hi-C data is simulated from a piecewise helical curve

Parameter Truth
Posterior

Mode
Posterior distribution

Min
2.5%

Percentile Mean
97.5%

Percentile Max

κ1 2.13 2.12 2.03 2.07 2.11 2.16 2.22

τ1 0.71 0.72 0.61 0.67 0.71 0.76 0.82

κ2 1.77 1.78 1.70 1.74 1.78 1.82 1.86

τ2 0.35 0.35 0.31 0.33 0.35 0.37 0.40

β0 3.73 3.74 3.70 3.72 3.74 3.76 3.78

β1 -1.00 -0.99 -1.07 -1.02 -0.99 -0.95 -0.91

βenz 0.10 0.10 0.07 0.08 0.10 0.12 0.13

βgcc -0.10 -0.10 -0.14 -0.13 -0.11 -0.09 -0.06

βmap 0.10 0.08 0.03 0.06 0.08 0.10 0.12

φ 15.00 15.66 12.12 13.78 15.39 17.18 18.92

27

1.3.3 Simulation study when Hi-C data is simulated from multiple piece-

wise helical curves

We further conducted a simulation study to illustrate the performance of the piece-

wise helical model for inferring whole chromosome structure. For illustrative testing

purpose, we only use the first 200 40kb bins in mouse chromosome 19, 3,080,001 -

11,320,000. We will show the result of whole chromosome analysis in the real data

section. Each 40kb bin is treated as a bead in the beads-on-a-string representation,

and chromatin is assumed to fold as two piecewise helical curves, each consists of two

equal-sized helices with curvatures and torsions listed below:

Helix 1 Helix 2

Curve 1
κ

(1)
1 = 0.6 κ

(2)
1 = 0.4

τ
(1)
1 = 0.2 τ

(2)
1 = 0.1

Curve 2
κ

(1)
2 = 0.5 κ

(2)
2 = 0.3

τ
(1)
2 = 0.1 τ

(2)
2 = 0.2

We randomly generate the orientation vectors (ttt,nnn,bbb)’s at the connection points, as

well as the orientation between two helical curves. The arc length between the center

of the i-th bin and the center of the j-th bin is proportional to the genomic distance

between them (|i− j|). Linear link function is used to connect Hi-C data and spatial

proximity, with β0 = 5, β1 = −1. We further set φ = 15, βenz = 0.1, βgcc = −0.1,

βmap = 0.1. The local genomic features of each bin, including restriction enzyme

cutting frequency, GC content and sequence mappability, are calculated from the

UCSC reference genome mm9. The Hi-C contact matrix {yij}1≤i<j≤200 is simulated

from the posited negative binomial model. The true log likelihood is 938630.54.

We normalize the absolute scale of the piecewise helical curve and transform the

curvature, torsion and arc length parameters accordingly. The parameters become:

β0 = 2.68, β1 = −1,

28

Helix 1 Helix 2

Curve 1
κ

(1)
1 = 6.15 κ

(2)
1 = 4.10

τ
(1)
1 = 2.05 τ

(2)
1 = 1.03

Curve 2
κ

(1)
2 = 5.13 κ

(2)
2 = 3.08

τ
(1)
2 = 1.03 τ

(2)
2 = 2.05

We applied our divide and combine two step algorithm to the simulated data,

and statistical inference is conducted on the unknown parameters. We divide the

whole piece into two equally sized helical curves and infer the structure in parallel

just using the two squared 100× 100 blocks (1-100, and 101-200) along the diagonal

of the contact matrix. In order to infer the orientation between the two pieces, we use

the middle 100× 100 (from 51 to 150) squared matrix along the diagonal of contact

matrix. Finally, we rotate the second piece according to the transformation of inferred

ttt,nnn,bbb vectors, and connect it to the first piece to complete the inference procedure.

Table 1.3 lists the summary statistics of the posterior distributions of some primary

parameters. For each parameter, the 95% credible interval covers the true value.

Our proposed PHM method is not identifiable up to a scaling factor as mentioned

earlier, and the structure of the whole chromosome is not identifiable up to rotation

(with different starting orientations). For example, as shown in Fig. 1.9, the two

helical curves have the same parameters except their starting orientations. Hence,

they are essentially the same. In reconstruction of the structure of chromosome, our

main focus is the relative distance between the bins; therefore, we would consider the

two recovered helical curves in Fig. 1.9 both valid.

Thus, we calculate the pairwise Euclidean distance matrices of the structures from

the simulation and prediction. The Spearman correlation between the two matrixes

is calculated and used to assess the accuracy of proposed two-step model. To the

simulated datset, our proposed two-step divide and combine PHM achieves 0.93 cor-

relation. Though we didn’t use all the cells of the original contact matrix, we can

29

Table 1.3.: Summary statistics of the posterior distribution of main parameters in

simulation study when Hi-C data is simulated from multiple piecewise helical curves

Parameter Truth
Posterior

Mode
Posterior distribution

Min
2.5%

Percentile Mean
97.5%

Percentile Max

κ
(1)
1 6.15 6.21 6.03 6.08 6.21 6.33 6.40

τ
(1)
1 2.05 2.07 1.89 1.95 2.07 2.16 2.25

κ
(1)
2 4.10 4.12 4.03 4.05 4.13 4.19 4.24

τ
(1)
2 1.03 1.01 0.95 0.96 1.02 1.07 1.11

κ
(2)
1 5.13 4.95 4.75 4.81 4.97 5.12 5.17

τ
(2)
1 1.03 0.96 0.87 0.90 0.97 1.03 1.07

κ
(2)
2 3.08 3.16 2.95 3.01 3.13 3.23 3.30

τ
(2)
2 2.05 2.02 1.72 1.79 2.01 2.20 2.26

Fig. 1.9.: Two exactly same piecewise helical curve just with different starting orien-

tations

30

still recover the main structure of the multiple piecewise helical curve and keep the

relative relationship.

1.3.4 Simulation study when Hi-C data is simulated from mixture of two

piecewise helical curves

Last, we conducted a simulation study to illustrate the performance of mixture

piecewise helical model. For illustrative testing purpose, we used the first 50 40kb

bins in mouse chromosome 19, 3,080,001 - 11,320,000. Each 40kb bin is treated as

a bead in the beads-on-a-string representation, and the cell population contains two

distinct structures, each is assumed to fold as piecewise helical curve.

The arc length between the center of the i-th bin and the center of the j-th bin is

proportional to the genomic distance between them (|i− j|). Linear link function is

used to connect Hi-C data and spatial proximity, with β0 = 5, β1 = −1. We further

set φ = 15, βenz = 0.1, βgcc = −0.1, βmap = 0.1. The local genomic features of

each bin, including restriction enzyme cutting frequency, GC content and sequence

mappability, are calculated from the UCSC reference genome mm9. The Hi-C contact

matrix {yij}1≤i<j≤50 is simulated from the posited negative binomial model. The true

log likelihood is 292478.0804. We normalize the absolute scale of the piecewise helical

curve and transform the curvature, torsion and arc length parameters accordingly.

After normalization, the curvatures and torsions are as follows:

Helix 1 Helix 2

Portion 1
κ

(1)
1 = 3.29 κ

(2)
1 = 3.29

τ
(1)
1 = 0.55 τ

(2)
1 = 1.10

Portion 2
κ

(1)
2 = 2.74 κ

(2)
2 = 2.19

τ
(1)
2 = 0.55 τ

(2)
2 = 1.10

31

Table 1.4.: Summary statistics of the posterior distribution of main parameters in

simulation study when Hi-C data is simulated from mixture piecewise helical model

Parameter Truth
Posterior

Mode
Posterior distribution

Min
2.5%

Percentile Mean
97.5%

Percentile Max

κ
(1)
1 3.29 3.19 2.61 2.70 3.10 3.57 3.78

τ
(1)
1 0.55 0.50 0.22 0.25 0.37 0.51 0.56

κ
(1)
2 3.29 3.20 2.99 3.06 4.28 5.85 6.15

τ
(1)
2 1.10 1.01 0.84 0.87 1.42 2.19 2.56

κ
(2)
1 2.74 2.62 2.40 2.44 4.68 7.47 7.78

τ
(2)
1 0.55 0.51 0.37 0.41 1.30 2.59 2.80

κ
(2)
2 2.19 2.03 0.66 1.23 1.92 2.23 2.76

τ
(2)
2 1.10 0.90 0.59 0.71 1.21 4.05 6.35

We applied mixture piecewise helical model to the simulated data, and statisti-

cal inference is conducted on the unknown parameters. Table 1.3 lists the summary

statistics of the posterior distributions of some primary parameters. For each param-

eter, the 95% credible interval covers the true value.

We calculate the pairwise Euclidean distance matrices of structures for two sub-

populations in the mixture model. The Spearman correlation between matrixes for

simulation and prediction are calculated and used to assess the accuracy of proposed

mixture model. The correlations for two sub-populations are 0.997 and 0.994, re-

spectively, which indicates the high similarity between the inferred and simulated

structures.

32

1.4 Real Data Application

1.4.1 Data description

Simulation studies have shown that the piecewise helical model works well on the

synthetic datasets. To evaluate the performance of the piecewise helical model on

real Hi-C data, we choose a published real Hi-C dataset on mouse embryonic stem

(ES) cells [22]. The Hi-C experiments were conducted using two restriction enzymes,

HindIII and NcoI. The data sets with restriction enzyme HindIII and NcoI are referred

as the HindIII sample and the NcoI sample, respectively.

We first investigate the log average number of Hi-C reads spanning two loci as a

function of the log genomic distance between the loci. We observe that the function

is approximately linear when the genomic distance is around the size of a TAD (Fig.

1.10 (a)). Therefore, a linear link function is used to analyze Hi-C data within each

TAD.

Next, we evaluate the additional variation in Hi-C data after adjusting for genomic

distance. We select all loci pairs with the same genomic distance, and plot the mean

versus the variance of Hi-C read count spanning two loci. Interestingly, the variance

is a quadratic function of the mean, suggesting a strong over-dispersion pattern (Fig.

1.10 (b)). Similar over-dispersion patterns have been observed in other types of

next-generation sequencing count data, such as RNA-Seq data [29] and ChIP-Seq

data [30]. Using the negative binomial model is a popular approach to analyzing such

over-dispersed count data. Therefore, we apply the same approach to account for the

over-dispersion phenomenon in our proposed model. In addition, we apply BACH to

TADs in mouse chromosome 18. The 3D chromosomal structures predicted by BACH

demonstrate a helix-like shape (Fig. 1.11). This observation motivates us to use the

parsimonious piecewise helical curve representations for chromatin folding.

33

(a)

(b)

Fig. 1.10.: Exploratory analysis of 40 KB resolution Hi-C contact matrix of a topolog-

ical domain in mouse chromosome 18, 33,960,001 – 34,960,000. (a): The decreasing

trend of Hi-C data with the increase of genomic distance (80 KB – 400 KB). The lin-

ear line (red) fits data as well as the quadratic line (blue) and the cubic line (purple).

(b): Over-dispersion of 40 KB resolution Hi-C data. Both x-axis and y-axis are in

logarithm scale. The slope of the fitting line is 1.81, suggesting that the variance is a

quadratic function of the mean.

34

Fig. 1.11.: BACH-predicted 3D chromosomal structures under the beads-on-a-

string representation. 3D model of a topological domain in mouse chromosome 18,

33,960,001 – 34,960,000. Each bead represents one 40 KB bin.

35

(a) (b)

Fig. 1.12.: 3D chromosomal structures predicted by the piecewise helical model.

(a) 3D model of a topological domain in mouse chromosome 2, 6,360,001 - 8,600,000.

(b) 3D model of a topological domain in mouse chromosome 8, 22,040,001 - 24,280,000.

1.4.2 Results of PHM on TADs

Piecewise helical model is applied to TADs of mouse ES cells [22] to infer the

geometric properties of chromatin folding. Among all 2,200 TADs in mouse ES cells,

1,639 TADs with size larger than 480kb (12 loci) are analyzed. For each TAD, the

predicted piecewise helical curve is obtained and the number of loops is used to

measure the geometric property (i.e. compactness) of the piecewise helical curve.

Note that the number of loops only reflects a small amount of characteristics of

the piecewise helical curve structure. A larger number of loops indicates a more

compact curve, while a smaller number of loops indicates a looser curve. In Fig.

1.12, we compare the predicted piecewise helical models of the two TADs in mouse

chromosome 2, 6,360,001 – 8,600,000 and chromosome 8, 22,040,001 – 24,280,000.

Both of the two TADs have 56 40kb bins. We can see that the TAD in chromosome

2 contains 24 loops, and it is more compact than the TAD in chromosome 8 with 6

loops.

36

We next evaluate how the compactness of chromatin folding, as measured by

the number of loops, is correlated with genetic and epigenetic features. We collect

eleven markers for each TAD, including gene density (UCSC reference genome mm9),

gene expression [31], promoter marker H3K4me3 [31], active chromatin marker RNA

polymerase II [31], H3K36me3 [32], repressive chromatin marker H3K27me3 [33],

H3K9me3 [34], H4K20me3 [33], DNA hypersensitivity marker DNaseI [35], DNA

replication timing [36] and genome-nuclear lamina interaction [37]. The estimated

Pearson correlations coefficients between the compactness of chromatin folding and

the genetic and epigenetic features are presented in Table 1.5. Statistical hypothesis

testing shows that they are all significant. It is clear that gene-rich, highly expressed

and early replicated genomic regions are much looser, whereas gene-poor, lowly ex-

pressed and later replicated genomic regions are more compact.

To show the advantage of allowing flexible connection between two consecutive

helixes within the piecewise helical curve, we used the TAD in mouse chromosome

1, 57,440,001 - 58,440,000 as an illustrative example. The piecewise helical curve

with two helixes, which achieves the lowest BIC, is preferred for this TAD in PHM.

Fig. 1.13 (a) is the raw Hi-C contact heatmap, which shows long-range chromatin

interactions. In the reconstructed structure as shown in Fig. 1.13 (b), the two helixes

bend at the connection point to account for the long-range interactions.

PHM is then applied to both of the HindIII and NcoI samples of the longest 500

TADs in mouse ES cells [22] to predict their 3D structures. We calculate the pairwise

Euclidean distance matrices of the predicted structures from the two samples. The

Spearman correlation between the two matrixes is calculated and used to assess the

reproducibility of PHM. To compare with existing methods, we repeat this procedure

and obtain the corresponding Spearman correlations for chromSDE, three variants

of Pastis methods (Pastismds, Pastis-nmds, Pastis-pm1). The results are listed in

Fig. 1.14 and Table 1.6. PHM achieves the highest correlation, indicating its higher

reproducibility.

37

(a) (b)

Fig. 1.13.: 3D chromosomal structures predicted by the piecewise helical model. (a)

raw Hi-C contact matrix heatmap of topological domain in mouse chromosome 1,

57,440,001 – 58,440,000. (b) reconstructed 3D model from PHM, and each bead

represent one 40kb bin.

Fig. 1.14.: Reproducibility of inferred 3D chromosomal structure of 500-topological-

domain genomic regions between the HindIII sample and the NcoI sample.

38

Table 1.5.: Pearson correlation coefficients between the number of loops and the

genetic and epgenetic features.

Features
Number of Loops

HindIII NcoI

Gene density -0.26 -0.25

Gene expression -0.09 -0.08

RNA polymerase II -0.22 -0.21

H3K36me3 -0.33 -0.31

H3K27me3 -0.30 -0.29

H3K4me3 -0.31 -0.30

DNaseI -0.38 -0.36

Replication timing -0.39 -0.37

Lamina 0.39 0.37

H3K9me3 0.34 0.31

H4K20me3 0.30 0.29

Table 1.6.: Spearman correlation coefficients between the HindIII samples and the

NcoI samples.

Chrom SDE Pastis-mds Pastis-nmds Pastis-pm1 PHM

0.9691 0.5969 0.6621 0.5401 0.9878

Zhang et al. [15] showed that the mapping from contact counts to physical dis-

tance can vary from one resolution to another and proposed a procedure to assess

the stability of a 3D structure reconstruction method with respect to change in res-

39

Fig. 1.15.: Stability across resolutions. Spearman correlation between pairs of struc-

tures at 40kb and 80kb resolutions of inferred 3D chromosomal structure of 500-

topological-domain genomic regions of the HindIII sample.

olution. The procedure can be described as follows. Assume that X ∈ R3×N and

Y ∈ R3×M denote predicted structures for different resolution levels with N < M ,

indicating that X is constructed at the lower resolution level. A downsampled struc-

ture Y ∗ ∈ R3×N from Y at the same resolution as X is obtained by averaging the

coordinates of loci. Then the Spearman correlation between distance matrices from

X and Y ∗ is calculated and used as a stability measure. We apply this procedure

to PHM, ChromSDE, three variants of Pastis for the selected first 500 longest TADs

separately. The resulting Spearman correlations are presented in Fig. 1.15, 1.16 and

Table 1.7. Our PHM method achieves comparable Spearman correlation coefficients

with ChromSDE, and significantly outperforms the three Pastis methods.

1.4.3 Model validation with gold standard FISH data

We further use a FISH dataset independently generated by [38] for the same mouse

ES cells to validate our PHM method. In the FISH experiment, spatial distances of six

40

Fig. 1.16.: Stability across resolutions. Spearman correlation between pairs of struc-

tures at 40kb and 80kb resolutions of inferred 3D chromosomal structure of 500-

topological-domain genomic regions of the NcoI sample.

41

Table 1.7.: Spearman correlation coefficients between inferred structures at different

resolutions.

Chrom SDE Pastis-mds Pastis-nmds Pastis-pm1 PHM

HindIII 0.9901 0.8419 0.9419 0.7997 0.9773

NcoI 0.9822 0.8249 0.8836 0.7773 0.9697

pairs of genes, which belong to four TADs, were directly measured. These distances

are referred to as the FISH distances and used as the gold standard. The detailed

information about the FISH experiment and the four TADs (1-4) can be found in

Table 1.8 and 1.9.

Table 1.8.: Six pairs of genes with FISH measurement.

Gene pairs FISH distances

Lnp-GCR 0.0027

Hoxd3-Evx2 0.0015

Rcn1-1550J22 0.0038

Hbq-Il9r 0.0019

Hoxb1-Calcoco2 0.0028

Hoxb1-Hoxb9 0.0006

We apply PHM with two helixes to TADs 1 and 2, and PHM with one helix

to TADs 3 and 4. The HindIII sample and NcoI sample are analyzed separately.

Based on the results, the Pearson correlation coefficients between the predicted spatial

42

Table 1.9.: Topological domain annotation for genes with FISH measurement.

Domain ID Chrom Start End Size Genes within domain

1 2 73762329 74606210 0.84 MB GCR, Lnp, Evx2, Hoxd3

2 2 105100659 106026498 0.93 MB Rcn1, 1550J22

3 11 32058671 33038791 0.98 MB Il9r, Hbq1

4 11 94495571 97482060 2.99 MB Calcoco2, Hoxb1, Hoxb9

0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

Pearscon cor = 0.9, 95% CI = [0.79,0.92]

FISH distance

P
re

d
ic

te
d
 3

D
 d

is
ta

n
c
e

(a)

0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

Pearscon cor = 0.82, 95% CI = [0.56,0.86]

FISH distance

P
re

d
ic

te
d
 3

D
 d

is
ta

n
c
e

(b)

Fig. 1.17.: Predicted spatial distance using the piecewise helical model vs. the gold

standard FISH data. (a) HindIII samples (b) NcoI samples.

distances and the gold standard FISH distances are calculated, which are 0.90 and

0.82 (Fig. 1.17) for HindIII sample and NcoI sample, respectively.

As a comparison, we also apply BACH, ChromSDE, and the three variants of

Pastis to infer the structures of the four TADs. The resulting Pearson correlations

with the gold standard FISH distances of all the methods are presented in Table 1.10.

For the HindIII sample, the top three performers are Pastis-mds, Pastis-pm1, and

43

PHM. For the NcoI sample, the top three performers are PHM, BACH, and Pastis-

pm1. Even though the two Pastis methods, Pastis-mds, Pastispm1 perform better for

the HindIII sample than PHM, their performances for the NcoI sample are inferior.

Considering both of the samples, PHM achieves better overall performance than the

other competing methods.

Table 1.10.: Pearson correlation coefficients with FISH data.

HindIII NcoI

PHM 0.90 0.82

BACH 0.88 0.78

ChromSDE -0.14 -0.14

Pastis-mds 0.99 0.48

Pastis-nmds 0.83 0.03

Pastis-pm1 0.97 0.46

1.4.4 Results of PHM on whole Chromosomes

Validate parallel PHM using two enzyme replicates We applied the two-

step divide and combine procedure to the 40 KB resolution Hi-C contact matrices to

generate 3D chromosomal structure for each mouse chromosome.

We compute the Spearman correlation between the distance matrices of the esti-

mated structure from one enzyme to the predicted structure from the other enzyme

data. Spearman correlation instead of Pearson correlation is used because the Spear-

man correlation is independent of the scale of the piecewise helical curve.

Fig. 1.18 lists the alignment of two 3D chromosomal structures predicted by par-

allel PHM from mouse chromosome 19 in both HindIII sample and NcoI sample. The

44

(a) (b)

Fig. 1.18.: The predicted structure of chromosome 19 from mESC cells under 40kb

resolution. (a) HindIII samples. (b) NcoI samples

high similarity between the two structures shows that the 3D structures of different

enzymes predicted by parallel PHM method are highly reproducible.

45

2. DEEP NEURAL NETWORK BASED BAYESIAN

ESTIMATORS AND MODEL SELECTORS

In this chapter, we focus on developing new Neural Network based methods to auto-

mate statistical analysis via supervised learning, including parameter estimation and

model selection for large scale datasets. We proposed two inference frameworks based

on whether we have knowledge about the model or not. We proposed neural network

based Bayes estimator when the model is known but the involved parameters need to

be estimated. When the model and its parameters are both unknown, we proposed a

neural model selector and a neural parameter estimator to do perform model selection

and parameter estimation simultaneously.

2.1 Introduction

Breiman [39] compared two general approaches to data analysis. The first ap-

proach is called the data modeling approach, and the second the algorithmic modeling

approach. The data modeling approach starts with the assumption that the data set

under consideration is sampled from a parametric model with known form and a set

of unknown parameters. The main tasks of data analysis then focus on parameter

estimation and hypotheses testing, and the results can be further used to support

discovery, decision making, and prediction. The data modeling approach has been

the main approach adopted by statisticians for the past one hundred years.

The second approach is essentially the machine learning approach, and as a vi-

sionary, Breiman correctly predicted that machine learning would become more and

more powerful and popular, especially in the era of big data. According to the defi-

nitions of Gartner [40] and De Maro et al. [41], big data refer to information assets

with characteristics such as high volume, high velocity, and/or high variety, and the

46

transformation from big data to value requires specific analytical methods. Currently,

machine learning methods are used as the main tools for big data analytics, which

emphasize algorithms instead of statistical analysis (SA).

The quick rise of machine learning does not mean that the data modeling ap-

proach becomes obsolete or useless. First of all, data generated from well-designed

experiments following sound statistical principles admit proper statistical models and

thus can be better analyzed by the data modeling approach. Second, for applications

in which interpretability is important, the data modeling approach may still be more

preferable. The advent of big data era raises new challenges to the data modeling

approach. For example, with the help of new technologies, modern large scale health-

focused cohort studies can generate big and diverse data, including genomic data,

behavioral data, medical record data, environmental data, etc. The integrative anal-

ysis of all of those different types of data requires parametric models that are much

larger and more complex than those considered in the past. Conventional statisti-

cal methods for parameter estimation and hypothesis testing can become ineffective

under such models.

Due to the complexity of the data analysis process, we will narrow it down to

two most important procedures, which are model building and parameter estimation.

We first reformulate model building and parameter estimation as a machine learn-

ing problem. Suppose M = {Mk : 1 ≤ k ≤ K} is a collection of K prespecified

models/distributions. Let f(y|θk,Mk) be the density function of a general statistical

model Mk, where θk ∈ Θk represents the parameter and can be a vector. Assume

that we have a random sample from one of the models, which is {yj}1≤j≤N , but we

do not know the data-generating procedure and corresponding parameters. The goal

is to identify the model that fits the data best and further estimate the parameters

of the model.

47

Neural Bayes Estimator

Model selection and parameter estimation are two tasks which interplay with

each other. First we review the three major paradigms for handling parameter es-

timation given that we know the model from which the sample is drawn from. The

three paradigms are frequentist, Bayesian, and decision-theory paradigms, respec-

tively. The frequentist’s estimator of θ is a mapping from a sample to the parameter

space, which is expected to have nice frequentist properties such as unbiasedness and

minimum variance. The maximum likelihood principle is popularly used to produce

the frequentist estimator called the Maximum Likelihood Estimator (MLE).

In the Bayesian paradigm, the posterior distribution of θ is obtained to represent

the current knowledge or state about θ, combining the information from the sample

and the prior distribution. And if necessary, the posterior distribution can be fur-

ther used to produce a point estimator of θ. Typically, Monte Carlo Markov Chain

(MCMC) [42] algorithms are used to calculate the posterior distribution. MCMC

works even if the likelihood function can only be computed conditionally or up to a

normalizing constant. However, when a large and complex model is postulated, the

calculations of both the MLE and the posterior distribution of θ can become computa-

tionally challenging and even infeasible [43]. When likelihoods of models are unknown

or computationally intractable, Approximate Bayesian Computation (ABC) [44–50]

methods can be used to approximate posterior distributions. ABC algorithms sample

from the posterior distribution of the parameters by finding values that yield sim-

ulated data sufficiently resembling the observed data. Approximation accuracy and

computational efficiency of ABC depend on the choice of summary statistics. In the

literature, there are two classes of ABC methods. The first class employs best sub-

set selection, which chooses the best summary statistics based on information-based

criteria among a set of candidate summary statistics. The second class uses linear

regression based approach, which constructs summary statistics by linear regression

of response on candidate summary statistics [51]. In [52], the authors proposed to

48

automate the process of constructing summary statistics by training deep neural net-

works and the resulting summary statistics are approximately posterior means of the

parameters. The authors of [52] mainly focused on the regime when the dimension

of X is moderately high (e.g. sample size is 100) and the dimension of parameter θ

is low (e.g. 1, 2, 3).

The third paradigm of parameter estimation is based on decision theory [53]. An

estimator of θ is considered a decision rule (denoted by δ) of using a function of the

sample to approximate θ. Let l(δ, θ) denote the loss function. Then the best estimator

is chosen to be the rule δ∗ such that it has the best performance according to a certain

type of overall performance measure. One such overall performance measure is the

so-called average risk, which is defined to be the weighted average of the expected

loss (or risk) over sampling. The exact definition is deferred to the next section. If

the weight function used to calculate the average risk is treated as a prior imposed

on θ, then by applying the Bayes formula and the exchange of integration order with

respect to x and θ, the estimator with minimum average risk is the minimizer of

the expectation of l(δ, θ) over the posterior distribution of θ given the sample, and

therefore the estimator is called the Bayes estimator.

The Bayes estimator can be considered a specific way to construct a point es-

timator from the posterior distribution produced in the Bayesian paradigm. Good

estimators produced from the frequentist paradigm often are limits of Bayes estima-

tors. Bayes estimators enjoy various nice properties such as admissibility [54]. The

explicit expression of Bayes estimators are available only under simple models and

standard loss functions. When under large and complex models or nonstandard loss

functions, computing algorithms must be used to calculate Bayes estimators. The

conventional approach is again to first apply MCMC algorithms to calculate the pos-

terior distribution of θ and second to solve the optimization problem with respect

to the posterior distribution. As discussed previously, using MCMC algorithms to

calculate the posterior distribution can quickly become infeasible when the model

becomes larger and more complex. The fundamental reason is that the calculation

49

of the posterior distribution is by itself a difficult task, and probably is more difficult

than what the definition of Bayes estimator requires.

Recall that Bayes estimators are originally defined as solutions of optimization

problems involving integration over the statistical model f(x|θ) and the prior function

instead of the posterior distribution. One may wonder if the Bayes estimator can be

calculated through solving the original optimization problem. After some exploration,

it turns out that directly solving the original problem can run into other difficulties

and can be just as challenging.

Deep neural networks (DNNs) ([55], [56]) have achieved remarkable performances

in a variety of applications including competitive game play, object recognition, ma-

chine translation, and speech recognition in recent years, and promise to deliver ar-

tificial intelligence (AI) in almost every aspect of human life and society. We believe

that DNNs can also be used to automate the data analysis process, bring AI to large

scale statistical analysis, and make data analysis popular for big data analytics.

We propose to use Deep Neural Nets (DNN) to construct the Bayes estimator

through supervised machine learning, and we call the proposed estimator the Neural

Bayes Estimator (NBE). The description of the exact construction and learning will

be presented in the next section.

The Neural Bayes Estimator possesses a number of other advantages over the

conventional approach. First, the conventional approach needs to engineer new al-

gorithms to compute the posterior distribution whenever a new model is considered,

and therefore, it is ad hoc; whereas for the neural estimator, only the input data

need to be generated from the new model, but the algorithm for training the neural

Bayes estimator remains the same. Therefore, the neural Bayes estimator is a unified

approach for all different models. Second, thanks to the fast progress in artificial

intelligence and deep learning, there are a number of powerful platforms such as Ten-

sorFlow [57] and PyTorch [58], which can be directly used to train the neural Bayes

estimator with a minimum amount of additional coding. As a matter of fact, we will

adopt Tensorflow as the platform to train the neural Bayes estimator in this chapter.

50

Thirdly, even under the same model, when the parameters may change and new sam-

ple are available, the Bayes estimator needs to recalculated. This is not necessary for

the neural Bayes estimator. Once the neural Bayes estimator has been trained, as

long as the model form does not change, the trained model can generate the Bayes

estimator for different samples.

The proposed neural Bayes estimator is intended for handling any statistical mod-

els with any number of parameters, not limited to a specific model. For example, it can

be used for the FRAME (Filters, Random field, And Maximum Entropy) model [59]

for texture modeling; topic models for uncovering the underlying semantic structures

of document collections based on hierarchical Bayesian analysis [60], among other

statistical models for complex machine learning tasks. For ease in discussion and

illustration, we choose the class of powerful statistical models called the generalized

linear mixed effects models (GLMM) [61] as the main working model for both illus-

tration and implementation purposes. They play a key role in epidemiology, clinical

research, and social sciences. GLMMs are a powerful class of statistical models that

incorporates random effects into the linear predictor of a generalized linear model

(GLM) to account for the correlation of responses. The parameters of interests in

GLMMs are the fixed-effect parameters (effects of covariates, differences among treat-

ments and interactions) and random-effect parameters (the standard deviations of the

random effects). Though these exist accurate techniques for parameter estimation in

simple GLMMs, it’s still challenging for complex GLMMs.

Neural Model Selector and Parameter Estimator

What if we do not know the model from which the sample is drawn from, and can

be any in the candidate set? For this case, we need to perform the model building

procedure and further estimate the corresponding parameters. Conventionally, model

building is either done by the analyst based on the results of exploratory data analysis

and his/her own knowledge, or it is done via model selection using statistical principles

51

and criteria. Both of these two approaches are however difficult to automate. There

exists an extensive statistical literature on model selection [62–64]. Numerous model

selection methods have been proposed. Some of these methods are not applicable to

the setting we consider here, while others, though applicable, may run into various

difficulties; we will talk about difficulties later. Numerous statistical methods for

parameter estimation [65–67], including the major three major paradigms mentioned

earlier, rely on full or partial knowledge of the model and are based on statistical

principles.

Here, we will briefly discuss several representative approaches for model selection,

which include the Kolmogorov-Smirnov (KS) distance [68], Bayesian Information Cri-

terion (BIC) [69], and Bayes factor [70]. The KS distance method calculates the

distance between the population Cumulative Distribution Function (CDF) and the

empirical CDF based on the sample {yj} for each model. The model that achieves the

minimum distance will be selected as the true model. The BIC criterion calculates

the BIC score for each model as follows:

BIC(Mk) = −2logL(θ̂k) + log(n)p

where L(·) is the likelihood function, θ̂k is the maximum likelihood estimate, and p

is the number of parameters in the model Mk. Note that for the scenario considered

here, p = 1. The model that achieves the minimum BIC score will be selected as the

true model.

The Bayes factor method will impose a prior distribution to the models, π(Mk),

and further impose a prior distribution to the parameter π(θk). Then, given the

model, the likelihood can be calculated, which is denoted as π({yj}|Mk). The Bayes

factor between any two models, Mk1 and Mk2 , can be calculated as BF(Mk1 ,Mk2) =

π({yj}|Mk1)/π({yj}|Mk2), which can be used to discriminate between the two models.

The model the BF scores support the most will be selected as the true model.

Our criticism for the conventional statistical approaches discussed above is two-

fold. First, for the goal of automating model selection, the model set M usually

consists of a large number of candidate models, and the models are of huge variety.

52

The conventional statistical methods such as the KS distance and BIC only work for

selection between nested or other well-structured models. Second, for a given sample,

all the conventional methods will have to calculate a score for each of the candidate

models, and then compare them to pick the winner. This can become computationally

intensive or even intractable, especially for the Bayes factor approach.

Instead, we propose to use CNNs and machine learning to automate model se-

lection and parameter estimation. Our main idea is that the procedures for model

selection and parameter estimation can be considered mappings from the sample to

a model and a value of the model parameter, that is,

G : {yj} →

 G1({yj})

G2({yj})

 ∈M×Θ,

where G = (G1, G2) consists of the model selection mapping G1 and the parameter

estimation mapping G2, and Θ is the parameter space. Instead of using statistical

principles to derive G1 and G2, we propose to use CNNs to approximate them. From

here on in the rest of the paper, we refer to G1 as the neural model selector, and G2

the neural parameter estimator. We propose to construct CNNs to approximate G1

and G2. Data systematically simulated from candidate models will be used to train

the neural model selector. The idea of using neural networks to estimate parameters

in a stochastic model is not entirely new, but it is neither well-known nor a common

practice in the statistical community.

We further explore the possible interplay between the neural model selector and

the neural parameter estimator. As will be discussed in Section 2.3, the two CNNs

can be entirely separate, almost identical, or partially joint, leading to different per-

formances in training as well as in application. We carry out extensive simulation

studies, and show that the proposed neural model selector and parameter estimator

can be properly trained, and the trained CNNs demonstrate excellent performance.

To our best knowledge, there is no prior work about redefining the model selection

problem as a machine learning classification problem and training CNN to learn and

perform model selection with labeled simulated data. After conducting intensive

53

literature search, we only found one paper [71], in which the authors proposed to use

artificial neural networks and simulated data to construct estimates for parameters

of a stochastic differential equation. However, the idea of using CNNs and simulated

data to automate parameter estimation and model selection and bring AI to the

general data analysis process appears to be novel to our best knowledge.

2.2 Neural Bayes Estimator

2.2.1 Proposed Method

Let F = {f(x|θ) : θ ∈ Θ}, where Θ is the parameter space (i.e., the set of all

possible values of θ). We call F the model space. Let X be the space of samples

drawn from a model in F . As discussed in the Introduction, an estimator δ is a

mapping or decision rule from sample space X to parameter space Θ. Recall that the

loss function is L(δ, θ). The risk of δ, denoted as R, is defined as follows.

R(δ, θ) =

∫
X

L(δ(x), θ)f(x|θ)dx.

It is clear that R depends on θ, and the decision rule that achieves minimum R for

all θ does not exit. Instead, we consider the average risk, which is denoted as r and

defined as follows.

r(δ) =

∫
Θ

R(δ, θ)λ(θ)dθ =

∫
Θ

∫
X

L(δ(x), θ)f(x|θ)λ(θ)dxdθ,

where λ(θ) is the weight function. The decision rule or estimator with minimum

average risk is defined as the estimator δ∗ such that it minimizes r(δ) among all

possible estimators, that is,

δ∗ = arg min
δ

r(δ). (2.1)

Let f(x) be the marginal density for X, and λ(θ|x) = f(x|θ)λ(θ)/f(x) the posterior

distribution of θ given x. Then under general conditions,

r(δ) =

∫
X

[∫
Θ

L(δ(x), θ)λ(θ|x)dθ

]
f(x)dx,

54

and

δ∗ = arg min
δ

∫
Θ

L(δ(x), θ)λ(θ|x)dθ. (2.2)

As discussed in the Introduction, δ∗ is the Bayes estimator, and the conventional

wisdom is to find it via first deriving the posterior distribution λ(θ|x) and then solving

the minimization problem above. In the Introduction section, we argued that for a

large and complex model, finding the posterior λ(θ|x) can be a much more challenging

problem than solving the original minimization problem in defining δ, and it can be

more advantageous to directly solving the original problem (2.1).

We propose to use deep convolutional neural networks and supervised learning to

solve the original problem as follows.

1. Generate a data set {(θ(i), X(i))}1≤i≤N by repeated sampling θ(i) from the prior

distribution π and sampling X(i) from f(x|θ(i)), and split it into 80% training

data and 20% validation data.

2. Construct a deep convolutional neural network.

3. Train the neural network with {X(i)}1≤i≤N as input and {θ(i)}1≤i≤N as output,

with loss function L(δβ(X), θ), where δβ is a CNN with parameter β.

If we employ the mean squared error loss function L(δβ(X), θ) = 1
N

∑N
i=1 ‖δβ(X(i))−

θ(i)‖2, then the resulting estimator is posterior mean while L1 loss results in the pos-

terior median. If we choose the following loss:

L(δ, θ) =

K1(θ − δ) θ ≥ δ,

K2(δ − θ) θ < δ,

then the resulting estimator is the posterior
K1

K1 +K2

-quantile.

The choice of deep convolutional neural networks over the fully connected neural

networks is necessary especially for the complex models with large number of param-

eters and systematic structures. Convolutional layers are intended to learn features

that can be efficiently and effectively used for identifying underlying structures. The

55

size of the training data, sample size, CNN structures, and hyperparameters in the

training process etc. are all depending on the complexity of the model. We will

illustrate the detailed choices of all these parameters and comparisons with different

models in Sections 2.2.2 and 2.2.3.

2.2.2 Simulation Studies

We conduct simulation studies to demonstrate the properties and performance

of the proposed neural Bayes estimator here, and further compare its performance

with several conventional statistical methods. We start from simple Normal distribu-

tions with Normal prior and then to generalized linear mixed models (GLMM) with

different response distributions and different experiment designs in Section 2.2.3.

The structure of deep neural networks we used in the simulation studies is a

simple CNN which consists of three convolutional layers with 64, 128 and 128 filters,

respectively, and followed by two fully-connected layers with 512 and 256 neurons,

respectively. Different from image data, our training samples which serve as the

input of CNN could be any numbers and have high variability, batch normalization

is employed to stabilize the training. Dropout is also used to reduce overfitting.

Gaussian distribution with conjugate prior

In order to test the performance of the proposed Bayes estimator, we performed

the simulation studies based on the conjugate Bayesian analysis of the Gaussian

distribution.

Assume xi|µ
i.i.d.∼ N(µ, σ2) for i = 1, · · · , n, µ is unknown and the prior distribution

of µ is N(µ0, σ
2
0), where σ2, µ0, and σ2

0 are all known. Then the posterior distribution

of µ is given by

µ|X = (x1, · · · , xn) ∼ N

(
nσ2

0

nσ2
0 + σ2

x̄+
σ2

nσ2
0 + σ2

µ0,
σ2

0σ
2

nσ2
0 + σ2

)
. (2.3)

56

The Bayes estimator under L2 loss is the posterior mean,

µ̂ =
nσ2

0

nσ2
0 + σ2

x̄+
σ2

nσ2
0 + σ2

µ0.

Since the data-generating mechanism is very clear in this case, and we limited the

space of µ0 to be within [−5, 5] for demonstration purpose, it’s easy to generate the

training data pairs (µ(i), X(i))1≤i≤N , where N is the total number of training samples.

We trained a deep neural network with the structure described above and saved the

trained estimator.

We tested the performance of the trained Bayes estimator over 100 different µ0’s

uniformly sampled from [−5, 5]. For each fixed µ0, we first generate 1000 pairs

(µ(i), X(i) = (x1, · · · , xn))1≤i≤1000 by repeatedly drawing µ(i) from the prior distri-

bution N(µ0, σ
2
0) and drawing X(i) from N(µ, σ2). We calculated the mean squared

error loss between the obtained estimate and the theoretical posterior mean and the

variance of predictions for all µ’s. We averaged the results over the 100 cases and

summarized the results in Table 2.1.

Table 2.1.: Simulation results of conjugate Bayesian estimation of Normal distribution

n MSE Var Theoretical Var

49 0.0111 0.0249 0.0200

100 0.0099 0.0128 0.0099

400 0.0039 0.0051 0.0025

We can see that the Bayes estimator we proposed approximates the posterior mean

well and the prediction accuracy increases as the sample size increases. The variances

of the neural Bayes estimators are also close to their corresponding theoretical vari-

ances.

57

2.2.3 Application in GLMM

Generalized linear mixed models (GLMMs) are expansion of linear models (LMs)

with variance components and accommodation of non-normal response. According

to the definition in McCulloch and Searle (2001) [61], the GLMMs have two special

features compared to the LMs. One feature is the normality assumption is no longer

needed, and the other is the mean does not need to be a linear combination of the

involved covariates. To be more specific, consider a sample of n independent random

multivariate response {yi = (yi1, · · · , yim)}1≤i≤n, where yij is the j-th response of

the i-th observation. We shall assume that yij depends on a p × 1 vector of fixed

covariates xij associated with a vector of fixed effects β = (β1, · · · , βp)′ and on a q×1

vector of random covariates zij associated with the multivariate q × 1 random effect

ui. GLMM satisfies the following conditions.

• Given ui, the variables yi1, · · · , yin are mutually independent with a density

function given by

f(yij|ui, β) = exp

{
yijθij − b(θij)

dij(φ)
+ c(yij, φ)

}
, (2.4)

where θij is the canonical parameter and φ is the scale parameter. The function

dij and c are specific to each distribution.

• The conditional mean and variance of yij are given by

E(yij|ui) = µij = h−1(x′ijβ + z′ijui), (2.5)

V ar(yij|ui) = v(µij)dij(φ), (2.6)

where h and v are the link and variance function, respectively.

• The random effects u1, · · · , un, are mutually independent with a common un-

derlying distribution G which depends on the unknown parameters σ.

We are interested in estimation of both fixed effect and random effect θ = (β, σ).

As mentioned earlier, the difficulty of estimation arises due to the increase of the

58

number of variance components, i.e. the dimension of σ. We usually do not have

strong prior knowledge of the parameters in GLMM, we will just employ the non-

informative prior. Uniformly random sampling or Latin Hypercube sampling will be

used to first generate the parameter samples. Then based on the statistical model

(2.4), we can generate the labeled samples {(yk = (yk1, · · · ,ykn), θk)}k=1,··· ,N which

will be further fed into the deep neural networks.

One often assumes G to be of a specific parametric form, generally a multivariate

normal with mean vector 0 and covariance matrix Σ = Σ(σ) = (σjl)j,l=1,··· ,q, and uses

a parametric or semiparametric approach. In this case, the marginal likelihood of

y = (y1, · · · ,yN) is given by

L(β, σ|y) = (2π)−Nq/2|Σ|−N/2
N∏
i=1

∫
Rq

n∏
j=1

f(yij|ui, β) exp(−1

2
u′iΣ

−1ui)dui. (2.7)

The maximization of the above function is computationally difficult and requires

evaluation of integrals where the integral’s dimension is equal to the number of random

effects.

The popularly used statistical methods for estimating the parameters in GLMM

can be divided into two categories. The first category is based on analytical Laplace

approximation, such as penalized quasi-likelihood (PQL) [72, 73]. The second cat-

egory is based on numeric techniques, and includes Bayesian approach with sam-

pling [74], MCEM algorithm [75], Gauss-Hermite quadrature (GHQ) [76], and Ran-

domized QMC method [77,78].

Comparing different approaches for parameter estimation in GLMMs and select-

ing the best approach based on real data is very difficult because we do not know

what the true values are. It is also hard to solve this analytically. That is why

we are forced to implement a simulation study. We conduct simulation studies to

demonstrate the properties and performance of the proposed Neural Bayes Estimator

in this section. In addition, we will compare the relative performance and accuracy

between our proposed approach and three R packages (lme4 [79], MCMCglmm [80],

and glmmADMB [81]).

59

lme4 is a widely used package that uses the glmer function to fit a GLMM model.

lme4 implements AGHQ to approximate the log-likelihood function using numerical

integration only for single and scalar random effects. MCMCglmm uses MCMC

instead of ML to fit the model. It is using Gibbs sampler with inverse-Wishart prior

for the variance components and multivariate normal distribution for the fixed effects.

glmmADMB is built on the open-source AD Model Builder platform. It’s flexible,

but much slower than other R packages.

Our proposed estimator is based on learning of the simulated data, and its perfor-

mance depends on the number of responses in one experiment. Based on the setup

of the GLMM, we mainly focus on the balanced design in this study. We will vary

the number of replicates (K = 5, 10, 20) in the experiment to test the performance of

the proposed estimator. We will also test on several GLMMs with different response

distributions. We first set the parameter space of all the parameters in the GLMM,

including fixed effect and random effect parameters to be an interval, like [0, 2] or

[0, 4]. We generate the labeled data based on GLMM of interest, 80% of which is

used for training, and the other 20% is used for validation. Note that we use the

definitions given in Ripley (2007) [82]: a training set is used for learning, a validation

set is used to tune the network parameters, and a test set is used only to assess the

performance of the network.

Gaussian mixed models

We will first use a Gaussian mixed model, which is a special case of GLMM. The

model is formulated as follows.

60

Yijk = µ+ αi + βj + εijk (2.8)

βj ∼ Normal(0, σ2
β),

(ε)ijk ∼ Nomral(0, σ),

i = 0, · · · , 4; j = 0, · · · , 3; k = 0, · · · , 4

where αi’s are the fixed effects, βj’s are the random main effects, and εijk’ are the error

terms. To avoid the non-identifiability problem, we add a constraint on the base level

of the fixed effects (i.e. α0 = 0). The response Y is assumed to follow the Gaussian

distribution. The parameters of interest are θ = (µ, α1, α2, α3, α4, σβ, σ) ∈ R7.

In order to perform fair comparisons with R packages, especially with MCM-

Cglmm, we employ the same prior distributions for the parameters as in MCMCglmm

in this example, which are

µ, αi ∼ Normal(0, 2),

σβ, σ ∼ invgamma(scale = 1, shape = 1),

The inverse-Gamma is a special case of the inverse-Wishart used in MCMCglmm for

the variance components. We truncate the inverse-Gamma distribution on the right

at 10 to avoid extreme large value responses.

We generate the training data by repeatedly drawing parameters samples from

the priors distributions, and generating responses according to model 2.8. In total,

we generate 10,000 samples for the training data. We employed a five-layer deep

neural network that consists of three convolutional layers and two fully connected

layers. For the testing, we randomly generate 1000 sets of parameters from the prior

distributions. For each parameter set, we generate one sample with 100 observations.

So the size of testing set is 1000. We compared the trained neural Bayes estimator

with existing packages lmer and MCMCglmm in R on the testing dataset, and report

the mean squared error in Table 2.2.

From Table 2.2, we can see that our proposed neural Bayes estimator outperforms

the two R packages by a significant margin for the fixed effects and random effect

61

Table 2.2.: MSE for Gaussian mixed model with two variance components: compari-

son with R results, mean squared error over 1000 test cases. Sample size = 100

Fixed effects Random effects

(Intercept) α1 α2 α3 α4 σβ σ

CNN 3+2 1.6815 0.8003 0.7630 0.8241 0.7135 1.3245 0.1542

R-lmer 3.4101 1.2137 1.1307 1.2485 1.0947 1.9893 0.0520

R-MCMCglmm 3.4051 1.2153 1.1354 1.2501 1.0960 2.8036 0.0544

σβ. For the standard deviation of the error term, the two R packages did a much

better job than us. One possible reason for the better performance of lmer and

MCMCglmm over our proposed estimator is that the former two use the maximum

likelihood principle, which leads to more degrees of freedom for σ. While in our

method, σ and other parameters are treated equally.

In Fig. 2.1, we plot the histograms of squared errors between predicted parameter

values and the truth of all 1,000 test cases. Three colors represent three different

methods, which are CNN based neural Bayes estimator, lmer, and MCMCglmm.

Three panels are for the intercept, α1 and σ, respectively. The dashed lines represent

the mean squared errors. We can see that in panel (a), our proposed neural Bayes

estimator performs better in terms of mean squared error over these test cases. The

histograms of MCMCglmm has a long tail on the right. MCMCglmm did not perform

well in 53 cases, in which the squared errors of these cases are over 15. This resulted

in a higher mean squared error. The performances did not improve even if we increase

the number of iterations in MCMCglmm. Similar patterns can be found in panel (b).

However, our proposed neural Bayes estimator performs consistently well over all test

cases. Overall, our proposed estimator will not encounter computation difficulties in

predictions once the training is done, and it performs better on average.

62

(a) Intercept

(b) α1

(c) σ

Fig. 2.1.: Histograms of squared errors of 1,000 test cases. Different colors represent

three different methods. Dashed lines represent the mean squared errors over all test

cases.

63

Poisson regression

For non-normal response mixed model examples, we will start with Poisson mixed

model with two variance components. The model is formulated as follows.

Yijk ∼ Poisson(µij),

log µij = µ+ αi + βj + (αβ)ij, (2.9)

α0 = 0,

βj ∼ Normal(0, σ2
β),

(αβ)ij ∼ Nomral(0, σ2
αβ),

i = 0, · · · , 4; j = 0, · · · , 3; k = 0, · · · , 19.

Here αi’s are the fixed effects, βj’s are the random main effects, and (αβ)ij’ are

the random interaction effects. To avoid the non-identifiability problem, we add

a constrains on the base level of the fixed effect (i.e. α0 = 0). The response Y

is assumed to follow the Poisson distribution. The parameters of interest are θ =

(µ, α1, α2, α3, α4, σβ, σαβ) ∈ R7.

We put the non-informative prior Uniform(0, 2) on the parameters since in the

real examples, the responses are usually within thousands. We first generate the

training data from 2.9. Then we train a neural Bayes estimator for this Poisson

regression model.

For the testing, we randomly generate 1000 sets of parameters from the parameter

space. For each parameter set, we generate one sample with 400 observations. So

there are in total 1000 samples in the testing set. We will vary the size of the

training data from 1,000 to 100,000, which are denoted in the parenthesis in Table

2.3. We compared the Neural Bayes estimator with existing packages in R on the

testing dataset, and report the mean squared error in Table 2.3 . Note that several

packages run into problems with some test cases. For example, R-MCMCglmm gave

convergence errors for one case out of 1000 test cases. R-glmmADMB have problems

with 147 cases. From Table 2.3, we can see that the performance of Neural Bayes

64

estimators improve when we user larger size of training data. It is clear that the

neural Bayes estimator outperforms the three listed R packages.

Table 2.3.: MSE for Poisson mixed model with two variance components: comparison

with R results, mean squared error over 1000 test cases. Sample size for the CNN

training is denoted in the parenthesis.

Fixed effects Random effects

(Intercept) α1 α2 α3 α4 σβ σαβ

CNN (10,000) 0.1114 0.1482 0.1726 0.1478 0.1559 0.0751 0.0565

CNN (100,000) 0.0841 0.1010 0.1015 0.1017 0.112 0.0552 0.0297

CNN (1,000,000) 0.0840 0.0948 0.0936 0.0952 0.1042 0.0518 0.0277

R-glmer 0.1702 0.1811 0.1888 0.1838 0.1907 0.0753 0.0211

R-MCMCglmm 0.1644 0.1664 0.1660 0.1769 0.1806 0.2476 0.0236

R-glmmADMB 0.1733 0.1700 0.1796 0.1912 0.1983 0.1502 0.1584

As mentioned earlier, the difficulty of estimation in GLMM increases as the num-

ber of variance components in the model increases. Additionally, we increase the

number of variance components in the Poisson mixed regression model. Aside from

the treatment, block, an interaction between treatment and block, we also consider a

random subject effect. The model is specified as follows.

65

Yijk ∼ Poisson(µijk),

log µijk = µ+ αi + βj + (αβ)ij + εijk,

α0 = 0, (2.10)

βj ∼ Normal(0, σ2
β),

(αβ)ij ∼ Nomral(0, σ2
αβ),

εijk ∼ Nomral(0, σ2),

i = 0, · · · , 4; j = 0, · · · , 3; k = 0, · · · , 19.

The parameters of interest involved in this model are: θ = (µ, α1, α2, α3, α4, σβ, σαβ, σ).

We trained the CNN using different sizes of training data, which are denoted in the

parenthesis in Table 2.4, and tested the performance of trained CNNs on a testing

dataset with 1000 samples. We compared CNN based Bayes estimators with existing

packages in R, and report the mean squared error in Table 2.4. From the table, it

is clear that the neural Bayes estimator outperforms the listed statistical packages

over 1000 test cases. MCMCglmm and glmer outperform the Neural Bayes estimator

in the estimation of the subject effect. When we increase the number of variance

components in GLMM, the accuracy decreases for the three R packages, while our

proposed neural Bayes estimator performs consistently.

Logistic regression

We consider the similar setup as Poisson mixed model with three variance compo-

nents in the previous section. Here, we consider the mixed effects logistic regression

model. All the other settings are the same as above. The model of interest is given

as follows.

66

Table 2.4.: MSE for Poisson mixed model with three variance components : compari-

son with R results, mean squared error over 1000 test cases. Sample size for the CNN

training is denoted in the parenthesis.

Fixed effects Random effects

Intercept α1 α2 α3 α4 σβ σαβ σ

CNN (10,000) 0.2512 0.3422 0.2774 0.2515 0.3654 0.0959 0.0870 0.0881

CNN (100,000) 0.1048 0.1118 0.1072 0.0949 0.1177 0.0660 0.0465 0.0145

CNN (1,000,000) 0.1058 0.1247 0.1183 0.0981 0.1229 0.0598 0.0439 0.0265

R-glmer 0.1813 0.1816 0.1722 0.1568 0.1583 0.0823 0.0225 0.0013

R-MCMCglmm 0.1758 0.1807 0.1684 0.1513 0.1547 0.3290 0.0295 0.0013

R-glmmADMB 0.1935 0.2079 0.1856 0.1737 0.1735 0.4499 0.4561 0.0353

Yijk ∼ Bernoulli(pij),

µij = µ+ αi + βj + (αβ)ij + εijk,

pij =
exp(µij)

1 + exp(µij)
,

α0 = 0,

βj ∼ Normal(0, σ2
β),

(αβ)ij ∼ Nomral(0, σ2
αβ),

εijk ∼ Nomral(0, σ2)

i = 0, · · · , 4; j = 0, · · · , 7; k = 1, · · · , 10.

Table 2.5 presents the performance of the neural Bayes estimator on the testing

dataset together with the performance of other existing methods. This time, R-glmer

gives convergence errors for 384 cases out of 1000 test cases. R-glmmADMB has

67

problems with 303 cases. From the table, it is clear that the neural Bayes estimator

outperforms the four listed statistical packages by a significant margin. The larger

MSEs in the table are resulted from some problematic cases, e.g. singular matrix,

non-convergence issue.

Table 2.5.: MSE for Mixed effect Logistic regression with three variance components:

comparison with R results, mean squared error over 1000 test cases. Sample size for

the training is denoted in the parenthesis.

Fixed effects Random effects

(Intercept) α1 α2 α3 α4 σβ σαβ σ

CNN (10,000) 0.1185 0.1643 0.1659 0.1725 0.1944 0.0696 0.0806 0.0969

CNN (100,000) 0.1105 0.1512 0.1558 0.1626 0.1766 0.0657 0.0738 0.0951

R-glmer 2.0191 1.0975 0.3722 0.3787 1.2261 0.1052 0.1308 37.9541

R-glmmADMB 0.4093 1.0856 0.3942 0.6118 11.7821 0.2690 0.1905 83.3700

2.2.4 Selection of hyper parameters in training

Random sampling V.S. Latin Hypercube sampling

In order to reduce the size of the training data and at the same time not sacri-

fice the accuracy, we propose to use Latin Hypercube sampling method in the data

generating step. We compared the performances of different sampling methods under

Model 2.10 and summarized the L2 loss on the test data in Table 2.6. We can see

that Latin Hypercube sampling achieves the lowest loss and significantly improves

the estimation accuracy.

68

Table 2.6.: Comparison of different sampling methods. The MSE of CNN predictions

over 1000 test cases for a Poisson regression with three variance components, and 100

sample size (5 replicates in the experiment).

Fixed effects Random effects

Sampling
method Intercept α1 α2 α3 α4 σβ σαβ σ

Equal grid 0.6067 0.5588 0.6481 0.6373 0.5902 0.1440 0.1341 0.1705

Random 0.2275 0.4255 0.4430 0.4980 0.4194 0.1386 0.1502 0.1388

LHS 0.2332 0.3618 0.3456 0.3298 0.3443 0.1355 0.1260 0.1010

Number of training iterations

One drawback of our proposed method is that it needs to be trained every time

we have a new model. We want to propose a unified approach without sacrificing the

computing time. The proposed Bayes estimator is based on deep neural networks, and

we believe that the training time is what one will be most interested in. We employed

a moderately sized CNN in the simulation studies across this chapter. For the Poisson

model 2.10, we vary the training data size and the number of training steps, and we

summarize the performance of the trained neural Bayes estimators under different

scenarios in Fig. 2.2. We can see that for this moderately sized model, training size

of 10000 is enough and training with 20,000 steps is also enough to achieve acceptable

results. Large training data requires a long training time to achieve stable results.

2.3 Neural Model Selector and Parameter Estimator

As discussed in the Introduction, we focused on two different scenarios in which

statistical analysis is needed. One scenario is that we know the data generating

69

Fig. 2.2.: Mean squared error loss on the testing data over different number of itera-

tions under the Poisson model 2.10

procedure (model) and are only interested in the involved parameters. We proposed

the neural Bayes estimator. The other scenario we are going to discuss here is that we

just have the samples collected from an experiment, but we do not know the model

and only have a set of candidate models. In this scenario, we will need to not only

identify the best model that fits the data, but also estimate the parameters involved

in the model. In this section, we will limit the candidate model space M to be the

models with scalar parameter. As mentioned in Section 2.1, model selection and

parameter estimation are two mappings from the sample space to the model class

and parameter space, which we denote as G1 and G2, respectively. We propose to use

CNNs to approximate the model selection mapping G1 and the parameter estimation

mapping G2, and we refer the trained CNNs as the neural model selector and the

neural parameter estimator.

2.3.1 Labeled data and loss functions

Recall that M is the collection of prespecified candidate models, and the density

function of model Mk is f(y|θk,Mk), where θk ∈ Θk ⊂ R is the parameter. We have

70

a random sample from one of the models, which we denote as {yj}1≤j≤N , where N

is the sample size. The situation here is that we do not know the exact model from

which {yj} is drawn from, and we want to find the true model Mk and estimate θk.

As an analogy, the sample {yj} can be considered the image of an object, G1 the

classifier for object recognition, and G2 the regression procedure for object localization

in image processing [83]. In order to train G1 and G2, just like in image processing,

labeled data must be available. We propose to generate the labeled data as follows.

Let N be a prespecified sample size. For each model Mk, we first place an equally

space grid over the parameter space Θk, which is {θk,1, θk,2, · · · , θk,nk
}. For each value

of the grid θk,l, we generate D samples of size N from f(y|θk,l,Mk). We denote the

samples as {y(k,l,d)j}1≤j≤N for 1 ≤ k ≤ K, 1 ≤ l ≤ nk, and 1 ≤ d ≤ D. In total,

we have the following collection of labeled data Y =
{(
{y(k,l,d)j}1≤j≤N ,Mk, θk,l

)
k,l,d

}
,

and Y will be used to train and validate both G1 and G2.

In order to train G1 and G2, we need to choose proper loss functions. As men-

tioned previously, the neural model selector is essentially a classifier and similar to

the classifier for object recognition. Therefore, we choose the commonly used softmax

loss function for training G1. For details of the softmax loss function, the reader is re-

ferred to [84]. The neural parameter estimator G2 is essentially a regression function

and similar to the regression CNN for localizing an object in an image. For object

localization, the L2 loss is typically used, which is L(G2, θ) = ‖G2− θ‖2
2. The L2 loss

function works well for image processing. For the neural parameter estimator, the L2

loss is sensitive to extreme observations generated from models with long tails inM,

which makes the training process unstable. Resolve this issue, the Huber loss [66] is

employed in training of neural estimator to improve the robustness against outliers.

The Huber loss is defined as follows:

Lδ(θ, θ̂) =


1
2
(θ − θ̂)2 for |θ − θ̂| ≤ δ,

δ(|θ − θ̂| − 1
2
δ) otherwise.

71

2.3.2 Two types of architectures

The last important issue is about the architectures of the neural model selector

and parameter estimator. There are two different types of architectures involved. The

first type is regarding the architectures of the CNNs, which are about the numbers

and sizes of the covolutional and fully connected layers. We refer to this type of

architecture as the CNN architecture. The second type of architectures is regarding

the interplay between the model selector G1 and the parameter estimator G2. Because

this type of architecture directly affects how the overall analysis performed, we refer

to it as the SA architecture.

There are three possible SA architectures. The first SA architecture uses two

separate CNNs for the model selector and the parameter estimator, respectively,

which we refer to as the Non-Shared Architecture (NSA). The second SA architecture

uses one single CNN for both G1 and G2, and they part their ways only at the output

layer. We refer to this architecture as the Fully Shared Architecture (FSA). The

third architecture uses two partially joint CNNs for G1 and G2, respectively. The two

CNNs can share from one to all common convolutional and fully connected layers.

We refer to this architecture as the Partially Shared Architecture (PSA). The PSA

sharing l layers is denoted as PSA-l. The three SA architectures NSA, FSA, and PSA

are illustrated in Fig. 2.3.

NSA, FSA, and PSA have their own advantages and disadvantages. Using again

the analogy of object recognition and localization, the convolutional layers are used

to learn features that can be efficiently and effectively used for identifying the true

model and its parameter. When NSA is used, the two separate CNNs are learning the

features for model selection and parameter estimation, separately, and this simple SA

architecture allows easy implementation of the training algorithms. The disadvantage

of NSA is that it uses only the marginal distribution of model label and true parameter

value separately, instead of the entire information in their joint distribution.

72

Fig. 2.3.: SA Architecture, from top to bottom: NSA, FSA, PSA-1

When FSA is used, the single CNN is trying to learn the same set of features, and

hope that they can be used to not only select the model correctly but also estimate

the parameter accurately. This is based on the assumption that such a set of common

features exists. This assumption holds for distributions that belong to the Exponential

family, and minimal sufficient statistics can serve as the set of common features. This

assumption however may not hold in general. Therefore, FSA is expected to work

well under one set of candidate models, but may fail under another set of candidate

models.

The most promising architecture is PSA. The intuition underlying PSA is that

the early convolutional layers will produce low-level features that are common for

both model selection and parameter estimation, and information in the true model

73

label and parameter values can be shared. Because model selection and parameter

estimation are two different tasks, we should not expect they would be relaying on

the same set of high-level features. Our simulation studies reported in later sections

support this intuition. In terms of training, PSA is more demanding than the other

two architectures. Furthermore, PSA leads to another important issue, that is, how

many convolutional layers should be shared by G1 and G2. We will investigate this

issue in the next section.

2.3.3 Relationship between neural model selector and Bayes factor

As discussed earlier, there are many traditional approaches for model selection,

the Bayes factor method is one of them. It imposes a prior distribution to the models,

π(Mk), and a prior distribution to the parameter π(θk). The Bayes factor between

any two models, Mk1 and Mk2 , is calculated as the ratio between the likelihood values

of the models with their parameters integrated out with respect to the corresponding

priors,

BF (Mk1 ,Mk2) =
π({yj}|Mk1)

π({yj}|Mk2)
=

∫
f(y|θk1 ,Mk1)π(θk1)dθk1∫
f(y|θk2 ,Mk2)π(θk2)dθk2

. (2.11)

The model the BF scores support the most will be selected as the best model.

In NSA, we proposed to use two separate CNNs to approximate the model selection

and the parameter estimation, respectively. We train the first CNN for model selection

with cross-entropy loss, which is defined as

L =

∫
Y

K∑
i=1

L(Oi(y), li)f(y|Mi)π(Mi)dy

= −E

{
K∑
i=1

E[li] logOi(Y) + (1− E[li]) log(1−Oi(Y))

}
, (2.12)

where {Oi(Y), i = 1, 2, · · · , K} is the output layer of the neural network, which is a

function of the input data Y , and {li, i = 1, 2, · · · , K} is the desired output, and

f(y|Mi) =

∫
Θ

p(y|θ,Mi)π(θ|Mi)dθ. (2.13)

74

Note that in the model selection, {li, i = 1, 2, · · · , K} is the one-hot encoding, and it

follows

E[li] = P (Mi|Y).

Take the first derivative in (2.12) with respect to Oi(Y) and set it to be zero, we have

Oi(Y) = E[li] = P (Mi|Y).

The cross-entropy cost function (2.12) is minimized when Oi(Y) = P (Mi|Y) for

i = 1, 2, · · · , K.

In the training process of model selector, we use the data {yj} as the input and

model label as the output. Therefore, if we train the CNN with large enough training

data, the output of trained model selector approximates the posterior distributions

P (Mi|y), and the trained model selector essentially is a Bayes classifier. We generate

the same amount of training data for each model, i.e. we impose the uniform prior

on the candidate models π(Mi) = 1/K. Based on the relationship between likelihood

values of models and posterior distributions,

P (y|Mk) =
P (Mk|y)P (y)

P (Mk)
,

we have

BF (Mk1 ,Mk2) =
P ({yj}|Mk1)

P ({yj}|Mk2)
=
P (Mk1|{yj})P (Mk2)

P (Mk2|{yj})P (Mk1)
. (2.14)

Thus, the Bayes factor is equal to the ratio of posterior probabilities of model Mk1

and model Mk2 since the prior probabilities on all candidate models are the same. In

prediction, we choose the model that has the highest posterior probability to be the

best model. This is exactly equivalent to using the Bayes factor method according to

(2.14), but without the explicit calculation of posterior distribution π({yj}|Mk).

2.3.4 Simulation results

We conduct simulation studies to demonstrate the properties and performance

of the proposed model selector and parameter estimator in this section, and further

compare them with several conventional statistical methods.

75

Setup and datasets

The difficulty of model selection and parameter estimation depends on the number

of candidate models (K) in M. We consider three levels of K, which are 5, 20

and 50. We take 50 probability distributions from the textbook [65] and some R

packages [85–89]. The 50 distributions are listed in Table 2.7 and 2.8. When K = 5,

the set of candidate models M includes the top five distributions in the list; when

K = 20, M includes the top 20 distributions in the list; and when K = 50, M

includes all the 50 distributions.

The performance of the proposed model selector and parameter estimator depends

on the sample size. We consider three levels of the sample size N , which are 100, 400,

and 900. Each sample will be resized to a square matrix to feed into CNNs. According

to the data-generating scheme described in Section 2.3.1, the total amount of training

samples further depends on the number of parameter values on the grid (nk) and the

number of replicated samples (D). We specify D = 1000, and grid size nk is set to

be between 10 and 12. For each distribution, if the parameter space is bounded, like

probability p in Bernoulli distribution, we will place the grid on the original space.

If the parameter space is not bounded, like µ in Normal distribution, we will set the

parameter space to be a bounded interval, [0, 12]. Following the scheme of Section

2.3.1, we generate all the labeled data, 80% of which is used for training, and the other

20% is used for validation. Note that we use the definitions given in [82]: a training

set is used for learning, a validation set is used to tune the network parameters, and

a test set is used only to assess the performance of the network.

We further generate the test data as follows. For each model, we first randomly

sample 100 parameter values from the parameter space, those values are just in the

same range as parameters in the training set, but not the same; and second, for

each sampled parameter value, we generate 10 random samples of size N . We test

the trained model selector and parameter estimator using the test datasets. Counting

both the labeled data and test data, in total, we have generated roughly 400 thousand

76

Table 2.7.: List of 50 models used in the simulation study: part I

Distribution Parameter of interest Other parameters

1 Bernoulli(p) p

2 Discrete Uniform(N) N

3 Geometric(p) p

4 Negtive Binomial(r, p) r p = 0.3

5 Exponential(λ) λ

6 Normal(µ, σ) µ σ = 1

7 Poisson(λ) λ

8 Beta(α, β) α β = 3

9 Weibull(λ, k) k λ = 3

10 Double Exponential(µ, λ) µ λ = 3

11 Chi Square(k) k

12 F(d1, d2) d2 d1 = 3

13 Gamma(α, β) β α = 0.5

14 Logistic(µ, s) µ s = 0.5

15 Lognormal(µ, σ) µ σ = 0.5

16 Pareto(xm, α) xm α = 2

17 Student’s t(ν, ncp) ν ncp = 2

18 Uniform(a, a+ 2) a

19 Hypergeometric(m, n, k) n m = 3, k = 2

20 Binomial(n, p) n p = 0.5

21 One-Inflated Logarithmic(shape, pstr1) shape pstr1 = 0

22 Triangle(θ, lower, upper) θ lower = 0, upper = 33

23 Wilcoxon Signed Rank Statistic(n) n

24 Benini(y0, shape) shape y0 = 1

25 Beta-Geometric(shape1, shape2) shape2 shape1 = 5

26 Beta-Normal(shape1, shape2, mean, sd) shape1 shape2 = 10, mean = 5, sd = 11

27 Birnbaum-Saunders(scale, shape) shape scale = 1

28 Dagum(scale, shape1.a, shape2.p) shape1.a scale = 1, shape2.p = 2

29 Frechet(location, scale, shape) shape location = 0, scale = 1

30 Dirichlet(shape1, shape2, shape3) shape1 shape2 = 2, shape3 = 4

77

Table 2.8.: List of 50 models used in the simulation study: part II

Distribution Parameter of interest Other parameters

31 Huber’s Least Favourable(k, µ, σ) k µ = 0, σ = 1

32 Gumbel(location, scale) scale location = 1

33 Gompertz(scale, shape) shape scale = 1

34 Kumaraswamy(shape1, shape2) shape2 shape1 = 10

35 Laplace(location, scale) scale location = 5

36 Log-Gamma(location, scale, shape) scale location = 0, shape = 2

37 Lindley(θ) θ

38 Lomax(scale, shape3.q) shape3.q scale

39 Makeham(scale, shape, ε) shape scale = 0, ε = 0

40 Maxwell(rate) rate

41 Nakagami(scale, shape, Smallno) shape scale = 1, Smallno = 1.0e− 6

42 Perks(scale, shape) shape scale = 1

43 Rayleigh(scale) scale

44 Rice(σ, vee) vee σ = 1

45 Simplex(µ, dispersion) dispersion µ = 0.5

46 Singh-Maddala(scale, shape1.a, shape3.q) shape3.q scale = 1, shape1.a = 5

47 Skellam(µ1, µ2) µ2 µ1 = 5

48 Tobit(mean, sd, lower, upper) mean sd = 1, lower = 0, upper = Inf

49 Paralogistic(scale, shape1.a) scale1.a scale = 1

50 Zipf(N , shape) shape N = 10

training samples, 100 thousand validation samples, and 50 thousand test samples for

the 50 models.

Architecture setup and training

In Section 2.3.2, we discussed the three possible SA architectures (NSA, FSA, and

PSA), but have not discussed the CNN architectures. In our simulation studies, we

employ three different sizes of CNNs, which are referred to as small, medium, and

78

large, respectively. The small CNN architecture consists of three convolutional layers

with 64, 128 and 128 filters, respectively, which are followed by two fully-connected

layers with 512 and 256 neurons, respectively. The medium CNN architecture con-

sists of five convolutional layers with 64 filters each, which are followed by two fully

connected layers each with 64 neurons. The large CNN architecture consists of five

convolutional layers with 64, 64, 128, 128 and 128 filters, respectively, which are fol-

lowed by two fully connected layers with 1024 and 512 neurons, respectively. In all

three CNN architectures, convolutional filters are connected to a 5× 5 region of their

input, 2 × 2 max pooling and 2 × 2 average pooling are performed between some

consecutive convolutional layers. The same CNN architecture is used for both the

neural model selector and parameter estimator except for the output layers.

Under each combination of SA architectures (NSA, FSA, PSA), CNN architectures

(small, medium, large), number of candidate models (K = 5, 20, 50), sample sizes

(N = 100, 400, 900), we use the generated labeled data to train, validate, and test

the proposed neural selector and parameter estimator. For PSA, we further vary the

number of shared layers (l) in training. Each training run is replicated six times to

assess the stability of the training procedure and results. All training is performed

using the Caffe implementation [90] on one GTX-1080 GPU. The running time each

training run takes ranges from five minutes to one hour depending on the values of

K and N .

Performance of neural selector and estimator

Overall, the trained model selector and parameter estimator demonstrate excellent

performances.

Accuracy of the model selector Fig. 2.10 shows the confusion matrix based on large

CNN and PSA-5 neural model selector on test dataset with K = 20 distributions.

Table 2.9 presents the performance of the model selector on the test dataset under all

the combinations of SA architecture, CNN architecture, number of candidate models

79

K, and sample size N . The selection accuracy together with standard deviation in

parentheses based on repeated six runs are reported, the better result between NSA

and PSA SA architectures is denoted as bold. For PSA, we report the best results

based on layer analysis, they are PSA-3, PSA-2, and PSA-5 for small, medium, and

large CNN architectures, respectively.

The table shows that the selection accuracy decreases as K increases under fixed

N , and the accuracy increases as we have larger sample size. When we have a mod-

erate sample size, 400, the partially shared CNN architecture can achieve more than

90% selection accuracy. In order to maintain high accuracy for large number of can-

didate models, large sample sizes should be used.

Accuracy of the parameter estimator The performance of the parameter estimator

on the test dataset under different scenarios is reported in Table 2.11 in Appendix.

Fig. 2.4 shows the scatter plots of true parameter values and predicted values es-

timated by parameter estimator under different combinations of architectures and

sample sizes N . Fig. 2.12, 2.12, 2.13, 2.14, 2.15 show the scatter plot of true pa-

rameter values and predicted values for 50 distributions under the use of architecture

PSA-5 on the test dataset with N = 900. Overall, the large CNN PSA-5 parameter

estimator performs the best on almost all the distributions in the model set.

Impact of SA architectures on learning rate Fig. 2.5 is used to compare the impacts

of the NSA and PSA-l SA architectures on the learning rates of the model selector

and the parameter estimator, respectively. The medium and large CNN architectures

are used, and all the three sample sizes are considered. The upper panel is for medium

CNN architecture while the lower panel is for large CNN architecture. The upper left

panel of Fig. 2.5 plots the accuracy of the model selector evaluated on the validation

dataset against the number of iterations during the training process, whereas the

upper right panel plots the log Huber loss of the parameter estimator. Solid curves

are for the PSA-2 SA architecture, and dotted curves are for the NSA architectures.

It is clear from the plots that the learning rate under PSA-2 is faster than that

80

(a) (b)

(c) (d)

(e) (f)

Fig. 2.4.: Parameter estimation results on the test dataset with K = 50. The left

panel is the results estimated by large CNN and NSA parameter estimator, while the

right panel is estimated by large CNN and PSA-5 parameter estimator. The x-axis

in each plot is the ground truth for the parameters and the y-axis is the estimation.

81

Table 2.9.: Model selection results under all the combinations of SA architecture,

CNN architecture, number of candidate models K, and sample size N .

CNN
Architecture

N = 100 N = 400 N = 900

NSA PSA NSA PSA NSA PSA

K = 5

small
96.88% 96.92% 97.68% 97.78% 97.98% 98.01%

(0.12%) (0.11%) (0.19%) (0.13%) (0.13%) (0.07%)

medium
96.06% 96.62% 97.68% 97.93% 97.85% 97.90%

(0.29%) (0.21%) (0.25%) (0.16%) (0.08%) (0.16%)

large
97.30% 97.13% 97.88% 97.77% 98.01% 98.01%

(0.19%) (0.13%) (0.08%) (0.08%) (0.13%) (0.17%)

K = 20

small
90.76% 91.44% 96.34% 96.59% 97.79% 97.81%

(0.17%) (0.20%) (0.33%) (0.27%) (0.20%) (0.24%)

medium
67.73% 88.98% 95.11% 96.07% 97.78% 98.03%

(3.09%) (0.86%) (0.47%) (0.46%) (0.14%) (0.08%)

large
92.18% 92.53% 97.09% 97.19% 98.37% 98.47%

(0.23%) (0.35%) (0.23%) (0.32%) (0.29%) (0.14%)

K = 50

small
73.33% 74.00% 86.34% 86.52% 90.10% 90.00%

(0.54%) (0.88%) (0.29%) (0.59%) (0.59%) (0.35%)

medium
48.93% 71.61% 83.86% 87.21% 88.72% 90.38%

(1.92%) (0.66%) (0.37%) (0.41%) (0.25%) (0.34%)

large
75.77% 78.19% 88.58% 88.98% 91.08% 91.11%

(0.64%) (0.48%) (0.50%) (0.31%) (0.28%) (0.42%)

82

under NSA, indicating that sharing convolutional layers between the model selector

and parameter estimator can expedite their training rates. Similar patterns could be

found in other scenarios as showed in Fig. 2.6, 2.7, 2.8.

(a) (b)

(c) (d)

Fig. 2.5.: Comparison between NSA and PSA-l neural model selector and parame-

ter estimator, different colours denote for different sample sizes, upper panel is for

medium CNN architecture and lower panel is for large CNN architecture.

How many layers should be shared? Fig. 2.9 shows the impact of the number of

shared layers between the model selector and parameter estimator on their perfor-

mances. We consider the scenario with K = 50, N = 100, and the medium and large

CNN architectures, and vary the SA architectures from NSA to FSA. The left panel

of Fig. 2.9 presents the boxplots of accuracy of the model selector under various SA

architectures, whereas the right panel presents the boxplots of the Huber loss of the

parameter estimator. In terms of model selection accuracy, for medium CNN archi-

83

tecture, PSA-1 shows significant improvement over NSA, and PSA-2 further improves

upon PSA-1, though the amount of improvement from PSA-1 to PSA-2 is small. PSA-

3 performs almost the same as PSA-2, and further increasing the number of shared

layers leads to slight decrease in selection accuracy. In terms of estimation accuracy

(i.e. Huber loss), we can observe similar patterns as the selection accuracy for NSA,

PSA-1 and PSA-2. As the number of shared layers further increases, the estimation

accuracy declines fairly fast. The results suggest that the PSA-2 SA architecture is

optimal for both of the model selector and parameter estimator for the medium CNN

architecture. For the large CNN architecture, the optimal SA architecture turns out

to be PSA-5 instead.

Comparison with conventional methods

We apply the three conventional model selection methods, the KS distance, BIC,

and Bayes factor to the test datasets under the scenario with K = 20, and compare

their performances with that of the trained neural model selector. Table 2.10 reports

the accuracy of the three statistical methods as well as the trained neural model

selector under various sample sizes. From the table, it is clear that the neural model

selector outperforms the three statistical methods by a significant margin.

In terms of accuracy in parameter estimation, conventional statistical estimators

and the proposed neural estimator are not directly comparable. The former is based

on the knowledge of the model, whereas the latter does not assume the underlying

model is known. If the model is known, then statistical methods such as the maximum

likelihood estimation (MLE) method are shown to enjoy certain optimality. For

example, MLEs are asymptotically most efficient under some regularity conditions. If

the model is unknown, then most conventional statistical methods are not applicable,

but the neural parameter estimator can still work well.

84

Table 2.10.: Comparison of model selection methods on model set with K = 20.

N = 100 N = 400 N = 900

Top-1 Top-2 Top-1 Top-2 Top-1 Top-2

KS distance 72.5% 83.2% 83.3% 85.0% 84.7% 85.0%

BIC 69.9% 74.6% 74.7% 75.0% 75.0% 75.0%

Bayes factor 75.5% 84.8% 77.8% 83.3% 70.0% 75.0%

Neural selector 92.1% 99.2% 96.4% 99.7% 97.9% 99.7%

2.3.5 Neural selector for models with covariates

In the Introduction, we propose to build neural network based framework to au-

tomate the process of model selection and parameter estimation. In the previous

sections, we developed the neural model selector and parameter estimator targeting

on only univariate models with single parameter. Our idea and proposed framework

can be extended to handle more sophisticated models. In this section, we extend the

neural selector to a group of commonly used simple regression models.

Let the model setM include the following seven regression models: simple linear

regression model, Poisson regressoin model, Logistic regression model, Negative Bino-

mial regression model, Lognormal regression model, Loglinear regression model, and

multinormial regression model. Let {(yj, xj)}1≤j≤N be a sample generated from one of

the seven model. As before, the neural model selector is a CNN-based classifier that

maps the sample to its generating model, and we will use labeled data systematically

generated from the seven models to train this neural model selector.

The labeled data are generated as follows. For each regression model, we place an

evenly spaced grid over its parameter space. For each vector of the parameter values

on the grid, 1000 samples with sample size N are randomly drawn from the model.

85

The generated data are further partitioned into 70% for training, 20% for validation,

and 10% for test. We use the medium CNN architecture, employ the Caffe to train

the model selector, and further test the performance of the trained selector on the

test dataset. The results show that the trained model selector can achieve 87.86% in

accuracy when the sample size is 100, and can achieve 97.86% in accuracy when the

sample size is 400.

86

(a) Model Selection (b) Parameter Estimation

Fig. 2.6.: Comparison between NSA and PSA-2: learning curves of selection accuracy

and estimation Huber loss for different samples sizes and different number of candi-

date models. This is based on medium CNN architecture. The left panel plots the

selection accuracy of the model selector evaluated on the validation dataset against

the number of iterations during the training process, whereas the right panel plots

the log Huber loss of the parameter estimator on the validation dataset against the

number of iterations during the training process. Solid curves are for the PSA-2, and

dotted curves are for the NSA. Different colors denote for different sample sizes.

87

(a) Model Selection (b) Parameter Estimation

Fig. 2.7.: Comparison between NSA and PSA-3: learning curves of selection accu-

racy and estimation Huber loss for different samples sizes and different number of

candidate models. This is based on small CNN architecture. The left panel plots the

selection accuracy of the model selector evaluated on the validation dataset against

the number of iterations during the training process, whereas the right panel plots

the log Huber loss of the parameter estimator on the validation dataset against the

number of iterations during the training process. Solid curves are for the PSA-3, and

dotted curves are for the NSA. Different colors denote for different sample sizes.

88

(a) Model Selection (b) Parameter Estimation

Fig. 2.8.: Comparison between NSA and PSA-5: learning curves of selection accu-

racy and estimation Huber loss for different samples sizes and different number of

candidate models. This is based on large CNN architecture. The left panel plots the

selection accuracy of the model selector evaluated on the validation dataset against

the number of iterations during the training process, whereas the right panel plots

the log Huber loss of the parameter estimator on the validation dataset against the

number of iterations during the training process. Solid curves are for the PSA-5, and

dotted curves are for the NSA. Different colors denote for different sample sizes.

89

(a) (b)

(c) (d)

Fig. 2.9.: Information sharing comparison for medium and large CNN architectures,

K = 50 and N = 100. The upper panel is for medium CNN architecture and the

lower panel is for large CNN architecture.

90

Table 2.11.: Parameter estimation results under all the combinations of SA architec-

ture, CNN architecture, number of candidate models K, and sample size N . The

Huber Loss with standard deviation in parentheses based on six repeated runs are

reported, the better result between NSA and PSA SA architectures is denoted as

bold. For PSA, we report the best results based on layer analysis, they are PSA-3,

PSA-2, and PSA-5 for small, medium, and large CNN architectures respectively. We

can see that PSA performs better than NSA in most cases.

CNN
Architecture

N = 100 N = 400 N = 900

NSA PSA NSA PSA NSA PSA

K = 5

small
0.074 0.072 0.022 0.022 0.014 0.015

(0.0024) (0.0041) (0.0008) (0.0004) (0.0007) (0.0003)

medium
0.071 0.072 0.020 0.020 0.012 0.012

(0.0011) (0.0032) (0.0003) (0.0003) (0.0003) (0.0002)

large
0.068 0.067 0.019 0.018 0.011 0.012

(0.0022) (0.0020) (0.0002) (0.0003) (0.0002) (0.0001)

K = 20

small
0.887 0.830 0.285 0.243 0.154 0.130

(0.0310) (0.0261) (0.0097) (0.0090) (0.0106) (0.0077)

medium
0.851 0.864 0.223 0.207 0.111 0.102

(0.0274) (0.0216) (0.0105) (0.0103) (0.0043) (0.0032)

large
0.752 0.732 0.203 0.187 0.110 0.099

(0.0472) (0.0431) (0.0076) (0.0043) (0.0045) (0.0039)

K = 50

small
2.056 1.734 0.91 0.636 0.654 0.428

(0.0724) (0.0344) (0.1323) (0.0137) (0.0483) (0.0176)

medium
1.691 1.596 0.561 0.484 0.313 0.282

(0.0314) (0.0521) (0.0169) (0.0153) (0.0049) (0.0132)

large
1.472 1.258 0.480 0.399 0.288 0.246

(0.0505) (0.0273) (0.0114) (0.0062) (0.0313) (0.0051)

91

Fig. 2.10.: Confusion matrix based on large CNN and PSA-5 neural model selector

on test dataset with K = 20

92

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2.11.: Distribution wise performance of PSA-5 neural parameter estimator under

large CNN on the test dataset with N = 900. Part 1.

93

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2.12.: Distribution wise performance of PSA-5 neural parameter estimator under

large CNN on the test dataset with N = 900. Part 2.

94

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2.13.: Distribution wise performance of PSA-5 neural parameter estimator under

large CNN on the test dataset with N = 900. Part 3.

95

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2.14.: Distribution wise performance of PSA-5 neural parameter estimator under

large CNN on the test dataset with N = 900. Part 4.

96

(a) (b)

Fig. 2.15.: Distribution wise performance of PSA-5 neural parameter estimator under

large CNN on the test dataset with N = 900. Part 5.

97

3. NECESSARY AND SUFFICIENT CONDITIONS FOR

REGULAR CONDITIONAL INFERENTIAL MODELS

3.1 Introduction

Prior-free probabilistic inference is desirable but challenging. This is evidenced

by the century-long efforts starting with fiducial inference introduced by Fisher [91]

and including structural equations of Fraser [92], the Dempster-Shafer theory of belief

functions [93–95], generalized fiducial inference [96], and confidence distribution [97].

A new framework called Inferential Models (IMs) has been proposed recently by

Martin and Liu (2015) [98] for prior-free and yet valid probabilistic inference. It is

valid in the sense that the numerical probabilities in its output are consistent with

frequency interpretations of probability.

It is well-known that in Bayesian inference, where priors are required to be spec-

ified for everything, the centuries-old Bayes theorem is the tool for combining infor-

mation and thereby playes a fundamental role in the Bayesian framework. In lack

of sufficient prior information, the method of Inferential models can be used. In this

case, the counterpart or extension of the Bayes theorem is the theory of Conditional

Inferential Models (CIMs), which has been introduced to combine information for

efficient inference.

The basic idea of behind the theory of CIMs is to sharpen predictive inference via

conditioning. The theory of CIMs is thus quite general, and corresponding methods

are subject further development. There exists however a class of CIMs, called regular

CIMs, that are easy to use. For example, Martin and Liu (2015) [98] showed that

when the dimension of minimal sufficient statistics is the same as that of unknown

parameters, CIMs are regular and can be obtained based on the minimal sufficient

statistics.

98

In this work we provide a necessary and sufficient condition for the identification of

regular CIMs. More specifically, it is shown that for inference based on a sample from

continuous distributions with unknown parameters, CIMs are regular iff the unknown

parameters are generalized location and scale parameters, indexing the transforma-

tions of an affine group. This result helps make a new connection between Inferential

Models with previous work on fiducial inference by Lindley (1958) [99], Dempster

(1963), [100], Dawid and Stone (1982) [101], Taraldsen and Lindqvist (2013) [102].

The remainder of this chapter is organized as follows. Section 2 briefly review

Inferential Models and Conditional Inferential Models. Section 3 presents our main

results on the necessary and sufficient condition for CIMs to be regular. Section 4

concludes with a remark on related theoretical results found in fiducial inference. The

proofs of the theorems are given in Section 5.

3.2 Inferential Models

This section provides a brief review of Inferential Models to introduce the context

of discussion and necessary notations.

3.2.1 Basic Inferential Models

Here, we will use the same notations as in [98]. let X ∈ X be the observable

sample data, where X is the sample space, and let θ ∈ Θ be the parameter of interest,

where Θ is the parameter space. Here, both X and θ could be multi-dimensional.

The starting point of the IM framework is an auxiliary variable, denoted by U ∈ U

and equipped with probability measure PU , it is associated with X and θ. The

sampling distribution for X is characterized by this association for given θ. We can

write this association as

X = a(θ, U), U ∼ PU . (3.1)

Note that the subscripts on P indicate which quantity is random.

99

The IM approach treats the unobserved value of U as the fundamental quantity,

and the goal is to predict this unobserved value with a random set before conditioning

on X = x and inverting (3.1). Let (U,U , PU) be a probability space, where U is

rich enough to contain all closed subsets of U. Take a nested collection S of closed

(hence PU -measurable) subsets of U, assumed to contain ∅ and U. An admissible

predictive random set S ∼ PS is defined based on the support of the collection S and

with distribution PS satisfying

PS{S ⊆ K} = sup
S∈S:S⊆K

PU(S), K ⊆ U.

IMs take the sampling model and observed data as the input, and produce prior-

free, probabilistic measures of certainty about any assertion/hypothesis of interest.

The fundamental idea of IM is that uncertainty about the parameter θ, given observed

data X = x, is fully characterized by an unobservable auxiliary variable U . Thus, the

problem of inference about θ can be translated into one of predicting this unobserved

U with a random set.

To be more specific, the IM is constructed with three steps, association, predict,

and combine.

A-step Associate X, θ, and U ∼ PU , consistent with the sampling distribution X ∼

PX|θ, such that, for all (x, u), there is a unique subset Θx(u) = {θ : x = a(θ, u)} ⊆ Θ,

possibly empty, containing all possible candidate values of θ given (x, u).

P-step Predict the unobserved value u? of U associated with the observed data by

an admissible predictive random set S.

C-step Combine S and the association Θx(u) specified in the A-step to obtain

Θx(S) =
⋃
u∈S

Θx(u).

100

Then, for any assertion or hypothesis A ⊆ Θ about parameter of interest θ, we

can compute the belief probability that the random set Θx(S) is a subset of A as a

measure of the available evidence in x supporting A.

belx(A;S) = PS{Θx(S) ⊆ A|Θx(S) 6= ∅}.

The plausibility function is defined as

plx(A;S) = 1− belx(A
c;S).

Then the pair (belx, plx)(A;S) characterizes the IM output and provide a probabilistic

summary of the evidence in data X = x supporting the truthfulness of assertion A.

3.2.2 Conditional Inferential Models

Construction of efficient predictive random sets is relatively easy in the case of

scalar auxiliary variable. But usual case is that the model rarely admits a scalar aux-

iliary variable representation but multi-dimensional auxiliary variable U , and efficient

prediction of U would be challenging. If we can reduce the dimension of auxiliary

variable U , ideally to dimension one, then choosing the efficient predictive random

set is as easy as dealing with the scalar case.

Let’s start with a simple normal mean example with n = 2. The baseline associ-

ation is

X1 = θ + U1, X2 = θ + U2, (3.2)

where U = (U1, U2) ∼ N2(0, I). The dimension of auxiliary variable is two. First,

let’s use this example to show how three steps in IM framework as described in the

previous section. In the A-step, we consider the change of variable: Y1 = X1 + X2,

Y2 = X1 −X2, and the new association:

Y1 = 2θ + V1, Y2 = V2, (3.3)

where V = (V1, V2) ∼ N2(0, 2I). The predictive random set S for prediction of (V1, V2)

is a random square.

S = {(v1, v2) : max(|v1|, |v2|) ≤ max(|V1|, |V2|)}, (V1, V2) ∼ N2(0, 2I).

101

The plausibility function is the C-step for a singleton assertion {θ} is

ply(θ) =
1−G(2−1/2 max{|y1 − 2θ|, |y2|})2

1−G(2−1/2|y2|)2
,

where G(z) = 1 − 2(1 − Φ(z)) is the |N(0, 1)| distribution function. This completes

the three steps in IM procedure.

Note that in the association 3.3, the value of V2 is actually known once we observe

Y2. Instead of predicting this component, we can rely on the observation of Y2 to

sharpen the uncertainty about prediction of V1. Then for A-step, we have Y1 = 2θ+V1,

the prediction random set in P-step is as simple as S = {v1 : |v1| ≤ V1}, where

V1 ∼ N(0, 2). We can get a more efficient plausibility function in C-step

ply(θ) = 1− |2Φ(2−1/2(y1 − 2θ))− 1|.

The key here is that the function of original auxiliary variables, V2 = U1−U2 is fully

observed, and we can condition on what is fully observed to sharpen prediction of

what is not observed, this directly leads to a dimension reduction.

The general strategy of conditional IM is as follows:

1. Identify an observed characteristic, η(U) = H(x), of the auxiliary variable U

whose distribution is free (or at least mostly free) of θ;

2. define a conditional association that relates an unobserved characteristic, τ(U),

of the auxiliary variable U to θ and some function T (X) of the data X.

Then the original baseline association x = a(u; θ) can be decomposed as

H(x) = η(u), (3.4a)

T (x) = b(τ(u), θ). (3.4b)

This decomposition indicates an alternative conditional association. Since H(x) does

not provides any information about θ, we can take a new association

T (X) = b(τ(U), θ), V ∼ PV |H(x), (3.5)

102

where PV |H(x) is the conditional distribution of V , given H(x). Usually we can choose

τ to make V have lower dimension than U so that the construction of efficient predic-

tive sets for V is easier and condition on the observed naturally provide more infor-

mation to make the predictive ability more efficient. Once we find the decomposition,

it’s easy to construct the corresponding IM framework as described in subsection

3.2.1.

3.3 The problem and Main results

Recall that the association is X = a(θ;U), the dimension of X and U is n and

the dimension of parameter θ is m such that m ≤ n. In CIM, we want to find the

observed characteristics η(U) to reduce the dimension.

Definition 3.3.1 The association (3.1) is regular if it can be written in the form

(3.4).

In this section, we will give the necessary and sufficient conditions for the iden-

tification of regular CIM. Since the proof techniques vary for different n and m, we

will state the results in different theorems in this section.

3.3.1 Differential equations-based technique for finding conditional asso-

ciations

In [98], authors proposed a novel technique for finding conditional associations

based on differential equations. The method can be used for going directly from the

baseline association to something lower-dimensional.

We will take the single parameter case as an example, similar technique can be

used to deal with multi-parameter case. Suppose Θ ⊆ R. The intuition is that τ

should map U ⊆ Rn to Θ, while η maps U into a (n− 1)-dimensional manifold in Rn

such that V = τ(U) is one-dimensional and η is insensitive to changes in θ. Suppose

that ux;θ is the unique solution for u in the baseline association x = a(θ;u). We

103

require η(ux;θ) be constant with respect to θ for fixed x. Mathematically, we require

that ∂ux;θ/∂θ exists and

0 =
∂η(ux;θ)

∂θ
=
∂η(u)

∂u
· ∂ux;θ

∂θ
. (3.6)

It is clear that, if there exists a solution η to partial differential equation 3.6, then

the value of η(U) is fully observed. If we choose τ carefully, we can find such a corre-

sponding function H that H(X) = η(U) which does not depend on θ. The solution

η of 3.6 determines the decomposition 3.4. The differential equation-based technique

will serve as the base of the construction of sufficient and necessary conditions of the

identification of regular CIM.

3.3.2 Single parameter case

Let’s start with the simplest case that when the parameter space is in R. Suppose

that we have a simple association with n = 2.

X1 = g1(U1, θ), (3.7)

X2 = g2(U2, θ), (3.8)

where g1 and g2 are differentiable functions with respect to both θ and U . The

dimension of auxiliary variable U = (U1, U2) is two. In regular CIM, we want to first

construct one observed characteristic H(X) = η(U) which is free of θ.

In the simple normal mean example 3.2 mentioned previously, there indeed exists

the decomposition as showed in 3.3 and the observed characteristic is H(X) = U1−U2,

τ(U) = U1 + U2. This is an easy example that we can just eyeball the observed

characteristic without using partial differential-based technique. In this case, we can

see that θ is a location parameter. Actually this is not a coincidence. For n = 2,

the necessary and sufficient condition for the identification of observed characteristic

H is that θ is a generalized location parameter. Here generalized location parameter

means that there exists transformation of U and θ, such that transformed θ is a

104

location parameter. By this definition, we can see that actually scale parameter is a

generalized location parameter if we do log transformation.

Definition 3.3.2 In a baseline association X = a(U, θ), we call θ is a generalized

location and scale parameter if there exist transformations V = τ(U) and δ = φ(θ)

such that

X = a(τ−1(V), φ−1(δ)) = b(V + δ).

Now we can summarize the necessary and sufficient condition for two observations

and one parameter case in the following theorem.

Theorem 3.3.1 Suppose we have the baseline association

X1 = g1(U1, θ), (3.9)

X2 = g2(U2, θ), (3.10)

where g1 and g2 are differentiable with respect to both θ and U .

The sufficient and necessary condition for the existence of fully observed charac-

teristic η(U1, U2) which could be used as condition is that θ is a generalized location

parameter.

Proof of this theorem merely depends on the characteristic method 3.5.2 for solving

partial differential equations. See Subsection 3.5.3 for details. This theorem says that

as long as θ is a generalized location parameter when n = 2, we can always find the

observed characteristic that we could use for dimension reduction. This is easily

extended to n observations with single parameter.

Theorem 3.3.2 Let’s consider n observations, one parameter included,

X1 = g1(U1, θ),

X2 = g2(U2, θ),

· · ·

Xn = gn(Un, θ).

(3.11)

105

The sufficient and necessary condition for the existence of fully observed variable

η(U1, · · · , Un) = (η1, · · · , ηn−1) is that there exist transformations such that θ is a

generalized location parameter.

See Subsection 3.5.4 for the proof. We can see that if we want to reduce the dimension

to that same as the parameter space, we need n − 1 independent fully observed

characteristics. In general, if we have n observations with m parameters, for regular

CIM, we will need n−m independent fully observed characteristics.

3.3.3 Multi-parameter case

In this section, we want to build the sufficient and necessary condition for the iden-

tification of regular CIM. We will start with the two parameters case since the proof

technique is quite different though the condition is the same as the single parameter

case.

Two parameters case

Now let’s expand the dimension of parameter space to two. For example, let’s

revisit the simple normal mean example with three observations, but both mean and

standard deviation are unknown. The baseline association is

X1 = σU1 + µ, X2 = σU2 + µ, and X3 = σU3 + µ,

where U1, U2, U3 are independent N(0, 1), θ = (µ, σ). An observed characteristic could

be

η(U) =
U1 − U2

U1 − U3

=
X1 −X2

X1 −X3

= H(X),

and the original baseline association can be decomposed as

X1 −X2

X1 −X3

=
U1 − U2

U1 − U3

,

X1 −X3 = σ(U1 − U3), (3.12)

X1 = σU1 + µ.

106

This decomposition suggests the following alternative conditional association,

X1 = σU1 + µ X1 −X3 = σ(U1 − U3),

where V1 = U1 ∼ N(0, 1) and V2 = U1 − U3 ∼ N(0, 2). Note that this decomposition

and conditional association are not unique. We can see that in this simple example,

both σ and µ are scale and location parameters.

We considered the special case that the three observations share the same form

of association here, and summarized the necessary and sufficient conditions for the

regular CIM as following theorem:

Theorem 3.3.3 For the baseline association with 3 observations and 2 parameters

included, 
X1 = a(θ1, θ2, U1),

X2 = a(θ1, θ2, U2),

X3 = a(θ1, θ2, U3).

(3.13)

The sufficient and necessary condition for the existence of fully observed variable

η(U1, U2, U3) is that θ = (θ1, θ2) is generalized location and scale parameters.

See Subsection 3.5.5 for the proof. It’s easy to generalize the result to n observations

case, the sufficient and necessary condition is the same, please see Subsection 3.5.6

for the proof.

Three parameters case

When it comes to the associations with 3 parameters, the case changed to be

different. We fund that it’s degenerated. When we say it’s degenerated, we mean

that there is a map

θ = (θ1, θ2, θ3) 7→ (T1(θ), T2(θ))

such that (T1(θ), T2(θ)) is generalized scale and location parameter. We summarize

this result in the following theorem.

107

Theorem 3.3.4 For the baseline association with n observations and 3 parameters

included, 

X1 = a(θ1, θ2, θ3, U1),

X2 = a(θ1, θ2, θ3, U2),

· · ·

Xn = a(θ1, θ2, θ3, Un).

(3.14)

The sufficient and necessary condition for the regular CIM is that θ = (θ1, θ2, θ3) is

degenerated generalized location and scale parameter, i.e. there exist maps such that

(T1(θ), T2(θ)) is generalized location and scale parameters.

See Subsection 3.5.8 for the proof with n = 4, and the same proof technique could

be easily applied with any n.

3.4 Discussion

We only focused on associations that share the same form for all observations and

limited the number of parameters within three. For more complicated associations or

associations with any number of parameters, the sufficient condition for the identifi-

cation of regular CIM is still that if θ is generalized location and scale parameters,

but it needs more work and technique to prove the necessary part.

3.5 Proofs

3.5.1 Existence of First Order Ordinary Differential Equations

Theorem 3.5.1 The initial value problem we consider is

du

dx
= F (x, u(x)), u(a) = b, (3.15)

where F is a function and a, b are given real numbers. If F and ∂F
∂u

are continuous

at (a, b) then there is an ε > 0 such that there is a unique solution to (3.15) on the

interval a− ε < x < a+ ε

108

3.5.2 Method of Characteristics

Consider the following quasilinear equation:

a(t, x, u)∂tu(x, t) + b(t, x, u)∂xu(t, x) = f(t, x, u). (3.16)

Suppose u = u(x, t) is a smooth solution of 3.16 and let

S = {(t, x, u) ∈ R3 : u = u(x, t)}.

Then S is said to be a solution surface for 3.16. The smoothness of the solution u

means that S has a tangent plane at each point (t, x, u) ∈ S. The normal vector −→n

to the tangent plane has the direction numbers (∂tu, ∂xu,−1); i.e. u(x, t) − u = 0 is

the equation of S and ∂tudt+ ∂xudx− du = 0 is the equation of the tangent plane.

Now consider a curve C = {t = t(s), x = x(s), u = u(s), s ∈ I} in a 3-space defined

as a solution curve for the system

dt

ds
= a(t, x, u),

dx

ds
= b(t, x, u),

du

ds
= f(t, x, u). (3.17)

If
−→
T denotes a vector tangent to C at (t, x, u) then the direction numbers of

−→
T must

be (a, b, f). But then 3.16implies that
−→
T ⊥ −→n , which is to say,

−→
T lies in the tangent

plane to the surface S. But if
−→
T lies in the tangent plane, then C must lie in S.

Evidently, solution curves of 3.16 lie in the solution surface S associated with 3.16.

Such curves are called characteristic curves for 3.16. Note that if C is a solution curve

for 3.17 then

du

ds
= ∂tu(x, t)

dt

ds
+ ∂xu(x, t)

dx

ds
= a(t, x, u)∂tu(x, t) + b(t, x, u)∂xu(t, x) = f(t, x, u).

3.5.3 Proof of Theorem 1

Definition 3.5.1 Let’s consider a bivariate function f(x, y), we say that f is not

seperable if f(x, y) can not be written as g(x) · h(y).

Proof • Sufficiency:

109

If θ is generalized location and scale parameter, then there exist transformations

V1 = τ1(U1), V2 = τ2(U2) and δ = φ(θ) such that

X1 = g1(τ−1(V1), φ−1(δ)) = b1(V1 + δ),

X2 = g2(τ−1(V2), φ−1(δ)) = b2(V2 + δ).

Then we can construct

η(U) = b−1
1 (X1)− b−1

2 (X2) = V1 − V2 = τ1(U1)− τ2(U2),

and η is a function only of U1 and U2.

• Necessity:

Based on the partial differential equations-based technique for finding conditional

associations, we want to find eta such that

∂η(u)

∂u
· ∂ux;θ

∂θ
= 0.

Now we are dealing with the two-dimensional unobserved variable U = (U1, U2), we

want to find η(U1, U2) such that

∂η

∂U1

∂U1

∂θ
+

∂η

∂U2

∂U2

∂θ
= 0. (3.18)

At the same time, according to (3.9) and (3.10), we have

∂g1

∂θ
+
∂g1

∂U1

∂U1

∂θ
= 0,

∂g2

∂θ
+
∂g2

∂U2

∂U2

∂θ
= 0.

Combine the above three equations, we have

∂U1/∂θ

∂U2/∂θ
=
−∂g1

∂θ
/
∂g1

∂U1

−∂g2

∂θ
/
∂g2

∂U2

= −∂η/∂U2

∂η/∂U1

= h(U1, U2). (3.19)

110

Since g1 is the function of U1 and θ, and g2 is the function of U2 and θ, h(U1, U2)

should be separable, i.e. be the product of a function of U1 and a function of U2,

h(U1, U2) could be written as

h(U1, U2) = C1(U1)/C2(U2).

Thus (3.19) could be written as

∂g1

∂θ
/
∂g1

∂U1

∂g2

∂θ
/
∂g2

∂U2

=
C1(U1)

C2(U2)
=
C1(U1)/C(θ)

C2(U2)/C(θ)
.

This gives us the following two partial differential equations:

∂g1

∂θ
/
∂g1

∂U1

=
C1(U1)

C(θ)
,

∂g2

∂θ
/
∂g2

∂U2

=
C2(U2)

C(θ)
.

Rewrite as follows.

C(θ)
∂g1

∂θ
− C1(U1)

∂g1

∂U1

= 0, (3.20)

C(θ)
∂g2

∂θ
− C2(U2)

∂g2

∂U2

= 0. (3.21)

(3.22)

We want to know under what condition g1 and g2 should meet.

Without loss of generality, consider the following equation first:

C(x)
∂f

∂x
−D(y)

∂f

∂y
= 0. (3.23)

Our characteristic equations are given by

dx

ds
(r, s) = C(x),

dy

ds
(r, s) = −D(y),

dz

ds
(r, s) = 0.

111

The solution of (3.23) is

f = F

(∫ x 1

C(t)
dt+

∫ y 1

D(t)
dt

)
,

where F is any arbitrary function.

Based on this, the solutions to (3.20), (3.21) are as follows.

g1 = G1(

∫ θ 1

C(t)
dt+

∫ U1 1

C1(t)
dt),

g2 = G2(

∫ θ 1

C(t)
dt+

∫ U2 1

C2(t)
dt),

where G1 and G2 are arbitrary functions.

Consider new random variables and a new parameter given by

V1 =

∫ U1 1

C1(t)
dt V2 =

∫ U2 1

C2(t)
dt δ =

∫ θ 1

C(t)
dt,

then

g1 = G1(V1 + δ) g2 = G2(V2 + δ).

Thus θ is generalized location and scale parameter.

3.5.4 Proof of n observations with single parameter

Proof Based on the given association 3.11, we have

∂Xj

∂θ
=
∂gj
∂θ

+
∂gj
∂Uj

∂Uj
∂θ

= 0.

So
∂Uj
∂θ

= − ∂gj/∂θ

∂gj/∂Uj
.

In order to find the fully observed characteristics η(U1, U2, · · · , Un), it requires

∂ηi
∂θ

=
n∑
j=1

∂ηi
∂Uj

∂Uj
∂θ

= −
n∑
j=1

∂ηi
∂Uj

∂gj/∂θ

∂gj/∂Uj
= 0 i = 1, · · · , n− 1. (3.24)

112

We consider the matrix representation of the above system of equations, let

A =



∂η1
∂U1

∂η1
∂U2

· · · ∂η1
∂Un

∂η2
∂U1

∂η2
∂U2

· · · ∂η2
∂Un

· · ·

· · ·
∂ηn−1

∂U1

∂ηn−1

∂U2
· · · ∂ηn−1

∂Un


and Z = (f1(θ, U1), f2(θ, U1), · · · , fn(θ, U1))T , where fj(θ, Uj) =

∂gj/∂θ

∂gj/∂Uj
. Then 3.24

becomes

AZ = 0.

Let Ai denote the matrix which is from deleting the i-th column of matrix A. Then

one solution of AZ = 0 is:

Z = (det(A1),−det(A2), · · · , (−1)n−1det(An))T .

And since all the ηi’s should be linearly independent. The independency here means

any ηi can not be a function of any other ηj’s (j 6= i), and all the solutions actually

form a one dimensional space. Thus

fj(θ, Uj) = (−1)j−1c(θ, U)det(Aj) j = 1, · · · , n,

where c(θ, U) = c(θ, U1, U2, · · · , Un) and there exist f(θ) and c(U) such that c(θ, U) =

f(θ)c(U). Otherwise, if θ and U is not separable in c(θ, U), suppose it contains a factor

like f(θ, Uk), then since det(Aj) is just function of Ui’s, fj(θ, Uj) will contains f(θ, Uk)

for all j 6= k.

So we have

f1(θ, U1) = f(θ)f1(U1) f2(θ, U2) = f(θ)f2(U2) · · · fn(θ, Un) = f(θ)fn(Un),

where fj(Uj) = (−1)j−1c(U)det(Aj).

Thus there are transformations such that θ is a generalized location parameter.

113

3.5.5 Proof for 3 observations and 2 parameters case

Proof We want to find one η(U1, U2, U3), which is fully observed and is constant

with respect to θ, i.e.
∂η

∂θi
= 0 i = 1, 2.

∂η

∂θ1

= − ∂η

∂U1

aθ1(θ, U1)

aU(θ, U1)
− ∂η

∂U2

aθ1(θ, U2)

aU(θ, U2)
− ∂η

∂U3

aθ1(θ, U3)

aU(θ, U3)
= 0

∂η

∂θ2

= − ∂η

∂U1

aθ2(θ, U1)

aU(θ, U1)
− ∂η

∂U2

aθ2(θ, U2)

aU(θ, U2)
− ∂η

∂U3

aθ2(θ, U3)

aU(θ, U3)
= 0

(3.25)

Solve for
∂η

∂U3

, we have
∂η

∂U1

aθ1(θ, U1)

aU(θ, U1)

aU(θ, U3)

aθ1(θ, U3)
+

∂η

∂U2

aθ1(θ, U2)

aU(θ, U2)

aU(θ, U3)

aθ1(θ, U3)
= − ∂η

∂U3

∂η

∂U1

aθ2(θ, U1)

aU(θ, U1)

aU(θ, U3)

aθ2(θ, U3)
+

∂η

∂U2

aθ2(θ, U2)

aU(θ, U2)

aU(θ, U3)

aθ2(θ, U3)
= − ∂η

∂U3

(3.26)

Equate the left side of the two equations above, we have

∂η/∂U1

∂η/∂U2

=
aθ1(θ, U3)aθ2(θ, U2)− aθ1(θ, U2)aθ2(θ, U3)

aθ1(θ, U1)aθ2(θ, U3)− aθ1(θ, U3)aθ2(θ, U1)
· aU(θ, U1)

aU(θ, U2)

=
F (θ, U2, U3)

F (θ, U3, U1)

G(θ, U1)

G(θ, U2)
. (3.27)

Since the left-hand side of (3.27) is free of θ, the non-separable factors of θ and Ui’s

in F must also be in G, so we have

F (θ, U2, U3) = A(θ, U3)B(θ, U2)C1(θ)D1(U2, U3), (3.28)

G(θ, U2) = B(θ, U2)C2(θ)D2(U2). (3.29)

(3.30)

Similarly, we have

F (θ, U3, U1) = A(θ, U1)B(θ, U3)C1(θ)D1(U3, U1),

G(θ, U1) = A(θ, U1)C3(θ)D3(U1).

where A(θ, U), and B(θ, U) are functions in which θ and U can not be separated.

By comparing the form of G, we have

B(θ, U) = A(θ, U), C2(θ) = C3(θ), D2(U) = D3(U).

114

Thusaθ1(θ, U3)aθ2(θ, U2)− aθ1(θ, U2)aθ2(θ, U3) = A(θ, U2)A(θ, U3)C1(θ)D1(U2, U3)

aU(θ, U1) = A(θ, U1)C2(θ)D2(U1)

(3.31)

aθ1(θ, U3)aθ2(θ, U2)− aθ1(θ, U2)aθ2(θ, U3) =
aU(θ, U2)

C2(θ)D2(U2)
A(θ, U3)C1(θ)D1(U2, U3)

= aU(θ, U2)A(θ, U3)C(θ)D(U2, U3), (3.32)

where D(U2, U3) = D1(U2, U3)/D2(U2) and C(θ) = C1(θ)/C2(θ). In equation(3.32),

without loss of generality, let z = U2, U3 = 0, x = θ1, y = θ2, then we have

ax(x, y, 0)ay(x, y, z)− ay(x, y, 0)ax(x, y, z)− A(x, y, 0)C(x, y)D(z, 0)az(x, y, z) = 0.

(3.33)

If we consider the equation of the form

A(x, y)
∂a

∂x
+B(x, y)

∂a

∂y
+ C(x, y)D(z)

∂a

∂z
= 0, (3.34)

then the solution must have the following form by characteristic method,

a(x, y, z) = F (f(x, y),

∫
C(x, y)

A(x, y)
dx−

∫
1

D(z)
dz). (3.35)

This indicates that the original association a must have the form as

a(θ, U) = F (f(θ),

∫
C(θ)

A(θ)
dθ1 −

∫
1

D(U)
dU), (3.36)

θ = (θ1, θ2) is generalized location and scale parameter.

3.5.6 Proof for n observations and 2 parameters case

Proof Let’s consider n observations, and 2 parameters.

X1 = a(θ, U1)

X2 = a(θ, U2)

· · ·

Xn = a(θ, Un)

(3.37)

115

where θ = (θ1, θ2)′.

We want to find η(U1, U2, · · · , Un) = (η1, η2, · · · , ηn−2), which is fully observed, i.e.

∂η1

∂θ1

= − ∂η1

∂U1

aθ1(θ, U1)

aU(θ, U1)
− ∂η1

∂U2

aθ1(θ, U2)

aU(θ, U2)
− · · · − ∂η1

∂Un

aθ1(θ, Un)

aU(θ, Un)
= 0

∂η1

∂θ2

= − ∂η1

∂U1

aθ2(θ, U1)

aU(θ, U1)
− ∂η1

∂U2

aθ2(θ, U2)

aU(θ, U2)
− · · · − ∂η1

∂Un

aθ2(θ, Un)

aU(θ, Un)
= 0

· · ·
∂ηn−2

∂θ1

= −∂ηn−2

∂U1

aθ1(θ, U1)

aU(θ, U1)
− ∂ηn−2

∂U2

aθ1(θ, U2)

aU(θ, U2)
− · · · − ∂ηn−2

∂Un

aθ1(θ, Un)

aU(θ, Un)
= 0

∂ηn−2

∂θ2

= −∂ηn−2

∂U1

aθ2(θ, U1)

aU(θ, U1)
− ∂ηn−2

∂U2

aθ2(θ, U2)

aU(θ, U2)
− · · · − ∂ηn−2

∂Un

aθ2(θ, Un)

aU(θ, Un)
= 0

(3.38)

We can rewrite this in matrix form as follows,

∇η · f = 0 (3.39)

∇η · g = 0 (3.40)

where η = (η1, η2, · · · , ηn−2), U = (U1, U2, · · · , Un).

∇η =
∂η

∂U
=



∂η1

∂U1

∂η1

∂U2

· · · ∂η1

∂Un
∂η2

∂U1

∂η2

∂U2

· · · ∂η2

∂Un

· · ·

· · ·
∂ηn−2

∂U1

∂ηn−2

∂U2

· · · ∂ηn−2

∂Un


f = (f1, f2, · · · , fn), fi =

aθ1(θ, U1)

aU(θ, Ui)
, g = (g1, g2, · · · , gn), and gi =

aθ2(θ, U1)

aU(θ, Ui)
. Let

U∗ = (U1, U2, · · · , Un−2), U∗∗ = (Un−1, Un), then

∇η · f =
∂η

∂U
· f =

(
∂η

∂U∗
∂η

∂U∗∗
.

)
· f = 0

Since all the ηi’s are independent, by Theorem 3.5.2, we know that
∂η

∂U∗
is non-

singular.

(
∂η

∂U∗
)−1

(
∂η

∂U∗
∂η

∂U∗∗

)
· f = 0

116

(
In−1 (

∂η

∂U∗
)−1 ∂η

∂U∗∗

)
· f = 0

f1

f2

·

·

fn−2


= −[(

∂W

∂U∗
)−1 ∂W

∂U∗∗
]

fn−1

fn

 = A ·

fn−1

fn



We can rewrite the above system equations by considering aij as variables:

fn−1 fn 0 0 0 0 · · · 0 0

gn−1 gn 0 0 0 0 · · · 0 0

0 0 fn−1 fn 0 0 · · · 0 0

0 0 gn−1 gn 0 0 · · · 0 0

0 0 0 0 fn−1 fn · · · 0 0

0 0 0 0 gn−1 gn · · · 0 0

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

0 0 0 0 0 0 · · · fn−1 fn

0 0 0 0 0 0 · · · gn−1 gn





a11

a12

a21

a22

a31

a32

·

·

·

an−2,1

an−2,2



=



f1

g1

f2

g2

f3

g3

·

·

·

fn−2

gn−2


fn−1 fn

gn−1 gn

ai1
ai2

 =

fi
gi

 i = 1, 2, · · · , n− 2

By solving this system of equations, we have

ai1 =
fign − fngi

fn−1gn − fngn−1

=
aθ1(θ, Ui)aθ2(θ, Un)− aθ1(θ, Un)aθ2(θ, Ui)

aθ1(θ, Un−1)aθ2(θ, Un)− aθ1(θ, Un)aθ2(θ, Un−1)
· aU(θ, Un−1)

aU(θ, Ui)

=
F (θ, Ui, Un)

F (θ, Un−1, Un)

G(θ, Un−1)

G(θ, Ui)

117

Since ai1 is just a function of Uk’s and free of θ, the non-separable factors of θ and

Ui’s in F must also be in G in order to cancel, so we have

F (θ, Ui, Un) = A(θ, Un)B(θ, Ui)C1(θ)D1(Ui, Un) (3.41)

G(θ, Ui) = B(θ, Ui)C2(θ)D2(Ui) (3.42)

(3.43)

Similarly, we have

F (θ, Un−1, Un) = A(θ, Un)B(θ, Un−1)C1(θ)D1(Un−1, Un)

G(θ, Un−1) = B(θ, Un−1)C3(θ)D3(Un−1)

where A(θ, U), and B(θ, U) are functions in which θ and U can not be separated.

By comparing the form of G, we have

B(θ, U) = A(θ, U), C2(θ) = C3(θ), D2(U) = D3(U).

Thusaθ1(θ, Ui)aθ2(θ, Un)− aθ1(θ, Un)aθ2(θ, Ui) = A(θ, Un)B(θ, Ui)C1(θ)D1(Ui, Un)

aU(θ, Un) = B(θ, Un)C2(θ)D2(Un)

(3.44)

aθ1(θ, Ui)aθ2(θ, Un)− aθ1(θ, Un)aθ2(θ, Ui) =
aU(θ, Ui)

C2(θ)D2(Ui)
A(θ, Un)C1(θ)D1(Ui, Un)

= aU(θ, Ui)A(θ, Un)C(θ)D(Ui, Un) (3.45)

where D(Ui, Un) = D1(Ui, Un)/D2(Ui) and C(θ) = C1(θ)/C2(θ). Without loss of

generality, let z = Ui, Un = 0, x = θ1, y = θ2, then we have

ax(x, y, z)ay(x, y, 0)− ay(x, y, z)ax(x, y, 0)− A(x, y, 0)C(x, y)D(z, 0)az(x, y, z) = 0.

(3.46)

If we consider the equation of the form

A(x, y)
∂a

∂x
+B(x, y)

∂a

∂y
+ C(x, y)D(z)

∂a

∂z
= 0, (3.47)

118

then the solution must have the following form by characteristic method,

a(x, y, z) = F (f(x, y),

∫
C(x, y)

A(x, y)
dx−

∫
1

D(z)
dz). (3.48)

This means that the original association a must have the form as

a(θ, U) = F (f(θ),

∫
C(θ)

A(θ)
dθ1 −

∫
1

D(U)
dU), (3.49)

θ = (θ1, θ2) is generalized location and scale parameter.

3.5.7 Independence theorem proof

Theorem 3.5.2 If two functions’ gradients are parallel, then they are not indepen-

dent, one is the function of the other.

Proof

fx(x, y) = a(x, y)gx(x, y)

fy(x, y) = a(x, y)gy(x, y)

This is equivalent to
fx
fy

=
gx
gy
.

In order to have fxy = fyx, this must be true:

fxy(x, y) = ay(x, y)gx(x, y) + a(x, y)gxy(x, y),

fyx(x, y) = ax(x, y)gy(x, y) + a(x, y)gyx(x, y).

Thus

ay(x, y)gx(x, y) = ax(x, y)gy(x, y).

This is saying that
fx
fy

=
gx
gy

=
ax
ay
.

119

Let’s assume that (x(t), y(t)) is contour line of f(x, y), i.e. a curve along which

the function has a constant value. Then we have:

f(x(t), y(t)) = C t ∈ A,

(fx, fy) · (xt, yt)′ = 0,

G(t) = g(x(t), yt), then we have

a(x, y)G′(t) = a(x, y)(gx, gy) · (xt, yt)′ = (fx, fy) · (xt, yt)′ = 0.

When a(x, y) 6= 0, we have G′(t) = 0, which means that f(x, y) and g(x, y) have same

contours. Thus we can consider f is a function of g.

3.5.8 Proof for 4 observations and 3 parameters case

Proof We want to find η = η(U1, U2, U3, U4), which is fully observed, i.e.



∂η

∂θ1

= − ∂η

∂U1

aθ1(θ, U1)

aU(θ, U1)
− ∂η

∂U2

aθ1(θ, U2)

aU(θ, U2)
− ∂η

∂U3

aθ1(θ, U3)

aU(θ, U3)
− ∂η

∂U4

aθ1(θ, U4)

aU(θ, U4)
= 0

∂η

∂θ2

= − ∂η

∂U1

aθ2(θ, U1)

aU(θ, U1)
− ∂η

∂U2

aθ2(θ, U2)

aU(θ, U2)
− ∂η

∂U3

aθ2(θ, U3)

aU(θ, U3)
− ∂η

∂U4

aθ2(θ, U4)

aU(θ, U4)
= 0

∂η

∂θ3

= − ∂η

∂U1

aθ3(θ, U1)

aU(θ, U1)
− ∂η

∂U2

aθ3(θ, U2)

aU(θ, U2)
− ∂η

∂U3

aθ3(θ, U3)

aU(θ, U3)
− ∂η

∂U4

aθ3(θ, U4)

aU(θ, U4)
= 0

(3.50)

Let

A =


aθ1(θ, U1)

aU(θ, U1)

aθ1(θ, U2)

aU(θ, U2)

aθ1(θ, U3)

aU(θ, U3)

aθ1(θ, U4)

aU(θ, U4)
aθ2(θ, U1)

aU(θ, U1)

aθ2(θ, U2)

aU(θ, U2)

aθ2(θ, U3)

aU(θ, U3)

aθ2(θ, U4)

aU(θ, U4)
aθ3(θ, U1)

aU(θ, U1)

aθ3(θ, U2)

aU(θ, U2)

aθ3(θ, U3)

aU(θ, U3)

aθ3(θ, U4)

aU(θ, U4)



=
1

aU(θ, U1)aU(θ, U2)aU(θ, U3)aU(θ, U4)


aθ1(θ, U1) aθ1(θ, U2) aθ1(θ, U3) aθ1(θ, U4)

aθ2(θ, U1) aθ2(θ, U2) aθ2(θ, U3) aθ1(θ, U4)

aθ3(θ, U1) aθ3(θ, U2) aθ3(θ, U3) aθ1(θ, U4)



120

First if Rank(A)=2, then θ1, θ2, θ3 are degenerated.

Without loss of generality, we can assume that∣∣∣∣∣∣∣∣∣
aθ1(θ, U1) aθ1(θ, U2) aθ1(θ, U3)

aθ2(θ, U1) aθ2(θ, U2) aθ2(θ, U3)

aθ3(θ, U1) aθ3(θ, U2) aθ3(θ, U3)

∣∣∣∣∣∣∣∣∣ = 0

There exist constant c1, c2 such that
c1aθ1(θ, U1) + c2aθ2(θ, U1) = aθ3(θ, U1)

c1aθ1(θ, U2) + c2aθ2(θ, U2) = aθ3(θ, U2)

c1aθ1(θ, U3) + c2aθ2(θ, U3) = aθ3(θ, U3)

Assume ∣∣∣∣∣∣aθ1(θ, U1) aθ1(θ, U2)

aθ2(θ, U1) aθ2(θ, U2)

∣∣∣∣∣∣ 6= 0,

then c1, c2 are uniquely determined. Let u3 goes through from −∞ to +∞, and we

have

c1aθ1(θ, U) + c2aθ2(θ, U) = aθ3(θ, U) U ∈ R.

The solution of above differential equation is

a = F (
θ1

c1

− θ2

c2

,
θ2

c2

+ θ3),

where F is arbitrary differentiable function.

Now let’s assume that Rank(A)=3 at point ω∗ = (U1, U2, U3, U4, θ1, θ2, θ3) ∈ R7.

By continuity, we can assume that there’s a neighborhood of ω∗, let’s denote that as

Ω. Without loss of generality, let’s assume that∣∣∣∣∣∣∣∣∣
aθ1(θ, U1) aθ1(θ, U2) aθ1(θ, U3)

aθ2(θ, U1) aθ2(θ, U2) aθ2(θ, U3)

aθ3(θ, U1) aθ3(θ, U2) aθ3(θ, U3)

∣∣∣∣∣∣∣∣∣ 6= 0.

121

Then if η exists, it satisfies

∇η ‖

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3 e4

∂U1

∂θ1

∂U2

∂θ1

∂U3

∂θ1

∂U4

∂θ1

∂U1

∂θ2

∂U2

∂θ2

∂U3

∂θ2

∂U4

∂θ2

∂U1

∂θ3

∂U2

∂θ3

∂U3

∂θ3

∂U4

∂θ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂η/∂U1

∂η/∂U4

= −

∣∣∣∣∣∣∣∣∣
aθ1(θ, U2) aθ1(θ, U3) aθ1(θ, U4)

aθ2(θ, U2) aθ2(θ, U3) aθ2(θ, U4)

aθ3(θ, U2) aθ3(θ, U3) aθ3(θ, U4)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
aθ1(θ, U1) aθ1(θ, U2) aθ1(θ, U3)

aθ2(θ, U1) aθ2(θ, U2) aθ2(θ, U3)

aθ3(θ, U1) aθ3(θ, U2) aθ3(θ, U3)

∣∣∣∣∣∣∣∣∣

· aU(θ, U1)

aU(θ, U4)

= −f1(θ)f2(θ, U2)f2(θ, U3)f2(θ, U4)

f1(θ)f2(θ, U1)f2(θ, U2)f2(θ, U3)
· g1(θ)g2(U1)g3(θ, U1)

g1(θ)g2(U4)g3(θ, U4)

where f2, g3 are all non-seperatable functions.

Since the left hand side of the above equation is a function of U1, U2, U3, U4, then

we have

f2(θ, U1) = g3(θ, U1) =
aU(θ, U1)

g1(θ)g2(U1)∣∣∣∣∣∣∣∣∣
aθ1(θ, U1) aθ1(θ, U2) aθ1(θ, U3)

aθ2(θ, U1) aθ2(θ, U2) aθ2(θ, U3)

aθ3(θ, U1) aθ3(θ, U2) aθ3(θ, U3)

∣∣∣∣∣∣∣∣∣ =
f1(θ)

g1(θ)3
·aU(θ, U1)aU(θ, U2)aU(θ, U3)· 1

g2(U1)g2(U2)g2(U3)

∣∣∣∣∣∣∣∣∣∣∣∣

g∗(U1)f ∗(θ)
aθ1(θ, U1)

aU(θ, U1)
g∗(U2)f ∗(θ)

aθ1(θ, U2)

aU(θ, U2)
g∗(U3)f ∗(θ)

aθ1(θ, U3)

aU(θ, U3)

g∗(U1)f ∗(θ)
aθ2(θ, U1)

aU(θ, U1)
g∗(U2)f ∗(θ)

aθ2(θ, U2)

aU(θ, U2)
g∗(U3)f ∗(θ)

aθ2(θ, U3)

aU(θ, U3)

g∗(U1)f ∗(θ)
aθ3(θ, U1)

aU(θ, U1)
g∗(U2)f ∗(θ)

aθ3(θ, U2)

aU(θ, U2)
g∗(U3)f ∗(θ)

aθ3(θ, U3)

aU(θ, U3)

∣∣∣∣∣∣∣∣∣∣∣∣
= 1

where g∗(U) = g2(U) and f ∗(θ) =
g1(θ)

f
1/3
1 (θ)

. According to Lemma 1, the above equa-

tion could not be true. So if η exists, rank of matrix A can not be 3.

122

Exactly same proof could be extended to n observations, where n ≥ 4.

Lemma 1 Consider functions f(x), g(x), h(x), which are not all equal, the following

is impossible. ∣∣∣∣∣∣∣∣∣
f(x1) f(x2) f(x3)

g(x1) g(x2) g(x3)

h(x1) h(x2) h(x3)

∣∣∣∣∣∣∣∣∣ ≡ 1

of a neighborhood Ω of (x1, x2, x3).

Proof Let’s take derivative with respect to x1,∣∣∣∣∣∣∣∣∣
f ′(x1) f(x2) f(x3)

g′(x1) g(x2) g(x3)

h′(x1) h(x2) h(x3)

∣∣∣∣∣∣∣∣∣ = 0.

Continue taking derivatives with respect to x2 and x3, we have∣∣∣∣∣∣∣∣∣
f ′(x1) f ′(x2) f ′(x3)

g′(x1) g′(x2) g′(x3)

h′(x1) h′(x2) h′(x3)

∣∣∣∣∣∣∣∣∣ = 0.

So we have f ′(x), g′(x), h′(x) are linearly dependent. Without loss of generality,

there exists non-zero constants c1, c2 such that

f ′(x) + c1g
′(x) + c2h

′(x) = 0.

Integrating the above equation with respect to x, we have

f(x) + c1g(x) + c2h(x) + c3 = 0.

0 =

∣∣∣∣∣∣∣∣∣
f(x1) + c3 f(x2) + c3 f(x3) + c3

g(x1) g(x2) g(x3)

h(x1) h(x2) h(x3)

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
f(x1) f(x2) f(x3)

g(x1) g(x2) g(x3)

h(x1) h(x2) h(x3)

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
c3 c3 c3

g(x1) g(x2) g(x3)

h(x1) h(x2) h(x3)

∣∣∣∣∣∣∣∣∣

123

∣∣∣∣∣∣∣∣∣
c3 c3 c3

g(x1) g(x2) g(x3)

h(x1) h(x2) h(x3)

∣∣∣∣∣∣∣∣∣ = −1.

Repeating the above steps, we can easily get∣∣∣∣∣∣∣∣∣
c3 c3 c3

c4 c4 c4

h(x1) h(x2) h(x3)

∣∣∣∣∣∣∣∣∣ = 1.

which can not be true and result a contradiction. So we conclude that f(x), g(x), h(x)

do not exist.

124

4. FUTURE WORK

4.1 Future Research Topics for Modeling Chromosome Structures Using

Hi-C data

Hi-C technology substantially advances our understanding of spatial organizations

of chromosomes and their implications on genomic functions. However, appropriate

statistical models for analyzing Hi-C data and inferring chromatin folding are still

lacking. We proposed a piecewise helical model with mixture extension to recon-

struct 3D chromosomal structure not only within each topologically associated do-

main, but also for the whole chromosome. Compared with existing approaches with

over-parameterized beads on-a-string representation, the piecewise helical model has

the following four advantages: (i) it is parsimonious, yet captures key features of the

3D chromosomal structure; (ii) unknown parameters—curvature and torsion—have

clear geometric interpretation; (iii) it is straightforward to incorporate the genomic

distance into the arc length of the piecewise helical model, so that the inferred 3D

chromosomal structures are robust to outliers, and show high reproducibility between

different samples; and (iv) the computational cost for the parsimonious model is signif-

icantly lower than other complex models. Additionally, the simplicity of the piecewise

helical model makes it affordable to employ a computationally more demanding, yet

much more suitable, negative binomial regression model to link the spatial distance

with Hi-C data.

We noticed a few limitations of the piecewise helical model. First, we use BIC

to select the number of helixes, but assume that all helixes within the same helical

curve are of equal size. In theory, we can treat the helix boundary points as unknown

parameters. Statistical inference of the number of helixes and helix boundary points

can be formulated into the change point estimation problem. However, such model is

125

over-parameterized, and results are usually unstable. Second, in the piecewise helical

model, we use piecewise constant functions to model curvature and torsion changes.

But for an arbitrary 3D curve, they can be any continuous functions. It is possible

to model curvature and torsion functions by smoothing spline functions, which may

result in a much higher computational cost. Modeling 3D chromosomal structure via

an arbitrary continuous curve clearly deserves further effort in the future research.

Although our work is designed for the modeling the 3D structure of chromosomes,

the idea of modeling a 3D curve as piecewise helicel curve can be extended to ap-

proximate any curves. Piecewise helical curve approximation of 3D curves enjoys

not only the advantages of simplicity and easy fitting, but also the advantages of

interpretability. It is worthwhile to investigate more applications of this curve fitting

method.

4.2 Future Research Topics for Deep Neural Network based Automated

Statistical Analysis

In this subsection, we will briefly discuss several future work directions for the

proposed automated neural network based framework for statistical analysis.

Simulation study have showed that proposed Bayes neural estimator and neural

selector and estimator can be properly trained with simulated labeled data, and

further demonstrate excellent performance. We consider this work a demonstration

of the validity of our grand proposal that is to use DNNs to automate the entire

statistical analysis process. There remains a lot of work we need to do before the

grand proposal can be finally materialized.

First, we will extend the neural model selector and parameter estimator to models

with multiple parameters as well as regression models involving a large number of

explanatory variables. Second, we will investigate how CNNs or other DNNs can

be used to automate other tasks such as hypotheses testing and diagnostics of the

SA process in the near future. Our ultimate goal to develop AI systems or software

126

that can conduct principled SA for big data analytics without the need of human

interventions.

REFERENCES

127

REFERENCES

[1] J. Dekker, “Gene regulation in the third dimension,” Science, vol. 319, no. 5871,
pp. 1793–1794, 2008.

[2] C. Lanctôt, T. Cheutin, M. Cremer, G. Cavalli, and T. Cremer, “Dynamic
genome architecture in the nuclear space: regulation of gene expression in three
dimensions,” Nature Reviews Genetics, vol. 8, no. 2, p. 104, 2007.

[3] J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, “Capturing chromosome
conformation,” science, vol. 295, no. 5558, pp. 1306–1311, 2002.

[4] E. Lieberman-Aiden, N. L. Van Berkum, L. Williams, M. Imakaev, T. Ragoczy,
A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner et al., “Com-
prehensive mapping of long-range interactions reveals folding principles of the
human genome,” science, vol. 326, no. 5950, pp. 289–293, 2009.

[5] M. J. Fullwood, M. H. Liu, Y. F. Pan, J. Liu, H. Xu, Y. B. Mohamed, Y. L.
Orlov, S. Velkov, A. Ho, P. H. Mei et al., “An oestrogen-receptor-α-bound
human chromatin interactome,” Nature, vol. 462, no. 7269, p. 58, 2009.

[6] R. Kalhor, H. Tjong, N. Jayathilaka, F. Alber, and L. Chen, “Genome architec-
tures revealed by tethered chromosome conformation capture and population-
based modeling,” Nature biotechnology, vol. 30, no. 1, p. 90, 2012.

[7] T. Nagano, Y. Lubling, T. J. Stevens, S. Schoenfelder, E. Yaffe, W. Dean, E. D.
Laue, A. Tanay, and P. Fraser, “Single-cell hi-c reveals cell-to-cell variability in
chromosome structure,” Nature, vol. 502, no. 7469, p. 59, 2013.

[8] J. Dekker, M. A. Marti-Renom, and L. A. Mirny, “Exploring the three-
dimensional organization of genomes: interpreting chromatin interaction data,”
Nature Reviews Genetics, vol. 14, no. 6, p. 390, 2013.

[9] A. D. Schmitt, M. Hu, and B. Ren, “Genome-wide mapping and analysis of
chromosome architecture,” Nature reviews Molecular cell biology, vol. 17, no. 12,
p. 743, 2016.

[10] J. Mateos-Langerak, M. Bohn, W. de Leeuw, O. Giromus, E. M. Manders, P. J.
Verschure, M. H. Indemans, H. J. Gierman, D. W. Heermann, R. Van Driel
et al., “Spatially confined folding of chromatin in the interphase nucleus,” Pro-
ceedings of the National Academy of Sciences, vol. 106, no. 10, pp. 3812–3817,
2009.

[11] M. Bohn and D. W. Heermann, “Diffusion-driven looping provides a consistent
framework for chromatin organization,” PloS one, vol. 5, no. 8, p. e12218, 2010.

128

[12] M. Barbieri, M. Chotalia, J. Fraser, L.-M. Lavitas, J. Dostie, A. Pombo, and
M. Nicodemi, “Complexity of chromatin folding is captured by the strings and
binders switch model,” Proceedings of the National Academy of Sciences, vol.
109, no. 40, pp. 16 173–16 178, 2012.

[13] M. Barbieri, J. Fraser, L.-M. Lavitas, M. Chotalia, J. Dostie, A. Pombo, and
M. Nicodemi, “A polymer model explains the complexity of large-scale chro-
matin folding,” Nucleus, vol. 4, no. 4, pp. 267–273, 2013.

[14] A. Lesne, J. Riposo, P. Roger, A. Cournac, and J. Mozziconacci, “3d genome
reconstruction from chromosomal contacts,” Nature methods, vol. 11, no. 11, p.
1141, 2014.

[15] Z. Zhang, G. Li, K.-C. Toh, and W.-K. Sung, “3d chromosome modeling with
semi-definite programming and hi-c data,” Journal of computational biology,
vol. 20, no. 11, pp. 831–846, 2013.

[16] M. Rousseau, J. Fraser, M. A. Ferraiuolo, J. Dostie, and M. Blanchette, “Three-
dimensional modeling of chromatin structure from interaction frequency data
using markov chain monte carlo sampling,” BMC bioinformatics, vol. 12, no. 1,
p. 414, 2011.

[17] M. Hu, K. Deng, Z. Qin, J. Dixon, S. Selvaraj, J. Fang, B. Ren, and J. S. Liu,
“Bayesian inference of spatial organizations of chromosomes,” PLoS computa-
tional biology, vol. 9, no. 1, p. e1002893, 2013.

[18] A. C. Hausrath and A. Goriely, “Repeat protein architectures predicted by a
continuum representation of fold space,” Protein Science, vol. 15, no. 4, pp.
753–760, 2006.

[19] A. Hausrath and A. Goriely, “Continuous representations of proteins: Con-
struction of coordinate models from curvature profiles,” Journal of structural
biology, vol. 158, no. 3, pp. 267–281, 2007.

[20] G. Xiao, X. Wang, and A. B. Khodursky, “Modeling three-dimensional chromo-
some structures using gene expression data,” Journal of the American Statistical
Association, vol. 106, no. 493, pp. 61–72, 2011.

[21] N. Varoquaux, F. Ay, W. S. Noble, and J.-P. Vert, “A statistical approach for
inferring the 3d structure of the genome,” Bioinformatics, vol. 30, no. 12, pp.
i26–i33, 2014.

[22] J. R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J. S. Liu, and
B. Ren, “Topological domains in mammalian genomes identified by analysis of
chromatin interactions,” Nature, vol. 485, no. 7398, p. 376, 2012.

[23] S. S. Rao, M. H. Huntley, N. C. Durand, E. K. Stamenova, I. D. Bochkov, J. T.
Robinson, A. L. Sanborn, I. Machol, A. D. Omer, E. S. Lander et al., “A 3d
map of the human genome at kilobase resolution reveals principles of chromatin
looping,” Cell, vol. 159, no. 7, pp. 1665–1680, 2014.

[24] J. R. Dixon, I. Jung, S. Selvaraj, Y. Shen, J. E. Antosiewicz-Bourget, A. Y.
Lee, Z. Ye, A. Kim, N. Rajagopal, W. Xie et al., “Chromatin architecture
reorganization during stem cell differentiation,” Nature, vol. 518, no. 7539, p.
331, 2015.

129

[25] H. W. Guggenheimer, Differential Geometry. University Microfilms, 1963.

[26] G. Schwarz et al., “Estimating the dimension of a model,” The annals of statis-
tics, vol. 6, no. 2, pp. 461–464, 1978.

[27] J. S. Liu, Monte Carlo strategies in scientific computing. Springer Science &
Business Media, 2008.

[28] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B.
Rubin, Bayesian data analysis. CRC press, 2013.

[29] J. H. Bullard, E. Purdom, K. D. Hansen, and S. Dudoit, “Evaluation of statis-
tical methods for normalization and differential expression in mrna-seq experi-
ments,” BMC bioinformatics, vol. 11, no. 1, p. 94, 2010.

[30] Z. S. Qin, J. Yu, J. Shen, C. A. Maher, M. Hu, S. Kalyana-Sundaram, J. Yu,
and A. M. Chinnaiyan, “Hpeak: an hmm-based algorithm for defining read-
enriched regions in chip-seq data,” BMC bioinformatics, vol. 11, no. 1, p. 369,
2010.

[31] Y. Shen, F. Yue, D. F. McCleary, Z. Ye, L. Edsall, S. Kuan, U. Wagner,
J. Dixon, L. Lee, V. V. Lobanenkov et al., “A map of the cis-regulatory se-
quences in the mouse genome,” Nature, vol. 488, no. 7409, p. 116, 2012.

[32] A. Marson, S. S. Levine, M. F. Cole, G. M. Frampton, T. Brambrink, S. John-
stone, M. G. Guenther, W. K. Johnston, M. Wernig, J. Newman et al., “Con-
necting microrna genes to the core transcriptional regulatory circuitry of em-
bryonic stem cells,” Cell, vol. 134, no. 3, pp. 521–533, 2008.

[33] T. S. Mikkelsen, M. Ku, D. B. Jaffe, B. Issac, E. Lieberman, G. Giannoukos,
P. Alvarez, W. Brockman, T.-K. Kim, R. P. Koche et al., “Genome-wide maps
of chromatin state in pluripotent and lineage-committed cells,” Nature, vol. 448,
no. 7153, p. 553, 2007.

[34] S. Bilodeau, M. H. Kagey, G. M. Frampton, P. B. Rahl, and R. A. Young,
“Setdb1 contributes to repression of genes encoding developmental regulators
and maintenance of es cell state,” Genes & development, vol. 23, no. 21, pp.
2484–2489, 2009.

[35] M. P. Schnetz, L. Handoko, B. Akhtar-Zaidi, C. F. Bartels, C. F. Pereira,
A. G. Fisher, D. J. Adams, P. Flicek, G. E. Crawford, T. LaFramboise et al.,
“Chd7 targets active gene enhancer elements to modulate es cell-specific gene
expression,” PLoS genetics, vol. 6, no. 7, p. e1001023, 2010.

[36] I. Hiratani, T. Ryba, M. Itoh, J. Rathjen, M. Kulik, B. Papp, E. Fussner, D. P.
Bazett-Jones, K. Plath, S. Dalton et al., “Genome-wide dynamics of replication
timing revealed by in vitro models of mouse embryogenesis,” Genome research,
vol. 20, no. 2, pp. 155–169, 2010.

[37] D. Peric-Hupkes, W. Meuleman, L. Pagie, S. W. Bruggeman, I. Solovei,
W. Brugman, S. Gräf, P. Flicek, R. M. Kerkhoven, M. van Lohuizen et al.,
“Molecular maps of the reorganization of genome-nuclear lamina interactions
during differentiation,” Molecular cell, vol. 38, no. 4, pp. 603–613, 2010.

130

[38] R. Eskeland, M. Leeb, G. R. Grimes, C. Kress, S. Boyle, D. Sproul, N. Gilbert,
Y. Fan, A. I. Skoultchi, A. Wutz et al., “Ring1b compacts chromatin structure
and represses gene expression independent of histone ubiquitination,” Molecular
cell, vol. 38, no. 3, pp. 452–464, 2010.

[39] L. Breiman et al., “Statistical modeling: The two cultures (with comments and
a rejoinder by the author),” Statistical science, vol. 16, no. 3, pp. 199–231, 2001.

[40] G. P. Release, “Gartner says the internet of things will transform the data
center,” Retrieved from http://www.gartner.com/newsroom/id/2684616, 2014.

[41] A. D. Mauro, M. Greco, and M. Grimaldi, “A formal definition of big data
based on its essential features,” Library Review, vol. 65, no. 3, pp. 122–135,
2016. [Online]. Available: http://dx.doi.org/10.1108/LR-06-2015-0061

[42] W. R. Gilks, S. Richardson, and D. Spiegelhalter, Markov chain Monte Carlo
in practice. CRC press, 1995.

[43] M. J. Beal et al., Variational algorithms for approximate Bayesian inference.
university of London London, 2003.

[44] M. A. Beaumont, W. Zhang, and D. J. Balding, “Approximate bayesian com-
putation in population genetics,” Genetics, vol. 162, no. 4, pp. 2025–2035, 2002.

[45] T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. Stumpf, “Approximate
bayesian computation scheme for parameter inference and model selection in
dynamical systems,” Journal of the Royal Society Interface, vol. 6, no. 31, pp.
187–202, 2009.

[46] J. Lopes and M. Beaumont, “Abc: a useful bayesian tool for the analysis of
population data,” Infection, Genetics and Evolution, vol. 10, no. 6, pp. 825–
832, 2010.

[47] M. A. Beaumont, “Approximate bayesian computation in evolution and ecol-
ogy,” Annual review of ecology, evolution, and systematics, vol. 41, pp. 379–406,
2010.

[48] K. Csilléry, M. G. Blum, O. E. Gaggiotti, and O. François, “Approximate
bayesian computation (abc) in practice,” Trends in ecology & evolution, vol. 25,
no. 7, pp. 410–418, 2010.

[49] J.-M. Marin, P. Pudlo, C. P. Robert, and R. J. Ryder, “Approximate bayesian
computational methods,” Statistics and Computing, vol. 22, no. 6, pp. 1167–
1180, 2012.

[50] M. Sunn̊aker, A. G. Busetto, E. Numminen, J. Corander, M. Foll, and C. Dessi-
moz, “Approximate bayesian computation,” PLoS computational biology, vol. 9,
no. 1, p. e1002803, 2013.

[51] M. G. Blum, M. A. Nunes, D. Prangle, S. A. Sisson et al., “A comparative
review of dimension reduction methods in approximate bayesian computation,”
Statistical Science, vol. 28, no. 2, pp. 189–208, 2013.

[52] B. Jiang, T.-y. Wu, C. Zheng, and W. H. Wong, “Learning summary statistic
for approximate bayesian computation via deep neural network,” arXiv preprint
arXiv:1510.02175, 2015.

http://dx.doi.org/10.1108/LR-06-2015-0061

131

[53] A. Wald, “Basic ideas of a general theory of statistical decision rules,” in Pro-
ceedings of the International congress of Mathematicians, vol. 1, 1950, pp. 308–
325.

[54] E. L. Lehmann and G. Casella, Theory of point estimation. Springer Science
& Business Media, 2006.

[55] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[56] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech, and
time series,” The handbook of brain theory and neural networks, vol. 3361,
no. 10, p. 1995, 1995.

[57] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine
learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[58] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,”
in NIPS-W, 2017.

[59] S. C. Zhu, Y. N. Wu, and D. Mumford, “Minimax entropy principle and its
application to texture modeling,” Neural computation, vol. 9, no. 8, pp. 1627–
1660, 1997.

[60] D. M. Blei and J. D. Lafferty, “Topic models,” Text mining: classification,
clustering, and applications, vol. 10, no. 71, p. 34, 2009.

[61] C. E. McCulloch and J. M. Neuhaus, Generalized linear mixed models. Wiley
Online Library, 2001.

[62] H. Bozdogan, “Model selection and akaike’s information criterion (aic): The
general theory and its analytical extensions,” Psychometrika, vol. 52, no. 3, pp.
345–370, 1987.

[63] K. P. Burnham and D. R. Anderson, Model selection and multimodel inference:
a practical information-theoretic approach. Springer Science & Business Media,
2003.

[64] ——, “Multimodel inference understanding aic and bic in model selection,”
Sociological methods & research, vol. 33, no. 2, pp. 261–304, 2004.

[65] G. Casella and R. L. Berger, Statistical inference. Duxbury Pacific Grove, CA,
2002, vol. 2.

[66] P. J. Huber et al., “Robust estimation of a location parameter,” The Annals of
Mathematical Statistics, vol. 35, no. 1, pp. 73–101, 1964.

[67] J. Norton, E. Walter, and L. Pronzato, Identification of Parametric Models:
from Experimental Data, ser. Communications and Control Engineering.
Springer London, 2010. [Online]. Available: https://books.google.com.hk/
books?id=BFmkcQAACAAJ

https://books.google.com.hk/books?id=BFmkcQAACAAJ
https://books.google.com.hk/books?id=BFmkcQAACAAJ

132

[68] I. Chakravarti, R. Laha, and J. Roy, Handbook of methods of applied statistics,
ser. Wiley series in probability and mathematical statistics. Wiley, 1967, no. v.
1. [Online]. Available: https://books.google.com.hk/books?id=vtI-AAAAIAAJ

[69] G. Schwarz, “Estimating the dimension of a model,” Ann. Statist,
vol. 6, no. 2, pp. 461–464, 03 1978. [Online]. Available: http:
//dx.doi.org/10.1214/aos/1176344136

[70] R. E. Kass and A. E. Raftery, “Bayes factors,” Journal of the american statis-
tical association, vol. 90, no. 430, pp. 773–795, 1995.

[71] Z. Xie, D. Kulasiri, S. Samarasinghe, and C. Rajanayaka, “The estimation of
parameters for stochastic differential equations using neural networks,” Inverse
Problems in Science and Engineering, vol. 15, no. 6, pp. 629–641, 2007.

[72] N. E. Breslow and D. G. Clayton, “Approximate inference in generalized linear
mixed models,” Journal of the American statistical Association, vol. 88, no.
421, pp. 9–25, 1993.

[73] X. Lin and N. E. Breslow, “Bias correction in generalized linear mixed models
with multiple components of dispersion,” Journal of the American Statistical
Association, vol. 91, no. 435, pp. 1007–1016, 1996.

[74] M. R. Karim and S. L. Zeger, “Generalized linear models with random effects;
salamander mating revisited,” Biometrics, pp. 631–644, 1992.

[75] J. G. Booth and J. P. Hobert, “Maximizing generalized linear mixed model
likelihoods with an automated monte carlo em algorithm,” Journal of the Royal
Statistical Society: Series B (Statistical Methodology), vol. 61, no. 1, pp. 265–
285, 1999.

[76] J. Pan and R. Thompson, “Gauss-hermite quadrature approximation for esti-
mation in generalised linear mixed models,” Computational Statistics, vol. 18,
no. 1, pp. 57–78, 2003.

[77] ——, “Quasi-monte carlo estimation in generalized linear mixed models,” Com-
putational Statistics & Data Analysis, vol. 51, no. 12, pp. 5765–5775, 2007.

[78] E. M. Al-Eid and S. P. (Professor), Parameter estimation in generalized linear
mixed models using quasi-Monte Carlo methods. University of Manchester,
2007.

[79] D. Bates, M. Maechler, B. Bolker, S. Walker et al., “lme4: Linear mixed-effects
models using eigen and s4,” R package version, vol. 1, no. 7, pp. 1–23, 2014.

[80] J. D. Hadfield et al., “Mcmc methods for multi-response generalized linear
mixed models: the mcmcglmm r package,” Journal of Statistical Software,
vol. 33, no. 2, pp. 1–22, 2010.

[81] B. Bolker, H. Skaug, A. Magnusson, and A. Nielsen, “Getting started
with the glmmadmb package,” Available at glmmadmb. r-forge. r-project.
org/glmmADMB. pdf, 2012.

[82] B. D. Ripley, Pattern recognition and neural networks. Cambridge university
press, 2007.

https://books.google.com.hk/books?id=vtI-AAAAIAAJ
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1214/aos/1176344136

133

[83] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2014, pp. 580–587.

[84] C. M. Bishop, “Pattern recognition,” Machine Learning, vol. 128, pp. 1–58,
2006.

[85] C. Hennig, smoothmest: Smoothed M-estimators for 1-dimensional location,
2012, r package version 0.1-2. [Online]. Available: https://CRAN.R-project.
org/package=smoothmest

[86] I. M. Johnstone, Z. Ma, P. O. Perry, and M. Shahram, RMTstat: Distributions,
Statistics and Tests derived from Random Matrix Theory, 2014, r package ver-
sion 0.3.

[87] Statisticat and LLC., LaplacesDemon: Complete Environment for Bayesian In-
ference, 2016, r package version 16.0.1. [Online]. Available: https://web.archive.
org/web/20150206004624/http://www.bayesian-inference.com/software

[88] B. Swihart and J. Lindsey, rmutil: Utilities for Nonlinear Regression and
Repeated Measurements Models, 2016, r package version 1.1.0. [Online].
Available: https://CRAN.R-project.org/package=rmutil

[89] T. W. Yee, VGAM: Vector Generalized Linear and Additive Models, 2017,
r package version 1.0-3. [Online]. Available: https://CRAN.R-project.org/
package=VGAM

[90] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proceedings of the 22nd ACM international conference on Multimedia.
ACM, 2014, pp. 675–678.

[91] R. A. Fisher, “Inverse probability,” in Mathematical Proceedings of the Cam-
bridge Philosophical Society, vol. 26. Cambridge University Press, 1930, pp.
528–535.

[92] D. A. Fraser, “The fiducial method and invariance,” Biometrika, vol. 48, no.
3/4, pp. 261–280, 1961.

[93] A. P. Dempster, “New methods for reasoning towards posterior distributions
based on sample data,” The Annals of Mathematical Statistics, pp. 355–374,
1966.

[94] ——, “Upper and lower probabilities induced by a multivalued mapping,” The
annals of mathematical statistics, pp. 325–339, 1967.

[95] G. Shafer, A mathematical theory of evidence. Princeton university press, 1976,
vol. 42.

[96] J. Hannig, “On generalized fiducial inference,” Statistica Sinica, pp. 491–544,
2009.

[97] M. Xie and K. Singh, “Confidence distribution, the frequentist distribution
estimator of a parameter: A review,” International Statistical Review, vol. 81,
no. 1, pp. 3–39, 2013.

https://CRAN.R-project.org/package=smoothmest
https://CRAN.R-project.org/package=smoothmest
https://web.archive.org/web/20150206004624/http://www.bayesian-inference.com/software
https://web.archive.org/web/20150206004624/http://www.bayesian-inference.com/software
https://CRAN.R-project.org/package=rmutil
https://CRAN.R-project.org/package=VGAM
https://CRAN.R-project.org/package=VGAM

134

[98] R. Martin and C. Liu, Inferential models: reasoning with uncertainty. Chapman
and Hall/CRC, 2015.

[99] D. V. Lindley, “Fiducial distributions and bayes’ theorem,” Journal of the Royal
Statistical Society. Series B (Methodological), pp. 102–107, 1958.

[100] A. P. Dempster, “On direct probabilities,” Journal of the Royal Statistical So-
ciety. Series B (Methodological), pp. 100–110, 1963.

[101] A. P. Dawid and M. Stone, “The functional-model basis of fiducial inference,”
The Annals of Statistics, pp. 1054–1067, 1982.

[102] G. Taraldsen, B. H. Lindqvist et al., “Fiducial theory and optimal inference,”
The Annals of Statistics, vol. 41, no. 1, pp. 323–341, 2013.

VITA

135

VITA

Rongrong Zhang was born and raised in Lanzhou, China. She received her bach-

elor’s degree in Mathematics from Lanzhou University in 2010 and master’s degree

in Mathematics from Peking University in 2013. She then joined the Department of

Statistics at Purdue University in 2013.

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Inferring Spatial Organization of Chromsomes via Piecewise Helical Model
	Introduction
	Methods
	Piecewise helical curve representation
	Piecewise Helical Model for Contact Frequencies within TAD
	Piecewise Helical Model for Contact Frequencies within whole Chromosome
	Heterogeneity and Mixture of Piecewise Helical Models

	Simulation Studies
	Simulation study when Hi-C data is simulated from a single helix
	Simulation study when Hi-C data is simulated from one piecewise helical curve
	Simulation study when Hi-C data is simulated from multiple piecewise helical curves
	Simulation study when Hi-C data is simulated from mixture of two piecewise helical curves

	Real Data Application
	Data description
	Results of PHM on TADs
	Model validation with gold standard FISH data
	Results of PHM on whole Chromosomes

	Deep neural network based Bayesian estimators and model selectors
	Introduction
	Neural Bayes Estimator
	Proposed Method
	Simulation Studies
	Application in GLMM
	Selection of hyper parameters in training

	Neural Model Selector and Parameter Estimator
	Labeled data and loss functions
	Two types of architectures
	Relationship between neural model selector and Bayes factor
	Simulation results
	Neural selector for models with covariates

	NECESSARY AND SUFFICIENT CONDITIONS FOR REGULAR CONDITIONAL INFERENTIAL MODELS
	Introduction
	Inferential Models
	Basic Inferential Models
	Conditional Inferential Models

	The problem and Main results
	Differential equations-based technique for finding conditional associations
	Single parameter case
	Multi-parameter case

	Discussion
	Proofs
	Existence of First Order Ordinary Differential Equations
	Method of Characteristics
	Proof of Theorem 1
	Proof of n observations with single parameter
	Proof for 3 observations and 2 parameters case
	Proof for n observations and 2 parameters case
	Independence theorem proof
	Proof for 4 observations and 3 parameters case

	Future work
	Future Research Topics for Modeling Chromosome Structures Using Hi-C data
	Future Research Topics for Deep Neural Network based Automated Statistical Analysis

	REFERENCES
	VITA

