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ABSTRACT

Yu-Chun Hsueh PhD, Purdue University, December 2018. Field Control and Optical
Force Enhancement with Aperiodic Nanostructures. Major Professor: Kevin J.
Webb.

Aperiodic structures offer new functionalities for control, manipulation, and sens-

ing that can benefit applications in all frequency ranges. We present a study of the

influence of the degrees of freedom from a binary aperiodic nanostructure in free space,

where each pixel is either the scatterer or the background, that uses a multivariate

statistical analysis to examine the covariance matrix of the output field distributions.

The total variance of the output fields and the rank can be evaluated to provide quan-

titative measurements of control. In addition, the field statistics provide an improved

understanding of the scattering properties of aperiodic structures.

It has been proposed that structuring a metal surface can substantially increase

the optical pressure over that possible with a planar interface. Based upon the forces

on the mirrors of a one-dimensional asymmetric Fabry-Perot cavity, we show that the

sum of the pressures on both mirrors increases through asymmetry and with quality

factor. Using cavity quality factor as a measure, we present the physical basis of the

enhanced pressure on a nanostructured metallic surface as being due to an array of

asymmetric resonant cavities.

With use of optimized, aperiodic structures, more control and higher pressure

should be possible. We present a design method by which the electromagnetic pres-

sure on a nanostructured binary material can be controlled in terms of both the

enhancement and the direction. This analysis offers new avenues for optomechanics.
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1. INTRODUCTION

Aperiodic nanostructures offer new functionalities to control the spatial and tempo-

ral field on the nanoscale. Recent work on transmission matrices connects specific

eigenmodes from the output field to the input field, and gives a fundamental view

for the study of random media [1]. By using multiresolution optimization, compact

and high performance mode converters, filters, and special reflectors can be achieved

in various spectral ranges, facilitated by the large number of degrees of freedom pro-

vided by engineered aperiodic structures [2–5]. Missing has been the understanding

of the possible degrees of control and efficient methods to support design strategies.

A bound for control over propagating scattered fields has been investigated in relation

to the properties of the structure [6]. In addition, the increase in degrees of freedom

from multidimensional aperiodic volume optics has been demonstrated, allowing the

structures to achieve multiplex functions [7]. However, in the previous work, only

propagating modes are considered to find the limit of control. The potential of near-

field control, where evanescent fields contribute, remains unexplored. Furthermore,

because the first Born approximation is no longer applicable under strong scatter.

the relationship between scatterer variables and the scattered fields is a nonlinear

problem which relies on numerical solutions. In Chap. 2, we apply multivariate sta-

tistical analysis and extract information from the field covariance matrix to analyze

the dependence of degrees of freedom available from binary aperiodic structures. The

field statistics, corresponding to newly introduced circular Bessel statistics [8, 9], are

also studied.

Cavity dynamics concepts for the radiation pressure on a mirror are based on the

classical picture from Maxwell in the appropriate limit, where P = S(1+|Γ|2)/v, with
Γ the field reflection coefficient, v the background medium velocity, and S the mag-

nitude of the incident Poynting vector. Clearly, increasing intensity or the incident
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Poynting vector by increasing the cavity quality factor (Q) will increase the pressure

on the mirror. For example, the attractive or repulsive forces between coupled dielec-

tric cavities have been found to be enhanced by the cavity Q [10]. This background

would suggest that the maximum radiation pressure on a mirror is 2S/v. However,

based on a structured metal surface with cavities that support a metal-insulator-metal

(MIM) waveguide mode resonance, it has been proposed that the pressure, defined as

the force density integrated over a periodic material and divided by the unit cell area,

can be substantially larger [11]. This enhanced pressure phenomenon was shown to

be resonance-based, whereby adjusting the dimensions on the small cavities formed

in a metal surface varies the pressure from essentially 2S/v to a value more than an

order of magnitude higher. In Chap. 3, we present a physical explanation that is

based on an asymmetric Fabry-Perot cavity and the cavity Q, and relate this to the

situation with a metal surface having an array of MIM-mode cavities.

Optical force is related to a change in momentum and also field spatial distribu-

tion. Progress on describing the optical force within homogeneous bulk materials [12],

small objects [13] and periodic structures [14] has revealed some important under-

standing about optical manipulation. Nevertheless, aperiodic structures can provide

a large number of degrees of freedom and hence more electromagnetic field control

relative to periodic systems. Previous results show that some unintuitive realiza-

tions for waveguide [2–4, 15–17] and diffractive [5] elements can be achieved from

aperiodic-structured material to present functions that are not possible with conven-

tional concepts, such as those involved periodic structures. Based on our experiences

and understanding on aperiodic nanostructured materials in Chap. 2, we are particu-

larly interested in how the large degrees of freedom supported by aperiodic materials

may contribute on the control of the optical force. In Chap. 4, we show that, with use

of dielectric/metallic scattering materials, the optical pressure can be controlled in

terms of both the enhancement level and direction, and that this can be understood

from the field variance with binary aperiodic nanostructures.
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In Chap. 5, we provide conclusions, including the potential impact of this work.

Several opportunities as extensions of this work are summarized.
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2. FIELD CONTROL WITH BINARY APERIODIC

NANOSTRUCTURES†

Aperiodic, irregular structures offer a large number of degrees of freedom relative to

periodic or quasi-periodic systems and hence the opportunity for more control over

electromagnetic fields. The challenge is to understand the relation between structure

and material and the possible response, as measured by achievable scattered field as

a function of position and frequency. With this information, basic guidelines could

become available to facilitate a computational design process. Having this goal in

mind, near-field through far-field control is appraised through a multivariate statis-

tical analysis of example binary two-dimensional nanostructured aperiodic material

arrangements. The total variance and significant rank of the transmission matrix,

equivalent to the field correlation at the detector plane in the situations treated,

yields quantitative measures of the degree of control related to size, material proper-

ties, and material spatial decomposition. This analysis provides design guidelines for

aperiodic structures that can control light as a function of position and frequency in

new ways.

2.1 Introduction

The control of light through the use of structured materials such as dielectric

stacks, photonic crystals, metamaterials, and random nanostructures presents oppor-

tunities to expand the design space for devices that require the manipulation of the

spatial, spectral and temporal character of electromagnetic fields. Photonic crystals

have been widely studied, and proposed as a means to control the spontaneous emis-

†This work is published as Yu-Chun Hsueh and Kevin J. Webb, “Electromagnetic field control with
binary aperiodic nanostructures,” J. Opt. Soc. Am. B, 34, 2059-2071, 2017 (Ref. [18])
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sion of materials [19] and affect localization [20]. These engineered periodic structures

can support light confinement within a wavelength-sized volume without substantial

loss, enhancing light-matter interaction. A quasi-crystal, which is a structure class

having particular order but is not periodic in the sense of replication of a primitive unit

cell, was discovered to present unique and rich symmetries in Fourier space that are

not possible with a periodic structure [21]. Such quasi-crystalline structures provide

more degrees of freedom than periodic systems. Even more degrees of freedom are

possible with irregular, aperiodic elements, where in a design scenario some region of

a material space could be decomposed using a basis set and a cost function optimized

over the free variables to design a structure. However, unlike photonic crystals, where

there is a well-established theoretical foundation from the work of Bragg, Brillouin,

Floquet, Bloch and others, few guidelines exist for aperiodic scattering elements, and

rather unintuitive designs for waveguide [2–4, 15–17] and diffractive [5, 7] elements

have resulted from optimization-based solutions.

Progress on basic understanding has been made by counting the propagating

modes, resulting in bounds that can be related to a weakly scattering medium descrip-

tion [6,22–25]. A far-field bound for controlling propagating modes has been consid-

ered, with the equivalent sources (scatterers) and the fields in particular spaces [6,24].

Of relevance here, it has been proposed that the maximum number of orthogonal

modes (M) that can be generated in a space is bounded by M ≤
√
NCNGS, where

NC is a bound prescribed by the properties of the material and structure, and NGS

is determined by the free space Green’s function. This work was extended to find

a bound for two-dimensional passive devices for multiple scattering modes [25]. A

full cylinder that contains all scatterers and a receiving outer ring in the far-field

were considered in order to find another bound on the total number of scattering

modes. Because the number of strongly scattered modes cannot exceed the total

number of modes, a bound results that increases with permittivity until it saturates.

Summarizing, with propagating modes, each addressable volume becomes about half
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a wavelength on a side, and the variables within the scattering structure dictate

possible control over this mode set, i.e., the fields in each addressable volume.

The relationship between the structure (material properties as a function of space)

and the field is nonlinear, but becomes linear with weak scatter and validity of the

first Born approximation. With linearity comes a particularly simple picture relating

the structure to the field control space. Our interest here encompasses the near-field,

where the evanescent fields allow the addressable volume to approach zero, and in

material decomposition as a function of position, with varying and potentially strong

scatter. This provides a more general framework for irregular structures in waveguide

and diffractive element configurations that will guide the design of aperiodic volume

optical elements [7].

The propagation of optical waves in multiple scattering media is a fundamen-

tal physical problem. Knowledge of the transmission matrix, part of the scattering

matrix, gives a fundamental description for the study of complex media [26]. The

transmission matrix for a given wavelength generally consists of a set of complex co-

efficients connecting a set of modes describing the output field to those of the input

field. Transmission matrix information therefore describes the polarization-dependent

control of a structure. The monochromatic transmission matrix for a random medium

has been obtained with spatial light modulator control of the incident light and a

full-field interferometric measurement [1]. Such transmission matrix information has

allowed focusing and imaging through random media [1, 27–33]. In dissipative ran-

dom media, the density of transmission and reflection eigenvalues has been shown

to depend on the strength of absorption [34–37] as well as the geometry of the sys-

tem [38]. The increase in the degrees of freedom from volumetric devices allows

structures to multiplex functions, expanding the traditional capabilities in various

applications [22, 23, 25].

Here, we consider the near-field, where the evanescent field spectrum is important,

through to the far-field, where only the propagating part of the plane wave spectrum

contributes, and use a statistical measure to understand the influence of various as-
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pects of the scattering element control, as will be useful in the design process. The

most important measure becomes the variance of the field correlation matrix in the

detection region. We note that intensity variance has been used, for example, in ran-

domly scattering media to determine the onset of localization [39–41], and that strong

scatter can be important in field control with aperiodic elements. Consequently, we

provide a foundation for waveguide and diffractive element devices that can have

functionality and performance beyond that possible with more constrained spatial

variations on material and structure.

The 2D scattering problem of Fig. 2.1 is considered with TM polarization (the

magnetic field is transverse to the axis of the cylinder) having fields Ez, Hx, Hy, where

the coordinate system of Fig. 2.1 is used and Ei and Hj are the scalar components

of the electric and magnetic fields, respectively. We analyze the dependence of the

degrees of freedom available for controlling the output field, along a line shown on

the right of Fig. 2.1 some distance d from the back surface of the scattering control

element, using a multivariate statistical analysis. We investigate the scattered field

statistics. We also discuss the connection between the field correlation matrix studied

here and the transmission matrix. The relationship between the structure and the

field control metrics provided leads to an understanding that can be exploited in

applications.

We describe the relationship between the aperiodic scattering element and the

fields in Section 2.2. This sets the stage for the statistical development based on

the transmission matrix and, in our situation, the detector field correlation matrix,

presented in Section 2.3. Section 2.4 presents statistical results for binary aperi-

odic scattering elements that provides a basis for understanding the structure-field

relationship. Section 2.5 describes the field statistics for aperiodic elements, and in-

dicates that there is a regime with strong scatter where newly introduced circular

Bessel statistics that have been shown to describe Anderson localization fit nicely.

We draw some conclusions that guide future work in Section 2.6.
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λ

Fig. 2.1. Binary aperiodic nanostructured material with width w and
length l. A TM plane wave (Ez is out of plane) is incident from the
left at angle θi to normal and a detector line of length λ is placed at
a distance of d away from the structure on the right. The incident
and detector line are uniformly divided giving K and N positions,
respectively.
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2.2 Structure-Field Relationship

We introduce the structure-field relationship through the integral equation repre-

sentation of scatter from inhomogeneities. The inhomogeneous TM source-free scalar

wave equation is

∇ · 1
µ
∇φ+ k2

0ǫφ = 0, (2.1)

where φ = Ez in our case, µ and ǫ are the relative permeability and the dielectric

constant, respectively, and k0 is the free space wave number. A solution for Ez from

(2.1) yields the magnetic field through Faraday’s law and hence the complete field

solution for a 2-D problem. Consider ǫ = ǫb +∆ǫ for the nonmagnetic case (µ = 1),

where ǫb describes the background dielectric constant and ∆ǫ the change, creating

the inhomogeneous material. Equation (2.1) then becomes

∇2φ+ k2
0ǫbφ = −k2

0∆ǫφ. (2.2)

Using the Green’s function for (2.2), the integral equation becomes

φ(r) = φi(r) + φs(r)

= φi(r) +

∫

dv′k2
0∆ǫ(r′)φ(r′)G(r, r′), (2.3)

where φ is the total field, φi is the incident field (that without the scatterer), and

φs is the scattered field, given as a superposition integral within v′ with the Green’s

function G(r, r′), and with r′ the source point vector. When φ ≈ φi in the integrand

of (2.3), a linear solution of (2.3) is given by the first Born approximation [42].

However, when the scattering becomes strong, additional terms in a series expansion

are necessary, or a more general treatment of the nonlinear problem is needed. Our

interest here is the influence of the degrees of freedom for multidimensional devices

with potentially strongly scattered fields, especially in the near-field region. Measures

of the nonlinear relationship between scattered fields and the scatterer variables thus

becomes key to develop insight.
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We take the approach of measuring the field in the control volume using randomly

chosen components of the scattering element and with a specific incident field. In

this way, we can evaluate statistical information. This amounts to determining the

field correlation along a detector line. We then investigate the eigenvalue problem

associated with the field correlation matrix, thereby learning of the control of the

field.

2.3 Mathematical Description of Aperiodic Elements

We consider a 2-D geometry for computational expediency, with the understanding

that essential information such as evanescent fields that apply to 3-D can be captured.

Figure 2.1 shows a 2-D aperiodic nanostructure in free space with binary scattering

elements, where each pixel can be one of two materials, the scattering material or

the background. To analyze the dependence of the degrees of freedom available for

controlling the output field, the nanostructure is divided as a M = P × Q uniform

array, with each pixel either the scattering material m1 (with dielectric constant ǫ1)

or the background m2 (with dielectric constant ǫ2). Material m1 has a fill factor f

and the background material, m2, has fill 1 − f . The scatterer spatial support has

width w and length l, both comparable to the wavelength in the background medium.

An incident TM plane wave (Ez is out of page in Fig. 2.1) is incident from the left

throughout this work, and the incident field for computational purposes is assumed

to be the x =constant line at the left boundary of the structure. The detector line

is placed at a variable distance d from the right surface of the scatter. We use a

numerical method to find the scattered field (Ez), as described in Sect. 2.4, and all

other quantities are found as secondary parameters, including the magnetic field (H)

and the metrics for evaluating field control that we present here.
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We discuss the connection between the transmission matrix, used for describing

random media [1, 26], and our field analysis that allows evaluation of control with

binary aperiodic elements. The (K,N) transmission matrix T can be defined as

T =
[

En

Ei,k

]

, k ∈ [1, ..., K] n ∈ [1, ..., N ], (2.4)

where Ei,k is the incident field at points along the input line, En is the total field

along points on the output line, and the subscripts n and k indicate positions on

the detector line and the input line, respectively, for the 2-D situation depicted in

Fig. 2.1. In this case, the detector line and the input line are divided into N and K

points, respectively. We define the field covariance matrix, C, as

C = 〈THT〉 − 〈TH〉〈T〉, (2.5)

where the averaging is over all observations, and the entries correspond to the various

positions on the detector line. One observation means the output electric field at a

point on the detector line for a particular nanostructured scattering material arrange-

ment, given an incident field at some point on the input line. Each arrangement here

follows the rule we defined with a fill factor f for the scattering material m1. We

consider incident plane waves, initially with normal incidence and then with oblique

incidence. The field at the various points along the input line therefore have a simple

relationship - they are equal or have equal magnitude and uniform phase progression.

A large variance at a particular position indicates that the binary arrangement has

a large impact on adjusting the output electric field, thus suggesting more efficacy or

increased degrees of freedom for field control. We apply a principal component analy-

sis [43,44] to decompose the field covariance and extract information for comparisons

of the influence of various degrees of freedom in the scattering elements. The covari-

ance matrix (C) is Hermitian and positive semi-definite, such that all eigenvalues (λi)

are non-negative [45], where i indicates that the eigenvalue is from the i-th principal

component. The λi describe the strength of the variance along the corresponding

principal components. Therefore, the average total variance, σ2
C , that the aperiodic
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nanostructure provides along the detector line can be determined by the sum of the

eigenvalues of C as

σ2
C =

N
∑

i=1

λi = Tr{C}, (2.6)

where Tr indicates the trace of the matrix, the sum of the diagonal elements. The

first equality in (4.7) results because the deviation of C is measured in the definition

of (4.4) and the second can be proved from the characteristic polynomial of the

eigenvalue problem [45]. We may further define a normalized cross-correlation matrix

R by

R =
[

Rrs

]

=
[

Crs√
Crr

√
Css

]

, (2.7)

where Crs is the element of the covariance matrix C, and r, s = 1, 2, ..., N . R is

thus normalized so that each element satisfies 0 6

∣

∣

∣Rrs

∣

∣

∣
6 1, with the upper bound

attainable only when the two data are completely correlated. Therefore, the total

variance from the field normalized correlation matrix, R, is:

σ2
R = Tr{R}

=

N
∑

n=1

Cnn√
Cnn

√
Cnn

= N. (2.8)

From (2.8), the total variance σ2
R is always equal to the number of variables, N , no

matter how the other parameters vary. Thus, the information to compare different

data tables has been eliminated after self-normalization, making (2.8) unsuitable.

This position will be supported by an example from our simulations that compares the

unnormalized (C) and normalized (R) pictures. Summarizing, a covariance principal

component analysis based on (4.4) and (4.7) will be applied to appraise aperiodic

element control.

The number of the significant components indicates how many channels an ape-

riodic structure provides for controlling the output field. Because the importance of
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a component is reflected in the proportion of its corresponding eigenvalue (variance)

to the total variance, we define the rank as the number of the components which

contains over the percentage we specify of the total variance.

The electric energy density associated with the incident field is wei = ǫ0ǫ2|Ei|2/2,
where ǫ0 is the free space permittivity. Therefore, the average output electric energy

density is 〈we,n〉 = 〈ǫ0ǫ2|En|2/2〉, where the averaging is over observations at point

n on the detector line with differing scattering elements. We define the normalized

transmitted average electric energy as

Wea =

∑N
n=1〈we,n〉

∑K
k=1wei,k

, (2.9)

where the sum is over all observed points on the detector line and
∑K

k=1wei,k = Kwei,k

for our case of an incident plane wave.

We write the incident time-averaged Poynting vector as Si = ℜ{Ei × H∗
i }/2,

where Ei and Hi are the incident electric and magnetic fields, respectively. The

configurational-averaged output time-averaged Poynting vector is written as 〈Sn〉 =
〈ℜ{En × H∗

n}〉/2, where the averaging is over all observations at point n on the

detector line. We then write the normalized average transmitted power as

Pav =

∑N
n=1〈Sn〉 · n̂

∑K
k=1 Si,k · n̂

, (2.10)

where the sum is over all observed points on the detector line and n̂ is the unit vector

normal to the detector line.

If we assume an incident uniform plane wave, the incident electric field magnitude

|Ein| at each position on the input line is identical. We can thus write

〈THT〉 =
K

|Ei|2

















〈E∗
1E1〉 〈E∗

1E2〉 · · · 〈E∗
1EN〉

〈E∗
2E1〉 〈E∗

2E2〉 · · · 〈E∗
2EN〉

...
...

. . .
...

〈E∗
NE1〉 〈E∗

NE2〉 · · · 〈E∗
NEN〉

















, (2.11)
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where K is the number of input variables (positions on the input line). Using the

same definition as (4.7) to calculate the sum of the eigenvalues of 〈THT〉, Σ, we have

Σ = Tr{〈THT〉}

=
K

|Ei|2
N
∑

n=1

〈|En|2〉. (2.12)

Hence, (2.12) is proportional to the electric energy received by the line of detectors.

A difference in magnitude with a constant K2 can be observed between Wea in (2.9)

and Σ in (2.12), whereby

Σ = K2Wea = K

∑N
n=1〈we,n〉
wei,k

. (2.13)

The binary structure with M pixels has 2M permutations. With V observations

and V < 2M , where an observation in our case amounts to numerical computation of

the total field at a set of points on the detector line, we need to evaluate a measure

of control that is exhibited in C and σ2
C . To estimate the density function for the

mean, hence both the estimate and the error bars representing the standard devia-

tion, we apply a resampling method, thereby estimating the precision of the sample

statistics [46]. The detailed procedure we use is as follows. Each data table with V

observations inN variables (the points along the detector line) is described as a (V,N)

matrix. We randomly draw an observation vector from the original V observations

with replacement. This selection is repeated V times to form a new (V,N) data table.

We then apply principal component analysis to this new table to obtain the statistics

as an estimate from the population. Averaging over the V observations allows Cv

for v = 1, ..., V to be determined, yielding an estimate of the mean and the error in

estimating the mean. In prior work, it was found that about 50 samples were needed

to reduce the simulation error to an acceptable level [46, 47]. In our simulations, we

repeat this procedure 100 times to obtain adequate sampling, yielding the means and

error bars in the data we present.

Finally, consider a simple illustration. A plane wave propagating in free space

that is normally incident on the detector line has constant output electric field. The
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covariance matrix, C, from (4.4), is a null matrix, where the corresponding eigen-

values and rank are all zero. Therefore, the variance is zero without the presence of

scatterers. Next, if a plane wave passes through an aperiodic arrangement of weak

scatterers, there will be relatively small fluctuations of the field along the detector

line. Because the total variance with weak scatter remains small, there is little field

control. This leads to the need to understand the relation between relatively strongly

scattering aperiodic media and control over fields at a set of detector points. We

pursue this understanding based on example numerical simulation studies.

2.4 Numerical Results for Field Control with Aperiodic Elements

Section 2.4.1 presents numerical results for control with dielectric aperiodic struc-

tures and normally incident light. Section 2.4.2 explores the situation with oblique

incidence, and Sect. 2.4.3 considers the merits of lossless metallic scatters (having a

negative real dielectric constant) as aperiodic control elements. The eigenvalues of C

in (4.4) are calculated to obtain the largest eigenvalue, λ1, and the total variance, σ2
C ,

is thus found from (4.7). The Matlab function eig was used to compute the eigenval-

ues [48], which involves use of the the QZ algorithm, also known as the generalized

Schur decomposition, to determine the eigenvalues and eigenvectors. This function

was tested with several examples, and we confirmed that the sum of eigenvalues from

the eig function is equal to the trace of the matrix. The rank is defined here by

the number of eigenvalues of C that represent some fraction of the total variance,

σ2
C , and we show results for three thresholds: 1%, 10−5%, 10−10% of σ2

C . The nor-

malized transmitted average electric energy, Wea, is plotted according to (2.9). The

normalized average transmitted power, Pav, is obtained from (2.10). The sum of the

eigenvalues for 〈THT〉, Σ, is determined from (2.12).

The structure variables are shown in Fig. 2.1, and throughout, the background

is assumed to be free space. All results are generated from a 2-D numerical (finite

element method, FEM) solution (using COMSOL [49]) with sufficient accuracy to
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establish these parameters as metrics for evaluating control prospects with aperiodic

elements. The numerical formulation is chosen to solve for the scattered field, and the

total field used in the numerical analysis is obtained by adding the incident field. In

our computational domain, the scattering structure is located at the center of back-

ground region having size 10λ× 10λ, which in turn is enclosed by perfectly matched

layers to simulate unbounded space. Unless indicated otherwise, the background

wavelength used in the calculations is λ = 700 nm. Based on scaling in Maxwell’s

equations, neglecting dispersion, the results apply at any wavelength. In some cases,

the wavelength is used as a parameter. Throughout, the numerical field calculations

assume the incident plane wave has a power density of 1 W/m2.

The total electric field (incident plus scattered), Ez, on the detector line d behind

the scatterer (see Fig 2.1) is calculated for each particular arrangement of the struc-

ture. The detector line of length λ is uniformly divided into 100 segments, giving

N = 101 detector positions (the variable positions for the data table). This proce-

dure is repeated 300 times for random instances of the binary structure to obtain a

suitable amount of data for averaging. We use these observations to calculate the

101× 101 covariance matrix, C, and its eigenvalue decomposition, to observe control

as measured by the variance in (4.7). The mean values and the error bars at each

data point are calculated from the mean and the standard deviation of the resampling

distribution, where the number of samples is 100 in our simulations.

2.4.1 Normal Incidence - Dielectric Elements

For normal incidence, the plane wave is incident in the x-direction in Fig. 2.1.

We initially consider a structure of dimension λ × λ (see Fig. 2.1), and background

λ = 700 nm. Because weak scatter cannot support a large variance for control

of the output field, we focus on the strong scattering cases. We consider silicon,

ǫ1 = 12.38 [50], placed in free space with ǫ2 = 1, such that ∆ǫ = ǫ1 − ǫ2 = 11.38.

The scatterer resolution {P,Q}, the uniform discretization (pixellation) of the λ× λ
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domain, is first chosen to be {3, 3}, with a fixed filling factor f specified by enforcing

4 of the total of 9 elements to be scatterers and the remaining 5 elements to be the

background material, free space.

Figure 2.2(a) gives σ2
C as a function of d, where the symbols are the calculated

data points. The larger σ2
C for small d, close to the structure, indicates the additional

control with evanescent fields. As d recedes to the far field, the fixed detector length

of λ results in diminishing control. To explain this, consider that in the far-field

region a wave from a compact radiator behaves as a spherical wave that at any point

can be treated as a local plane wave whose electric field intensity is the same as that

of the wave and whose propagation is along the radial direction from the radiator.

As we indicated, a plane wave has zero degrees of freedom for controlling the output

field. Figure 2.2(b) shows that the largest eigenvalue, λ1, also decreases with increas-

ing d, leading to a loss of control from the first principal component in the far-field

region. Figure 2.2(c) shows the rank as a function of d, with varying threshold. In

all cases, the rank decreases with increase in d, indicating a reduction in controllable

eigenchannels with distance. Our simulations support the expected situation that the

degrees of freedom decrease as the detector recedes from the detector to the far-field

region. Although this effect may be exacerbated by the detector line length being

fixed at λ, in general, this should hold because of loss of evanescent field information.

To compare the degrees of freedom between different sets of parameters (distance

in Fig. 2.2 for example), we should apply a covariance principal component analy-

sis from (4.4) instead of a normalized analysis from (2.7). Figure 2.2(d) shows the

largest eigenvalues from the normalized correlation, R, in (2.7). The increase in λ1

with increasing d only reflects the fact that the first principal component contains an

increasing contribution relative to the other components within the same correlation

matrix. Equation (2.7) is unsuitable for observing the degrees of control in our anal-

ysis, which requires absolute information. The average energy on the detector line,

Wea, defined by (2.9), is plotted in Fig. 2.2(e), and the average power delivered to the

detector, Pav, defined by (2.10), in Fig. 2.2(f), both as a function of distance to the
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detector line, d. Notice that although there are only slight variations in both as d is

varied, σ2
C reduces with increasing d and fixed detector length because of the decreas-

ing plane wave spectrum contribution. The error bars in Fig. 2.2 were determined

using the resampling method, as we describe above.

A large number of degrees of freedom can be achieved in the near-field, and we

consider the impact of various parameters on output field control. In Fig. 2.3(a),

we plot σ2
C in the near-field region (d = λ/8) as a function of filling factor f , for

{P,Q} = {3, 3} and ∆ǫ = 11.38. The number of scattering and background segments

must be integers in the binary aperiodic structure, so we round down the number of

scatterers for a particular f to achieve this. For example, when f is 0.5, we have 4 of

the total 9 elements as scatterers and the remaining 5 elements as background material

(free space here). When f is 0 or 0.1, no scatters exist in the model, resulting in zero

variance at the output. The total variance increases with increasing f in Fig. 2.3(a)

because more scatterers act as controllable pixels in the nanostructure. For f > 0.5,

the contribution to σ2
C by adding more scatterers saturates. The differences in degrees

of freedom for f between 0.5 to 0.9 are not significant. Moreover, with f = 1, where

the medium is homogeneous, there is no control. This suggests reduced control with

fill fractions approaching unity. Figures 2.3(b) and (c) show the largest eigenvalue

(λ1) and the rank as a function of fill factor, respectively. When f = 1, both the

largest eigenvalue and rank agree with the result from σ2
C , supporting no control at

the output. When f = 0.9, from Fig. 2.3(b), the first principal component provides

larger variance than in the other cases, but this also results in fewer controllable

eigenchannels, as shown in Fig. 2.3(c). These results suggest that when designing a

binary aperiodic structure, 0.5 < f < 1 is recommended. To observe how the volume

or dimensions of the nanostructure contribute to the variance of the output fields, we

simulated the nanostructures with l = λ but different widths from w = λ to 3λ, for

{P,Q} = {3, 3}, ∆ǫ = 11.38 and f = 0.5. As shown in Fig. 2.3(d), even if f is fixed,

σ2
C increases with structure width and hence with more controllable volume.
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Fig. 2.2. Statistical analysis for normal incidence, {P,Q} = {3, 3},
∆ǫ = 11.38, f = 0.5: (a) total variance, σ2

C , plotted as a function of
distance to the detector line, d (see Fig. 2.1); (b) the largest eigenvalue
of C, λ1; (c) the rank as the number of the components which contain
over 1% (blue circle), 10−5% (green diamond), 10−10% (red triangle)
of σ2

C ; and (d) λ1 from the normalized correlation, R. (e) Normalized
transmitted electric energy, Wea, as a function of d; and (f) normalized
transmitted power, Pav, as a function of d. The error bars in (a), (b),
(d), (e), and (f) and as included for all other numerical results were
calculated from the standard deviation of the resampling distribution
where the number of samples is 100.
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Fig. 2.3. Normal incidence, {P,Q} = {3, 3}, ∆ǫ = 11.38, and d =
λ/8: (a) σ2

C as a function of filling factor, f ; (b) λ1 from (a); (c) rank
with varying threshold - 1% (blue circle), 10−5% (green diamond),
10−10% (red triangle) of σ2

C ; and (d) σ2
C plotted as a function of the

structure width, w, with l = λ. The calculated data points with error
bars are shown in (a), (b) and (d).
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To investigate the influence of material property, we consider control as a function

of dielectric constant in Fig. 2.4. In Fig. 2.4(a), the average energy on the detector line,

Wea, defined by (2.9), oscillates with increasing ∆ǫ, with more significant resonances

at specific ∆ǫ. Notice that the oscillations in Wea are large relative to the error bars

that are also plotted. The average power delivered to the detector, Pav and defined

by (2.10), is plotted in Fig. 2.4(b) as a function of ∆ǫ. The differences between

Fig. 2.4(a) and (b) are due to the influence of evanescent fields on the energy in the

near-field and the contributions of the multiple propagating plane waves along the

detector line. We use the same simulation data to observe the connection between

Σ from < THT > in (2.12), plotted in Fig. 2.4(c), and Wea in (2.9). In (2.12), Σ is

equal to Tr < THT >, such that a difference in magnitude with a constant K2 can be

observed from the result of Fig. 2.4(a). K is chosen to be 101 in our simulation, and as

we predict, Fig. 2.4(c) only differs from Fig. 2.4(a) by a factor of 10201(= 101×101).

In Fig 2.5(a), we plot σ2
C as a function of ∆ǫ = ǫ1 − ǫ2 for {P,Q} = {3, 3} and

f = 0.5, with all other parameters the same as the previous simulations. As expected,

for ∆ǫ = 0.075, the weak scatter provides small variance. However, somewhat sur-

prisingly, σ2
C oscillates with varying ∆ǫ and the maximum occurs with ∆ǫ = 3. One

reason for this apparent saturation in σ2
C is that the transmitted electric energy, Wea,

and power, Pav, while oscillatory, generally reduce with increasing scattering strength,

as shown in Figs. 2.4(a) and (b). Stronger scattering elements in the configuration

of Fig. 2.1 on average reduce the transmission, resulting in a loss of effective control

and a decrease in σ2
C . Figure 2.5(b) shows that λ1 is similar to σ2

C in Fig. 2.5(a).

In Fig. 2.5(c), the rank of C increases dramatically when ∆ǫ increases from 0.075 to

3, but then varies only slightly with increasing ∆ǫ. It appears that for the physical

situation we consider, larger ∆ǫ does not guarantee more degrees of freedom, and that

one should select a material with a proper dielectric constant to be resonant within

a limited range in an application. From the best case (∆ǫ = 3) in our simulations, a

material with dielectric constant around 3 to 9 in the visible range appears effective

and is available. Figures 2.5(a)-(c) are for f = 0.5, which means we lose some combi-
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Fig. 2.4. Normal incidence, {P,Q} = {3, 3}, f = 0.5, and d = λ/8
as a function of dielectric contrast, ∆ǫ: (a) normalized transmitted
electric energy, Wea; (b) normalized transmitted power Pav; and (c)
Σ. The calculated data points with error bars are shown.
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nations with a fixed resolution. For example, when {P,Q} = {3, 3}, if the structure

is composed of scatterers m1 with probability p = 0.5 or the background material m2

with probability p = 0.5, we have a total of 29 combinations. In the case of f = 0.5,

the number of combinations is equal to the combination of 9 things taken 4 at a time

without repetition. To examine the difference between a fixed filling factor and a

fixed probability, we simulated the same parameter space but with the presence of

each scatterer determined by p = 0.5 instead of f = 0.5. The results with a fixed

probability are shown in Figs. 2.5(d) and (e). There are some differences between σ2
C

in Fig. 2.5(a), for f = 0.5, and (d), for p = 0.5, and likewise for λ1 in Figs. 2.5(b),

for f = 0.5, and (e), for p = 0.5. We can observe that for ∆ǫ = 3, the variance of

fields with a fixed p is larger than the result with a fixed f . This indicates that the

contribution from the combinations lost due to a fixed f is appreciable. However, the

∆ǫ points where the resonances occur are the same. The combinations with fixed f

still provide a good prediction of the ∆ǫ values that maximize σ2
C .

The resolution of the binary aperiodic structure is also an important factor which

may influence field control. We simulated structures with resolutions from {P,Q} =

{3, 3} to {20, 20} with f = 0.5, and with all other parameters the same as the previous

simulations. Figure 2.6(a) shows σ2
C as a function of resolution for ∆ǫ = 11.38. We

observe that σ2
C varies nonlinearly with the resolution, and the case with {6, 6} offers

the greatest control. With higher resolution ({P,Q} > {10, 10}), only a relatively

small change in total variance can be observed compared to that of the lower resolution

cases. In general, one would anticipate that decreasing the size of the elements of

the structure would lead to the homogenized regime, a loss of field control at the

detector, and hence to reducing σ2
C . It is likely that this is not observed in Fig. 2.6(a)

because the measurements are made in the near field (d = λ/8)), so that even at

the highest resolution used we still have not reached the homogenized material limit.

While λ1 has a similar appearance to σ2
C , with a maximum when {P,Q} = {6, 6}, the

ranks are almost independent of resolution. With a fixed size of 700 × 700 nm2, we

obtained numerical data as a function of background wavelength over the range 100
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Fig. 2.5. Normal incidence and data as a function of ∆ǫ for {P,Q} =
{3, 3} and d = λ/8 nm: (a) σ2

C with f = 0.5; (b) λ1 with f = 0.5;
(c) rank with thresholds of 1% (blue circle), 10−5% (green diamond),
10−10% (red triangle) with f = 0.5; (d) σ2

C with p = 0.5; and (e) λ1

with p = 0.5. The calculated data points with error bars are shown
in (a), (b), (d) and (e).
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Fig. 2.6. Normal incidence, ∆ǫ = 11.38, d = λ/8, where λ = 700 nm,
and f = 0.5: (a) σ2

C as a function of resolution {P,Q}, where P =
Q; and (b) σ2

C plotted as a function of wavelength of the incident
wavelength, λ, with {P,Q} = {3, 3}. The calculated data points with
error bars are shown.

to 900 nm for ∆ǫ = 11.38, {P,Q} = {3, 3}, and f = 0.5. As shown in Fig. 2.6(b),

σ2
C oscillates and shows strong resonant features as a function of wavelength. An

incident wave with larger wavelength will enter a relatively finer (compared to the

wavelength) binary nanostructure than that with smaller wavelength. This gives a

somewhat similar situation to viewing σ2
C as a function of resolution.

2.4.2 Oblique Incidence - Dielectric Elements

To explore aperiodic element field control as a function of incident field wavefront,

we consider an obliquely incident pane wave at an angle θi to the normal. Figure 2.7(a)

shows σ2
C as a function of d for θi = π/6, with error bars. The results are similar

to the normal incidence case (Fig. 2.2(a)), with the largest variance closest to the

structure (d = λ/8) and decreasing variance with increasing d. Although the general

trend for σ2
C is similar for θi = 0 and θi = π/6, the magnitude is lower for the oblique

incidence case. In addition, as for the normal incidence case, the rank decreases with

increasing d and the influence of the degrees of freedom in controlling he eigenchannels

diminishes. Figure 2.7(b) shows the influence of fill (f) on σ2
C for d = λ/8 and θi = π/6

for {P,Q} = {3, 3} and ∆ǫ = 11.38. As for the previous simulations, we round down
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Fig. 2.7. σ2
C for oblique incidence with {P,Q} = {3, 3}: (a) θi = π/6,

∆ǫ = 11.38, and f = 0.5 as a function of d: (b) θi = π/6, ∆ǫ = 11.38,
and d = λ/8 as a function of f ; (c) θi = π/6 for f = 0.5, and d = λ/8
as a function of ∆ǫ; and (d) θi = π/3 for f = 0.5, and d = λ/8 as a
function of ∆ǫ. The calculated data points with error bars are shown.

the number of scatterers for a particular filling factor. The shape of the σ2
C(f) curve

is similar to that for normal incidence, but indicates slightly less control (smaller

variance) linked to a reduction in energy at the detector plane. Consider now the

influence of the dielectric constant. In Fig. 2.7(c) and Fig. 2.7(d), we plot σ2
C as a

function of ∆ǫ for θi = π/6 and π/3, respectively, for {P,Q} = {3, 3} and f = 0.5,

with all other parameters the same as the previous simulations. Notice the trend to

slightly lower σ2
C with further increase in θi. In Fig 2.7(c) and Fig 2.7(d), as for normal

incidence, σ2
C increases with larger ∆ǫ, is maximum at ∆ǫ = 3 for both θi = π/6 and

θi = π/3, and then reduces and oscillates with further increases in ∆ǫ. However, the

variations in σ2
C(∆ǫ) become less pronounced with increase in θi.
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We calculate the normalized transmitted electric energy, Wea in (2.9), and the

normalized transmitted power, Pav in (2.10). Figures 2.8(a) and (b) give the results as

a function of d. The detector line is perpendicular to the x-direction. With off-normal

incidence, the x-directed Poynting vector and the energy at the detector on average

increase with increasing d. We understand this in comparison with the normally

incident results in Figs. 2.2(e) and (f) as being due to a substantial contribution from

the incident field with oblique incidence. As we indicate before, only the scattered

field can be controlled. Figure 2.8(c) gives the results for Wea and Fig. 2.8(d) for Pav

with θi = π/6. The θi = π/3 results are shown in Figs. 2.8(e) and (f). In Fig. 2.8,

similar to the normal incidence result, Wea and Pav deposited on the detector line

with a fixed length oscillates with varying ∆ǫ and show resonances at specific ∆ǫ

values that are relatively insensitive to incidence angle. Relative to normal incidence,

the variations are smaller with increasing θi. In Figs. 2.7(c) and (d), the variations

in σ2
C(∆ǫ) diminish and bear a resemblance to those for the energy in Figs. 2.8(c)

and (e). Reduced transmitted energy depresses the variance. However, we should

note that while low energy and power imply a reduction in σ2
C , the converse is not

necessarily the case. There is a tendency for high energy to correlate with peaks in

σ2
C , but a comparison of Figs. 2.7(c) and (d) with Figs. 2.8(c) and (e) shows that the

variance and energy variations (notably the peaks) do not track perfectly.

Both the normal and oblique incidence cases studied indicate a similar number of

controllable channels, i.e., that there is weak dependence on incidence angle. We can

therefore conclude that the measures we have applied provide guidance regardless of

the incident field.

2.4.3 Metal (Plasmonic) Elements

With the view that strongly scattering media may provide more control oppor-

tunities, we consider a model for metals in the optical regime where the real part of

the dielectric constant is negative. For simplicity, we neglect loss and hence set the
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Fig. 2.8. With {P,Q} = {3, 3}, f = 0.5: (a) Wea for θi = π/6 and
∆ǫ = 11.38 as a function of distance to the detector line, d; (b) Pav for
θi = π/6, and ∆ǫ = 11.38 as a function of d; (c) Wea for θi = π/6 and
d = λ/8 as a function of dielectric contrast, ∆ǫ; (d) Pav for θi = π/6
and d = λ/8 as a function of ∆ǫ; (e) Wea for θi = π/3, and d = λ/8 as
a function of ∆ǫ; and (f) Pav for θi = π/3 and d = λ/8 as a function
of ∆ǫ. The calculated data points with error bars are shown.
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imaginary dielectric constant to zero. Figure 2.9(a) shows the normalized transmit-

ted electric energy, Wea, and Fig. 2.9(b) the normalized transmitted power, Pav, as

a function of ∆ǫ. Both Wea and Pav are relatively small compared with the positive

dielectric constant cases due to the strong reflection associated with the negative di-

electric constant. We should note is this reduced energy picture may differ with other

geometries, most notably, those that permit wave guiding used in earlier aperiodic

structures [4], in particular, the metal-insulator-metal mode [51,52]. In Fig. 2.9(c), we

plot σ2
C as a function of ∆ǫ. Small oscillations can observed as the dielectric constant

becomes more negative. This can be predicted by the energy and power results in

Fig. 2.9(a) and (b), and reduced transmitted energy brings about a decrease in σ2
C .

The largest eigenvalue, λ1, gives similar results to Fig. 2.9(c). We conclude that for

the binary aperiodic structure of Fig. 2.1, use of a negative dielectric constant does

not provide as many controllable channels as a positive dielectric constant, and we

attribute this to a reduction in transmitted energy.

2.5 Field Statistics

The field density function on the detector line in Fig. 2.1 provides another measure

for aperiodic elements that we consider. The computed probability density functions

from the numerical data used to produce Fig. 2.5 for different ∆ǫ are compared with

analytic density functions. The numerical Ez for multiple structure arrangements

provides the data to generate the field density function, as well the intensity density

function.

We define φR,I , A, I as the real and imaginary part of the field (Ez in our case),

the field amplitude, and the intensity, respectively. For zero-mean circular Gaussian
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Fig. 2.9. Normal incidence for {P,Q} = {3, 3}, f = 0.5, and d = λ/8:
(a)Wea(∆ǫ); (b) Pav(∆ǫ); and (c) σ2

C(∆ǫ). The calculated data points
with error bars are shown.
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field statistics, when the field can be considered as the sum of a large number of

independent random phasors, the corresponding probability density functions are [53]

p(φR,I) =
1√
2πσ2

e−φ2

R,I/(2σ
2) (2.14)

p(A) =
A

σ2
e−A/(2σ2) (2.15)

p(I) =
1

2σ2
e−I/(2σ2), (2.16)

Gaussian field amplitude, Rayleigh magnitude, and negative exponential intensity

distributions, respectively. Using a normalization scheme (φ̂R,I = φR,I/
√

〈A2〉, Â =

A/
√

〈A2〉, and Î = I/〈I〉), the probability density functions for normalized field,

amplitude, and intensity can be written as [8, 9]:

p(φ̂R,I) =
1

2
e−πφ̂2

R,I
/4, (2.17)

p(Â) = 2Âe−Â2

, (2.18)

p(Î) = e−Î . (2.19)

Consider now ∆ǫ = 9, which has large σ2
C in Fig. 2.5(a). The computed proba-

bility density functions of the normalized total field in Fig. 2.10(a) and intensity in

Fig. 2.10(b) conform nicely to the zero-mean Gaussian field and negative exponential

intensity density functions, respectively. We interpret this agreement at relatively

large dielectric constant with fixed scatterer size as due to a substantial number of

contributing random phasors, associated with multiple scatter. However, when the

strength of the scatter becomes very large, as in the extreme case of Fig. 2.11, where

∆ǫ = 100, the Gaussian distribution no longer fits the probability density function

well (see the green dashed lines in Fig. 2.11). In this case, the strong scatter is reduc-

ing the number of contributing phasors. This occurs in Anderson localization, and

the field density function describing this phenomenon has been found to be circular

Bessel [9]. Such a density function can be used to describe the results of Fig. 2.11.

We assume that the total field, φ, is modeled by the sum of N random phasors [8],

φ =

N
∑

n=1

φn =

N
∑

n=1

ane
jθn = Aejθ, (2.20)
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Fig. 2.10. Near-field probability density functions for d = λ/8,
{P,Q} = {3, 3}, ∆ǫ = 9, and f = 0.5: (a) normalized real part
of the total field φ (Ez, referring to Fig. 2.1) on the detector line; and
(b) corresponding intensity data. Note that the field is captured by a
zero-mean Gaussian density function, and hence the intensity distri-
bution is negative exponential, as the blue line fits to the numerical
data (triangles) show.
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Fig. 2.11. Density function data for d = λ/8, {P,Q} = {3, 3}, ∆ǫ =
100, and f = 0.5: (a) normalized real part of the total field φ; and (b)
the corresponding intensity density function. The green dashed curves
in (a) and (b) are, respectively, Gaussian and negative exponential fits.
The blue solid curves show the better fit to the numerical data using
a circular Bessel density function.
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that the amplitudes and the phases are independent of each other, and that all phases

are uniformly distributed over 2π, resulting in circular statistics in the complex plane.

We also assume that the fluctuations in N can be described by a probability mass

function that is the negative binomial distribution,

p(N) =

(

N + α− 1

N

)

(〈N〉/α)N
(1 + 〈N〉/α)N+α

, (2.21)

where 〈N〉 is the mean value of N and α is a positive real real number. The shape of

this distribution is governed by the parameter α. When α ≫1, it is centered around

its mean, 〈N〉. For sufficiently large 〈N〉, the central limit theorem applies, leading

to Gaussian statistics. When α ≪1, it is peaked at N =0 and then decreases as N

increases, which is the case of circular Bessel statistics.

The probability density functions of normalized field and intensity for circular

Bessel statistics are derived to be [8]

p(φ̂R,I) =
2√

πΓ(α)
α(α+1/2)/2(φ̂2

R,I)
(α−1/2)/2Kα−1/2

(

2
√

αφ̂2
R,I

)

(2.22)

p(Î) =
2α

Γ(α)
(αÎ)(α−1)/2Kα−1(2

√

αÎ), (2.23)

where Γ is the gamma function and K is the modified Bessel function of the second

kind. Equations (2.23) and (2.23) are also effective for Gaussian statistics, when α

approaches infinity.

In Figs. 2.11(a) and (b), the blue lines show that the numerical field and intensity

data for ∆ǫ = 100 can be nicely fit with the circular Bessel distribution, (2.23) and

(2.23). This reveals that a small number of contributing phasors is involved in forming

these near-field statistics. From Figs. 2.10 and 2.11, we conclude that the fields are

describable as Gaussian below some scattering strength that is less than ∆ǫ = 100

and greater than ∆ǫ = 9 for the geometry considered.

In addition, from (2.3), the total field φ is the summation of the incident and

scattered fields. For weak scatter (small ∆ǫ), the amplitudes of scattered fields are

generally much smaller than those of the incident field under weak scatter, such that



34

−2 0 2
0

0.5

1

1.5

Real Part

∆ε = 0.075

0 2 4
0

0.5

1

1.5

Intensity

∆ε = 0.075

(a) (b)

Fig. 2.12. Residual field density function data for d = λ/8, {P,Q} =
{3, 3}, ∆ǫ = 0.075, and f = 0.5: (a) normalized real part of the
residual field δφ; and (b) the corresponding intensity density function.
The green dashed curves in (a) and (b) are, respectively, Gaussian and
negative exponential fits. The blue solid curves show the better fit to
the numerical data using a circular Bessel density function.

the total field φ can not be circular with zero mean. The total field φ can be written

as the sum of the mean field 〈φ〉 and the residual field δφ, giving

φ(r) = 〈φ(r)〉+ δφ(r), (2.24)

where the averaging is over the random arrangements and r indicates the position

at the detector. Earlier work has shown that the residual field δφ can develop an

approximately zero-mean character when the scatter is too weak for the total field to

exhibit such statistics [8]. Figures 2.12(a) and (b) show the probability density func-

tions of the normalized real part and intensity of the residual field, δφ, respectively,

for weak scatter (∆ǫ =0.075). The results fit the circular Bessel statistics better than

the zero-mean Gaussian and confirm the zero-mean statistics for the residual field δφ.

2.6 Conclusion

We provided a multivariate statistical analysis of binary aperiodic scattering ele-

ments based on a principal component analysis, along with information on the char-

acter of the field density function, to evaluate the degrees of freedom available for

controlling the near-field through to the far-field response. The eigen-decomposition
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of the field covariance matrix gives us a measurable number to compare the variances

of fields (σ2
C) that nanostructures can support in different cases.

As expected, this measure shows that field control diminishes with increasing

distance to the detector, i.e., σ2
C(d) is a decreasing function of d. We considered

spatial Fourier domain data, but far-field results with the small (λ) spatial support of

the detector line precluded observation of equivalent of the propagating mode limit

found in earlier work [6,25]. A larger fill factor provides more scatterers, more degrees

of freedom, and hence more control, but all control is lost with complete fill. We find

fill fractions of 0.5-0.9 are best for the binary dielectric structures we studied. We

found that strong scatter does not always support more degrees of freedom due to

the loss of transmitted energy. Small energy at the detector cannot support a large

σ2
C . In the cases studied, dielectric constant differences from the background in the

range of 3-9 provide large σ2
C , which turns out to be fortuitous given the number of

materials encompassed at optical frequencies. While the case of metals in the binary

structures we considered was not favorable, due to the low energy at the detector,

other waveguide-type structures will likely change this position. Fixing the scatterer

size and increasing the discretization provided more freedom, but above a certain

discretization, similar σ2
C . We expect that the homogenized regime will be reached

with increasing discretization, with concomitant loss of control, but our data did not

extend to this regime. Our metrics appear quite insensitive to the incident phase front

(angle of incidence), suggesting general conclusions can be made from, for example,

the normal incidence case.

The weakly and strongly scattering aperiodic element fields were found to be well

described by circular Bessel statistics, and intermediate scatter resulted in Gaussian

fields. The regime where zero-mean circular Gaussian field statistics hold appears to

be the domain where there is more field control (and more independent phasors), and

presumably where this class of aperiodic elements is optimal.

The results we have presented provide design guidelines to optimize different pa-

rameters within bounded ranges. This can benefit applications such as imaging,
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microscopy and spatial control. While we have considered binary aperiodic elements,

there are inferences related to continuously varying aperiodic materials one might

make. For example, each binary arrangement is similar to having scatterers at ran-

dom locations, i.e., random media where the locations of the scatterers can be viewed

as being drawn from a density function. Another continuous optimization variant of

the binary structure we considered would have each pixel with a continuously varying

dielectric constant, or the dielectric constant fixed and the boundary of each scatter

parameterized in an optimization framework. Conclusions from our studies related

to fill factor and changes in dielectric constant could help guide the design process in

these situations.
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3. THE PHYSICAL BASIS OF ENHANCED OPTICAL

PRESSURE ON A STRUCTURED SURFACE

It has been proposed that structuring a metal surface can substantially increase the

optical pressure over that possible with a planar interface. While this was presented

as being associated with a plasmon wave resonance in nanostructured cavities, the

physical mechanism by which the pressure is increased has remained unclear. Based

upon the forces on the mirrors of a one-dimensional Fabry-Perot cavity, we show that

the force on one mirror in an asymmetric arrangement can be increased relative to

the other, and relate the pressure to the quality factor in the cavity and the mirror

properties. Importantly, we also show that the sum of the pressures on both mirrors

increases through asymmetry and with quality factor. Using cavity quality factor

as a measure, the one-dimensional Fabry-Perot cavity pressure results are related to

pressure enhancement with a structured metal surface. The enhanced pressure phe-

nomenon is explained as being due to an array of asymmetric optical cavities formed

on the surface. With this understanding guiding the design of structured metallic and

dielectric materials, more than an order of magnitude increase in the optical pressure

is possible. Consequently, the relatively weak optical force can become more effective

in control and propulsion applications.

3.1 Introduction

Radiation pressure was theorized [54] and measured [55] more than one century

ago, and optical force concepts developed since the advent of the laser have led to op-

tical tweezers [56] and extensive interest in optical traps and condensates [57]. There

has been substantial work done related to forces within optical cavities and on the

cavity mirrors, primarily related to sensitivity and cooling [58–61]. The development
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of sensitive interferometers [62] have allowed the detection of gravitational waves [63].

Cavity dynamics concepts are based on the mirror radiation pressure being P = 2~kI,

with each photon carrying a momentum ~k and I being the optical intensity measured

in photons/(m2 · s), given P in N/m2, and the factor of two is from the assumption

of perfect reflection [64]. This is entirely consistent in the appropriate limit with the

classical picture from Maxwell [54], where P = S(1 + |Γ|2)/c, with Γ the field reflec-

tion coefficient. Clearly, increasing I or the incident Poynting vector by increasing the

cavity quality factor (Q) will increase the pressure on the mirror. However, |Γ| = 1

leads to a maximum value of P = 2S/c.

The force density in homogenized media can be obtained from the field solution,

and this leads to a means to calculate the force on a medium [65,66], the pressure on a

slab [12,67], and with photonic crystal mirrors [68]. With such an approach involving

a numerical solution for the fields in the material, leading to the force density and

hence pressure, the possibility of increasing the pressure by more than an order of

magnitude over 2S/c with a nanostructured Au surface has been presented [11]. This

result could be profoundly important in applications, but the physical basis of the

effect related to a plasmon wave resonance has remained unclear. We present an

understanding based on an asymmetric 1D Fabry-Perot cavity and the increase in

the total pressure on both mirrors at resonance. This leads to a means to achieve

pressure enhancement with a variety of dielectric and metallic materials for remote

control, propulsion, and cavity optomechanics applications. The resulting change in

the mathematical picture of pressure [54] should provide a basis for new directions in

optomechanics for the physical sciences.

We explain optical pressure enhancement on a surface by considering the mirror

pressures in the 1D Fabry-Perot cavities shown in Figs. 3.1(a) and (b), which we

relate to cavity Q and the MIM-mode cavities in Figs. 3.1(c) and (d), all in a free

space background. Figure 3.1(a) shows a symmetric Fabry-Perot cavity containing

two identical slab mirrors (M1 and M2) with thickness t, and a cavity length d,

defined as the mirror separation. Figure 3.1(b) shows an asymmetric Fabry-Perot
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(a) (b)

(c) (d)

Fig. 3.1. Optical cavities that enhance the radiation pressure. (a)
A symmetric Fabry-Perot cavity. The mirrors M1 and M2 are two
identical slabs with thickness t separated by d. (b) An asymmetric
Fabry-Perot cavity. M1 is a slab with thickness t and M2 is a semi-
infinite mirror placed d away from M1. (c) A nanostructured slot
cavity array in a metal. (d) Profile of a unit cell of the periodic
nanostructured slot cavity in (c). A normally-incident plane wave of
wavelength 633 nm and Au with artificially adjusted loss are assumed,
as described in Table 3.1.

cavity with M1 having thickness t and the semi-infinite M2 placed a distance d away

from M1. Figure 3.1(c) shows a nanostructured slot cavity array and the profile of

each slot is shown in Fig. 3.1(d). With an incident field having Hz, the lowest order

MIM waveguide mode (Ex, Ey, Hz) can be excited, by virtue of the metal dielectric

constant (ǫ = ǫ′ + iǫ′′ with ǫ′ < −1, assuming a free space background) [51]. We

present radiation pressure simulation results for 1D cavities in Figs. 3.1(a) and (b)

and use these to build physical insight into the influence of structures like Figs. 3.1(c)

and (d) to enhance the pressure.
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Table 3.1.
The cavity mirror material parameters used in the calculations related
to Figs. 3.1(a) and (b). Nomenclature: symmetric Fabry-Perot (SFP),
cases 1 (SFP1) and 2 (SFP2), as in Fig. 3.1(a); asymmetric Fabry-
Perot (AFP), cases 1-3, as in Fig. 3.1(b). The dielectric constant
assumed for Au is ǫAu = −11.82 + i1.23 at a wavelength of 633 nm,
and in all cases, ǫ′M1 = ǫ′M2 = −11.82. The imaginary part of the
dielectric constant for each mirror, ǫ′′M1 and ǫ′′M2, is varied as indicated
to adjust the confinement and dissipation in the cavities.

tM1
ǫ′′M1

tM2
ǫ′′M2

SFP1 30 nm 0, 0.1, 0.2, · · · , 1 Same as M1

SFP2 50 nm and 1.23

(ℑ{ǫAu})
AFP1 30 nm Semi-infinite 1.23

(ℑ{ǫAu})
AFP2 50 nm

AFP3 50 nm 0.1
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3.2 Methodology

The separable problems in Figs. 3.1(a) and (b) can be solved analytically, and

we do so for excitation with a single, normally incident plane wave from the left,

allowing the force densities in the mirrors and hence the pressure to be obtained.

Using impedance transformation, the field reflection coefficient, S11 (with scattering

parameter notation), can be found at the left interface of M1 [69]. This circumvents

the need to define a specific cavity boundary and some cavities of interest have no

transmission. Using the recursive from of the field transmission matrix, the fields

are found in the cavity and within the mirrors [69]. The fields in the mirrors lead

to the force density and hence the pressure. The force density expression we utilize

here, originally from Einstein and Laub [70], has been derived and used by others

[12,65,66,71], and was also used to present the idea of enhanced pressure in structured

material [11]. We assume that no magnetic material response exists in the source-free

case. Consequently, the force density within the material media assuming exp (−iωt)

is

〈f〉 = (ê× ĥ)
µ0ǫ0ω

2
ℑ{χEE(r)H∗(r)}+ ǫ0

2
ℜ{(χEE(r)ê · ∇)(êE∗(r))} (3.1)

where ê and ĥ are unit vectors indicating the direction of the electric and magnetic

field phasors, E and H , at position r, respectively, χE is the electric susceptibility,

ℜ{·} is the real part and ℑ{·} the imaginary part, µ0 is the free space permeability and

ǫ0 is the free space permittivity. We define the time-averaged force density due to the

first term in (3.1) as 〈fR〉, where the nomenclature implies that this is the radiation

pressure for a planar surface with normal incidence, the usual mirror picture, and the

other term due to the gradient of the field as 〈fG〉.
We relate the radiation pressure to the cavity Q. With the linear and isotropic

relationshipsD = ǫ0ǫE andB = µ0H, in frequency domain and whereD is the electric

flux density and B the magnetic flux density, it is possible to separate electromagnetic

field energy into stored energy and lost energy [72]. Under the assumption that
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dispersion can be neglected, so ∂ǫ/∂ω = 0, the time-averaged stored energy surface

density (J/m2) is

W =
1

4

∫

l

[

ǫ′ǫ0|E(r)|2 + µ0|H(r)|2
]

dl, (3.2)

where l is the spatial variable perpendicular to the mirrors. Likewise, the time-

averaged power dissipation surface density (W/m2) is

Pd =
ω

2

∫

l

ǫ0ǫ
′′|E(r)|2dl. (3.3)

The integrations in (3.2) and (3.3) are over the mirrors and the intervening space

(free space in the situations of Figs. 3.1(a) and (b)), and for M2 in the asymmetric

cavity case, the integral in that mirror is over 20δ, with δ the skin depth (e−1 of the

field at the surface).

The Q can be decomposed into unloaded (accounting for loss within the cavity,

QU) and loaded (describing the radiative loss contribution, QL) as

1

Q
=

1

QU

+
1

QL

, (3.4)

where

QU = ω0
W0

Pd

and QL = ω0
W0

Sr + St

, (3.5)

with ω0 the resonant circular frequency, W0 the total (electric plus magnetic) en-

ergy in the cavity at resonance from (3.2), Pd the power dissipated within the cavity

at resonance from (3.3), and Sr and St the reflected and transmitted Poynting vec-

tor magnitudes, respectively, at resonance. With high cavity finesse and use of a

Lorentzian line model [73, 74],

1− |S11(ω)|2 =
1− |S11(ω0)|2

1 + 4 (ω0−ω)2

∆ω2

, (3.6)

and an estimate of Q is

Qω =
ω0

∆ω
, (3.7)

where ∆ω is the half-power bandwidth and the subscript ω indicates this frequency

response measure (with a high Q approximation). Measuring S11 and use of (3.7) to

determine Q circumvents the need to artificially define cavity boundaries.
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3.3 Results

Figure 3.2 shows our pressure results for the 1D cavities of Figs. 3.1(a) and (b) at

resonance. We designate symmetric (Fig. 3.1(a)) and asymmetric (Fig. 3.1(b)) Fabry-

Perot cavity cases through the labels SFP and AFP, respectively. In all calculations,

the magnitude of the Poynting vector of the normally incident plane wave on the

cavity is 1 W/m2, and the free space wavelength is λ0 = 633 nm. The mirror dielectric

constants used are presented in Table 3.1 and based on Au, with the loss adjusted. We

vary only the material loss and thickness to adjust the confinement and dissipation in

the cavities. The shortest resonant cavity length was determined from the minimum

|S11| as d is adjusted, and all results are for this condition. For the 1D cavities, only

〈fR〉 contributes to the pressure.

Figure 3.2(a) shows the radiation pressure on M2, PM2
, as a function of ǫ′′M1

, the

imaginary part of the dielectric constant for M1. In all cases, the pressure decreases

with increasing ǫ′′M1
and the maximum enhancement occurs when M1 is lossless. Note

that the asymmetric cavity can provide a much larger pressure enhancement than

the symmetric case by reducing the material loss in M2 (AFP3), which can be un-

derstood from P = S(1 + |Γ|2)/c with |Γ| ∼ 1. Changing ǫ′′M1
has an impact on the

coupling between the incident wave and the cavity, so both QU and QL are varied,

and the stored energy in the cavity varies. In order to compare the relationship be-

tween pressure and Q for the simple Fabry-Perot cavities of Figs. 3.1(a) and (b), we

plot PM2 as a function of Q calculated from (3.4), with use of (3.5) and the cavity

energy determined from (3.2) and the power dissipation from (3.3), in Fig. 3.2(b). A

fit (orange line) in Fig. 3.2(b) makes the linear relationship between pressure and Q

clear. Figure 3.2(c) shows PM2
as a function of Qω, estimated from (3.7), which has

a nonlinear relationship to pressure. However, the general trend between pressure

and both Q and Qω are consistent. The nonlinear character in Fig. 3.2(c) appears

at lower values of Qω and can be attributed to the breakdown of the high-Q approx-

imation. With high Qω, the results in Fig. 3.2(c) still differ a little from those in
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(a) (b)

(c) (d)

Fig. 3.2. (a) Radiation pressure PM2
on M2 as a function of ǫ′′M1

for
examples of symmetric and asymmetric Fabry-Perot cavities with the
parameters given in Table 3.1. (b) PM2

on M2 as a function of Q
from (3.4), with a linear fit (orange line). (c) PM2

as a function of Qω

from (3.7). (d) Net pressure, PM1+M2
, on M1 and M2 as a function

of Qω. The dashed line shows the value of the maximum pressure on
a perfect mirror when the magnitude of the incident power density is
1 W/m2. A resonant asymmetric cavity can support larger pressure
enhancement than a perfect reflecting (anti-resonant) surface.
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Fig. 3.2(b) because the cavity boundaries were (artificially) described at the outside

of the mirror surfaces in determining both W0 and Q (in Fig. 3.2(b)), while use of the

reflection coefficient in (3.6) in determining Qω from (3.7) did not require a cavity

boundary to be defined. We conclude then that Qω provides a suitable measure to in-

vestigate cavity mirror pressure. Figure 3.2(d) shows the net pressure on M1 and M2,

PM1
+PM2

= PM1+M2
, for SFP2 and AFP3, the higher Q examples of symmetric and

asymmetric Fabry-Perot cavities, respectively. When a symmetric Fabry-Perot cavity

is resonant, the forward and backward waves within the cavity have approximately

the same amplitude. Therefore, for a symmetric Fabry-Perot cavity, the pressure

on M1 is almost the same as PM2
but in the opposite direction, causing PM1+M2

to

be approximately zero. This can be observed from the diamond symbols (SFP2)

in Fig. 3.2(d) as Qω increases. On the other hand, with asymmetric mirrors, PM2
is

slightly larger than the pressure on M1, leading to an increasing PM1+M2
with increase

in Qω, as evidenced by the star symbols in Fig. 3.2(d). The dashed line in Fig. 3.2(d)

shows the maximum pressure on a perfect mirror based on P = S(1 + |Γ|2)/c when

S = 1 W/m2 and Γ = 1. From the AFP3 case in Fig. 3.2(d), given by the stars, it

is clear that PM1+M2
, enhanced by the cavity Q, can exceed the maximum pressure

on a perfect mirror (2S/c) by 3 times (with the same power incident on the cavity).

A key point in the results of Fig. 3.2 is that at the first resonance, PM1+M2
is largest

when the reflection coefficient at the left of M1 (|S11|) is a minimum. On the contrary,

the maximum pressure based upon S(1 + |Γ|2)/c = 2S/c occurs when the reflection

coefficient is maximum. The idea that higher reflection produces larger pressure has

led to the use of highly reflecting surfaces achieved with distributed Bragg reflectors

or photonic crystals. Our results indicate, quite differently, that a resonant asymmet-

ric cavity can provide even larger pressure enhancement than the conventional limit.

The asymmetric cavity total pressure in Fig. 3.2(d) provides a basis to understand

the pressure enhancement in the slot cavity array of Fig. 3.1(c), as we show.

To obtain the fields and the corresponding radiation pressure in the nanostruc-

tured slot cavity in Fig. 3.1(c), we use a frequency domain finite element method
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(FEM) to obtain the numerical field solutions [49]. Port boundaries are used in this 2-

D model to extract S11 and placed 5λ0 above and below the structure in Fig. 3.1(d). To

avoid singularities in the numerical simulations, the corners of each slot are rounded

with radius of 1 nm. A numerical convergence study was performed. The maximum

mesh element size in the scattering material is λ0/200, sufficient to ensure the accu-

racy of the force density solutions. The slot depth, D, and width, Σ, are variables

and the period is set to Λ = 400 nm and thickness to T = 200 nm. With a period

of Λ = 400 nm, only the zeroth-order (normal) scattered plane wave propagates. We

fix Σ and vary D to determine the resonant depth from the minimum of |S11|.
The results for the slot resonant D as a function of Σ, labeled by the (red) dia-

monds, are shown on the right axes in Figs. 3.3(a) and (b). A reducing slot width

results in a decreasing slot depth for the first resonance. We apply (3.7) to estimate

Qω for the slot cavity, and the results are shown in Fig. 3.3(a) by the (black) tri-

angles. Note that Qω increases with decreasing Σ, which can be understood by the

cavity reflection coefficient at the top of the slot increasing as Σ is reduced, thereby

increasing the lifetime of the guided-wave resonance in the slot and hence the QL.

The numerical field solutions are used in (3.1) to find the force density, and this is

integrated over the support of the material within the unit cell and divided by Λ to

form the pressure, with the results given by the (black) asterisks for each value of

Σ in Fig. 3.3(b). The general trends in Figs. 3.3(a) and (b) are that both Qω and

pressure decrease with increasing slot width (at resonance). The pressure results for

the slot cavities in Fig. 3.3(b) are consistent with the asymmetric 1D Fabry-Perot

cavity results of Fig. 3.2(d) for AFP3, where the pressure increases with Qω. The

anomalous pressure result for the smallest Σ in Fig. 3.3(b) occurs because of the small

slot size and the reduced interaction between the field and the material.

Figure 3.3(c) shows the pressure as a function of Qω for the slot structures. Unlike

the 1D Fabry-Perot cavities, the gradient force term, 〈fG〉, contributes. We separate

the contribution of 〈fG〉 from the total pressure (black asterisks), and the result is

plotted as the red circles in Fig. 3.3(c). In general, the pressure is proportional to
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(a) (b)

(c) (d)
Fig. 3.3. Simulation results for the nanostructured slot cavity array in
Au, and with reference to Fig. 3.1(d): Λ = 400 nm and T = 200 nm.
(a) Qω (triangles) and resonant slot depth, D (diamonds), as a func-
tion of slot width, Σ. (b) Radiation pressure (asterisks) along with
the resonant D (diamonds) as a function of Σ. In general, smaller Σ
results in higher Qω and larger pressure, consistent with the asym-
metric 1D Fabry-Perot cavity results of Fig. 3.2(d), AFP3. (c) Radia-
tion pressure as a function of Qω, decomposed into total and gradient
(〈fG〉) contributions. The dashed line shows the maximum pressure on
a perfect mirror. The nanostructured slot cavity supports a pressure
enhancement more than a order of magnitude higher than a perfect
mirror. (d) Radiation pressure as a function of Qω for the lower Q
1D cavities, from Fig. 3.2, in comparison with the slot pressures from
(c). The black line and red dashed line are the linear fits to the total
pressure and 〈fG〉, respectively from the first 8 points in (c). The
blue and red lines are the linear fits to PM2 for AFP1 and SFP1,
which are low-Q Fabry-Perot cavities in the examples considered, for
comparison. The nanostructured slot cavity is more efficient in deliv-
ering radiation pressure enhancement on a target surface than the 1D
Fabry-Perot cavity when the cavities have the same Q.
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Qω and the relationship is linear for lower Qω. Higher Qω supports a higher pressure

contribution from 〈fG〉, although the total pressure reduces at the highest Qω. The

dashed line is again the maximum pressure on a perfect mirror, from Fig. 3.2(d).

Compared to the net pressure for the 1D AFP3 in Fig. 3.2(d), the slot cavity can

provide a pressure enhancement more than a order of magnitude higher than a perfect

mirror with a relatively low-Q cavity. The gradient of the total pressure in Fig. 3.3(c),

dP/dQω, describes the efficacy of the cavity in enhancing the pressure (per unit Q or

stored energy). In Fig. 3.3(d), we plot the linear fits passing through the origin for

the total pressure and the pressure contributed by 〈fG〉 as black and red dashed lines,

respectively, using the first 8 points (linear region) in Fig. 3.3(c). Linear fits to the

pressure as a function of Qω for SFP1 and AFP1, which involve similar (low) Qω to

the slot cavity, are plotted for comparison as the red and blue lines, respectively, in

Fig. 3.3(d). The nanostructured slot cavity can provide larger pressure enhancement

on the target surface than that (on M2) for the 1D Fabry-Perot cavities we considered

when the cavities have the same Q. This is mainly due to the contribution of the

gradient force, 〈fG〉. Consequently, for a incident wave with time-averaged intensity

of S, the nanostructured slot cavity can utilize the energy stored in the cavity more

efficiently in creating optomechanical pressure by drawing on both 〈fR〉 and 〈fG〉.

3.4 Conclusion

We have presented the physical basis of the enhanced pressure on a nanostructured

metallic surface as being due to an asymmetric Fabry-Perot resonance. This is evident

from the relationship between the total pressure on an asymmetric 1D cavity to the

slot array, as a function of Q. The enhanced pressure for the nanostructured metal

film results from both terms in (3.1), where the cavity mode resonance influences the

fields in the metal and hence the force density and pressure. Generally, increasing the

cavity Q can produce higher pressure. There are convenient fabrication methods for

such nanocavity arrays in metal, for example, direct nanoimprinting [75]. Resonant
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cavities formed on surfaces and with other materials should also provide enhanced

pressure. With use of optimized, aperiodic structures, more control and higher pres-

sure should be possible [18], such as through use of geometry as variables and with

multiple wavelengths. The explanation for enhancement we have provided allows

design guidelines for applications that will benefit from enhanced and controllable

optical forces with structured material. For example, beads that are used in optical

tweezers could be structured [76]. More generally, we suggest that there are new

opportunities related to the interaction of waves with materials and the generation

of a mechanical response.
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4. ELECTROMAGNETIC PRESSURE WITH BINARY

APERIODIC NANOSTRUCTURES

The electromagnetic force on matter depends on both the geometry and material

properties, and for a contiguous material, the pressure is a useful metric. We present

a statistical method with example results that allows the evaluation of pressure in

relation to a nanostructured material arrangement with unexpected conclusions. We

show that it is possible to obtain a pressure substantially greater than that on a

perfect, planar mirror, and relate this to resonant field features. With some mate-

rial arrangements, the pressure can be negative, and this can again be related to

resonances. Negative pressure can be understood as being due to the total field, a

superposition of the incident and scattered fields, where the structure regulates the

local scattered field and hence the pressure through an integral of the resulting force

density. The statistical analysis provides physical insight into how to regulate both

the pressure magnitude and direction and hence provides a framework for applica-

tions. The fields impacted include biophysics, where information is obtained about

biomolecules from force and torque measurements, cavity optomechanics related to

basic science and sensing, and optical remote control and actuation, where regula-

tion of the magnitude and direction, and the possibility of materials with multiple

functionalities, provides new opportunities.

4.1 Introduction

The radiation pressure on a silver mirror was measured more than one century

ago [77], confirming the mechanical properties of light [54]. The prediction of force

experiments is the requirement for any force theory, and there is a substantial his-

tory related to models [70, 71, 78–82]. Two important experiments were designed in
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this regard [83, 84]. The 1978 Jones and Leslie mirror experiment has yielded more

information to explore the dependence of the radiation pressure on a mirror and the

background material [83] and the 1973 Ashkin and Dziedzic water experiment has

established the initial work studying the optical force from a spatially varying elec-

tromagnetic field with polarizable media [84], which led to the invention of optical

tweezers [56]. The trapping force exerted by strongly focused fields on small parti-

cles has become important in applications such as optical manipulation in biology,

physical chemistry, and soft condensed matter physics [13]. Also, the influence of

the environment on the local force has produced interesting force features [85–89],

suggesting that the fields scattered or controlled by surfaces or material structure

provides new opportunities in the control of particles.

We describe the collective force on a nanostructured material where the scattered

field due to the material modifies the total field and hence the pressure. The force

magnitude we find, in relation to a perfect mirror, and the direction control, present

unexpected opportunities. While the optical force is related to a change in optical

momentum, it is also a function of the field spatial distribution in the material.

Progress in describing the optical force within homogeneous bulk materials [12], small

objects [13] or periodic structures [14] has revealed some important understanding

related to optical manipulation. For example, a structured gold surface can provide

a large enhancement of the optical force [11], relative to a perfect mirror, due to

the enhanced fields in a array of asymmetric cavities and the excitation of surface

waves. This raises the question of the relationship between structured material and

the resulting optical force. We consider this issue in the context of aperiodic structures

that have a large number of degrees of freedom and hence offer more electromagnetic

field control relative to periodic systems when implemented as waveguide [2–4,15–17]

and diffractive [5] elements. Few guidelines exist for the design of aperiodic materials

[24, 25], which rely on optimization-based solutions, but insight into control of the

scattered fields has been provided by a multivariate statistical analysis of binary
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aperiodic structures [18]. We consider here how the large number of degrees of freedom

supported by aperiodic materials contributes to the control of the optical force.

We present results for the electromagnetic pressure on binary aperiodic structures

that show an ability to tune from strong pushing to strong pulling relative to that on

a perfect mirror. A net pulling optical force has been identified previously for small

particles trapped in beams [87,90] or gain media [65,91]. We show that negative pres-

sure can occur in a passive material with plane wave illumination. The resonant field

features within the structured material can have a significant impact on the optical

force, as we describe. These results suggest new opportunities in optomechanics that

draw on the structure-force relationships we identify.

We summarize the optical force density theory used in Sect. 4.2, and the integral

of this force density over the material divided by the lattice dimension results in the

pressure. Section 4.3 describes the specifics of the aperiodic structure investigated,

and Sect. 4.4 the formation of the field correlation matrix and the statistical analysis

employed. Section 4.5 describes our pressure and field covariance eigenvalue results,

establishing a link and a metric between structure and force, including direction

control. The resonance basis for large positive and negative pressure is established

through example field and force density solutions described in Sect. 4.6. A discussion

of issues and applications is presented in Sect. 4.7 and conclusions in Sect. 4.8.

4.2 Optical Pressure Theory

The force expression we utilize here, originally from Einstein and Laub [70], has

been derived by Penfield and Haus [71] and investigated by others [11,12,65,66,92,93],

and is given by

f =
∂P

∂t
× µ0H− ∂µ0M

∂t
× ǫ0E

+ ρE− µ0H× J+ (P · ∇)E+ µ0 (M · ∇)H, (4.1)

with SI units of N/m3, where E is the electric field, H is the magnetic field, P is the

polarization, M is the magnetization, J is the electric current density, ρ is the electric
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charge density, ǫ0 is the permittivity of free space, and µ0 is the permeability of free

space. We assume that in the source-free case, J and ρ are both zero, and also that

no magnetic material response exists, thus the terms including M can be neglected.

We consider a time-harmonic, monochromatic field with time convention exp(−iωt)

within an isotropic material, giving P (r, ω) = ǫ0χE (r, ω)E (r, ω), where χE is the

electric susceptibility. Under this assumption and with the frequency domain implied,

the time average of (4.1) becomes

〈f〉 = (ê× ĥ)
µ0ǫ0ω

2
ℑ{χEE(r)H∗(r)}+ ǫ0

2
ℜ{(χEE(r)ê · ∇)(êE∗(r))} , (4.2)

where ê and ĥ are unit vectors indicating the direction of the electric and magnetic

field phasors E and H at position r, respectively, ℜ{·} is the real part and ℑ{·}
the imaginary part, and peak sinusoidal amplitudes have been assumed. We apply a

frequency domain finite element method (FEM) to obtain the numerical field solutions

[49]. The numerical field solution provides the scattered field, and the total field is

obtained by adding the known incident field. The force densities are found using

(4.2), and the pressure obtained from the normalized integral of the force density.

4.3 Aperiodic Nanostructured Material

Figure 4.1 shows the 2D geometry of the binary aperiodic nanostructured material

we consider. A λ0 = 633 nm plane wave is normally incident from the left in free space

with H in the ẑ direction. The material structure is defined within a wavelength-sized

region (633 nm on a side). This domain is divided into P×P pixels. Each pixel can be

either the scatterer or the background (free space). Fixing the fill factor, f , specifies

the number of scatterers. We do this by truncating the number formed from fP 2 to

an integer value. To avoid singularities in the numerical simulations, the side of each

scatterer is reduced by 1 nm and the corners are rounded with a radius of 1 nm. The

maximum mesh element size in the scattering material is λ0/200, adequate to support

the accuracy of the force density solutions. The top and bottom of the computational

domain are bounded by perfect electric conductor (PEC) surfaces to form a cavity or
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Fig. 4.1. Binary aperiodic nanostructured material simulation geom-
etry: PML, perfectly matched layer; PEC, perfect electric conductor.
A λ0 = 633 nm plane wave with H in the ẑ direction is normally
incident from the left. The binary nanostructured material is divided
into P × P elements and each element is either the scatterer or the
background (free space in our case). To avoid singularities in the nu-
merical simulations, the side length of each scatterer is reduced by
1 nm, and the corners are rounded with a radius of 1 nm. The width
and length of the discretized region is 633 nm.

a waveguide. We apply perfectly matched layers (PMLs) on both the left and right

boundaries. All simulations assume an incident power density of 1 W/m2.

The pressure is calculated from the integral of 〈fx〉 = 〈f · x̂〉, where 〈f〉 is from (4.2)

and the direction of x̂ is shown in Fig. 4.1, over all scatterers in the aperiodic nanos-

tructure and then divided by the exposed surface (633 nm in our 2D simulations).

While the segments of the aperiodic structure are not contiguous, we assume that

another material can provide the structure, making the use of pressure meaningful.

4.4 Statistical Field and Pressure Analysis

We utilize a multivariate statistical method to relate field control (regulation of the

scattered field, as a function of position here) and pressure control (the average force

magnitude and direction) to the attributes of the binary nanostructures. Consider

the transmission matrix, T, defined as

T =
[

Hu

Hiυ

]

, υ ∈ [1, ...,Υ] u ∈ [1, ..., U ], (4.3)
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where Hiυ is the incident (plane wave) magnetic field along points on the constant-

x input line (with an absolute position that is unimportant) and Hu is the total

field along the output line (and we choose a constant-x line that is λ0/8 behind and

to the right of the structure). The Hu samples are therefore in the near-field and

influenced by both propagating and evanescent fields. In the simulations, we choose

Υ = U = 101 and divide the input and the output lines (the 633 nm long input and

output lines between the two PEC surfaces in Fig. 4.1) into uniformly spaced points.

The (U × U) field covariance matrix, C, can be calculated as [94]

C = 〈THT〉 − 〈TH〉〈T〉, (4.4)

where H is Hermitian transpose and 〈·〉 is the average over all samples. A sample

means a particular nanostructured scattering material arrangement, resulting in a

specific T.

The variance of C is defined as [94]

σ2
C =

U
∑

u=1

σ2
u =

U
∑

u=1

Cuu = Tr{C}, (4.5)

where the Cuu are the diagonal elements of C and Tr{·} is the trace. It can be shown

(see, for example, [45] page 264) that

Tr{C} =

U
∑

u=1

λu, (4.6)

where the λu are the eigenvalues of C. Therefore, from (4.5) and (4.6),

σ2
C =

U
∑

u=1

λu, (4.7)

which we term the variance of C and use to appraise field control on the transmission

side.

The reflection matrix is defined by R = [Hr/Hiυ], where Hr is the reflected field

on the input side at λ0/8 from the nanostructure, and the corresponding σ2
C can

be likewise obtained. A large variance indicates that the binary arrangement has a

large impact on the scattered field, thus suggesting more control efficacy or increased

degrees of freedom for field control.
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4.5 Pressure in Relation to Field Covariance

We first investigate the relationship between the nanostructure and both the field

and force control with an example metallic material. Gold (Au) with a dielectric

constant of ǫ = −11.75+ i1.26 at 633 nm [95] in a free space background is assumed.

Figure 4.2(a) shows results for f = 0.2 and Fig. 4.2(b) for f = 0.5. We use (4.7) to

obtain σ2
C by randomly selecting 300 arrangements and then a resampling method

[18] to obtain the mean 〈σ2
C〉 and deviation of σ2

C . Figure 4.2 shows the statistical

results for T (blue dashed-dotted line) and R (blue dotted line), along with the

deviations, as a function of P . The strong scatter associated with Au scatterers

provides relatively larger reflection than transmission, and thus more control on the

incident side, exhibited in the larger σ2
C associated with reflection. Increasing f

increases σ2
C under reflection and reduces the control for transmission. With finer

discretization through an increase in P , the field control becomes weaker, indicated

by a decreasing σ2
C in Figs. 4.2(a) and (b) for both reflection and transmission. We

interpret this as being due to the onset of homogenization.

The corresponding statistical data for total pressure with nanostructured Au is

shown in Fig. 4.2 as the orange solid line, along with the deviations for each P . The

triangles indicate the maximum total pressure found through this procedure in the

positive x̂ direction, resulting in a pushing force. We should note that these results are

not the maximum possible pressures. The asterisks show the minimum (with respect

to the x̂ direction) pressures found in each case, and some arrangements result in a

negative pressure and hence a pulling force on the nanostructure (that can be quite

large).

The maximum radiation pressure on a perfect mirror is given by 2S/c, where S is

the magnitude of the incident Poynting vector and c is the free space velocity, with

the implication that this is the background medium. This result was presented by

Maxwell and is widely used [54]. With the assumed S = 1 W/m2, the pressure on

a perfect mirror is approximately 6.67 × 10−9 N/m2 with normal incidence. As a
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(a)

(b)

Fig. 4.2. The variance for aperiodic nanostructured Au, σ2
C , measured

λ0/8 from the discretized domain, and the optical pressure as a func-
tion of discretization, P , with fill fraction: (a) f = 0.2 and (b) f = 0.5.
Referring to Fig. 4.1, the magnitude of the normally incident power
density is 1 W/m2. The blue dotted line and blue dashed-dotted
line, relate to the left axis and describe σ2

C from the reflection and
transmission matrices, R and T, respectively. The standard devia-
tion bars were calculated from a resampling method. The orange solid
line refers to the right axis and describes the corresponding radiation
pressure on the binary material and the deviations from the analysis.
The orange dashed line indicates the maximum pressure on a perfect
mirror. The triangles and asterisks show the maximum and minimum
radiation pressure, respectively, in the direction of the incident wave
(x̂ direction). The pushing and pulling forces correlate with σ2

C from
the reflection and transmission matrices R and T, respectively.
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reference, this perfect mirror result is plotted as the orange dashed line in Figs. 4.2(a)

and (b), with the understanding that there is no relationship to P . From Fig. 4.2(a)

and for f = 0.2, our simulations yielded a maximum positive pressure that is around

5 times larger than that on a perfect mirror. With f = 0.5 and from Fig. 4.2(b), the

pressure enhancement can be even larger and reaches around an order of magnitude

higher than that on a perfect mirror. Note also that the mean pressure for f = 0.5

is higher than the result for the perfect mirror. Worthy of additional comment is the

unexpected result that the range of the variances of the total pressure (deviation bars

for the orange lines) and the minimum pressure (asterisks) in Figs. 4.2(a) and (b)

indicate that some material arrangements support the total pressures in the negative

x̂ direction, namely, pulling against the direction of the incident wave. Gain [65, 91]

and control over a particle with a special beam profile [87, 90] have been found to

produce negative forces, but our results indicate that a structured material with a

single incident plane wave can have a net negative force. This pulling force should be

important in applications such as optical switching.

We observe from Fig. 4.2 that a large 〈σ2
C〉 for R, the blue dotted line, promotes

control of the pushing force, namely the deviation of the positive pressure, and that

large 〈σ2
C〉 for T, the blue dashed-dotted line, suggests control of the pulling force.

As 〈σ2
C〉 reduces with increasing P in Fig. 4.2(a), the deviation and the maximum

and minimum pressure also tends to reduce. This is the case for both pushing and

pulling, and the relatively high σ2
C forT in this case is indicative of a capacity to enable

pulling. The oscillations in the maximum and minimum pressures in Fig. 4.2(a) relate

to resonances, and we will revisit this issue. While the smallest discretization level

appears as an anomaly to this trend, we attribute this to insufficient statistics for that

case. The relationship between σ2
C and pressure is further reinforced in Fig. 4.2(b),

for f = 0.5. This large fill case results in small transmission and little field control on

that side. The minimum pressures in this case are around zero, showing little control

to produce a pulling force. However, σ2
C for R is high in Fig. 4.2(b), and the pressure

deviations and maxima are large. As with f = 0.2, a decreasing 〈σ2
C〉 corresponds to



59

a reduction in the pressure deviation and the maxima. We conclude that the ability

to control fields on the transmission side promotes a pulling force. With an incident

Hz, plasmon surface waves are excited. Exciting such surface waves on the back of

the aperiodic structure, on the transmission side, can lead to a pulling force. While

σ2
C measures field control and pressure has the influence of the material properties,

with a fixed fill, field control implies force control.

Now we consider aperiodic nanostructured dielectric materials. We choose silicon

(Si) as the scattering material because it is important for integrated photonics and

has been widely used in nano-scale fabrication. The dielectric constant assumed for

Si at a wavelength of 633 nm is 15.07 + i0.15 [96]. Figure 4.3(a) shows the near-field

field variance (σ2
C) and pressure data as a function of P , with f = 0.2, obtained on

a line λ0/8 in front of and behind the region discretized, and Fig. 4.3(b) presents

our results for f = 0.5. The deviations of the total optical pressure show that the

enhancement is overall larger with f = 0.5 than that with f = 0.2, because the

binary nanostructure occupies a larger scattering volume. Similar to the cases for

Au scatterers, both σ2
C and pressure deviation decrease with increasing P due to

homogenization for f = 0.2 in Fig. 4.3(a). We do not observe this trend for f = 0.5

in Fig. 4.3(b), possibly because the large fill fraction has a more stringent (larger)

volume requirement to reach homogenization, and the fact that Si offers prospects

for high transmission and reflection at high fill. For the Si case, the deviation of the

pressures is smaller than those found for Au because of the weaker scatter. However,

the maximum radiation pressure can still reach around 3 times larger than that on

a perfect mirror, shown again as the orange dashed lines in Fig. 4.3. Figures 4.3(a)

and (b) show that Si aperiodic structures can also provide a pulling force. Both fills

offer substantial negative pressures, as indicated by the asterisks. We understand

this by the relatively high transmission compared to the equivalent cases for Au. The

deviation and the maximum values of the pressure are larger for the higher fill case.

Our results show that dielectric materials are also good candidates for optical pressure
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enhancement and optomechanical applications. Both pushing and pulling pressures

can be substantial greater than that on a perfect mirror.

The σ2
C data in Fig. 4.3 for Si again provides insight into the pressure. When

f = 1, σ2
C = 0, so the increasing fill will eventually result in loss of field control

and hence, presumably, reduced pressure enhancement. Resonant features can be

observed in the results for 〈σ2
C〉 as a function of P , as found in earlier work [18].

The cases in Fig. 4.3(a) where the local maximum 〈σ2
C〉 from the transmission matrix

T (for example, the blue dashed-dotted line for P = 7) and the local maximum

〈σ2
C〉 from the reflection matrix R (for example, the blue dotted line with P = 5)

are suggestive of series-resonance (high transmission) and parallel-resonance (high

reflection), respectively. Corresponding to these observations for 〈σ2
C〉, the mean

pressure for P = 5 is larger than for P = 7. Consequently, given the pressure

deviations for these two levels of discretization, the parallel resonance (P = 5) is

likely to result in pushing, but the statistical data for pulling with series resonance

(P = 7) is inconclusive for this fill. The case for P = 5 in Fig. 4.3(b) has large

〈σ2
C〉 for R and a correspondingly large mean pressure, whereas for P = 7, where

〈σ2
C〉 dips, there is a small mean pressure. This again suggests control of the reflected

fields promotes pushing. Consider now P = 11, which has the largest 〈σ2
C〉 for T

and also large 〈σ2
C〉 for R, possibly supporting both series and parallel resonances

and providing the largest pressure deviation and promoting substantial pulling. Our

conclusion is that for both dielectric and metallic scatterers, σ2
C is a useful metric to

investigate pressure.

4.6 The Influence of Field Resonances on Pushing and Pulling

The statistical results from Figs. 4.2 and 4.3 show oscillatory features as P is

varied. These variations are prominent in the 〈σ2
C〉 data in Fig. 4.3, but also clearly

evident in the maxima and minima of the pressures for both the Au and Si structures.

This data suggests field resonances within the structures and, importantly, that these
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(a)

(b)

Fig. 4.3. The variance for aperiodic nanostructured Si, σ2
C , mea-

sured λ0/8 from the discretized domain, and the optical pressure as
a function of discretization, P , with fill fraction: (a) f = 0.2 and
(b) f = 0.5. The magnitude of the normally incident power density
is 1 W/m2. The blue dotted line and blue dashed-dotted line, refer
to the left axis, describe σ2

C from R and T, respectively. The stan-
dard deviation bars were calculated from the statistical analysis. The
orange solid line refers to the right axis and describes the correspond-
ing radiation pressure on the binary material, and the bars show the
standard deviations in the samples. The orange dashed line indicates
the max pressure on a perfect mirror. The triangles and asterisks
show the maximum and minimum radiation pressure, respectively, in
the x̂ direction. Aperiodic dielectric structures can also support both
enhancement and the control of the direction of the optical force.



62

may play a role in achieving large positive or negative pressure. Here, we investigate

the physical resonance effects within the binary materials by observing the field and

corresponding optical force density distribution for specific material instances with

maximum pushing/pulling optical force.

Consider the case for Au in Fig. 4.2(a) for f = 0.2 with the maximum pushing

force, which occurs when P = 6 ({P, P} = {6, 6}, where the triangle indicates a

pressure of about 3 × 10−8 N/m2). Figure 4.4(a) shows the binary nanostructure

arrangement for this case. The magnitude of the electric and magnetic field distribu-

tions with normal incidence is given in Figs. 4.4(b) and (c), respectively. Figure 4.4(d)

shows the time-averaged optical force density, 〈fx〉 = 〈f · x̂〉, from (4.2). The magni-

tude of the electric field and the force density distributions are normalized to 1 V/m

and 1 N/m3, respectively, and presented on a log scale (dB) in order to distinguish the

large contrast in the local values. The relatively large reflected fields can be observed

in both Figs. 4.4(b) and (c), and there is evidence of plasmon surface waves that

have a substantial influence on the force density in Fig. 4.4(d). Notice that signifi-

cant reflection and control over the reflected fields, as measured by σ2
C in Fig. 4.2(a),

promotes a large pushing force. In an equivalent circuit sense, this corresponds to a

parallel resonance, thereby inducing a large reflection.

Next, we consider the case of Au with the same resolution, P = 6, but supporting

the maximum pulling force (the asterisk in Fig. 4.2(a)). The arrangement of Au scat-

terers for this example is shown in Fig. 4.5(a). We plot the magnitude of the electric

and magnetic field distributions in Figs. 4.5(b) and (c), respectively. Figure 4.5(d)

shows the force density 〈fx〉. A larger proportion of negative (in the −x̂ direction,

namely, pulling) force density can be found within each scattering element, and this

results in the cumulative negative pressure. Different from the field distributions in

Fig. 4.4 for the pushing case, the larger fields on the transmission side can be observed

in Figs. 4.5(b) and (c), consistent with a series resonance. Note the surface wave ex-

cited on the right-hand side of the structure that is very evident in the magnetic field
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(a) (b)

(c) (d)

Fig. 4.4. The fields and force density for the arrangement in Fig. 4.2(a)
for Au with the largest pushing force: {P, P} = {6, 6} and f = 0.2.
(a) The purple squares indicate the positions of the scatterers. (b)
The electric field magnitude, normalized to 1 V/m on a log scale (dB).
(c) The magnetic field distribution. (d) The time-averaged optical
force density, 〈fx〉 = 〈f · x̂〉, normalized to 1 N/m3 on a log scale
(dB). The parallel-resonant condition in this example supports the
enhanced pushing pressure.
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(a) (b)

(c) (d)

Fig. 4.5. The fields and force density for the arrangement in Fig. 4.2(a)
for Au with the largest pulling force: {P, P} = {6, 6} and f = 0.2. (a)
The purple squares indicate the positions of the scatterers. (b) The
electric field magnitude, normalized to 1 V/m on a log scale (dB). (c)
The magnetic field distribution. (d) The time-averaged optical force
density, 〈fx〉, normalized to 1 N/m3 on a log scale (dB). A pulling
force on the scattering material is induced when the series-resonant
condition occurs.

plot of Fig. 4.5(c). Excitation of a surface wave on the back can lead to a pulling

force.

The fields in Fig. 4.4 for a pushing case and Fig. 4.5 for a pulling situation are

consistent with the statistical results we found for σ2
C in Fig 4.2(a). A large σ2

C for

reflection, as for f = 0.2 in Fig. 4.2(a), implies a larger maximum pushing force.

Conversely, the large σ2
C for transmission for f = 0.2 in Fig. 4.2(a) results in a larger

pulling force. This reveals that the fields excited by the arrangement in front of or

behind the binary nanostructure relates to whether the whole geometry is pushed or

pulled and to the pressure enhancement.
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We observe that the arrangement of binary elements within the nanostructure

plays an important role on determining the direction and enhancement of the optical

force. In Fig. 4.4, when the scattering elements pack together to form a strip, the

arrangement is effectively a slab of a particular length. The resulting surfaces can

produce plasmon mode resonances. Those transverse resonances are most pronounced

in Fig. 4.4(c), adjacent to the PEC walls at the top and bottom, and the surface

wavelength in relation to the element size can be understood with use of symmetry

from the boundary (the PEC is an even boundary for Hz). In the metallic case,

certain arrangements can lead to very large surface fields, and hence to substantial

enhancement in the pressure.

Figures 4.6 and 4.7 show the fields and force densities for maximum pushing and

pulling situations with Si scatterers. Figure 4.6 is for f = 0.5 and P = 5 and the

largest pushing force, where there is a σ2
C peak for reflection in Fig. 4.3(b). Note

again the substantial amplitude of the reflected fields. However, while the metal

cases supported surface waves, here the fields are confined within the dielectric. The

element size in Fig. 4.6(a) is more than λ0/(2
√
ǫ) and hence can support a resonant

mode. Local resonances are evident in the magnetic field magnitude in Fig. 4.6(c).

Figure 4.7 is for f = 0.5 and P = 11, the largest pulling force case in Fig. 4.3(b). Note

the large field resonances that span two or more adjacent scatterers, and the large

transmitted field. As with the Au scatterer case, there is a consistent picture of large

σ2
C for the reflected field implying a large pushing force and large σ2

C for transmission

indicating opportunities for pulling.

4.7 Discussion and Applications

Our approach of investigating the statistical fields and pressures in binary ape-

riodic metal and dielectric structures sought to uncover the relationship between

structure and force for basic understanding and to guide a design process in appli-

cations. We used σ2
C to measure field control and related this to pressure control.
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(a) (b)

(c) (d)

Fig. 4.6. (a) Referring to Fig. 4.3(b) for Si, the aperiodic binary
nanostructure with {P, P} = {5, 5}, f = 0.5 that produced the max-
imum pushing force from the samples studied. The purple squares
indicate the positions of the scatterers. (b) The electric field distri-
bution, normalized to 1 V/m on a log scale (dB). (c) The magnetic
field distribution. (d) The time-averaged optical force density 〈fx〉,
normalized to 1 N/m3 on a log scale (dB). The Si pillars that form
cavities in this example support the pushing pressure enhancement.
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(a) (b)

(c) (d)

Fig. 4.7. (a) Referring to Fig. 4.3(b) for Si, the aperiodic binary
nanostructure with {P, P} = {11, 11}, f = 0.5 giving the maximum
pulling force in the samples over the scatterers. The purple squares
indicate the positions of the scatterers; (b) The electric field distri-
bution, normalized to 1 V/m on a log scale (dB). (c) The magnetic
field distribution. (d) The time-averaged optical force density 〈fx〉,
normalized to 1 N/m3 on a log scale (dB). The pulling force on the
scattering materials is induced when the fields percolate through the
Si scatterers and allow excitation on the back.



68

Because of the 2D analysis, it was clear that magnetic field should be used in this

statistical field analysis. However, we should note that the electric field information

that is relevant in the force density of (4.2) is then indirectly measured.

In measuring the mechanical response in terms of pressure, we have assumed

two aspects related to the structure. First, in integrating the force density to form

pressure, there needs to be a fixed relationship between segments of the aperiodic

structure. Clearly, from Figs. 4.4(a), 4.5(a), 4.6(a), and 4.7(a), there are disparate

regions of the scatterers. Also, we have reduced the size of the scatterers to be slightly

less than the cell for numerical convenience, so even adjacently populated cells are

not strictly connected. We have therefore assumed a rigid connection between the

elements, as in a scaffold. This could be achieved with a background material, or in a

3D system using, for example, Si elements on SiO2, as in a silicon-on-insulator (SOI)

waveguide where Si posts are formed as the scattering elements [17]. We have assumed

bulk material properties, so the small separation between cells can be neglected in

a practical sense. Second, we have formed the average force expressed as a pressure

over the waveguide (periodic) geometry of Fig. 4.1. This is meaningful for a physical

structure composed of many periods, so that the influence of the truncation can be

ignored.

The statistical pressure study we presented provides a way to explore the parame-

ter space for a binary structure class with a large number of variables. Consequently,

one can determine possible pressure enhancement opportunities and also obtain a

guide for the design process with constraints. For example, we have learned that

with a given fill fraction, Au provides a larger pushing force enhancement than Si.

Also, a lower fill fraction promotes pulling for Au, but for Si, the high fill facilitated

pulling.

The use of σ2
C for the reflected or transmitted fields provides a relevant measure.

However, this may not be available in a design situation. Our formation of a link

between fields and field correlations and the force density and pressure is intended

to provide fundamental insight. This could be used in a discrete optimization design
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approach [5] to reduce the computational burden. For instance, this might guide the

material choice, discretization level, and spatial support. Beyond binary materials,

mixture theory provides a way to tune the dielectric constants, and the boundaries

could be adjusted, both as part of a continuous optimization process [4, 16]. The

binary picture is then a coarse discretization in both space and material.

The fact that we found a pushing pressure greater than that on a perfect mirror

warrants comment. The mirror radiation pressure has been presented as P = 2~kI,

with each photon carrying a momentum ~k and I being the optical intensity measured

in photons/(m2 · s), given P in N/m2, and the factor of two is from the assumption

of perfect reflection [64]. This is entirely consistent in the appropriate limit with the

classical picture from Maxwell [54], where P = S(1+|Γ|2)/c, with Γ the field reflection

coefficient. Clearly, increasing I or the incident Poynting vector by increasing the

quality factor in a cavity will increase the pressure on the mirrors. However, |Γ| = 1

leads to a maximum value of P = 2S/c. Our results show that for both Au (Fig. 4.2)

and Si (Fig. 4.3) the largest pressures found were more than three times 2S/c. This

occurs because of local resonant modes within the material, allowing the net pressure

to substantially exceed 2S/c. The arrangement of Au scatterers within the PEC-

bounded waveguide of Fig. 4.1 can be understood as an asymmetric cavity that can

provide pressure enhancement, as in the periodic slot cavity array on a gold surface

[11] but with more degrees of freedom in the geometry. This observation should be of

substantial importance in applications that benefit from an increase in the relatively

weak optical force. While a higher-order mode is clearly excited scattered fields, mode

control could be another design dimension that would in principle allow regulation of

the scattered waveguide modes (and a smaller waveguide would simply prevent the

higher-order modes from propagating).

The fact that an incident plane wave can produce a pulling force may be unex-

pected, given earlier work where a pulling force on a bead was achieved with structure

in the incident field [90]. As we have explained in relation to Figs. 4.5 and 4.7, pulling

occurred with large transmission through the structure. This was facilitated by Au
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with small fill or use of Si. Establishing fields on the back of the structure appears

to facilitate pulling. We suggested this was established along the lines of a series

resonance, in the equivalent circuit sense. However, more generally, we understand

this effect as one of modifying the scattered field in a way that when superimposed

with the incident field, the total field produces a force density such that pulling oc-

curs. We should also note that this pulling force can be substantially larger than

2S/c, based on the results we presented. A negative pressure should be important

in remote control applications because a surface could be both pushed and pulled.

While we have not established that this is possible in a given material, we anticipate

that this could be achieved by using two different wavelengths for the incident light

and designing the structure accordingly to support spectrally controlled motion.

We have associated pushing with parallel resonance (large field variance for reflec-

tion) and pulling with series resonance (small field variance for reflection). The ear-

lier presentation of enhanced pressure based on resonance of a metal-insulator-metal

waveguide mode [51] found maximum positive pressure at resonance [11], which in

that case corresponded to a minimum in the far-field reflection. That situation can

be viewed as a series resonance, but the transmission is small because of the thick Au,

so the fields can be accumulated in front of the Au surface. Use of thinner Au and

multiple layers with slots allows a regime approaching that which we considered here,

and where there could be substantial fields and hence surface waves on the back.

The high transmission when there are effectively cascaded elements, as in Fig. 4.5

for Au, implies that optical percolation has occurred. A large total field therefore

accumulates on the right side of the binary material system, potentially resulting

in a pulling optical force (opposite to the direction of the incident light). There is

therefore in principle a link between pressure and percolation theory [97, 98].

Various applications may benefit from the study we have presented. Biomolecules

have been attached to beads to impart a force using optical tweezers, and this provides

useful biophysical information [76]. By structuring the bead, a larger force could be

imparted, and this would mean a reduction in the required laser power. It may also
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be useful to have a large, structured material that provides a pushing or a pulling

force in such experiments. Light sails have been used with solar propulsion. However,

with structured material, a laser of the appropriate wavelength could be used. It may

also be useful to use incoherent solar radiation for propulsion with aperiodic struc-

tured material, but the tradeoff between wavelength diversity and the exploitation

of resonance effects to enhance the force needs to be investigated. The propulsion

force (magnitude and direction) could in principle be regulated, allowing control over

the trajectory of the vehicle. The deflection of an optical beam is important in dis-

plays and communication. With both pushing and pulling, a more versatile control

element would be possible. It should also be expected that the principle of struc-

tured material for the control of optical forces will translate to integrated photonics.

All-optical communication, rather than electronic control of photonic networks, has

the promise of a substantial reduction in energy consumption [99, 100]. The use of

dielectric nanostructured materials should benefit optical communication in Si-based

technology. In this approach, the force imparted due to light would lead to switching,

and pushing/pulling manipulation could be utilized. Our results motivate the further

development of fabrication technology for aperiodic structures in optomechanical ap-

plications. Earlier work has presented ways to fabricate aperiodic waveguides [4], and

an on-chip platform for controlling light-matter interactions in turbid media [101].

For example, direct nanoimprinting into metal can be used to realize nanophotonic

elements [75], and that method could be used to fabricate surface-based aperiodic

elements, possibly in a planarized layered arrangement.

4.8 Conclusion

We have shown that aperiodic binary nanostructures can provide a substantial

enhancement in the optical pressure over that with a planar mirror, and provided

insight into the basis of the effect. This enhancement is due to local resonances in the

nanostructured material, as revealed by the statistical treatment and investigation of
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the fields for instances of large positive and negative pressures. Perhaps unexpected

is that the force imparted on a structured material by an incident plane wave can be

both large and negative, and this is understood based on the scattered field due to the

structured material. Previously, pulling has been presented on a small particle with a

structured incident beam, and on material having optical gain. With metallic material

and excitation of the surface plasmon, large pushing and pulling forces are possible.

However, only slightly less than for Au in the statistical results we presented were the

positive and negative pressures for Si. This is promising because of the application

potential in Si photonics and because all-dielectric structured material could be more

desirable in some applications. For instance, when controlling a high power laser,

a large dielectric constant and low loss, with sub-bandgap light, might be desirable.

Beyond physical insight into the relationship between structured material and optical

forces, our results provide a constraint and a design framework.
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5. CONCLUSION

In Chap. 2, we presented a multivariate statistical analysis of binary aperiodic scat-

tering elements that provides a physical understanding of the relationship between

structure and field control, from the near-field through the far-field. The eigen-

decomposition of the field covariance matrix gives us a measurable number to com-

pare the variances of fields (σ2
C) that nanostructures can support in different cases.

This allows evaluation of the degrees of freedom available for controlling the near-field

through to the far-field response that can be incorporated into a design process. In

addition, the field statistics also reveal dependency with the possible field control.

The weakly and strongly scattering aperiodic element fields were found to be well

described by circular Bessel statistics, and intermediate scattering strength resulted

in Gaussian fields. With the geometry and polarization considered, the regime where

zero-mean circular Gaussian field statistics hold appears to be the domain where

there is more field control (and more independent phasors), and presumably where

this class of aperiodic elements is optimal. The results we have presented in Chap. 2

provide design guidelines to optimize different parameters within bounded ranges, of

benefit in applications.

Due to the advance of nanotechnology, nanostructured cavity extends the applica-

tions of radiation pressure enhancement from the evanescent fields and the gradient

force. Plasmonic nanocavity arrays can be built using nanoimpriting [75]. This

work motivates the utilization of nanostructured slot arrays for enhancing radiation

pressure [11]. While other research has been focused on the interaction of a nanopar-

ticle with the environment in a cavity or waveguide based on the concept of optical

tweezer [56], the unintuitive radiation pressure enhancement on a structured sur-

face with a value more than a order higher than a planar surface becomes possible.

In Chap. 3, we presented the physical basis of the enhanced radiation pressure on a
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nanostructured metallic surface as being due to an asymmetric Fabry-Perot resonance.

By the use of asymmetric cavity, radiation pressure enhancement on both mirrors or

on the target surface was attributed to the increase of Q or the stored energy within

a cavity. In addition, the optical force in the nanostructured slot cavity involving the

gradient force can be substantially increased resulting in a much stronger enhance-

ment per unit energy than the conventional Fabry-Perot cavity. This will allow the

relatively weak optical force to be significant and effective in control and propulsion

applications.

In Chap. 4, we showed that aperiodic binary nanostructures can provide large

field control, resulting in great enhancement in optical manipulation. A pulling op-

tical force was found. This was previously found for small objects or slabs with the

use of metamaterial. This pulling pressure becomes possible within aperiodic nanos-

tructured slabs when the passive scattering material is metallic (Au) or dielectric

(Si). The statistical results show that the resonant features from the studies of the

field variance can contribute to a larger enhancement in optical force with the pa-

rameter space considered. The field and force density distribution reveal the physical

mechanism of optical force manipulation as being due to the positions of the excited

modes. When a metallic material is used, the surface plasmon can be excited to

generate more fields accumulated assisting the enhancement of the optical force. In

addition, with use of dielectric scattering material, pressure can also be controlled

on both the enhancement and direction with aperiodic nanostructures. Along with

motivating a fabrication technology for aperiodic nanostructures [101], our work can

greatly facilitate the design process when the optimization is applied.

Based on the understanding and experiences presented in this thesis, some future

directions are motivated, as follows.

1. Optical force with localized fields: Anderson localization occurs when the

scattering is strong and a reduction in the number of contributing phasors. The

field density function has been found to be a zero-mean circular Bessel distribu-

tion [8, 9]. While the scattering information within the aperiodic material can
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be described by the field statistics, the possible field and optical force control

with localized fields with aperiodic materials could be explored to investigate

new ways and unintuitive functions in optical manipulation.

2. Limitation of the pressure enhancement on an asymmetric cavity:

In Chap. 3, we have presented the origin of the enhanced pressure as being

due to an asymmetric cavity resonance. For a 2D nanostructured slot cavity

array on a gold film, the enhanced pressure can reach more than an order of

magnitude larger than that on a perfect mirror. While we have shown that this

enhancement exists in 1D and 2D asymmetric cavities, the upper limit of the

enhancement from this mechanism remains unexplored. With increasing cavity

Q, a 1D Fabry-Perot cavity is expected to behave more like a symmetric cavity

when both mirrors are highly reflective. This may present a well-defined limit

in the 1D case.

3. Improved optical sail: Interstellar travel has been proposed by the use of an

ultralight spacecraft with a light sail that can be propelled by a high-powered

laser and accelerated to 0.2c [102]. However, the requirement of the design is

challenging. Based on the physical understanding of the enhanced optical force

presented in Chap. 2 and with optimized design using aperiodic structures,

the criteria for the light sail design could be eased by more than a order of

magnitude in size of the sail or in acceleration time.

4. All-optical switching: An on-chip platform for controlling light-matter inter-

actions has been demonstrated with 2D disordered waveguide [101]. Effective

switching in an all-optical communication network could be possible by the use

of the dielectric (Si) nanostructured materials. In this approach, light would

perform the switching by using the pushing and pulling optical manipulation

described in Chap. 4. This design could be wavelength-based and used in a new

free-space or waveguide-based all-optical switching and routing technology.
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A. APPENDIX: ANALYTICAL FIELD SOLUTIONS FOR

1D MULTILAYER STRUCTURES

The field solutions in the Fabry-Perot cavities in Figs. 3.1(a) and (b) can be solved

analytically. Each cavity is a 1D multilayer structure that can be treated using an

established method [103]. A convenient way to do this is to write the impedance

transformation between boundaries m and m+ 1 as

Zm = ηm
Zm+1 − iηm tan kmlm
ηm − iZm+1 tan kmlm

, with m = 4, 3, 2, 1, (A.1)

where ηm, km, and lm are the characteristic impedance, phase constant, and thickness,

respectively, of the mth region, initialized by Z4 = η0, the free space wave impedance

on the right side of M2 in Fig. 3.1(a). The electric field reflection coefficient on

the left boundary in Fig. 3.1(a) is S11 = (Z1 − η0)/(Z1 + η0), where we have used

scattering parameter notation. The total electric and magnetic fields at Boundary 1

are thus E1 = (1+S11)E0 and H1 = (1−S11)E0/η0, where E0 is the incident electric

field phasor. Then, the electric and magnetic fields everywhere in this 1D multilayer

structure can be calculated from




Em+1

Hm+1



 =





cos kmlm iηm sin kmlm

iη−1
m sin kmlm cos kmlm









Em

Hm



 , with m = 4, 3, 2, 1,(A.2)

initialized by E1, H1. The field solutions allow the stored energy W , the cavity Q,

the force densities in the mirrors and hence the pressure to be obtained. The fields

in the asymmetric Fabry-Perot cavity shown in Fig. 3.1(b) can be likewise found.
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B. APPENDIX: COMPARISON BETWEEN MAXWELL’S

MOMENTUM PICTURE AND FORCE DENSITY

DESCRIPTION

In Chap. 3, we calculated the pressure from the utilization of force density described

in (3.1). Therefore, the interaction between fields and materials can be captured. On

the other hand, many other works use the momentum exchange picture proposed by

Maxwell [54] and calculate pressure by the intensity in the cavity under high finesse

cavity approximation. Here, we want to compare the pressures based on these two

approaches. We choose AFP2 and AFP3 (the nomenclature means the asymmetric

cavity in Fig. 3.1(b) and the parameters are given in Table 3.1) which provide stronger

pressure enhancement and higher Q in the Fabry-Perot cavity examples in Chap. 3.

The results of AFP2 and AFP3 are shown in Fig. B.1 (a) and (b), respectively. In

Fig. B.1 (a), the red square signs are from Fig. 3.2 (b) which are calculated from the

integral of force density within the scattering material in M2 using (3.1). The black

square signs are estimated from Maxwell’s picture where the radiation pressure is

(1+ |Γ|2)Sm2/v [54], when there is no transmission through the cavity, where Γ is the

reflection coefficient on M2, Sm2 is the intensity illuminated into M2, v is the speed of

light, equal to c in free space. In Fig. B.1 (b), the blue stars are again calculated from

(3.1) and the black stars from Maxwell’s picture. We can observe the slight difference

between the pressure calculated from two approaches due to the influence within the

scattering materials, but generally, Maxwell’s picture provides a good estimate on the

pressure for the Fabry-Perot cavity examples.
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(a) (b)

Fig. B.1. (a) Radiation pressure PM2
as a function of stored energyW0

for asymmetric Fabry-Perot cavity AFP2. The red square signs are
from Fig. 3.2 (b) which are calculated from the integral of force density
within scattering material using Einstein-Laub description. The black
square signs are estimated from Maxwell’s momentum picture where
the radiation pressure is (1+|Γ|2)Sm2/c, when there is no transmission
through the cavity, where Γ is the reflection coefficient on M2, Sm2

is the intensity illuminated on M2, c is the speed of light. (b) PM2

from Einstein-Laub force density description (blue stars) and from
Maxwell’s momentum picture (black stars) for AFP3.


