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ABSTRACT

M.S, Purdue University, December 2018. Numerical methods for single-phase and
two-phase flows. Major Professor: Suchuan Dong. Professor.

Incompressible single-phase and two-phase flows are widely encountered in and un-

derlie many engineering applications. In this thesis, we aim to develop efficient meth-

ods and algorithms for numerical simulations of these classes of problems. Specifically,

we present two schemes: (1) a modified consistent splitting scheme for incompress-

ible single-phase flows with open/outflow boundaries; (2) a three-dimensional hybrid

spectral element-Fourier spectral method for wall-bounded two-phase flows.

In the first part of this thesis, we present a modified consistent splitting type

scheme together with a family of energy stable outflow boundary conditions for in-

compressible single-phase outflow simulations. The key distinction of this scheme lies

in the algorithmic reformulation of the viscous term, which enables the simulation

of outflow problems on severely-truncated domains at moderate to high Reynolds

numbers. In contrast, the standard consistent splitting scheme is observed to exhibit

a numerical instability even at relatively low Reynolds numbers, and this numerical

instability is in addition to the backflow instability commonly known to be associated

with strong vortices or backflows at the outflow boundary. Extensive numerical exper-

iments are presented for a range of Reynolds numbers to demonstrate the effectiveness

and accuracy of the proposed algorithm for this class of flows.

In the second part of this thesis, we present a numerical algorithm within the

phase-field framework for simulating three-dimensional (3D) incompressible two-phase

flows in flow domains with one homogeneous direction. In this numerical method,

we represent the flow variables using Fourier spectral expansions along the homoge-

neous direction and C0 spectral element expansions in the other directions. This is
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followed by using fast Fourier transforms so that the solution to the 3D problem is

obtained by solving a set of decoupled equations about the Fourier modes for each

flow variable. The computations for solving these decoupled equations are performed

in parallel to efficiently simulate the 3D two-phase flows. Extensive numerical ex-

periments are presented to demonstrate the performance and the capabilities of the

scheme in simulating this class of flows.
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1. INTRODUCTION

1.1 Incompressible Single-Phase Flows with Open Boundaries

The development of numerical methods for simulating single-phase flow problems

in unbounded domains has become an important research topic over the past few

decades [1–5]. These type of flow situations commonly occur in wakes behind bluff

bodies, fluid jets, pipe flows, and boundary layers. The motion of the unsteady,

viscous, incompressible single-phase flows can be described mathematically by the

Navier-Stokes equations, which are a system of partial differential equations based on

the conservation laws of mass, momentum, and energy. Directly solving this system

of equations is computationally expensive as the velocity and the pressure variables

in these equations are coupled together by the incompressibility constraint. Also, to

perform numerical simulations of physically unbounded flows, we need to truncate

the domain to a finite size by using artificial boundaries. These artificial boundaries

are referred to as the open or outflow boundaries. However, if we merely restrict

the domain size, we end up compromising the accuracy of the results as well as

the stability of the computations. To obtain computationally efficient simulations of

this class of flow problems, we need: (1) a numerical scheme which decouples the

computations of different flow variables (velocity and pressure) in the Navier-Stokes

equations; (2) efficient boundary conditions on the outflow boundary which provide

stable computations and give accurate results.

1.1.1 Projection Methods

The projection methods are the prominently discussed class of schemes for de-

coupling the calculations of the flow variables. These schemes are time-discretization
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methods of the Navier-Stokes equations. The idea behind these schemes is to account

for the viscous effects and the incompressibility of the flow in two sub-steps within a

time step. The first projection schemes can be dated back to about five decades and

have been introduced independently in [6] and [7]. These schemes stimulated the inter-

est of the researchers in this area, and many modifications were proposed over the past

few decades to improve the accuracy of the results. These modifications led to three

sub-classes of the projection schemes namely pressure-correction schemes [2, 8–13],

velocity-correction schemes [3, 11, 14] and consistent splitting schemes [15, 16]. In

the pressure-correction schemes we compute an auxiliary velocity by treating the

pressure explicitly in the first sub-step and then correct the pressure in the second

sub-step [15]. In the velocity-correction schemes, we make the viscous term explicit

in the first sub-step and then correct the velocity in the second sub-step [17]. Al-

though the pressure-correction and velocity-correction schemes successfully decouple

the calculations of the velocity and pressure, they can only provide either first-order

or 3/2-order accuracy in time on the L2-norm for the vorticity and pressure on gen-

eral flow domains [11, 17–19]. The consistent splitting schemes have been developed

to overcome this issue in [15]. In these schemes, the pressure is treated explicitly in

the first sub-step, and it is updated by solving a Poisson equation in the weak form

in the second sub-step. These schemes are free of splitting errors and are capable

of providing second-order accuracy in the L2-norm for the velocity, pressure and the

vorticity.

However, the standard consistent splitting scheme is observed to be computation-

ally unstable for simulating moderate to high Reynolds number flows [16]. A two-level

consistent splitting scheme was proposed in [16] to overcome this difficulty. In this

scheme, a non-linear equation is solved in a coarser mesh and a linear problem is

solved in a finer mesh in the first sub-step and the pressure is updated by solving a

Poisson equation in the second sub-step. An interesting property of this scheme is

that it is computationally more efficient than the standard consistent splitting scheme.

However, this scheme has a first order convergence rate in time. In [20], a projection
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scheme based on a consistent splitting strategy has been developed by enforcing a

divergence-free condition on the velocity after the first sub-step. This scheme was

demonstrated to have an improved convergence rate in time. However, this scheme

alone fails to provide stable computations at high Reynolds numbers.

1.1.2 Outflow Boundary Conditions

Over the past few decades, researchers have proposed several outflow bound-

ary conditions for single-phase flows with open boundaries. The commonly used

open boundary conditions are the convective boundary condition [21–25] and the

traction-free condition [18, 26–31]. However, the convective boundary condition and

the traction-free condition fail to provide stable computations at moderate to high

Reynolds numbers. The reason for this is the backflow instability. It is a numerical

instability associated with strong vortices or backflows at the open boundary which

makes the computations unstable, and the simulations blow up instantly [32–34].

Some ways to deal with this issue are to use a large computational domain or coarsen

the grid in the wake region so that the vortices are dissipated before they reach

the outflow boundary [33]. However, this approach is not efficient because at high

Reynolds numbers the computational domain needed will become extremely large

and the computational cost increases significantly. An efficient approach is to de-

velop outflow boundary conditions which can tackle the issue of backflow instability.

A convective-like energy-stable open boundary condition has been proposed in [3]

to overcome the backflow instability at high Reynolds numbers. We use this open

boundary condition in this thesis. The principal advantage of using this outflow

boundary condition is that it provides control over the velocity on the outflow bound-

ary by limiting the upper bound of the total energy. We refer the reader to [2,34–37]

for details about other boundary conditions to deal with backflow instability.
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In this thesis, we aim to develop a consistent splitting type numerical algorithm

to decouple the computations of the flow variables in the Navier-Stokes equations

together with the convective-like energy-stable outflow boundary condition.

1.2 Incompressible Two-Phase Flows

The second part of this thesis focuses on the incompressible two-phase flows.

Particularly, we consider the two-phase flows which deal with the motion of two

immiscible fluids in three-dimensional domains with one homogeneous direction. This

class of two-phase flows can be observed in flow configurations where the boundary

effects of the domain are negligible in one direction (e.g., flow through pipelines,

channels). We aim to use this homogeneity property to develop a numerical method

which can efficiently compute three-dimensional simulations for two-phase flows.

When the two immiscible fluids come in contact with each other, a common

boundary is formed between them, and this boundary is called an interface. The

interactions of the fluid-fluid interface with a solid wall are commonly studied phe-

nomena [38, 39]. A moving contact line is formed when the fluid-fluid interface of

the two-phase flow system comes in contact with a solid wall. We need a mathe-

matical model which can describe the motion of interface to numerically simulate

the contact line problem. In classical hydrodynamics the fluid-fluid interface is as-

sumed to be a narrow zone of zero-thickness (sharp interface model) across which

the density and the tangential velocity are discontinuous and a no-slip condition is

used at the interface. However, this assumption is not valid when the order of the

length scales are comparable to the interface thickness which is usually the case when

topological changes occur in the interface [40]. Due to this reason, the numerical

simulations of contact line problems using the sharp interface model are complicated

by an unbounded stress tensor, which can give rise to an unbounded shear force near

the contact line [40]. The current numerical models can be broadly classified into

two categories: (1) interface-capturing methods such as volume of fluids [41–43], level
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set [44–46] and phase field approach [47–49], and (2) interface tracking methods such

as the front tracking method [50–52] are developed for dealing with contact line prob-

lems. We use a phase field based approach in this thesis as this approach is physically

motivated and can account for topological changes of the interface [47,48,53,54].

1.2.1 Phase Field Approach

The idea that interface has a finite thickness was first discussed in [55] and [56].

In [56], it was suggested that based on the thermodynamic equilibrium at the contact

line the two immiscible fluids do mix at molecular levels so that they are in a steady

state of motion and not at a state of rest. These ideas have formed the basis for the

phase-field approach.

In the phase field approach, we replace the sharp fluid interface with a diffuse-

interface and a phase field function is used to represent the two-phase system. This

field function has a unique value in the bulk of each different fluid and it varies

continuously over the diffuse interface with values bounded between the unique values

of the different fluids. Cahn and Hilliard [57] used the concept of the diffuse interface

to derive equations for the free energy of the system. In [47,48] an energetic variational

formulation has been used to derive Cahn-Hilliard phase field models for the two-

phase system. In this model, the governing equations for the two-phase system are

obtained by taking the effect of the coupling between the diffusion and the mechanics

of the flow (i.e, coupling the Cahn-Hilliard equation with the Navier-Stokes) by the

introduction of an extra stress term to the momentum equation and a transport term

to Cahn-Hilliard equation.

Many numerical algorithms have been proposed to solve the coupled system of

Cahn-Hilliard and Navier-Stokes equations [47, 58–62]. However, these models as-

sume that the densities of the two flows are either equal or very small and therefore

these schemes cannot simulate flows with large density ratios. In [63], an energy stable

scheme has been presented for two-phase flows with variable densities. An important
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point to be noted is that the mixture viscosity and the mixture density (for variable

density methods) in the coupled Cahn-Hilliard and Navier-Stokes equations are de-

pendent on the phase-field function. Since the phase-field function varies with time,

the mixture viscosity and density are also time-dependent. The coefficient matrices

of the algebraic systems for the pressure and velocity in the methods specified above

contain the mixture density and viscosity terms and are therefore time-dependent.

These coefficient matrices have to be updated at every time step and this causes

computational performance issues. In [53], the pressure and the viscous terms in the

momentum equations have been reformulated in a way such that these coefficient

matrices are time-independent. However, the numerical method in [53] has been im-

plemented using C0 spectral elements for spatial discretization in all directions and

the simulation of three-dimensional problems will be computationally expensive.

1.3 Objectives of this thesis

In the context of the single-phase flows, the objective of this thesis is to develop

a numerical algorithm for simulating single-phase flows with outflow boundaries at

high Reynolds numbers. The main idea relies on the reformulation of the viscous

term together with the consistent splitting strategy [15] and the choice of the out-

flow boundary condition [3] which enables simulations at high Reynolds numbers in

the presence of strong vortices or backflows at the outflow boundary. The proposed

numerical algorithm is implemented using C0 spectral elements for the spatial dis-

cretization.

In the context of two-phase flows, the objective of the thesis is to develop a nu-

merical algorithm for efficiently simulating three-dimensional two-phase flows in flow

domains with one homogeneous direction. The main idea relies on the strategy pre-

sented in [53] to obtain constant coefficient terms in the differential equations after

time-discretization of the governing equations, thus enabling the use of fast Fourier

transforms to reformulate the three-dimensional (3D) problem into a set of decoupled
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two-dimensional problems about the Fourier modes. The computations for the so-

lutions of these decoupled two-dimensional problems can be performed efficiently by

using parallel processors. We use Fourier spectral method for the spatial discretization

along the homogeneous direction and C0 spectral elements in the other directions.

We have also imposed the static contact angle boundary conditions according to the

methods proposed in [38,54,64].

1.4 Spectral Element Methods - An Overview

In this section, we briefly discuss the background and salient features of the spec-

tral element method for the spatial discretization of the governing equations (both

single-phase and two-phase flows) in this thesis.

Finite element methods divide the domain into a number of smaller sub-domains

(elements) and the weak formulation of the original differential equation is solved in

each sub-domain. The smaller sub-domains are referred to as finite elements. The

variational method (weak form) to approximate the partial differential equation in

each sub-domain has been introduced in [65]. Each sub-domain is then assembled

together by an automatic process called global assembly.

A large number of research contributions to the field of finite element methods

have been made in the context for analyzing linear plane elasticity problems in the

1960s [66]. Most of these methods used a low order polynomial expansion(linear or

quadratic) as the basis functions and have been used in the field of computational

aerodynamics which involves complex geometries and unstructured meshes.

The requirement of accurate resolution of vortex structures and the boundary

layers paved the way for high-order discretization methods. Spectral methods are

similar to finite-element methods, but in this case, the domain is not divided. In-

stead, the solution to the partial differential equation is approximated by a truncated

series expansion throughout the domain using global basis functions which consist

of high-order polynomials. However, these methods create difficulties in handling
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complex geometries. To overcome this issue, spectral element methods were devel-

oped in [67]. These methods use the best features of both the finite element methods

and the spectral methods i.e., in spectral element method the domain is divided into

a number of sub-domains which are referred to as spectral elements and the func-

tions are approximated using series expansions whose basis are high-order orthogonal

polynomials. This enables the representation of complex geometries using unstruc-

tured meshes and also to obtain accurate solutions to problems which require high

resolutions as mentioned above. The usual basis functions for the spectral element

methods are Legendre polynomials [68] because of the inherent orthogonality prop-

erty [66] and increasing the order of the polynomials in the basis functions increases

the overall accuracy, however, the disadvantage is increased computational cost.

The selection of proper basis functions for the spectral element method is required

to increase computational efficiency and stability. In general, the expansion basis with

a low condition number and better sparsity of the system matrix (both mass matrix

and the stiffness matrix) are considered to be efficient [69,70] as they result in faster

convergence. For example, when the basis functions using Legendre polynomials are

used in structured elements the resultant stiffness matrix is a diagonal matrix which

is a good choice. However, for unstructured grid elements, the condition number of

the system matrix increases exponentially as we increase the element order [70] which

is not a desired property. Over the past few decades, several bases been developed to

improve the sparsity of the system matrix as well as the conditioning of elemental and

global matrix. A review of different bases and their properties of conditioning and

sparsity of the system matrix has been presented in [71]. Also, in [71] an eigen-based

expansion basis has been developed for spectral element methods which involve struc-

tured elements (quadrilateral in 2D and hexahedral in 3D) and it was demonstrated

that using this basis results in a weak relationship between the number of iterations

to converge and the element order i.e., we can use high element orders for the basis

functions and still get the converged results in a reasonable time unlike other tradi-

tional bases. This basis was also compared with several other bases and was shown
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to be numerically efficient. For the spectral element discretization in this thesis, we

use Jacobi polynomial-based expansion basis [66] and the NekTar spectral element

solver library [72].

1.5 Outline of this thesis

The organization of this thesis is as follows:

• In Chapter 2, we first discuss the governing equations for the incompressible

single-phase flows and the energy-stable outflow boundary condition. We then

present the modified consistent-splitting scheme and its implementation using

C0-continuous high order spectral element methods. Further, to demonstrate

the capabilities of this scheme, we present numerical tests for single-phase in-

compressible flows with open boundaries for several Reynolds numbers.

• In Chapter 3, we first discuss the governing equations for the two-phase system

using phase field approach and the existing numerical algorithm for solving this

system of equations. Then we present the hybrid spectral element-Fourier spec-

tral method for the spatial discretization of the governing equations. Further, to

demonstrate the performance of the proposed spatial discretization technique,

we present several numerical tests for various two-phase flow problems.

• Finally concluding remarks and future research direction are presented in Chap-

ter 4.
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2. MODIFIED CONSISTENT SPLITTING SCHEME FOR

SINGLE-PHASE FLOWS WITH OPEN/OUTFLOW

BOUNDARIES

2.1 Governing Equations and Outflow boundary condition

In this section, we briefly discuss the governing equations which describe the

motion of single-phase incompressible flows and the convective-like outflow boundary

condition imposed at the open boundary.

For the context of this chapter, we use Ω to denote the flow domain in two or three

dimensions and ∂Ω to denote its boundary. The domain boundary is represented as

a combination of two parts:

∂Ω = ∂Ωd ∪ ∂Ωo, ∂Ωd ∩ ∂Ωo = ∅ (2.1)

where δΩd is used to represent the Dirichlet boundary on which we specify the velocity

and δΩo is used to denote the open boundary on which both the velocity u and the

pressure p are unknown.

The motion of the single-phase flows is described by incompressible Navier-Stokes

equation in non-dimensional form on this domain(see e.g. [2, 3]):

∂u

∂t
+ u · ∇u +∇p− ν∇2u = f(x,t), (2.2a)

∇ · u = 0 (2.2b)

In the above equations, x denotes the spatial co-ordinate, t denotes the time,

u(x,t) is the normalized velocity field, p(x,t) is the normalized pressure, f(x,t) rep-

resents an external body force and the term ν is a constant which denotes the nor-

malized viscosity, ν = 1
Re

, where Re is the Reynolds number which is defined using

an appropriate characteristic length scale and a characteristic velocity scale.
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We impose the following condition on the Dirichlet boundary:

u = w(x, t), on ∂Ωd (2.3)

where w denotes the boundary velocity which is known. On the outflow boundary

δΩo we will use the family of convective-like energy stable open boundary conditions

in the non-dimensional form as given in [3]:

νDo
∂u

∂t
− pn + νn · ∇u−

[
(θ + α2)

1

2
|u|2n + (1− θ + α1)

1

2
(n · u)u

]
Θ0(n,u)

= fb(x, t), on δΩo,

(2.4)

In the above equation, Do is a non-negative constant (Do ≥ 0), which is normalized

by 1
Uo

, where U0 is the characteristic velocity scale and n is the unit vector normal

to the outflow boundary ∂Ωo and pointing outwards. The prescribed vector function

fb is used for the purpose of numerical testing only and it is set to fb = 0 when

performing actual simulations. θ, α1 and α2 are chosen constants satisfying the

following conditions [3]:

0 ≤ θ ≤ 1, α1 ≥ 0, α2 ≥ 0.

Θ0(n,u) is a smoothed step function given which is given by [73]:

Θ0(n,u) =
1

2
(1− tanhn · u

δUo
) (2.5)

In the above equation, δ is a non-dimensional positive constant (δ > 0) which controls

the sharpness of the smoothed step function. The smaller the δ, the sharper is the

smoothed step function and the simulation results will not be affected by δ if it is

sufficiently small [73]. The smoothed step function Θo will approach the normal step

function as δ → 0 i.e :

lim
δ→0

Θ0(n,u) = Θs0(n,u) =

 1, n · u < 0

0, otherwise
. (2.6)

This outflow boundary condition (2.4) ensures the energy stability of the system

even in the presence of strong vortices at the open boundary [3].
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We represent the outflow boundary condition (2.4) in a more compact form as:

νDo
∂u

∂t
− pn + νn · ∇u− E(n,u) = fb(x, t), on δΩo (2.7)

where,

E(n,u) =

[
(θ + α2)

1

2
|u|2n + (1− θ + α1)

1

2
(n · u)u

]
Θ0(n,u) (2.8)

The governing equations (2.2a)-(2.2b) are also supplemented by the initial condi-

tion for the velocity:

u(x, t = 0) = uin(x) (2.9)

where uin is the initial velocity field.

2.2 A Modified Consistent Splitting Method

In this section we are going to present the modified consistent splitting scheme

for solving the Navier-Stokes problem. The governing equations (2.2a) and (2.2b)

together with the the Dirichlet boundary condition (2.3) on ∂Ωd, the open boundary

condition (2.7) on ∂Ωo and the initial condition (2.9) form the system of equations

which have to be solved for the purpose of numerical simulations of single-phase flows.

Let us denote the time step index n > 0, and τn to denote the value of a generic

variable τ at time step n. We define the velocity at time t = 0 based on (2.9) i.e.,

u0 = uin.

Initial Pressure Calculation Let q ∈ H1(Ω) denote a test function, where H1(Ω)

denotes the set of globally continuous and square integrable functions defined on Ω.

We obtain an equation in the weak form about the initial pressure P 0 by taking the

L2 inner product between (2.2a) and ∇q and using (2.2b), (2.3) and (2.7) and then

enforce the condition t = 0 on the resulting equation:∫
Ω

∇p0 · ∇q +
1

νD0

∫
∂Ω0

p0q =

∫
Ω

[
f0 −N(u0)

]
· ∇q − ν

∫
∂Ωd∪∂Ω0

n× (∇× u0) · ∇q−∫
∂Ωd

n · ∂w

∂t

∣∣∣∣∣
0

q − 1

νD0

∫
∂Ω0

[
f0
b · n + n · E(n,u0)− νn · ∇u0 · n

]
q, ∀q ∈ H1

p0(Ω)

(2.10)
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where N(u) = u · ∇u and ∂w
∂t

∣∣∣∣∣
0

denotes ∂w
∂t

at time t = 0 which is computed using

a second-order backward differential formula since we know the boundary velocity

w(x, t) on ∂Ωd. We can discretize (2.10) in space using C0 spectral elements or finite

elements. We can therefore obtain the initial pressure by solving (2.10).

Then, for a known (un, pn), we compute (un+1, pn+1), successively in a de-coupled

fashion as follows:

For un+1 (velocity sub-step):

γ0u
n+1 − û

∆t
+ N(u∗,n+1) +∇p∗,n+1 − νm∇2un+1 = fn+1 − (ν − νm)∇×∇× u∗,n+1,

(2.11a)

un+1 = wn+1 on δΩd, (2.11b)

νDo
γ0u

n+1 − û

∆t
−p∗,n+1n+νn ·∇un+1−E(n,u∗,n+1)+ν(∇·u∗,n+1n) = fb

n+1, on δΩo.

(2.11c)

For pn+1 (pressure sub-step):

γ0ũ
n+1 − ˆ̃u

∆t
+ N(u∗,n+1) +∇pn+1 = fn+1 − ν∇×∇× un+1, (2.12a)

∇ · ũn+1 = 0, (2.12b)

n · ũn+1 = n ·wn+1on δΩd, (2.12c)

νDon ·
γ0ũ

n+1 − ˆ̃u

∆t
−pn+1 +νn ·∇un+1 ·n−n ·E(n,un+1) = fb

n+1 ·n, on δΩo. (2.12d)

In the above equations, ∆t is the time step size and ũn+1 is an auxiliary variable

approximating un+1. u∗,n+1 is a J-th order explicit approximation of un+1 where J

denotes the temporal order of accuracy of the algorithm and can either be 1 or 2. The

terms
γ0u

n+1 − û

∆t
and

γ0ũ
n+1 − û

∆t
are J-th order backward difference approximations

of ∂u
∂t
|n+1. The terms u∗,n+1, û and γ0 are given by:

u∗,n+1 =

 un, J = 1,

2un − un−1, J = 2.
. (2.13)

û =

 un, J = 1,

2un − 1
2
un−1, J = 2,

γ0 =

 1, J = 1,

3
2
, J = 2.

. (2.14)
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One can observe that the overall structure of the algorithm presented above resem-

bles that of a consistent-splitting type strategy [15, 17]. The important feature that

allows the proposed scheme to give stable computations at high Reynolds numbers

unlike a standard consistent splitting scheme, is the introduction of term νm∇2un+1

in (2.11a). The parameter νm is a specified constant which can be varied to increase

the stability of the simulations. Note that when νm = ν, the algorithm presented

above becomes a standard consistent splitting scheme. Also, it is important to note

that the choice of νm only affects the stability of the simulation and not the accuracy

of the results, which we will be demonstrating later with the help of simulations in

Section 2.4.

As noted in [2, 3], we add an extra term ν(∇ · u)n in Eq. (2.11c) to improve the

stability of the simulations when there are no backflows. Also, the terms
∂u

∂t
and

n ·∇u in the discrete equation (2.11c) have been treated implicitly and approximated

using un+1 leading to a Robin-type condition for the velocity un+1 on the outflow

boundary δΩo. We obtain the equation (2.12d) in the pressure sub-step by taking the

inner product between the outflow boundary condition (2.7) and the directional vector

n on the outflow boundary ∂Ω0. The
∂u

∂t
term in the pressure sub-step is also treated

implicitly by approximating it using ũn+1 leading to a Robin-type condition for the

pressure pn+1 on the outflow boundary δΩo (see (2.12d)). The explicit approximation

using un+1 for the
∂u

∂t
term in (2.12d) will not be stable unless D0 is very small [3].

2.3 Implementation with C0 Spectral Elements

In this section we will discuss about the implementation of the algorithm (2.11a)-

(2.12d), using C0-continuous high-order spectral elements for spatial discretizations

[3, 32, 66, 71, 72]. The advantages of using C0 spectral elements when compared to

C0 finite elements is that we attain global high-order accuracy and the spatial expo-

nential convergence when using spectral element method. However, the subsequent
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formulations discussed below are general and not limited to spectral elements (i.e.,

we can even use C0 finite elements).

One of the main issues that arise when using C0 elements to implement this

algorithm is that the higher order terms such as∇×∇×u cannot be readily computed

in the discrete function space of C0 elements [1–3,53,73]. To overcome this problem,

we develop the weak forms of the algorithm so that the equations to be solved using

C0 elements do not contain terms with derivatives of order two or higher.

Weak form for Velocity Let us denote ϕ(x) ∈ H1
u0(Ω) as the test function, where

H1
u0(Ω) = {v ∈ H1(Ω) : v|∂Ωd=0}.

We represent (2.11a) in a compact manner :

γ0

νm∆t
un+1 −∇2un+1 =

1

νm
Gn+1 + (1− ν

νm
)∇× ω∗,n+1 (2.15)

where ω=∇× u is the vorticity,

Gn+1 = fn+1 −N(u∗,n+1) +
û

∆t
−∇p∗,n+1 (2.16)

Then, taking L2 inner product between the test function ϕ and (2.15) and then

integrating by parts, we obtain:

γ0

νm∆t

∫
Ω

un+1ϕ+

∫
Ω

∇ϕ · ∇un+1 =
1

νm

∫
Ω

Gn+1ϕ

+ (1− ν

νm
)

∫
Ω

ω∗,n+1 ×∇ϕ+

∫
∂Ωo

n× ω∗,n+1ϕ

+

∫
∂Ωo

n · ∇un+1ϕ, ∀ϕ

(2.17)

and we have used the divergence theorem and the assumption that ϕ=0 on the Dirich-

let boundary ∂Ωo. We can further express the term n · ∇un+1 in terms of un+1 and

other explicit quantities using the equation (2.11c) on the outflow boundary ∂Ωo so

that we get the final weak form for un+1:
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Doγ0

∆t

∫
∂Ωo

un+1ϕ+
γ0

νm∆t

∫
Ω

un+1ϕ+

∫
Ω

∇ϕ · ∇un+1

=
1

νm

∫
Ω

Gn+1ϕ+ (1− ν

νm
)

∫
Ω

ω∗,n+1 ×∇ϕ+

∫
∂Ωo

n× ω∗,n+1ϕ


+

1

ν

∫
∂Ωo

[
fb
n+1 +

νDo

∆t
û + p∗,n+1n + E(n,u∗,n+1)− ν(∇ · u∗,n+1n)

]
ϕ, ∀ϕ

(2.18)

Weak form for Pressure Let us first take the divergence of (2.12a) so that we

obtain a pressure Poisson-type equation:

∇2pn+1 = ∇ ·
[
fn+1 −N(u∗,n+1)

]
(2.19)

where (2.12b) has been used. Let q ∈ H1(Ω) denote a test function. Now taking the

L2 inner product between q and (2.19) and re-arranging terms we get:∫
Ω

∇pn+1 · ∇q =

∫
Ω

[
fn+1 −N(u∗,n+1)

]
· ∇q +

∫
∂Ω

n ·
[
∇pn+1q− fn+1 + N(u∗,n+1)

]
q

(2.20)

by using integration by parts and the divergence theorem. To calculate the second in-

tegral on the RHS of equation (2.20), we calculate that integral for Dirichlet boundary

and the outflow boundary separately and then add them i.e.,
∫
∂Ω

=
∫
∂Ωd

+
∫
∂Ωo

. Taking

the inner product between (2.12a) and the directional vector n and then taking the L2

inner product of the resulting equation with the test function q over ∂Ωd we obtain:∫
∂Ωd

n·
[
∇pn+1q− fn+1 + N(u∗,n+1)

]
q =

1

∆t

∫
∂Ωd

n·ûq− γo
∆t

∫
∂Ωd

n·wn+1−ν
∫
∂Ωd

n·∇×ωn+1q

(2.21)
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by using equation (2.12c). Next, we take the inner product of (2.12a) with the

directional vector n and then the taking L2 inner product of the resulting equation

with q over ∂Ωo we obtain :∫
∂Ωo

n ·
[
∇pn+1q− fn+1 + N(u∗,n+1)

]
q = − 1

νDo

∫
∂Ωo

pn+1q− ν
∫
∂Ωo

n · ∇ × ωn+1q

− 1

νDo

∫
∂Ωo

[
fn+1
b · n− νn · ∇un+1 · n + n · E(n,un+1)

]
q

(2.22)

and we have used the equation (2.12d). Now using (2.21) and (2.22) in (2.20), we

obtain the final weak form for the pressure pn+1:∫
Ω

∇pn+1 · ∇q +
1

νDo

∫
∂Ωo

pn+1q =

∫
Ω

[
fn+1 −N(u∗,n+1)

]
· ∇q +

1

∆t

∫
∂Ωd

n · ûq

− γo
∆t

∫
∂Ωd

n ·wn+1 − ν
∫
∂Ω

n× ω · ∇q

− 1

νDo

∫
∂Ωo

[
fn+1
b · n− νn · ∇un+1 · n + n · E(n,un+1)

]
q

(2.23)

and using the identity, ∫
∂Ω

n · ∇ × ωn+1q =

∫
∂Ω

n× ω · ∇q (2.24)

It should be noted that the final weak forms i.e., (2.18) and (2.23) do not contain

any terms with second or higher order derivatives. So the equations (2.18) and (2.23),

together with the Dirichlet boundary condition (2.11b) on ∂Ωd are to be discretized

using the C0 spectral elements. Also, auxiliary velocity ũn+1 term is eliminated in

the weak formulations and it is therefore not computed explicitly by the solver.

Let us denote the flow domain Ω discretized using the spectral element mesh as

Ωh such that Ωh = ∪Nel
e=1Ωe

h, where Nel denotes the total number of elements in the

mesh and Ωe
h (1 ≤ e 6 Nel) denotes the element e. Let ∂Ωh denote the boundary

of Ωh, such that ∂Ωh = ∂Ωdh ∪ ∂Ωoh, where the terms ∂Ωdh and ∂Ωoh represent the
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discretized ∂Ωd and ∂Ωo respectively. We denote the linear space of polynomials of

degree K by
∏

K(Ωe
h). The characteristic i.e the degree of the polynomials K will

be referred to as the element order for the rest of this context. Let H1(Ωh) denote

the set of globally continuous and square-integrable functions defined on Ωh. Define

function spaces:Xh =
{
v ∈ H1(Ωh) : v|Ωe

h
∈ ΠK(Ωe

h), 1 6 e 6 Nel

}
,

Xh0 = { v ∈ Xh : v|∂Ωh
= 0 } .

(2.25)

Let (.)h denote the discretized version of the variable (.). Then the fully discretized

version of the equation (2.18) is: Find un+1
h ∈ Xh such that:

Doγ0

∆t

∫
∂Ωoh

un+1
h ϕh +

γ0

νm∆t

∫
Ωh

un+1
h ϕh +

∫
Ωh

∇ϕh · ∇uh
n+1

=
1

νm

∫
Ωh

Gn+1
h ϕh + (1− ν

νm
)

∫
Ωh

ω∗,n+1
h ×∇ϕh +

∫
∂Ωoh

nh × ω∗,n+1
h ϕ


+

1

ν

∫
∂Ωoh

[
fbh

n+1 +
νDo

∆t
ûh + p∗,n+1

h nh + Eh(nh,u
∗,n+1
h )− ν(∇ · u∗,n+1

h nh)

]
ϕh,

∀ϕh ∈ Xh0,

(2.26)

together with discretized version of the Dirichlet boundary condition (2.11b)

un+1
h = wn+1

h , on ∂Ωdh. (2.27)

The discretized version of (2.23) is: Find pn+1
h ∈ Xh such that∫

Ωh

∇pn+1
h · ∇qh +

1

νDo

∫
∂Ωoh

pn+1
h qh =

∫
Ωh

[
fn+1
h −Nh(uh

∗,n+1)
]
· ∇qh +

1

∆t

∫
∂Ωdh

nh · ûhqh

− γo
∆t

∫
∂Ωdh

nh ·wn+1
h − ν

∫
∂Ωh

nh × ωh · ∇qh

− 1

νDo

∫
∂Ωoh

[
fn+1
bh · nh − νnh · ∇un+1

h · nh + nh · Eh(nh,u
n+1
h )

]
qh,

∀qh ∈ Xh.

(2.28)
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Solution Algorithm The final solution procedure can be summarized as follows.

Within a time step, with known (unh, p
n
h) we compute the variables at next time step

(n+1) as follows:

• Solve equation (2.26), together with the Dirichlet condition 2.27 on ∂Ωdh, for un+1
h ;

• Solve equation (2.28), for pn+1
h ;

One can observe from (2.26) and (2.28) that the computations for the velocity and

the pressure are completely decoupled. Also, different components of the velocity

un+1
h are not coupled and therefore can be computed separately.

It has been noted in [17,74–76] and the references therein that if the approximation

spaces for the discrete velocity and pressure do not satisfy an inf-sup condition for

compatibility, there will be spurious pressure modes. However, it has been discussed

that one of the exceptions to this condition is the case where we use equal-order

approximations for the velocity and pressure [1–3, 12, 15, 66, 74]. Therefore, in the

current spectral-element implementation, to approximate the pressure and the veloc-

ity, we use equal orders of expansion polynomials so as to avoid the spurious pressure

modes.

2.4 Numerical Tests for Single-Phase Flows

In this section we consider two two-dimensional test problems with open bound-

aries to demonstrate the performance of the numerical method proposed in Section

2.2. We will also discuss the spatial and temporal convergence rates of the proposed

algorithm. We consider single-phase incompressible flows for all the subsequent tests

in this section.

2.4.1 Convergence Rates

In this subsection we illustrate the spatial and temporal convergence rates of the

numerical scheme proposed in Section 2.2 by using an unsteady analytic flow problem.



20

We consider a two-dimensional flow domain Ω = [(x, y) : 0 6 x 6 1;−1 6 y 6 1]

as shown in Fig. 2.2(a). We also use the following analytic expressions for the flow

variables: 
u = Acos(πy)sin(ax)sin(bt)

v = −Aa
π
sin(πy)cos(ax)sin(bt)

p = A sin(πy)sin(ax)cos(bt)

(2.29)

where u, v denote the components of the velocity in the x and y direction respectively

and A, a and b are user-defined constants. The body force term f(x,t) in 2.2a is chosen

in such a manner that the analytic expressions in (2.29) satisfy the equation (2.2a).

The expressions for the velocity inherently satisfy the continuity equation (2.2b). The

analytic expressions in (2.29) have been used for the convergence tests in [2, 3].

Figure 2.1.: Flow Domain and boundary conditions.

We discretize the domain ABCD into two quadrilateral spectral elements of equal

size(ADFE and EFCB) along the x direction. We impose the Dirichlet condition

for the velocity (2.3) on the boundaries AE, AD and CD and set the boundary

velocity w(x,t) to the analytical expressions given in (2.29). The boundaries EB

and BC are assumed to be open and we impose the outflow boundary condition at
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these boundaries. We set D0 = 1 and δ = 1
20

in (2.7) and choose the function fb such

that analytic expressions in (2.29) satisfy the open boundary condition (2.7) at the

boundaries EB and BC. We set the non-dimensional viscosity to ν = 0.01 and the

ratio νm
ν

= 2 for performing simulations. The temporal order is set to J = 2. Also

the parameters α1,α2 and θ in the outflow boundary condition (2.7) are set to 1, 0

and 1 respectively.

We use the scheme presented in Section 2.2 and run the simulations from time

t = 0 to a specified time t = tf . Then we compute the numerical errors by comparing

the simulation results with the analytical solution in (2.29) at time t = tf .

Spatial convergence test To determine the spatial convergence rate of the nu-

merical scheme we use a fixed time step size ∆t=0.001 and set the total simulation

time to tf=0.1 and then perform simulations by increasing the element order from 2

to 20 in intervals of 2. Fig 2.2(a) shows the L∞ and L2 errors of the flow variables

obtained from the numerical simulation as a function of the element order. We ob-

serve from the Figure 2.2(a) that the numerical errors for all the flow variables keep

decreasing exponentially as the element order increases (while below 12). Beyond el-

ement order 14, we observe that the error levels do not change. This is because when

the element order becomes large, the temporal truncation error becomes dominant

and thus saturating the total error.

Temporal convergence test For the temporal convergence test, we fix the element

order to 16 and set the total simulation time to tf=0.5, and then perform simulations

by decreasing the time step size systematically from ∆t=0.1 to ∆t=0.000390625 (by

a factor of 0.5). Figure 2.2(b) shows the L∞ and L2 errors of the flow variables as a

function of the time step size ∆t in logarithmic scales. We observe that the method

has a second-order convergence rate in time for all the flow variables when ∆t is below

0.025.

The above results indicate that the method proposed in section 2.2 has a spatial

exponential convergence rate and a temporal second-order convergence rate.
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Figure 2.2.: Spatial and Temporal convergence rates: (a) L∞ and L2 errors as a

function of element order with fixed ∆t=0.001. (b) L∞ and L2 errors as a function

of ∆t with a fixed element order 16.
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2.4.2 Flow Past a Circular Cylinder

In this subsection, we are going to use the method developed in section 2.2 to

analyze a canonical flow past a two-dimensional circular cylinder. The goal of this

subsection is to demonstrate the capability of the method in dealing with strong

vortices at the outflow boundary. We performed the simulations for a wide range

of Reynolds numbers up to Re = 5000. We also demonstrate the accuracy of the

method by comparing the results obtained by simulating the test case for a wide

range of Reynolds numbers with the experimental data from the literature. This flow

problem has also been used in other works related to the current research topic [2,3].

x

y

­5 0 5 10 15 20
­10

­5

0

5

10

Figure 2.3.: Flow past a circular cylinder: Flow domain showing the spectral-element

mesh with 1228 elements

The problem setup is as follows: We consider a circular cylinder with a diam-

eter d, and a rectangular flow domain Ω containing the cylinder defined by Ω =
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{(x, y) : −5d 6 x 6 L,−10d 6 y 6 10d} (where L is the length of the wake region, as

specified below) as shown in in Figure 2.3. The origin of the coordinate system is at the

center of the cylinder. A total of five flow domains with different wake-region sizes,

specifically L
d

= 3, 5, 10, 15, 20 have been considered for numerical testing. Fig 2.3

shows the flow domain with L
d

= 10 and it is assumed that we have used this flow

domain for our simulations unless stated explicitly otherwise.

We assume that the flow is periodic on the top side (y
d

= +10) and the bottom

side (y
d

= −10) of the domain boundary . A uniform inflow enters the domain from

the left boundary (x
d

= −5) with a velocity u = (u, v) = (U0, 0), where U0=1 is the

characteristic velocity scale. The flow leaves the domain from the right boundary

(x = L), which is assumed to be open and we impose the outflow boundary condition

(2.7) at this boundary with fb = 0 and δ = 0.01. We also impose a velocity no-slip

condition on the the surface of the cylinder i.e., we use the Dirichlet condition (2.3)

and set the boundary velocity w=0. Also note that the diameter of the cylinder is

chosen as d = 1 for all the simulations.

We use a mesh of quadrilateral spectral elements to discretize the domain. In

Figure 2.3 there are 1228 quadrilateral elements. Similarly, as the domain size

changes the number of elements vary. The number of quadrilateral elements for the

other domain sizes
L

d
= 3, 5, 15, 20 are 724, 968, 1488 and 1748 respectively (see

Figure 2.4). Also note that the parameters α1,α2 and θ in the outflow boundary

condition (2.7) are fixed to 1, 0 and 1 respectively for subsequent discussions unless

explicitly stated otherwise.

We solve the incompressible Navier-Stokes equations to advance in time as men-

tioned in section 2.3. Also, the velocity is normalized by the characteristic velocity

scale U0, the length variables are normalized by the diameter of the cylinder d and

the time t is normalized by d
Uo

. We therefore define the Reynolds number Re for this

problem as follows:

Re =
1

ν
=
U0d

νf
(2.30)

where νf is the kinematic viscosity of the fluid and ν is the non-dimensional viscosity.
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Figure 2.4.: Flow past a circular cylinder: (a) Flow domain with L
d

= 3 and 724

spectral elements. (b) Flow domain with L
d

= 5 and 968 spectral elements. (c) Flow

domain with L
d

= 15 and 1488 spectral elements. (d)Flow domain with L
d

= 3 and

1748 spectral elements.

Domain Size Test To study the effect of the size of the wake region on the global

flow parameters we have performed simulations for two Reynolds numbers Re = 30

and Re = 100 on different flow domains. The global flow parameters i.e the mean drag
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coefficient (Cd), root-mean-square drag coefficient (Cd) and the root-mean-square lift

coefficient (CL) can be computed as follows:

Cd =
F̄x

1
2
ρU2

0

, C
′

d =
F

′
x

1
2
ρU2

0

, CL =
F

′
y

1
2
ρU2

0

where F̄x is the mean drag (x-component of the force on the cylinder) averaged

through time, F
′
x is the root-mean square of drag, F

′
y is the root-mean-square of the

lift(y-component of the force on the cylinder) and ρ = 1 is the fluid density.

For this test we have used the time step sizes ∆t = 2.5× 10−4 and ∆t = 5× 10−4

for simulating the flows at Re = 30 and Re = 100 respectively. We set the element

order to 10 and νm
ν

= 10 when performing the simulations for both cases of Reynolds

number. Table 2.1 lists the global flow parameters obtained from this test. One can

observe from this data that the global flow parameters computed from the simulations

are influenced as the size of the wake region increases for up to a certain value (around

L
d

= 10). As we increase the size of the wake region beyond this value the global flow

parameters do not change, that is, the domain size no longer has a significant effect

on the simulation results. Based on this observation, we use the flow domain with

L
d

= 10 for all the subsequent discussions.

Force Test We perform simulations for various Reynolds numbers between Re = 5

and Re = 200 for this test. The goal of this test is to demonstrate the accuracy of the

method by comparing the global force parameters obtained from the simulations with

that of the experimental data and other numerical simulations from the literature.

Different flow regimes of the circular cylinder wake have been discussed in [77] and

it has been mentioned that for Reynolds numbers up to around Re = 190 the flow

around the cylinder is two-dimensional and beyond this Reynolds number the flow

transitions to a three-dimensional regime. Since the simulations performed in the

current test problem are for two-dimensional cylindrical flow, we compare the simu-

lation results of the global flow parameters with that of the experiments for Reynolds

numbers up to Re = 200.
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Table 2.1.: Flow past a circular cylinder: Effect of domain size on the global flow

parameters for Re = 30 and Re = 100; Cd: time-averaged mean drag coefficient; C
′

d:

rms drag coefficient; CL: rms lift coefficient.

Reynolds number Domain Length Cd C
′

d CL

30 3 1.785 0 0

5 1.913 0 0

10 1.933 0 0

15 1.935 0 0

20 1.935 0 0

100 3 1.096 0 0

5 1.441 8.486E-3 0.262

10 1.459 7.638E-3 0.254

15 1.462 7.692E-3 0.253

20 1.462 7.698E-3 0.253

We have used the following parameters for performing this test:

∆t = 5× 10−4,
νm
ν

= 10, element order = 8

Table 2.2 lists the global flow parameters obtained from simulations for the range of

Reynolds numbers mentioned above. Figure 2.5 compares the mean drag coefficient

Cd as a function of the Reynolds number Re between the current numerical simu-

lations and the experimental data obtained from the literature [78–82]. We can see

that the current results agree well with that of the experimental data in the two-

dimensional flow regime. Therefore, the numerical algorithm proposed in Section

2.2 is capable of simulating single-phase flows with unbounded domain accurately by

truncating the domain size to a finite value.
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Figure 2.5.: Flow past a circular cylinder: Comparison of the mean drag coefficient

as a function of Reynolds number between the current simulations and experimental

data from the literature.

Effect of Temporal resolution To study the effect of the non-dimensional time

step size ∆t, we performed the simulations for different time step sizes, for a fixed

Reynolds number (Re = 30) till we obtain the steady state. For this test, we set the

element order to 8 and νm
ν

= 10. Table 2.3 shows the mean drag coefficient at the

steady state for different time step sizes. We can observe that decreasing the time

step size ∆t beyond 5 × 10−3 does not have any significant effect on the mean drag

coefficient at steady state.
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Table 2.2.: Flow past a circular cylinder: Effect of Reynolds number on the global

flow parameters.

Reynolds number Cd C
′

d CL

5 4.818 0 0

10 3.262 0 0

15 2.654 0 0

20 2.316 0 0

25 2.094 0 0

30 1.934 0 0

40 1.717 0 0

50 1.572 0 0

60 1.558 1.199E-03 0.113

100 1.459 7.630E-03 0.254

150 1.430 2.140E-02 0.401

200 1.437 3.584E-02 0.526

Table 2.3.: Flow past a circular cylinder: Effect of ∆t on mean drag coefficient Cd

for Reynolds Number=30.

∆t Cd

5×10−3 1.935

2×10−3 1.935

1×10−3 1.935

5×10−4 1.934

2.5×10−4 1.933
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Effect of Spatial resolution To study the effect of element order i.e the spatial

resolution we performed simulations by varying the element order from 4 to 10 in

steps of 2, for two Reynolds numbers Re = 30 and Re = 100. When performing these

simulations we set νm
ν

= 10 for all the cases and used a time step size ∆t = 2.5×10−4

for Re = 30 and ∆t = 5× 10−4 for Re = 100. The results are tabulated in Table 3.2.

From this data, one can observe that as the element order increases beyond 6, there

is no significant effect of the element order on the global flow parameters for these

Reynolds numbers.

Table 2.4.: Flow past a circular cylinder: Effect of element order on the global flow

parameters for Re = 30 and Re = 100; Cd: time-averaged mean drag coefficient; C
′

d:

rms drag coefficient; CL: rms lift coefficient.

Reynolds number Element Order Cd C
′

d CL

30 10 1.933 0 0

8 1.933 0 0

6 1.933 0 0

4 1.930 0 0

100 10 1.459 7.638E-03 0.254

8 1.459 7.630E-03 0.254

6 1.458 7.600E-03 0.254

4 1.463 7.700E-03 0.0.256

Effect of νm
ν

To study the effect of νm
ν

on the global flow parameters, we performed

simulations for different ratio of νm
ν

for three cases of Reynolds numbers Re = 20,

30 and 100 till we obtain a steady state. The results are tabulated in Table 2.5.

From this data one can observe that the effect of νm
ν

on the steady state values is

insignificant for νm
ν

> 5, although it should be noted that this ratio is important for
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the stability of the simulation especially at high Reynolds numbers. When performing

these simulations, the time step size is fixed to ∆t = 5× 10−4 for all the cases.

Table 2.5.: Flow past a circular cylinder: Effect of νm
ν

on the global flow parameters

for Re = 20, Re = 30 and Re = 100.

Reynolds number Element Order νm
ν

Cd C
′

d CL

20 10 1 2.314 0 0

5 2.316 0 0

10 2.316 0 0

15 2.316 0 0

20 2.316 0 0

25 2.316 0 0

30 10 1 1.932 0 0

5 1.934 0 0

10 1.934 0 0

15 1.934 0 0

20 1.934 0 0

25 1.934 0 0

100 8 1 1.459 7.623E-03 0.254

5 1.459 7.626E-03 0.254

10 1.459 7.630E-03 0.254

15 1.459 7.630E-03 0.254

20 1.459 7.630E-03 0.254

25 1.459 7.630E-03 0.254
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The parameters α1, α2 and θ in the outflow boundary condition (2.7) were fixed to

1, 0 and 1 respectively in all the previous simulations. To study the effect of change

in their values, we performed simulations for different combinations of α1, α2 and

θ. Table 2.6 shows the effect of different combinations of α1,α2, Θ on mean drag

coefficient for Re = 30. Here the element order used is 8, νm
ν

=10, ∆t = 2.5 × 10−4.

We can see that there is insignificant effect on the steady state results by changing

the values of α1,α2 and θ.

Table 2.6.: Flow past a circular cylinder: Effect of α1, α2, Θ on mean drag coefficient

Cd for Re = 30.

Θ α1 α2 Cd

1 1 0 1.933

0 0 0 1.933

0 1 0 1.933

1 0 0 1.933

1 0 1 1.933

0.5 0 0 1.933

To demonstrate the capability of the current method in dealing with backflow

instabilities and strong vortices, we have performed long time simulations at high

Reynolds numbers, specifically for Re = 2000, 4000 and 5000. Table 2.7 shows the

parameters used for performing these simulations.

Figures 2.6, 2.7 and 2.8 show the time histories of the force components (fx=drag

and fy=lift) for the Reynolds numbers 2000, 4000 and 5000 respectively. Based on

these figures we can observe that the lift and drag forces oscillate with time but remain

bounded. We can also see that the force components are uniform for Re = 2000,

whereas, for Re = 4000 and Re = 5000 the oscillations are random and much more

chaotic due to the presence of strong vortices. From Table 2.7 it should be noted
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that, we had to increase the spatial and temporal resolution and also the ratio of

νm
ν

to obtain a stable simulations for the higher Reynolds numbers (Re = 4000 and

Re = 5000) when compared to the Reynolds number Re = 2000. We can see from

these results that using the proposed method is capable of providing stable simulation

results at high Reynolds numbers by increasing the value of νm
ν

. In contrast, we

observe that the standard consistent splitting (νm = ν) method fails to provide stable

computations at these Reynolds numbers.

Table 2.7.: Flow past a circular cylinder: Parameters used in the simulations for

Re = 2000, Re = 4000 and Re = 5000.

Reynolds number ∆t Element Order νm
ν

2000 2.5E-4 10 10

4000 1.0E-4 12 20

5000 1.0E-4 12 20
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Figure 2.6.: Flow past a circular cylinder: Time histories of (a) drag force and (b)

lift force for Re = 2000.
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Figure 2.7.: Flow past a circular cylinder: Time histories of (a) drag force and (b)

lift force for Re = 4000.
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Figure 2.8.: Flow past a circular cylinder: Time histories of (a) drag force and (b)

lift force for Re = 5000.
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Figures 2.9(a)-(c) show the instantaneous velocity distributions obtained from the

simulations near the centerline of the domain for Reynolds numbers Re = 2000, 4000

and 5000 respectively. From these snapshots, we can observe that, as the Reynolds

number increases from Re = 2000 to Re = 5000 we can see increasingly complex

vortex structures behind the cylinder. We can also observe slight deformations of the

vortex when the vortex core passes through the open boundary (see Figures 2.9(a)

and 2.9(c)). Note that the triangular structure observed in these figures are due to

the choice of the non-uniform mesh near the cylinder as shown in Figure 2.3.

Figures 2.10 and 2.11 show the temporal sequence of the snapshots of the ve-

locity distribution for the flows with Reynolds number Re = 4000 and Re = 5000

respectively. These snapshots illustrate the overall process of the discharge of a pair

of vortices (Figures 2.10(a) and 2.11(a)) through the open boundary. As the vor-

tices pass through through the open boundary (Figures 2.10(b) and 2.11(b)), we can

observe a small region of backflows (Figures 2.10(b)-(d) and 2.11(b)-(c)). After the

vortex core passes through the open boundary, we observe vortex distortions (Figures

2.10(d)-(f) and 2.11(d)-(f)). However, the simulations are still stable due to the choice

of the outflow boundary condition. The overall process of the discharge of vortices

through the domain appears to occur in a fairly natural way (Figures 2.10(b)-(f) and

2.11(b)-(f)).

From these simulations, we can be sure that when we use the method proposed in

Section 2.2 we can obtain long-time stable simulations for flows with high Reynolds

numbers even in the presence of backflows and strong vortices.
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Figure 2.9.: Flow past a circular cylinder: Instantaneous velocity distribution at (a)

Re = 2000, (b) Re = 4000, and (c) Re = 5000.
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Figure 2.10.: Discharge of vortices at the open boundary(Re = 4000): temporal

sequence of snapshots of the velocity fields at (a) t=4529.97, (b) t=4531.47, (c)

t=4532.97, (d) t=4534.47, (e) t=4536.97, (f) t=4537.47. Velocity vectors are plotted

on every fifth quadrature points in each direction within an element.
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Figure 2.11.: Discharge of vortices at the open boundary(Re = 5000): temporal

sequence of snapshots of the velocity fields at (a) t=4530.85, (b) t=4531.63, (c)

t=4532.41, (d) t=4533.19, (e) t=4533.97, (f) t=4534.75. Velocity vectors are plotted

on every fifth quadrature points in each direction within an element.
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2.4.3 Double Shear Flow

In this subsection, we analyze a double shear flow using the method developed

in section 2.2. This flow problem is slightly more challenging than the flow past a

cylinder because of the physical instability of the shear layers at moderate Reynolds

numbers combined with the open boundary. The goal of this section is to demon-

strate the capability of the proposed numerical scheme in simulating complex flow

phenomena at high Reynolds numbers. Note that this is again a two-dimensional

simulation.

We consider a rectangular flow domain Ω =
{

(x, y) : −5
2
6 x 6 5

2
, 0 6 y 6 15

2

}
as

shown in Figure 2.12 . We have two flows entering the flow domain: a higher velocity

flow with an inlet diameter D = 3
2

and velocity V2 = 1.1 is entering the domain from

the bottom covering, −3
4
6 x 6 3

4
, where as a lower velocity flow V1 = 0.1, enters

the domain through the bottom from either side of the higher velocity fluid, covering

the regions −5
2
D 6 x 6 −3

4
and 3

4
6 x 6 5

2
. There are periodic boundary conditions

applied on the left (x = −5
2
) and right(x = 5

2
) domain boundary and the flow can

leave or enter through the top surface where the open boundary condition (2.7) is

used with D0 = 5
3
, fb = 0 and δ = 0.01. We use the following velocity profile at the

inlet(y=0):
u = 0

v =
1

2

[
(V2 + V1) + (V2 − V1)(1−H(x, 0))tanh(

( x
R0

+ 1)

(
√

2ε)
) + (V2 − V1)tanh(

(1− x
R0

)

(
√

2ε)
)

]
(2.31)

where ε = D
60

controls the thickness of the shear layer, R0 = D
2

, and H(x, x0) is the

Heaviside step function which takes the value of 1 if x ≥ x0 and 0 otherwise.

For this problem, we choose the characteristic length scale L = 1m and the

characteristic velocity scale U0 = 1m/s. Then, we normalize all the velocity variables

by U0, all the length variables by D and the time by D
U0

. The Reynolds number is

calculated according to the equation (2.30), where d = L for this problem. We
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discretize the domain into 600 quadrilateral spectral elements of equal size with 30

elements along the y-direction and 20 elements along the x-direction.
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Figure 2.12.: Double Shear flow: Flow configuration and boundary conditions; Inflow

velocities V1 =0.1 and V2=1.1.
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To demonstrate the stability of the method and its capability to overcome the

backflow instabilities at high Reynolds numbers, we performed long time simulations

at Reynolds numbers 3000, 4000, 5000 and 7500. We have used the following param-

eters for performing these simulations:

∆t = 1× 10−4,
νm
ν

= 4000, element order = 10

Note that for these simulations a high value of νm
ν

(around 4000) is required

when compared to the flow past a circular cylinder flow (around 20) because of the

complexity involved in the flow.

Figures 2.13(a)-(d) shows the snapshots of the instantaneous velocity distribu-

tions at these at Re = 3000, 4000, 5000 and 7500 respectively. In Figure 2.13(a), for

Re = 3000, we can only observe a pair of vortices which are just about to leave the

open boundary at the top domain and there are no vortex formations closer to the

inflow boundary (y = 0). However, as we increase the Reynolds number the vortex

formations start to occur early in the domain and closer to the inflow boundary as

illustrated in 2.13(b)-(d). We can also see the formation of strong vortices near the

open boundary as we increase the Reynolds number.
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Figure 2.13.: Double Shear flow: Instantaneous velocity distribution at (a) Re = 3000,

(b) Re = 4000, (c) Re = 5000, and (d) Re = 7500.
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Figure 2.14 illustrates the time histories of the maximum absolute velocities

|u|max, |v|max (in the entire domain) and the root-mean-square(rms) velocities urms, vrms

(averaged over space) for Reynolds numbers 3000, 4000, 5000 and 7500. For the flow

at Re = 3000, we observe that the values of |u|max and |v|max vary periodically (Fig-

ure 2.14(a)) over a long period of time. However, as the Reynolds number increases

we observe that these values change rapidly (Figures 2.14(b)-(d)). A similar behavior

can be observed even in the case of rms velocities urms, vrms. The reason for this can

be attributed to the presence of stronger vortices at the open boundary. Overall, we

can observe that the maximum absolute velocities and the rms velocities in both the

horizontal and vertical directions do not grow exponentially and always stay within a

bounded region over a long period of time. This demonstrates that the computations

are long-time stable at these Reynolds numbers.
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Figure 2.14.: Double Shear flow: (i) |v|max, (ii) vrms, (iii) |u|max, (iv) urms for (a)

Re = 3000, (b) Re = 4000, (c) Re = 5000, (d) Re = 7500
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Figure 2.15 illustrates the temporal sequence of the snapshots of instantaneous

velocity distribution for the double shear flow at Re = 7500. These snapshots illus-

trate the complex flow characteristics which occur in the double shear flows at high

Reynolds numbers. We observe that as the vortex which is near the outflow boundary

(Figure 2.15(a)) leaves the domain (Figure 2.15(b)-(c)), a small region of backflow oc-

curs. Distortion to the vortex also occurs as the vortex core passes through the open

boundary (Figure 2.15(c)-(f)). We can also observe that the smaller vortices which

are present near the center of the domain combine with each other to form a single

large vortex before leaving the domain (Figure 2.15(a)-(f)). The overall discharge of

the vortices from the domain can be observed to occur almost naturally.

To summarize, in this section, we used the scheme proposed in Section 2.2 to

simulate a double shear flow at high Reynolds numbers. Based on the results of

the simulations presented in this section we can be sure that the proposed scheme

provides long-time stable computations at high Reynolds numbers and also capture

certain complex phenomena such as the merging of smaller vortices into a single large

vortex.
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Figure 2.15.: Double Shear flow: Discharge of vortices at the open boundary(Re =

7500): temporal sequence of snapshots of the velocity fields at (a) t=9101.3, (b)

t=9102.1, (c) t=9102.9, (d) t=9103.7, (e) t=9104.5, (f) t=9105.3. Velocity vectors

are plotted on every fifth quadrature points in each direction within an element.
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3. THREE-DIMENSIONAL HYBRID SPECTRAL

ELEMENT-FOURIER SPECTRAL METHOD FOR

WALL-BOUNDED TWO-PHASE FLOWS

3.1 Governing Equations and Boundary Conditions

In this section, we briefly discuss the governing equations for the two-phase flows

using the phase-field approach.

For the context of this chapter, we represent the three dimensional (3D) flow

domain as Ω, and its boundary is denoted by ∂Ω. The flow domain is assumed to be

homogeneous in at least one direction (we choose it as the z direction) and has no

constraints on the complexity in the other two directions (i.e., the x and y directions).

We consider a mixture of two incompressible and immiscible fluids in Ω. Let ρ1, ρ2

denote the density of the first and second fluid respectively, and let µ1, µ2 be their

dynamic viscosities. In the homogeneous direction, we consider the length of the

domain to be Lz such that we have the flow domain is represented as 0 ≤ z ≤ Lz in

the z direction. We then assume that at z = 0 and z = Lz the field variables and

domain are periodic. If we denote the projection of the 3D domain onto the x − y

plane as Ω2D and denote δΩ2D as its boundary, then Ω and δΩ can be represented as:

Ω = Ω2D ⊗ [0, Lz], ∂Ω = ∂Ω2D ⊗ [0, Lz]. (3.1)

Let us denote the unit vector normal to the domain boundary δΩ and pointing

outwards as n and the unit vector normal to δΩ2D in the x − y plane and pointing

outwards as n2D. Note that n does not have any components in the homogeneous

direction i.e n = (n2D, 0)
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Using the phase-field approach, we can describe the two phase system [47,53,60,83]

by the following system of equations,

ρ(
∂u

∂t
+ u · ∇u) = −∇p+∇ · [µD(u)]− λ∇ · (∇φ⊗∇φ) + f, (3.2a)

∇ · u = 0 (3.2b)

∂φ

∂t
+ u · ∇φ = −λγ1∇2[∇2φ− h(φ)] + g(x,t). (3.2c)

In the above equations, x, t are the spatial coordinate and time respectively. u(x,t)

is the velocity and p(x,t) is the pressure. D(u) = ∇u +∇uT (where (.)T denotes the

transpose of (.)), f(x,t) is an external body force. φ(x,t) is the phase field function,

−1 ≤ φ ≤ 1. The flow regions containing the first and second fluids are denoted by

φ = 1 and φ = −1 respectively, and the iso-surface φ(x,t) = 0 denotes the fluid

interface at any time t. The function h(φ) in (3.2c) is given by, h(φ) = 1
η2
φ(φ2 − 1),

where η is the characteristic length scale of the interface thickness. λ is the mixing

energy density, and is given by λ = 3
2
√

2
ση [60], where σ is the surface tension and

assumed to be constant. γ1 denotes the mobility of the interface, and it is also assumed

to be constant in the current context. Also, in (3.2a) the symbol ⊗ represents the

tensor product. The mixture density (ρ) and the dynamic viscosity (µ) are a function

of the the phase field function and given by,

ρ(φ) =
ρ1 + ρ2

2
+
ρ1 − ρ2

2
φ, µ(φ) =

µ1 + µ2

2
+
µ1 − µ2

2
φ. (3.3)

Since φ is time dependent, both ρ(φ) and µ(φ) also change with time. The function

g(x,t) in (3.2c) is a prescribed source term which is given as an input for the purpose

of numerical testing only, and is set to 0 in practical simulations.

The flow domain is assumed to be bounded by solid walls(in x and y directions)

and we will use the following set of boundary conditions:

u = w(x,t), on ∂Ω (3.4a)
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n · ∇[∇2φ− h(φ)] = gc(x,t), on ∂Ω (3.4b)

n · ∇φ+
1

λ
f′w(φ) + gb(x,t) = 0, on ∂Ω (3.4c)

where w is the boundary velocity, and gb(x,t) and gc(x,t) are prescribed source terms

for the purpose of numerical testing only and will be set to gb = 0 and gc = 0 when

performing the actual simulations. The function f′w(φ) is given as:

f′w(φ) = −3

4
σ cos(θs)(1− φ2). (3.5)

where θs is the contact angle between the solid wall and the fluid-fluid interface,

measured from the side of the first fluid. Note that the boundary condition (3.5) only

considers the effect of static contact angles. We refer the reader to [54] where the

effects of dynamic contact angle boundary conditions are discussed in detail.

Finally, the governing equations are supplemented by the following set of initial

conditions for the velocity and the phase field function:

u(x, 0) = uin(x), (3.6)

φ(x, 0) = φin(x). (3.7)

3.2 General Algorithm Formulation

The governing equations (3.2a)-(3.2c), the boundary conditions (3.4a)-(3.4c) are

the overall system of equations that need to be solved numerically. When numerically

solving the governing equations using Fourier spectral expansions we face a difficulty

due to the presence of the time-dependent mixture density ρ(φ) and viscosity µ(φ)

terms. Without a proper strategy, these terms would result in discrete equations

about the Fourier modes involving variable coefficients. These variable coefficient

form convolutions with the Fourier modes of the flow variables when we perform fast

Fourier Transforms, thus coupling together all the Fourier modes of the unknown

variables and nullifying the advantage of using Fourier expansions. To circumvent
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this difficulty, we employ a technique developed by [53], to reformulate the pressure

and the viscous terms and introduce appropriate constant-coefficient terms in the

discrete equations, thus enabling the efficient use of Fourier transforms.

The numerical scheme using the strategy developed in [53] is briefly summarized

below.

Equation (3.2a) is first transformed into:

∂u

∂t
+ u · ∇u = −1

ρ
∇P +

µ

ρ
∇2u +

1

ρ
∇µ ·D(u)− λ

ρ

(
∇2φ

)
∇φ+

1

ρ
f . (3.8)

where P = p + λ
2
∇φ · ∇φ is an auxiliary pressure, which will be called pressure

hereafter.

Let n > 0, denote the time step P n, and (.)n represent the field variable at the

time step n. Then, given (φn, P n,un), we obtain (φn+1, P n+1,un+1) as follows:

For φn+1:

γ0φ
n+1 − φ̂
∆t

+u∗,n+1·∇φ∗,n+1 = −λγ1∇2

[
∇2φn+1 − S

η2

(
φn+1 − φ∗,n+1

)
− h(φ∗,n+1)

]
+gn+1,

(3.9a)

n · ∇[∇2φn+1 − S

η2
(φn+1 − φ∗,n+1)− h(φ∗,n+1)] = gn+1

c , on ∂Ω, (3.9b)

n · ∇φn+1 = −1

λ
f ′w(φ∗,n+1)− gn+1

b . (3.9c)

For pressure P n+1:

γ0ũ
n+1 − û

∆t
+

1

ρ0

∇P n+1 = −u∗,n+1 · ∇u∗,n+1 + (
1

ρ0

− 1

ρn+1
)∇P ∗,n+1 − µn+1

ρn+1
∇×∇× u∗,n+1

+
1

ρn+1
∇µn+1 ·D(u∗,n+1)− λ

ρn+1
∇2φn+1 +

1

ρn+1
fn+1,

(3.10a)

∇ · ûn+1 = 0, (3.10b)

n · ûn+1 = n ·wn+1 on ∂Ω (3.10c)

For velocity un+1:

γ0u
n+1 − γ0ũ

n+1

∆t
− νm∇2un+1 = νm∇×∇× u∗,n+1, (3.11a)
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u∗,n+1 = w∗,n+1, on ∂Ω. (3.11b)

In the above equations ∆t is the time step size, ũ is an auxiliary variable approx-

imating un+1 and D(u) = ∇u +∇uT . If ζ denotes general variable, then ζn denotes

the value of ζ at time step n and, ζ∗,n+1 is a J-th order explicit approximation (where

J is the temporal order and can be equal to 1 or 2 for this method) of ζn+1, given by:

ζ∗,n+1 =

ζ
n, if J = 1,

2ζn − ζn−1, if J = 2.

(3.12)

The expressions
1

∆t
(γ0ζ

n+1− ζ̂) and
1

∆t
(γ0ζ̃

n+1− ζ̂) denote the J-th order backward

differentiation approximation of
δζ

δt

∣∣∣∣∣
n+1

, where γ0 and ζ̂ are given as follows:

ζ̂ =

ζ
n, if J = 1,

2ζn − 1
2
ζn−1, if J = 2,

γ0 =

1, if J = 1,

3
2
, if J = 2.

(3.13)

Also, ρ0 is a constant which is given by ρ0 = min(ρ1, ρ2) and S is a specified

constant that satisfies the condition:

S > η2

√
4γ0

λγ1∆t
(3.14)

νm is also a specified constant that satisfies the following condition:

νm >
1

2

(
ν1

ρ1

+
ν2

ρ2

)
. (3.15)

3.3 Hybrid Spectral Element-Fourier Spectral Discretization and Solu-

tion Algorithm

In this section, we focus on how to compute the field variables i.e velocity, pressure,

and the phase field function based on the scheme represented by equations (3.9a)–

(3.11b) on the 3D domain Ω having a homogeneous z direction. All field variables

will be represented by a Fourier spectral expansion along the z direction and a C0
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spectral element expansion within the x− y plane. Note that in the x− y plane, the

spectral element bases are real-valued functions and the Fourier bases contain complex

functions in the homogeneous z direction. Therefore, the 3D basis and test functions

will be complex-valued. Note that we have used the conjugate symmetry property

of the Fourier transforms so that the number of Fourier modes will be equal to half

the number of Fourier planes used in the homogeneous direction. For performing the

spectral element discretizations we require the weak forms of the governing equations.

Therefore we first discuss several integral relations which involve the 3D basis and

test functions, so that we can use them readily in the subsequent discussions.

Let Nz denote the number of modes in the Fourier spectral expansion in z direc-

tion. Let Φk(z) (−Nz

2
6 k 6 Nz

2
−1) denote the k-th Fourier basis function in z, given

by

Φk(z) = eiβkz, βk =
2πk

Lz
, −Nz

2
6 k 6

Nz

2
− 1. (3.16)

The following property holds,∫ Lz

0

Φ̄k(z)Φm(z)dz = Lzδkm, −Nz

2
6 k,m 6

Nz

2
− 1, (3.17)

where the overbar in Φ̄k denotes the complex conjugate of Φk, and δkm is the Kronecker

delta.

Let f(z) denote a generic scalar field function on Ω that is periodic in z with a

period Lz. Note that its dependence on x and y have been suppressed for brevity.

The Fourier expansion is

f(z) =

Nz
2
−1∑

k=−Nz
2

f̂kΦk(z) (3.18)
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where f̂k denotes the k-th Fourier mode of f(z). The following relations can be readily

verified based on (3.16)–(3.18):

∫ Lz

0

f(z)Φ̄k(z)dz = Lzf̂k,∫ Lz

0

f(z)
∂Φ̄k

∂z
dz = −iβkf̂kLz,∫ Lz

0

∂f

∂z
Φ̄k(z)dz = iβkf̂kLz,∫ Lz

0

∂f

∂z

∂Φ̄k

∂z
dz = β2

k f̂kLz, −Nz

2
6 k 6

Nz

2
− 1.

(3.19)

Let ϕ(~x), where ~x = (x, y), denote an arbitrary real test (basis) function in the

2D x− y plane. Then the 3D basis functions and test functions are respectively
Qk(~x, z) = ϕ(~x)Φk(z), −Nz

2
6 k 6

Nz

2
− 1; (basis function)

Q̄k(~x, z) = ϕ(~x)Φ̄k(z), −Nz

2
6 k 6

Nz

2
− 1. (test function)

(3.20)

We represent the gradient in 3D as ∇ =
(
∇2D,

∂
∂z

)
, where ∇2D denotes the gradient

in the 2D x− y plane and is given by ∇2D = ∂
∂~x

=
(
∂
∂x
, ∂
∂y

)
. Based on the equations

(3.18)–(3.19) we can verify the following relations:

∫
Ω

f(~x, z)Q̄k(~x, z)dΩ = Lz

∫
Ω2D

f̂k(~x)ϕ(~x)dΩ2D,∫
Ω

∇f · ∇Q̄kdΩ = Lz

∫
Ω2D

(
∇2Df̂k · ∇2Dϕ+ β2

k f̂kϕ
)
dΩ2D∫

∂Ω

f(~x, z)Q̄k(~x, z)dA = Lz

∫
∂Ω2D

f̂k(~x)ϕ(~x)dA,

(3.21)

where dΩ = dΩ2Ddz = d~xdz = dxdydz.

Let χ(~x, z) = (χ2D, χz) = (χx, χy, χz) denote a generic vector-valued field function

on Ω that is periodic in z with a period Lz, and χ2D denote its component vector in

the 2D x−y plane. Then the following relations hold based on equations (3.18)–(3.19):
∫

Ω

χ · ∇Q̄kdΩ = Lz

(∫
Ω2D

χ̂2D,k · ∇2DϕdΩ2D − iβk
∫

Ω2D

χ̂z,kϕdΩ2D

)
,∫

∂Ω

(n · χ)Q̄kdA = Lz

∫
∂Ω2D

n2D · χ̂2D,kϕdA, −Nz

2
6 k 6

Nz

2
− 1

(3.22)
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where n = (n2D, 0), and χ̂2D,k and χ̂z,k are the Fourier expansion coefficients of χ2D

and χz, respectively.

We can now discuss the process of discretization and obtaining the solution for

the field variables (φ,u, P ).

Phase Field Function Equation (3.9a) can be written as

∇2

[
∇2φn+1 − S

η2
φn+1

]
+

γ0

λγ1∆t
φn+1 = R1 +∇2R2 = R (3.23)

where 
R1 =

1

λγ1

[
gn+1 − u∗,n+1 · ∇φ∗,n+1 +

φ̂

∆t

]
R2 = h(φ)∗,n+1 − S

η2
φ∗,n+1.

(3.24)

Under the condition (3.14) for the constant S,we can reformulate equation (3.23) into

two de-coupled Helmholtz type equations given by (see [54, 60] for details),

∇2ψn+1 −
(
α +

S

η2

)
ψn+1 = R, (3.25a)

∇2φn+1 + αφn+1 = ψn+1, (3.25b)

where ψn+1 is an auxiliary variable defined by equation (3.25b) and the constant α is

given by α = − S
2η2

(
1 +
√

1− 4γ0
λγ1∆t

η4

S2

)
. Using equations (3.9c) and (3.25b), we can

transform the boundary condition (3.9b) as follows:

n · ∇ψn+1 = n · ∇R2 −
(
α +

S

η2

)[
1

λ
f ′w(φ∗,n+1) + gn+1

b

]
+ gn+1

c , on ∂Ω (3.26)

We now take the L2 inner product between the 3D test function, Q̄k(~x, z) =

ϕ(~x)Φ̄k(z) (ϕ(~x) denoting an arbitrary 2D test function), and equation (3.25a), and

integrate by part. This leads to∫
Ω

∇ψn+1 · ∇Q̄k +

(
α +

S

η2

)∫
Ω

ψn+1Q̄k = −
∫

Ω

R1Q̄k +

∫
Ω

∇R2 · ∇Q̄k

+

∫
∂Ω

[
−
(
α +

S

η2

)(
1

λ
f ′w(φ∗,n+1) + gn+1

b

)
+ gn+1

c

]
Q̄k, −Nz

2
6 k 6

Nz

2
−1, ∀ϕ

(3.27)
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where equation (3.26) has been used. Perform the Fourier spectral expansion of ψn+1

in z, ψn+1 =
∑Nz/2−1

k=−Nz/2
ψ̂n+1
k (~x)Φk(z). By using the relations (3.19)–(3.21), equation

(3.27) can be reduced into∫
Ω2D

∇2Dψ̂k · ∇2Dϕ+

(
α +

S

η2
+ β2

k

)∫
Ω2D

ψ̂kϕ =

∫
Ω2D

(
β2
kR̂2,k − R̂1,k

)
ϕ

+

∫
Ω2D

∇2DR̂2,k · ∇2Dϕ

+

∫
∂Ω2D

T̂kϕ, −Nz

2
6 k 6

Nz

2
− 1, ∀ϕ (3.28)

where R̂1,k and R̂2,k are the Fourier coefficients of R1 and R2, respectively, and T̂k is

the Fourier coefficient of the variable T given by

T = −
(
α +

S

η2

)(
1

λ
f ′w(φ∗,n+1) + gn+1

b

)
+ gn+1

c . (3.29)

Equation (3.28) is the weak form of a Helmholtz type equation about the Nz Fourier

modes ψ̂k in the 2D plane. It is noted that we can explicitly calculate the terms

on the right hand side(RHS) of the equation (3.28) and also note that the different

Fourier modes are not coupled in the computations.

Taking the L2 inner product between 3D test function Q̄k and equation (3.25b)

and integrating by part, we have∫
Ω

∇φn+1 · ∇Q̄k − α
∫

Ω

φn+1Q̄k = −
∫

Ω

ψn+1Q̄k −
∫
∂Ω

[
1

λ
f ′w(φ∗,n+1) + gn+1

b

]
Q̄k,

− Nz

2
6 k 6

Nz

2
− 1, ∀ϕ (3.30)

where we have used the boundary condition (3.9c). By using the relations (3.19)–

(3.21), this equation is reduced to∫
Ω2D

∇2Dφ̂
n+1
k ∇2Dϕ+

(
−α + β2

k

) ∫
Ω2D

φ̂n+1
k ϕ = −

∫
Ω2D

ψ̂n+1
k ϕ−

∫
∂Ω2D

M̂kϕ,

− Nz

2
6 k 6

Nz

2
− 1, ∀ϕ (3.31)

where φ̂n+1
k are the Fourier coefficients of φn+1, and M̂k are the Fourier coefficients

of the variable M defined by M = 1
λ
f ′w(φ∗,n+1) + gn+1

b . Equation (3.31) is the weak
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form about the Nz Fourier modes φ̂n+1
k in the 2D x− y plane. Once ψ̂n+1

k are known

by solving (3.28), (3.31) can be solved for φ̂n+1
k . It is noted that the different Fourier

modes are de-coupled from one another.

Therefore to compute the phase field function, we perform the following two steps:

(i) solve equation (3.28) for the ψ̂n+1
k , −Nz/2 6 k 6 Nz/2 − 1; (ii) solve equation

(3.31) for the φ̂n+1
k , −Nz/2 6 k 6 Nz/2− 1.

Pressure Take the L2 inner product between equation (3.10a) and ∇Q̄k, where

Q̄k(~x, z) denotes the 3D test function, and we get∫
Ω

∇P n+1 ·∇Q̄k = ρ0

∫
Ω

T·∇Q̄k−ρ0

∫
∂Ω

µn+1

ρn+1
n×ω∗,n+1 ·∇Q̄k−

ρ0γ0

∆t

∫
∂Ω

n·wn+1Q̄k,

− Nz

2
6 k 6

Nz

2
, ∀ϕ (3.32)

where ω = ∇ × u is the vorticity, and we have used integration by part, equation

(3.10c) and the identity µ
ρ
∇×ω · ∇Q̄k = ∇ ·

(
µ
ρ
ω ×∇Q̄k

)
−∇

(
µ
ρ

)
×ω · Q̄k. In this

equation,

T =
1

ρn+1

[
fn+1 − λ(ψn−1 − αφn+1)∇φn+1 +∇µn+1 ·D(u∗,n+1)

]
+

û

∆t
−u∗,n+1·∇u∗,n+1

+

(
1

ρ0

− 1

ρn+1

)
∇P ∗,n+1 +∇

(
µn+1

ρn+1

)
× ω∗,n+1. (3.33)

where we have used equation (3.25b).

Let Jn+1 = (J2D, Jz) = (Jx, Jy, Jz) = µn+1

ρn+1 n × ω∗,n+1 defined on ∂Ω. In light of

the relations (3.19)–(3.21), equation (3.32) is reduced to∫
Ω2D

∇2DP̂
n+1
k · ∇2Dϕ+ β2

k

∫
Ω2D

P̂ n+1
k ϕ = ρ0

∫
Ω2D

T̂2D,k · ∇2Dϕ− iβkρ0

∫
Ω2D

T̂z,kϕ

− ρ0

∫
∂Ω2D

Ĵn+1
2D,k · ∇2Dϕ+ iβkρ0

∫
∂Ω2D

Ĵn+1
z,k ϕ− γ0ρ0

∆t

∫
∂Ω2D

n2D · ŵn+1
2D,kϕ,

− Nz

2
6 k 6

Nz

2
− 1, ∀ϕ (3.34)

where P̂ n+1
k are the Fourier coefficients of P n+1, (T̂2D,k, T̂z,k) are the Fourier coeffi-

cients of Tn+1, and (Ĵn+1
2D,k, J

n+1
z,k ) are the Fourier coefficients of Jn+1. This equation is
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the weak form about the Nz Fourier modes of the pressure P̂ n+1
k in the 2D x−y plane.

The terms on RHS can be computed explicitly once φn+1 and ψn+1 are computed.

To avoid the computing the convolution of the higher order terms in T and Jn+1, we

first compute these terms in the physical space, which can then be transformed into

the Fourier space for computing the RHS of the equation (3.34).

It should be noted that due to the presence of iβk terms on the RHS of (3.34),

the real part (resp. imaginary part) of P̂ n+1
k will be affected by the imaginary part

(resp. real part) of T̂z,k and Ĵn+1
z,k .

Velocity Summing up equations (3.10a) and (3.11a) leads to

γ0

νm∆t
un+1−∇2un+1 =

1

νm

[
Y−∇

(
µn+1

ρn+1

)
× ω∗,n+1

]
− 1

νm

(
µn+1

ρn+1
− νm

)
∇×ω∗,n+1

(3.35)

where

Y = T− 1

ρ0

∇P n+1 (3.36)

and T is given by (3.33).

Let ϕ(0)(~x) denote an arbitrary test function in the 2D x− y plane that vanishes

on ∂Ω2D, i.e. ϕ(0)
∣∣
∂Ω2D

= 0, and define the test function for 3D

Q̄
(0)
k (~x, z) = ϕ(0)(~x)Φ̄k(z), −Nz

2
6 k 6

Nz

2
− 1. (3.37)

Note that Q̄
(0)
k

∣∣∣
∂Ω

= 0. Take the L2 inner product between equation (3.35) and the

3D test function Q̄
(0)
k , and we have

γ0

νm∆t

∫
Ω

un+1Q̄
(0)
k +

∫
Ω

∇Q̄(0)
k ·∇un+1 =

1

νm

∫
Ω

YQ̄
(0)
k −

1

νm

∫
Ω

(
µn+1

ρn+1
− νm

)
ω∗,n+1×∇Q̄(0)

k ,

− Nz

2
6 k 6

Nz

2
− 1, ∀ϕ(0)|∂Ω2D

= 0 (3.38)

where we have used integration by part, the property that Q̄
(0)
k

∣∣∣
∂Ω

= 0, and the

identity (κ and ξ denoting two scalar functions),
∫

Ω
(∇ × ω)κξ =

∫
∂Ω

(n × ω)κξ +∫
Ω

(ω ×∇κ)ξ +
∫

Ω
(ω ×∇ξ)κ.
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Let

Kn+1 =

(
µn+1

ρn+1
− νm

)
ω∗,n+1 (3.39)

and define (f(~x) denoting a generic function in x-y plane)

∇3 = (∇2D,−iβk), ∇3f = (∇2Df,−iβkf). (3.40)

Then the last term on the RHS of equation (3.38) can be transformed into∫
Ω

Kn+1 ×∇Q̄(0)
k =

Nz/2−1∑
m=−Nz/2

(∫
Ω2D

K̂n+1
m ×∇3ϕ

(0)

)(∫ Lz

0

Φm(z)Φ̄k(z)

)
= Lz

∫
Ω2D

K̂n+1
k ×∇3ϕ

(0)

(3.41)

where K̂n+1
k is the Fourier expansion coefficients of Kn+1, and we have used the

equation (3.17).

By using the relations (3.19)–(3.21) and (3.41), we can reduce equation (3.38) into(
γ0

νm∆t
+ β2

k

)∫
Ω2D

ûn+1
k ϕ(0) +

∫
Ω2D

∇2Dϕ
(0) · ∇ûn+1

k =
1

νm

∫
Ω2D

Ŷkϕ
(0)

− 1

νm

∫
Ω2D

K̂n+1
k ×∇3ϕ

(0), −Nz

2
6 k 6

Nz

2
− 1, ∀ϕ(0)|∂Ω2D

= 0, (3.42)

where ûn+1
k and Ŷk are the Fourier expansion coefficients of un+1 and Y, respectively.

This is the weak form about the velocity Fourier modes ûn+1
k in the 2D x-y plane. It

is noted that the three velocity components are not coupled, and the different Fourier

modes for any velocity component are also de-coupled. When computing the RHS of

this equation, Y and Kn+1 will be first computed in physical space based on equations

(3.36) and (3.39), and then their Fourier coefficients can be calculated.

It should be noted that because ∇3ϕ
(0) involves an iβk term, the real parts

(resp. imaginary parts) of K̂n+1
k will contribute to the imaginary parts (resp. real

parts) of ûn+1
k . In addition, the cross product in the last term of equation (3.42) will

mix up the contributions of this term to different velocity components.

Spectral Element Discretization in 2D x-y Plane Let us now discuss the

discretization of the equations (3.28), (3.31), (3.34) and (3.42) using C0 spectral
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elements in the 2D domain Ω2D. We partition Ω2D with a spectral element mesh.

Let Ω2D,h denote the discretized Ω2D, such that Ω2D,h = ∪Nel
e=1Ωe

2D,h, where Nel is the

number of elements in the mesh and Ωe
2D,h (1 6 e 6 Nel) denotes the element e.

Let ∂Ω2D,h denote the boundary of Ω2D,h. We use
∏

K(Ωe
2D,h) to denote the linear

space of polynomials of degree characterized by K, which will be referred to as the

element order hereafter. Let H1(Ω2D,h) denote the set of globally continuous and

square-integrable functions defined on Ω2D,h. We define the following function spaces
Xh =

{
v ∈ H1(Ω2D,h) : v|Ωe

2D,h
∈ ΠK(Ωe

2D,h), 1 6 e 6 Nel

}
,

Xh0 =
{
v ∈ Xh : v|∂Ω2D,h

= 0
}
.

(3.43)

In what follows, we use (·)h to denote the discretized version of variable (·), and

use Re(·) and Im(·) to denote the real and imaginary parts of a complex-valued

variable (·). The fully discretized version of equation (3.28) reads: find ψ̂n+1
k,h such

that Re(ψ̂n+1
k,h ) ∈ Xh and Im(ψ̂n+1

k,h ) ∈ Xh and∫
Ω2D,h

∇2Dψ̂
n+1
kh ·∇2Dϕh+

(
α +

S

η2
+ β2

k

)∫
Ω2D,h

ψ̂n+1
kh ϕh =

∫
Ω2D,h

(
β2
kR̂2,kh − R̂1,kh

)
ϕh

+

∫
Ω2D,h

∇2D,hR̂2,kh · ∇2Dϕh +

∫
∂Ω2D,h

T̂khϕh, −Nz

2
6 k 6

Nz

2
− 1, ∀ϕh ∈ Xh.

(3.44)

The fully discretized version of equation (3.31) reads: find φ̂n+1
kh such that Re(φ̂n+1

kh ) ∈

Xh and Im(φ̂n+1
kh ) ∈ Xh and∫

Ω2D,h

∇2Dφ̂
n+1
kh ∇2Dϕh+

(
−α + β2

k

) ∫
Ω2D,h

φ̂n+1
kh ϕh = −

∫
Ω2D,h

ψ̂n+1
kh ϕh−

∫
∂Ω2D,h

M̂khϕh,

− Nz

2
6 k 6

Nz

2
− 1, ∀ϕh ∈ Xh. (3.45)
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The fully discretized version of equation (3.34) reads: find P̂ n+1
kh such that Re(P̂ n+1

kh ) ∈

Xh and Im(P̂ n+1
kh ) ∈ Xh and∫

Ω2D,h

∇2DP̂
n+1
kh ·∇2Dϕh+β

2
k

∫
Ω2D,h

P̂ n+1
kh ϕh = ρ0

∫
Ω2D,h

T̂2D,kh·∇2Dϕh−iβkρ0

∫
Ω2D,h

T̂z,khϕh

− ρ0

∫
∂Ω2D,h

Ĵn+1
2D,kh · ∇2Dϕh + iβkρ0

∫
∂Ω2D,h

Ĵn+1
z,khϕh −

γ0ρ0

∆t

∫
∂Ω2D,h

n2D,h · ŵn+1
2D,khϕh,

− Nz

2
6 k 6

Nz

2
− 1, ∀ϕh ∈ Xh. (3.46)

The fully discretized version of equation (3.42) reads: find ûn+1
k such that Re(ûn+1

k ) ∈

[Xh]
3 and Im(ûn+1

k ) ∈ [Xh]
3 and(

γ0

νm∆t
+ β2

k

)∫
Ω2D,h

ûn+1
kh ϕh +

∫
Ω2D,h

∇2Dϕh · ∇ûn+1
kh =

1

νm

∫
Ω2D,h

Ŷkhϕh

− 1

νm

∫
Ω2D,h

K̂n+1
kh ×∇3ϕh, −Nz

2
6 k 6

Nz

2
− 1, ∀ϕh ∈ Xh0. (3.47)

The velocity Dirichlet boundary condition (3.11b) also needs to be discretized.

Upon Fourier expansion in z direction, the fully discretized version of equation (3.11b)

becomes

ûn+1
kh = ŵn+1

kh , −Nz

2
6 k 6

Nz

2
− 1, on ∂Ω2D,h (3.48)

where ŵn+1
kh are the Fourier expansion coefficients of the discretized boundary velocity

wn+1
h .

Solution Algorithm Therefore if we know the values of (φnh, P n
h , unh) , we compute

the physical variables at the next time step(i.e φn+1
h , P n+1

h , un+1
h ) as follows:

• Solve equations (3.44) for ψ̂n+1
kh (−Nz/2 6 k 6 Nz/2− 1);

• Solve equations (3.45) for φ̂n+1
kh (−Nz/2 6 k 6 Nz/2− 1);

• Solve equations (3.46) for P̂ n+1
kh (−Nz/2 6 k 6 Nz/2− 1);

• Solve equations (3.47), together with boundary condition (3.48), for ûn+1
kh (−Nz/2 6

k 6 Nz/2− 1).
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We can observe that all the equations to be solved using this numerical algo-

rithm are 2D decoupled equations in the x− y plane. This feature provides extensive

opportunities for efficient parallel processing. It should also be noted that the lin-

ear algebraic systems resulting from these equations involve only constant coefficient

matrices which can be precomputed.

3.4 Numerical tests for Two-Phase Flows

In this section we are going to demonstrate the performance of the method

proposed in section 3.3 by conducting simulations for several two-phase flow prob-

lems. Note that when performing these simulations we consider flow domains(three-

dimensional) which are homogeneous in at least one direction. In the first test prob-

lem, we illustrate the convergence rates of the method. In the second test problem,

we are going to simulate a co-current two-phase flow to demonstrate the accuracy of

the method. In the third test problem, we study the effects of the change in static

contact angle on the equilibrium shape of a liquid drop on a wall. In the fourth test

problem, we study the dynamics of a low-density liquid drop in a container filled with

high-density liquid and also simulate the rise of an air bubble in water to demonstrate

the capability of the method in dealing with realistic flows.

Before we analyze the results of the numerical simulations, we are going to briefly

discuss the normalization of the governing equations and the physical variables and

parameters. Note that the non-dimensional form of the governing equations, initial

and boundary conditions will retain the same format as the dimensional form if the

physical parameters and variables are normalized consistently [54,84]. Let L, U0 and

ρd denote the characteristic length scale, velocity scale, and the density scale respec-

tively. The physical variables and parameters used in the subsequent discussions are

consistently normalized using Table 3.1 unless specified otherwise.
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Table 3.1.: Normalization constants for physical variables and parameters. L, U0 and

ρd denote characteristic scales for the length, velocity and density, respectively.

Variables/parameters Normalization constant

x, x, y, z, η L

t, ∆t, g(x, t) L/U0

u, w U0

ρ, ρ1, ρ2, ρ0 ρd

µ, µ1, µ2 ρdU0L

P , p ρdU
2
0

ψ 1/L2

φ, θs, S, γ0 1

σ ρdU
2
0L

λ ρdU
2
0L

2

γ1 L/(ρdU0)

f ρdU
2
0/L

gc L3

gb 1/L

3.4.1 Convergence Tests

The goal of this subsection is to study the spatial and temporal convergence rates

of the method developed in Section 3.3 using a manufactured analytic solution to the

governing equations (3.8),(3.2b) and (3.2c).
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We consider the flow domain Ω = [(x, y, z) : 0 ≤ x ≤ 2,−1 ≤ y ≤ 1, 0 ≤ z ≤ 2] as

illustrated in Figure 3.1.We use the following analytic solution for the flow variables:

u = A cos(ax) cos(by) cos(cz) sin(βt)

v = 0

w = Aa
c

sin(ax) cos(by) sin(cz) sin(βt)

P = A sin(ax) sin(by) sin(cz) cos(βt)

φ = A1 cos(a1x) cos(b1y) cos(c1z) sin(β1t)

(3.49)

where A,A1, b, c, a1, b1, c1, β, β1 are user defined constants(given below), (u,v,w) are

the (x, y, z) of the velocity u. φ is the phase field function and P is the effective

pressure. The body force terms and the source field terms such as, f in equation

(3.2a), g in equation (3.2c), gc in (3.4b), gb in equation (3.4c) and w in equation

(3.4a), are chosen in a way so that the analytical expressions in (3.49) satisfy the

governing equations (3.8), (3.2b) and (3.2c), and also satisfy the boundary conditions

(3.4a), (3.4b) and (3.4c).

We impose the Dirichlet boundary conditions for the velocity based on the expres-

sions (3.49) and the contact angle boundary conditions (3.4b),(3.4c) for the phase field

function on the faces ABHG, DCIJ , ADKG and BCIH. We set the initial condi-

tions for the velocity u and the phase field function φ equal to the values obtained

by the analytic solution (3.49) at time t = 0.
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Figure 3.1.: Convergence rates: Test Domain.

The following parameters have been used when performing the subsequent simu-

lations:

A = 1.0, a = 1.0π, b = 1.5π, c = 1.0 π, a1 = b1 = c1 = 1.0π,

A1 = 1.0, β = 1.0, β1 = 1.0, µ1 = 0.01, ρ2
ρ1

= 3.0, µ2
µ1

= 2.0, J = 2,

η = 0.1, λ = 0.001, γ = 0.001, θs = 600,

ν∗m =
1

2

(
µ1

ρ1

+
µ2

ρ2

)
= 8.333× 10−3, ρ0 = min(ρ1, ρ2) = 1.0,

(3.50)

To simulate this problem we discretize the domain Ω into 8 Fourier planes along

the z-direction, and we further divide each Fourier plane along the x-direction into

two quadrilateral spectral elements of equal sizes as shown in Figure 3.1. When

performing the spatial and temporal convergence tests, we run the simulations from

time t=0 to a specified time t=tf , after which we calculate the numerical errors by

comparing the numerical results with the analytical solution(3.49) at the final time

t=tf .
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Spatial Convergence Test To determine the spatial convergence rate of the pro-

posed method, we use a fixed time step size ∆t=0.001 and set the total integration

time tf=0.1. Then we perform simulations by increasing the element order from 2 to

20 sequentially in steps of 2 and obtain the numerical errors of the flow variables for

each element order. Figure 3.2 shows the L∞ and L2 errors of the velocity, pressure

and the phase field function φ as a function of the element order for the spatial con-

vergence test. We observe that the numerical errors for the flow variables decrease

exponentially when the element order increases from 2 to 16. However, when the

element order increases beyond 16, we can observe that the errors do not further

decrease. The reason for this being that at high element orders the total error is

dominated by the temporal truncation error.

0 4 8 12 16 20
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L∞-phi
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Figure 3.2.: Spatial Convergence rate: L∞ and L2 errors as a function of element

order with fixed ∆t=0.001.

Temporal Convergence Test To determine the temporal convergence rate of the

proposed method, we first set the element order to 16 based on the results from the

spatial convergence test and also set the total integration time tf = 0.5. Then, we

perform simulations by reducing the time step size from ∆t=0.1 to ∆t=0.0015625

sequentially by a factor of 0.5 and obtain the numerical errors for each time step
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size. Figure 3.3 shows the L∞ and L2 errors of the velocity, pressure and the phase

field function φ as a function of the time step size ∆t for the temporal convergence

test. We can observe that the numerical method has a second-order convergence in

time for all the flow variables. Note that when the time step size becomes very small

(around ∆t = 0.001) the rate of change in errors (see the L∞ errors of the pressure

and velocity) starts to decrease since the total error will be dominated by the spatial

truncation error at these small time steps.
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1
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Figure 3.3.: Temporal convergence rate: L∞ and L2 errors as a function of ∆t with a

fixed element order 16.

The above results indicate that the proposed numerical method has a spatial expo-

nential and a temporal second-order convergence rate for three-dimensional problems.

3.4.2 Co-Current Flow of Two Immiscible Fluids in a Pipe

In this subsection, we use the method proposed in section 3.3 to simulate a fully

developed laminar co-current flow of two immiscible fluids in a circular pipe. The

goal of this test is to demonstrate the accuracy of the proposed method in simulating
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steady-state homogeneous two-phase flows, by comparing the simulation results at

the steady state with the analytical solution.

We consider a flow domain as illustrated in Figure 3.4, defined by Ω = [(x, y, z) :

0 ≤
√
x2 + y2 ≤ r2, 0 ≤ z ≤ 4

5
r2], where r2 is the radius of the circular pipe. The

first fluid flows in the region 0 6 r 6 r1 and has a viscosity µ1. The second fluid

flows in the region r1 6 r 6 r2 and has a viscosity µ2. Note that since the flow is

fully developed, we only have an axial flow in the pipe. The viscosity of the first

and second fluid is given by µ1, µ2 respectively. The interfacial instabilities and the

gravitational effects are neglected. Also, the two-fluids are assumed to have the same

density ρ. The analytical solution to the axial velocity profile for the two fluids as a

function of the radial distance(r) is given by (refer to [85]):

w1(r)

w̄
=

1− δ2 + µ̂(δ2 −R2)

δ4(µ̂− 1) + 1
, 0 ≤ R ≤ δ (3.51a)

w2(r)

w̄
=

1−R2

δ4(µ̂− 1) + 1
, δ ≤ R ≤ 1 (3.51b)

where w1 and w2 represent the axial velocity of the first and second fluid respec-

tively and

R =
r

r2

; µ̂ =
µ2

µ1

; δ =
r1

r2

(3.52)

Also, the term ŵ is the average flow velocity and is given by:

w̄ =
K̄r2

2

8µ2

{
δ4(µ̂− 1) + 1

}
(3.53)

where K̄ is the axial pressure gradient term.
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Figure 3.4.: Geometry and mesh of co-current pipe flow with 80 elements in each

Fourier plane

We choose the radius of the pipe r2 as the characteristic length scale, and use

the fluid density ρ as the characteristic density scale ρd = ρ1 = 1kg/m3 and set the

characteristic velocity scale U0 = 10
√
|K̄|L, where |K̄| is the absolute value of the

pressure gradient in the axial direction. The physical variables and parameters are

then normalized using appropriate normalization constants given in Table 3.1.

The flow domain is discretized into 16 Fourier planes along the z-direction and

each Fourier plane is further divided into 80 elements in the x− y plane as shown in

Figure 3.4. We do not compute the phase field function for this test problem since the

surface tension is assumed to be zero. Instead we simply set φ(x) = −tanh
√
x2+y2−r1√

2η
.

However, the initial velocity field is set to u(x,0)in = 0 and the simulations are

performed till the flow reaches a steady-state.
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The following parameters have been used to perform the subsequent simulations

in this subsection unless stated explicitly otherwise:
r1 = 0.5, r2 = 1, µ1 = 0.01 µ2

µ1
= 6; K̄ = −0.01,

η = 0.0005, J = 2, element order = 10,

∆t = 5× 10−5, ρ1 = ρ2 = 1, ρ0 = min(ρ1, ρ2) = 1.0.

(3.54)

Effect of interfacial thickness scale η To study the effect of the parameter η

we have performed numerical simulations for various values of η ranging between

η = 0.0005 to η = 0.01. Figure 3.13 shows the axial velocity profiles for different

cases of η obtained from the simulations at steady state. From these velocity profiles,

we observe that the magnitude of the peak axial velocity increases initially when η

is decreased from 0.01. However, when η becomes small enough (around η = 0.001),

the velocity profile remains unchanged for further decrease in η.
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Figure 3.5.: Co-current flow: Steady state axial velocity profiles obtained for different

interfacial thickness scale η.

Effect of the element order The goal of this test is to study the effect of the

element order on the axial velocity profile obtained at steady state. To perform
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this test, we fixed the value of η to 0.0005 (based on the results from the interfacial

thickness scale test) and then performed simulations for three element orders 10, 12

and 14. Figure 3.6 shows the effect of the element order on the axial-velocity profile

obtained from the simulations at steady state. We observe that the velocity profiles

are almost identical for the three cases.
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Figure 3.6.: Co-current flow: Steady state axial velocity profiles obtained for different

element order.

To demonstrate the accuracy of the scheme we have compared the steady-state

axial velocity profile obtained from the simulations with the theoretical profile. For

this test, we have used an element order=14 and η = 0.0005. Figure 3.7 shows the

axial-velocity profiles obtained from the simulations at steady state and the ana-

lytic solution. We observe that the velocity profile obtained from the simulations is

identical to the theoretical predictions.



73

-1 -0.5 0 0.5 1

x

-0.2

-0.15

-0.1

-0.05

0

A
x
ia
l
V
el
o
ci
ty

Theoretical

Current Simulations 3D

Figure 3.7.: Co-current Flow(80 elements in each Fourier plane): Comparison of the

axial velocity profile between the simulation results and the theoretical profile.

We have also performed a similar simulation in which the domain is discretized into

16 Fourier planes along the homogeneous direction and each plane is further divided

into 256 quadrilateral elements as shown in Figure 3.8. However, when performing

the simulations using this mesh we have set the initial velocity profile to the analytical

expressions (3.51a), (3.51b) instead of starting from zero velocity. For the simulation

using this mesh, we used an element order=10 and η = 0.0005. Figure 3.9 shows the

axial-velocity profiles obtained from the simulations at steady-state and the analytic

solution. We observe that the velocity profile obtained from the simulations is similar

to what we expect from the analytic solution.
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Figure 3.8.: Geometry and mesh of co-current pipe flow with 256 elements in each

Fourier plane
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Figure 3.9.: Co-current Flow (256 elements in each Fourier plane): Comparison of

the axial velocity profile between the simulation results and the theoretical profile.
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Therefore, the method proposed in Section 3.3, can be used for accurately simu-

lating steady-state two-phase flows.

3.4.3 Equilibrium Shape of a Liquid drop on a wall

In this subsection, we used the method proposed in section 3.3 to simulate the

equilibrium shape of a liquid drop surrounded by a low density fluid on a horizontal

partially wettable wall. We neglect the effect of the gravitational force for this test

case. The goal of this test is to study the effects of the change in static contact angle on

the equilibrium shape of the liquid drop. We will also demonstrate the accuracy of the

method by measuring the spreading length and the height of the drop at equilibrium

for different static contact angles and comparing them to the corresponding values

obtained from the theory. For this problem, we choose the low-density fluid as the

first fluid and the liquid drop as the second fluid.

We consider a non-dimensional flow domain given by Ω = [(x, y, z) : −0.5 ≤ x ≤

0.5, 0 ≤ y ≤ 0.5, 0 ≤ z ≤ 0.8] as sketched in Figure 3.10. We choose the characteristic

length scale as L = 1 × 10−2m, the characteristic density scale as ρd = ρ1 (density

of the first fluid) and set the characteristic velocity scale as U0 =
√
g0L, where g0 =

1m/s2. The non-dimensional density of the liquid is chosen as ρ2 = 5. The initial

shape of the liquid drop is set to be a hemisphere with a radius R0 = 0.25 as shown in

Figure 3.10. We denote the spreading length as Ls and the drop height as H. These

parameters are illustrated in the Figure 3.10. Initially, the static contact angle is at

900 (hemisphere, Figure 3.10) and the drop is assumed to be at rest. When we begin

the simulation, the shape of the drop initially changes because of the surface tension

between the drop and the surrounding fluid as well as due to the contact angle set

at the wall before it becomes a spherical cap at equilibrium (see Figure 3.11) [86].

Let R denote the radius of the spherical cap at equilibrium, and θe denote the static

contact angle measured from the high-density liquid side (note that θe = 1800 − θs).

Then, based on the conservation of the volume of the liquid drop, we can obtain



76

the theoretical values of the spreading length and the drop height at equilibrium as

follows [86]:

R

R0

= 3

√
2

(2 + cosθe)(1− cosθe)2
, Ls = 2Rsinθe, H = R(1− cosθe) (3.55)

Figure 3.10.: Sketch showing the parameters of the the equilibrium shape of the liquid

drop

We set periodic boundary conditions for all the flow variables at the left and right

boundaries of the flow domain (the y − z plane at x = −0.5 and x = 0.5 ). The top

and bottom boundaries (the x−z plane at y = 0 and y = 0.5) are assumed to be solid

walls where we use the no-slip conditions for the velocity and the static contact-angle

boundary conditions for the phase field function. The flow domain Ω is discretized

into 96 Fourier planes along the z-direction, and each plane is further discretized into
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200 quadrilateral elements in the x-y plane. The simulations are then performed for

five different static contact angles θe = 600, 750, 900, 1050, 1200.

The following parameters have been used for performing the tests:
ρ1 = 1, ρ2

ρ1
= 5, µ1 = 0.05 µ2

µ1
= 2; element order = 10,

∆t = 1× 10−5, Cη = 0.01, λ ∗ γ1 = 1.0 e−8,

νm = 0.1, σ = 100

Figure 3.11 shows the equilibrium shape of the liquid drop obtained for different

contact angles θe = 600, 750, 900, 1050, 1200. We can observe that as the contact angle

θe increases, the spreading length of the drop decreases and the drop height increases.

We observe that the equilibrium shapes at different contact angle are visually similar

to the theoretical shape [86].

Before we make numerical comparisons between the simulations and the theory we

briefly discuss the method used to obtain the spreading length and the drop height of

the equilibrium shape of the drop from numerical simulations. Figure 3.12 shows the

2D projection of the 3D iso-surface φ = 0 in the x − y plane using Tecplot 360. We

label the maximum and minimum y-coordinate of this iso-surface as Ymax and Ymin

respectively (see Figure 3.12). We also label the minimum and the maximum value

of the x-coordinate of this iso-surface at y = Ymin as Xmin and Xmax respectively. We

then calculate the spreading length and drop height from the numerical simulations

as follows: Spreading Length(Simulation) = |Xmax −Xmin|,

DropHeight(Simulation) = |Ymax − Ymin|
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(a) (b)

(c) (d)

(e)

Figure 3.11.: Iso-surface φ = 0 of the equilibrium shape of the liquid drop at (a)

θe = 600, (a) θe = 750, (a) θe = 900, (a) θe = 1050, (a) θe = 1200.

We can determine the contact angle actual using equations (3.55), once the spread-

ing length and the drop height are calculated.
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Figure 3.12.: Projection of the Isosurface φ = 0 on the x− y plane for θe=1050

Figure 3.13 shows the comparison of the numerical values of the spreading length

and the drop height between the theoretical results from equation (3.55) and the

simulation results. We observe that the simulation results are almost identical to

what we can predict from the theory.
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Figure 3.13.: Comparison of the drop height and spreading length (normalized by R0)

between simulation and theory as a function of static contact angle(θs). Comparison

of the actual contact angle obtained from the simulations with the imposed static

contact angle is also shown. The left vertical axis is for the spreading length and

drop height, and the right vertical axis is for the contact angle(in degrees)

To study the effect of the element order on the spreading length and the drop

height we performed simulations to obtain the equilibrium shape of the liquid drop

with liquid side contact angle 1050 for three different element orders=8, 10 and 12.

We fixed the other parameters to that of the previous simulations in this subsection.

Table 3.2 lists the results of the simulation for the different element orders and also

the theoretical values. We observe that the numerical results are almost similar to

the theoretical results and the higher element orders (10 and 12) giving slightly more

accurate results for the spreading length when compared to the element order=8.

Overall, from the simulations in this subsection, we observe that the method

proposed in Section 3.3 is capable of accurately imposing the static contact angle

boundary conditions near the partially wettable wall.
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Table 3.2.: Effect of Element Order on the spreading length and the drop height for

liquid-side contact angle=1050.

Element Order Spreading Length Drop Height

8 0.432 0.283

10 0.433 0.282

12 0.433 0.282

Theoretical 0.434 0.283

3.4.4 Flow dynamics of a Drop/Bubble in a Heavier Liquid

In this subsection, we use the proposed method to investigate two cases of a low-

density liquid drop/bubble (first fluid) rising inside a container filled with a higher

density liquid (second fluid). For the first case, we simulate a low-density liquid drop

in a higher density liquid, and we choose the liquids such that the density and viscosity

ratios between them are at moderate values. For the second case, we simulate an air-

bubble in a domain filled with water, and we use the actual physical values for the

density and viscosity of both air and water. Therefore, we are essentially simulating

a two-phase flow with large density and viscosity ratios for the second case. The goal

of performing these two cases is to study the dynamics of the two-phase system under

the effect of surface tension and gravity using the method proposed in Section 3.3 and

also to demonstrate the capabilities of the method for simulating realistic two-phase

flows with large density and viscosity ratios. The effects of the static contact angle

will also be investigated for the two cases. Also, we use the same flow domain for

simulating the two-test cases.

We consider a non-dimensional flow domain, Ω = [(x, y, z) : −1
2
≤ x ≤ 1

2
, 0 ≤

y ≤ 7
5
, 0 ≤ z ≤ 7

5
]. We set the characteristic length scale L = 1 × 10−2m , the

characteristic density scale equal to the density of the first fluid ρd = ρ1, and then set
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the characteristic velocity scale as U0 =
√
g0L, where g0 = 1m/s2 is used to normalize

the gravitational force. Then we normalize all the physical variables and parameters

by choosing appropriate normalization constants from Table 3.1. The low density

liquid/bubble is assumed to be initially at rest and has a spherical shape with a non-

dimensional radius R0 = 1
4

with its center located at X0=(x0, y0, z0)=(0, 1
2
, 7

10
). We

assume that the gravity is acting in the negative y direction. We impose periodic

conditions at the left and right boundaries of the flow domain (i.e., in the y− z plane

at x = −1
2

and x = 1
2

) for all the flow variables. The top and bottom boundaries (i.e.,

the x− z plane at y = 0 and y = 7
5
) are assumed to be solid walls and we impose the

no-slip conditions for the velocity and the static contact-angle boundary conditions

for the phase field function. The initial phase field distribution in the domain is set

to:

φin(x) = − tanh

√
(x− x0)2 + (y − y0)2 + (z − z0)2 −R0√

2η
, (3.56)
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Figure 3.14.: Sketch showing the flow domain of the container.

Low-density liquid drop in a higher density liquid

In this test case, we study the motion of a low-density liquid drop in a higher

density liquid. For this test case, we discretize the domain Ω into 64 Fourier planes

in the z-direction, and each plane is further divided into 200 quadrilateral spectral

elements in the x− y plane. We perform simulations for several static contact angles

θe=600, 750, 900 and 1000 (where θe is the contact angle measured from the high-

density liquid side) to study the dynamics of the two-phase system at the solid wall.
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We have used the following non-dimensional parameters for performing these tests:
ρ1 = 1, ρ2

ρ1
= 10, µ1 = 0.01, µ2

µ1
= 3,

element order = 10, ∆t = 2.5× 10−5, η = 0.008,

λγ1 = 1.0 e−8, νm = 1
2
ρ1

(
µ1
ρ1

+ µ2
ρ2

)
, σ = 100.

(a) (b) (c)

(d) (e) (f)

Figure 3.15.: Temporal sequence of snapshots of the fluid-fluid interface with θe = 600:

(a) t=0.11 (b) t=0.48 (c) t=0.57 (d) t=0.77 (e) t=0.97 (f) t=1.17.

Figures 3.15,3.16,3.17 and 3.18 show the temporal sequence of the snapshots of

the fluid-fluid interface for the θe= 600, 750, 900 and 1050 respectively. From Figure

3.15(a)-(b) we observe that because of the buoyancy the low-density liquid drop which

is initially at rest starts to rise in the flow domain. As the velocity of the liquid drop

increases, it starts to deform (see Figure 3.15(a)-(c)). For θe = 60, we see that the
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drop does not reach the top wall as it could not displace the high-density fluid located

near the wall. The liquid drop then slightly oscillates before coming to steady state

slightly below the top wall. The dynamics of the drop is observed to be similar for

different contact angles when the drop is away from the top wall. However, in the

vicinity of the top wall, we observe that for contact angles θe = 750, 900, 1000 (see

Figures 3.16-3.18), the drop is able to displace the higher density liquid at the top

wall unlike the case with θe = 600 (Figure 3.15).

(a) (b) (c)

(d) (e) (f)

Figure 3.16.: Temporal sequence of snapshots of the fluid-fluid interface with θe = 750:

(a) t=0.11 (b) t=0.52 (c) t=0.87 (e) t=0.97 (f) t=1.42 (i) t=2.12.

For the case θe = 750, we can see that the liquid drop displaces the higher density

liquid near the top wall and touches the wall. Then it slowly starts deforming due to

the contact angle condition, before it eventually reaches a steady state. However, for
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the cases θe = 900 and θe = 1000, we see that a small portion of the higher density

liquid gets trapped inside the lower density drop and the fluid-fluid interface sepa-

rates into two interfaces (see Figures 3.17(c) and 3.18(d)) with the external interface

deforming significantly in the y direction. The external interface then begins to slowly

recover its shape in the y-direction, whereas the internal interface slowly develops in

the -y direction before the two interfaces finally come to steady state (see Figures

3.17(d)-(f) and 3.18(e)-(i)).

(a) (b) (c)

(d) (e) (f)

Figure 3.17.: Temporal sequence of snapshots of the fluid-fluid interface with θe = 900:

(a) t=0.11 (b) t=0.67 (c) t=0.73 (d) t=0.77 (e) t=0.87 (f) t=1.43 (g) t=0.70 (h)

t=0.85 (i) t=1.95.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.18.: Temporal sequence of snapshots of the fluid-fluid interface with θe =

1000: (a) t=0.26 (b) t=0.51 (c) t=0.69 (d) t=0.71 (e) t=0.73 (f) t=0.76 (g) t=0.81

(h) t=1.01 (i) t=1.31.

From these simulations, we observed that the static contact angle has a significant

effect on the dynamics of the two-phase system, and the proposed method is capable

of capturing its effect.
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Air-bubble in Water

In this test case, we simulate the motion of an air-bubble inside a domain filled

with water. We assume the true physical values for all the physical parameters such as

the air/water density, viscosity, surface tension involved in this problem. Specifically,
air : ρair = 1.2041 kg/m3, µair = 1.78 × 10−5 kg/(ms),

water : ρwater = 998.207 kg/m3, µwater = 1.002 × 10−3 kg/(ms),

surface tension : σ = 7.28 × 10−2 kg/s2, gravity = 9.8 m/s2.

For this test case, the flow domain Ω is discretized into 96 Fourier planes along the

z-direction, and each plane is divided into 200 quadrilateral spectral elements in the

x− y plane. We perform simulations for several static contact angles θe=600, 750, 900

and 1050, (where θe is the water-side contact angle) to study the different interactions

of the air-bubble with the solid wall at the top of the domain.

We have used the following non-dimensional parameters for performing these tests:
ρ1 = 1, ρ2

ρ1
= 829, µ1 = 0.0147828, µ2

µ1
= 56.29,

element order = 12, ∆t = 2.5× 10−5, η = 0.02,

λγ1 = 1.0× 10−6, νm = 0.0147828, σ = 604.601.

Figures 3.19, 3.20, 3.21, and 3.22 show the temporal sequence of the air-water

interface for the water-side contact angles 600, 750, 900 and 1050 respectively. From

Figure 3.19(a)-(b) we observe that because of the buoyancy the air bubble which is

initially at rest begins to gain momentum and starts to rise in the flow domain. As the

air bubble builds enough momentum, it begins to slowly start deforming and continues

to deform just before reaching the top wall as can be seen from Figure 3.19(c)-(d).

Note that the dynamics of the air-water interface is same for all the different contact

angles just before the interface touches the solid wall at the top boundary(see Figures

3.19(a)-(d),3.20(a)-(d), 3.21 (a)-(d) and 3.22(a)-(d)). This observation is similar to

what we have observed in the test case with low-density ratios. However, for this
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case, we observe that the air-bubble displaces the water near the top wall even when

θe = 600. The large density ratios between air and water cause the bubble to have

more velocity and thus more kinetic energy which is sufficient enough to displace the

water.

We observe different interactions for different static contact angles after the in-

terface touches the solid wall. Let us first consider the case with the 600 water-side

contact angle. From Figure 3.19(e)-(f) we can observe that the air-water interface has

been distorted severely. Also, the air-bubble has trapped a small water drop inside it

causing the air-water interface to split into two parts. The external interface slowly

regains its shape along the vertical direction while the inner interface is still attached

to the wall and quickly reshapes to satisfy the static contact angle boundary condi-

tions at the top wall (see Figure 3.19(g)-(h)). The water drop is not able to leave

the air-bubble because the surface tension, in this case, is strong enough to counter

the gravitational force acting on the water drop. The equilibrium shape of the two

air-water interfaces resembles that of a spherical cap and can be seen in Figure 3.19(i).



90

(a) a (b) b (c) c

(d) d (e) e (f) f

(g) g (h) h (i) i

Figure 3.19.: Temporal sequence of snapshots of the air-water interface with θe = 600:

(a) t=0.06, (b) t=0.26, (c) t=0.44, (d) t=0.60, (e) t=0.65, (f) t=0.67, (g) t=0.70, (h)

t=0.85, (i) t=1.95.
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(a) a (b) b (c) c

(d) d (e) e (f) f

(g) g (h) h (i) i

Figure 3.20.: Temporal sequence of snapshots of the air-water interface with θe = 750:

(a) t=0.06, (b) t=0.26, (c) t=0.44, (d) t=0.59, (e) t=0.64, (f) t=0.67, (g) t=0.70, (h)

t=0.84, (i) t=1.78.
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The air-water interface with 750 water-side contact angle shows the similar be-

havior as the 600 contact angle with an exception that the water drop trapped inside

yearns to separate from the top wall but fails to do so as can be seen in Figure 3.20(g)-

(i). For the 900 contact angle some portion of trapped water drop does escape the

air bubble (see Figure 3.21(h)-(j)) but fails to do so entirely(see Figure 3.21(k)). The

reason for this might be because the surface tension was not enough to carry the

massive water drop, but once some of the water escaped the bubble, it was suffi-

cient enough to hold the lighter drop. Throughout the process, the exterior air-water

interface remains deformed in the vertical direction only to regain its spherical cap

shape after the inside interface stabilizes. For the air-water interface with 1050 static

contact angle, the trapped water drop completely escapes the air-bubble into the

flow domain with water, and there is once more only a single air-water interface (see

Figure3.22(f)-(k)). An important observation to be noted is that in Figure 3.22(g)

when the water drop is escaping the air-bubble, it first separates from the top wall

and then leaves the bubble. Failing to first separate from the top wall would result

in the separation of the air-bubble into two smaller bubbles as observed in the 2D

simulations in the previous works [53]. Overall, we can see that the tendency of the

trapped water drop to free itself increases with the increase in water-side contact

angle.

From the above simulations, we can be sure that the method proposed herein is

capable of effectively simulating air-water interfaces and their complicated interac-

tions such as the interface deformations and capturing specific flow dynamics such as

the trapping of the water-drop inside the air-bubble.
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(a) a (b) b (c) c

(d) d (e) e (f) f

(g) g (h) h (i) i

(j) g (k) h (l) i

Figure 3.21.: Temporal sequence of snapshots of the air-water interface with θe = 900:

(a) t=0.06, (b) t=0.26, (c) t=0.44, (d) t=0.60, (e) t=0.63, (f) t=0.64, (g) t=0.66, (h)

t=0.73, (i) t=0.74, (j) t=0.78, (k) t=0.85, (l) t=1.45.
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(a) a (b) b (c) c

(d) d (e) e (f) f

(g) g (h) h (i) i

(j) g (k) h (l) i

Figure 3.22.: Temporal sequence of snapshots of the air-water interface with θe =

1050: (a) t=0.06, (b) t=0.26, (c) t=0.44, (d) t=0.60, (e) t=0.63, (f) t=0.66, (g)

t=0.70, (h) t=0.72, (i) t=0.75, (j) t=0.77, (k) t=0.90, (l) t=1.45.
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4. CONCLUSIONS AND RECOMMENDATIONS

This thesis consists of two parts which focus on developing numerical algorithms for

the simulations of incompressible single-phase and two-phase flows. In the first part

of this thesis, we presented a modified consistent splitting scheme for incompressible

single-phase flows in an unbounded domain together with a recently developed en-

ergy stable outflow boundary condition [3] in Chapter 2. This numerical scheme is

capable of simulating incompressible single-phase flows in an open boundary at high

Reynolds numbers, unlike a standard consistent splitting scheme, which is observed

to be unstable at these Reynolds numbers. The essential feature that enables stable

simulations at high Reynolds numbers lies in the reformulation of the viscous term.

We employ C0- continuous high order spectral-elements for the spatial discretization

of the proposed algorithm in Section 2.3. Then we perform several numerical sim-

ulations to test the performance of the proposed method in Section 2.4. Based on

the numerical convergence tests, we demonstrate that the proposed method has a

spatial exponential convergence rate and a temporal second-order convergence rate

for all the flow variables. To demonstrate the accuracy of the method, we have also

compared the results of the numerical simulations with experimental values and other

numerical simulation results from the literature for a flow past a circular cylinder in

the two-dimensional flow regime. We have also conducted long-time simulations at

high Reynolds numbers for two problems. These simulations show that the modi-

fied consistent-splitting scheme together with the open boundary condition presented

in [3] can effectively overcome the backflow instabilities in the presence of strong

vortices at the outflow boundary.

In Chapter 3 of this thesis, we presented a hybrid spectral element-Fourier spectral

method for the spatial discretization of a recently developed numerical algorithm [53]

for simulating wall bounded two-phase flows with static contact angle boundary con-
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ditions in a three-dimensional domain which is homogeneous in at least one direction.

All the flow variables are represented by Fourier spectral expansions in the homo-

geneous direction and by C0 spectral element expansions in the non-homogeneous

directions. The essential aspects of the spatial discretization technique proposed in

Section 3.3 are: (1) It completely decouples the computations of the flow variables

using Fourier spectral expansions in the homogeneous direction, (2) The algorithm

to compute the flow variables consists of solving linear algebraic systems of two di-

mensional decoupled equations about the Fourier modes, which can be solved largely

in parallel, (3) The coefficient matrices of these linear algebraic systems of equations

are constant and can, therefore, be precomputed. We have conducted several simula-

tions to demonstrate the performance of the proposed spatial discretization technique.

The convergence tests show that the overall algorithm presented in Section 3.3 has

a second-order convergence rate in time and an exponential spatial convergence rate

for all the flow variables. To demonstrate the accuracy of the proposed method, we

have considered a co-current two-phase flow system which has a physical solution

and compared the numerical results with the theoretical results. To demonstrate the

effectiveness of the proposed method in imposing static contact angles, we investi-

gated the equilibrium shape of a liquid drop on a partially wettable wall without

any external forces for various static contact angles and compared the numerical re-

sults (such as the spreading length of the drop) with the theoretical predictions. We

have performed simulations of an air bubble trapped inside water with true values for

the physical properties for various static contact angles to demonstrate the capabil-

ity of the proposed method to simulate realistic flows and capture different complex

interactions.

Future research can extend this spatial discretization technique for the two-phase

flows with dynamic contact angle boundary conditions or even for solving a system

of multi-phase flows. Further, we desire to use the method proposed in section 2.2

to simulate three-dimensional single-phase flows and study the performance of the

method.
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