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ABSTRACT

Chigarangappa Rangadhamappa, Vineeth M.S., Purdue University, December 2018.
Fast computation of wide neural networks. Major Professor: Vaneet Aggarwal .

The recent advances in artificial neural networks have demonstrated competitive

performance of deep neural networks (and it is comparable with humans) on tasks

like image classification, natural language processing and time series classification.

These large scale networks pose an enormous computational challenge, especially

in resource constrained devices. The current work proposes a targeted-rank based

framework for accelerated computation of wide neural networks. It investigates the

problem of rank-selection for tensor ring nets to achieve optimal network compression.

When applied to a state of the art wide residual network, namely WideResnet, the

framework yielded a significant reduction in computational time. The optimally com-

pressed non-parallel WideResnet is faster to compute on a CPU by almost 2x with

only 5% degradation in accuracy when compared to a non-parallel implementation of

uncompressed WideResnet.
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1. INTRODUCTION

The recent advances in artificial neural networks (ANNs) have demonstrated com-

petitive performance of deep neural networks (and it is comparable with humans) on

certain tasks like image classification [1], natural language processing ( [2], [3] ) and

time series classification [4]. With each advance, these networks have grown larger

and deeper. Accordingly, the number of trainable neural network parameters have in-

creased steeply, which in-turn led to an increased computational time to train a neural

network. For instance, the pioneering convolution neural network (CNN) architecture

for image recognition, namely LeNet [5], had 0.04 million trainable parameters, while

the state-of-the-art CNN architectures, such as ResNet-50 [6] and NASNet [1] possess

25 million and 84.7 million trainable parameters respectively.

Although large number of network parameters significantly improve the predictive

performance of a neural network there exists a demonstrative redundancy [7] in the

parameterization of many deep learning models. This leads to model over-fitting and

hence poorer generalizability. Further, large networks pose significant computational

challenge for resource-constrained embedded devices like smart-phones and Internet-

of-things devices. Hence, there is a necessity to reduce energy requirements i.e., the

computational time of the ever-growing ANN architectures.

Convolution is an expensive operation that contributes to the bulk of the computa-

tion time in the state-of-the-art neural nets, especially wide nets. Computational time

of convolution operation can be reduced either by (i) reducing the layer complexity

i.e., reducing the number of network parameters or (ii) by implementing the convolu-

tion operation in a parallel computing environment. There exist multiple approaches

to reduce layer complexity, such as network pruning [8], sparsity regularization [9],

and low rank approximation [10]. Similarly there exist several parallelism strategies
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for implementing convolution neural networks such as intra-layer parallelism [11],

model parallelism and data parallelism [12].

There exists a framework, namely Wide-Compression [13], that significantly re-

duces layer complexity by compressing over-parameterized filter channels with mini-

mal loss in accuracy. But, this framework does not compress the network optimally

and its real impact on the gain in computational speed-up is not investigated. Fur-

ther, the framework also possess a novel within-layer (sub-layer) parallelism that can

be applied in addition to the afore-mentioned parallelism techniques.

The current work proposes a methodology to compress a wide network optimally

by means of a targeted rank selection for individual network layers. In addition, the

current work also demonstrates the within-layer (sub-layer) parallelism for maximal

reduction in a wide neural layer’s computational time. The significant compute-time

reduction is demonstrated through an application to WideResnet architecture. In the

end, we discuss a couple of empirical scenarios that help in showcasing the capability

of the framework and conclude with a set of future research ideas.

The rest of the report is organized as follows: a description of the tensor basics,

Tensor Ring Nets compression framework and current research methodology is pro-

vided in chapter 2. Then, an overview of the benchmark dataset and the network

architecture is provided in chapter 3. Subsequently, I present different empirical sce-

narios and the associated results in chapter 4. Finally, chapter 5 provides a conclusion

and chapter 6 lists some ideas for the future work.
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2. METHODOLOGY

For convolution neural networks, the convolution operation in a layer with an input

X , kernel K and output Y , is given by the following equation:

Yh,w,o =
D∑

d1=1

D∑
d2=1

I∑
i=1

Xh′,w′,iKd1,d2,i,o (2.1)

where

h’ = (h-1)s+d1-p

w’ = (w-1)s+d2-p

Here, s is the stride, p is the zero-padding size, I is the number of input channels

and O is the number of output channels. Further, h and w represent the height and

width dimensions of the input. The bias term is omitted for clearer representation.

To determine the computational time of the above convolution operation, the

number of primitive operations such as multiplication and addition, have to be de-

termined. In a computational environment the numbers are represented by floating

points and hence the primitive mathematical operations are called floating point op-

erations, shortly flops.

It has to be noticed that input X , kernel K and output Y , are tensors. In the

following section, a brief introduction to tensors, tensor operations and their accom-

panying flops are provided.

2.1 Tensor Basics

Tensors are multidimensional arrays. For example, a matrix is a tensor of 2nd

order. Similarly, a vector is a tensor of 1st order and a scalar is a tensor of 0th order.
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Every element in a 2nd order tensor i.e., matrix, can be represented by Aij. Fur-

ther, when two matrices of sizes m × p and p × n are multiplied then an element in

the resultant matrix can be represented by the following equation:

Aij =

p∑
k=1

BikCkj (2.2)

Thus, to obtain a single element in the resultant matrix A, one has to perform ‘p’

multiplications. Since there exist mn elements in the resultant matrix A, the total

number of multiplicative operations will be mnp.

Flop is an acronym for ‘floating point operation’. The number of floating point

operations, shortly flops, is the traditional measure of efficiency of a numerical algo-

rithm. There do not exist a standard definition of flops. It may include the count of

any one floating point operation (like an addition or a multiplication) or it may in-

clude the count of both additive and multiplicative operations. We adopt the former

definition through out this report. Hence the number of flops required to obtain the

resultant matrix A in equation 2.2 is mnp.

Equation 2.2 also described an index contraction event. Notice that the index ‘k’

was contracted by summing over all the possible ‘p’ values. Similarly in higher order

tensor multiplication, either one or multiple indices can be contracted. For example:

Aijlm =

p∑
k=1

BijkCklm

Tensor multiplication can be easily visualized using diagrams. Figure 2.1 shows

tensor diagrams for scalar, vector, matrix and order-3 tensor [14].

The circles represent tensors while the edges emanating from circles indicate their

axes. Similarly, a product between two tensors can be represented using a chain of

tensors as shown in Figure 2.2.

Figure 2.2 shows a matrix product with the contracted axes dimension ‘k’ in the

first step and a product of two order-3 tensors with the contracted axes dimension ‘r’

in the second step. The flops of tensor product can be computed by taking the product
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Figure 2.1. Diagrammatic notation for tensors

Figure 2.2. Diagrammatic notation for tensor products

of dimensions with the contracted dimension appearing only once. For example, in

Figure 2.2, the matrix product requires mnp flops while the tensor product requires

D1D2D3D4D5 flops.

If two or more tensors are connected with a common contracted axes then that

set-up is called a tensor network (TN). An important property of TN is that the order

of merging two tensors determines the computational efficiency of merging. Figure

2.3 shows product of 3 tensors with two different merge orders [14]. The number

of operations required to obtain the same final result of a TN contraction is of the

order of D4 for first case while it is of the order of D5 for the second case, where D is

each axis dimension. Hence, one has to carefully choose the merge order for optimal

computational time.

For a detailed theoretical description on tensors, the reader is redirected to [15]

and [14].
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Figure 2.3. A TN contraction that shows different merge orders and
accompanied flops

2.2 Tensor Factorization

The convolution operation contributes to the majority of computational time of

a neural network layer and it is directly dependent on the layer size. The kernel

tensor determines the layer size. Therefore, to reduce the computational intensity of

convolution, a layer’s kernel tensor size ought to be reduced.

Figure 2.4. Four popular tensor decompositions to obtain lower order tensor factors
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Just as a large matrix can be approximated with two lower rank factor matrices

by means of an appropriate low rank matrix factorization like singular value decom-

position, there exist four popular tensor decomposition methods that reduce the size

of higher order tensors. They are:

1. Canonical decomposition (CP decomposition)

2. Tucker tensor decomposition

3. Tensor train decomposition

4. Tensor ring decomposition

Figure 2.4 shows a sample decomposition of a large tensor into 6 factored tensors

of order-3. Among the four popular tensor factorization methods, although tucker

factorization [16] is good for compressing neural network layers [17], it was shown that

tensor ring decomposition has higher expressive power in data representation [18] for

the same intermediate rank and so they were found to be better for compressing

convolution layers in neural network [13]. Hence Tensor Ring Network (TRN) based

decomposition was chosen for the current implementation.

2.3 Prior Work: Tensor Ring Network (TRN) Compression

It can be observed that the kernel tensor K as described in equation 2.1 is a 4th

order tensor. In the TRN decomposition, the 4th order tensor is decomposed into four

order-3 tensors of rank ‘R’. Further, to retain the spatial characteristics of the tensor

for convolution, two order-3 tensors were merged to retain the spatial dimension of

K, resulting in a single order-4 tensor. Thus, the kernel decomposition is as follows:

Kd1,d2,i,o =
R∑

r1=1

R∑
r2=1

R∑
r3=1

u
(2)
r3,I,r2

u
(1)
r2,d1,d2,r1

u
(3)
r1,O,r3

(2.3)

Further, for large number of input channels ‘I’ and output channels ‘O’, as is the

current case, u(2) and u(3) are further factorized into three smaller order-3 tensors as

follows:
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u
(2)
r3,I,r2

=
R∑

r4=1

R∑
r5=1

û
(1)
r3,I1,r4

û
(2)
r4,I2,r5

û
(2)
r5,I3,r2

(2.4)

u
(3)
r1,O,r3

=
R∑

r6=1

R∑
r7=1

û
(4)
r3,O1,r6

û
(5)
r6,O2,r7

û
(6)
r7,O3,r1

(2.5)

where I = I1I2I3 and O = O1O2O3.

The kernel factorization 2.3 is integrated into the original convolution operation

2.1 to obtain TRN based convolution. This TRN compression based convolution is

executed in 3 steps as follows [13]:

step 1

Ph′,w′,r2,r3 =
I∑

i=1

Xh′,w′,iu
(2)
r3,i,r2

(2.6)

step 2

Qh,w,r2,r3 =
D∑

d1,d2=1

R∑
r2=1

Ph′,w′,r2,r3u
(1)
r2,d1,d2,r1

(2.7)

step 3

Zh′,w′,O =
R∑

r1,r3=1

Qh,w,r2,r3u
(3)
r1,O,r3

(2.8)

The layer output Zh′,w′,O is obtained by performing three steps wherein each step

is a convolution step. Step 1 and step 3 can be recognized as a 1x1 convolution as

u
(2)
r3,I,r2

and u
(3)
r1,O,r3

can be reshaped into a higher order tensors u
(2)
1,1,r3,I,r2

and u
(3)
1,1,r1,O,r3

respectively. Thus each of those two steps represent r3 convolutions with filter size
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1x1. While the step 2 can be viewed as a convolution with filter size DxD and with

input filters r2 and output filters r1.

The TRN network that results from the above scheme for a very wide layer, with

large I and large O, is shown in the figure 2.5. The dashed lines in the figure indicate

the convolution operation as described by equation 2.7. While contracting this TRN

network, care has to be taken when merging the input with all the factored tensors.

Figure 2.5. Tensor network diagram for a layer’s TRN based convolution

Finally, we compare the number of flops required to execute a regular convolution

as described in equation 2.1 and the 3-step TRN based convolution. In general the

number of flops for a convolution operation as described by equation 2.1 is given by

HWD2IO and when a mini-batch is used instead of a single input image, the regular

convolution flops are given by the equation:

flopsReg = BHWD2IO (2.9)

Similarly, flops for each of the 3steps in TRN based convolution [equations 2.6,

2.7, 2.8] is computed as follows:

• Step 1: It is a convolution with ‘I’ input channels and ‘R2’ output channels.

Therefore number of flops are HWR2I.
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• Step 2: It consists of ‘R’ convolution with ‘R’ input channels and ‘R’ output

channels. Therefore number of flops are HWR3D2.

• Step 3: It is a convolution with ‘R2’ input channels and ‘O’ output channels.

Therefore number of flops are HWR2O.

Thus, the total number of flops for a TRN based convolution with a batch size

‘B’, is given by the equation:

flopsTRN = B(HWR2I +HWR3D2 +HWR2O) + 4R3(I +O) (2.10)

where, 4R3(I+O) represent the upper bound for flops required to obtain u(2) and

u(3) as described in equation 2.5

Finally, the reduction in computational complexity with TRN based convolution

when compared with regular convolution can be quantified by the parameter Cconv

[13], given by the following equation:

Cconv =
BIOD2

4R3(I +O) +BR2(I +O) +BR3D2
(2.11)

2.4 Original Contribution: Targeted Rank-Selection Framework

The prior work, as described in the earlier section and herein referred to as TRN

framework, demonstrated that the network can be compressed by significant amount

for different factored tensor ranks. In doing so, a single rank was chosen for all factored

tensors in different layers of the network. But, as the number of filters vary in each

layer and the TRN framework only compresses along the filter dimensions it is not

well motivated to chose a single rank for all layers from the computational point of

view. Although, a single-rank choice results in lower number of network parameters,

it does not provide optimal reduction in the network’s computational time.

Moreover, it was noticed that the naive implementation of TRN based compressed

network was computationally slower when compared with uncompressed WideResnet.
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I surmise that the problem arose because of a naive implementation that did not

account for the parallelism of deep-learning computational library. Further, I explore

the parallel implementation of TRN framework at a layer level and quantify the actual

reduction in runtimes at the layer-level.

In summary, overcoming the computational environment issues and performing

the targeted rank-selection form the basis for the current work. Hence, the current

work can be regarded as an improvement in the practical implementation of theo-

retical work as described in section 2.3. An overview of the research methodology,

followed in the current work, is provided in table 2.1.

Table 2.1.
Summary of the research methodology followed in the current work

Research Methodology

Step 1: Profile the single-rank compressed WideResnet network to identify

the sub-optimally compressed layers w.r.t runtime

Step 2: Identify and resolve the computational environment issues that

slowed down the naive implementation of compressed network

Step 3: Perform targeted rank selection i.e., choose appropriate rank for

individual layers so as to obtain optimal speed-up

Step 4: Experiment with network architecture to obtain faster speeds for

similar accuracy when compared to the baseline network

The following sub-sections describe each of the steps in detail, including but not

limited to the computational tools that were used to complete the analysis.

All the artificial neural networks trained in the current project were implemented

in Python. There exist different open-source computational libraries for training ar-

tificial neural networks like Caffe, pyTorch, Tensorflow and Theano. Among them,

Tensorflow library [19] has been chosen for its ease of implementation, availability of
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fairly detailed documentation, state-of-the art research models and a thriving sup-

porting community on ‘stackoverflow.com’ [20].

Tensorflow builds a network graph and executes it in a dedicated session inside

python environment. Tensorflow operations like matrix multiplication, application of

non-linear activation function, batch normalization etc., form the nodes while tensors

exchanged between the operations form the edges of the graph. An efficient place-

ment of graph nodes in the execution pipeline is of paramount importance as we are

concerned with the runtime of the network.

2.4.1 Identify bottleneck layers: Profiling network run-time

Since computation time of the neural network is of interest, it is imperative to

obtain the computational time of the individual layers. Such an information about

the runtime of each layer provides deeper insights that would enable a researcher

to avoid computational bottlenecks in any layer and to tailor the compression level

of each layer by means of optimum rank selection for an adequate balance between

accuracy and run-time of the network.

Individual layer Run-time cannot be measured from python stack as Tensorflow

executes the network graph inside a session. Therefore, an inbuilt profiling tool called

‘tfprof’, along with Tensorboard, is used to procure run-time information.

In Tensorflow, enabling the full code trace and passing it as an option to session

run call gives us the runtime information. The Tensorflow session’s summary file

writer collects appropriate runtime meatadata information of the graph nodes into

event files written by the summary file writer. The researcher should exercise caution

when visualizing the runtime meta-data information in Tensorboard [version 1.5] as it

displays cumulative time which is the sum of the time taken by a node and cumulative

time taken by all preceding nodes in the execution pipeline. In all of the current

analysis, the event files were processed through a suitable JSON-script to obtain the

layer run-times.
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As an example, Figures 2.6 and 2.7 depict the profiling result of a WideResnet

network trained on a CIFAR-100 dataset. These figures provide an overview of the

layer run-times during network evaluation. It can be observed that first few layers

have higher run-time. Higher runtime in the initial layers is due to image size while

moderately high run-time in the final layers is due to higher number of filters even

though the image size is reduced by factor of 3.

Figure 2.6. Layer-wise feed forward run-time in WideResnet

2.4.2 Computational environment issues: Tensorflow environment

As stated earlier, a naive implementation of TRN framework was found to be

computationally slower. The main reason was the inefficient network graph execution

in a tremendously parallel computing environment of a GPU.
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Figure 2.7. Proportion of convolution operation run-time of each layer
in WideResnet

While executing the network graph on a GPU, Tensorflow maintains two GPU

streams. In simple terms, the streams refer to the number of parallel computing

threads that are being executed on a GPU. The two GPU streams are:

1. Compute-stream - It consists of all GPU operation kernels that perform math-

ematical computation.

2. Memory-copy stream - It consists of specific GPU kernels that are utilized for

communicating (i.e., copying variables) to and from GPU and the host device

(i.e., CPU).

Further, a GPU operation kernel may use multiple streams for computation while

maintaining a single stream semantics. Each operation kernel of a GPU, when large

enough, utilizes almost all the streaming multiprocessors (SM) in a GPU. At this

stage, it is worth mentioning that each neural layer’s convolution is executed by

one instance of a corresponding GPU convolution kernel. This kernel is immensely

parallelized wherein the multiple image patches of each image in a mini-batch is
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convolved with multiple filters in a parallel processing environment. Depending on

the input tensor dimensions and the filter tensor dimensions, different partition sizes

are created and executed on many SMs concurrently, resulting in significant speed

enhancements.

But, in TRN based convolution, each layer’s convolution is split into 3 sub-

convolutions and each of those three are executed by three different instances of

the GPU kernel. Therefore, each kernel instance receives thinner input and filter ten-

sors which in-turn mean that the possible partition sizes of the underlying algorithm

are smaller. In addition, the convolution operation sequence is such that the three

steps has to be computed sequentially, as the convolution output of a step becomes

the input of the subsequent step and hence this controlled data dependency further

constrains the parallelizing algorithm underlying the GPU operation Kernel. Hence,

TRN based convolution was not as fast as regular convolution when implemented

naively on GPU without accounting for its’ parallelism.

In the current work, we profile the network runtime on CPU as the lower-level func-

tions that control the GPU parallelism were inaccessible. Moreover, the Tensorflow

design did not allow for multiple GPU compute-streams as the Tensorflow creator’s

did not observe significant gains on enabling multiple compute streams. But, multi-

ple streams was an essential necessity for the current work as it includes a parallel

implementation of TRN based convolution. Hence, a CPU based computation was

chosen for measuring the network run-times.

Before we compare the run-time, a controlled Tensorflow environment has to be

setup as Tensorflows operations like tf.matmul, tf.Conv2d etc are heavily parallelized.

Two types of parallelism exist:

• Intra op parallelism: In this scenario, an operation, say tf.Conv2d, makes use

of multiple CPU threads to execute a layers convolution operation.
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• Inter op parallelism: In this scenario, if there exist multiple tf.Conv2d oper-

ations that are independent, then they will be executed concurrently on the

available CPU cores

In our flops computation, we never account for intra op parallelism. Further,

inter op parallelism has to be controlled so that it doesnt result in an inefficient

network graph during implementation. Hence, control on parallelism (i.e., removing

intra op parallelism entirely and then controlling inter op parallelism) is essential to

test our hypothesis that compute-time of TRN based convolution is less than that of

regular convolution. These configurations are set via the tf.ConfigProto and passed

to tf.Session in the ‘config’ attribute.

2.4.3 Selection of layer-wise ranks

The primary task is to select an appropriate single rank for the compressed neural

network by computing the flops required for every layer in the network using equation

2.10. It has to be made sure that the total flops of the compressed network equal the

total flops of an uncompressed network.

Subsequently, the layer-wise feed-forward runtime of the network is obtained and

the bottleneck layers are identified. Among these layers, a select few layers that are

most relevant to compress further are chosen and their ranks are reduced. Evaluate

the performance of the networks for all of the lower ranks.

An overview of the framework is provided in table 2.2.

2.4.4 Experiments

The aim is to obtain a compressed network architecture that attains the same

accuracy as an uncompressed WideResnet but is faster to compute. Therefore, we

investigate the following two empirical scenarios:
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Table 2.2.
Heuristic framework for targeted rank-selection

Targeted Rank Selection

Step 1: Select a single rank for all the layers in the network such that the

flops of a compressed network and uncompressed network are equal

Step 2: Identify, for that single rank, the bottleneck layers and reduce the

rank of the factored tensors for those layers.

Step 3: Evaluate the performance of the network for all the lower ranks

Step 4: Choose a suitable rank for individual layer based on the desired

accuracy and acceptable runtime of the compressed network

• Layer-wise targeted rank-selection for a compressed WideResnet with the de-

fault architecture

• Extend the Compressed WideResnet architecture such that the depth of the

network is increased by 2x

For the details regarding each of the above scenarios, the reader is requested to

consult section 4.2.

2.4.5 TRN compression’s parallel implementation

The elegant 3-step TRN based convolution schema [Figure 2.8] lends itself mag-

nificently to a parallel implementation while coding the algorithm in a parallel com-

putational environment. It can be observed that each of the 3 steps consist of r3

independent convolutions. These independent convolutions can be executed in par-

allel and accordingly the flops are:

flopsTRNparallel = B(HWRI +HWR2D2 +HWRO) + 4R3(I +O)
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Figure 2.8. TRN schema for parallelization

The TRN scheme, as shown in Figure 2.8, has to be implemented keeping in mind

the ability to execute the 3 convolution sub-steps in parallel. In doing so, the prime

concern is to make sure that the 3 convolution sub-steps are not in different parallel

threads as it results in inefficient Tensorflow network graph. These three sub-steps

must be grouped together and executed sequentially on one thread. On the other

hand, there exist r3 such groups and all of these r3 groups can be executed in parallel

as there doesn’t exist any data-dependency between any two of the r3 groups. In

order to implement this parallel scheme, we take advantage of the Tensorflow’s while

loop implementation - tf.while, which makes it easy to organize the steps inside loop,

if independent, to be executed in parallel.
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3. DATASET AND NEURAL NETWORK

ARCHITECTURE

3.1 CIFAR-100 Dataset

The CIFAR-100 dataset [21] is a collection of tiny images of size 32x32 with 50000

images in the training set and 10000 images in the test set. Every image is classified

into one of the 100 classes. There exist 500 training images per class and 100 testing

images per class. Figure 3.1 shows a few samples from the dataset.

Figure 3.1. A sample of images and their class labels from CIFAR-100 dataset [21]
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3.2 WideResnet Architecture

The state-of-the-art Resnet architecture ( [6], [22]) was proposed to alleviate the

problem of accuracy saturation in very deep networks. Thus, it enabled building

deep and wide neural networks that provided state-of-the-art results on benchmark

datasets including CIFAR-100, IMAGENET and COCO2015. Further studies on

wide residual networks [23] showed that wide networks outperform deep networks.

The width of the network represents the filter channel depth dimension and since we

compress along the filter depth, it follows that the wider nets are more amenable to

compression using the current TRN based compression scheme.

Figure 3.2. WideResnet Architecture

The WideResnet architecture consists of 28 layers with most of them being con-

volution layers, except for a fully connected layer and a terminal softmax layer. The

convolution layers are segmented into 3 units such that each unit consists of 4 residual

blocks. Every residual block consist of 2 convolution layers and a short-cut connection
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that bypasses those two layers. Before the start of each convolution layer, there exists

a batch normalization layer whose output is fed to a non-linear activation function.

An overview of the architecture is shown in the Figure 3.2.

At the end of every unit, the image size is reduced by half and the number of

layer filters is increased by 2x. The filter size is 3x3 in all the convolution layers. The

filters increase from 16 in initialization layer to 640 in the final convolution layers. In

total, all the filters of the network has 36.5 million trainable parameters.
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4. RESULTS AND COMPARISONS

4.1 Layer-level Results: TRN based Convolution

4.1.1 Verification

The implementation of TRN based convolution scheme in python needs to be

verified before integrating it in the WideResnet Code. For this, we compare the

output tensors from following two methods, as shown in the Figure 4.1. Here, the

reconstructed-kernel based method constructs a kernel of uncompressed dimensions

from factored tensors and then convolution is performed with that reconstructed

kernel. Input tensor X and factored kernel tensors u(i) were randomly initialized and

fed to both the methods.

Figure 4.1. Verification method for TRN implementation

The outputs from both methods i.e Zh′,w′,O and Yh,w,o should be equivalent. The

equivalency is checked via Frobenius norm of the difference of the two tensors given
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by ||Zh′,w′,O−Yh,w,o||F . Table 4.1 shows the equivalence for different input-filters and

output-filters.

Table 4.1.
Frobenius Norm of the difference of layer outputs for different layer sizes

Layer input Uncompressed

Kernel di-

mensions

Compressed(TRN)

Kernel dimensions

Frobenius

Norm for

Rank = 3

Frobenius

Norm for

Rank = 7

100x32x32x16 3x3x16x16 3x3x(4x2x2)x(4x2x2) 0.00591 0.02834

100x32x32x32 3x3x32x64 3x3x(4x4x2)x(4x4x4) 0.02099 0.03101

100x32x32x64 3x3x64x64 3x3x(4x4x4)x(4x4x4) 0.01051 0.04057

100x32x32x640 3x3x640x640 3x3x(10x8x8)x(10x8x8) 0.05268 0.05731

The Frobenius norm is near zero in all the cases and hence the TRN based Con-

volution is implemented correctly. In case of mismatch, a neat trick is to initialize

the factored tensors with different ranks so that an error would be triggered if the

tensor merging isn’t appropriate .

4.1.2 Runtime comparison with regular convolution

Table 4.2 compares, for different layer sizes, the flops of a regular convolution with

TRN based 3-step convolution. The filter size, denoted by ‘D’, is 3 while the stride

is 1. The rank for TRN convolution is chosen such that its flops are almost equal to

the uncompressed convolution flops. It follows that any lower rank should provide a

computational speed-up.

Table 4.3 shows the wall-clock time in a controlled Tensorflow environment i.e.,

without intra op and inter op parallelism. It can be observed that the speed-up is

achieved for a slightly lesser rank than what the speed-up rank should be from flops

computation. This is due to the fact that there exists unaccounted overhead like
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Table 4.2.
Comparison of flops of a regular convolution with TRN based 3-step convolution

Layer Input

(B x H x W

x I)

Kernel

Size (D x

D x I x O)

Regular Con-

volution Flops

[BHWD2IO]

TRN based Convolution

flops [HW (4R3(I + O) +

BR2(I +O) +BR3D2)]

100x32x32x16 3x3x16x16 2.359296 x 108 2.13504 x 108 (for Rank = 5)

100x32x32x16 3x3x16x32 4.718592 x 108 4.18480 x 108 (for Rank = 6)

100x32x32x64 3x3x640x64 3.774873 x 109 2.75660 x 109 (for Rank = 10)

100x32x32x640 3x3x640x640 3.774873 x 1011 5.02963 x 1010 (for Rank = 15)

100x32x32x640 3x3x640x640 3.774873 x 1011 2.84405 x 1011 (for Rank = 30)

the slicing & reshape operations during the merging of factored tensors. In addition,

when a layer is narrow (filters = 16 or 32), the compute doesn’t match, indicating

that the compression framework is more suitable for wide layers (filters = 64 and

above).

4.1.3 Runtime comparison for a parallel implementation

In the preceding section, all the r3 convolutions in each step of TRN based con-

volution (as described in Figure2.8) were executed sequentially. Hence, if the r3

convolutions are implemented in parallel then it results in additional reduction in

computational complexity.

Figure 4.2 shows the ‘timeline’ view of a layers convolution for both sequential and

parallel implementations. The input and filter are two randomly initialized tensors

of dimensions 100x32x32x64 and 3x3x64x64 respectively. The TRNs rank is 8 and so

is the number of convolutions in each step. Hence, r3 is 8. The runtime in both cases

are as follows:

1. Sequential implementation: Run-time = 415 ms
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2. Parallel implementation: Run-time = 143 ms

Figure 4.2. Sequential vs Parallel runtime of a TRN based convolution

Table 4.4 compares runtime of a parallel implementation with different layer sizes.

It can be noticed that the runtime reduction is maximum when layer is wide(filters =

64 or 640) and the convolution time, shown by blue rectangles in figure 4.2, doesn’t re-

duce linearly with the number of parallel threads. Further, the convolution operation

itself takes more time than usual when steps are implemented in parallel.

4.2 Network-level Results: Compressed WideResnet Results

We utilize the 3-step TRN based convolution function to train WideResnet on

CPU in a restricted Tensorflow environment wherein the functions that control the

parallel implementation of Tensorflow graph nodes are exposed to the end-user. This

restriction is essential to test our hypothesis that the TRN based convolution is com-

putationally efficient than the regular convolution.

The network parameters were randomly initialized from a Gaussian distribution.

Specifically, as suggested by Wang et al., (2018); the tensor factors were initialized

with a variance σ = ( 2
N

)
1
d

1√
R

[13], where N is the number of parameters in the un-

compressed network, d is the number of factored tensors and R is the rank of the

tensors.
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All the experiments on WideResnet were implemented on a desktop with Core

i7 920 CPU and an Nvidia GTX 1070 GPU. Specifically, the network training was

carried out on the GPU to obtain the accuracy results while the profiling results

(both test and train times) were obtained on CPU. Further, all the results for the

experiments in the subsequent sections were obtained with the following settings:

• All the networks were trained to 200 epochs with a minibatch size of 100.

• The models were trained using Stochastic Gradient Descent (SGD) with mo-

mentum 0.9 and a decaying learning rate.

Since TRN based convolution does not use kernel of regular shape but a com-

pressed kernel, the table 4.5 shows the compressed kernel’s composite tensor shape

for various layers of WideResnet architecture [13].

Table 4.5.
Regular kernel and compressed TRN kernel shapes for WideResnet Architecture

Layer Uncompressed Kernel di-

mensions

Compressed(TRN) Kernel

dimensions

Initialization 3 x 3 x 3 x 16 9 x 3 x (4 x 2 x 2)

Unit1 ResBlock(3 x 3 x 16 x 160) 9 x (4 x 2 x 2) x (8 x 5 x 4)

ResBlock(3 x 3 x 160 x 160) x 4 9 x (8 x 5 x 4) x (8 x 5 x 4)

Unit2 ResBlock(3 x 3 x 160 x 320) 9 x (8 x 5 x 4) x (8 x 8 x 5)

ResBlock(3 x 3 x 320 x 320) x 4 9 x (8 x 8 x 5) x (8 x 8 x 5)

Unit3 ResBlock(3 x 3 x 320 x 640) 9 x (8 x 5 x 4) x (10 x 8 x 8)

ResBlock(3 x 3 x 320 x 320) x 4 9 x (10 x 8 x 8) x (10 x 8 x 8)



29

4.2.1 Single rank for all layers

The layer-wise flops for ever other layer in the 28-layer WideResnet is shown in

the table 4.6 and pictorially in the figure 4.3. In computing the flops the batch size

was assumed to be 100 and the filter size to be 3x3.

Table 4.6.
Comparison of flops of an uncompressed WideResnet with a com-
pressed WideResnet

Layer

Num-

ber

Layer Name and Size Regular

WideResnet

flops

Compressed

WideRes-

net flops

(Rank=21)

0 ResUnit 0 32x32x3x16 4.42E+07 1.011E+10

1 ResUnit 1 32x32x16x160 2.36E+09 2.316E+10

3 ResUnit 1 32x32x160x160 2.36E+10 3.512E+10

5 ResUnit 1 32x32x160x160 2.36E+10 3.512E+10

7 ResUnit 1 32x32x160x160 2.36E+10 3.512E+10

9 ResUnit 2 16x16x160x320 1.18E+10 1.210E+10

11 ResUnit 2 16x16x320x320 2.36E+10 1.543E+10

13 ResUnit 2 16x16x320x320 2.36E+10 1.543E+10

15 ResUnit 2 16x16x320x320 2.36E+10 1.543E+10

17 ResUnit 3 8x8x320x640 1.18E+10 5.519E+09

19 ResUnit 3 8x8x640x640 2.36E+10 7.181E+09

21 ResUnit 3 8x8x640x640 2.36E+10 7.181E+09

23 ResUnit 3 8x8x640x640 2.36E+10 7.181E+09

Half Network’s Sum 2.38E+11 2.24E+11

Figure 4.4 compares wall-clock time of every layer in a uncompressed regular

WideResnet with a compressed WideResnet. Here, the rank of all compressed layers
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Figure 4.3. Comparison of flops for every other layer in an uncom-
pressed WideResnet and a compressed WideResnet

was chosen to be 20. It can be observed that the test (or evaluation) time is lower for

compressed WideResnet [≈ 56seconds] when compared to uncompressed WideResnet

[≈ 72 s].

The higher runtime for all the layers in Unit 1 is due to the fact that all of its

layers are narrow [# of filters = 160] in relative to the chosen rank.

Table 4.7 compares both training and testing time for different ranks. The batch

size for training is 128 and for testing it is 100. It can be observed that when R=8,

the training time reduces by 3x and the evaluation or test time reduces by 4x.
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Figure 4.4. Comparison of an uncompressed WideResnet runtime
with a compressed WideResnet

4.2.2 Selective rank for individual layers

It can be observed that for compressed networks with large ranks, the initial layers

possess a predominantly high runtime. With an aim of reducing the compute time

further, especially for higher ranks where the accuracy level doesn’t degrade much,

different ranks were chosen for the initial few layers. Figure 4.5 shows the layer-wise

runtime for a sample scenario when the first four layers were chosen a different rank

from the rest of the layers. Table 4.8 provides a overview of the network performance

for such selective rank selection for individual layers.

It can be observed that when R=2, the network is faster to infer by almost 2x

while the degradation in accuracy is minimal at around 1 percentage points.
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Table 4.7.
Comparison of runtime of an uncompressed WideResnet with a com-
pressed WideResnet for different ranks

Network

type

Average train

time per itera-

tion (s)

Average test

time per itera-

tion (s )

Accuracy

(%)

WideResnet 265.639 +/- 0.9655 60.433 +/- 0.2486 78.2

TRN (R = 20) 245.831 +/- 0.8786 52.6521 +/- 0.1562 74.1

TRN (R = 8) 79.426 +/- 0.1882 14.9604 +/- 0.0645 70.4

TRN (R = 4) 51.6711 +/- 0.2259 8.7673 +/- 0.0429 66.2

TRN (R = 2) 41.2004 +/- 0.0807 6.6674 +/- 0.04150 57.5

Figure 4.5. Comparison of runtime of an uncompressed WideResnet
with a targeted rank based compressed WideResnet

4.2.3 Low ranks for a 2x deep network

As the computational intensity is reduced With a TRN based compressed network

it is informative to investigate the improvement in accuracy if the network depth is



33

Table 4.8.
Compressed WideResnet performance for layer-wise rank selection

Rank

for the

first 4

layers

Rank

for the

rest

of the

layers

Average train

time per itera-

tion (s)

Average test

time per itera-

tion (s )

Accuracy

R = 2 R = 20 182.716 +/- 1.2218 38.2914 +/- 0.1779 73.0 %

R = 4 R = 20 185.116 +/- 1.5726 38.9732 +/- 0.1452 73.2 %

R = 8 R = 20 193.493 +/- 1.3249 40.7007 +/- 0.0860 73.5 %

R = 20 R = 20 245.831 +/- 0.8786 52.6521 +/- 0.1562 74.1 %

increased. As a case study, we consider a compressed network with twice the depth of

a WideResnet. The number of residual units in the network is doubled while retaining

the same number of input/output filters per unit. A comparison of the network layer

configuration is shown in the table 4.9. The trade-off between computational time

and accuracy for such a network is shown in the table 4.10.



34

Table 4.9.
Network layout of a 2x deep WideResnet

Layer

type

Regular WideResnet Dims

(28-layer)

Deep WideResnet Dims

(52-layer)

Init 3x3x16x16 3x3x16x16

Unit1 ResBlock(3, 16, 160) ResBlock(3, 16, 160)

[ResBlock(3, 160, 160)]x3 [ResBlock(3, 160, 160)]x7

Unit2 ResBlock(3, 160, 320) ResBlock(3, 160, 320)

[ResBlock(3, 320, 320)]x3 [ResBlock(3, 320, 320)]x7

Unit3 ResBlock(3, 320, 640) ResBlock(3, 320, 640)

[ResBlock(3, 640, 640)]x3 [ResBlock(3, 640, 640)]x7

Table 4.10.
52-layer Compressed WideResnet performance on CIFAR-100 dataset

Rank for all

the layers

Average train

time per itera-

tion (s)

Average test

time per itera-

tion (s )

Accuracy

R = 2 80.923 +/- 1.1354 12.7743 +/- 0.0279 61.1 %

R = 4 100.448 +/- 1.3427 16.9765 +/- 0.1127 66.9 %

R = 8 153.714 +/- 1.2836 29.6324 +/- 0.1577 71.2 %
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5. SUMMARY

The current work proposes a targeted rank-selection framework that compresses a

wide convolution neural network optimally and explores parallelizability of a novel

within-layer parallel processing design to train neural networks. This framework uti-

lizes the Tensor Ring Network(TRN) based decomposition for significant network

compression whilst simultaneously reducing the computational intensity (both in in-

ference and training), with minimal loss in accuracy. The proposed framework can be

implemented in various platforms with configurable parallel computing environment

such as smart-phones and CPU clusters. To demonstrate the performance and energy

efficiency, we applied the framework to optimally compress WideResnet architecture.

Our results indicate that the framework achieves high computation efficiency with

minimal degradation in performance.
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6. FUTURE WORK

The current framework procured the runtime information while training the network

on CPU, since a restricted Tensorflow environment is essential and the functions that

control the parallel implementation of Tensorflow graph nodes are exposed to the

end-user on CPU (not on GPU). Hence, as a subsequent step this framework can be

implemented on a GPU.

The restrictions on Tensorflow environment may be relaxed to determine the prac-

tical gain in computation-time when huge number of parallel computing resources are

at the researcher’s disposal. As a first step, regular convolution flops have to be up-

dated to account for Intra Op Parallelism. In the subsequent step, the researcher

has to pool adequate parallel cores and then introduce both intra Op Parallelism and

inter Op Parallelism in a measured manner to obtain maximum speed-up.
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