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ABSTRACT

Moolchandani, Kushal A. Ph.D., Purdue University, December 2018. Modeling and
Analysis of Complex Systems Design Processes. Major Professor: Daniel A. DeLau-
rentis.

This work proposes a framework for modeling an organization as a network of au-

tonomous design agents who collectively work on the design of a complex system. The

research objective is to identify a design process policy which best suits the current

organization evaluated on the basis of the value that it provides to the organiza-

tion. Consequently, the research question is, “How does an organization comprised

of autonomous design teams select a design process policy which provides the highest

value?” The proposed framework models design teams as agents who adapt their

behavior using information on design variables available from other teams and the

incentives in form of rewards from a system-level designer.

While extant literature on complex systems design has proposed several models of

design processes, there is still a need for models that are versatile enough to represent

different types of purposes and scopes of hierarchical levels. Further, models still

do not account for the social, cultural, and political aspects of design. Due to the

invariably long development times of a complex system, the environment’s dynamics

such as changing requirements would require all design teams to update their models

and decisions during the process. They have to do this while accounting for the

decisions of the other teams. The system-level designer, on the other hand, has to

ensure that the design teams’ decisions are in the best interest of the organization,

which is to maximize value. The work proposed in this research addresses these issues

by taking a bottom-up approach to modeling this complex, dynamic and uncertain

design environment, where organizational-level outcomes are modeled as a result of

decisions of individual teams who respond to local incentives.
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The system-level designer and the subsystem design teams, are modeled to interact

with other agents with whom they share design variables. The subsystem teams first

solve their local design problems, and then exchange the results of these problems

with other teams. The proposed modeling is versatile to represent human behaviors

such as their adding of margins to design variables during the process of information

exchange. In each interaction, the receiving teams make decisions to update their

local variable values with the one newly available or to continue to use their own

value. They make these decisions on the basis of which decision leads to the highest

utility measured by a predefined value function. Thus, each team acts in its self-

interest and maximizes its local value. In case they do not arrive at a common

design, the system-level designer attempts to assign rewards which incentivize the

teams to update designs such that they are compatible with the other teams. In

such cases, the teams would be willing to forgo a portion of their utility obtained

from the design outcome if they are compensated for this loss by the system-level

designer. Therefore, the task of a system-level designer is to solve a compatibility

problem which trades off between different subsystems outcomes and arrives as the

final design while maximizing the organization’s value.

The framework is developed and then described through a series of increasingly

complex design cases using a synthetic optimization problem. Following this, an

aircraft design problem serves as a demonstration of application of this framework.

The results obtained from both the synthetic and the demonstration problem then

inform the discussion of various characteristics of a complex systems design process.
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1. INTRODUCTION

As the capability requirements of modern engineered systems grows, so does their

complexity. One of the sources of this complexity is the presence of a large number of

interacting parts that together provide capabilities which are greater than the sum of

those parts, and this “emergent” behavior is a key distinguishing feature of complex

systems [1]. A consequence of the increase in complexity is that the number of people

involved during development and the amount of information they exchange also in-

crease. This means that the development process of complex systems, besides being

untenable to the reductionist approach of traditional systems engineering, faces chal-

lenges pertaining to the social, economic, and political interactions during complex

systems development [2]. Unfortunately, the methods and approaches proposed for

managing the increasing complexity of design processes have not kept pace with the

complexity of systems being developed [2], leading to the now familiar problems of

cost and schedule overruns, or performance deficits [2–4]. In other words, there exists

a need for approaches for modeling not just the systems being developed, but also the

processes utilized in doing so.

Systems engineering, which was developed to manage systems throughout their

life cycles, has traditionally viewed design processes as a series of sequential steps, or

phases, starting with specification of system requirements, followed by identification

and analysis of alternatives, and the eventual selection and detail design of the pre-

ferred alternative (Fig. 1.1). All design processes could be divided into these broad

phases of increasing information and the number of people involved, though the exact

definitions of the phases could differ [5].

This sequential view of design is different from the paradigm of concurrent engi-

neering and integrated product and process design (IPPD), both of which were later

advancements and recognized that an actual design process is iterative, hierarchical,
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Figure 1.1.: The “traditional” sequential view of design process.

and many of the steps involved are done in parallel. Figure 1.2 shows such an hi-

erarchical view with multiple design teams each with their local processes and some

features of the design process such as the delegation of tasks across levels of hierarchy.

Under this view, complex systems are designed in an environment of geographically

separated, semi-autonomous teams and organizations who interact, and may use dif-

ferent set of tools and techniques in their processes. Together these constituents

can, in turn, be considered to constitute a dynamic system. As the design evolves

from concept to integration, such a ‘process-system’ will display dynamics of addition

of more designers over time, the gradual change in modeling techniques used from

low-fidelity ones to high-fidelity ones, etc.

Further elaborating on this view, an organization along with its designers and their

tools, all interacting with one another, provides the environment in which complex

systems are designed. The schematic in Fig. 1.3 shows an organizations split into

disciplinary teams which interact along hierarchical communication links, indicated

by solid bidirectional arrows for interactions across levels of hierarchy and dashed

arrows for interactions at the same level. Accompanying such orderly and efficient
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Figure 1.2.: An hierarchical and iterative view of design process.

communication channels could be various other informal interactions among members

of different teams, shown in the figure by dotted arrows, which are the information

exchanges among teams which are frequently not captured by hierarchical interaction

models [6]. This view of system development means that design becomes the task

of “organization and management of people and information they develop in the

evolution of a product” [7].

The design processes setup for the purpose of complex systems design are cus-

tomized to the particular system being developed and the organization developing

them. Different projects invariably require different processes and even these would

change during the course of development. Thus, the objective of this work is to pro-
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Figure 1.3.: A schematic of organization structure showing hierarchy and informal

interactions.

pose a computational framework for modeling and analysis of complex systems design

processes which takes into account the particular structure of an organization.

1.1 Problem Scope, Proposed Research Goal, and Objectives

The primary research question we address here is, “How can an organization com-

prised of autonomous teams identify an appropriate design process policy for design

of complex systems so as to maximize its value?” Implicit in this question is that an

organization evaluates its value by taking into account its own structure and objec-

tives. Table 1.1 shows the two questions we answer in an effort to meet the objective.

The first question sets up a model of design teams as adaptive agents who solve sub-

system design problems. The second question recognizes that because designing a

complex system requires information exchange and coordination among numerous in-

dependently operating designers, a facilitator of this system, in absence of any direct

control, needs to find ways to influence their decisions. For this purpose, Principal-
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Table 1.1.: Research questions, hypotheses, and proposed approach

Research question: How can we model the effects of available infor-

mation on the design teams behavior?

Hypothesis : Designers decision-making can be studied by modeling

them as learning agents that update their design policies

in response to available information.

Proposed approach: Value Iteration, a method of dynamic programming, can

be used to model designers selection of optimal design

process strategy.

Expected outcome: A model for designers decision-making behavior during

design process.

Research question: How can a system-level designer identify heuris-

tics for control of design teams?

Hypothesis : The system-level designer can setup rewards for meet-

ing requirements, which work as incentives to encourage

behavior in favor of global objectives.

Proposed approach: Solving a Principal-Agent model which maximizes value

of both design teams and system-level designer, can be

used to identify rewards for teams.

Expected outcome: A model for selection of design heuristics based on giving

rewards to teams.

Agent models provide a means to identify design heuristics that can be employed by

the system-level designer to guide the decisions of subsystem teams.

Consider two different views of complex systems development processes, viz., a

product-view and a process-view. While the product-view of complex system design

focuses on maximizing or minimizing a measure of performance of the system being
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developed, the process-view considers design to be a set of decisions, and seeks to

improve the decision-making by maximizing or minimizing a measure of performance

of the design process. There exists research which suggests that considering the

process along with the product early in the development process can lead to shorter

system development time-lines and lower costs [7,8], pointing to a need for modeling

design processes. The process-view of complex systems development becomes even

more imperative when we consider that the involvement of a large number of technical

teams and their interactions have an effect on the outcome of the design process [9].

Therefore, in keeping with the research objective, we take a process-view of complex

systems development in this work.

The expected outcome is an approach for modeling design process-systems. Such

a model would support studies of effects of organizational structure and the selected

design process on product architecture and performance. A key benefit of this model

would be that by using the above process-system model different heuristics can be

compared for this suitability to the given context. This is important because any

change to design requirements usually requires a new set of heuristics because they

are usually suitable only for the particular context for which they are established.

Thus the process-system model developed in this work will give organizations an

ability to evaluate different heuristics before they select one which is suitable for

their needs.

The context mentioned above includes the elements of the process-system such

as system requirements and the semi-autonomous subsystem teams over which a

system-level designer has limited control authority. While the organization seeks to

maximize its value by meeting customer requirements, the teams are concerned with

solving local subsystem design problems. In this scenario, the proposed heuristics

would be selected such that they provide incentives to guide the decision-making of

the teams in a manner which favors the system-level objectives. We will consider

just two levels of organizational hierarchy, though the model of system-subsystem

interaction can be applied recursively at multiple levels within the organization.
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1.2 Heilmeier Catechism: Contributions Of This Research

This work proposes a simulation framework useful for selection of a design process

policy, which is a particular sequence of set of tasks. Such a model will be useful to an

organization engaged in development of complex engineered systems for maximization

of value obtained from systems development. The environment in which complex

systems are developed is characterized by features such as teams which are not under

direct authority of a system-level developer, the competing objectives of the teams,

and long development time-scale which makes the identification of a design policy

both important and difficult.

Previous studies have proposed methods for selection of design processes using

representations such as design structure matrices which show interdependence among

tasks, optimization algorithms such as genetic algorithms which help in selection of

an optimal policy, etc. However, despite the numerous studies on design process

modeling that exist, there is still a need to account for multi-level models which

account for designers’ behaviors and the dynamic nature of design environment.

This research proposes an approach wherein design teams within an organization

are modeled as learning agents that adapt their behavior to changing information.

This model would be able to represent designers’ behaviors and provide a bottom-up

analysis of the process as a result of designers’ actions. This model of design process

will be useful to any organization engaged in complex systems development. Its utility

to the organizations would be twofold, helping in the identification of heuristics for

influence over teams’ behaviors and in evaluating how organization restructuring done

so as to make teams’ interactions more efficient would lead to improvement of value

obtained from the process.

Assessment of this approach will be based first on comparison with existing com-

putational design approaches and then an analysis of results with those reported in

literature which are relevant to the decision-making modeling done in this work.
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1.3 Summary and Dissertation Organization

The box below summarizes the objective of this work along with its expected

contributions.

Research objective: Propose a framework for selection of complex systems’ design

process policy which is flexible to account for changing information and which provide

highest value to the organization.

Expected outcome: A model of design teams decision-making that can simulate

flexible interactions and information exchange.

The dissertation is organized as follows. Chapter 2 presents a review of literature

on complex systems design and its development processes along with the shortcomings

of current research and the proposed future directions. In particular, this chapter

presents a brief review of value-driven design, modeling of design organizations, and

decision theory, each of which informs modeling in this dissertation.

Chapter 3 describes the proposed complex systems design process including the

terminology used in this work. It establishes the context, states the assumptions

made, and presents background on the value iteration method of dynamic program-

ming and principal-agent models both of which are used in this work.

Chapter 4 builds up the framework proposed in this work to be used for selection of

a design policy through a series of increasingly complex modeling cases. The steps of

the process are elaborated in this chapter along with demonstration of the framework

on a synthetic design problem.

Chapter 5 presents an application of the proposed framework to an aircraft design

problem.

Chapter 6 presents a discussion of results from the simulations and compares them

with the discussion of complex systems design processes presented in literature.

Finally, chapter 7 concludes along with discussion of potential future work in the

area of complex systems design.
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2. LITERATURE REVIEW

A complex system can be defined as “an assembly of interacting members that is

difficult to understand as a whole” [10]. In this definition, ‘interacting members’

identifies the interdependence of system components, while ‘difficult to understand

as a whole’ recognizes that for such systems the system-level behavior is greater than

the sum of the behaviors its of components. The subsystems’ interactions are the

source of both the complex systems’ capabilities as well as the observed complexity.

We can break down the architecture of any complex system into several layers of

hierarchy and find that these interactions exist across several layers with the result

that the subsystems’ behaviors depend on those of their neighbors, which are the

other subsystems they interact with, and can exhibit sensitivity to even small pertur-

bations [11]. A typical complex system, which can also be referred to as a large-scale

system (LSS), has attributes such as uniqueness, lengthy installation times, presence

of policy component, etc. [12], see Table 2.1.

Let us first look at the concept of complexity using the example given by Mof-

fat [11]. Consider the phenomenon of heating a fluid between two infinite flat plates.

As heat is applied to the bottom plate, the heating and resultant expansion of the

fluid sets up a movement in form of convection currents. Up to a certain threshold

rate of heat application, the system, when left long enough, will tend to a state of

equilibrium such that small perturbations introduced at the equilibrium will have no

lasting influence. As the rate of application of heat is increased, there comes a critical

point beyond which the movement of the fluid elements no longer remains uniform

and instead displays a certain complexity for which the existing models become in-

adequate. At this stage, the fluid moves in structures called Bernard cells whose

movements, because the fluid is no longer uniform, are dependent on their neigh-

boring cells. In this case, as is usually the case, the complexity of the system arises
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Table 2.1.: Attributes of complex systems (from [12])

Policy component Technical analysis may be insufficient to inform

their operations and they invariably need subjec-

tive judgment.

High order There are many subsystems which together consti-

tute the whole system and they are interdependent

for their operation.

Complex to describe Their modeling and analysis pose challenges which

mean they may not be easy to model analytically.

Lengthy installation Long time is required for their design and deploy-

ment.

Unique This is often the case for LSS.

Prior complete testing

impossible

Due to the large size and complexity, testing of the

complete system before their operationalization is

unlikely.

mainly due to the interactions among its constituent subsystems, here, the Bernard

cells. At this stage, we say that it is a complex system.

Analogous to the flow of heat in the above example, engineered systems handle the

flow of information among its sub-systems. Over time, engineered systems have been

required to provide increasing amount of capabilities both due to the competitive

nature of the markets as well as the growing needs and expectations of the society.

These increased capability requirements are met with higher numbers of subsystems

that are interdependent for their operation, which results in higher information flow

among the subsystems. While the upside of this increased complexity is that such

systems have capabilities that are greater than the sum of individual subsystems, the
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downside is that the design and development time, resources, and investment required

increase simultaneously.

The objective of modeling design processes is to come up with a representation of

the process and then use it to enable designers make better decisions. The proposed

representations rely on the fact that, like complex systems, design processes also

share a number of common characteristics. For example, the following is a non-

comprehensive list of these characteristics, based on those specified in Refs. [4, 8]

among others:

1. Complex systems design is usually done in a multidisciplinary environment by

a number of teams.

2. Design teams interact by exchanging information in an iterative manner.

3. System design is gradually refined with the fidelity increasing as time passes.

Systems engineering research has continually tried to keep pace with the growing

complexity of the systems it is used to design by collectively focusing on one or more

of the common underlying themes listed above. However, as systems’ complexity

grows, the tools employed for their development have to address a much wider set

of challenges than the traditional systems engineering was developed for, including

considering social and political phenomena in design organizations. In this chapter,

we will discuss various methods in systems engineering research by classifying such

them into a number of themes identified by the research community. Alongside, we

will discuss the further advancements that can be done to the modeling of design

processes.

The rest of this chapter begins with a discussion of various studies on complex

systems design process modeling in section 2.1, followed by a discussion of currently

recognized challenges and proposed future research directions 2.2. Section 2.3 briefly

discusses decision theory, which provides some useful contributions to the modeling

within this dissertation. Section 2.4 discusses methods for selection of a design process
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policy. Finally, section 2.5 concludes this chapter by highlighting the contributions

that this dissertation will make to complex systems design process modeling.

2.1 Research on Modeling Complex Systems Design Processes

In a recent survey of literature, Wynn and Clarkson proposed scope and type

as the two dimensions for categorizing process models for design and development

of engineered systems [13]. Along the former dimension are the micro-, meso-, and

macro-level models depending on their breadth of coverage in design context, while

along the latter dimension are divisions based on the overall purpose into four cat-

egories of procedural, analytical, abstract, and management science / operations re-

search (MS/OR); Fig. 2.1 summarizes these dimensions. Broadly speaking, the scope

dimension spans from low-level models which focus on individual steps to the high-

level models which focus on entire project structures and the context. For example,

the Function-Behavior-Structure (FBS) framework [14] fits within the category of

micro-level abstract models, particularly because without resorting to mathematical

formulation it suggests that all designs can be represented in terms of their func-

tions, which describe what the design is for, behaviors, which describe what it does,

and structures, which describe what it is. At the meso level, for example, are the

task precedence models such as PERT and task dependency models such as the de-

sign structure matrix (DSM). Agent-based models such as the virtual design team

(VDT) [15] also appear at this level within the analytical type category. Finally, at

the macro level are models such as the integrated product and process approaches

within the procedural type dimension, or system dynamics models within the analyt-

ical dimension.

Two reasons can be used to justify the large number of design process models

and the need to further develop more of them: one, these models are invariably

an abstraction of the context that they are intended to be used in, and two, their

form is influenced by the modeler themselves, particularly with regards to the research
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Figure 2.1.: Classification of complex systems design research [13].

question that the modeler poses. Like the systems themselves, the design processes of

complex systems also show significant elements of novelty, complexity, and iteration.

Consequently, the task of process models is to organize both the creative work done at

any stage, and especially the initial stages, alongside the more routine activities that

individuals involved in development have to accomplish. The payoff to be obtained

with an appropriate choice of models is that organizations can potentially streamline

planning and information exchange required during the process.

Yet, while models can help in analysis of design situations for which they are

setup and under the assumptions that they make, in actual practice models, where

reliable ones exist, may have limited utility especially in the early stages of design,

where designers have to balance exploration of new alternatives with exploitation

of available information to further refine the already developed alternatives. The
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designers are also confined to using the tools and models provided to them by their

organization, which in some cases may not be appropriate for their context or need.

This is why there is a need to examine the properties of network of interactions

between the models and their users and how these properties can affect the utility of

such models [13].

The interactions between multiple teams can be examined by representing a de-

sign organization as a kind of distributed network, with the agents in this network

being self-interested and who respond to local incentives. Klein et al. [16] discussed

the important properties of collaborative design dynamics, stating that, “complex

systems design then becomes a collaborative activity done by self-interested agents

who interact with one another and behave in accordance with their local objectives.”

In particular, a central focus of complex systems research is the dynamics of dis-

tributed networks, i.e., networks in which there is no centralized controller and global

behavior emerges solely as a result of concurrent local actions, whereas a central

concern of negotiation research is designing the rules of encounter between interde-

pendent nodes such that each node is individually incentivized to make decisions that

maximize social welfare, i.e., maximize the global utility of the collected set of local

decisions. Information systems are increasingly becoming the medium by which de-

sign participants interact, and this fact can be exploited to help monitor the influence

relationships between them.

In the work done in this dissertation, we discuss a framework which models the

subsystem teams as agents who have their local objectives and a system-level manager

whose task is to formulate incentives and heuristics to guide the teams’ decisions in

favor of the system-level objectives. Thus this work addresses both the dynamics

of distributed networks of self-interested design teams and the negotiation among

them and across levels of organizational hierarchy in form of incentives exchange.

Using the classification scheme in Fig. 2.1, work presented in this dissertation falls

within the meso-level analytical type because it focuses on end-to-end flow of tasks

and provides insights based on the particular situation of an organization comprised
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of semi-autonomous teams which interact to produce the final system design; we

will further discuss the context and assumptions made in a later section. However,

there is a broader scope to the proposed framework because it crosses the meso-level

dimension to include context in form of organizational structure and the managerial

issue of guiding the decisions of self-interested teams, and both these latter tasks are

found at the macro-level dimension.

2.2 Recognized Challenges to Complex Systems Engineering

In 2010, a series of workshops on engineering design identified a number of open

research questions still facing the community [2–4]. For example, in the workshop

on design of complex systems conducted by the NSF [3], the community recognized

that an ability to effectively design complex systems will give us many high quality

and technologically advanced systems. Further, the real payoff would be more on

the methods, tools, and processes, especially those that can be done away with. In

addition to development of tools and methods is the recognition that of the five iden-

tified overarching themes that are necessary for advancement of the multidisciplinary

optimization theory, one is the need to put humans “back in the loop” [4], because

while computational analysis capabilities are getting increasingly more sophisticated,

human decision-making is still important, especially for conceptual design. Figure 2.2

shows the five areas of future research including research on organizational modeling,

uncertainty and decision-making, and metrics that this workshop highlighted. These

workshops also identified the need for more research and development on topics such

as decomposition and organization of information flow during the design process. A

joint NSF and NASA workshop on design of complex engineered systems identified

that the development process of such systems needs as much attention as the systems

themselves [2], further stating that while the physics is generally well modeled, the

social, economic, and political interactions need further research.
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Figure 2.2.: Proposed areas of research to advance complex systems design [3].

More than one of the recognized research areas are related to role of organiza-

tional structure and design team modeling within the complex system design process.

Examples of questions in the context of organizational modeling include, “How do

two or more groups share and update their knowledge (tacit or explicit) when they

reside in different organizational systems?,” “How does one group incentivize another

to cooperate?,” and “How can we arrange for information flow and collaborative

learning from one group to another without control of the information becoming an

organizational objective? [2]” Clearly there is ample potential for further research and

advancement in the development of complex systems.

For the rest of this section, we will use the first three of these areas of research

to discuss literature spanning the space of systems engineering research and link the

works cited to the classification scheme discussed in the previous section. The fourth

area of uncertainty and decision-making discusses the shortcomings of systems en-

gineering models in representing uncertainty and risk management, including such
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questions as to how to model different types of uncertainties in design, how uncer-

tainties propagate through system hierarchy, and how do we balance gathering more

information with the need to make decisions with already available information. The

latter question regarding balance between information gathering and using is the deci-

sion of exploration of design space versus exploitation of already available information;

we will discuss more about exploration versus exploitation later in the dissertation.

The fifth area, metrics, looks at quantification of the measures of performance of

the system, including measuring attributes which are traditionally difficult to objec-

tify, for example, elegance and flexibility. As an example, the definition of an elegant

design states that it has the four properties of effectiveness, i.e., it works, robustness,

efficiency, and that it minimizes unintended consequences [17].

Note that while we attempt to classify literature into one of the three areas below,

some of it may span more than one area. Nonetheless, each of the following cited

works relates to some phase of design process modeling, and our primary objective

is to discuss how their ideas can be extended towards our development of process

modeling framework proposed in this dissertation.

2.2.1 Values, Incentives, and Hierarchy

This area of research places design in the subjective context of organization struc-

ture, and includes questions on how decomposition, selection of contracting proce-

dures, etc., affect design outcomes.

One of the characteristics of complex systems design that we stated above is that

it is done by a multiple teams acting semi-autonomously and in coordination with one

another. The division of design tasks among the teams requires the decomposition of

design problem into smaller subproblems which can then be solved in parallel by sepa-

rate teams. Careful decomposition of the design problem is essential because it affects

how information flows in the organization, dependent upon the rules of interaction

among design teams; later in this section we will discuss studies which look at the
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effects of rules of information exchange on design outcomes. In brief, the interaction

networks have an influence on the product architecture because they constraint the

flow of information in the organization, limiting the space of solutions that the orga-

nization can explore. Naturally, the formation of teams would be influenced by how

the problem is decomposed, which makes understanding decomposition strategies an

imperative.

Wagner discussed four forms of decomposition – object, aspect, sequential, and

model-based decomposition [18]. Object decomposition is wherein the system is di-

vided into subsystems which are to be integrated, thereby requiring system modu-

larity. For example, object decomposition in case of an aircraft would be divisions

into teams which develop engines, wings, fuselage, etc. Aspect decomposition is that

which is done by disciplinary specialties, for example into teams of aerodynamics,

propulsion, structures, etc. Finally, sequential decomposition is in chronological or-

der of design tasks, and model-based decomposition is by the models that are used

during the design process. In aerospace design, it is not unusual for the organiza-

tional hierarchy to follow disciplinary lines, which in above terminology is aspect

decomposition [19], and the requirements allocation mirror disciplinary boundaries.

Many different methods have been proposed for decomposition in literature. For

example, Michelena and Papalambros [20] presented a method for decomposition us-

ing hypergraph partition of the problem into model-based components. Representing

the design problem as a hypergraph, which is a generalization of a graph where a sin-

gle edge can connect multiple nodes, they used spectral graph-partitioning methods

to decompose the problem. As another example, Kusiak and Wang [21] used incidence

matrices representing relationships between tasks and design parameters to partition

the design process into clusters of tasks which can be completed in parallel. In a later

section we will look at other studies which have used these incidence matrices, called

design structure matrices, in the modeling of design processes.

On the issues of value and incentives, we can discuss the differences that may arise

while taking a value-based versus optimization-based approach to design because such
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a distinction between approaches could be useful in analyzing how the designers’ at-

titudes plays a role in their decisions. For example, Collopy [22] discussed modeling

of designers’ behavior stating that the designers’ tolerance to risk decreases once the

specified requirements are met, thereby inhibiting further search for better solutions.

When operating in constrained space, performance and cost are traded off with other

system attributes, with the result usually being a decrease in performance along with

an increase in cost. In contrast, in an optimization-based approach, defining a scalar

objective function converts the teams’ extensive attributes to a score on which the

teams select the alternative with highest value. This objective function inherently

contains the system trade-offs and represents the teams’ utility for each of the al-

ternatives. In a value-driven design paradigm, this function would be expressed in

monetary units and would be the measure against which, besides system alternatives,

the tools, processes, and methods can be assessed. Thus, the benefits of value-driven

design include that it enables optimization, prevents design trade conflicts, and avoids

cost growth and performance erosion [23].

While the paradigm of value-driven design is useful because it brings together

economic theories and systems engineering principles and provides decision-makers

with an objective basis to optimize the system [23], it does not provide the designers

with any directive, and rather the objective functions flow down to each team. To

use the value-driven paradigm for guiding design processes, we have to incorporate it

within the design problem itself, which we discuss next.

In the previous chapter we briefly contrasted between a product-view and process-

view of complex systems development; these views are based on the notion of value-

driven decision-making that is artifact-, process-, and organization-focused as pro-

posed by Lee and Paredis [8]. A value-driven approach to design states that all

design is the process of maximizing value of a product, and this value can be given

as:

A : max
a∈A

πA(a) (2.1)
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Here, the designer seeks to maximize the profit πA of a system a, chosen from

the set of alternatives A. In this form, design amounts to being a selection problem,

where the objective is to select an alternative which provides the highest utility to the

user. The challenge facing all systems development programs is that of identifying

a feasible design space and then searching for the best alternative from within it.

Optimization algorithms fulfill this role by searching for the optimal value of the

objective function over the space of feasible designs. These algorithms differ in the

heuristics they employ for search depending on the features of these spaces, which is

the reason not all algorithms are suitable for all problems. In other words, the process

of search over the design space affects the outcome of optimization algorithm.

Thus, we can extend the above selection problem to state that all designs are

outcomes of a selected process, so that, in order to maximize the value of the product,

we need to maximize the value of the process defined as a function of the product:

A : max
a∈A

πA(a, t(A))− C(A) (2.2)

In this equation, the value is a function of both the chosen alternative, and a time

component, t(A), which will take into account the temporal nature of the process.

This value is reduced if the cost of this process, C(A) is high. Reference [8] avoids

the self-referential nature of the above objective function by re-framing it as:

P : max
p∈P

πP (a(p), tp(p))− Cp(p) (2.3)

Here, P is the set of decisions that the designers can take, and the objective is to

maximize the value of the process-system, πP , which is a function of chosen alterna-

tive, a time component, and the cost of a particular set of decisions, p, called a policy.

Cp specifies the cost of these decisions. This formulation provides the motivation for

attempting to maximize the value of the process. The result of foregoing discussion is

that organizations have an incentive to set up appropriate processes at the beginning

of all complex system design programs.

We can further develop this line of thought to account for the semi-autonomous

nature of teams involved in design. Being semi-autonomous means that the system-
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level designer has no direct authority over the teams’ decision-making, and can in-

fluence their decision-making by providing them with appropriate incentives, which

could take the form of monetary rewards, as an example. Discussion of incentives

comes from mechanism design theory, which is the reverse of game theory. Being

semi-autonomous, the teams have local value functions and make decisions to maxi-

mize those, sometimes to the detriment of the system-level value function. Because

for an organization the ultimate goal is to maximize its own value, in the absence of

any direct authority, the organization’s value depends on how it devises an incentive

scheme i from the set of available options I :

O : max
i∈I

πO = max
i∈I

πA(a(p(i)), tp(p(i)))− Ci(i) (2.4)

This equation is a modification of equation 2.3 to make process as a function of an

incentive scheme, and this means that the task before the organization is to select an

incentive scheme that ultimately leads to maximization of its value, πO. Note that in

this discussion we have used notation consistent with reference [8]; our use of notation

is different which we will define in the next chapter.

An example of related work includes that by Cheung et al. [24] who discussed the

application of value-driven design approach for the design of a jet engine. Collopy [25]

presented a survey of value models in aerospace systems development. In this disser-

tation, we take a value-based view of design and aim to select a design process policy

which maximizes the organization’s value function. Also, in this dissertation, setting

incentives amounts to the organization’s selection of heuristics for control of design

teams. We will do this using Principal-Agent theory, discussed further in section 3.5.

2.2.2 Organizations and Teams

This area of research raises questions on topics such as organization adaptability,

design team modeling, etc. and extends design research into topics such as cognitive

and social psychology.
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An hypothesis called the “mirroring hypothesis,” also called the Conway’s law,

states that organizational structure both influences and is influenced by the archi-

tecture of the product being designed [9, 26]. We noted earlier that with growing

system complexity, the number of teams and even organizations involved in their

development increase, leading to personnel and information management challenges.

If the network of interactions among teams affects system design it will ultimately

affect the performance of the final system produced. This effect gives rise to a need

to study the interplay between organizational structures and system architectures.

Large organizations which are structured hierarchically can be represented using tree

diagrams because such representation are easy to study. However, real communica-

tion networks within organizations are seldom such cleanly structured and real people

interactions are messier.

Flynn [6] studied organizational structure considering both the formal and infor-

mal interactions, and claimed that “an all encompassing analysis of the organization

is possible and would result in useful output that would allow managers to make de-

liberate and effective design decisions in the continuous improvement process.” In his

modeling he made use of the methods of social network analysis and group modeling

techniques. The model served as a mapping tool useful for identifying the various

formal and informal relationships that exist within the organization though it did

not provide the ability for any performance analysis. In the classification scheme we

discussed in section 2.1, this work falls within the macro level analytic type; its lack

of ability to provide guidance for organization design is the reason it would not be

within the procedural type category.

In contrast, the viable systems model (VSM) prescribes a way to structure an

organization for improved efficiency. As opposed to the usual hierarchical structural

representation of an organization which relies on strict authority, this model presents

a more organic approach which enables an organization to be flexible and democratic.

This model represents an organization using five layers inspired by the human brain.

At the lowest level are the individual designers who perform design activities. There-
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after, at each successively higher level are those that perform conflict resolution and

stabilization activities, internal regulation and optimization activities, adapting and

forward planning activities, and command and policy determination activities. This

is an example of macro level procedural type model.

Jin and Levitt [15] presented a discrete event model of organizational design teams

called the Virtual Design Team (VDT) model. Building on organizational contingency

theory, VDT modeled actors, their activities, communication tools, and organizational

structures. The model made use of a simulation approach to study such questions as

how does the decentralization of decision-making impact project performance, or how

does reciprocal interdependency between two design teams affect their workload? It

split all tasks into two parts, viz., production work which adds value to the system

being developed, and coordination work which facilitates the completion of production

work. Having done this, the two requirements of the VDT model were to, first, capture

both the work contents and activity dependencies, and second, to be able to map the

computational model to real world data so that insights from the simulation can

provide practical utility. Like VSM, this model falls within the macro level but in the

MS/OR category because it provides agents models of an organization for simulation

and study.

The above discussion is on studies of how organizational structures can be repre-

sented and how decision-making within these structures can be modeled; let us now

look at how information flow within organizations can be handled. With multiple au-

tonomous teams working independently and in parallel, the information they generate

and share with other teams is certain to contain inaccuracies and, especially in early

stages of design, be of lower fidelity in nature. Aggregation and a “cleaning up” of

such information becomes imperative before it is used to inform their decision-making.

Predd [27] proposed a “scalable aggregating algorithm (SAA)” for aggregating the in-

formation from incoherent or abstaining human judges, in this case experts. This can

be employed for cases where teams exchange information but provide either biased or

incomplete information. Then using partially available information, aggregated data
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can be generated, helping speed up the process of design. In the work in this disser-

tation, we will set up design agents to evaluate information available from all sources

independently and then select the one which provides highest utility to the team.

This approach is more useful in the early stages of design exploration. Aggregating

disparate information into a single dataset may, however, be an alternative approach,

especially in later stages of design when available information is being refined.

Lastly, two further aspects come under the purview of this topic area. Alexandrov

and Lewis [28, 29] proposed a method to make the multidisciplinary problem itself

reconfigurable in a bottom-up manner, where, using strategies such as lexical analy-

sis and grammatical analysis, computational components of a design problem can be

identified and assembled into various different MDO formulations and solution algo-

rithms. Practically this means that the designers can specify the inputs and outputs

of their disciplines, and the method would then suggest alternative formulations of

the design and optimization problem to the user. Their proposed method is intended

to ease system synthesis and integration by automatically performing tasks such as

error checking, formulation and reformulation of optimization problem formulation,

etc.

Finally, in keeping with the optimization community’s recognition of inclusion

of humans within the design process modeling, it would be useful to model human

behavior in the context of organizational structure. Wise et al. [30] categorized the

various approaches to modeling human behavior along the three dimensions which

indicate the depth and flexibility of behaviors, the temporal dimension from reacting

to current situations to anticipating and planning for future scenarios, and complexity

of the models themselves (see Fig. 2.3). Studies and application areas with regards

to human behavior modeling can be then mapped to these three dimensions. Despite

the breadth of surveyed methods, employing quantitative approaches requires making

some abstractions, even for approaches narrowly focused in a context. These abstrac-

tions along with the measures of performance are a result of the researcher’s choice

and therefore implicitly incorporate bias. Later, in Chapter 6 we will discuss using
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Figure 2.3.: The three dimensions of human behavior modeling (from Ref. [30]).

qualitative approaches, which provide dense descriptions of phenomena as opposed

to the highly abstracted quantitative approaches and work as complements to the

quantitative approaches.

Clearly research in the organization of design teams is vast with potential for

many more questions to be asked and answered. In this dissertation, we look at a

model of an organization where the design teams adaptively make decisions using

information available at any given point in the process. The design process arrives at

a final system architecture as a result of the collective decisions of the teams guided

by the incentives provided by the system-level manager. Like the studies by Flynn [6]

and Jin and Levitt [15] above, the interaction network within the organization will

evolve as teams make decisions on which other team to interact with at any time.

In other words, the interaction network within an organization for a system design

process is an outcome of the framework presented in this dissertation rather than an

input to the modeling.
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2.2.3 People and Machines in Systems Engineering

This area addresses questions relating to how culture plays a role in distributed

decision making and how computational tools share decision-making responsibilities

with the humans.

Each team involved in a complex systems development project identifies its value

functions and behaves in accordance with them. The local value functions take prece-

dence over global objectives at the team-level of an organization with the global ob-

jectives more likely to be satisfied when they provide a higher value to the teams. It

is the system-level designer’s task to provide not just a set of requirements but also

incentives which coax the teams to make decisions in favor of the system. The set

of well-formulated incentives cause the teams’ value functions to align closer to that

of the system-level objectives. The challenge for the system-level designer is that he

does not know of these value functions and can only form incentives based on his

observations of teams decision outcomes. Under the setup just discussed, require-

ments flow downwards while the objectives flow upwards. This problem of guiding

teams working independently under guidance of a system-level manager is studied

in Principal-Agent theory where the principal can observe the outcomes of agents’

decisions but not the workings of their internal decision-making.

Vermillion and Malak [31] presented a study in which they made use of the

Principal-Agent theory to solve a problem of task delegation. In their framework

they incorporated models of human behavior including their risk profiles and studied

the effects of two different incentive schemes on design outcomes using an example

of vehicle engineering. In the work in this dissertation, we will not study a princi-

pal’s task delegation because we assume the teams decide their set of tasks locally

and select from among them. Rather, in the principal-team interaction, the princi-

pal will setup rewards to be given to the teams while the teams will report design

variable information. We will further discuss Principal-Agent models as used in this

work in a later section (see section 3.5). Lee and Paredis [8] have also proposed us-
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ing Principal-Agent models in cases of distributed system design to answer questions

such as “How should we assign authority and responsibility?” and “How should we

provide incentives?”

Disregarding informal interactions between designers, teams involved in distributed

design interact with either the other teams or the system-level designer subject to the

rules of communication. The nature of problem decomposition, for example, could

dictate the communication links within an organization. Braha and Bar-Yam [32]

developed a model of an organization as a network whose topology changes with time

due to evolving information exchange requirements. They modeled the nodes to rep-

resent tasks and the links to represent information flow among the tasks, and the

existence of a link was a function of time with a certain predetermined probability

function. They studied a design process from the perspective of network theory and

did not account for human behavioral attributes when drawing conclusions. How-

ever, considering both the human behavioral and cultural aspects of design would be

a factor with direct relevance on the rules set up for information exchange among

designers.

While the network of communication links within the organization could be based

on factors such as problem decomposition, the designers may interact informally

with members of other teams, especially in cases where the teams are collocated

and personal interactions among members are possible. Such informal interactions

allow for rapid exchange of information among designers and could foster innovation

in an organization. We can conclude, therefore, that what information flows on the

communication links, whether formal or informal, has an effect on the design outcome.

Some relevant questions to consider for the purpose of setting up communication rules

include:

1. What communication links or rules of information exchange should exist? Who

should be involved in every exchange of information?

2. How should the incentives (rewards) for meeting objectives be set up?
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In a study on the effect of communication within an organization on design, Honda

et al. [33] evaluated the effects of different information passing strategies on the final

outcome in a multi-level design problem. They made use of a game theoretic and a

modified game theoretic framework in a bi-level system design problem and compared

the results of both approaches to coordination among teams. They arrived at a

number of conclusions: the choice of system variables affects the optimality of design

outcomes, perfect information passing may not decrease the number of iterations, and

the design cycle stability depends on the amount of information passed. Similarly,

Ciucci et al. [34] investigated the effects of passing different types of information on

the ability of subsystem design teams to converge on Pareto-optimal designs. They

found that passing more information generally results in converging on Pareto-optimal

sets even though the cost of doing so increases.

To reiterate an earlier point, design process models are setup to aid designers’

decision-making. Before moving to a discussion of decision-making in the next sec-

tion, let us discuss some studies on how computational methods can help model

human decisions. The following two studies are based on the dynamic program-

ming approach. Boukhtouta and Powell [35] proposed a dynamic programming based

approach for coordination among multiple independently acting agents. Their frame-

work solved a problem of resource distribution in a complex network with multiple

autonomously acting agents. These agents exchanged information with one another,

sometimes with distortion, which could lead to suboptimal utilization of resources.

They presented an algorithm wherein the agents adaptively learn and modify their

communication behavior so as to improve the final allocation outcome. They also

addressed features of such a coordination problem as possibility of misinformation

during communication, and showed that the benefits of communication include that

final solution approaches an optimal value that could be found if the problem were

to be solved by a single agent controlling all variables.

Fang et al. [36] proposed an approximate dynamic programming (ADP) approach

combined with a transfer contract mechanism approach via a value function approx-
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imation to solve the problem of architecture selection for a system-of-systems. In an

acknowledged SoS, where the stakeholders have to share resources to provide capa-

bilities but without the direct authority of a central controller, the transfer contract

mechanism provides an internal market for the participants to share products and

services with one another. The proposed ADP model extended decision-making to

multiple stages over a long-term time horizon. The use of an approximate value

functions avoided the necessity of collecting complete information for an optimiza-

tion problem. The authors, like in the previous study, also showed the benefits of

communication and adaptation on the final solution outcome.

Renner and Schmedders [37] discussed how a dynamic principal-agent problem can

be solved using the dynamic programming method of value iteration together with a

polynomial approximation technique. They modeled continuous choices sets for both

the principal and the agent and transformed the bi-level optimization problem to a

standard nonlinear program, and then presented a recursive solution technique.

Olewnik et al. [38] proposed a framework which combines concepts from multi-

objective optimization, consumer choice theory, and utility theory to develop systems

which can adapt their functionality to changing requirements. In their approach,

they sought to maximize corporate utility, thereby looking beyond just product level

optimization, when selecting a system architecture. The role of designers’ subjective

decisions was recognized by the fact that decision makers need to specify the points on

Pareto front. Their work falls into a category of approaches which propose frameworks

for decision support for complex systems design.

Our proposed framework, discussed in the next chapter, will make use of dynamic

programming, particularly the value iteration approach, to model agent decision-

making. The organization is setup as a network of interacting agents where links

between two agents exists when they share variables. The agents then use value

iteration to calculate the discounted future rewards and make decisions from which

the system design evolves. Before proceeding, we briefly discuss the basics of decision
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theory. The concepts discussed next are relevant to selecting such features of our

modeling such as risk behavior of designers, utility functions for the teams, etc.

2.3 A Brief Discussion of Decision Theory

Decision theory is the study of an agent’s choices, and it is concerned with goal-

directed behavior in the presence of options. It is studied in many fields including

economics, statistics, psychology, political science, etc. Whereas game theory ad-

dresses the question of how do interactions affect agents decisions?, decision theory

studies how individual agents make choices? There are two “kinds” of decision theory,

viz., normative, which is theory of how decisions should be made, and descriptive,

which is the theory of how decisions are actually made.

The decisions that an agent makes depends on its abilities, its observations, and

its preferences. A rational agent will make decisions based on its preferences over

the possible outcomes of its actions. An agent’s rationality, in turn, depends on the

axioms given in Table 2.2. In the notation of this table, “o1,” “o2,” etc., indicate the

outcomes as a result of agents’ decisions, and these axioms relate to how the agents

make a decision by evaluating the expected outcomes and choosing the one which

leads to the outcome over which it has the highest preference.

For the purpose of modeling, we need a convenient way of providing information

about the preferences, and this comes in the form of a value function. This function as-

signs a real number to each of the possible outcomes called its value. Then combining

the values with probabilities of occurrence of outcomes, we get a probability-weighted

value for each possible state of the world. This linear sum of probability-weighted

values is called the expected utility or simply utility and a rational agent will pick the

option which gives it the highest utility. At this point, it will be useful to distinguish

and clearly define the terms to be used in our discussion – the following definitions are

based on those given by Collopy [25]. A value is a numerical encoding of preference,

such that, saying that an agent prefers outcome o1 over o2 is equivalent to saying that
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Table 2.2.: Axioms of Rationality

Completeness An agent has preferences between all pairs of outcomes:

o1 ≥ o2 or o2 ≥ o1

Transitivity Preferences must be transitive: if o1 ≥ o2 and o2 ≥ o3

then o1 ≥ o3

Monotonicity An agent prefers a larger chance of getting a better out-

come than a smaller chance of getting the better out-

come. That is, if o1 ≥ o2 and p ≥ q, then [p : o1, (1−p) :

o2] ≥ [q : o1, (1−q) : o2], where p and q are probabilities.

Decomposability An agent is indifferent between lotteries that have the

same probabilities over the same outcomes.

Continuity Suppose o1 > o2 and o1 > o2, then there exists a p ∈

[0, 1] such that o2 [p : o1, (1− p) : o3]

Substitutability If o1 ≥ o2 then the agent weakly prefers lotteries that

contain o1 instead of o2, everything else being equal.

That is, for any number p and outcome o3: [p : o1, (1−

p) : o3] ≥ [p : o2, (1− p) : o3]

the value of outcome o1 is greater than that of o2. Utility, on the other hand, is as

we defined above – a linear weighted sum of values of each of the possible outcomes

multiplied by their associated probabilities of occurrence. The concept of utilities is

central to the theory of decision-making under uncertainty, and in our approach of

value-based decision-making, we will evaluate the expected utility of each decision

that an agent can make.

While it is useful to assign a single numerical value to each possible state, the

actual value functions differ from person to person. Behavioral attributes such as

risk-taking ability play a role in an agent’s value function. For example, Fig. 2.4
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distinguishes between the risk-taking behavior of different agents by showing three

types of agents: the risk averse, risk prone, and risk neutral. Other theories such as

Prospect Theory have suggested that agents are more sensitive to losses than to gains

in value, and thus, the risk profiles are not symmetric between the two; for further

information see reference [39] and a brief discussion in reference [31]. Of relevance

to our discussion is the fact that the choice of value functions will affect agents’

decision-making which, in turn, will influence not just the final design outcomes but

also whether an organization can successfully develop systems within the cost and

time budgets.

Figure 2.4.: Different types of risk profiles: The concave curve is for a risk averse

agent, the straight line is risk neutral, and the convex curve is risk prone.

As stated above, a rational agent will select a decision to maximize its expected

utility. Suppose O is a possible set of outcomes specifying a state of the world. Then

the choice to select an expected utility maximizing decision can be mathematically

this can be expressed as E(u|d ∈ D) = max
∑
u(ω) ∗P (ω), where d are the decisions

that an agent makes from the possible set of decisions D, and u and P are the utility

function and the probabilities of occurrence of a specific outcome ω, respectively.
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If the agent had to make only a single decision, and assuming that the probabilities

of outcomes can be calculated, the agent would search over its decision space and select

the set of decisions which leads to maximum expected utility. In general, however, the

agent would have to make a decision based on its current observation and available

options, then observe the effects of the selected action, make another decision, and

so on, in what is called a sequential decision problem. A policy is a mapping from

states to actions, meaning that it specifies what the agent should do in each of that

states that it visits. Similar to maximizing the utility of a decision, we can say that

a rational agent will select a policy with maximum expected value, and this can be

written as E(u|π) = max
∑
u(ω)∗P (ω), where π stands for the agent’s selected policy

and all other variables mean the same as before.

The above was a brief discussion of decision processes and utility theory; for

further details see Refs. [40–42]. In the next chapter, we will use discussion from this

section to elaborate on how a design process can be represented as a Markov decision

process and how an organization can select a policy which provides it with the highest

value. In the next section, we discuss some of the current literature on selection of

design process policies.

2.4 Selecting a Design Process Policy

One way to study team interactions is to develop models of systems and the

constituent subsystems being designed and use the common design variables among

the subsystem models as a surrogate for team interactions. The design structure

matrix (DSM) is a common representation employed in systems engineering which

takes this approach. DSM lays out the subsystems or tasks along the first row and

column of a matrix and indicates interdependencies between them by marking the

cells of the matrix. Figure 2.5 shows an example of a DSM where all design tasks are

listed in the first row and column. The off-diagonal cells indicate interactions among

tasks. The cells in the upper triangular region indicate feedback dependencies while
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Figure 2.5.: A design structure matrix.

those in the lower triangular region are feed-forward dependencies. The schematic

shown here shows binary links with an ‘×’ indicating a dependency while an empty

cell shows a lack thereof; alternatively these dependencies can take numerical values

to show their strength.

A proposed extension to the DSM, called extended design structure matrix, or

XDSM, builds on the DSM’s capabilities of showing interconnections among system

components, by adding the ability to show data dependencies and process flow [43].

The XDSM has been used to represent the solution strategies of all existing MDO

architectures. Figure 2.6 shows the XDSM for the Gauss-Seidel MDO algorithm for

a three subsystem problem [43]. Other approaches to sequencing design tasks have

made use of approaches such combining simulated annealing optimization algorithm

which is a meta-heuristic approach with risk analysis [44].

A tool called Design Manager’s Aid for Intelligent Decomposition (DeMAID), re-

leased in 1989, provides capabilities such as reducing feedback couplings in complex

systems design, sequencing the design processes, grouping processes into iterative

sub-cycles, etc. The utility of such a tool is that once designers understand the flow
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Figure 2.6.: The extended design structure Matrix from [43].

of design processes and effects of iterative sub-cycles, the time and cost of systems

development can be better managed [45]. This tool makes use of the DSM for rep-

resenting coupling between tasks, and makes use of strengths of these coupling to

determine the best sequence of tasks. Later enhancements made use of time and

cost information along with use of genetic algorithm approach to optimize the design

sequence.

Other approaches to design process sequencing have also made use of the DSM,

combining it with either simulation technique [46] or by the use of heuristics to find

subproblems [47]. In the former study, Cho and Eppinger, used a simulation based

approach for modeling and analysis of design processes wherein they used a DSM to

capture information flows between tasks. They captured features such as informa-

tion transfer patterns, uncertain task durations, resource conflicts, overlapping and

sequential iterations, and task concurrency. Using various measures that represent

realistic features of design processes, they proposed a method for project planning and

control including sequencing of tasks iteratively. These measures included those such

as rework probability, which indicates the probability that a task has to do rework

when it is affected by another task that it is interdependent on, and rework impact,

which is a measure of level of interdependency between tasks in sequential iteration.
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On the other hand, Qian et al. [47] developed a new hybrid optimization approach

for a large DSM-based activity sequencing problem with the objective of minimizing

the sum of superdiagonal numbers. They established several simple rules for reducing

the sum of superdiagonal numbers in a DSM and proposed a heuristic for obtaining

good feasible solutions.

2.5 Summary

In summary, we reiterate some of the future research questions that still need to

be addressed for complex systems design. First, we need to account for social and

human factors and how they affect the design process. The key impact that such

factors have are that the interactions in an organization are messy and often informal

as opposed to the strict formality and structure of a tree-type hierarchy, and that this

leads to inaccuracies in data exchange whether it is due to designer biases or their

intention to protect their objectives. Next, we need research on how design tools and

methods are actually utilized in an organization [13]. In other words, we need to

study how the models map to reality and how they can improve an organization’s

performance. Lastly, we need to study how design process can be identified which are

optimal in the given context. This includes elucidating the set of tasks to accomplish

and the order in which they should be done, their allocation to teams, etc.

The work in this thesis will address the last of these research questions, i.e.,

how do we identify design processes suitable to the context. Rather than provide

a prescriptive theory, we will set up a simulation framework of distributed, semi-

autonomous design teams’ whose collective decision-making will result in a design

outcome. The framework will be set up with agent models of the teams, and from

simulations using framework, we will be able to record team interactions and the

sequence of their decisions. In the next chapter, we discuss the background theory

used in our modeling.
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3. DESIGNING THE DESIGN PROCESS

In this chapter we will define the complex systems design problem and discuss the

context of the problem along with the assumptions we make. In section 3.2, we

discuss the agent model that we will use for both design teams and the system-level

designer. In sections 3.3 and 3.4 we cover how the design teams assign values to

design tasks and how they use the value iteration algorithm to select the best policy,

respectively. Following this, in section 3.5, we discuss the principal-agent model,

which the system-level designer uses to select heuristics for guiding teams’ decisions.

3.1 Problem Context and Definition

First, we define some terminology used in our discussion below. The design

space of a system can be defined using ranges of values of attributes that specify

that system, and each instantiation of attribute values defines an alternative design.

From Collopy and Hollingsworth [23], we distinguish between attributes and design

variables – attributes are such things as weight of the system, its cost, etc. which are

used to connect to the customer, whereas the design variables are properties of the

system itself such as length of a component, the diameter of a cutout, etc. In this

work, we assume that customer requirements are already specified and the modeling

in this work is concerned with the design teams’ decisions, and hence, we will hereafter

use the term variables to describe the system properties that the teams control.

A design process is the task of searching through the space of feasible alternatives

and selecting the best from among them. Thus, the design process proceeds through

a series of transitions within the space of feasible alternatives, so that in the process

view of design, each alternative can be considered to be one feasible state of the
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process and the many alternatives generated and evaluated on the way to a final

design are the various states explored.

A feature of complex systems development is that for such systems the design

problem is decomposed into several subproblems so as to generate multiple design

subspaces which are subsets of system attributes and which can then be explored in

parallel by different design teams. In other words, in complex systems design, each

of the subsystem teams controls a subset of all design variables, some of which are

shared among multiple teams. When in a given state, the teams may choose to further

explore the design space by changing variable values in search for better alternatives

or exploit their current knowledge to refine the design they have already. They could

work with local information or communicate with other subsystem design teams to

get more information. In this way, an information-theoretic view of design considers

each action that a team takes as an information processing unit in which the designers

observe the current state information and act on it to produce an output which is the

next state reached as a result of a chosen action. It is the role of a design heuristic to

present the designers with a set of alternative actions and help select the one which

is best suited to the current state.

Henceforth, we interchangeably refer to the subsystem design teams as either

agents or teams and the system-level designer as the principal. All the design tasks

that the principal or agents do are referred to as either actions or tasks. In any

state, a heuristic is a rule which helps the agents select an action from the available

options. A particular sequence of selected actions which constitute the design process

is a policy. Thus, a heuristic is a function which takes the current state as an input

and produces a policy as an output. With every action that an agent takes, it will

incur a cost but will change its state, preferably taking it closer to the final outcome,

and thus provide it with some payoff. Under the value-based view of design, these

payoffs can be quantified in monetary units, though they could take any other form

of compensation. In our discussion henceforth, we will refer to payoffs as rewards.
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3.1.1 Problem Definition

Formally, we can define a design problem with the following elements:

Set of states : X =
⋃
k xk : ∀k

Set of actions : A =
⋃
i,k ai,k : ∀i, k

Set of rewards : R =
⋃
i,k ri,k : ∀i, k

Design policy : π

In this definition, X is the feasible space of designs defined in terms of system

variables. X0 are the variables under control of the principal, while Xk are those

under control of each of the teams k. Some of the design variables may be shared by

more than one team and also the principal, and hence, the design space is specified

by the ranges of values of the union of all variables. Similarly, the set of actions A is

the union of all actions available to all teams k in all states i and which, when done,

take the agents from one state to the next. The rewards R is the set of immediate

rewards or payoffs that an agent obtains on taking a particular action in a particular

state. Finally, a specific sequence of actions is a design policy, π. In this form, the

design process is similar to a Markov decision process, although in the latter, the

set of actions are specified as probabilities of transition from one state to another on

taking an action. Here we assume that the teams select one of the possible actions in

any state and can observe the state it leads to.

In the planning method described in the following sections, the teams initially

know only the states and actions available to them while they observe rewards as a

result of taking action. The agents’ rewards on completion of each action depend on

the increase in value that the agent can obtain from that action, the costs associated

with the action, and any form of payoff provided by other teams or principal. Agents

observe the rewards that they obtain by completing each of the actions, and use the

value of discounted cumulative rewards to select a design policy.

Figure 3.1 shows the schematic of a bi-level organization, which we will use

throughout the rest of our discussion. The solid bidirectional arrows in this figure
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indicate information exchange between the principal and teams while dotted arrows

show the same among teams. The nature of information communicated on these links

may differ based on who the communicating agents are and may form part of the def-

inition of a heuristic. In a complex systems design process, the principal does not

directly engage in low-level tasks such as design space exploration, and rather guides

the teams’ decision-making by negotiating with them an incentive scheme. We note

that rewards are an outcome of an incentive scheme. Just as a policy tells us which

action to take in any state, an incentive scheme tells us the reward associated with

an action.

The teams exchange design variable values and do so with more frequency than

their interactions with a system-level designer. Thus, the teams may iterate among

themselves and only communicate with the principal once they have locally converged

to a mutually agreed solution. Those teams which interact with greater frequency,

may then be put in close proximity to aid their decision-making. Further, the links

among teams may be more informal, meaning that they may arise and disappear as is

suitable to the needs of the teams, whereas the links between teams and the principal

may be more structured and formal.

The proposed approach of modeling teams as learning agents is applicable to each

of the blocks in Fig. 3.1. The differences between modeling a principal and each of the

agents would be the local tasks that each of the agents solve as well as the information

they process and their local value functions. The objective of value maximization is

applicable at all levels of organizational hierarchy.

3.1.2 Assumptions in Modeling

The possible different structures of an organization and the processes that these

organizations employ are numerous and perhaps as diverse as the systems being de-

veloped themselves. To keep the scope manageable, we restrict to modeling an orga-

nization with two levels of hierarchy, with a single system-level designer at the higher
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Figure 3.1.: Schematic of the process-system as a bi-level framework.

level, and multiple fixed number of design teams at the lower level. We assume that

initial problem decomposition is completed and all teams have clearly defined local

objective functions before the start of our process when then remain fixed throughout

the process. The structure of the organization defined as the links between agents also

remains fixed throughout the course of process, although an outcome of our modeling

is an observation on how many times do agents exchange information on each of the

links; this will be discussed further in later chapters.

The design environment in which the teams operate is observable, deterministic,

and static. Observable means that the team can fully observe its current state when

making any decision. However, because the other teams are also in the process of

designing their subsystems, no team can observe the full design state of the other sub-

systems. Deterministic means that any action that the team takes maps to one future

state. This assumption is important in the setup of the planning algorithm described

below; here it does not mean that the models used by the team are deterministic,

rather it means that regardless of the model employed, the team can settle on a single
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estimate of the future state of the world given the application of an action. Static

means that the state of the world does not change during the course of evaluation.

Design teams have the most flexibility during the conceptual phase, which is when

a small number of designers work in close proximity. They are divided into teams

along disciplinary boundaries, and the communication links between them are based

on shared variables.

3.2 Model of Agents’ Decision-Action Behavior

Figure 3.2 shows our model of an agent for representing both the design teams and

the principal, broken down into four constituent blocks. The specification of agent

behaviors involves three things. First, the agent knows its goals and preferences. This

is in accordance the assumption stated above that the agent has been provided with its

local objectives. Second, it has prior knowledge of the environment, which means that

the agent knows which other agents it has to interact with and what information it can

exchange because both the organizational structure and rules regarding information

exchange have been preset. Lastly, the agent is aware of its abilities, meaning that

it has models of the system that it is designing available from the outset and knows

what actions are available for it to take.

The information acquisition block is where the agent obtains data from other

agents that it interacts with. From here, the information passes on to the agent actions

block, which as two activities – valuation and planning. In our implementation, this is

where the value iteration algorithm selects an optimum policy based off the supplied

information. This block updates its estimate of optimum policy as soon as new

information becomes available.

Let us highlight the roles of the Valuation and Planning blocks. The Valuation

block calculates the payoff to be obtained from each of the available tasks. This block

makes use of the value function and information on the contract with the Principal

to arrive at the expected reward of each possible action. The Planning block then
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Figure 3.2.: Model of agents’ decision-action behavior.

receives this rewards information and selects an action to take in the current state.

Thus, this block selects the design policy. Finally, the selected process is passed on

to the Execution block where the actual design is done.

Dividing the agent model into four blocks of behaviors, actions, information ac-

quisition, and execution agrees with other models in literature on both organizational

structuring and human information processing. For example, in a model of human

information processing, Parasuraman and Sheridan [48] have used a four-stage model,

where the stages in order are information acquisition, information processing, decision

selection, and action implementation. Our model of the team agent closely resembles

this model, opening the discussion of modeling teams as “thinking agents.” Another,

slightly contrasting view of an agent is the Viable Systems Model (VSM) which breaks

down the organization along five tasks that it needs to accomplish at any level of hier-

archy. Starting from the lowest, these five tasks are action implementation, stability

of tasks, optimization of actions, adaptation to environment, and policy selection. In
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our analogue, the first two of these tasks are together done by the Execution block,

while optimization of actions, in our approach can be assigned to the Valuation block

and the last two tasks can be done by the Planning block. Note that our represen-

tation is that of a ‘team agent,’ which could be an individual or a team of humans.

Thus, this segregation is functional and not a personnel assignment and the exact

specification of agent behaviors would depend on the composition of the team.

3.3 Valuation: Setting Up the Agent Rewards

An action, seen as an information processing unit, is an operator on the design

variables:

ai,k = O(xs, xl) (3.1)

Here, xs indicates a variable shared with other teams and xl indicates a local

variable. The approach of bi-level integrated systems synthesis (BLISS) [49] assumes

that when solving the local optimization problem, a design team keeps all shared

variables fixed, and only changes values of local variables. In our approach, this is

a choice the teams must make at every stage during the design process – they may

change values of all variables under their control or only a subset of those, for example,

only the ones which are local and not shared.

In order to select an action at each state, the teams evaluate the discounted future

rewards obtained from the outcomes of each of the available actions. The rewards that

the teams receive are a function of inherent value of the action and any compensation

from the principal as a result of a negotiated contract. The inherent value of an

action can be the increase in value that the agent obtains on taking that action. The

compensation received from the principal could be in form of a large reward associated

with attaining a final goal.

Suppose that the teams receive rewards r1, r2, . . . for each of the future states

reached on following a particular policy. Design can be seen as an indefinite horizon

problem, where even though there is a goal to achieve, the agents do not know how
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many actions they will have to take before they achieve it. Thus, the above sequence

of rewards is infinite and the teams calculate the value of future discounted rewards

as:

Vi =
∑
i

γi−1ri

= r1 + γr2 + γ2r3 + . . .

= r1 + γVi+1

(3.2)

which is the value of state i and γ is the discount factor.

Henceforth, we will indicate the value obtained by the principal until state i with

V0,i, where the first subscript, 0, indicates the principal and the value obtained by an

agent k until state i by Vk,i. We will indicate the value obtained in a particular state

i with v0,i for the principal and with vk,i for an agent k.

To calculate inherent value of an action, an agent needs two inputs – the current

state of design as specified by design variable values, whether locally calculated or

provided by the other design agents, and values of sensitivities of the value function

with respect to the those variables. Using this, the agent can calculate the change in

value it can obtain for a change in variable values:

∆vk,i =
∂vk,i
∂x

∆x (3.3)

With this formulation we are assuming that a change in variables leads to a

linear change in value. While this may not be true in general, in the early stages

of exploration of the design space this assumption serves as a useful simplification

and provides the teams with discrete alternatives on a value scale to choose from.

As design progresses and begins to converge, the search will proceed in smaller steps

where this approximation will become more reliable. This definition of value change

is also consistent with the discussion by Collopy [25] who states that a scale of value

unique to an affine transformation can be used within the expected utility theory.

Further, surplus value theory, such as employed by Cheung et al. [24] also uses a

similar form of value function in its calculations.
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The choice of variables x that the team chooses to modify in any state depends

on which action it chooses in its current state. For example, in an approach similar

to BLISS, the team may assume that it keeps the variables received from other teams

fixed and changes only the local variables, or it may decide to change all variables

which affect its value. In the next section we will discuss how the teams calculate

discounted values for each possible action and thereby select the one with the highest.

The agent’s value function also depends on the compensation it receives from

the principal. To understand how we can set up the compensation that a principal

gives to an agent, we have to look at their utility functions separately. The objective

behind providing compensation is for the principal to guide a team’s decisions towards

the objective favorable to the system-level objectives. Thus, while the principal is

concerned with maximizing the system-level value, it is dependent on the agents’

decisions regarding system design variables to achieve its objective.

The principal’s value function depends on the outcome and the compensation it

provides to the teams, i.e., V0,i = v0,i(yi, ci), where yi is the observed output and ci

is the compensation provided both in state i. Since each team can be expected to

provide a different output and receive a different compensation, this value function

will also depend on the teams that the principal interacts with. Here, we assume that

at any state, the principal has chosen the one outcome which provides the highest

value, and hence we do not distinguish his value function with respect to teams. Since

the principal tries to maximize the discounted sum of values over the time horizon,

the principal’s objective function is:

max
∑
i

γi−1v0,i(yi, ci) (3.4)

Similarly, the agent’s objective is:

max
∑
i

γi−1vk,i(ai, ci) (3.5)

which depends on the action ai which it chooses and the compensation ci in state i.

In both the principal and agent’s objective functions, γ is the discounting rate, which

we will continue to assume is the same for both.
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Together, the value change obtained by an agent as a result of its action in a given

state and the compensation it receives from the principal make up the reward that it

receives in that state:

ri =
∂vk,i
∂x

∆x+ vk,i(ai, ci) (3.6)

The first term in this equation is the inherent value change that the agent obtains

by taking an action, and the second term is the compensation that the agent receives

from the principal for that action. The agent will use this form of reward to calculate

its discounted future rewards and select a policy, which we discuss in the next section.

In the value iteration algorithm which we discuss below, the payoffs (rewards)

stays fixed during an “episode,” during which a policy is selected. Then the selected

action is carried out, followed by an iteration where the process of value calculation

and action selection repeats. Through a series of iterations any two teams arrive

at a mutually agreed upon value of shared variables, and though they start with

requirements provided by a system-level designer, the consensus design they arrive

at may not meet the given requirements. In the next iteration, they would try and

move the mutually agreed value closer to requirements. The system-level designer

can play a role by modifying their rewards, or even weights of variables in order

to encourage the teams to match requirements when they do not do so. This is

where the utilities of the principal and the teams differ. For the principal, a good

design solution is one which provides the highest system-level value and where all

teams arrive at a consensus design fulfilling its requirements. For the teams, the local

objective functions take precedence. Thus, while for the principal the contract would

be based on how close the teams arrive to its Pareto front, the incentives for the

teams would be based on their outcomes which is their design state.

3.4 Planning: Selecting an Optimal Policy

The task for the agent is to select an optimum policy given the decisions of the

other agents and the system-level designer. A design policy is what specifies the action



48

an agent should take in any particular state, and, under the value-based view of design,

every agent selects the policy which provides it with the highest discounted reward.

We will model the learning behavior of teams using the dynamical programming

technique of value iteration which we discuss now.

A function called the Q-function defines the value of a starting in state i, taking

action a and then following policy π. The value of following policy π in the current

state, given as V π(i), is defined iteratively with the Q-function, given by Qπ(i, a):

Qπ(i, a) = ri(a) + γ
∑
y

V π(i) (3.7)

V π(i) = Qπ(i, π(i)) (3.8)

In the search for an optimal policy, we define the optimum Q-function, Q∗(i, a),

by using the value of V ∗(i), where the latter is defined as:

V ∗(i) = max
a

Q∗(i, a) (3.9)

We use the value iteration algorithm to find the optimal policy. This algorithm

starts at an arbitrary end and works backwards recursively refining the values of V

and the Q-function until some termination criterion is met. Algorithm 1 shows our

implementation of the value iteration algorithm. A design team is in one state at any

given them, and hence this algorithm is shown for one state with a predefined set of

actions. This algorithm converges regardless of the initial value of V and hence we

can arbitrarily initialize it. Note that the same method works for both the principal

and the agents.

In the algorithm, each team defines its own set of available actions to choose

from. The state is defined as the current instantiation of local attributes while the

rewards are calculated as discussed in the previous section. We use a condition on

the marginal increase in value function as the termination criterion, such that if the

increase in V from one iteration to the next is below a threshold ε, the algorithm

stops.
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Algorithm 1 Value iteration algorithm based on Q-values.

Input: Current state X , set of actions A, and rewards R

Output: Design policy π and value function

1: Initialize v arbitrarily and k = 0

2: Specify γ and set done = FALSE

3: for action a ∈ A do

4: Evaluate reward ra

5: end for

6: while done = FALSE do

7: k = k + 1

8: vold = v

9: for action a ∈ A do

10: Qa = ra + γ × vold
11: end for

12: v = max
a

Qa

13: if |v − vold| ≤ ε then

14: done = TRUE

15: end if

16: end while

3.5 Guiding the Design Process Using Principal-Agent Theory

In this section we discuss the principal-agent models which can be used to repre-

sent interactions across hierarchies in the bi-level organization that we have assumed

for our complex systems design problem. The key idea of the principal-agent model

is that the agents carry out the tasks to complete the work that the principal needs

to get done and receive a payoff from the principal in return. The principal, in turn,

does not see the internal decision making of the agents and can only observe the

outcomes of the agents’ actions. For more information on principal-agent models see

Refs. [31, 37,50].
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Based on our assumptions, we model the principal and agent interactions over an

indefinite time horizon. The agents who carry out the design activities choose, in each

state, the action to perform which results in an output. They report these outputs to

the principal, who then provides the agents with a compensation which depends on

the observed outcome. Let us assume that the principal’s value is given by V0 and it

depends on the value of the outcomes and the compensation given to the agents. Let

us also assume that the agents do not have any other source of compensation besides

that provided by the principal, and the value of agent k = 1, 2, . . . is the function Vk

which depends on the compensation received and the cost of the effort they make for

generating the outcomes.

In the scenario of system development, the principal and the agents will agree

to a contract at the beginning. Thereafter, the principal interacts with each of the

agents in discrete states i. In between those interactions, the agents select an action

or actions to take and report the outcome to the principal. Note that as per our

assumption of deterministic outputs, the teams know exactly the outcome of their

actions at each interaction; this is unlike some of the literature on principal agent

models in which the outcomes have an associated probability distribution. Since

both the principal and the agent will evaluate their utilities over a time horizon we

will assume that they calculate discounted values and that they both apply the same

value of discounting rate.

Vermillion and Malak [31] provide the following details of setting up a principal-

agent model based on Myerson [50]. The principal has a set of potential actions it

can take, A0, and a value function V0. The agents, in turn, have their own set of local

actions Ak and value functions Vk. In addition, the agents also have local information

θi, while the principal holds a belief over the agents’ behaviors, φ0. In general, the

interaction between the principal and the agents is represented as:

Γ = (A0, V0, 〈Ak, θk, Vk〉nk=1, φ0) ∀k (3.10)
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Under this framework, the objective of each of the agents and the principal is

to maximize their respective utilities. In other words, the decision problems of the

principal and agents are, respectively:

π∗0 = argmax
d0∈D0

V0 (3.11)

π∗k = argmax
dk∈Dk

Vk (3.12)

The outcome of this decision problem τ is a decision profile π∗ = (π∗0, π
∗
1, . . . , π

∗
n),

which leads to the next state of design.

In our setup of the principal-agent interactions, both the principal and all agents

solve the above equations in each state, and their respective value functions, V0,i

and Vk,i, represent the discounted rewards that they obtain in state i. Thus, from

equations 3.4 and 3.11, the principal’s decision problem becomes the following opti-

mization problem:

max
y,c

V0 =
∑
i

γi−1v0,i(yi, ci) (3.13)

Similarly, from equations 3.5 and 3.12, the agents’ decision problems become the

following optimization problems:

max
a,c

Vk =
∑
i

γi−1vk,i(ai, ci) (3.14)

These value functions are then used in the value iteration algorithm we discussed

above.

In the next section we will discuss the steps involved in setting up the problem

for use in our proposed framework.

3.6 Setting Up The Modeling Framework

Figure 3.3 shows the flowchart of the framework; briefly, the key steps are:
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1. Before the start of the design process, the principal and the teams select their

respective value functions. This is a modeling choice to be made in the descrip-

tion of the agent models. Another modeling choice is to select the set of actions

that each of the agents can choose from.

2. In the first step of the process, the teams select an initial design and evaluate

their local value functions. The principal evaluates his value function for each

teams’ initial design.

3. The principal selects the best design from the available choices and provides

incentives to the teams to encourage convergence to a solution which favors

system-level objective. The principal informs the teams of the current best

design.

4. The teams choose from an available set of actions while interacting with one

another to improve their local value functions. When they fail to improve value,

they report their design to the principal.

5. The previous steps iterate until the improvement in principal’s value function

falls within a tolerance of desired value; this value could be one on the Pareto-

front of the principal’s objective.

The framework assumes that the complex systems design problem has already

been decomposed into subsystem design problems with one team assigned to each

subproblem. Each team is given or identifies its local objective functions and a value

function based on its objectives. Thus, before the start of the design loop in the

framework, each team and the principal has their objectives and value functions.

These objectives are chosen by the modeler. The value function is defined as discussed

in the ‘Valuation’ section above. Furthermore, the communication links and the rules

of information exchange are set up at the beginning based on the variables shared

between teams. Here, we set up a fully connected network, so that any two agents

who share variables can exchange information over a bidirectional link. In fact, the
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Figure 3.3.: Flowchart of design framework for complex systems design.

frequency and direction of exchange over any link, measured by how often an agent

uses the information received from a neighbor is an output from this modeling useful

for setting up communications within an organization.

The modeler also has to specify the agents’ risk profiles. We discussed three risk

profiles in the previous chapter. The modeler can specify any of those three or more

complex profiles as part of the agent model. Use of survey data or qualitative analysis

is one way in which risk profiles can be determined.

Finally, the modeler selects a set of possible actions for each agent, although this

selection can be a responsibility of the agents. In our modeling, the following are the
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available actions for each subsystem agent, and this set remains constant throughout

the process:

1. Explore design space further

2. Use neighbor’s design and explore using local variables

3. Use principal’s design and explore using local variables

4. Do nothing

We will discuss these alternatives along with a synthetic demonstration problem in

the next chapter. Also, the set of actions available to the principal include choosing

from among the subsystem design alternatives or doing nothing. This is because the

principal does not explore the design space himself.

The principal can select a target value in two possible ways. If it knows the Pareto

front, it can select a design on the front. In our simulation, the principal selects the

best of the subsystem designs in the initial iteration as the target. Thereafter, during

each iteration the principal evaluates the value function of all subsystem design and

terminates the process if it is within a tolerance of its optimal value, or if the marginal

gain in value is below a threshold. Also, during each iteration, the principal passes

the current best design and a value of rewards to each of the teams.

The teams, on receiving information from the principal, make local decisions until

they converge to their best values which they communicate back to the principal.

They also exchange information with their neighbors during design. Thus, the teams’

interactions are more frequent than those between the teams and the principal.

Note that, even though all agents have the same four available options of actions

in our modeling, we can easily set them to have different sets of actions. One final

note is on the principal’s selection of a design from the available options in each

iteration. While the principal evaluates the designs from different teams, it will

evaluate all designs where the value of any variable is available from multiple teams.

Thus, from the principal’s point of view, the teams compete against one another over
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the variables that they share. For the teams, however, since they evaluate whether to

use a neighboring team’s design or to use their own, the choice of competition versus

cooperation is local, and made in each state of the process.

In the next chapter, we will elaborate on the process steps using a synthetic design

problem including how the teams select between alternative actions by calculating

discounted rewards.
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4. FEATURES OF THE DESIGN PROBLEM

In this chapter, we will discuss increasingly more complex models of the design

process, building up gradually from teams as agents in a network without an hierarchy

which collaborate while searching the design space to a bi-level organizational model

where the agents learn and adapt their behavior while being guided by the rewards

provided by the principal. The following are some features of this organization to

bear in mind when considering the discussion which follows. This organization has

two levels – at the upper level is a system designer, the principal, who selects the

rewards it provides to the teams and maximizes the organization’s utility, while at

the lower level are the design teams who solve their local problems and maximize their

own utilities. The principal tries to achieve compatibility among the teams. It has no

direct authority over the actions of the design teams; rather, it attempts to influence

their decisions by providing them with appropriate incentives in form of rewards which

are proportional to how closely they achieve the principal’s targets. The teams are

semi-autonomous and they act in self-interest with the objective to maximize their

local utility. They coordinate with other teams by exchanging information such as

design variable values.

The following are the layers of complexity we will consider; note that each case

builds on top of its previous one:

Case 1: Teams interact to arrive at common design. In this first case, all agents

know their local objectives and solve their design problems in parallel. They

exchange shared design variables with one another and cooperate to arrive at

local designs. Without a system-level goal, the teams in this case explore the

design space as long as doing so increases their utility.
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Case 2: A system-level designer provides target values. In this case, the prin-

cipal provides a design which optimizes the system-level value function as a goal

for the design teams to arrive at collectively. The teams exchange information

with the principal directly and may receive rewards proportional to how close

they get to the target value.

Case 3: Teams add bias to the value of design variable. With a given target

value, the teams add margins to their design variables to maintain flexibility

for future iterations. Adding biases is the teams’ attempt to get other teams to

modify their behavior without compromising on their own value.

Case 4: Teams learn to adapt their behavior. Using the information received

from the other teams, the teams now compare alternative actions available to

them and select the one which maximizes their local objective using the value

iteration algorithm discussed earlier. Thus, this case discusses the first research

task of this work.

Case 5: The system-level designer formulates heuristics. The principal receives

teams’ design outcomes and selects, using the value iteration algorithm, the one

which provides the highest system-level utility. He then provides rewards to

teams to guide their decisions towards the selected design. This case discusses

the second research task.

The next section presents the synthetic design problem we will use for the rest of

this chapter, and the five cases follow thereafter.
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4.1 The synthetic design problem

The “design” problem in this chapter is a synthetic multi-objective problem,

named the comet problem for the shape of its Pareto-optimal front, from Ref. [51]:

minimize
x1

f1(x) = (1 + g(x3))(x
3
1x

2
2 − 10x1 − 4x2)

minimize
x2

f2(x) = (1 + g(x3))(x
3
1x

2
2 − 10x1 + 4x2)

minimize
x3

f3(x) = 3(1 + g(x3))x
2
1

1 ≤ x1 ≤ 3.5

− 2 ≤ x2 ≤ 2

g(x3) ≥ 0

(4.1)

Figure 4.1 shows the Pareto frontier for this problem solved using a genetic algo-

rithm approach. Starting from a wide region at one end, this frontier progressively

narrows towards the other end giving its ‘comet’ shape. This profile makes it a dif-

ficult frontier for any multi-objective algorithm because only a narrow region of the

space dominates the rest, thereby lying on the Pareto frontier. In the problem above,

we have chosen g(x3) = x3 and 0 ≤ x3 ≤ 1. Note that in Fig. 4.1 we have plotted

the negative of the three objective functions for ease of visualization, similar to that

done in Ref. [51].

4.2 Case 1: Interacting agents who seek to arrive at a common value of

design outcome

In this first case, teams seek simply to come to a commonly agreed value of design

variables while solving their local optimization problems. We assume that each one of

the functions in equation 4.1 is assigned to one of the teams; thus objective function

1 belongs to team 1, function 2 belongs to team 2 and function 3 belongs to team

3. Note that, in all cases in this chapter, we are using the objective functions as the

teams’ value functions, and hence we will refer to teams’ decision-making on the basis
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Figure 4.1.: Pareto-optimal frontier of the comet problem.

of their objective function maximization. In general, a value function would be some

combination of multiple objectives that the teams have. The teams solve their design

problems in parallel, and then exchange the design variable values they obtain with

their neighbors, which are the teams with which they share communication links.

Here, we assume cyclicity, such that team 1 provides its output to team 2, who, in

turn, provides its output to team 3, who provides it to team 1; thus each team has

one neighbor that it receives information from and one that it gives information to.

Finally, not all teams control all variables even though teams 1 and 2 share all three

variables. Arbitrarily, for the purpose of this demonstration, we assume that team 1

searches over design variables x1 and x2, team 2 searches over x2 and x3, and team 3

searches over x3 and x1.
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The teams begin with an initial design point and evaluate their objective function

values. They then pass on their design point to their neighbor (cyclically as noted

above). In turn, upon receiving input from another team, they evaluate their objective

function at the received design point. If this new design point improves their objective

function value, they discard their own solution in favor of this new one, else they

ignore this shared solution and explore further. At the end of one exchange of design

variables, the teams share their local objective function values and calculate the

mean value of all three objective functions to decide if design should proceed with

another round of iteration. If the change in this mean value from the value obtained

during previous iteration is within a predetermined tolerance, or if the number of

iterations has exceeded the maximum allowed, the design process stops, else the

teams continue their search. Note that all three teams are attempting to minimize

their objective functions and because their objective function values are of the same

order of magnitude scaling is not necessary in this case.

Figure 4.2 shows the flowchart for this case; all of the process steps are executed

by all teams in parallel. X indicates the design variable, with subscript k indicating

a team and superscript t indicating the iteration number. Initially, all teams select a

design X0
k and evaluate their local objective functions fk(X

0
k). They share this objec-

tive function values and calculate the initial mean of these functions, F 0. Thereafter,

each team receives its neighbor’s design X t
−k, where subscript −k indicates a neigh-

bor, and decides whether to keep the neighbor’s design or to explore the space further.

Next, the teams collectively calculate the mean of their respective objective functions,

F t+1 =
∑

k f tk/3, and in the following decision block, they decide to terminate the

process when the marginal gain in value falls below a fixed tolerance.

Figure 4.3 shows the results of this case together with the Pareto front. We restart

the process multiple times and at each convergence the blue “+” are the teams’ best

designs while the red “∗” indicate all the design points that, at the end of each rerun,

the teams selected as the best design based on the evaluation of F .
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Figure 4.2.: Flowchart for Case 1: Teams which arrive at common value of design.

From this simplistic implementation of complex problem solving case, we demon-

strate two features of the process. First, since the agents do not have any goal in

this case, with repeated trials, they are able to collectively explore the entire design

space; we can see this from the nearly even spread of design points along the Pareto

front in Fig. 4.3. However, the process stops as a result of either reaching the limit

on number of allowable iterations or finding no significant increase in utility function

during the previous iteration, and not as a result of obtaining a global objective.

Second, we can see from Fig. 4.3 that in most cases, the teams’ local best design

points are not the same as the one they selected collectively. In other words, in order
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Figure 4.3.: Case 1: Pareto-optimal frontier of the comet problem with design solu-

tions explored by the teams.

to cooperatively agree on a design at the end of each rerun, either one or two teams

have to agree to compromise on their obtained utility. Thus, this process needs a

mechanism to compensate the teams which do not achieve local optimality at the end

of the process.

There are certain features we have not modeled within this case. First, the teams

search through the design space by randomly generating new points. They do not

make use of such information as the local gradient when selecting a direction of search.

Second, if the design they receive from their neighbor does not improve their objective

function value, they will always explore further. Thus, the teams do not account for

the cost of further search, and a limit is imposed only the the maximum number of

allowed iterations.
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Summary of Case 1: The teams explore design space collectively. They collabo-

ratively decide when to stop the design process on the basis of low marginal increase

in selected value function. Because there is no system-level designer providing them

with target values, the search proceeds at random, and, at the end, not all teams

achieve highest local utility measured by their respective value functions.

4.3 Case 2: System-level designer provides a target value

In the previous case, the teams solved local problems and exchanged design vari-

able information to arrive at a set of mutually agreed upon design points, but their

search was not guided by a goal even though the decision on whether the process

should continue or terminate was mutually agreed. In case 2, a principal both pro-

vides the teams with a goal and plays the role of a mediator who, after he has received

the initial set of design points from the teams, makes decision on whether the process

should proceed for another iteration or terminate.

The process is as follows. First, the principal optimizes his value function to

determine the Pareto-front in the design space. In this case, since we continue to

use the problem formulation from equation 4.1, we assume that the principal knows

its value function and can optimize it. For simplicity, and to compare with the

previous case, we will assume that the mean of the three objective functions in the

comet problem, i.e., the function F =
∑

k fk/3 discussed in the previous case is the

principal’s value function; then the principal selects a random point on the Paretro

front as the target value for the teams.

The teams start from an initial design within the feasible space to solve their

local problem and provide this design to the principal, who uses its value function to

determine the best of the set, i.e., the one which provides it with the highest value.

Note that, in this case, even though we assume that the principal uses a composite

of the teams’ value function as its own, in general the principal’s value function may
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be different from those of the teams, and indeed the principal may not even know of

the teams’ value functions which may be private information.

Once the principal receives designs from all three teams, it selects the one which

lies closest to the target design as the current best design, and passes this back to all

other design teams. Thus, we assume that for the principal the proximity of a solution

to the selected target value, measured as the Euclidean distance, is the criterion for

the selection of best design and for stopping further search. If this distance is less than

a tolerance value, the process stops, else the principal implores the teams to explore

further. The team whose design point was selected during the current iteration may

choose to explore further if it expects an improvement in utility by doing so. Clearly,

the process differs from the previous case: while in the previous case, we assumed a

cyclicity among teams for information exchange, here the principal ensures that the

best selected design point at every iteration is visible to all teams. The teams do not

interact with one another directly.

Figure 4.4 shows the flowchart for this case. The steps in the green box are the

principal’s tasks who evaluates its value function F and decides if further design space

exploration should continue. The teams’ tasks in the blue box are similar to that in

Case 1, which is to solve their local design problem. Once the allowable number

of iterations is exceeded or the principal’s criterion met, the search stops, and the

principal and all teams select their best design.

The results of several different reruns of this case are shown in Fig. 4.5. Even in

this case, the teams explore a wide range of the design space and not all arrive at a

single design point at each rerun, since during any rerun of the process the principal

may decide to stop the process and the teams will have to accept the current best

system-level design. Once again, the blue “+” signs are the teams’ best designs at the

end of each rerun, while the red “*” are the best designs accepted by the principal.

The most important note on this figure is that it shows very few design solutions.

This is because we limit the number of iterations to 1000; this limit is common to

all cases run in this chapter. If the stopping criterion is not met within the limit of
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Figure 4.4.: Flowchart of Case 2: The principal provides the teams with a target

value to work towards.

number of iterations, the results of the process are not recorded. In the result shown

in Fig. 4.5, only four out of 20 reruns of the process converged to a solution within

the limit of number of iterations. Later, when the principal provides the teams with

rewards to make decisions in favor of the system-level objective, we will expect the

process to terminate faster.
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Figure 4.5.: Case 2: Pareto-optimal frontier of the comet problem with design solu-

tions explored by the teams when guided by the principal.

Summary of Case 2: With a given target, the teams now make choices to work

towards the principal’s goal if it improves their local utility. Because there is no

penalty for deviation from a common design and the principal does not yet solve a

compatibility problem, the process still proceeds as random search. Not all reruns

of the process converge within the limit of number of iterations.

4.4 Case 3: Teams add bias to the value of design variable

In this case, the complexities of behaviors begin to manifest. This case builds

on the previous two by adding one feature – that the teams no longer convey honest

information to their neighbors. In a complex systems design process, the design teams

may add margins to the value of variables that they pass to other teams for reasons
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such as maintaining flexibility for future changes. While such an act may help the

team’s local objectives, it turns out to be detrimental to the design process itself by

requiring higher budget expenses while still producing sub-optimal designs [52]. Even

so, this practice is common, and needs to be studied and accounted for during the

selection of a design process.

Austin-Breneman et al. [52], studied the effect of biased information passing be-

tween design teams on the final outcome of a complex system development process.

Particularly, the authors modeled a series of optimization problems to study the ef-

fect of addition of margins by the design teams on the information they pass to other

teams, and showed that this practice negatively affects both the program time and

optimality of the final design. This behavior of addition of margins is based on inter-

views with systems engineers involved in complex systems development projects, and

is a result of subsystem design teams retaining margins to allow for future flexibility

of their designs. The practice of adding margins turns out to be detrimental to the

project because it adds to the costs and leads to sub-optimal designs.

Our implementation of biases are similar to those suggested in the above study.

The teams add a 30% margin to their designs before passing them to either the

principal or other teams; this margin remains constant throughout the process, in

contrast with that reported in reference [52] which states that the teams progressively

reduce margins as the process advances. Thus, the teams maintain two values of each

design variable – one which is true and local to them, and the other which is biased

and is shared with the other teams. Only when the design process stops do the teams

convey true values of their variables to the principal. The flowchart for this case is

the same as that for case 2 (Fig. 4.4), with the sole difference that the teams now

report designs with margins. Because, as in the previous case, the search relies on

random search, there are no notable visual differences in the results obtained. The

teams do not measure the costs of the process which stops when the the principal

achieves its objective or when the number of iterations reaches the limit. In the next

two cases, when we model teams as agents who evaluate discounted future rewards
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of their actions, we will again compare the results of biased information passing with

the cases where teams pass true information.

Summary of Case 3: Passing of biased information results in an increase in the

costs of design process and the solution quality deteriorates.

4.5 Case 4: Teams learn to adapt their behavior

This case discusses the first of the two research tasks, which concerns the teams’

adaptive behavior based on the information available to them from their neighbors;

in this case we do not model teams’ interactions with the principal during the course

of the process, which we will discuss in the next case. In the previous two cases,

when the teams were faced with choices, they evaluated the value obtained from the

designs proposed by the principal and their neighbors and selected the one which gave

them higher value than what they had already, or continued with further exploration

otherwise. Similar to Case 2, the principal selects a target design at the start of the

process and decides when to stop the process based on its value function. However,

rather than simply consider the instantaneous value gain, the teams observe the

rewards obtained from each of the possible set of actions available and choose the

one which gives them the highest discounted value gain. After each iteration, the

teams share their local design alternative with the highest discounted value with the

principal then uses a system-level value function to select the current best design.

This case will investigate whether using discounted value approach leads the teams

to arrive at better design outcomes and faster.

Figure 4.6 shows the flowchart for this case. This is similar to the previous case,

except that the teams’ decision block is now replaced with the planning algorithm.

The principal still evaluates the marginal gain in value over consecutive iterations to

decide when to stop the process. Thus, except for the teams’ approach for making a

choice, the procedure for this case is similar to that in Case 2.
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Figure 4.6.: Flowchart for Case 4: When teams learn and adapt their behavior.

In the previous case, the teams evaluated the design provided by either their neigh-

bors or the principal and if it improved their objective, they retained the provided

design, or they explored further to find a new design. In this case, the teams calculate

the reward they can get from each action using Eq. 3.6 and then use these rewards in

the value iteration algorithm to determine which action to take. The agents’ Valua-

tion block updates the values of rewards every time they receive new designs from the

other agents, but the Planning block runs the value iteration algorithm until conver-

gence and only updates at the end of each convergence. This means that the agents
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may asynchronously receive updates from other agents but will alternate between

using new information and taking an action.

The teams initially select a set of available actions. In our modeling, we assume

that the same set of actions are available to all teams, though this does not need to

be true in general. The following are the actions that all teams can take during each

stage of the iteration:

1. Use principal’s design: Similar to case 1, the team receives and holds constant

the values of all variables provided to it by the principal and which are not

local to its subsystem, and explores the design space by searching on the local

variables. For example, team 1 will use the principal’s value of variable x3 and

explore on x1 and x2.

2. Use neighbor’s design: The team takes the value provided by the neighbor for

the variables it shares with the neighbor and explores on other variables. For

example, in the interaction between teams 1 and 2, team 1 will explore on

variables x1 and x3 but use the value of x2 provided by team 2 because this

latter variable is shared between them.

3. Explore design space: Here the team explores on all its variables including the

ones it shares. It ignores any variables received from its neighbors and the

principal.

4. Do nothing: This option has the default payoff of zero reward. In case the

rewards from other options is negative, the team will choose to do nothing and

wait until the next iteration when it will have new information. In this way, the

teams avoid cost of evaluating the other teams’ designs when doing so provides

no benefit.

Note that the role of the principal in this case is to provide the teams with a target

value, and then decide when it has been achieved. The principal does not attempt to

influence teams’ behavior by the use of incentive, which we will look at in the next

case.
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During each state of design, the teams implement value iteration algorithm dis-

cussed in the previous chapter. When the planning step is reached within the frame-

work, the starting state for each team is the current state it is in, and the terminal or

goal state is always the satisfaction of principal’s objective. The purpose of planning

during each iteration is to choose which of the available options provides it with the

highest payoff. This means that the chosen action may not necessarily move the team

towards the principal’s target.

Figure 4.7 shows the results of run from this case; the symbols mean the same as

before. Two things become quickly apparent from the figure. First, with the limit of

1000 iterations which is the same as that imposed in Case 2, the teams converge to

a solution in more number of cases. Thus, by evaluating the potential payoffs from

actions, the teams converge quicker even when all other conditions are the same as

in Case 2. Second, because the decision to continue the process further is local to

the teams, the resultant ‘best’ solutions are not all close to the Pareto front. The

principal’s role as the one who provides rewards as incentives will address this latter

issue in the next case.

When the same case was run but with addition of margins by the teams, we

observe that the teams, on average, need more iterations in order to arrive at a final

design. This means that with an iteration limit of 1000, the teams were less likely

to converge to a final design if they add margins when passing information to their

neighbors. In 100 reruns of the process, the teams converged on 55 occasions without

addition of margins, whereas with addition of margins they converged on 26 occasions.

In a bi-level organizations, the teams exchange information with higher frequency

among themselves than they do with the principal who is a level up in hierarchy. We

also record the number of designs that the teams explore among themselves before

they communicate with the principal. In this example, the teams explored, on av-

erage, approximately 1500 designs without bias, while with bias they explored over

3500 designs. We will further discuss this fact in the next case.
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Figure 4.7.: Case 4: Pareto-optimal frontier of the comet problem with design solu-

tions explored by the teams when they evaluate future discounted values.

Summary of Case 4: When considering the future discounted rewards available

from the set of possible actions, the teams converge to a solution in more number

of cases, though they do not arrive at the Pareto front in all those cases. Addition

of margins by the teams leads to fewer converged solutions with a higher average

number of iterations.

4.6 Case 5: The system-level designer formulates heuristics

In the previous case, the foremost objective of the design teams was to maximize

their own value; they cooperated only when it was beneficial to do so. Building on

the previous case, in this case the principal provides teams with rewards which are

proportional to how close they get to its target. The additional rewards are the means
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by which the principal can influence the teams’ decisions such that they may choose

alternatives which favor the system-level objectives over local objectives. However,

because the teams evaluate alternative actions of using their neighbor’s designs or

exploring towards system-level objectives, an effect of provision of compensation by

the principal could be that the teams may be more likely to compete rather than

cooperate to achieve convergence of designs. To avoid this effect, the principal con-

tinually adjusts these rewards based on observed values of design variables during

the course of the process. Furthermore, the principal will also update its targets if a

new design with higher value is discovered. The teams, in turn, will adjust to these

changes by modifying their strategy accordingly.

In Case 2, we observed that the final converged design outcomes were close to

the Pareto front. Two features made this possible. First, because the teams never

considered the cost of exploration and compared only two options – whether a new

design improves their value or not – they would, given sufficient number of iterations,

always reach at the Pareto front. This is because the decision on continuing the design

process rested with the principal who, being aware of the Pareto front, could always

make the process continue until the designs were close to optimal. Consequently, such

a random search by the teams took a large number of iterations before convergence. In

the present case, the ‘reward’ from each of the actions includes a term which reduces

the payoff in proportion to the difference between the state the teams achieve and

the state the principal desires. This term functions as a cost on any action which is

not goal-directed towards a system-level objective. An explicit cost term could itself

be a part of the teams’ value function but is not modeled in the current case.

Second, we assumed in Case 2 that the principal could solve the system-level

problem to find a Pareto front. If, however, the principal is not aware of its value

function, then searching for the Pareto front is not possible. In such a case the

principal will begin with the designs explored by the teams to decide on which ones

give it the highest value. Thus, we now assume that the principal can no longer solve

the system-level problem. Instead, it evaluates the designs obtained from each of
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the teams to determine which one provides it with the highest value. During each

iteration, it considers the state change as proposed by each of the team and selects

the one which gives it an increase in value. It stops further design process when the

marginal value gain during two consecutive iterations falls below a tolerance value.

The flowchart for this is the final version in Fig. 3.3. This figure shows that now

even the principal uses the value iteration algorithm, in the block labeled ‘Planning

algorithm’, to evaluate discounted rewards and select the current best design.

Figure 4.8 shows the result of this case. First, we observe that the principal

achieves designs which lie very close to the Pareto front even though it has not solved

a system-level problem. This means that multiple teams making local decisions and

being guided by a principal can achieve designs with high system-level value functions.

Second, even in this case not all teams get close to the Pareto front at the end of the

process. This is because the principal stops the process in lesser number of iterations

than in the previous cases on the basis of value gain at the system-level. The teams

are then compensated by the principal for their lost value at the termination of the

process.

Table 4.1 shows the comparison between this case and cases 2 and 4 for the

number of times that the teams converged to a final design and the average number

of iterations that they took to do so. The improvement due to the teams’ accounting

for discounted rewards is already significant when comparing cases 2 and 4. Case 5

further shows the effect of principal’s rewards. In Case 5, all 100 reruns lead to a

converged design and the average number of designs explored is reduced from 967 in

Case 4 to 14.

Summary of Case 5: Since teams will now be compensated by the principal, they

converge to target design quickly. The principal ensures that the total compensa-

tion is less than the value obtained from the final design. Thus, the principal is

responsible for guiding the process, while the teams make decisions on subsystem

design.
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Figure 4.8.: Case 5: Pareto-optimal frontier of the comet problem with design solu-

tions explored by the teams when they are guided by the principal.

Table 4.1.: Comparison of results from cases 2, 4, and 5

Case Number of times converged Average number of iterations

Case 2 36 2587

Case 4 71 967

Case 5 100 14

4.7 Summary of Case Studies with Framework

Table 4.2 provides a summary of all five cases simulated in this chapter; the key

results and insights are stated in this table.



77

In this chapter, we built increasingly more complex scenarios of system design and

simulated in the proposed framework. The final scenario captured all the features of

this framework. Highlights of this modeling include:

• All teams at all levels of hierarchy are set up as agents following the model

discussed in chapter 3. Particularly, define the value functions of each of these

agents and the set of their actions.

• The agent which models the principal is similar to all other agents except that it

does not search over the design space and instead provides rewards to the teams

in order to coax them to make decisions in favor of the system-level objective.

In this manner, it attempts to achieve compatibility among teams.

• The results of the simulation including the number of interactions among agents

and their choices of which action to select during each state are recorded and

used for analyses such as how to structure the communication links within the

organization.

We will further elaborate on the last point in the above list in chapter 6, where

we will discuss how the network of interactions among the teams can be assessed

using this framework. Before that discussion, the next chapter will demonstrate an

application of this method to an aircraft design problem.
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Table 4.2.: Summary of cases simulated using proposed framework.

Case Key Result Insights

Case 1 The teams engage in random

search over their local design

space. They collectively end pro-

cess when a commonly agreed

system-level value function has

low marginal gain in value.

Without a system-level target,

the process will converge on a so-

lution that provides high payoff to

some but not all teams. Also, the

final designs are not always opti-

mal at the because no agent car-

ries out system-level trade-offs.

Case 2 The teams converge on a

principal-provided target. The

number of convergences when

limited by number of iterations

reduces.

When a single agent knows a

Pareto front of a multi-objective

problem he can choose to con-

tinue process until his target is

achieved. However, lack of con-

sideration of cost makes this pro-

cedure unrealistic.

Case 3 When teams add margins to the

information they pass, the pro-

cess takes longer to complete and

the quality of final solution de-

clines.

Addition of margins by design

teams is detrimental to the pro-

cess but this effect is hard to ob-

serve when there is no system-

level policy guiding search.

Case 4 The teams now achieve higher

number of converged design solu-

tions because they use a value it-

eration approach.

By accounting for future costs

and benefits via a discounted re-

wards approach, the teams con-

verge to a solution faster.

Case 5 The principal successfully incen-

tivizes teams to converge to de-

signs closer to system-level opti-

mum.

When a principal accounts for fu-

ture discounted value, he is able

to achieve high system-level value

even though he is not aware of a

Pareto front.
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5. DEMONSTRATION OF FRAMEWORK USING AN

AIRCRAFT DESIGN PROBLEM

We demonstrate the application of the proposed process modeling framework using an

example of civil jet aircraft design problem. In the synthetic problem of the previous

chapter, all three subsystems shared all of the design variables, although we assumed

that each of the teams controlled only two of their three variables. This assumption

no longer holds in the problem which follows because not all variables are common

to all teams and some variables are local to just one team. Further, we assumed that

the principal’s value function in the synthetic design problem was a composite of the

teams’ value functions. This is no longer the case in our demonstration problem. Here,

the principal has the objective of minimizing the aircraft operating cost, while the

subsystem teams have their respective local objective functions which we use as their

value functions. None of the agents know the value functions of any other agent. The

only interaction among the teams is by the design variable information they send

to their neighbors, and between the teams and the principal are the variables and

rewards they exchange.

In the section that follows (Sec. 5.1) we present the set up of this problem including

the subsystems we include in our modeling, the variables that each of them control

and their value functions. Similar to the synthetic problem of previous chapter,

we will solve the same design problem using our framework and then an optimizer,

in this case, using the simulated annealing algorithm. Thus we will compare the

outcomes from using an optimization approach where an algorithm considers trade-

offs between all subsystems simultaneously versus a distributed design scenario where

every agent can make choices only for local design variables; Sec. 5.2 presents these

results. Following this, Sec. 5.3 shows the effect of restructuring the organization, and
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Sec. 5.4 discusses the compensation that the principal gives to the teams on the basis

of the selected incentive scheme. Finally, Sec. 5.5 summarizes our studies within this

chapter.

5.1 Demonstration Problem Setup

The aircraft design problem consists of three teams of aerodynamics, structures,

and propulsion, and they are guided by a system-level cost minimization agent. Fig-

ure 5.1 shows the bi-level architecture of this problem. We do not initially specify

any communication links, rather the links exist wherever two teams share variables.

As the three teams exchange information with one another as well as the principal

during the process, we record the teams’ choices of which source of data to accept

during each state of the process, which indicates the links that the teams need during

each state of the process. Then, the sum of total number of interactions indicates the

rate information exchange over each link. In our modeling, all three teams as well as

the principal have only one objective function, except in Sec. 5.3 where we combine

the principal and the performance team into one agent. We discuss the specifics of

teams’ decision-making next.

The problem has six design variables: total take-off weight (WTO), wing aspect

ratio (AR), sea-level thrust (Tsl), wing area (Swing), coefficient of lift at take-off

(CL,TO), and the coefficient of lift at landing (CL,land). Table 5.1 shows the bounds

on the variable values.

The structures team can modify the first four of these design variables and cal-

culates such attributes of the aircraft as the take-off weight, fuel weight, and wing

loading (W/S). The weights calculations are based on the the mission segment weight

fraction method. In our demonstration, this team’s objective is to minimize the total

take-off weight which becomes its value function, though in general, it can have mul-

tiple objectives which would require the value function to be a composite of all of its

objectives with a scalar output.
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Figure 5.1.: Schematic of organization structure for demonstration problem.

Table 5.1.: Bounds on design variables from aircraft design application problem

Variable Lower bound Upper bound

Total take-off weight (WTO, kg) 60000 75000

Wing aspect ratio (AR) 5.50 9.00

Sea-level thrust (Tsl, kN) 10 16

Wing area (Swing,m
2) 70 120

Coefficient of lift at take-off (CL,TO) 1.20 2.00

Coefficient of lift at landing (CL,land) 2.00 3.00

The aerodynamics team can modify the values of wing aspect ratio and both

the lift coefficients. This team’s objective is to maximize the value of lift to drag

(L/D) ratio. Finally, the performance team calculates the flight Mach number and

the range of the aircraft. This team receives the design variables from the weights and
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aerodynamics teams and evaluates those designs to ensure that any range requirement

is satisfied and selects the design which gives the highest range. Note that since this

team does not search over the design space, it does not make use of the value iteration

algorithm that we discussed. It simply selects the alternative with a higher range as

its preferred design.

Table 5.2 summarizes the objectives of each of the teams and the variables they

control. The ‘Variables Controlled’ column is empty for the performance team because

they do not modify any of the design variables. This team can force the other teams

to discard an existing design and explore the space further if the design does not

satisfy the range requirement. Similarly, the principal does not modify any of the

design variables. It chooses between the designs provided by either the structures or

the aerodynamics teams and maintains the best design as the current solution. Once

he sees that the marginal improvement in value function over consecutive iterations

is below a threshold value, it stops the process.

Table 5.2.: Subsystem teams in the aircraft design application problem

Subsystem Objective Variables Controlled

Structures Take-off weight (kg) WTO, AR, Tsl, Swing

Aerodynamics L/D ratio AR,CL,TO, CL,land

Performance Range (km) –

Principal Direct operating cost ($/seat-nm) –

The principal’s objective of minimizing operating cost uses the cost estimation

method given by Jenkinson et al. [53]. In this method, the direct operating costs

(DOC) of an aircraft is divided into three main components – standing charges,

maintenance costs, and flying costs, which include the airport, crew and fuel cost;

Fig. 5.2 shows the breakdown of aircraft direct operating costs. The trip DOC is seen

to vary with maximum take-off weight (WTO), range, cruise Mach number, cruise
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Figure 5.2.: Breakdown of Aircraft Direct Operating Costs from [53].

altitude, and the mission fuel. The trip DOC divided by number of passengers and

the range results in DOC per seat nautical mile, and this is the metric that the

principal uses as objective for minimization.

Table 5.3 shows some of the design requirements and constant parameters of mod-

eling. The “range with max payload” constant is the performance team’s minimum

range target; this team rejects any design which does not provide at least this range

with the result that all other teams are forced to search further. Finally, Table 5.4

shows some additional performance requirements for which this aircraft was sized.

5.2 Results from Framework Versus Optimization Algorithm

This section discusses the results of the above design problem solved in a manner

similar to Case 5 from the previous chapter. The results obtained from the frame-

work are compared with those obtained from a simulated annealing algorithm. The

previous section discussed the initial steps of problem decomposition, specification of

design variable bounds, and the constant design requirements and cost parameters.

In the framework, the maximum number of iterations is restricted to 1000 similar to
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Table 5.3.: Design requirements and constant parameters of modeling.

Design constant Value

Design requirements

Range with max payload 2500 km

Wpayload 15000 kg

Number of crew 2 (flight) + 4 (cabin)

Number of Passengers 100

For Direct Operating Cost calculations

Aircraft utilization 4200 hours/year

Depreciation 16% per annum

Aircraft residual value 10%

Investment interest rate 5.4%

Insurance rate 0.5%

Table 5.4.: Performance requirements for aircraft design problem.

Parameter Performance requirement

Landing field length ≤ 750 m at WTO

Landing field distance ≤ 1000 m

Take-off field distance ≤ 1000 m

Second segment climb gradient 3.0%

Missed approach climb gradient 2.7%

the cases in the previous chapter. The following discussion does not account for team

bias in the framework.
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Specification of the problem setup also requires specifying the set of action choices

that the agents have. As noted earlier, the performance team does not make use of

the value iteration algorithm, so we need not specify its action set. For the structures

and aerodynamics teams, the action set is similar to that discussed in the previous

chapter and includes the following four alternatives: (1) use principal’s design, (2) use

neighbor’s design, (3) explore space, and (4) do nothing. The principal’s action set

involves comparison of designs received from the structures and aerodynamics teams

and selection of the one which gives better value. The principal’s value function is

DOC per seat nautical mile based on Ref. [53] as discussed above.

The simulated annealing algorithm, which also solves this problem, provides a

comparison of results. Our implementation of the optimization is based on a code

developed by Goffe et al. [54] which is based on the simulated annealing optimization

algorithm developed by Corona et al. [55]. In this optimizer, the initial temperature

is set as 109 and it is reduced by a factor of 0.95 in each iteration. The difference

between the optimizer and the framework is that, while the framework simulates a

distributed design problem, the optimizer sees all functions and, thus, can search for

a globally optimum solution.

Table 5.5 shows a comparison of results obtained from the framework with those

from the simulated annealing optimization. A few observations are readily apparent.

First, the structures team, whose team-level objective is to minimize total take-off

weight, achieves a better solution with our framework as compared with the results

from the simulated annealing optimizer. The aerodynamics team, whose team-level

objective is to maximize the lift-to-drag ratio, on the other hand obtains a slightly

lower L/D ratio in the framework-selected design than in the optimizer results. Note

that both of these teams use the discounted value approach to identify which design

gives them a better value, and their value functions were dependent on their single

objective as defined in this study. Particularly, the structures team achieves higher

value as it reduces weight whereas the aerodynamics team can improve value by

increasing the L/D ratio.
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Table 5.5.: Results comparison between framework discussed and simulated annealing

optimizer.

Subsystem Objective Framework results Optimizer results

Structures Take-off weight (kg) 61288 62250

Aerodynamics L/D ratio 14.12 14.33

Performance Range (km) 2971 2857

Principal DOC ($/seat-nm) 15.17 15.57

In contrast, the performance team, which does not use the value iteration method

and evaluates simply whether the current design meets a minimum range, achieves

a higher range from the framework. Note that, as indicated in Table 5.3 above, the

range requirement, in this case, is set as a constraint, such that only designs with

range greater than 2500 km are accepted. Finally, the principal gets a better total

direct operating cost. Thus, the principal obtains a better result even while evaluating

a value function which depends on only one of the six design variables, viz., the total

take-off weight, WTO.

Table 5.6 shows the final values of design variables obtained by the framework

and optimizer. We observe that using the framework results in an aircraft which is

lighter than that obtained by the optimizer. However, it also has a smaller wing,

which results in a higher wing loading of 824.9 kg/m2 with the framework versus

803.23 kg/m2 with the optimizer.

The above table also shows that the framework results in a lower wing aspect ratio

and an engine with smaller sea-level thrust. Both these factors influence performance

with the result that not only does the aircraft obtained from the framework fly further,

it also does so at a higher cruise Mach number of 0.80 versus 0.78 from the optimizer.

Note that, the cruise altitude is calculated and aircraft is allowed to fly at different

altitudes. The aircraft obtained from the framework carries a slightly higher fuel by
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Table 5.6.: Comparison of variables between framework and simulated annealing

optimizer.

Variable Framework results Optimizer results

Total take-off weight (WTO, kg) 61288 62250

Wing aspect ratio (AR) 5.80 6.03

Sea-level thrust (Tsl, kN) 10.52 10.90

Wing area (Swing,m
2) 74.29 77.5

Coefficient of lift at take-off (CL,TO) 1.33 1.32

Coefficient of lift at landing (CL,land) 2.70 2.15

weight fraction of 0.167 versus 0.163 of the optimizer. Fuel can be a significant portion

of the direct operating cost, if the fuel price is high. This can potentially change the

value calculations; here, all parameters, including fuel price are based on those given

by Jenkinson et al. [53]. Finally, note that a combination of lower take-off weight,

smaller aspect ratio, and higher wing loading together require higher lift coefficients

in the framework results to meet takeoff and landing constraints.

Two key outcomes from this modeling will be useful in analysis of a design process.

First, by observing how many times does information exchange take place on each of

the communication links within an organization, we can identify which teams should

be placed in close proximity so as to encourage easier exchange of information which

would be beneficial for the process outcome. In the next chapter, we will discuss using

such observations from simulation in more detail. In the next section, however, we will

discuss how we can set up the same problem but by restructuring the organization.

Specifically, in the next section we discuss the effect on design outcome when we

merge the performance team with the principal.

Second, this framework can help evaluate the effects of different incentive schemes

on subsystem teams’ decision-making. Later in this chapter we will discuss how we
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can record and evaluate the compensation that the principal provides to each of the

teams during the course of the project based on the incentive scheme set up for the

aircraft design problem.

5.3 Effect of Organization Restructuring on Design Outcome

We have noted that a system decomposed into a set of subsystems is a prerequisite

to the use of proposed framework. This means that, even though the frequency of

interactions among teams is an outcome from the simulation, the particular set of

agents we choose to model and their available actions is a modeling choice to be made

before we can use this framework. Here, we demonstrate the effect of an alternative

organizational structure on design. Particularly, since the performance team does

not search over the design variables, we now make two changes to problem set up:

first, the performance team is merged with the principal, and second, the merged

agent will use a discounted value approach with a linear value function comprising

two objectives.

Figure 5.3 shows the modified structure of this organization. Note the principal’s

block at the top of the figure. The principal retains its objective of minimization of

DOC per seat nautical mile, but in addition it now subsumes the performance team’s

objective of meeting a minimum range. Additionally, it adds Mach number as a linear

term within its value function, which then it uses in its value iteration algorithm. In

the previous section, neither the principal nor the performance team search over the

design variables, and this holds true in this case. Thus, the principal, while it now

includes the performance team’s objective within its own value function, does not use

Mach number as a design variable to search over, and instead obtains it based on the

design proposed by the two remaining subsystem teams.

The Mach number term is evaluated as a difference from a minimum requirement

of Mach 0.8, which means that any design which gives a lower Mach number receives

a penalty. Also, the range requirement is no longer a threshold condition like in the
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Figure 5.3.: Schematic of organization structure for demonstration problem.

previous case, rather now it contributes to the value function of the principal, such

that any designs below the 2500 km range requirement are penalized and reduce the

principal’s value. Thus, the principal’s value function is now a linear combination of

its DOC per seat nautical mile, range requirement, and the Mach number it obtains,

and all these three terms are added together with equal weights.

Table 5.7 shows the comparison of results when performance was a separate team

in the baseline case discussed in Sec. 5.2 and those obtained in the present case with

the performance team merged with the principal. We observe that while the aircraft

is now slightly heavier, it flies slightly less distance and has a lower DOC per seat

nautical mile.

Table 5.8 shows the comparison among design variable values for the baseline

case with this case. However, the most important effect of this restructuring of the

organization is that in the present case the aircraft flies at a Mach number of 0.85

versus 0.80 in the baseline case. The effect of adding maximization of range and Mach

number to the principal’s value function results in the aircraft flying faster for nearly

the same range as in the baseline case.
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Table 5.7.: Results comparison between baseline case and when performance team’s

objectives merge with principal.

Subsystem Objective Baseline case Principal + performance team

Structures Take-off weight (kg) 61288 61568

Aerodynamics L/D ratio 14.12 13.77

Performance Range (km) 2971 2940

Principal DOC ($/seat-nm) 15.17 14.55

Table 5.8.: Comparison of design variables between baseline case and when perfor-

mance team’s objectives merge with principal.

Variable Baseline case Principal + performance team

Total take-off weight (Wto, kg) 61288 61568

Wing aspect ratio (AR) 5.80 5.87

Sea-level thrust (Tsl, kN) 10.52 10.63

Wing area (Swing,m
2) 74.29 75.23

Coefficient of lift at take-off (CL,to) 1.33 1.69

Coefficient of lift at landing (CL,land) 2.70 2.23

Finally, we note that the aircraft design obtained in this case where the objectives

of the performance team are merged with the principal differs primarily in that it

flies faster and is very close to the design obtained in the baseline case for all design

variables. The key notable difference is that the aerodynamics team suffers in its value

function obtained. We observe this from Table 5.7 which shows that the aircraft in

this case has a reduced L/D ratio and from Table 5.8 which shows that while the lift

coefficient at take-off condition is higher, the lift coefficient at landing is lower.
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Thus, with this case we have demonstrated that problem decomposition has an ef-

fect on the design outcome. In large organizations, with many more subsystem teams

than were studied in this chapter, it would be difficult to evaluate all organizational

structures. However, as we noted previously, in complex systems design, organiza-

tions are frequently decomposed along disciplinary boundaries. We could begin by

modeling an existing organization within our proposed framework, and by observ-

ing the results of the simulation we can evaluate one or a few alternative structures.

Then we can choose the one which would provide the best trade-off between design

obtained and the cost expended in doing so. This is one of the capabilities provided

by the proposed modeling framework.

5.4 Discussion of Compensation Given to the Teams by the Principal

This section discusses the compensation that the principal pays out to the teams

in order to coax them to make decisions in favor of the system-level objectives. This

compensation could be a monetary payoff that the principal gives to the teams to

compensate them for any loss in value they may have for complying with the prin-

cipal’s objectives. Thus, the teams are incentivized to make decisions in favor of

system-level objectives even if doing so would make them lose value because they

know that the principal would help them recover their losses.

The principal’s value function consists of two components, viz., the inherent value

it obtains from the system it designs, which is the outcome from the subsystem

teams’ decisions, and the compensation that it pays to the teams. The compensation

functions as a cost to the principal, and it wants to restrict the total payout to all

teams to within its budget. In each step of the iteration, the principal selects which

of the available designs is best as measured by the discounted future rewards which

are the sum of its inherent value of the system design and the compensations it pays

out to the teams.
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For the team whose design is selected, the compensation is zero, while for the

other teams it is in proportion to their deviation from the optimal. This form of

compensation would seem to encourage teams to move away from system-level ob-

jectives because then they would be given a higher reward. However, note that this

is a compensation paid to a team for loss of their value when they comply with the

system-level objectives at the expense of their local objectives. The teams’ highest

value would still be calculated from the subsystem design which gives the optimal

value of their local value function, and if the principal requires the teams to deviate

from their local best designs, it will compensate them for the difference between their

best value and the value they obtain for the principal’s proposed design. In each

state, the principal will limit the amount of payoff it can give, so that its sum over

the entire process is within the budget. Thus, there is an upper limit on what the

teams can obtain as payoff. Note again, that we had made the assumption that the

only source of payoff to the teams is from the principal.

Figure 5.4 shows the cumulative compensation received by both the structures and

aerodynamics teams. In the first step, the principal chooses the design of structures

team and compensates the aerodynamics team to coax them to move towards the same

design. Hence, the aerodynamics team begins with a high value of compensation at

the beginning. The value function of the principal accounts for all these payoffs.

Vermillion and Malak [31] discussed using an incentive scheme for task allocation

wherein a subsystem team was given a reward only if its design was above a certain

threshold. Such a threshold can also be applied in case of our aircraft design problem.

In such as case, the teams will receive rewards only if they are within a certain bounds

from the principal’s best design. This is important because those subsystems which

deviate by large margins from the principal’s best design can be identified as those

subsystem which impose high costs (in form of the compensation), and this could

prompt further exploration of the design for alternatives.

Figure 5.5 shows the compensation received by the two teams in each iteration.

Note that, this figure only shows the last 21 of a total of 31 iterations that this
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Figure 5.4.: Cumulative compensation received by structures and aerodynamics

teams.

simulation ran for; these amounts are smaller than those given in the first 10 iterations.

Figure 5.6 shows the cumulative compensations received by the two teams in the last

21 iteration. In this figure, the compensation for the aerodynamics team is shown on

the left axis, while that for the structures team is on the right axis.

Finally, we note that the compensation structure discussed in this section is based

on the Euclidean distance between each team’s design variables and the principal’s

selected design variable. Hence, the actual values shown in the above two figures are

representative only of the scale of compensations. In an actual process, the principal

will set up mapping from these values to a monetary amount to be paid out to the

teams.
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Figure 5.5.: Compensation received by structures and aerodynamics teams in each

iteration.

5.5 Summary and Discussion of Demonstration Problem

Our use of a principal-agent model is justified because the division of responsibil-

ities is such that the task of searching over design space falls on the subsystem teams,

and the task of ensuring that the teams arrive at a compatible final design falls on the

principal. The above selection of subsystem objectives is a modeling choice we make

for the purpose of this demonstration and these objectives can be easily changed,

such as our demonstration in Sec. 5.3. Even the hierarchy within the process can be

changed, for example, by setting any of the other subsystem teams as the principal,

or by combination of two or more teams. A record of the compensation payoffs to the

teams by the principal is the incentive scheme, and different schemes can be evaluated

using this framework.
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Figure 5.6.: Cumulative compensation received by structures and aerodynamics

teams.

Clearly, with distributed design, the simulation in the framework makes different

trade-offs than an optimization algorithm, even though they both use the same ob-

jective function of minimization of direct operating cost. The differences are due to a

combination of decision-making being distributed among different subsystem teams

rather than a system-level optimizer, the set of available actions, and our selected

incentive scheme. Changes that may be made to any of these features to account for

the organization’s context will result in different results than what we have obtained.

In the next chapter, we will discuss how we can use the results of simulation obtained

from this framework for selection of an organization structure.
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6. DICUSSION OF DESIGN PROCESS MODELING

Referring again to the classification scheme proposed by Wynn and Clarkson [13]

(Fig. 2.1), the work we have discussed in this dissertation falls within the analytical

type at the meso level because this work “concerns the specific steps that should occur

within a design context.” Because the proposed framework allows for modeling and

simulation of several cases within a design process, such as we discussed in chapter 4,

this work also covers the management science / operations research type category.

Therefore, this work spans multiple categories, as was suggested to be a need by

Ref. [13].

The motivation of modeling complex systems design processes arises from the

fact that in such processes an organization needs to coordinate a large number of

design teams and their activities and ensure that the outcome meets requirements

while maximizing system-level value. However, the system-level designer lacks direct

control over the actions of subsystem teams. Further complexity of the process results

from the presence of social phenomena such as an organization’s culture, attitudes

of the human designers involved, economic factors such as different subsystem value

models, etc.

Chapter 2 discussed a few of the many models developed for study of such pro-

cesses. Each model has its limitations and is suitable to particular problems, which

means that the organization has to choose an appropriate model for its purpose. The

dynamics of the process-system, therefore, would also include the changing models at

each stage of design. Our approach has been distribute the decision-making among

the teams so that a system-level designer is tasked with management of information

and teams rather than make low-level design decisions. In turn, the teams, tasked

with making design decisions, learn from available information and adapt their be-

havior to obtain the best value. In this chapter, we will discuss the outcomes of
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Figure 6.1.: The product-process-organization nesting of complex systems design pro-

cess.

our simulation alongside discussion from literature and suggest further advancements

that are essential for progress in design process modeling.

Figure 6.1 shows the product, process, and organization levels nested within one

another and identifies the architectural components, value functions, and the roles of

each level; we discussed how a value-driven design problem can be set at the three

levels in chapter 2. At the innermost level of the product, the architecture consists of

network of subsystems and their components. Any value function of a product will

be function of its attributes, for example, the range of an aircraft. The role of this

level is to provide the capabilities required by a customer. At the outermost level

of the organization is the network of subsystem teams. Their value depends on the

choice of processes they employ and the design outcomes they achieve. The role of

this level is to design the system which provides the capabilities while maximizing

system-level value.

Finally, the layer of the design process lies in between the product and organiza-

tional layers and provides the interface between them. The architecture of the process
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level is a network of interdependent tasks. The value function of a process depends

on the costs of the actions that the teams take and the payoff they receive in return.

In the discussion which follows, we discuss how a simulation of the process layer

can be used to set up an organizational structure. We also discuss value functions

particularly from the point of view of modeling human risk behaviors. We discuss

some of the questions that can be posed to our proposed framework. While quanti-

tative models of human behavior exist, we also discuss how qualitative models can

complement them by presenting descriptive analysis of design processes.

6.1 Role of Design Process Models

In this section, we will discuss the following outcomes from models of complex

systems design processes:

1. Simulating a design process can be a way to identify the organizational struc-

tures that would lead to desired outcomes. We use the number of interactions

among teams based on our simulation to determine how the structure can be

setup.

2. Models of design processes need to be flexible to adapt to various different orga-

nizational structures and the change in the requirements of the process change

over time. They can also be used for informing an appropriate organizational

structure setup.

3. A value-based approach is a useful means of comparing between different pro-

cesses. This approach can take into account features of human behavior such

as their biases, their preferences, risk tolerance, etc.

6.1.1 Setting Up An Organizational Structure

We set up a fully connected network of agents at the start of our synthetic problem

in chapter 4. Let us now discuss how simulation using the proposed framework can
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be used to determine the structure of the network of agents in this problem. Each

team in the synthetic problem knows its value function which it tries to maximize.

Further, each team chooses from four available actions – take the values of variables

from neighbors and explore on local variables, explore on all variables to search in

direction of the principal’s target, or to do nothing. Their decisions during the course

of exploration are recorded as outcome, and this information can be used to determine

which links among teams to establish.

Table 6.1 shows the results of team interactions in the problem. In this table,

the values within the cells indicate the percentage of total interactions that a team

in a row used information received from the team in a column. Thus, for team 1,

in row 1 of the table, on 35% occasions it chose to continue exploration using local

information, on 24% occasions it used the information obtained from team 2, while on

41% occasions it used information from team 3. From these values, we can see that

teams 1 and 3 need to be placed such that they can communicate quickly because

while team 1 used information from team 3 most often, team 3 also used either its

local information or that received from team 1 on most occasions.

Table 6.1.: Percentage of times teams choose among available actions

Team 1 Team 2 Team 3

Team 1 0.35 0.24 0.41

Team 2 0.14 0.45 0.41

Team 3 0.33 0.28 0.39

Though this problem is small, with only three subsystem teams, the same method-

ology can be used in larger problems with more number of teams. With a bigger

matrix, methods of decomposition which use design structure matrices, such as those

discussed in chapter 2, can be used to set up organizational network.
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6.1.2 Flexibility In Modeling Design Processes

Design progresses in jumps with short periods of rapid growth in design knowl-

edge alternating with periods of highly structured actions. This manner of progress,

with alternating periods of rapid knowledge growth and refinement, can be called as

epoch-shock sequence in which epochs are the “valleys” of largely consistent behavior

which are separated by the “peaks” of shock [56]. The transition between epochs

may result from technological, mission, context, or policy shocks. For example, while

all system designs would begin with subsystem teams exploring alternatives, a major

technological breakthrough or a new mission opportunity may prompt them to be-

gin the exploitation of current knowledge. As design progresses, subsequent epochs

indicate both increasing technical sophistication as well as increasing cost of activ-

ities. The management of these epochs will influence the cost of complex systems

development and their ability to meet mission requirements.

In our model, the transitions could be the result of the principal changing its

targets during the process. Because the principal does not know of its Pareto front,

it may, on the discovery of a new design choose to update targets if this new design

provides an increase in value which is enough to offset the cost of doing so. When

discussing the results of Case 5 in our synthetic problem, we found that this case

took, on average, 14 iterations to converge. Consider the first 10 iterations of one of

the runs of this problem:

1→ 2→ 2→ 1→ 1→ 2→ 1→ 3→ 3→ 2

This sequence indicates that initially, the principal accepts the design from team

1 as its best design and hence its target. In the next iteration, it changes its target

to that of team 2, then back to team 1 in fourth iteration, and so on. This is an

hypothetical scenario in which the principal does not have any requirements of its

own and does not solve for its value function besides evaluating it for the designs

provided by the teams. In reality, the principal would have a set of targets which
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may remain fixed or change during the process in response to some shocks such as new

customer requirements or availability of new technology. The cost to the principal

is that when changing targets it would have to compensate the teams for their loss

of value. The message here is that with appropriate incentives, design teams can

collectively achieve system-level targets even if these targets are changed during the

course of the process.

6.1.3 Using Value-based Approach In Complex Systems Design

Value-based models of design provide an organization with the ability to select

a process with the highest payoff. However, not only are models of value estima-

tion still lacking (see section 2.2), during the process of design, estimates of actual

value will fluctuate depending on factors such as agents’ decisions, sudden changes

in requirements, etc. Phenomena such as delays in communication, inaccuracies in

data, etc. further complicate value estimation. In response to these shortcomings,

designers have to frequently update their value estimates. This flexibility of value esti-

mation means that the designers have to continually update their policies in response

to changing information; in other words, design teams have to behave as adaptive

agents who update their policy whenever doing so results in an increase in value.

We discuss value-based approaches from two perspectives – one, the risk-taking

ability of human designers, since the risk-aversion of designers is a key feature argued

in favor of using value-driven design over requirements-driven design, and two, a

principal’s ability to influence teams’ value models by changing rewards functions.

A representation of human behavior, through simulation and analysis, helps to

identify factors that will improve the humans’ decision-making. Such modeling must

be cognizant of the environment in which the designers operate. However, human

behavior modeling faces challenges such as a lack of common vocabulary across var-

ious disciplines within physical and social sciences, the domination of modeling by

physical scientists as opposed to social scientists, and no common authority of data
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management [57]. A lack of consistent data also makes verification and validation

activities difficult. In brief, social modeling poses new challenges which require a

rethinking of modeling, analysis, and validation approaches.

An attribute of human behavior used to argue in favor of value-driven design is

the human designers’ risk tolerance. Collopy [22] examined the effect of assigning

objectives on decision-making stating that if the current design is likely to achieve

the requirements then the designers are like to become risk averse whereas if they

are likely to miss requirements then they will prefer risk. Vermillion and Malak [31]

also modeled risk behavior within a principal-agent model of task allocation. They

state that modeling risk behavior is a factor when determining an incentive scheme

because the probability of meeting requirements is dependent on the effort expended

on the task. We modeled all agents as risk-neutral, i.e., they follow the linear curve in

Fig. 2.4 because such an agent simply wants to maximize his payoffs. However, as an

alternative to these utility curves, one can use prospect theory as a basis for setting

up risk behaviors. Arguably, the performance team in the aircraft design example

discussed is an extreme version of use of this theory because this team, without

evaluating discounted values like other teams, simply rejected any design which did

not meet requirement of minimum range, whereas it was indifferent to any design

which exceeded its desired range.

When using the value-driven approach to decision-making, an organization has

to ensure that it sufficiently explores the design space before advancing to more

detailed design. Our modeled approach of value iteration can be replaced with other

methods from reinforcement learning in order for the agents to consider discounted

future rewards for their decision-making. Particularly, the approaches of Q-learning

and SARSA, both based on Q-values, have an additional parameter of learning rate

which can help control the amount of exploration an agent carries out. When the

learning rate is high, the teams give more importance to the future rewards and thus

explore more of the design space because they consider more alternatives, whereas

when the rate is low, the agents use only the most recent information and exploit
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it for design refinement. This is similar to the role that the “temperature” setting

in simulated annealing plays. The message is that organizations need to both define

appropriate value functions and how they will use these functions for decision-making.

6.1.4 Examples of Questions a Model of Design Process Can Answer

Lee and Paredis [8] posed some questions that can be asked when setting up

heuristics for design. For a process-system, setting up simulation models is a useful

way to answer at least a few of those questions. Consider, for example, some of the

following questions:

1. Questions on setting up an organizational structure:

• How does the structure of organization affect the architecture of the prod-

uct being developed?

This effect is called the mirroring hypothesis and can be assessed by com-

paring different organization structures and their resultant products and

looking for correlation between their structures.

• If the structure of an organization affects product outcome, how do we set

up an organization?

We proposed an approach in this work. Use simulation to identify which

links among designers have higher frequency of information exchange and

place those designers in close proximity.

2. Questions on setting up a design process

• How does the choice of process affect the product being developed?

A model of the design process-system can be integrated with models of

the product being designed and thereby allow for the simultaneous opti-

mization of both the product and process architectures; we discussed this

in chapter 2.
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• How quickly does a change in the process being used affect the architecture

of the product? Do some processes make the product more flexible than

others? Can a process-system model identify the optimal path of design

refinement?

Organizations may modify their processes to affect change in product archi-

tecture, and studying the dynamics of process-systems may help evaluate

how quickly the product can evolve. Comparing the value of alternative

process-system models will help identify the best choice of processes to

utilize.

3. Questions on setting up heuristics for control of process

• How can heuristics used to control the decisions of the designers be iden-

tified?

The efficacy of heuristics in design can be studied by comparison of scenar-

ios which simulate use of heuristics versus those that do not; the compar-

ison would be based on the measures of performance of the systems being

developed.

• How does the system-level designer set incentives for the design teams?

By setting a rewards policy. This could be used to control flow of in-

formation among teams and to incentivize decision-making which favors

system-level objectives. Our modeling achieved this by giving rewards to

teams in proportion to how closely they met system-level targets.

• How does the system-level designer and the design team balance explo-

ration with exploitation?

We used a discount factor when modeling teams’ assessment of value of

available tasks. This factor can be controlled by the system-level designer

to encourage exploration with the objective of long-term gains versus ex-

ploitation to provide more immediate solutions. Provision of rewards can
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also be a means to achieve this as large rewards can be given for a specific

solution rather than design space exploration.

6.2 Qualitative Research in Engineering Design

So far, the discussion has centered on use of computational models as a means to

simulate and analyze alternative processes for design. Such quantitative approaches

as value-based design provide an objective basis when making decisions. However,

the models used in quantitative analysis are not free of the modeler’s subjectivity

who ultimately decides on the form of the models and the questions posed to them.

Quantitative models that are frequently utilized in modeling of design processes ac-

cept this necessary compromise in order to convey the results succinctly. However,

in some cases, quantitative models may not even be available. For example, Price

el al. [58], while discussing the application of systems engineering to aircraft design,

point out that several of the disciplines involved may not have quantitative models

available. This is particularly true for the non-technical disciplines for which model-

ing methods are lacking. One of the non-technical disciplines for which quantitative

analysis is difficult is that of human behavior modeling. Techniques for human be-

havior modeling evaluate one or a few attributes of decision-making, making use of

such mathematical tools as uncertainty modeling or Bayesian inference.

In our Case 3 in the synthetic problem, the addition of margins by teams was

based on a study by Austin-Breneman et al. [52], who modeled designers biases in

form of addition of margins during decision-making in a simulation and concluded

that the addition of margins is detrimental to the final design outcome. They note

that it is common for initial margins to be of an order of 30% and to gradually reduce

as design progresses. The quantification of amount of margin is based on their survey

of real systems engineering practitioners. Thus, they relied on qualitative analysis to

inform their quantitative modeling. In this section, we will first discuss, briefly, the

basics of qualitative analysis, followed by its utility in engineering design applications.
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During complex systems design, the social aspects of interactions among engineers

can be as important as the technical ones [59,60], and poorly structured organizations

can inhibit information exchange and therefore affect the quality of design outcome.

Qualitative analysis is particularly suitable for studies of social aspects within a design

organization because whereas quantitative analysis seeks to describe design process

objectively and imposes implicit bounds on description because of limitation to our

ability to measure things, qualitative discussion is able to capture a broader range

of phenomena with dense and descriptive accounts of an organizations culture. A

form of qualitative analysis called inductive analysis, in particular, does not even

start from preset attributes of the subject under study and identifies them during the

process of analysis. The dense descriptions of qualitative analysis also require fewer

abstractions.

Qualitative models have other advantages over quantitative ones. First, quantita-

tive models may be sensitive to their parameter settings so that small changes in the

initial conditions may lead to large differences in the results. Qualitative models, on

the other hand, are more robust to such changes mainly because they involve longer

descriptions of the context. Second, as we add more details to quantitative models,

we may also be able to make more precise conclusions, and in the extreme cases, ad-

dition of fidelity to models may lead to completely different conclusions. Qualitative

models are more likely to hold on to their conclusions even when further details are

added.

Daly et al. [60] noted that the goals of qualitative research are illumination, un-

derstanding, and extrapolation of findings to other similar situations, and that these

emerge gradually during the process of analysis. Unlike quantitative methods, not

only are the research questions of qualitative analysis grounded in literature and avail-

able data, but the researcher is also a part of the “instrumentation” and the resultant

analyses are reported as rich and thick descriptions. Due to these differences, quali-

tative analysis can help identify new phenomena that quantitative analysis could not,

and thus serves as a useful counterpart to quantitative inquiry.
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Szajnfarber and Gralla [56] focused on theory building and laid out a process for

using qualitative methods to study engineering systems. The authors contended that

as the scope of systems engineering research expands to include human and organi-

zational issues, qualitative methods – which are well-established in other disciplines

– will need to play an increasing role. As with quantitative research, validity plays

a critical role in qualitative research, but the same standards need to be interpreted

and implemented slightly differently.

6.2.1 Conducting Qualitative Research

The key benefit and role of qualitative research is that it can be useful in identify-

ing values of parameters of quantitative models, such as the degree of risk tolerance of

human designers. Qualitative research is inductive in nature and the research ques-

tions, hypotheses, method of analyses, etc. develop during the process of conducting

research. Thus, the researcher has to maintain flexibility to change any component of

research during the course of analysis. Marshall and Rossman [61] identified charac-

teristics of qualitative research including that it takes place in the natural world, uses

multiple methods that are interactive and humanistic, focuses on context, is emergent

rather than tightly prefigured, and is fundamentally interpretive.

The key distinguishing feature of qualitative study, as opposed to quantitative

studies is that it is reflexive in nature, which means that the various activities such as

collecting and analyzing data, developing a theory, identifying research questions or

modifying them, etc. go on simultaneously and affect one another. Similar to design

of complex systems, this process iterative with no single prescribed order of tasks that

may lead from beginning to end. We can consider a model of qualitative research to

be comprised of five components [62]:

1. Goals: which identify the objectives, contributions, and the motivations of the

study



109

2. Conceptual framework: which is the identification of context, background knowl-

edge, experiences, etc. which inform the conduct of study

3. Research questions: which elaborate on the desired insights from the study

4. Methods: which are the approaches and techniques to be employed in the con-

duct of the study

5. Validity: which establishes link between theory and reality along with identify-

ing the potential failures of the model and alternative interpretations

Each of these factors influences and is influenced by one another. A researcher

clarifies the goals of qualitative research by addressing the question of “why do this

research?” The questions such as “what do we want from this study?” and “what

do we need to do for this study?” are addressed by the next three components of

conceptual framework, research questions, and methods. And finally, the validity

component addresses the how of qualitative study by asking, “how can we be wrong

(or right)?”

While such a categorization can provide a useful starting point, any qualitative

research is designed specific to the context for which it is setup and the purpose that

a researcher seeks to answer. Further details on qualitative methods of study can be

found in references [61–63].

While qualitative studies are not included as part of work presented herein, such

studies can be taken up as a complement to modeling of design teams. Surveys and

other such instruments of qualitative analysis can be used to derive such features of

an organization as the preference structures of the teams which would be used to

select value models, and the risk behaviors of the designers involved. In turn, the

needs of the modeling can be used to frame the research questions to be answered by

qualitative research. Thus, qualitative research has the potential to contribute to the

advancement of design process modeling and analysis.
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6.3 Summary of Modeling Framework

All models make some simplifying assumptions, and the most useful models cap-

ture the most important features of the system they are modeling with the highest

possible accuracy. A model which captures multiple levels of hierarchy considers a

broader context at once, allowing for simultaneous analysis of people at the various

levels of the organization. Such models can potentially provide a template for repre-

sentation of decision problems that can face designers at multiple levels of hierarchy,

with the result that solutions which answer questions at one level, can adapted at

another level with modifications.

We setup a bi-level organization model by using a principal-agent model, where

the division of tasks between a principal and the agents parallels discussion of de-

composition of the system itself. For comparison, the Bi-level Integrated System

Synthesis (BLISS) is a method for optimization of engineered systems by decompos-

ing the design problem into multiple autonomous local optimization problems [49].

The problem is setup such that the system-level optimizer operates on a smaller set

of global design variables whereas the subsystem problems can potentially handle

larger number of detailed design variables. Because coordination occurs by exchange

of optimum sensitivity information, the algorithm can fit a variety of organization

structures. The performance of system analysis at each iteration means that the

procedure can be terminated at any point of the designer’s choosing, similar to our

approach. However, in BLISS, the system-level and subsystem problems alternate

with the latter problem being solved first followed by the former system-level prob-

lem performing the task of integration. Each team is thus bound by a strict schedule

of their local problem-solving. Further, the use of gradient methods means that any

non-convexity would make the problem highly dependent on the starting point of op-

timization and that every iteration leads to an improvement in design. Both of these

features are different in our model of adaptive agents. The agents are free to continue

solving their local problem and use information from any other agent only when it is
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beneficial for them to do so, and the result of such distributed decision-making is that

at the system-levels, the decisions of any one agent can lead to lower value during the

course of the process.

In summary, our framework addresses all three roles of a design process model

that we discussed in section 6.1. First, simulation using the proposed framework

gives an organizational structure as an output. This means that we do not have to

specify a strict hierarchy as an input to our model. Second, because we set up a

fully connected network of agents who make independent decisions on which of their

neighbors to interact with and when, our framework is flexible to any organizational

structure and changes to this structure that needs to be modeled. Finally, our set up

of agents using discounted rewards is a way to use value-based approach for decision-

making. The proposed agent model provides the flexibility to specify behavioral

factors such as preferences, risk tolerance, etc.
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7. CONCLUSIONS AND FUTURE WORK

We have presented a framework for modeling a complex systems design process in a

bi-level organization of a single system-level designer and multiple subsystem teams.

The teams all functioned as semi-autonomous agents who made decisions to maximize

their local utilities while being guided by the system-level designer by provision of

rewards.

Our model demonstrates how design teams can learn from available information

such as the current designs of other teams and make decisions that lead to highest

value obtained from the process. Using the approach of comparing between alternative

actions on the basis of future discounted rewards obtained from the outcomes of

each of the actions, we do not need a model of dynamics of the process to be able

to estimate values. Instead, the value models of teams are functions of their local

subsystem’s attributes such that maximizing value would lead to improved system

performance measures. The organization’s value, therefore, results from an outcome

of the collective decisions of the teams’ local decisions.

We demonstrated the application of this framework to an example problem of

aircraft design where a system-level designer had the objective of operating cost min-

imization while three subsystem teams minimized weight and maximized the lift-to-

drag ratio and mission range. We compared the results of using our framework to

this problem with the results from using simulated annealing algorithm to solve the

same problem.

Thus, we have developed and demonstrated the following capabilities and features

of a complex systems design problem. One, we showed modeling of design teams as

semi-autonomous agents with their local preferences. This model can accommodate

the teams’ behavioral attributes such as their risk tolerance and their decision-making

on the choice from among an available set of actions. Two, we set up a network of
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interaction between multiple teams and system-level designer which is flexible with

respect to the interaction links which exist within the organization. Thus this network

evolves as design progresses and can be set up to represent different organizational

architectures. Finally, we showed how a system-level designer can guide the decision-

making of design teams by the use of rewards as incentives. The proposed framework

can also accommodate other incentive schemes for guiding design decisions.

Table 7.1 summarizes the research questions and their outcomes from this disser-

tation.

Table 7.1.: Research questions and outcomes of this research

Research question: How can we model the effects of available infor-

mation on the design teams behavior?

Hypothesis : Designers decision-making can be studied by modeling

them as learning agents that update their design policies

in response to available information.

Work done: We modeled and simulated the distributed decision-

making of teams who use the value iteration algorithm

to select the optimal design process strategy.

Research question: How can a system-level designer identify heuris-

tics for control of design teams?

Hypothesis : The system-level designer can setup rewards for meet-

ing requirements, which work as incentives to encourage

behavior in favor of global objectives.

Work done: We solved a Principal-Agent model for interactions

across levels of organizational hierarchy and which we

used to identify rewards for teams.
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Ultimately, the process-system comprised of a network of autonomous and self-

interested design teams and the tools and methods that they use for systems devel-

opment is itself complex. Its management needs a systems-thinking approach which

is holistic, non-linear, and iterative in nature. This is in contrast with the linear,

procedural systems engineering principles used for the development of the products.

Modeling and simulation frameworks such as those presented in this work are a way

to study the dynamics of design process-systems. Particularly, we have shown, that

a model of design teams as learning agents who interact and update their behavior

using design variable and payoff information, when guided by appropriate heuristics

from a system-level designer, simulates the dynamics of a design process.

7.1 Future Work

Several advancements can be made to modeling done in this dissertation. In our

modeling, while the teams chose from a predefined set of available actions in each

state, they made their decisions under a single objective function. Future additions

can make teams’ value function a multi-objective function which the teams can use

to either calculate a single scalar value or can choose to use one from among many

different value functions. For example, early in the design process, when the teams are

exploring the design space using low fidelity models, computational cost may not be

the most important value function because initially achieving feasibility may be the

only requirement. Later, computational cost may be more useful as a value function.

In other words, both the value functions and the set of available actions to the teams

can change as the process advances.

A good modeling approach will serve to provide explanation of why certain poli-

cies work while other do not. Thus decision-makers can evaluate several from a set

of policies to see which one works best for their circumstances. Further, as the or-

ganization collectively gathers experience with complex systems design, the model

can adapt to reflect the accompanying behavior changes. This would be yet another
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feature of such modeling approach, and one which will provide context-specific deci-

sion support to the organization in which it is used. Ultimately, in enabling learning,

the modeling can help the organization at all levels to quickly adapt to changes in

the environment, which all designers perceive as changes in input information, with

the result that the best possible response can be decided and acted on quickly. This

would be another valuable contribution of this modeling approach to the complex

systems design process.

This dissertation proposes a computational model of a design organization includ-

ing the teams involved, their interactions, and decision-making. As with all modeling,

several assumptions were necessary to make this study tractable. Further, validation

of this work was done mainly by comparing with an established optimization method.

However, future work can look at use of real-world data while modeling designers’

behaviors and decision-making. The analysis of this data can be qualitative in nature,

such as we discussed in brief in a preceding chapter. The, using the results of such

data analysis, more refined models of human behavior and decision-making can be

set up to simulate the dynamics of complex systems design processes.
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