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ABSTRACT

Beckett, Travis J. Ph.D., Purdue University, December 2018. Selection and Charac-
terization of Previously Plant-Variety-Protected Commercial Maize Inbreds. Major
Professor: Torbert Rocheford.

The use of genotypic markers in plant breeding has greatly increased in the last

few decades. In this dissertation, I report on three topics that illustrate how genotypic

marker information can be applied in maize breeding to increase genetic gain. In the

first chapter1, I describe how genotypic and phenotypic data can be used to predict the

mean, variance, and superior progeny mean of virtual biparental populations. I use

these predictions to identify optimal breeding crosses out of a commercially relevant

collection of North American dent inbreds. In the second chapter, within the context

of early generation maize inbred development, and using a hybrid testcross data set,

I report on the change in genomic prediction accuracy as the size of the training set

increases and compare the accuracy of different genomic selection models. In the

third chapter2, I used a multi-variable linear regression approach known as genome-

wide association (GWA) analysis to identify particular genetic locations, known as

quantitative trait loci (QTL), that are associated with maize inflorescence traits.

1Chapter 1 has been submitted for publication in the academic journal Crop Science.
2Chapter 3 has been submitted for publication in the academic journal Plant Breeding.
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Prologue

Projections show that by the year 2050, the global population will reach 9 billion

(Northoff, 2016). Accordingly, experts have estimated that overall food production

must increase by 70%, with a 51% yield increase needed in soybean, 60% in wheat,

46% in rice, and 71% in corn (Bruinsma et al., 2009; Kruse, 2010). Past increases in

corn yield have been primarily due to the move from open-pollinated to double-cross

then single-cross hybrids, improved agronomic practices, increased fertilizer applica-

tions, higher plant populations, and genetic modifications for resistance to pests and

herbicides. Future increases in corn yield could come from a number of areas, in-

cluding precision agriculture, biotechnology, novel genetic variation, and the use of

genetic markers.

From a plant breeder’s perspective, improvements in corn yield can be described

in terms of genetic gain. Genetic gain can be modeled by the following basic formula

(Fehr, 1991):

GL =
irσ2

A

L
(1)

where: GL is the expected genetic gain per unit time L; i is the selection intensity,

or the proportion of individuals chosen to be parents of the next generation; r is the

selection accuracy; σ2
A is the additive genetic variance; and L is the length of the

breeding cycle.

Genomic prediction, defined as the use of genotypic markers and phenotypic data

to make predictions for individuals with known genotype but unknown phenotype,

can be used to increase genetic gain in several ways. One way is to increase the

selection intensity by using predictions to zero in on the individuals with the best

predicted performance, and discarding the rest. Another way is to improve selection

accuracy by adding predicted performance values to the collection of parameters that
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breeders traditionally use for selection. Yet another way is to decrease the length

of the breeding cycle. One way this is done is by replacing part or all of the first

stage of testing with genomic selection–a practice that is common in contemporary

commercial maize breeding programs. This effectively reduces the length of that

breeding cycle to the length of time that it takes to genotype the seeds and obtain

the predictions from the statistical model.

The research projects described in the three chapters in this dissertation all relate

to this major theme of applying genomic analysis tools in maize breeding. For all

three projects, I used North American dent maize inbreds, the majority of which were

formerly elite commercial inbreds with expired Plant Variety Protection certificates

(hereafter referred to as ex-PVP inbreds). I supplemented these with a collection

of public inbreds that are key progenitors, or founders, of these ex-PVP inbreds.

A comprehensive study of the genetic relatedness of these inbreds was presented in

the first chapter of my Master’s Thesis (T. J. Beckett, 2016) and published shortly

thereafter in the journal PLOS One (T. Beckett, Morales, Koehler, & Rocheford,

2017).

In Chapter 13 of this dissertation, I use the predicted mean, variance, and supe-

rior progeny mean of simulated biparental populations to identify optimal breeding

crosses for improved hybrid performance with tester PHP02. Several recent studies

have reported on similar models that predict progeny variance within simulated or

virtual biparental populations (Bernardo, 2015; Mohammadi, Tiede, & Smith, 2015;

Lehermeier, Teyssèdre, & Schön, 2017; Osthushenrich, Frisch, & Herzog, 2017). How-

ever, none use hybrid traits in the training set. In particular, two of these authors

(Bernardo, 2015; Osthushenrich et al., 2017) state that this method could be used to

predict topcross performance of simulated biparental populations. This is precisely

what is accomplished in Chapter 1 of this dissertation.

In Chapter 2, I detail the possibilities of using genomic prediction (GP) in early

generation maize inbred development, by reporting on the change in prediction ac-

3Chapter 1 has been submitted for publication in the academic journal Crop Science.
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curacy when training set size increases and when different selection models are used.

GP models have generally been used within crop breeding to: (1) predict additive

effects in early generations, thus reducing the time per selection cycle; and (2) predict

both the additive and dominance effects of later generations in order to determine

the true commercial value of a line (Crossa et al., 2017). This chapter focuses on the

former–predicting the additive effects in early generations. Several statistical mod-

els have been proposed, each with a slightly different way of solving the overarching

p >> n problem (i.e. the number of markers is much greater than the number of

individuals) inherent in GP (de los Campos, Hickey, Pong-Wong, Daetwyler, & Calus,

2012; Crossa et al., 2017). In this chapter, I compare the accuracy of four GP mod-

els: RR-BLUP (Endelman, 2011), BayesB (Meuwissen, Hayes, & Goddard, 2001),

partial-least squares (Wehrens & Mevik, 2007), and Random Forest (Breiman, 1996,

2001; Liaw & Wiener, 2002).

In Chapter 34, I report on the results of a genome-wide association study that

identified quantitative loci (QTL) associated with inflorescence traits in maize. Maize

is a naturally cross-pollinating species, with pollen grains mostly dispersed by wind.

Thus, filial-1 (F1) hybrid seed production favors larger tassels on inbreds, with more

pollen grains put out per plant. However, over the past several decades as plant

breeders have selected for improved hybrid performance, tassel sizes have decreased

(Lambert & Johnson, 1978; Fischer, Edmeades, & Johnson, 1987; Meghji, Dudley,

Lambert, & Sprague, 1984; Duvick, Smith, & Cooper, 2010). Identification of the

particular genetic locations that control both tassel and ear inflorescences could help

breeders to better manipulate these traits to increase the efficiency of hybrid seed

production and the level of hybrid performance.

Completing these research projects has already proven to be a valuable experience

for me as I embark on my career as a commercial plant breeder.

4Chapter 3 has been submitted for publication in the academic journal Plant Breeding.
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1 RE-IMAGINING MAIZE INBRED POTENTIAL: IDENTIFYING OPTIMAL

BREEDING CROSSES USING GENETIC VARIANCE OF SIMULATED

PROGENY

1.1 Abstract

Proper choice of parents for new breeding populations is essential in developing

new maize (Zea mays L.) inbreds with improved hybrid performance. Breeders have

traditionally chosen breeding populations based on mid-parent (MP) value, or pre-

dicted progeny mean. When two breeding populations have the same MP value, an

accurate prediction of progeny variance may reveal which population has a greater

potential for genetic gain. In this study we used inbred genotypes and hybrid phe-

notypes from 246 former commercial inbreds with expired Plant Variety Protection

certificates along with 39 historically important public North American dent inbreds,

all testcrossed to Iodent-type inbred PHP02. We used the R package PopVar to

simulate bi-parental populations, perform genome-wide prediction, and predict the

progeny mean, genetic variance, and superior progeny mean for grain yield, grain

moisture, and test weight within each virtual population. Optimal breeding crosses

were identified based on the mean and variance of virtual progeny. Results show

that mixing germplasm from different proprietors in new breeding crosses can pro-

duce inbreds with improved performance in a hybrid testcross. The simulation and

prediction model presented in this study may help breeders to identify parental pairs

with the greatest potential for genetic gain in hybrid crop breeding programs.
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1.2 Introduction

When selecting maize inbred parents for new breeding populations, breeders have

primarily considered the MP valuedefined as the mean value of the trait exhibited

by the two parents (Bernardo, 2014; Mohammadi et al., 2015). Other factors that

influence choice of inbred parents include heterotic combining patterns, genetic back-

ground from pedigree and/or genotypic data, and results from molecular marker-based

genome-wide predictions (Bernardo, 2014; Mohammadi et al., 2015; Kadam, Potts,

Bohn, Lipka, & Lorenz, 2016; Lehermeier et al., 2017; Osthushenrich et al., 2017).

When two breeding populations have similar MP values, however, a prediction of

progeny variance can differentiate the two populations in terms of projected value, or

potential genetic gain (See Fig. 1.1).

Precise and accurate predictions of progeny variance, however, have proved dif-

ficult to obtain (Bernardo, 2015). Most published attempts employed various mea-

sures of genetic diversity (GD) based on parentage (Cowen & Frey, 1987; Souza &

Sorrells, 1991; Kisha, Sneller, & Diers, 1997; Manjarrez-Sandoval, Carter, Webb, &

Burton, 1997; Burkhamer, Lanning, Martens, Martin, & Talbert, 1998; Bohn, Utz, &

Melchinger, 1999; Utz, Bohn, & Melchinger, 2001; Gutierrez et al., 2002; Barroso et

al., 2003; Hung et al., 2012). The results of these studies, however, showed little to no

statistical relationship between progeny genetic variance and either parental genetic

distance or coefficient of ancestry.

More recent studies have reported on the prediction of progeny variance within

simulated or virtual biparental populations, using genome-wide prediction methods

(Bernardo, 2015; Mohammadi et al., 2015; Lehermeier et al., 2017; Osthushenrich

et al., 2017). Each of these studies used inbred traits in the training set to predict

the performance of simulated populations, yet none use hybrid traits in the training

set. Notably, Bernardo (2015) and Osthushenrich et al. (2017) both suggest that

the simulation and prediction method could also be applied to prediction of topcross

performance of simulated biparental populations. Topcrossing is a widely accepted



3

method for testing newly developed maize inbreds, as well as the standard method for

F1 hybrid production of maize in the U.S. Topcross performance is also relevant to

breeding program of other species that also use F1 hybrids for commercial production.

In this study, we use a genomic prediction approach and a training set composed

of topcrosses to predict hybrid performance of simulated maize breeding populations

from a pool of historically elite North American dent inbreds. For each simulated

breeding population, we provide predictions of the progeny mean (µ), genetic vari-

ance (VG), and mean of the predicted 10% highest yielding progeny (i.e. superior

progeny, or µsp). Using these statistics, we identify which parental combinations have

the highest potential to produce improved inbreds for hybrid combination with a

specific tester. We also show that genetic distance between two parents of a breed-

ing population has little predictive value for genetic variance among their progeny.

Accurate predictions of genetic variance for simulated progeny populations will help

breeders of maize and other hybrid crops to determine which inbreds are best to use

as parents to create new breeding populations.

1.3 Materials and Methods

1.3.1 Phenotypic Data

A total of 285 maize inbreds derived from North American dent germplasm were

used in this study. This includes 246 former commercial inbreds with expired Plant

Variety Protection certificates, known as ex-PVP inbreds (USDA, 2013a), and 39

historically important public inbreds. Detailed information about the inbreds used in

this study can be found in (T. Beckett et al., 2017). All 285 inbreds were testcrossed

to PHP02, an ex-PVP inbred developed by Pioneer Hi-Bred in the Iodent heterotic

group. PHP02 was chosen due to its relative higher level of combining ability and

performance in testcrosses with other ex-PVP inbreds.

The experimental hybrids were grown in seven single-replicate environments in

2014 and 2015. Four environments were at Purdue Universitys Agronomy Center
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for Research and Education (ACRE) in West Lafayette, IN, and three were at Dow

AgroSciences hybrid testing locations in Platteville, WI, Rochelle, IL, and Clinton,

WI. Each entry was grown in a two-row plot, 5.3 m long with 76 cm spacing between

rows. Experimental entries were randomly assigned to one of three blocks within

each environment, with each block 6 ranges deep and 24 plots wide. Five commercial

hybrid checks were repeated three times within each block. After assignment of

experimental entries and checks, any remaining plots within each block were planted

with commercial hybrid filler. A modified augmented design (Lin & Poushinsky,

1983) was used.

Three traits were measured over seven environments: plot weight (PW, in kg);

grain moisture at harvest (GM, in %); and test weight (TW, in kg/m3). The trait

PW was converted to grain yield (GY, kg/ha) by normalizing to 15% moisture with

the following formula:

GY = PW · 1231 plots

1 ha
· 1 m3

720.8 kg
· 100−GM

100− 15.5%
(1.1)

The software SAS 9.4 (SAS Institute, Cary, NC) was used to calculate best-

linear unbiased estimators (BLUPs) for use in predictions, and for estimating variance

components used to calculate trait heritabilities. The phenotypic value of genotype i

when grown in block k within environment j is represented by:

Yijk = µ+ αi + βj + δk(j) + εijk (1.2)

where µ is the population mean, αi i is the effect of the ith genotype, βj is the effect

of the jth environment, δk(j) is the effect of the kth block within the jth environment,

and εijk is the residual error. The genotypic, environmental, and block effects were all

considered random effects. Each experimental entry was represented once within each

environment. Therefore, the genotype-by-environment interaction was confounded

with the residual error εijk, and the two terms could not be statistically separated by

regular ANOVA methods (Bernardo, 2002). Variance components were estimated for
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the random effect terms on a line-mean basis (Nyquist & Baker, 1991). Broad-sense

heritability was calculated by:

H2 =
σ2
G

σ2
G + σ2

ε

n

(1.3)

where H2 is the broad-sense heritability, σ2
G is the genotypic variance, σ2

ε is the error

variance, and n is the number of environments.

1.3.2 Genotypic Data

The genotypic data set is identical to that used in (T. Beckett et al., 2017). Briefly,

the data came from two different genotype-by-sequencing (GBS) runs, with SNP calls

aligned to the B73v2 reference genome. The two GBS data sets were merged using

TASSEL 5.0, version 20151210 (Bradbury et al., 2007). Heterozygote calls were

changed to missing data. At loci that contained more than two alleles, the primary

and secondary alleles were kept, and tertiary and greater alleles were replaced with

missing data. Markers with minor allele frequencies less than 0.05 were removed,

leaving the set with 77,314 SNP markers. The remaining missing data (6.22%) was

fully imputed using the R package NAM (Xavier, Xu, Muir, & Rainey, 2015) in

Rstudio version 0.98.1103 (R Core Team, 2015). Imputation accuracy, estimated to

be 0.83, was calculated by starting with a subset of genotypes with no missing data,

masking 6.22% of the data points, imputing, and then comparing the imputed set

with the actual set at only the masked loci. This was repeated 100 times, with the

mean of the 100 iterations reported as the imputation accuracy. Original genotypic

data for all inbreds is available in the online GBS data repository at www.panzea.org

(Zhao et al., 2006).
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1.3.3 Genetic Map

Our original genotypic data set was based on physical map coordinates (in bp).

To simulate RIL progeny genotypes, however, a genetic map based on recombination

frequencies (in centimorgans, or cM) was required. As recombination patterns in

maize are ancient and predictable (Rodgers-Melnick et al., 2015), any genetic map

that includes inbreds genetically related to the 349 inbreds in our set will be sufficient

to model recombination. Thus, we chose the Nested Association Mapping (NAM)

collection which involves 26 diverse maize inbreds, including several historically im-

portant North American dent maize progenitors (Yu, Holland, McMullen, & Buckler,

2008). This collection was created by crossing 25 inbreds with the inbred B73 and

self-pollinating the progeny over six generations, resulting in 200 recombinant inbred

lines (RILs) per F1 family for approximately 5,000 RILs overall (McMullen et al.,

2009).

The NAM genetic map was obtained from MaizeGDB (http://www.maizegdb.org).

A best-fit polynomial equation was chosen to model the data for each chromosome

(physical location vs. genetic location), by minimizing the residuals between the

predicted value and the actual value given in the NAM genetic map. Using the

polynomial equation for each respective chromosome, genetic locations (in cM) were

imputed to the physical locations of each of the 77,314 GBS loci. The genome was

divided into windows of 1 cM each, and one marker chosen to represent each 1 cM

window. This resulted in 1,466 markers in the final genotypic set to be used for

simulation and prediction.

1.3.4 Simulation of Breeding Populations

We used the R package PopVar (Tiede, Kumar, Mohammadi, & Smith, 2015;

Mohammadi et al., 2015) which uses the R/qtl package (Broman et al., 2003) to

simulate the RIL populations, based on the genetic map provided. The method used

to simulate the meiotic events is based on Stahls model (Stahl, 1979). The general
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procedure begins with creation of a generic RIL population, followed by creation of

specific RIL populations based on parental genotypes. The simulated individual RIL

genotypes are recombinant inbreds self-pollinated to an infinite number of generations.

Simulated populations were created from all possible bi-parental crosses using the 285

inbreds.

1.3.5 Statistical Estimation and Validation of Genomic Estimated Breeding Values

The ridge-regression best linear unbiased prediction method (rrBLUP) (Endelman,

2011) was employed to produce an estimate of the genomic estimated breeding values

(GEBVs) (Hayes & Goddard, 2001). The linear regression model to estimate marker

effects is as follows:

Y = µ+Xg + ε (1.4)

where Y is the N×1 vector of phenotypic means, µ is the overall mean of the training

set, X is the N ×Nm marker matrix, g is the Nm× 1 marker effects matrix, and ε is

the N × 1 vector of residual effects. Cross validation was accomplished by reporting

on the accuracy of 60:40 split for prediction of traits.

1.3.6 Prediction of Parameters in Simulated RIL Populations

The breeders equation presented by Falconer, Mackay, and Frankham (1996) can

be used to narrow the target for selection of optimal breeding population:

R = irPAσA (1.5)

where R is the response to selection, i is then intensity of selection, rPA is the cor-

relation between phenotypic and breeding values, and σA is the additive genotypic

standard deviation, or the square root of the additive genetic variance. In context of
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the usefulness criterion described by (Schnell & Utz, 1976), we can then derive the

following:

µsp = MP + irPAσA (1.6)

where µsp is the mean of the superior progeny, or usefulness criterion, MP is the

mid-parent value, and the remaining values represent R, or the response to selection.

Therefore, our target when selecting optimal breeding populations is the mean of the

superior progeny, or µsp.

Maximization of the usefulness criterion µsp depends on the variables on the right

side of Eq. 1.6. If the traits for both parents are known, MP is easily calculated.

Intensity of selection i can be changed to suit the goal of the breeding scheme. Im-

provement in rPA, or prediction accuracy, can be achieved by replicating over envi-

ronments (i.e. each unique combination of location and year) to reduce the impact of

genotype-by-environment interaction or by using a training set composed of relatives.

If the prediction accuracy is high, then selecting parents that produce progeny with

high predicted genotypic variance will result in the maximum usefulness criterion.

Superior progeny (sp) was defined as the top 10% among the GEBVs within

each RIL progeny population (see Eq. 1.6). The mean of the superior progeny

(µsp)–effectively equivalent to the the usefulness criterion–was then used for ranking

potential breeding crosses. All population parameters (µ,VA,and µsp), are calculated

by taking the mean from 20 iterations of the simulation.

1.3.7 Relationship Between Genetic Distance and Genetic Variance

First, we calculated GD using Tassel 5.0, version 20151210 (Bradbury et al., 2007).

The software program Tassel determines GD at a single locus by 1 − p(IBS), with

p(IBS) defined as the probability that randomly selected alleles at the same locus

in two different individuals are the same, or identical by state. To get an overall

measure of GD, individual terms are summed over all loci. To examine the potential
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relationship between GD and the usefulness criterion or VA, we produced a scatterplot

of GD vs. VA.

1.4 Results

1.4.1 Summary Statistics

Summary statistics for the six traits per environment are provided in Table 1.1.

Mean GY was 11,725 kg/ha. The mean GY for the commercial hybrid checks repli-

cated within the trials was 13,307 kg/ha. Mean GM was 19.2% and mean TW was

676.7 kg/m3. Grain yields were higher in environments 3, 4, and 5, likely due to

higher fertilizer inputs than at Purdues ACRE, where environments 1, 2, 6, and 7

were grown. Variance components and heritabilities are included in Table 1.2. Her-

itability was highest for GY, at 0.86, GM was next with 0.64 followed by TW at

0.63.

All trait distributions appeared approximately normal. The strongest correlation

between traits, at 0.61, was observed for GY and GM. The other two trait correlations

were negative: -0.25 between GY and TW, and -0.32 between GM and TW. All

correlations were significant at the p < 0.001 level.

1.4.2 Predicted Performance of Simulated Populations

Among the simulated progeny populations, the mean predicted progeny GY ranged

from 13,276 kg/ha for LH213/PHR58 to 8,442 kg/ha IBB15/Q381. The additive stan-

dard deviation (SDA, or the square root of the genetic variance VA) ranged from 523.0

kg/ha for IBB15/PHR58, to 15 kg/ha for B73/F42. The highest mean predicted GY

among superior progeny subsets was 13,674 kg/ha for LH213/PHR58. Table 1.3

shows a subset of the highest yielding simulated bi-parental populations (as well as

a few other notable biparental populations) ordered by mean progeny GEBV, equiv-

alent to MP . Correlated trait responses represent the mean trait value among the
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superior progeny selected by GY. While all trait values are shrunken BLUP values,

they are sufficiently informative to for purposes of comparison. To highlight the dif-

ference between expected performance based on MP and performance indicated by

the predicted mean of the superior progeny, a scatterplot of MP vs. µsp for grain

yield is included as Fig. 1.2.

For GM, the maximum mean predicted progeny value was 20.4%, for PHHH9/WIL901,

and the minimum was 17.5%, for 779/W117Ht. The largest SDA was 0.349%, for

ICI441/PHN37, and the smallest SDA was 0.022%, for PHP76/PHV07. The lowest

GM among the superior progeny subsets was 17.2%, for 779/W117Ht. A summary

of the predicted statistics for a few selected populations is given in Table 1.4.

For TW, the maximum mean predicted progeny value was 692.5 kg/m3, for

ND203/RS710. This particular biparental population also had the greatest mean

predicted TW among superior progeny subsets, at 694.1 kg/m3. Among all popu-

lations, the minimum mean predicted TW was 672.5 kg/m3, for MM402A/ LH215.

The largest predicted SDA was 2.4 kg/m3 within the progeny population, resulting

from MM402A/RS710. Within the MM402A/RS710 population, selecting the supe-

rior progeny for TW would result in a selection gain (µ− µsp, or MP − µsp) of only

4.2 kg/m3. A list of selected simulated breeding populations is provided in Table 1.5..

1.4.3 Genetic Distance and Genetic Variance

The results depicted in Fig. 1.3 show a weak relationship between GD among

parents and progeny VA. The density of the plotted points is indicated by color, with

the least dense areas on the plot orange, and the most dense areas red. The Adjusted

R2 between these two variables is 0.16, statistically significant at P0.001. The range of

possible VA values greatly increases as the genetic distance between parents becomes

larger. It is clear that there is no consistent correlation. Thus, GD between parents

is not a good predictor of progeny VA, especially as GD between parents increases.
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1.5 Discussion

A training set of known traits and genotypes, along with a set of simulated progeny

genotypes, can be used to predict the GEBV of the progeny, and thus the VA. We can

use the predicted VA, or more directly the usefulness criterion–defined as the mean

of the superior progeny µsp–to identify which bi-parental populations are likely to

produce a set of inbreds that will maximize performance in a topcross with Iodent

tester PHP02.

1.5.1 Using Genetic Diversity to Predict Genetic Variance

Our results confirm that GD is not a good predictor of genetic variance. Fig. 1.3

reveals that there is only an association-and not a correlation-between GD and VA.

The relationship between VA and GD only has an Adjusted R2 of 0.16. It follows that

the accuracy of predicting VA using GD would only be 0.16. It is clear in Fig. 1.3

that high genome-wide GD for a particular parental combination is not a guarantee

of high VA. Therefore, for the purposes of a breeding selection decision, genome-wide

GD is not a reliable predictor of VA.

1.5.2 Application

Among the top 50 parental combinations ranked by predicted superior progeny

grain yield, 41 populations (82%) had parents from different proprietors and only

nine populations (9/50 = 18%) had both parents from the same company. The two

most common inbreds appearing in the top 50 parental combinations were PHR58,

appearing in 23 crosses, and LH213, appearing in 20 crosses. The next most frequent

parents were LH214 and 8M129, each appearing in six crosses. The remaining 22

inbreds appeared between one and four times in potential crosses. Thus a small

set of inbreds constitute the best performers. Thus an important contribution of this

simulation and prediction analysis is to confirm known and/or reveal untested crosses.
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Another useful application of this simulation and prediction method is to identify

and eliminate ”false positives” that are not readily apparent among the possible bi-

parental breeding populations. These false positives are the breeding populations

that, after consultation of the MP value and pedigree, would at first appear to be

potentially valuable populations. However, when we examine the predictions, we find

a smaller VA and thus a lower µsp. If grown out and tested, these populations would

not be ranked as high in a topcross with PHP02 as MP and pedigree would suggest.

Consider the potential breeding population derived from a cross between two

non-stiff stalk (NSS) inbreds, LH216, developed by Holden’s Seed, and PHR58, from

Pioneer Hi-Bred. LH216, a Lancaster, is descended from LH51 and to a smaller

extent LH123Ht, and PHR58, located in the Pioneer Mixed NSS group, descends

from a cross between PH383 and PHG16 (USDA, 2015). With MP at 13,035 kg/ha

(good enough for 19th-best), but with limited public information about Pioneer Hi-

Bred proprietary inbreds PH383 and PHG16, it appears possible that LH216 and

PHR58 could create a productive breeding population. The results of the simulation

and prediction indicate otherwise. The predicted µsp is 13,390 kg/ha, coming in at

39th place for µsp. Thus the ensuing breeding population is predicted to have a

narrow variance, leading to a lower µsp when compared to other potential breeding

populations with similar MP .

One population predicted by VA to outperform its MP-based expectations is

LH194/LH213. Both inbreds were developed by Holden’s Foundation Seed. LH194

(LH117/LHE137) is located in the B73 sub-group of the SS heterotic group, while

LH213 (LH123Ht/LH51) is located in the Mixed sub-group of the NSS heterotic group

(USDA, 2015; Beckett et al. 2017). MP places this breeding population at 53rd, with

12,953 kg/ha. A predicted VA of 93,221 kg2/ha2 and a µsp of 13,483 kg/ha ranks this

cross at 11th place among all potential breeding populations. If the primary goal was

to produce an inbred that performs well in a hybrid cross with only PHP02, the pre-

dicted progeny VA and µsp identify this parental combination as a promising breeding

cross. However, commercial breeders also need to keep heterotic group divisions clear
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in order to preserve complementary alleles and haplotypes for future population de-

velopment. As LH194 and LH213 are from very different heterotic groups, this cross

is would not normally be made by a commercial breeder.

Selection for GY will also affect other traits. For example, the superior progeny

for GY of the cross LH213 by PHR58 (see Table 1.3) have a predicted correlated

response for GM of 19.5%, which is 0.2% higher than the MP for this cross. This is

not an unexpected response, as it is well known that later-maturing corn varieties,

generally have both higher grain moisture and higher grain yield values (Daynard et

al., 1971). Similarly, for the same subgroup of superior progeny for GY, TW shows a

MP value of 679 kg/m3, which is 2 kg/m3 lower than the mean TW for all progeny

of LH213 by PHR58, 677 kg/m3. Both of these responses to selection are reasonable

in context of the sign and magnitude of the calculated trait correlations.

Grain moisture shows potential for substantial change of up to 0.6%, by applying

this model and using predicted VA to identify suitable populations for selection. It

is likely possible to select among progeny to drive a population to an earlier relative

maturity. However, caution should be exercised to ensure that the correlation with

grain yield is not too high within that population, or the gains in shifting to an earlier

maturity will be offset by losses in GY. One approach is to start with the superior

progeny for GM from each population (i.e. the subsets of the lowest 10% by GM),

then sort the results by highest predicted GY response. By doing so, we identify the

population 2FACC/LH213, where the superior progeny by GM is predicted to have

a relatively high GY at 13,047 kg/ha. The correlation between GM and GY is 0.33

for this population. Another example is the superior progeny for GM of the cross

ICI441/LH213, at 12,982 kg/ha, with a correlation between GM and GY of 0.28.

Both of these populations have a selection differential (µ−µsp) of -4% GM. Selection

within either of these populations has the potential to identify new inbreds that will

show high GY performance with an earlier relative maturity. Again, while these two

crosses are across heterotic groups and would not normally be made by commercial
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breeders, they do represent an opportunity to take two populations predicted to be

high performers and drive them to an earlier relative maturity.

Given the relatively small predicted variances for TW among simulated biparental

populations, direct selection for TW is not likely to produce much gain. Instead, the

goal for TW among commercial breeders is to keep it from falling below a certain

threshold (generally around 721 to 734 kg/m3) while improving other traits. There-

fore, two approaches could be taken. The first is to identify populations with favorable

performance by GY that also have a favorable to minimal correlation between TW

and GY. Populations with a negative correlation between GY and TW, even if they

had a high predicted GY, would be discarded. This practice will ensure that TW is

not compromised when other traits are improved. The second approach is to find an

inbred that can be a donor for high TW. For example, the inbred RS710 is one of the

parents for 77 of the top 100 breeding populations ranked by mean predicted progeny

TW. Therefore, RS710 has potential to serve as a donor of high TW.

Overall, given the small predicted variances for TW and general high correlation

between GY and GM within this germplasm set, the best general approach within this

data set is to use GM as an indicator for maturity groupings, GY as the primary trait

for ranking and selection and within each maturity group, and monitor correlated

response in TW. Alternatively, as has already been illustrated, different approaches

can derive value from these results by providing predictions that inform selections

toward a specific breeding goal.

A set of F1 hybrid phenotypic traits, pedigrees, genotype-based clustering, GD-

or even all four-is not enough to accurately predict VA and µsp. Pedigrees and GD

provide a solid foundation of germplasm knowledge that should not be disregarded;

however, they only provide an incomplete picture of precisely which parents alleles

were incorporated into the progeny through the cycles of inbred development. Pedi-

grees provide a general idea of the historical origin of a portion of the genome of

an inbred, but such estimations tell us little about the impact of these particular

sequences on the performance of the plant per se and, more importantly, in testcross
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hybrids. Similarly, although GD incorporates a genome-wide marker set, many are

non-influential to the trait of interest (Charcosset, Lefort-Buson, & Gallais, 1991;

Burkhamer et al., 1998; Hung et al., 2012). The simulation and prediction method

we present here provides the ability to leverage the genetic markers that are influ-

ential to our trait of interest by using marker effect estimates to predict the value

of a simulated bi-parental breeding population. The PopVar approach sorts varia-

tions of influential genomic regions in determination of traits of interest. Using an

appropriate training set and genetic markers evenly spaced across the genome, we

provide predictions of two factors central to breeding population decisions-VA and

the usefulness criterion, or µsp.

1.5.3 Revisiting Potential Issues

Training Set Composition and Trial Locations

This germplasm set includes inbreds previously protected by a Plant Variety Pro-

tection certificate, as well as some historically relevant public inbreds. We did not

filter the inbreds by maturity or zone of adaptation. Furthermore, our trial loca-

tions are confined to the central Corn Belt. Inbreds and their test crosses in this set

that are more adapted to areas unlike our trial locations were being grown as part

of testcrosses in non-optimal environments. The experimental design, then, favors

those inbreds that are adapted to areas similar to our trial locations. The results

on optimal parental combinations for breeding populations are likely most relevant

to those inbreds that are well adapted to environments similar to our trial locations.

When using predictive models such as this, it is useful to remember that the training

set locations should be representative of the target environments for the simulated

populations upon which predictions are made.
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Evaluating and Improving Prediction Accuracy

Revisiting Eq. 1.5, we can examine in more detail rPA, which represents the cor-

relation between phenotypic and breeding values. This part of the breeders equation

can be redefined to reflect the parameters that are subject to control by plant breeders

as opposed to animal breeders. In animal breeding, each individual is represented only

once. However, in plant breeding, each individual is replicated by multiple genetic

clones within the same plot, and plot means are used instead of individual measures.

Therefore, we can indicate the use of plot means by changing Eq. 5 to:

R = i · σA
(σP/
√
n)
· σA (1.7)

As plant breeders increase the replication by the use of plot means and numerous

environments, n will increase. As n becomes large, the σA/
√
n term will converge to

zero. Therefore, the correlation between genotype and phenotype, or the prediction

accuracy, can in theory be increased to a more desired level. That leaves σA as the

only variable that cannot be manipulated by the breeder; therefore, a prediction of

genetic variance would indeed be very valuable information for selection decisions that

affect genetic gain. The precision of the estimate of genetic variance would increase

as replicates increase across the target environments. Additionally, the results of this

study were based on a relatively small number of trial locations. A greater number

of locations, reps and years would likely produce a more robust training set for the

predictions. Essentially, an experimental design with a wider scale of testing could

have produced different results.

1.5.4 Suggestions for Future Study

Further research to integrate this approach into a plant breeding pipeline could

include developing a selection index with weights for each trait. This would enable a

breeder to make more precise selections of optimal parental pairs under the parameters

of the particular selection index. Such an approach would hold a greater practical
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value than predictions of the best biparental populations based on only one trait and

correlated responses of other traits.

This study could also be expanded by including predictions of performance on

additional testers. Additional testers will add a measure of genetic replication, as

additive variance is the key target of using testers, and additional hybrid testcross

data will allow a better estimate of GCA. Such relevant testers should be chosen from

within the opposite heterotic pool that is opposite the inbred populations.

There are additional inbreds whose PVP certificates expire each year. Many of

these newly expired-PVP inbreds are highly genetically related to those used in this

study. Therefore, it would be a simple extension of this predictive model to use

the genotype of a new ex-PVP inbred to predict the same parameters for simulated

biparental populations with the new ex-PVP inbred as one of the parents. Additional

data from hybrid testcrosses with these newly expired PVP inbreds would ensure that

the training model captured the performance of any new additions to the germplasm

pool, such as introgression of exotic germplasm from other geographic zones.

The simulation and prediction model presented here is constrained by using only

data from one tester. Thus, the predictions can reasonably be applied only to topcross

performance under this single tester. The genetic gains made by using these predic-

tions would be realized within only one-half of the resulting hybrid per breeding cycle,

as crosses are predicted just for one parental side of a single cross F1 hybrid. If breed-

ers simultaneously improve both parents of a new hybrid, the overall rate of genetic

gain in the breeding program would increase.

Kadam et al. (2016) describe a model where a novel population developed from

single heterotic crosses in many combinations was used to predict the performance

of untested single heterotic crosses, thus providing an accurate predictive model of

single-cross performance based on genotype. Current breeding practices generally

improve only one side of a heterotic cross at a time by evaluating and selecting

among hundreds of experimental entries crossed to several elite testers. Phenotypic

data on several hundred randomly chosen heterotic crosses could serve as a training
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set to predict not only which parental crosses would be best to create new breeding

populations, but also which simulated breeding populations would combine well with

other simulated breeding populations. Essentially such a breeding scheme would

strive for simultaneous improvement of both sides of a heterotic cross. If prediction

accuracy was high enough, this approach could increase the rate of genetic gain and

speed up the time to commercialization by decreasing reliance upon testcrossing for

selection of improved varieties.

1.5.5 Summary

In breeding for hybrid crops, genomic selection can be used to predict the breeding

value of an untested but genotyped inbred. This can be extremely valuable informa-

tion when breeders are looking to make selection and advancement decisions. In our

data set, where all potential parents are tested, it is likely that the pairs of parents

chosen for breeding populations by traditional methods would be very similar to the

pairs of parents identified based on predictions of progeny VA and µsp, especially if

the breeder making the decisions had extensive knowledge of pedigrees and combining

patterns. There are, however, a few notable exceptions, as have been discussed in

detail. The two areas then, where this simulation and prediction model can provide

the most value is (1) in the case of an untested but genotyped inbred, one that is

not found within the training set; and (2) to help eliminate false positive populations,

those that appear promising by MP value and pedigree but in fact would have a small

VA and therefore, a relatively lower µsp than expected. When both MP and progeny

VA are both considered when choosing initial biparental crosses, it is more likely that

genetic gain will be maximized.
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Table 1.1.
Testcross yield trial summary statistics by environment.

Environmenta

Trait Stat. 1 2 3 4 5 6 7 Overall

Mean 9992 10789 13393 12155 13860 9437 11405 11725

Grain Yield SDb 1911 1911 2863 2424 2427 1947 2103 2720

(kg·ha−1) Min 5122 5192 5398 4496 6057 4689 5505 4496

Max 15387 16024 19717 18282 19364 14101 17289 19717

Mean 16.7 17.3 22.0 19.1 25.3 14.5 17.5 19.2

Grain Moisture SD 1.1 2.7 2.8 2.3 2.7 1.6 3.0 4.1

(%) Min. 15.1 12.8 14.3 13.9 14.2 12.0 13.1 12.0

Max. 22.7 25.3 30.5 26.4 31.5 20.5 32.3 32.3

Mean 666.8 665.2 675.7 673.7 654.8 706.2 711 676.7

Test Weight SD 21.9 26.4 24.3 16.9 20.1 26.4 27 29.9

(kg·m−3) Min 608.2 578.5 610.8 631.2 594.8 576.3 624.9 576.3

Max 743.7 807.5 764.3 731.4 705.1 766.4 784.7 807.5

aEnvironments 1 and 2 were grown in 2014 West Lafayette, IN, at Purdue Agronomy Center for Research and

Education (ACRE) fields 67 and 98, respectively. Environments 3-5 were grown in 2014 at Dow AgroSciences

trialing locations, in: Platteville, WI; Rochelle, IL; and Clinton, WI, respectively. Environments 6-7 were

grown in 2015 at ACRE fields 68 and 59, respectively.

bSD=Standard deviation.
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Table 1.2.
Variance components and heritabilities for six traits measured in
testcross yield trials used as the phenotypic training set.

Statistic

Trait N σ2
G σ2

ε H2

Grain Yield (kg/ha) 7 37258 40794 0.86

Grain Moisture (%) 7 1.2 4.5 0.64

Test Weight (kg/m3) 7 7.8 32.0 0.63

N=Number of environments in which the trait was

collected; σ2
G=Genotypic variance; σ2

ε=Residual er-

ror variance; and H2=Broad-sense heritability.
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Figure 1.1. Population distribution in context of selection of superior
individuals. Here we compare two breeding populations with the same
progeny mean of approximately 10,000 kg/ha, but different progeny
variances. The red shaded area represents approximately the 10%
highest yielding individuals (superior progeny) of Population A, and
the blue area represents the same for Population B. Thus, while both
breeding populations have the same overall progeny mean, Population
B has a greater potential for genetic gain due to greater progeny
variance.
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Figure 1.2. Scatterplot of mid-parent value (MP ) vs. mean of the
superior progeny (µsp). As selection of breeding populations in a
commercial program is limited to the top performers, only potential
breeding populations with MP > 12, 900 kg/ha are shown. A few no-
table bi-parental combinations are identified, followed by two numbers
in parentheses. The first is rank by MP , the second is rank by µsp.
For example, the breeding population with parents LH195/LH213 has
the 11th-highest MP , and the 6th-highest µsp.
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Figure 1.3. Genetic distance between parents vs. progeny genotypic
variance. The X-axis shows the genetic distance (calculated by 1-IBS,
where IBS=Identity by state) between potential parents of simulated
breeding populations. The Y-axis gives the predicted genotypic vari-
ance among the progeny in each simulated breeding population. Given
the large number of data points, the plot view was adjusted to show
density, with the red areas indicating the highest concentration of data
points, and the orange areas the lowest. A best-fit linear trendline is
shown in blue, with an Adjusted R2 value of 0.16.
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2 SPLIT ’N PREDICT: COMPARING GENOMIC SELECTION MODELS IN

EARLY GENERATION MAIZE BREEDING

2.1 Abstract

Genomic prediction (GP) models have recently become an important part of the

selection process in both private and public plant breeding programs. GP can in-

crease selection accuracy and decrease the length of the breeding cycle. Here, we use

genomic selection in the context of early generation maize inbred development to: (1)

model how prediction accuracy changes as the size of the training set changes; and

(2) compare the accuracy of different selection models. We previously developed a

set of F4 maize lines from a biparental cross between LH51 and PHG35, two formerly

Plant Variety Protected (ex-PVP) non-stiff stalk inbreds. These progeny lines were

then testcrossed to two ex-PVP stiff-stalk inbreds, PHHB9 and 2FACC. We com-

pared prediction accuracies at graduated training set sizes using four models: ridge

regression best linear unbiased prediction (RR-BLUP), BayesB, partial least squares

(PLS), and Random Forest (RF). Results suggest that using the RR-BLUP method

with 150 individuals in the training set will extract the maximum value out of GP

in an early generation maize breeding pipeline by optimizing the balance between

trialing cost and prediction accuracy.

2.2 Introduction

Genomic prediction (GP), introduced by Meuwissen et al. (2001), is the process

of using known phenotypes and genetic markers spread across the genome (i.e. the

training set) to build a regression model that will generate genomic estimated breeding

values (GEBV) of lines with known genotypes but unknown phenotypes (i.e. the
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testing, or validation set) (Leng, Lübberstedt, & Xu, 2017). This method has proven

quite valuable to plant breeders, as GEBVs are closely correlated with true breeding

values (Heffner, Sorrells, & Jannink, 2009; Heffner, Lorenz, Jannink, & Sorrells, 2010),

even in selection models that include multiple correlated traits (Jia & Jannink, 2012).

GP models have rapidly become a reliable way for maize breeders to identify superior

progeny–and eliminate inferior progeny–within early generation maize breeding based

on genotype alone.

In the late 20th century and into the 21st, marker-assisted selection (MAS) was

proposed as a cost-effective way to use genetic information to predict and select for

phenotypic traits. The MAS approach called for identification of individual marker-

trait associations (known as quantitative trait loci, or QTL), then incorporation of

these QTL in a statistical model to predict the performance of lines with a known

genotype but unknown phenotype. Ultimately, while MAS proved successful at pre-

dicting qualitative traits (Flint-Garcia, Darrah, McMullen, & Hibbard, 2003), its

usefulness remained limited for prediction of complex quantitative traits like grain

yield in early generations of breeding (Stromberg, Dudley, & Rufener, 1994; Jannink,

Lorenz, & Iwata, 2010; Bernardo, 2016; Crossa et al., 2017). While MAS uses only a

subset of markers related to a particular trait, GP models use all available markers

across the genome in an attempt to capture all of the genetic variance for the tar-

get trait (Heffner et al., 2010). Primarily due to the increased marker coverage of

the genome in recent years, GP has proven superior to MAS in the improvement of

traits controlled by many loci (Bernardo & Yu, 2007; Lorenzana & Bernardo, 2009;

Lorenz, 2013; Poland & Rutkoski, 2016; Leng et al., 2017). Accordingly, many re-

cent publications have demonstrated the effectiveness in applying GP to prediction

of complex hybrid performance traits in maize (Albrecht et al., 2011, 2014; Jacobson,

Lian, Zhong, & Bernardo, 2014; Riedelsheimer et al., 2012; Kadam et al., 2016).

Genomic prediction models have generally been applied to plant breeding pipelines

in two different ways. First, additive effects in early generations can be predicted in

order to speed up the selection cycle within a specified interval of time. The estab-
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lished approach of early generation hybrid testing is to select high performing inbreds

based on testcross performance. However, when genomic selection accuracies are at

least moderate and the correlation between the genomic-estimated breeding value

(GEBV) and the true breeding value is high enough, genomic prediction could rea-

sonably replace or drastically decrease the size one of an early generation testcross

trial (Heffner et al., 2009, 2010). In GP applications to early generation yield trials,

the breeding value or GEBV is the predicted metric, rather than total genetic value

of a line. Accordingly, parametric prediction models that deal directly with additive

effects–and disregard interaction effects such as epistasis and dominance–are success-

ful. The second way that GP models have been applied to plant breeding pipelines

is in the determination of the commercial value of a line. When a prediction method

includes both the non-additive effects and the additive effects, the output is a measure

of the total genetic value of that line. Non-parametric models can ascertain subtle

and hidden genotypic correlations and thus predict total genetic value.

There are statistical challenges with using GP associated with the large number

of markers. In standard multiple linear regressions of the form

Y = XB + ε (2.1)

the least squares solution is represented by

B = (XTX)−1XTY (2.2)

In order to calculate the least squares estimates of marker effects, the marker matrix

X must have a greater number of individuals n than number of variables p, and no

columns can be a linear combination of another column. In GP models, the number

of markers (p) is much greater than the number of individuals (n). In addition, given

the large number of markers in such sets, it is likely that some of the markers are

linearly predicted by others with a high degree of accuracy, causing multicollinearity

within the matrix. Thus, in data sets considered for GP, the marker matrix X is rank

deficient, and the parameters of the model cannot be estimated by normal means.
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To solve this problem in GP, regression models require either (i) penalization;

(ii) selection of variables; or (iii) reduction of dimensionality (de los Campos et al.,

2012; Crossa et al., 2017). Penalization is applied in the ridge-regression best linear

unbiased predictor model (RR-BLUP), one of the most commonly used mixed linear

models in GP (Endelman, 2011). The RR-BLUP model assumes that all markers

have equal variance and that covariance between markers is equal to zero. Thus,

the model penalizes, or shrinks the marker effects equally. This reduces the risk of

overfitting the model.

One disadvantage of the RR-BLUP model is that by assuming equal marker vari-

ances, RR-BLUP can underestimate GEBV in the case of a trait with large-effect loci.

To address this, the BayesB model (Meuwissen et al., 2001) includes both penaliza-

tion and variable selection, making it useful in the case of a trait that falls somewhere

within the qualitative to quantitative continuum of genetic inheritance. Essentially,

BayesB solves the problem of p >> n in two ways: by estimating parameters from

a prior distribution, and by including variable selection by both allowing a unique

variance for each marker and allowing some markers to have an effect equal to zero.

If there exist large QTL effects for any of the three traits in our study, and if the

markers we used are in high LD with the QTL, the BayesB model should perform at

a higher level of accuracy in GP.

To allow normal calculation of least-squares estimates, reduction of dimensionality

can be applied such as in the model Partial Least Squares (PLS). Falling in the

category of supervised learning algorithm, PLS works by regressing the phenotypic

response matrix Y not on the marker matrix X, but on decomposed scores of the

marker matrix (Wehrens & Mevik, 2007). By so doing, the problem of p >> n and

rank deficiency of X has been averted, and regression coefficients can be calculated,

sufficient for application in GP. It is also important to note that the PLS model

determines the latent variable values such that the relationship strength between the

latent variables and the response is as strong as possible (Jannink et al., 2010).
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Linear models similar to the three discussed predict the GEBV, which is essentially

the sum of the additive effects across loci. None of these parametric models take into

account genetic mechanisms beyond additivity, such as dominance or epistasis. Non-

parametric models, on the other hand, attempt to incorporate non-additive genetic

interaction factors that are difficult to explicitly model, thus producing a prediction

of the total genetic value. One such model is the machine learning algorithm known

as Random Forest (RF) (Liaw & Wiener, 2002). Proposed by Breiman (2001), RF is

founded on bootstrap aggregated sampling, or boosting (Breiman, 1996), and works

by building a series of regression trees based on the original training set data. Because

the trees are built in a progressive manner, the effect of each marker is ascertained

in concert with the state of other markers. This allows RF to capture non-additive

effects among pairs or groups of loci such as dominance or epistasis. Therefore, if

epistatic effects account for a large amount of genetic variation of any of the three

traits we measured, RF is expected to perform better at GP.

The objective of this study is two-fold: (1) to model how GP accuracy changes

as the size of the training set changes; and (2) to compare the accuracy of different

GP models. Within this study, we explore the former application of GWS to the

plant breeding pipeline: prediction of early-generation maize hybrid performance. We

derived a biparental population from a breeding cross of two non stiff-stalk inbreds

with expired Plant Variety Protection (ex-PVP) certificates, LH51 and PHG35. We

testcrossed the population progeny to two stiff-stalk testers, PHHB9 and 2FACC, and

measured three traits: grain yield, grain moisture, and test weight. We ran genomic

selection on various sizes of training sets to predict the performance of a training set

of 150 individuals, and measured the prediction accuracy. We report on the change

in prediction accuracy as the training set size increases, and suggest an optimal size

training population size for efficient incorporation of genomic selection with partial-

population testcrossing, in place of whole-population testcrossing in early generation

maize breeding.
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2.3 Materials and Methods

2.3.1 Inbred Plant Material

The plant material is composed of progeny of a biparental cross of two ex-PVP

inbreds, LH51 and PHG35. The parental inbred LH51 was developed by Holden’s

Foundation Seeds, Inc., and originates from a Mo17 backcross 5 recovery (USDA,

2013a). The public inbred Mo17 descends from a cross between C.I.187-2 and C103

(Gerdes et al., 1993). The other parental inbred PHG35 was created by Pioneer Hi-

Bred International, Inc., by a cross of proprietary lines G3BD2 and H7FS6. Both

LH51 and PHG35 are members of the non-stiff stalk heterotic group, with LH51

located in the Lancaster-type sub-group and PHG35 in the Pioneer Mixed sub-group

(T. Beckett et al., 2017).

2.3.2 Breeding Population Development

The breeding population of 10 F2:3 families used in this study was originally de-

veloped for a related project (Morales, 2013) that concluded that genomic selection is

superior to phenotypic selection in early generation maize breeding. A short summary

of the population development follows. (For more detail, see Morales, (2013).) The

progeny from an initial cross between LH51 and PHG35 was used to derive a pop-

ulation of 358 F2:3 families. These 358 families were testcrossed to LH119, PHG39,

and an inbred proprietary to Dow AgroSciences. All testcrosses were evaluated in

at least six environments. Based primarily on hybrid grain yield, 10 F2:3 families

were chosen for advancement. Subsequently, in the summer of 2014, 100 individual

F3 seeds representing each of the top 10 F2:3 families was planted at Purdue Univer-

sity’s Agronomy Farm for Research and Education (ACRE) in West Lafayette, IN.

All plants were self-pollinated; 707 lines successfully produced F4 seed.
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2.3.3 Hybrid Testcross Yield Trials

The 707 F4 lines were planted in two isolations at ACRE in 2015 and testcrossed

to two stiff-stalk testers, PHHB9 and 2FACC. Both testers are in the B37 sub-group of

the stiff-stalk heterotic group (T. Beckett et al., 2017). PHHB9 descends from a cross

between PHW52 and PHG86, and 2FACC is derived from a cross between inbreds

4676A and PB80. Out of the 707 LH51/PHG35 F4 lines in the two isolations, 566

produced enough seed for the 2FACC testcross yield trials, and 434 produced enough

seed for the PHHB9 testcross yield trials.

Testcross hybrid yield trials were grown in four environments at ACRE–two in

2016 and two in 2017. Three phenotypic traits were collected: grain yield (GY), in

kg/ha; grain moisture at harvest (GM), in %; and test weight at harvest (TW), in

kg/m3. Descriptions of these traits is given in Table 2.1. Due to harvest combine

equipment failure, no TW data was recorded for environment number 4.

To correct for spatial field variation, the R package ’lme4’ v. 1.1-14 (Bates,

Mächler, Bolker, & Walker, 2015) in RStudio version 0.98.1103 (R Core Team, 2015)

was used fit a linear model with random effects and obtain a best-linear unbiased pre-

diction (BLUP) (Henderson, 1975) for each entry. The phenotypic value of genotype

i when grown in environment j, block k, block row l, and block range m is given by:

Yijklm = µ+ αi + βj + δk(j) + γl(k(j)) + ρm(k(j)) + εijklm (2.3)

where µ is the population mean, αi is the ith genotypic effect, βj is the jth envi-

ronmental effect, δk(j) is the kth subgroup effect within the jth environment, γl(k(j))

is the lth range effect within the kth subgroup and the jth environment, ρm(k(j)) is

the mth row effect within the kth subgroup and the jth environment, and εijk is the

residual error effect. Genotype, environment, subgroup, range, and row were all con-

sidered random variables. The resulting variance components were used to estimate

trait heritabilities. Broad-sense heritability on a line-mean basis was calculated by:

H2 =
σ2
G

σ2
G + σ2

ε

n

(2.4)
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where H2 is the broad-sense heritability, σ2
G is the genotypic variance, σ2

ε is the

error, and n is the number of environments. The BLUPs were used instead of raw

phenotypes for the genomic prediction analysis.

2.3.4 Genotypic Data

Plant tissue was sampled from F3 plants at ACRE in 2014. DNA extraction and

whole-genome-sequencing (WGS) genotyping was accomplished by Dow AgroSciences

in Indianapolis, IN, using proprietary protocols. Genotypic markers that had greater

than 50% missing data or that were monomorphic for the parents LH51 and PHG35

were removed from the data set. Following filtering and imputation, 3,391 markers

remained. Any remaining missing data was then fully imputed by replacing the

missing data point with the mean value of the population at that marker.

2.3.5 Genomic Prediction Methods

The genomic estimated breeding value (GEBV) for each individual line was calcu-

lated as the sum of the effects of markers across the genome. The general statistical

model is given by:

yi = µ+
∑
k

βkxik + ei (2.5)

where yi is the breeding value of the ith individual, βk is the effect on the breeding

value of the kth SNP, xik is the genotype of the ith individual at the kth SNP, and

ei is the residual error of the ith individual.

For tester 2FACC, 24 different levels (sizes) of training sets were used, and 25 were

used for tester PHHB9. The number of levels were chosen to best represent a curve

that models the change in prediction accuracy as the number of individuals included in

the training set increases. Cross validation at each training set level was accomplished

by the Monte Carlo or repeated random sub-sampling method (Leberg, 2002; Belkhir,

Dawson, & Bonhomme, 2006). Each validation set included 150 randomly selected
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individuals. The remaining individuals were then randomly assigned to the training

set until the set was full, with the number of individuals specified by level. Number

of individuals per training set level are listed in Tables 2.4 and 2.5. The training

data was then used to fit the model, and predictions were made using the respective

model.

The package ’rrBLUP’ (Endelman, 2011) was used in RStudio version 0.98.1103

(R Core Team, 2015) for fitting the RR-BLUP model and calculating the associated

predictions. The R package ’PLS’ (Wehrens & Mevik, 2007) was used to implement

the PLS model. The number of dimensions was reduced using the first five principal

components (PCA). The R package ’BGLR’ (Pérez & de Los Campos, 2014) WAS

used to implement the BayesB model. The R package ’ranger’ (Wright & Ziegler,

2015) WAS used to implement the RF model. Unless otherwise stated, the default

settings were used within each respective function.

2.3.6 Estimating Prediction Accuracy

Prediction accuracy for each GP model was measured as the Pearson correlation

between the predicted phenotypic values and the adjusted phenotypic values (BLUPs)

within the validation set. For all models, the prediction algorithm was repeated for

500 cycles, with the overall prediction accuracy at each training set level calculated

as the mean of prediction accuracies over the 500 cycles.

2.4 Results

2.4.1 Trait Distribution and Correlations

Distributions of phenotypic traits were all approximately normal (Fig. 2.1 and Fig.

2.2). Bivariate phenotypic correlations were weak and limited. For the topcrosses

with tester 2FACC, the only statistically significant correlation was between grain

yield and test weight, with a value of 0.16 (statistically significant at p < 0.001). For
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the topcross with tester PHHB9, GY and GM had a 0.27 correlation, statistically

significant at p < 0.05, and GY and TW had a 0.11 correlation, significant at p < 0.1.

Among the summary statistics by environment (Table 2.2), environment 4 had

higher GY and GM than other environments. While the harvest date for environment

4 was relatively earlier than the other environments, it may not fully explain the

observed difference. As was noted earlier, test weight was not collected in environment

4 due to equipment failure. There may be error introduced into the measured GY

and GM values due to sub-optimal calibration of the combine measuring equipment.

2.4.2 Variance Components and Heritability

Table 2.3 gives the variance components and heritability values for the three traits

for both testers. For the 2FACC testcross group, heritability was 0.69 for GY, 0.58

for GM, and 0.90 for TW. For the PHHB9 testcross group, heritability was 0.61 for

GY, 0.58 for GM, and 0.78 for TW.

2.4.3 Prediction Accuracy

Prediction accuracies are provided in Table 2.4 for the 2FACC testcross data set,

and Table 2.5 for the PHHB9 testcross data set. Plots of prediction accuracy per

number of individuals in training set are included as Figures 2.3, 2.4, and 2.5 for the

2FACC testcross data set, and Figures 2.6, 2.7, and 2.8 for the PHHB9 testcross data

set.

For the topcross trial with tester 2FACC, the following methods had the highest

prediction accuracy the traits cited: RR-BLUP for GY and GM; and RR-BLUP and

BayesB for TW. For the topcross trial with tester PHHB9, the following methods

had the highest prediction accuracy for the traits cited: RR-BLUP and RF for GY;

RF for GM; and RR-BLUP and BayesB for TW.

For Ridge Regression-BLUP, maximum prediction accuracies were 0.40 for GY,

0.56 for GM, and 0.81 for TW among the 2FACC testcrosses, 0.32 for GY, 0.64
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for GM, and 0.60 for TW among the PHHB9 testcrosses. For BayesB, maximum

prediction accuracies were 0.40 for GY, 0.55 for GM, and 0.80 for TW among the

2FACC testcrosses, 0.31 for GY, 0.64 for GM, and 0.59 for TW among the PHHB9

testcrosses. For Partial Least Squares, maximum prediction accuracies were 0.39 for

GY, 0.54 for GM, and 0.75 for TW among the 2FACC testcrosses, 0.30 for GY, 0.64 for

GM, and 0.58 for TW among the PHHB9 testcrosses. For Random Forest, maximum

prediction accuracies were 0.39 for GY, 0.53 for GM, and 0.77 for TW among the

2FACC testcrosses, 0.33 for GY, 0.66 for GM, and 0.57 for TW among the PHHB9

testcrosses. For all methods and across all traits, gains in prediction accuracy within

the 2FACC and PHHB9 testcross groups appear to be marginal when greater than

approximately 150 individuals are included in the training set (see Figures 2.3-2.8).

2.5 Discussion

Trends in Figures 2.3-2.8 show a pattern of marginal improvements in prediction

accuracy when greater than 150 individuals are added in the training set. This is

more evident in the GP accuracy plots for GM and TW, and less so for the GP

accuracy plot for GY. Prediction accuracies within both testcross groups are lower

for GY than for GM and TW. Grain yield is a much more complex trait; the relative

prediction accuracies are consistent with this.

When comparing GP methods, the parametric model RR-BLUP is among the

top performers for all traits across both tester groups. The BayesB method showed

a level of performance similar to the RR-BLUP model, with the exception of GY

on tester PHHB9. However, BayesB did not exceed the performance of all linear

models. This was expected, as the genetic inheritance patterns of GY, GM, and

TW are quantitative in nature. Overall, the GP prediction accuracy of the PLS

model tended to return lower accuracies when less individuals were included in the

training set. As only five PCAs were used to build the predictive model, use of smaller

training sets would degrade the relationship between the training set and the testing
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set, causing them to appear less related than they actually are. RF returned the

top prediction accuracy for GY on tester PHHB9 and performed reasonably well on

the rest of the trait/tester combinations, with the exception of GY on tester 2FACC.

While RF has the added feature of incorporating non-additive genetic interactions,

that is not essential in this application, as the primary goal of early-generation GP is

to ascertain the inheritable GEBV of each line. RF may, however, offer an advantage

over parametric models in late-generation GP of commercial value of elite hybrids by

including non-heritable yet important genetic effects such as dominance.

In summary, RR-BLUP appeared to be the most consistent top performer in terms

of prediction accuracy. Among the others, however, there was no consistent pattern

of relative performance. Therefore, it appears most appropriate to test a variety

of models in GP applications, and proceed with the model that returns the highest

accuracy in cross-validation tests within the training set for the crop and traits of

interest.

Some have suggested that more complex non-linear prediction models will show

higher prediction accuracies than simpler linear models when dealing with complex

traits (Crossa et al., 2017). That is not the case in these results. One possibility

is that the phenotypic measurement error was substantial enough to confound the

subtle and hidden genotypic interactions that the non-linear prediction models are

optimized to pick up. Reduction of phenotypic measurement error may be achieved by

more regular calibration of equipment. Another way to address this is to increase the

number of individuals in the training set or the number of replications per entry–both

are increases in the overall sample size.

There is a substantial gap between the calculated heritability and the GP accuracy

for each trait. Some have referred to this gap as the ”missing heritability” (Manolio

et al., 2009; Makowsky et al., 2011). The gap is largest for GY: for the 2FACC

testcrosses, the top-performing GP method explains 0.40 of the variation for GY

while the heritability is 0.69; and for the PHHB9 testcrosses, the top-performing

method explains 0.33 of the variation for GY while heritability is 0.61. For GM,
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the gap is much smaller, with only 0.02 difference between GP accuracy within the

2FACC testcrosses, and only 0.08 difference for the PHHB9 testcrosses. For TW, the

gap is 0.09 for the 2FACC testcrosses and 0.18 for the PHHB9 testcrosses.

The reasons why GP accuracy is so much lower than the heritability for some

of these traits merits further examination. Factors that affect prediction accuracy

of GP include choice of statistical model, marker density, training population size

(n), effective population size (i.e. a measure of genetic diversity), and relationship

between training and testing populations (Roorkiwal et al., 2016). Another factor

that can affect prediction accuracy is the experimental design of the training set–are

the environments diverse and representative of the target environment of the testing

population? In this experimental design, the four locations were relatively homoge-

neous. All four environments–two each in two successive years–were within a 2-mile

radius on Purdue’s ACRE farm. Ideally, to build a robust training set, the experi-

mental hybrid entries should be grown in several years across several geographically

separated locations, with each successive cycle of data added to the overall training

set. As long as the target environment remains similar to the environments used

in the training set, the predictions should increase in accuracy with each successive

batch of data added into the training set.

In summary, these results show that genomic prediction would be most efficient

in replacing part of an early generation testcross hybrid yield trial when at least 150

of related individuals are grown in a testcross and used to predict performance of the

remainder of the set. This finding agrees with the suggestion by Bernardo and Yu

(2007) to have a minimum of 100 to 150 lines in a training set in order to obtain the

optimal prediction accuracy. Therefore, we recommend that the RR-BLUP method

with a minimum of 150 individuals in the training set will extract the maximum value

out of GP in an early generation maize breeding pipeline by optimizing the balance

between trialing cost and prediction accuracy. Predictive approaches such as this may

also provide value to breeding pipelines for other commercial hybrid crops.
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Table 2.1.
Description of phenotypic traits.

Abbrv. Trait Description

GY Grain Yield (kg/ha) Grain yield, adjusted to 15.5% moisture.

GM Grain Moisture (%) Percent grain moisture at harvest.

TW Test Weight (kg/m3) Weight in kg of 1 m3 of grain.
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Table 2.2.
Testcross yield trial summary statistics by environment.

Env. no.#

Tester Trait Stat. 1 2 3 4 Overall

Mean 11,347 11,336 11,065 13,497 11,792

Grain Yield SD 1,460 1,325 2,045 2,114 2,005

(kg/ha) Min 6,876 7,197 6,570 7,592 6,570

Max 16,741 15,293 17,539 19,657 19,657

Mean 16.8 16.1 18.8 20.3 18.0

2FACC
Grain Moisture SD 0.3 0.3 0.6 1.6 1.7

(%) Min 16.1 15.5 16.6 15.9 15.5

Max 18.2 18.8 21.8 27.0 27.0

Mean 766.7 759.7 753.0 - 760.0

Test Weight SD 14.4 15.8 15.2 - 16.1

(kg/m3) Min 712.6 712.6 704.9 - 704.9

Max 799.0 798.9 793.8 - 798.9

Mean 11,699 11,258 11,291 13,417 11,482

Grain Yield SD 1,790 1,492 2,082 1,777 1,830

(kg/ha) Min 7,182 7,691 7,234 9,851 7,182

Max 17,084 16,571 18,183 19,048 19,048

Mean 15.3 16.1 17.7 19.4 16.4

PHHB9
Grain Moisture SD 0.5 0.3 0.7 1.5 1.3

(%) Min 14.2 14.7 16.3 16.3 14.2

Max 18.6 17.2 21.1 22.2 22.2

Mean 732.0 749.5 757.0 - 745.5

Test Weight SD 21.4 16.8 20.7 - 22.2

(kg/m3) Min 671.7 699.7 690.6 - 671.7

Max 799.6 800.2 798.9 - 800.2

Environments 1 and 2 were grown in 2016, and environments 3 and 4 were grown in 2017.
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Table 2.3.
Variance components and heritabilities.

Tester Trait N σ2
G σ2

ε H2

Grain Yield (kg/ha) 4 5.85×105 1.04×106 0.69

2FACC Grain Moisture (%) 4 0.11 0.32 0.58

Test Weight (kg/m3) 4 118 54.0 0.90

Grain Yield (kg/ha) 4 4.87×105 1.24×106 0.61

PHHB9 Grain Moisture (%) 4 0.06 0.16 0.58

Test Weight (kg/m3) 4 112 130 0.78

N=Number of environments in which the trait was collected;

σ2
G=Genotypic variance; σ2

ε=Residual error variance; and H2=Broad-

sense heritability.
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Table 2.4.
Genomic prediction model accuracy for performance traits for F4
breeding lines in a hybrid testcross with 2FACC.

Grain Yield Grain Moisture Test Weight

Train. RR BB PLS RF RR BB PLS RF RR BB PLS RF

5 0.09 0.09 0.10 0.09 0.19 0.17 0.20 0.18 0.28 0.26 0.29 0.30

10 0.16 0.15 0.15 0.15 0.28 0.26 0.25 0.25 0.42 0.40 0.42 0.41

15 0.19 0.18 0.17 0.19 0.33 0.30 0.29 0.33 0.48 0.48 0.49 0.49

20 0.21 0.20 0.19 0.20 0.36 0.34 0.32 0.34 0.54 0.54 0.53 0.54

30 0.24 0.23 0.21 0.24 0.40 0.38 0.36 0.39 0.60 0.61 0.60 0.60

40 0.27 0.26 0.22 0.27 0.42 0.41 0.38 0.42 0.65 0.64 0.64 0.64

50 0.28 0.28 0.24 0.29 0.44 0.44 0.40 0.44 0.68 0.67 0.66 0.66

60 0.31 0.28 0.24 0.30 0.46 0.45 0.42 0.42 0.69 0.68 0.68 0.67

70 0.32 0.29 0.26 0.32 0.47 0.46 0.43 0.46 0.71 0.70 0.69 0.69

80 0.32 0.30 0.27 0.33 0.48 0.46 0.44 0.47 0.71 0.71 0.70 0.69

90 0.33 0.31 0.27 0.32 0.49 0.47 0.45 0.47 0.73 0.72 0.70 0.70

100 0.34 0.32 0.28 0.34 0.49 0.48 0.46 0.49 0.73 0.73 0.71 0.71

110 0.34 0.33 0.30 0.34 0.50 0.50 0.47 0.49 0.74 0.73 0.71 0.72

130 0.36 0.34 0.31 0.35 0.50 0.50 0.47 0.49 0.75 0.75 0.72 0.72

150 0.36 0.34 0.32 0.35 0.52 0.51 0.48 0.50 0.76 0.76 0.73 0.73

170 0.37 0.36 0.34 0.36 0.52 0.51 0.49 0.50 0.77 0.77 0.73 0.74

190 0.37 0.36 0.33 0.37 0.52 0.52 0.50 0.51 0.77 0.77 0.73 0.75

210 0.38 0.36 0.35 0.37 0.53 0.53 0.50 0.51 0.78 0.77 0.73 0.75

230 0.38 0.37 0.35 0.38 0.54 0.53 0.51 0.52 0.78 0.78 0.73 0.75

270 0.39 0.38 0.36 0.38 0.54 0.54 0.52 0.52 0.79 0.79 0.74 0.76

310 0.40 0.38 0.37 0.39 0.55 0.54 0.53 0.52 0.80 0.79 0.74 0.76

350 0.40 0.39 0.38 0.39 0.55 0.55 0.53 0.52 0.80 0.80 0.75 0.76

390 0.40 0.39 0.38 0.39 0.55 0.55 0.53 0.53 0.80 0.80 0.75 0.77

416 0.40 0.40 0.39 0.39 0.56 0.55 0.54 0.53 0.81 0.80 0.75 0.77

Train.=Number of individuals in training set.

RR=Ridge Regression Best Linear Unbiased Predictor; BB=BayesB; PLS=Partial Least

Squares; RF=Random Forest.
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Table 2.5.
Genomic prediction model accuracy for performance traits for F4
breeding lines in a hybrid testcross with PHHB9.

Grain Yield Grain Moisture Test Weight

Train. RR BB PLS RF RR BB PLS RF RR BB PLS RF

5 0.10 0.09 0.09 0.08 0.22 0.18 0.20 0.22 0.16 0.15 0.16 0.18

10 0.14 0.12 0.12 0.13 0.34 0.31 0.33 0.32 0.23 0.24 0.26 0.24

15 0.16 0.13 0.13 0.16 0.39 0.39 0.39 0.37 0.29 0.29 0.31 0.29

20 0.18 0.16 0.14 0.19 0.44 0.43 0.42 0.44 0.34 0.34 0.35 0.33

25 0.20 0.18 0.16 0.20 0.48 0.47 0.46 0.47 0.37 0.37 0.38 0.36

30 0.21 0.18 0.16 0.21 0.50 0.50 0.48 0.50 0.39 0.40 0.41 0.39

35 0.23 0.20 0.16 0.22 0.52 0.51 0.49 0.53 0.42 0.42 0.42 0.42

40 0.23 0.20 0.18 0.23 0.53 0.53 0.52 0.55 0.44 0.45 0.44 0.43

50 0.24 0.22 0.18 0.24 0.55 0.54 0.53 0.56 0.47 0.47 0.47 0.46

60 0.25 0.23 0.19 0.25 0.57 0.56 0.54 0.59 0.49 0.48 0.48 0.48

70 0.27 0.24 0.19 0.26 0.58 0.58 0.56 0.60 0.51 0.50 0.50 0.50

80 0.27 0.25 0.22 0.27 0.59 0.58 0.57 0.61 0.52 0.51 0.50 0.51

90 0.27 0.25 0.22 0.28 0.60 0.59 0.58 0.63 0.53 0.53 0.52 0.51

100 0.28 0.26 0.22 0.28 0.61 0.59 0.58 0.63 0.54 0.53 0.52 0.52

110 0.28 0.26 0.22 0.29 0.61 0.60 0.59 0.63 0.54 0.54 0.53 0.52

120 0.29 0.27 0.24 0.29 0.61 0.61 0.60 0.64 0.55 0.54 0.54 0.53

130 0.29 0.27 0.24 0.30 0.62 0.61 0.60 0.64 0.56 0.56 0.54 0.54

145 0.30 0.27 0.25 0.30 0.62 0.61 0.61 0.64 0.56 0.55 0.55 0.54

160 0.30 0.28 0.26 0.30 0.62 0.62 0.61 0.65 0.57 0.56 0.55 0.55

175 0.31 0.28 0.26 0.31 0.63 0.62 0.62 0.65 0.57 0.57 0.56 0.55

190 0.31 0.29 0.26 0.31 0.64 0.63 0.62 0.64 0.58 0.57 0.57 0.56

205 0.31 0.29 0.27 0.31 0.63 0.63 0.62 0.64 0.58 0.58 0.56 0.56

225 0.31 0.30 0.27 0.32 0.63 0.63 0.63 0.66 0.59 0.58 0.57 0.57

245 0.31 0.30 0.28 0.32 0.64 0.63 0.63 0.66 0.59 0.59 0.57 0.57

284 0.32 0.31 0.30 0.33 0.64 0.64 0.64 0.66 0.60 0.59 0.58 0.57

Train.=Number of individuals in training set.

RR=Ridge Regression Best Linear Unbiased Predictor; BB=BayesB; PLS=Partial Least Squares;

RF=Random Forest.
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Figure 2.1. Phenotypic trait correlations for LH51/PHG35 F4
progeny in a hybrid yield trial with tester 2FACC.
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Figure 2.2. Phenotypic trait correlations for LH51/PHG35 F4
progeny in a hybrid yield trial with tester PHHB9.
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Figure 2.3. Genomic prediction accuracy for hybrid grain yield of
LH51/PHG35 F4 progeny in a topcross trial with tester 2FACC.
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Figure 2.4. Genomic prediction accuracy for hybrid grain moisture of
LH51/PHG35 F4 progeny in a topcross trial with tester 2FACC.
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Figure 2.5. Genomic prediction accuracy for hybrid test weight of
LH51/PHG35 F4 progeny in a topcross trial with tester 2FACC.
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Figure 2.6. Genomic prediction accuracy for hybrid grain yield of
LH51/PHG35 F4 progeny in a topcross trial with tester PHHB9.
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Figure 2.7. Genomic prediction accuracy for hybrid grain moisture of
LH51/PHG35 F4 progeny in a topcross trial with tester PHHB9.



52

0 50 100 150 200 250

0.
2

0.
3

0.
4

0.
5

0.
6

No. Individuals in Training Set

P
re

di
ct

io
n 

A
cc

ur
ac

y 
(R

2 )

Genomic Prediction Method

Ridge Regression−BLUP
BayesB
Random Forest
Partial Least Squares

Figure 2.8. Genomic prediction accuracy for hybrid test weight of
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3 GENETIC ANALYSIS OF MAIZE INFLORESCENCE TRAITS IN

FORMERLY ELITE COMMERCIAL INBREDS

3.1 Abstract

Inflorescence architecture in maize (Zea mays subsp. mays) influences seed pro-

duction and grain yield. Understanding the genetic basis of inflorescence architecture

can help breeders better manipulate maize plants to improve seed production and

increase grain yield. In this study, we performed a genome-wide association analysis

of 349 North American maize inbreds, using 77,329 polymorphic markers produced by

genotyping-by-sequencing (GBS). We present three main outcomes: (1) sixty-three

quantitative trait loci (QTL) associated with eight inflorescence-related traits; (2)

a list of candidate genes for each marker-trait association; and (3) allelic frequency

differences at QTL associated with inflorescence traits in North American maize.

The results of this study provide a solid foundation for future research to explore

applications in marker-assisted selection of inflorescence traits.

3.2 Introduction

The inflorescence structure in maize (Zea mays supsp. mays) is composed of phys-

ically separate and distinct male and female organs. The male inflorescence, found at

the apex of the stem, is the pollen-producing tassel, while the female inflorescence,

usually located about halfway up the stalk, consists of an ear upon which the seeds

are produced (Vollbrecht & Schmidt, 2009). Due to the physical separation of the two

inflorescences, a high proportion of pollination events occur between different plants.

Maize is thus characterized as a cross-pollinating species.
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Filial-1 (F1) hybrid seed production favors larger tassels on plants used as males

to maximize number of wind-dispersed pollen grains. This in turn leads to a higher

number of successful pollination events, thus maximizing production of seed kernels

((Uribelarrea, Carcova, Otegui, & Westgate, 2002)). Increasing the pollen grain pro-

duction rate per male plant means more seed-bearing female inbreds can take their

place in the seed-production field.

Over time plant breeders have indirectly selected for smaller tassels in hybrid

maize, effectively increasing grain yield by redirecting a portion of the plant’s pho-

tosynthetic assimilates to fill grain on the ear ((Fischer et al., 1987)). Meghji et al.

(1984) show a consistent decrease in tassel size among Corn Belt inbreds and hybrids

through the 1970s. Duvick et al. (2010) report a similar consistent decrease extend-

ing into the early 2000s. Such observations agree with negative associations between

tassel size and grain yield (Lambert & Johnson, 1978).

Inflorescence architecture exhibits a wide range of natural phenotypic and allelic

diversity (Vollbrecht & Schmidt, 2009), making these traits a promising target for

genome-wide association study (GWAS) to discover the underlying quantitative trait

loci (QTL). For most traits in maize, including inflorescence, genetic control resides

in a large number of genes, each explaining a small part of the observed variation

(Brown et al., 2011; Wallace, Larsson, & Buckler, 2014).

Using molecular genotypes and traits collected from a set of formerly elite com-

mercial maize inbreds, we present an association analysis that links genotype with

phenotype. Three primary outcomes are discussed: (1) QTL associated with inflo-

rescence architecture; (2) candidate genes near these QTL; and (3) observations of

allele frequency differences at tassel trait QTL between North American maize and

worldwide maize germplasm. These results can be a starting point for research efforts

in developmental and evolutionary biology, genetics and breeding, and maize hybrid

seed production.
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3.3 Materials and Methods

3.3.1 Plant Material

Three-hundred forty-nine inbreds were used in this study, 283 of which were elite

commercial inbreds with expired Plant Variety Protection certificates (also known as

ex-PVP inbreds). Sixty-six public inbredskey progenitors of these 283 commercial

inbredswere also included. Seed was obtained from the USDA-ARS National Genetic

Resources Program (USDA, 2013a). Pedigrees and accession numbers for each inbred

are found in Supporting Information 1 and 2.

3.3.2 Experimental Design

All plants were grown in five single-replicated environments at Purdue Agronomy

Center for Research and Education (West Lafayette, Indiana), and laid out in a

randomized incomplete block design. Two environments were grown in 2014, one

in 2015, and two in 2016. Each inbred was represented by no more than 13 plants

in a 3.048 m long plot. Rows were planted 0.762 m apart, with a 0.762 m alley.

Public maize inbreds B73 and Mo17 were used as replicated checks throughout each

environment.

3.3.3 Phenotypic Data

Three plant architecture traits were measured: plant height (PH); ear height (EH);

and days to pollen shed (DP). For PH and EH, three random plants per plot were

chosen for the measurements. Four weeks after anthesis, three random tassels were

selected from each plot and placed in a forced-air dryer for four days. Three tassel

phenotypes were measured: tassel weight (TW); tassel branch number (TBN); and

tassel spike length (SL). At harvest, three ears from each plot were randomly selected

and placed in a forced-air dryer for four days. Two ear phenotypes were measured:

cob length (CL); and cob rows (CRW). Trait descriptions are included in Table 1.
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3.3.4 Genotypic Data

Genotypic data was obtained from two sources. The first contained 224 inbreds for

which PVP certificates had expired up to 2010, as well as 67 public founder inbreds.

Genotyping-by sequencing (GBS) data was obtained from www.panzea.org (Zhao et

al., 2006). Tissue sampling, DNA extractions, and genotyping-by-sequencing (GBS)

were done according to the protocol described by Elshire et al. (2011).

The second genotypic data source was for 58 additional inbreds for which PVP

certificates had expired between 2010 and the commencement of this study. Tissue

sampling and DNA extraction procedures were performed with adherence to same

protocols just cited. Genotypes were obtained from the Cornell University Institute

for Genomic Diversity (Ithaca, New York).

The two GBS data sets were merged using Tassel 5.0 version 20151210 (Bradbury

et al., 2007). SNPs with a minor allele frequency less than 0.05 were. Genotypes at

heterozygous loci and loci with tertiary alleles were changed to missing. The resulting

GBS data set contained 77,314 markers with a mean proportion of missing genotype

calls per inbred of 0.06 (T. Beckett et al., 2017).

3.3.5 Data Analysis

Statistical Model and Heritability Estimates

The R package ’lme4’ v. 1.1-14 (Bates et al., 2015) was used in RStudio ver-

sion 0.98.1103 (RStudio Team, 2015) to fit a linear model with random effects to

obtain variance components for heritability estimates. The phenotypic trait value of

genotype i when grown in environment j and subgroup k is given by:

Yijk = µ+ αi + βj + δ(k(j)) + εijk (3.1)

where µ is the population mean, αi is the effect of the ith genotype, βj is the effect

of the jth environment, δ(k(j)) is the effect of the kth subgroup within the jth envi-
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ronment, and εijk is the residual error. The genotypic, environmental, and subgroup

effects were all treated as random variables.

Broad-sense heritability was calculated on a line-mean basis for each phenotypic

trait according to the following formula:

H2 =
σ2
G

σ2
G + σ2

ε

n

(3.2)

whereH2 is the broad-sense heritability, δ2
G is the genotypic variance, σ2

ε is the residual

error variance, and n is the number of environments.

Genome-Wide Association Analysis

Preliminary analyses were performed to determine how to effectively minimize

bias due to population structure in the GWAS. A genetic-based cluster was created

based on Ward’s minimum-variance method (Ward Jr, 1963). Principal component

analysis showed that three sub-groups explained 79.4 % of the genotypic variation.

These two analyses confirmed that dividing the population into three sub-groups

would be optimal.

GWAS was performed using the R package ’GAPIT’ (Lipka et al., 2012). Missing

genotypic data points were replaced with an intermediate value. Using a mixed linear

model, the first three principal components were categorized as covariates to control

for population structure. One GWAS was performed for each phenotypic trait in

each environment. A simple mean of trait values across all environments was then

calculated, and an additional GWAS was run on each trait for this simple mean.

SNPs that fulfilled the following two criteria were identified as QTL: (1) a mean

−log(P.value) greater than 3.0; and (2) a greatest single −log(P.value) greater than

4.0. False-discovery simulated GWAS were run to verify the validity of these thresh-

olds for identification of QTL, with 100 iterations. No SNPs from these simulated

GWAS runs met either of these criteria. Therefore, these two criteria were considered

sufficient to eliminate false-positives from consideration among real results.
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Candidate Gene Analysis

Linkage disequilibrium (LD) was estimated using the R package ’NAM’ (Xavier

et al., 2015), with LD decay reaching a value of r2 = 0.2 at 1.2 kilo base pairs (kbp).

Other studies with similar germplasm sets found 1 to 3 kbp (Truntzler et al., 2012)

and 10 kbp (Romay et al., 2013). We chose a distance of 10 kbp on either size of the

trait-associated SNPs. Candidate genes, as well as orthologues for both rice (Oryza

sativa) or Arabidopsis (Arabidopsis thaliana), were identified using the MaizeGDB

genome browser (Sen et al., 2010).

Allele Frequencies at Tassel Trait QTL

We compared allele frequencies at tassel trait QTL within these North American

inbreds with allele frequencies in a set of globally sourced inbreds maintained at the

USDA-ARS North Central Regional Plant Introduction Station (NCRPIS) in Ames,

Iowa as of 2010 (Romay et al., 2013). This population includes North American dent

and flint germplasm, tropical inbreds from CIMMYT (The International Maize and

Wheat Improvement Center), semi-exotic inbreds from the Germplasm Enhancement

of Maize (GEM) program, as well as inbreds from Spain, France, China, Argentina,

Canada and other countries.

Tassel 5.0, version 20151210 was used for the direct allele frequency comparisons.

The worldwide population included 274 ex-PVP and public inbreds that were also

used in this study. Prior to generating allele frequencies for comparison, these 274

inbreds were removed from the worldwide population data set.

3.4 Results

3.4.1 Summary Statistics

Phenotypic distributions, bivariate scatter plots, and pairwise correlation statistics

of averages across environments are shown in Figure 1. Among inflorescence traits,
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TSL and CL had a correlation of r = 0 : 41, TBN and TSL were at r = 0.39, and

TW and TBN, were at r = 0.62. PH and EH had a correlation of r = 0.77, DP and

PH were at r = 0.56, and DP and EH were at r = 0.50. All of the above mentioned

correlations were significant at p < 0.0001. Summary statistics per environment are

provided in Supporting Information 3.

Phenotypic variance components and broad-sense heritability are listed in Table

2. TBN had the highest heritability at 0.97, CL had the lowest heritability, at 0.86,

and the mean heritability for all traits was 0.91.

3.4.2 Genome-Wide Association and Candidate Gene Analyses

Manhattan plots with the -log(P.value) for each SNP-trait association are given

in Fig 2. Twenty QTL were found for DP; 12 for PH; 6 for EH; 10 for TW; 8 for

TBN; 1 for SL; 4 for CL; 2 for CRW. TW and TBN had two QTL in common; DP

and PH had one; and PH and EH had two.

Selected QTL and candidate genes are presented in Table 3. Four tassel trait loci

(qTW2, qTW9, qTBN7, and qTBN8) are located near QTL previously identified by

(Wu et al., 2016). The TW locus with the highest statistical value, qTW7, was also

associated with TBN (qTBN4). Two DP loci (qDP8 and qDP17) were previously

identified by (Li et al., 2016). Locus qDP17 was also identified by(Bouchet et al.,

2016). All QTL identified in this study are provided in Supporting Information 4.

All candidate genes are listed in Supporting Information 5.

3.4.3 Allele Frequencies at Tassel Trait QTL

Frequencies of alleles that increased tassel size and weight were consistently lower

(mean difference of -0.12) in the North American commercial germplasm (NA) when

compared to the worldwide population (see Table 4). Locus qTW8, had completely

different alleles in the worldwide population (C major and T minor) than in the NA

commercial population (G major and A minor). For qTW2; qTW6; and qTBN4,
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alleles that increased TW or TBN were not found in the NA commercial germplasm

SS heterotic group. The largest difference in allele frequency (0.28) was found at

qTBN7.

3.5 Discussion

3.5.1 Phenotypic Correlations

There was a moderate correlation between TW and TBN. When a tassel has more

branches, the additional plant matter means a greater dry weight. There was a neg-

ative correlation of r = 0.39 between TBN and TSL. When more branches fill up

the tassel and spike zone, the region without tassel branches becomes smaller. The

moderate correlations observed between DP and EH and DP and PH were expected.

Troyer and Larkins (1985) note a strong association between plant height and flow-

ering time. As internodes cease to form following floral initiation, earlier-flowering

maize inbreds will be shorter than later-flowering maize inbreds.

3.5.2 Heritability

The environments were all at the same general locationPurdue’s ACRE site. Thus,

non-genetic variance was minimized due to environmental homogeneity. This could

result in artificially high heritabilities. However, a similar study of maize inflorescence

traits by Brown et al. (2011), across 8 diverse locations across the US mainland and

the territory of Puerto Rico, found similar levels of heritabilities (ranging from the

high 80s to the low 90s). The existence of similarly high heritabilities in both Brown

et al. (2011) as well as our study indicates that these traits are in reality highly

heritable.
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3.5.3 Notable QTL and Candidate Genes

Two primary results support the validity of the QTL found in this study: (1)

several QTL are found in common across correlated traits (Supporting Information

5); and (2) a large number of QTL were found within 10 kbp of QTL identified in

previous studies, including several at the exact same SNP (Supporting Information

6, 7, and 8).

Tassel Traits

The QTL with the highest -log(P.value) (qTW7) is also a QTL for TBN (qTBN4).

This locus is approximately halfway between two tassel architecture candidate genes,

19 Mb downstream from BIF4 and 17 Mb upstream from tsh1. BIF4 is an auxin-

signaling module that regulates maize inflorescence (Galli et al., 2015). tsh1 is in-

volved in development of the inflorescence leaf, or bract (Whipple et al., 2010). De-

pending on the extent of LD as well as the density of marker coverage in this region,

it is possible that the emergence of this QTL is caused by the presence of both genes

in this region. Another locus that is a QTL for multiple tassel traits was identified as

both qTW10 and qTBN8. However, there are no reasonable candidate genes within

10 kbp on either side of this locus. For a list of tassel-trait QTL that were found

in the same region as previously reported QTL (Wu et al., 2016), see Supporting

Information 6.

Days to Pollen Shed

First, one of the candidate genes for qDP17, pebp8 (phosphatidylethanolamine-

binding protein8) is involved in origen activity, and promotes flowering at short days

(Navarro et al., 2017). Bouchet et al. (2016) also found a flowering-time QTL only 54

bp away. Second, located 593 bp upstream of qPH9, the gene MADS50 is contributes

to the transition to flowering in Arabidopsis and rice (Sun et al., 2012). Third, the
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gene associated with qDP12, known as ras11B2, contributes to tapetal programmed

cell death and pollen development in rice (Ko et al., 2014). Fourth, other DP QTL

identified in our study are within 4,000 kb of flowering time QTL previously reported

by (Li et al., 2016). A full list is included hereafter as Supporting Information 7.

Connecting Plant Height, Ear Height, and Days to Pollen Shed

Comparison of PH and EH results in this study with an earlier study yields some

valuable insights. Among the QTL reported by Peiffer et al. (2014), five plant height-

related QTL were within 6,000 kbp of QTL found in this study (see Supporting

Information 8). The SNP associated with locus qDP8 was also identified as a QTL

for PH in Peiffer et al. (2014). Previous research cites a strong association between

plant height and flowering time (see Section 4.1); our data show the same association.

3.5.4 Novel QTL

While other GWAS on inflorescence traits used worldwide germplasm, this study

used former commercial inbreds and public inbred progenitors. Novel QTL (i.e. those

not found in previous studies) may have resulted from intense selection pressure ap-

plied to create commercial inbreds. Due to the homogeneous composition of the

environments in this study, these novel QTL may also be specific to these five en-

vironments only. If these experiments were repeated in different environments, it

is possible that different QTL would be identified. The set of commercial inbreds

we used also has a wide range of maturities. By growing all the inbreds in the same

zone, it creates bias, as the genotypes will be expressed differently than if appropriate

subsets were grown in their respective native regions.
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3.5.5 Allele Frequencies at Tassel Trait QTL

Given the consistent decrease in tassel weight in North American commercial

maize since the 1930s (see Introduction), it follows that alleles that increase tassel

size should be less prevalent among NA commercial maize than in a worldwide maize

population. Across all tassel-trait QTL identified in this study, the alleles associated

with larger tassel size (either TBN or TW) were 12% less frequent in the NA commer-

cial population than in the worldwide population (Table 3). For two QTL associated

with both TBN and TW, alleles that increased tassel size were 18% and 19% less

common in the NA commercial population than in the worldwide population (Table

3). The data show a consistent trend that alleles conferring larger tassels are less

common within North American maize commercial germplasm than in global maize

germplasm.

3.5.6 Application to Breeding

One way to use these results to improve seed production traits is to employ a

marker-assisted breeding scheme to select for inflorescence traits in the desired direc-

tion. Another approach is genomic selection. For example, a breeder could simulate

progeny genotypes from potential bi-parental breeding populations, then use the data

in this study as a training population to predict which parents would create the best-

performing breeding population (Bernardo, 2014).

Determining gene action at these loci would be very valuable for breeding. For

example, suppose that a breeder desired large-tasseled males and small-tasseled fe-

males for seed production purposes, but a small tassel in the ensuing hybrid. If a

small-tassel allele is dominant over a large tassel allele, then successful divergent se-

lection on that locus would produce a large-tasseled male, a small-tasseled female,

and a small-tasseled grain-producing hybrid. Such physiological remodeling of plant

architecture for improved partitioning efficiency would be ideal for both maximum

seed production and improved grain yield.
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3.5.7 Summary

This study identifies a large number of QTL and candidate genes associated with

inflorescence traits in maize. We hope these results will serve as a foundation for

further work to validate these QTL, leading to characterization of novel genes that

contribute to control of maize inflorescence development. Obtaining a better under-

standing of the genetic architecture of maize inflorescences should enable geneticists,

breeders, physiologists, and others to work together to design future inbreds and

hybrids with more efficient seed production and optimal dry-matter partitioning.
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Table 3.1.
Traits collected.

Trait Abbv. Description Units

Tassel Weight TW Weight of dry tassel. g

Tassel Branch Number TBN Number of total tassels. count

Tassel Spike Length SL Dist. b/n main rachis and top 1◦ branch. mm

Cob Length CL Length of the cob. mm

Days to Pollen Shed DP Accumulated growing degree days between AGDD

planting and 50% pollen shed.

Plant Height PH Distance from ground to ligule of flag leaf cm

Ear Height EH Distance from ground to ear node cm

Table 3.2.
Phenotypic variance components and heritability.

Trait n σ2
G σ2

ε H2

Tassel Weight (g) 5 1.07 0.33 0.94

Tassel Branch Number (count) 5 12.8 2.4 0.97

Tassel Spike Length (cm) 5 1012 536 0.90

Cob Length (mm) 4 258 194 0.84

Cob Rows (count) 4 2.2 1.4 0.86

Days to Pollen Shed (GDD) 3 8616 2815 0.90

Plant Height (cm) 4 403 105 0.94

Ear Height (cm) 4 159 65 0.91

n=Number of unreplicated environments in which the trait

was collected; σ2
G=Genotypic variance; σ2

ε=Error variance;

and H2=Broad-sense heritability, calculated by H2 =

σ2
G/[σ

2
G + (σ2

ε /n)].
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Table 3.3.
Selected QTL and Candidate Genes.

Trait QTL SNPa P-val.b Eff.c Candidate Gene Gene Product Description

Tassel Weight (g)

qTW2 S1 278131948 4.11 0.47 GRMZM2G328500 UDP-glucose 6-dehydrogenase

qTW6 S4 239413702 4.43 0.46 GRMZM2G073571 Phosphatidylinositol transfer protein

GRMZM2G073731 -

GRMZM2G374074 DUF1645 domain containing protein

qTW7 S6 149473281 7.30 0.57 GRMZM2G106140 Sec23/Sec24, trunk domain protein

GRMZM2G106190 Ferredoxin-6, chloroplastic

GRMZM2G106218 T-snare

qTW8 S7 156740065 4.27 0.32 GRMZM2G153438 Equilibrative nucleoside transporter

qTW9 S8 153860376 4.39 0.27 GRMZM2G059590 DUF292 domain containing protein

qTW10 S9 105192237 5.76 0.45 GRMZM2G029912 G11 protein

Tassel Br. No. (count)

qTBN7 S8 145795246 4.12 0.97 GRMZM2G162347 CTD-phosphatase

qTBN8 S9 105192237 5.75 1.51 GRMZM2G029912 Gl1 protein

Tassel Spike Length (cm)

qTSL1 S3 2583127 5.34 11.15 GRMZM2G013045 Disulfide oxidoreductase/monooxygenase

Days to Pollen Shed (GDD)

qDP8 S3 159555813 4.84 27.55 AC188753.3 FG004 Cons. gene of unknown function

qDP17 S8 123506087 5.26 28.36 GRMZM2G179264 ZCN8

GRMZM2G179274 6b-interacting protein 1

GRMZM2G479987 Cons. gene of unknown function

Plant Height (cm)

qPH2 S1 211673059 4.60 7.53 GRMZM2G047019 CCR4-NOT transcr. complex subunit 8

GRMZM2G047238 Stromal cell-derived factor 2

qPH5 S1 273786380 4.65 9.15 GRMZM2G131525 Knolle protein

GRMZM2G131575 ATP synthase

Ear Height (cm)

qEH2 S1 211673059 4.61 4.52 GRMZM2G047019 CCR4-NOT transcr. complex subunit 8

GRMZM2G047238 Stromal cell-derived factor 2

qEH3 S1 273786380 4.82 5.48 GRMZM2G131525 Knolle protein

GRMZM2G131575 ATP synthase

aSNP=Chromosome number and physical position, in bp.

bP.val.=−log10(P-value)

cEff.=Effect of the major allele.
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Table 3.4.
Allele frequency comparisons for tassel trait QTL.

Trait QTL SNP Allele Global PVP Diff.a

Tassel Branch Number

qTBN1 S1 219371053 A 0.18 0.18 0

qTBN2 S3 194048392 G 0.68 0.49 0.19

qTBN3 S5 50335549 A 0.28 0.35 -0.07

qTBN4 S6 149473281b A 0.25 0.07 0.18

qTBN5 S6 162140459 G 0.37 0.16 0.21

qTBN7 S8 145795246 G 0.63 0.35 0.28

qTBN8 S9 105192237b T 0.41 0.22 0.19

Tassel Weight (g)

qTW1 S1 14863005 C 0.39 0.35 0.04

qTW2 S1 278131948 T 0.24 0.10 0.14

qTW3 S3 208616512 G 0.41 0.26 0.15

qTW4 S3 217293300 C 0.58 0.39 0.19

qTW5 S4 236395269 C 0.20 0.22 -0.02

qTW6 S4 239413702 C 0.10 0.08 0.02

qTW8 S7 156740065c A - 0.27 -

qTW9 S8 153860376 C 0.52 0.26 0.26

Overall Mean 0.37 0.25 0.12

Global=Global inbred population; PVP=North American formerly elite com-

mercial inbred population.

aDifference in allele frequency between the Global and PVP.

bQTL found for both TBN and TW

cAllele not found in global population
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Figure 3.1. Phenotypic distributions and correlations. Histograms are
on the diagonal; bivariate scatter plots are below the diagonal; and
Pearson’s correlation statistic (r) for each pairwise trait comparison
is above the diagonal. P-value for each Pearson correlation statistic
is indicated by the following: ∗ ∗ ∗ = p < 0 : 001,∗ ∗ = p < 0 : 01; ∗ =
p < 0 : 05.
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Figure 3.2. Manhattan plots from GWAS. Chromosome and relative
SNP position is on the X-axis; -log(P.value) is on the Y-axis. Notable
QTL discussed in the text are highlighted.
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Table 3.5.: Inbreds with expired Plant Variety Protection
certificates used in this study.

Inbred Proprietora PVP# GRIN IDb Pedigreec

207 Pioneer 8300144 PI 601005 G3BD2/G3RZ1
740 Novartis 8800028 PI 601489 Mo17/Mexican Deep Kernel
764 Novartis 8700036 PI 601374 235/B73
778 Novartis 8700045 PI 601375 W117/B37Ht
779 Novartis 8700041 PI 601376 CM7-24/W117
787 Novartis 8800029 PI 601490 VA17/VA29
790 Novartis 8800030 PI 601491 235/B73
793 Novartis 8800031 PI 601492 235/B73
794 Novartis 8700046 PI 601377 235/B73
807 Novartis 8700151 PI 601430 W117/B37Ht
904 Northrup 9200123 PI 560317 PHI3737
911 Northrup 9200012 PI 557556 PHI3737
912 Northrup 9200013 PI 557557 PHI3737
1538 United Agriseeds 8900075 PI 601658 PHI3901/AS3(Syn.)
2369 Cargill 8800178 PI 601559 2702H/B73(1)
5707 Asgrow 8600036 PI 601269 C123Ht/Va59
6103 Asgrow 8500005 PI 601159 (AS10631/A632)/RB14AHt
11430 Cargill 8800177 PI 601558 Oh43/H99/Mo17 Composite
78004 DeKalb-Pfizer 8500125 PI 601210 B73/A634
78010 DeKalb-Pfizer 8500126 PI 601211 B73/A634
29MIBZ2 DeKalb 9100124 PI 548830 B87/PHI3901
2FACC DeKalb 9000016 PI 601808 4676A/PB80
2FADB DeKalb 9300084 PI 564751 4676A /PB80
2MA22 DeKalb-Pfizer 8800193 PI 601560 4780/5P9-1
2MCDB DeKalb 9300091 PI 565088 2MA22/4780 Composite
3IBZ2 DeKalb 9100223 PI 554616 IBC2/ZZZ38
3IIH6 DeKalb 9300087 PI 564754 PHI3737
3IJI1 DeKalb 9300086 PI 564753 IBI8/PHI3603
4676A DeKalb-Pfizer 8600092 PI 601300 1067-1/B-line Composite
4N506 Funk Seeds 8900263 PI 601745 B73/BSSS2
6F629 DeKalb 9100036 PI 546483 88051B/4608H
6M502 DeKalb-Pfizer 8800191 PI 601561 MAWU/4913
6M502A DeKalb 9100037 PI 546484 MAWU/4913
78002A DeKalb-Pfizer 8600091 PI 601301 B73/A634
78371A DeKalb-Pfizer 8700172 PI 601438 4726/Iowa Long Ear
78551S DeKalb 8800195 PI 601562 78060A/LH38
83IBI3 DeKalb 9100256 PI 555651 IBC2/IBI2
87916W DeKalb-Pfizer 8800189 PI 601563 W37-2/B73(2)
8M129 DeKalb 9300090 PI 565087 78060A /88144
91IFC2 DeKalb 9300083 PI 564750 FR23/IBC2
AQA3 DeKalb 9300082 PI 564749 ABA10/FBAB
B09 Pioneer 8300142 PI 601007 555/031
B47 Pioneer 8300141 PI 601009 B37/SD105
BCC03 Novartis 9100002 PI 544065 3224/LH51
CQ702rc United Agriseeds 9300186 PI 566938 KS1030/3535
CR14 J.C. Robinson 8900095 PI 601683 (B73/CM105)/(B73/CQ187)
CR1Ht J.C. Robinson 8400042 PI 601080 W117Ht/Mo17Ht

continued on next page
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Online Resource 1 continued
Inbred Proprietora PVP# GRIN IDb Pedigreeb

CS405 United Agriseeds 9200059 PI 559916 B73/K81
CS608 United Agriseeds 9200122 PI 560316 (Oh514/B68Ht)/CD1
DJ7 Funk Seeds 8500086 PI 601191 BS16(Syn.)/B73(3)
E8501 Novartis 8900233 PI 601724 387/FRMo17
F118 DeKalb 9100248 PI 555462 B73/T220
F42 FFR 8300157 PI 601026 B73 Mutation
FAPW DeKalb-Pfizer 8200152 PI 600958 B14AH/B37H
FBHJ DeKalb-Pfizer 8700173 PI 601439 B84/FBAB(1)
FBLA DeKalb 9100035 PI 546482 1094-H x A656
FR 19 IL Found. Seeds 8000011 PI 600772 W438/A635
G35 Pioneer 8300140 PI 601008 PHG3BD2/H7FS6(aka PH595)
G39 Pioneer 8300115 PI 600981 B37/B14/B96/I205/IDT
G50 Pioneer 8300143 PI 601006 848/207
G80 Pioneer 8400128 PI 601037 495/331
H8431 Novartis 8800152 PI 601610 (377/B386)/347
HB8229 DeKalb 8800190 PI 601564 8200/A634H
HBA1 DeKalb-Pfizer 8500069 PI 601172 PHI3195/PHI3199
IB014 DeKalb-Pfizer 8500123 PI 601208 H99/3901(1)
IB02 DeKalb-Pfizer 8700197 PI 601457 IBI/7309B
IBB14 DeKalb 8800192 PI 601565 PHI3710/PHI3732
IBB15 DeKalb-Pfizer 8700196 PI 601458 J6/W70884
IBC2 DeKalb-Pfizer 8700198 PI 601459 Mo17Ht/J6(1)
ICI 193 Advanta 9200037 PI 559380 PHI3732/CB59G
ICI 441 Advanta 9200038 PI 559381 PHI3377/LH132
ICI 581 Zeneca 9300049 PI 564697 LH39/LH58
ICI 740 Advanta 9200039 PI 559382 PHI3377/LH132
ICI 893 Advanta 9200040 PI 559383 Pa91/B73(1)
ICI 986 Zeneca 9200041 PI 559384 PHI3540
J8606 Novartis 8900226 PI 601725 P101/C103G
L 127 Lifaco Seed 8900201 PI 601726 PHI3901/W117
L 135 Lifaco Seed 8900202 PI 601727 PHI3901/W117
L 139 Lifaco Seed 8900203 PI 601728 PHI3901/PHI3780
L 155 Limagrain 9100163 PI 550695 P-3901/A632
LH1 Holden’s 7600047 PI 644101 B37/644
LH38 ISU RF 8000066 PI 600791 A619HT/L120
LH39 ISU RF 8000067 PI 600944 Oh43/L120
LH51 Holden’s 8200062 PI 600955 Mo17 Backcross 5 recovery
LH52 Holden’s 8700020 PI 601360 610/Mo17(2)
LH54 Holden’s 8600128 PI 601316 610/Mo17(2)
LH57 Holden’s 8600129 PI 601317 (Mo17/H99)/LH53
LH59 Holden’s 8700213 PI 601466 (Mo17/H99)/LH53
LH60 Holden’s 8700087 PI 601404 LH55/LH47
LH61 Holden’s 8700137 PI 601416 ASA/Mo17(3)
LH65 Holden’s 8800050 PI 601494 (Mo17/LH18)/LH53
LH74 Holden’s 8200063 PI 600957 A632/B73
LH82 Holden’s 8500037 PI 601170 610/LH7
LH85 Holden’s 8700088 PI 601405 PHI3978
LH93 Holden’s 8500038 PI 601171 BS11 FRC3 OPV
LH119 Holden’s 8200064 PI 600954 H93/B73 (2)
LH123HT Holden’s 8400030 PI 601079 PHI3535

continued on next page
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Online Resource 1 continued
Inbred Proprietora PVP# GRIN IDb Pedigreeb

LH127 Holden’s 9000064 PI 538007 LH58/L122 (1)
LH128 Holden’s 9100067 PI 547086 LH51/(BS11LHC3-S4)
LH132 Holden’s 8300148 PI 601004 H93/B73(2)
LH143 Holden’s 8300138 PI 601003 A635Ht/A632Ht(2)
LH145 Holden’s 8300102 PI 600959 A632Ht/CM105
LH146Ht Holden’s 8700089 PI 601402 B73/CM105 (1)
LH149 Holden’s 8800053 PI 601493 ((A662/B73)-S1)/B73(2)
LH150 Holden’s 8500153 PI 601230 PHI3147
LH156 Holden’s 8700090 PI 601403 Va85/Pa91
LH159 Holden’s 9200247 PI 562377 PHI3160
LH160 Holden’s 9000122 PI 539920 ND246/Mo17
LH162 Holden’s 9000123 PI 539921 ND246/Mo17
LH163 Holden’s 9000065 PI 538008 PHI3720
LH164 Holden’s 9100265 PI 555659 PHI3901
LH165 Holden’s 9200248 PI 562378 LH82/LH51
LH166 Holden’s 9300035 PI 564539 LH82/LH124
LH172 Holden’s 9200249 PI 562379 LH122/LH82(1)
LH181 Holden’s 9100068 PI 547087 LH58/LH122
LH183 Holden’s 9300088 PI 564755 LH122/LH51(1)
LH184 Holden’s 9300038 PI 564542 LH123Ht/LH51 (1)
LH190 Holden’s 9000124 PI 539922 ((B68Ht/B73Ht)-S2)/B73
LH191 Holden’s 9000139 PI 539925 LH132/PHI3184
LH192 Holden’s 9000140 PI 539926 LHE137/LHE136
LH193 Holden’s 9000141 PI 539927 LHE137/LHE136
LH194 Holden’s 9000125 PI 539923 LH117/LHE137
LH195 Holden’s 9000047 PI 537097 LH117/LH132
LH196 Holden’s 9000066 PI 538009 LH74/LH119
LH197 Holden’s 9200020 PI 557562 LH132/B84
LH198 Holden’s 9200021 PI 557563 B84/LH132(2)
LH199 Holden’s 9200024 PI 557566 (LH117/LHE137)/LH132
LH202 Holden’s 9000126 PI 539924 ((A662/B73)-S1)/B73(2)
LH204 Holden’s 9000048 PI 537098 (CB59G/LH1)/B73
LH205 Holden’s 9000049 PI 537099 LH74/LH119
LH206 Holden’s 9000067 PI 538010 (CB59G/LH1) /B73
LH208 Holden’s 9100069 PI 547088 LH74/CB59G
LH209 Holden’s 9100218 PI 554612 LH74/LH119
LH210 Holden’s 9000050 PI 537100 LH51/(BS11LHC3-S3)
LH211 Holden’s 9000051 PI 537101 Mo17/PHI3535
LH212Ht Holden’s 9100070 PI 547089 LH24/LH123Ht(1)
LH213 Holden’s 9100071 PI 547090 LH123Ht/LH51
LH214 Holden’s 9100266 PI 555660 LH123Ht/LH51
LH215 Holden’s 9100201 PI 552815 R177/Mo17C2
LH216 Holden’s 9200028 PI 557569 ((LH123Ht/LH51(2))-S2)/LH51
LH220Ht Holden’s 9000068 PI 538011 LH74 x LH145Ht
LH222 Holden’s 9200032 PI 559375 ((CM174/LH74(1))-S1)/LH74
LH223 Holden’s 9200250 PI 562380 CB59G/CM105
LH224 Holden’s 9200251 PI 562381 LH74/CB59G(2)
LIBC4 DeKalb 9100255 PI 555650 MBNS/PHI3901
LP1CMSHT Pfister 7800019 PI 600755 A635 Cms Ht/A632Ht(5)
LP1NRHT Pfister 7800020 PI 600729 A632Ht/PN042

continued on next page
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Online Resource 1 continued
Inbred Proprietora PVP# GRIN IDb Pedigreeb

Lp215D Wilson Hybrids 9100084 PI 547107 Mo17/Lp216D
Lp5 Claeys Semences 8700031 PI 601378 GLAMOS/B73Ht(1)
MB- DeKalb-Pfizer 8500127 PI 601209 Mo17Ht/MDA-28
MBPM DeKalb-Pfizer 8700175 PI 601440 400M Composite
MBSJ DeKalb 9100134 PI 548838 LH38/5P9-1
MBST DeKalb-Pfizer 8800194 PI 601566 LH38/4726-1
MBUB DeKalb-Pfizer 9100135 PI 548839 LH38/MANS
MBWZ DeKalb 9300081 PI 564748 HBA1/IB014
MDF-13D DeKalb-Pfizer 8200151 PI 600956 H4101/800M
ML606 United Agriseeds 9400242 PI 583774 LK2/LH38
MM402A DeKalb 9100222 PI 554615 LH38/MANS
MM501D DeKalb 9300085 PI 564752 LH38/88121A
MQ305 United Agriseeds 9200060 PI 559917 PHI3901/CB59G
NL001 DeKalb 9100038 PI 546485 (1089HT/A634)/B73
NQ508 United Agriseeds 9200061 PI 559918 PHI3713
NS501 DowElanco 8800149 PI 601583 A634/K1-172B
NS701 DowElanco 8700134 PI 601417 A632/B73Ht
OQ101 United Agriseeds 9200062 PI 559919 PHI3906/ND246
OQ403 United Agriseeds 9200063 PI 559920 PHI3901/K81-336
OQ603 DowElanco 8800150 PI 601584 PHI3713
OS602 United Agriseeds 9200064 PI 559921 PH3901/CM105
PB80 DeKalb-Pfizer 8700174 PI 601441 (1067-1/B73)/(B73Ht.1BC6)
PHAW6 Pioneer 9300104 PI 565100 PHN82/PHM49
PHBA6 Pioneer 9200078 PI 559935 PHZ51/PHG47
PHBB3 Pioneer 9400089 PI 578029 PHK29/PHW52
PHBW8 Pioneer 9200079 PI 559936 PHJ40/PHW52
PHEG9 Pioneer 9400090 PI 578030 PHG86/PHW52
PHEM7 Pioneer 9400092 PI578032 PHT64/PHW23
PHG29 Pioneer 8600047 PI 601270 806/207(1)
PHG47 Pioneer 8600131 PI 601318 041/MKSDTE C10
PHG71 Pioneer 8400157 PI 601150 A632Ht/207
PHG72 Pioneer 8600134 PI 601319 891/207
PHG83 Pioneer 8500152 PI 601229 814/207
PHG84 Pioneer 8600130 PI 601320 848/595
PHG86 Pioneer 8700170 PI 601442 B64/B73
PHGG7 Pioneer 9200081 PI 559938 PHT64/PHG49
PHGV6 Pioneer 9200082 PI 559939 PH814/PHG65
PHGW7 Pioneer 9200083 PI 559940 PHR25/PHR64
PHH93 Pioneer 8800216 PI 601567 PH806/207
PHHH9 Pioneer 9300109 PI 565105 PHJ29/PHBT4
PHHV4 Pioneer 9200084 PI 559941 PHG69/PHM44
PHJ31 Pioneer 8900307 PI 601773 B97/595
PHJ33 Pioneer 8900308 PI 601774 PHG83/CE18
PHJ40 Pioneer 8600133 PI 601321 B09/B36
PHJ65 Pioneer 9000245 PI 543840 PHG63/PHG65
PHJ70 Pioneer 8900309 PI 601775 AC26/B73Ht
PHJ75 Pioneer 8900310 PI 601776 207/G96
PHJ89 Pioneer 9100092 PI 548798 PHT77/PHG47
PHJ90 Pioneer 9100093 PI 548799 G50/PHK42
PHJR5 Pioneer 9300110 PI 565106 PHG73/PHT10

continued on next page
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Online Resource 1 continued
Inbred Proprietora PVP# GRIN IDb Pedigreeb

PHK05 Pioneer 8800001 PI 601467 CM7/051
PHK29 Pioneer 8700214 PI 601468 B47/AC54
PHK35 Pioneer 8900311 PI 601777 AC34/G93H
PHK42 Pioneer 8800035 PI 601495 806/207 (1)
PHK46 Pioneer 9000246 PI 543841 PHG65/207
PHK56 Pioneer 9000247 PI 543842 PHG47/PHG35
PHK74 Pioneer 9200085 PI 559942 PHFA0/PHG72
PHK76 Pioneer 8800036 PI 601496 AD18/B02
PHK93 Pioneer 9100094 PI 548800 PHB72/PHT60
PHKE6 Pioneer 9300111 PI 565107 PHG29/PHG47
PHM10 Pioneer 8900312 PI 601778 PHG39/207
PHM49 Pioneer 8800211 PI 601568 PHB81/PHR33
PHM57 Pioneer 8900313 PI 601779 B97/595
PHM81 Pioneer 9100095 PI 548801 PHG72/PHG68
PHN11 Pioneer 8800037 PI 601497 806/207 (1)
PHN29 Pioneer 8900314 PI 601780 PHG69/PHG40
PHN34 Pioneer 9000248 PI 543843 SC359/PH157
PHN37 Pioneer 8900315 PI 601781 CM11/041Ht
PHN41 Pioneer 9300113 PI 565109 PHDK6/PHNN2
PHN47 Pioneer 8800217 PI 601569 207/PHB60
PHN66 Pioneer 9100096 PI 548802 PHG53/PHG21
PHN73 Pioneer 8900316 PI 601782 041/PHG35
PHN82 Pioneer 8900317 PI 601783 PHG29/HD38
PHP02 Pioneer 8800212 PI 601570 PHG44/PHG29
PHP38 Pioneer 9000250 PI 543844 PHG39/PHK29
PHP55 Pioneer 8900318 PI 601784 PHG44/PHG29
PHP60 Pioneer 8900319 PI 601785 AT2/805
PHP76 Pioneer 9000251 PI 543846 PHG50/PHEJ8
PHP85 Pioneer 9200087 PI 559944 PHK29/PHW52
PHPR5 Pioneer 9200088 PI 559945 PHK76/PHW52
PHR03 Pioneer 9100097 PI 548803 PHT19/PHG84
PHR25 Pioneer 8800002 PI 601469 B83/207
PHR30 Pioneer 9200089 PI 559946 PHFM5/PHG47
PHR31 Pioneer 9200090 PI 559947 G50/PHRH7
PHR32 Pioneer 8800218 PI 601571 PHB82/PHG61
PHR36 Pioneer 8700017 PI 601361 (203/549)/848
PHR47 Pioneer 8800213 PI 601572 G39/PHB49
PHR55 Pioneer 9100098 PI 548804 PH005/PHG84
PHR58 Pioneer 9100099 PI 548805 PH383/PHG16
PHR62 Pioneer 8900320 PI 601786 G50/G35
PHR63 Pioneer 8900321 PI 601787 PHG29/B89
PHT10 Pioneer 8800214 PI 601573 B73/G39
PHT22 Pioneer 8900322 PI 601788 207/HD12
PHT47 Pioneer 9200091 PI 559948 PHB47/G39
PHT55 Pioneer 8800046 PI 601498 A33GB4/A34CB4
PHT60 Pioneer 8800219 PI 601574 PHW94/PHV80
PHT69 Pioneer 9200092 PI 559949 PHR73/PHJ40
PHT73 Pioneer 9200093 PI 559950 PHK05/PHG68
PHT77 Pioneer 8800038 PI 601499 814/995
PHTM9 Pioneer 9200094 PI 559951 PHG47/PHG36

continued on next page
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Online Resource 1 continued
Inbred Proprietora PVP# GRIN IDb Pedigreeb

PHV07 Pioneer 9000252 PI 543847 PHG41/G21
PHV37 Pioneer 8900323 PI 601789 G27/G21
PHV53 Pioneer 9200095 PI 559952 PHB89/PHDT2
PHV57 Pioneer 9300115 PI 565111 G50/PHG72
PHV63 Pioneer 8800039 PI 601500 555/Zap¡4CB
PHV78 Pioneer 8800003 PI 601470 G42/595
PHVA9 Pioneer 9200096 PI 559953 PHK29/PHGP8
PHVJ4 Pioneer 9300103 PI 565099 PHJ40/207
PHW03 Pioneer 8900324 PI 601790 801/G48
PHW17 Pioneer 8700018 PI 601362 (1D11/B73)/(B73/051)
PHW20 Pioneer 8900325 PI 601791 (1D11/1M12)/B76
PHW30 Pioneer 9100102 PI 548808 PHG42/PHV15
PHW43 Pioneer 8900326 PI 601792 995/G35
PHW51 Pioneer 9000254 PI 543849 PHDF2/PHG41
PHW52 Pioneer 8800215 PI 601575 B73/G39
PHW53 Pioneer 9300116 PI 565112 G50/PHZ51
PHW65 Pioneer 8800040 PI 601501 861/595
PHW79 Pioneer 8800220 PI 601576 PHT90/595
PHW80 Pioneer 9300117 PI 565113 PHK76/PHN37
PHW86 Pioneer 9000255 PI 543850 PHG71/PHG72
PHWG5 Pioneer 9200097 PI 559954 PH814/PHG16
PHZ51 Pioneer 8600132 PI 601322 814/848
Q381 QRA 8500098 PI 601190 PHI3369 off-type
RS710 Rustica Semences 9000129 PI 539930 PAG1202/A641
S8324 Novartis 8800153 PI 601611 (CH593-9/B73)-S2)/B73
S8326 Novartis 8800154 PI 601612 (W117/Mo17)-S2))/Mo17
Seagull 17d Rothermel 7900077 PI 600751 Mo17/Unknown
W8304 Novartis 8800032 PI 601502 B14A/B73(1)
W8555 Novartis 8900227 PI 601729 B73Ht/B84
WIL500 Wilson Hybrids 8900156 PI 601689 82C25 (Exotic Syn)
WIL900 Wilson Hybrids 8900092 PI 601684 Mo17/Tuxpeno (82C43)
WIL901 Wilson Hybrids 8900093 PI 601685 Mo17/Tuxpeno (82C232)
WIL903 Wilson Hybrids 8900094 PI 601686 Mo17/Tuxpeno (82C43)
ZS01250 Advanta 9600271 PI 595616 Unknown
ZS365 Advanta 9300304 PI 574393 PHI3358/PHI3713
ZS635 Advanta 9300305 PI 574394 PHI3358/PHI3713
aProprietor names have been abbreviated; full legal company names are stated on the
ex-PVP certificates. Explanation of abbreviations in the list above that are helpful for
company name identification: IL Found. Seeds=Illinois Foundation Seeds, Inc., ISU RF=
Iowa State University Research Foundation, and QRA=Quality Research Associates.
bGRIN ID=Germplasm Resource Information Network ID.
cAll pedigrees were obtained from PVP certificates, available at ars.grin.gov.
d”Seagull Seventeen” was shortened to ”Seagull 17” for formatting reasons
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Epilogue

In Chapter 1, I predicted the mean, variance, and superior progeny mean of simulated

biparental populations, and used these statistics to identify optimal parental combi-

nations to produce a new inbred with improved performance in a hybrid testcross

with Iodent tester PHP02. Others have predicted similar statistics (Bernardo, 2015;

Mohammadi et al., 2015; Lehermeier et al., 2017; Osthushenrich et al., 2017), but all

used either inbred or simulated data in the training set; none used hybrid testcross

data in the training set. Some of the best predicted biparental combinations (based on

both progeny mean and variance for grain yield) include: LH213 and PHR58, LH214

and PHR58, 2FACC and LH213, and 2FACC and PHR58. Most of the best biparental

combinations (i.e. those pairs with the highest predicted progeny mean and predicted

superior progeny mean) were those with inbreds from different proprietors. This is no

surprise, as many breeders have observed that in the 3-5 years following acquisition

of a new company and incorporation of its accompanying germplasm pool, there is

an increase in heterotic response. In this chapter, I also show that genetic diversity

between any two inbreds is a poor predictor of genetic variance within a biparental

breeding populations created by those two inbreds. While not a new finding, this con-

clusion agrees with many previous studies on the subject (Cowen & Frey, 1987; Souza

& Sorrells, 1991; Kisha et al., 1997; Manjarrez-Sandoval et al., 1997; Burkhamer et

al., 1998; Bohn et al., 1999; Utz et al., 2001; Gutierrez et al., 2002; Barroso et al.,

2003; Hung et al., 2012).

If I were to do this project again, I would add the inbreds with recently expired

PVP certificates to the validation, or testing set. As the newly expired PVP inbreds

are often descendants from older ex-PVP inbreds that are already in the training set,

the genetic relationship between training set and prediction set is likely high enough
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to produce a useful genomic prediction. If I were a breeder at a small commercial

program and were looking to leverage publicly available germplasm to jump-start

my program, this genomic prediction approach would allow me to quickly identify

key inbreds that that I could use to build high-performing complementary heterotic

groups.

In Chapter 2, I completed a study of genomic prediction accuracy within a non-

double-haploid early generation breeding population. One use of genomic selection is

to grow part of a breeding population in a hybrid testcross trial, and use that data

to predict the phenotypes for the remaining part of the breeding population, those

individuals with genotypes but no phenotypes. By performing genomic prediction

and cross-validation within a set of F4 lines, I found that gains in prediction accuracy

were marginal when greater than 150 individuals were included in the training set.

Therefore, it that a training set with 150 individuals will achieve the optimal balance

between cost and benefit when predicting the remaining individuals in the population.

This agrees with Bernardo and Yu’s (2007) conclusion that a minimum of 100 to

150 lines in a training set is sufficient to ensure optimal prediction accuracy. Grain

yield was a much more difficult trait to predict than test weight or grain moisture;

this is likely due to the highly quantitative nature of the genetics of grain yield. I

also found that RR-BLUP was the overall top performer across both testers and all

traits, as it sufficiently modeled the additive genetic effect–the most useful effect for

making early generation selections in plant breeding populations. Other prediction

models may prove useful in other situations–such as the BayesB model for traits with

a few large-effect loci, or a non-parametric model such as Random Forest model for

estimation of commercial value (i.e. total genetic value) of a line. Based on the results

of this project, using RR-BLUP and a minimum of 150 individuals in a training set

will likely return the highest prediction accuracy when predicting hybrid testcross

performance of related individuals within a similar experimental design and maize

germplasm.
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In retrospect, chapter 3 was the most difficult of the three research topics. Origi-

nally, the objective of this project was to use hybrid testcross data from the F3 gen-

eration to predict performance in the F4 generation. However, due to an oversight,

the F4 generation was crossed to different testers than the F3 generation. Prelimi-

nary analysis showed little to no correlation of related individuals between testers. I

concluded that it was not possible to execute the project as originally planned. I took

inventory of what data I had, and after consulting with several advisors, I concluded

that the objective as presented in Chapter 2 of this dissertation was the best course

to follow. I also ended up expanding the use of statistical prediction models, and

ran about a dozen more models (or variations of models) than what I report on in

Chapter 2.

In Chapter 3, I report on the identification of a large number of QTL associated

with inflorescence traits in maize. Maize inflorescence development is important to

the seed industry, as much of the value of final product (either seed or grain) is

determined by the inflorescence. Understanding the genetic architecture of the maize

inflorescences will help scientists to improve seed production efficiency and create

inbreds and hybrids with better dry-matter partitioning.

This project was a good opportunity for me to learn about the North American

maize inbreds with expired Plant variety Protection certificates. Many of these in-

breds are progenitors of today’s best commercial inbreds. This collection of inbreds

can be regarded as the most commercially relevant germplasm set in academia. As my

goal after graduating has always been to obtain employment as a plant breeder in the

industry, this project was instrumental in exposing me to the inbreds and heterotic

groups that exist in today’s North American dent corn germplasm.

I believe that harnessing the genetic components of performance traits in crops

has great promise to helping increase food production to meet the needs of a growing

population. These three topics have proved to be a solid foundation for me as I now

move on to a career as a plant breeder, where I will doubtless have many opportunities

to increase the potential of crop performance and production. I am grateful for my
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time and training at Purdue University, and look forward to contributing to the future

of plant breeding!
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Crossa, J., Pérez-Rodŕıguez, P., Cuevas, J., Montesinos-López, O., Jarqúın, D.,
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