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3D point cloud processing has been a critical task due to the increasing demand of a variety 

of applications such as urban planning and management, as-built mapping of industrial sites, 

infrastructure monitoring, and road safety inspection. Point clouds are mainly acquired from two 

sources, laser scanning and optical imaging systems. However, the original point clouds usually 

do not provide explicit semantic information, and the collected data needs to undergo a sequence 

of processing steps to derive and extract the required information. Moreover, according to 

application requirements, the outcomes from the point cloud processing could be different. This 

dissertation presents two tiers of data processing. The first tier proposes an adaptive data 

processing framework to deal with multi-source and multi-platform point clouds. The second tier 

introduces two point clouds processing strategies targeting applications mainly from urban 

environments and transportation corridors.   

For the first tier of data processing, the internal characteristics (e.g., noise level and local 

point density) of data should be considered first since point clouds might come from a variety of 

sources/platforms. The acquired point clouds may have a large number of points. Data processing 

(e.g., segmentation) of such large datasets is time-consuming. Hence, to attain high computational 

efficiency, this dissertation presents a down-sampling approach while considering the internal 

characteristics of data and maintaining the nature of the local surface. Moreover, point cloud 

segmentation is one of the essential steps in the initial data processing chain to derive the semantic 



xix 
 

information and model point clouds. Therefore, a multi-class simultaneous segmentation 

procedure is proposed to partition point cloud into planar, linear/cylindrical, and rough features. 

Since segmentation outcomes could suffer from some artifacts, a series of quality control 

procedures are introduced to evaluate and improve the quality of the results. 

For the second tier of data processing, this dissertation focuses on two applications for high 

human activity areas, urban environments and transportation corridors. For urban environments, a 

new framework is introduced to generate digital building models with accurate right-angle, multi-

orientation, and curved boundary from building hypotheses which are derived from the proposed 

segmentation approach. For transportation corridors, this dissertation presents an approach to 

derive accurate lane width estimates using point clouds acquired from a calibrated mobile mapping 

system. In summary, this dissertation provides two tiers of data processing. The first tier of data 

processing, adaptive down-sampling and segmentation, can be utilized for all kinds of point 

clouds. The second tier of data processing aims at digital building model generation and lane width 

estimation applications. 
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1. INTRODUCTION 

Three-dimensional (3D) spatial data processing has become a critical task for a continually 

increasing variety of applications, such as urban planning and management, as-built mapping of 

industrial sites, change detection, autonomous driving, and road safety inspection. Data collection 

and processing indeed are the most time-consuming and prominent steps in all the above 

applications and subsequent processes. In the early stages of development, 3D spatial data were 

collected through on-site measurement and investigation or were generated manually using 

stereoscopic plotting instruments. Due to new technological advances, the 3D world can be quickly 

reconstructed through two primary sources, laser scanning and optical imaging systems, which are 

capable of rapidly acquiring and deriving dense 3D point clouds.  Laser scanners directly acquire 

high-precision point clouds along object surfaces in an efficient manner. Optical imaging systems, 

on the other hand, provide spectral information, high spatial resolution, and dense point clouds 

from the captured imagery through photogrammetric space intersection. More specifically, point 

clouds are derived from overlapping images after conjugate points in such imagery are identified, 

which are established through modern dense image matching strategies.   

To allow for the derivation of semantic information, image and laser-based point clouds 

must undergo a sequence of data processing steps to meet the demands of Digital Building Model 

(DBM) generation, urban planning [1], as-built mapping of industrial sites, cultural heritage 

documentation [2], and road inventory.  

A variety of techniques (e.g., down-sampling, segmentation, DBM generation, and feature 

extraction) have been introduced over time for point cloud processing. Down-sampling is 

important because the derived point clouds from laser scanners and image-based dense-matching 

techniques usually include a large number of points. However, data processing (e.g., segmentation 
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and 3D modeling) of such huge datasets is time-consuming and may not be necessary. In order to 

attain high computational efficiency while maintaining the characteristics of the local surface (i.e., 

the planar, linear/cylindrical, and rough characteristics), an appropriate down-sampling is 

necessary. Point cloud segmentation based on pre-defined criteria is one of the initial steps in the 

data processing chain. Furthermore, since point clouds come from a variety of resources (e.g., 

Airborne Laser Scanners – ALS, Stationary Terrestrial Laser Scanners – STLS, Mobile Terrestrial 

Laser Scanners – MTLS, and Digital Image Matching – DIM data), the internal characteristics of 

the data are different and should be considered in the segmentation process to avoid serious 

artifacts in the segmentation outcomes [3]. A solid segmentation technique should be able to 

generate different kinds of objects (e.g., planar, pole-like, and rough) from a given point cloud to 

ensure the validity and reliability of the derived 3D models. Due to the complexity of the real 

world, a comprehensive segmentation technique may not exist and the segmentation outcomes 

could have some artifacts. In this situation, a quality control procedure of the segmentation 

outcome is an essential step to improving and measuring the quality of the results.  

Since application environments are diverse, the nature of the desired outputs from point 

clouds also can differ.  For urban scenery, buildings are among the most prominent features. 

National Human Activity Pattern Survey (NHAPS) indicated that Americans spend 86.9% of their 

time indoors (e.g., residences, offices, restaurants, and other indoor locations), plus another 5.5% 

inside a vehicle [4].  In addition, Organisation Europeenne d'Etudes Photgrammetriques 

Experimentales (OEEPE) conducted a survey on 3D city models to investigate the feasibility of 

using 3D models [5]. Their results showed the most important objects of interest according to the 

users were buildings (95%), traffic networks (76%), and vegetation (71%).  
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Building model reconstruction is critical for describing the 3D world in urban 

environments. Moreover, it is useful to model buildings in urban areas because rapid urbanization 

can cause social and environmental problems in city planning and development. Access to accurate 

DBMs could assist the urban planning process and reduce the cost to city management. A variety 

of building reconstruction techniques have been proposed in the literature. However, the majority 

of these techniques have certain limitations/assumptions to their building models (i.e., only allow 

for right-angle building models or building models bounded by contiguous straight lines) [6]–[8]. 

In order to reconstruct more realistic building models from point clouds, not only should the above 

assumptions be considered but more of the elements of buildings as well, such as the curved 

boundaries. Moreover, the topology between connected building models should be considered. 

For transportation corridors, road digital maps including road characteristics (e.g., lane 

marking, lane width, slope, curvature, clothoid, shoulder width, and shoulder barriers) are useful 

for driver assistance systems, road safety inspection, traffic accident reduction, and infrastructure 

monitoring. Road characteristics are more critical in work zones since the lanes in such areas 

undergo frequent alterations over the lifetime of a project, thus increasing the risk of crashes [9]. 

The Federal Highway Administration (FHWA) reported that there were an estimated 96,626 

crashes in work zones in 2015, 642 of which involved at least one fatality [10]. Efficient work 

zone monitoring and inspection is one of the critical tasks in decreasing traffic accidents. For 

example, lane width is an essential aspect of road safety inspection in work zones, and traffic 

congestion further increases the probability of severe accidents. In the past, collecting geospatial 

data for building digital road maps was an expensive, time-consuming, and labor-intensive task 

and exposed the field crew collecting data to dangerous road traffic. When a lane is narrow, it also 

results in reduced roadway capacity. Using Terrestrial Mobile Mapping Systems (TMMS) 
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equipped with Light Detection and Ranging (LiDAR), geo-referenced point clouds can be 

collected rapidly in work zone areas without affecting traffic. Then, an accurate lane width can be 

derived from the acquired point cloud for risk assessment.  

This thesis introduces two tiers of point cloud processing. The first tier proposes an 

adaptive data processing framework (i.e., adaptive down-sampling and multi-class simultaneous 

segmentation and quality control) to deal with multi-source and multi-platform point clouds. Due 

to the increasing demand for a variety of applications, point cloud processing has become more 

critical to meet their requirements. The second tier introduces two point cloud processing strategies 

targeting applications related to high human activity areas, namely, urban environments and 

transportation corridors. In the remaining sections of this chapter, the problem statement, research 

objectives, and structure of the thesis are discussed. 

1.1 Problem Statement 

Although several researchers have studied and developed various point cloud processing 

techniques, challenges remain that need to be addressed in order to accomplish more accurate, 

robust, and reliable outcomes. Furthermore, identifying problems and creating new applications 

should continue using 3D datasets. Some of the critical problems in point cloud down-sampling, 

segmentation, digital building model generation, and lane width estimation are summarized below.  

1.1.1 Challenges in Point Cloud Down-sampling 

The state-of-the-art mapping technologies can rapidly provide dense point clouds. 

However, processing (e.g., registration, segmentation, and reconstruction) such large datasets 

continues to be time-consuming and unnecessary. Some of the down-sampling techniques do not 

consider point density, point distribution along physical surfaces, and point cloud noise. Such 
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techniques may down-sample point clouds based on the distance to the laser scanner (range-based) 

or the distance between two points (distance-based). Image-matching-based point clouds cannot 

be down-sampled using the range-based method. Distance-based down-sampling can cause 

problems in further processing activities (e.g., segmentation). One should expect that the down-

sampling for flat ground should behave differently from the down-sampling of a utility pole with 

power lines since the point cloud for latter includes more information for feature modeling. 

Therefore, a new adaptive down-sampling approach is needed to thin point clouds while 

considering the nature of the local surface (i.e., planar, linear/cylindrical, and rough features) and 

variations in local characteristics (e.g., Local Point Density – LPD and noise level). Moreover, the 

approach should be suitable for both laser scanning and image-based point clouds.     

1.1.2 Challenges in Segmentation Technique 

Point cloud segmentation, which is one of the primary tasks in point cloud processing, 

extracts and partitions objects according to the spatial proximity and similarity of the local 

attributes. Since point clouds can come from a variety sources/platform (e.g., ALS, STLS, MTLS, 

and image-matching strategies), an effective segmentation technique should consider the internal 

characteristics of point clouds. Moreover, the performance of a segmentation technique is sensitive 

to the noise level within the point cloud in question [11]. In order to overcome these problems, an 

adaptive segmentation procedure, which considers the internal characteristics of the data (i.e., LPD 

and noise level) as well as the quality of the seed point/region, is needed to derive better 

segmentation outcomes. The outcome of a segmentation process usually suffers from some 

artifacts, such as over-segmentation, under-segmentation [12], and misclassification. Most of the 

segmentation techniques do not include a Quality Control (QC) procedure to evaluate and improve 



6 
 

the segmentation results. A succession of QC procedures is also needed to identify the potential 

problems and to deal with various kinds of artifacts.   

1.1.3 Challenges in Digital Building Model Generation  

For urban environments, building model generation is the driving force in cyber/smart city 

efforts. The strategies to reconstruct a DBM from point clouds can be classified into model-driven 

and data-driven. The model-driven approach requires a model library first, and the building models 

then are combinations of those existing models. This approach is preferred when the area in 

question has many buildings with similar roof types; however, it can be challenging for complex 

buildings since it is difficult to include every building model in the library. The data-driven 

approach can reconstruct any kind of building model, but its performance may be sensitive to the 

noise level within a given point cloud. Moreover, in order to derive reasonable building models, 

most of the research may utilize some constraints/assumption to regularize the building models. 

For example, building boundaries may consist of straight lines, right angles, or parallel lines. In 

this case, however, some of the buildings, such as buildings with curved boundaries or multi-

orientation buildings, cannot be described. Furthermore, some techniques do not consider the 

topology relationship between connected building sub-blocks. Therefore, an innovative DBM 

reconstruction technique is needed to consider the following items. First, a building model 

generation strategy should consider both straight-line and curved boundaries. Second, most of the 

buildings have right-angle corners so the right-angle constraint should be maintained while being 

capable of dealing with multi-orientation buildings. Finally, the topology between connected 

building sub-blocks should be considered. 
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1.1.4 Challenges in Lane Width Estimation  

For transportation corridors, improving road safety is a critical task for decreasing 

accidents. In road safety inspection, lane width evaluation is one of the critical inspection items. 

In the past, collecting geospatial data for road safety inspection was an expensive, time-consuming, 

and labor-intensive task. Using TMMS equipped with LiDAR units and cameras, geo-referenced 

point clouds and images can be collected rapidly and remotely in work zone areas without affecting 

traffic. The imagery can provide information in color to ease the detection of features of interest 

along a road surface; but the difficulty of feature extraction from imagery greatly depends on 

illumination conditions, camera exposure, obstacles, and shadows. Moreover, cameras cannot 

provide sufficient information in all circumstances since they are pointed in a fixed direction and 

the overlap area between successive images could be limited by the occlusions arising from traffic 

congestion in work zones. LiDAR units can scan forward and backward, however, thus mitigating 

the occlusion problem and also can be operated day and night. Hence, this thesis only focuses on 

feature identification and extraction from LiDAR point clouds.  

The research to date related to road feature identification focused on road extraction, curb 

identification, and lane marking extraction and identification, while only a few papers discussed 

lane width estimation. Holgado-Barco et al. [13] discussed lane width estimation, which requires 

intensity as well as raw measurements (i.e., timestamp and scan angle information) and is only 

suitable for a 2D laser scanner. Therefore, a new approach which only requires a 3D point cloud 

along with the intensity information is needed. 
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1.2 Research Objectives 

The main objectives of this thesis can be summarized as follows: 

• General Research Objectives 

a. Introduce an adaptive down-sampling strategy for managing large datasets 

obtained/derived from laser scanning and optical camera systems while considering the 

nature of the local surface (i.e., planar, linear/cylindrical, and rough features), variations in 

local characteristics (i.e., LPD), and the noise level of the whole dataset. 

b. Propose a multi-class simultaneous adaptive segmentation approach to simultaneously 

derive planar and varying-radii pole-like segments and then group the remaining points as 

rough segments. This approach should be suitable for multi-platform/multi-source point 

cloud data. 

c. Introduce a succession of QC measures to deal with misclassified points in the proposed 

segmentation approach. 

d. Consider different application environments of point clouds by addressing the needs of the 

following: 

- For urban environments, a new approach is proposed to regularize building boundary 

and generate seamless building models using ALS data. 

- For highway corridors, a framework is provided to derive accurate lane width using 

LiDAR-based TMMS for risk assessment. 

These general objectives will be achieved through the following specific objectives: 

• Specific Research Objectives 

a. Implement an adaptive down-sampling strategy to remove redundant points within planar 

neighborhoods. The main characteristics of the proposed approach are as follows: 
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- The adaptive down-sampling strategy considers the planar, linear/cylindrical, and 

rough feature categories within a point cloud. For object modeling, a high point density 

in planar regions may not be necessary. Hence, redundant points will be selectively 

removed in those regions. During point cloud acquisition, incomplete point clouds are 

usually obtained that partially represent linear/cylindrical and rough surfaces. 

Therefore, within the proposed procedure, the points along linear/cylindrical and rough 

local neighborhoods are maintained. 

- The procedure considers variations in local characteristics, such as the LPD, of a point 

cloud and allows for selective removal of points in high-density planar regions.  

- The strategy introduces two Principal Component Analysis (PCA) approaches that can 

identify the nature of local neighborhoods while considering the noise level within the 

constituents of a point cloud. 

- A probability-based test is adopted to adaptively down-sample and remove points using 

the evaluated LPD within planar local neighborhoods. 

- The proposed strategy is suitable for both laser scanning and image-based point clouds.  

b. Present a region-growing approach for the segmentation of planar, pole-like, and rough 

features. The main characteristics of the proposed approach are as follows: 

- Planar and varying-radii pole-like features are simultaneously segmented. 

- ALS, STLS, MTLS, and DIM point clouds can be manipulated by the proposed 

segmentation procedure. 

- The region-growing process starts from optimally-selected seed regions to reduce the 

sensitivity of the segmentation outcome to the choice of the seed location. 
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- The region-growing process considers variations in the local characteristics of the point 

cloud (i.e., LPD and noise level). 

c. Propose a new QC procedure for improving and evaluating the segmentation outcomes. 

The main characteristics of the proposed approach are as follows: 

- The QC process considers possible competition among neighboring planar and pole-

like features for the same points.  

- The QC procedure considers possible artifacts arising from the sequence of the region 

growing process. 

- The QC process considers the possibility of having partially or fully misclassified 

planar and pole-like features.  

d. Propose a building model generation strategy which can reconstruct complex building 

models with several characteristics, including right-angle, multi-orientation, and curved 

boundaries using point clouds. The main characteristics of the proposed approach are as 

follows:  

- An Enhanced Recursive Minimum Bounding Rectangle (ERMBR) approach, which 

includes a simultaneous Recursive Minimum Bounding Rectangle (RMBR) [7] and 

Least Squares Adjustment (LSA)  procedure as well as a generalized RMBR 

procedure, is proposed to regularize boundaries with right angle and single 

orientation. 

o The proposed simultaneous RMBR and LSA procedure is not sensitive to the 

thresholds. This is achieved by including the following steps: (1) a spike 

removal method is proposed to eliminate outliers in the extracted boundaries; 
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(2) LSA is adopted to avoid identifying artificial details; and (3) the variation 

of LPD in every building hypothesis is considered. 

o The proposed a generalized RMBR procedure can successfully reconstruct all 

right-angled buildings accurately, which was not fully accomplished by 

previous work. 

- A boundary regularization strategy using a breakpoint detection (BD) approach is 

introduced to regularize boundaries with multi-orientation and curved edges. 

- A strategy for integration of the outcome of ERMBR and BD approaches is proposed 

to maintain right-angle corners, to reconstruct multi-orientation buildings, and to 

generate curved boundaries.  

- A strategy for water-tight DBM generation is proposed to consider the topology 

between adjacent building primitives and to provide a more realistic visualization of 

the building models. 

e. Propose a framework to derive accurate lane width using in-house developed mobile 

mapping system. The main characteristics of the proposed approach are as follows: 

- A robust approach is proposed to derive lane width from 3D point clouds. The proposed 

framework is tested using road segments over tens of miles to show its robustness.  

- The proposed framework is not limited to a specific sensor model and does not require 

raw measurements (e.g., scan angles and time stamps). The required information for 

the proposed lane width estimation framework is only the trajectory information and 

the 3D point cloud along with intensity information.  

- Four validation strategies are proposed –  
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o An analysis of the impact of the mounting parameters’ quality on lane width 

estimation is conducted.  

o The proposed strategy is applied to datasets collected using two types of laser 

scanners to compare the quality of derived lane width estimates.  

o To demonstrate the precision of estimated lane width and the reliability of the 

introduced calibration approach, an analysis of multiple datasets collected over 

the same test area from different seasons is conducted. 

o To show the accuracy of the proposed lane width estimation strategy, the 

derived lane width estimates are compared to the on-site manual measurements 

and estimates from manually digitized lane markings. 

Figure 1.1 is a flowchart of the proposed framework for point cloud processing and two chosen 

application field in urban environments and transportation corridors. 
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Figure 1.1. Flowchart of the proposed two-tier data processing framework 
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1.3 Dissertation Outline 

The remainder of this dissertation presents the proposed framework in more detail.  

- Chapter 2 reviews the existing approaches for point cloud generation, down-sampling 

techniques, segmentation methodology, digital building model reconstruction approaches, 

and accurate lane width estimation.  

- Chapter 3 introduces the framework of the first tier point cloud processing, which includes 

an adaptive down-sampling strategy and multi-class segmentation approach as well as a 

quality control process for the segmentation outcomes.  

- Chapter 4 introduces the second tier of data processing in urban environments. A strategy 

is proposed to generate complex building models from airborne LiDAR point cloud data. 

- Chapter 5 presents the second tier of data processing in transportation corridors. A 

framework for deriving accurate lane width, including system development, system 

calibration, lane width estimation, and validation using four experiments, is introduced. 

- Chapter 6 presents the key contributions of this thesis and recommendations for future 

research work. 
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2. LITERATURE REVIEW 

2.1 Introduction 

The primary objective of this thesis was to develop a new framework for the first tier of 

point cloud processing (i.e., adaptive down-sampling and multi-class simultaneous segmentation) 

and the second tier of data processing for urban environment and transportation corridors (i.e., 

digital building model reconstruction and accurate lane width estimation). The point cloud sources 

can come from optical image and laser scanning systems, which will be reviewed in Section 2.2. 

The point clouds generated from the current techniques usually include an excessive number of 

points, data processing (e.g., segmentation and registration) of these huge data is time-consuming 

and unnecessary. Previous research efforts that focused on data down-sampling will be discussed 

in Section 2.3. Segmentation is one of the initial and critical steps in the first tier of data processing 

to derive the semantic meanings from point clouds. A review of existing segmentation techniques 

and quality control procedures will be addressed in Section 2.4. The second tier of data processing 

includes two applications related to high human activity areas, urban environments and 

transportation corridors. For urban environments, the existing pertinent literature for building 

reconstruction is presented in Section 2.5. For transportation corridors, the state-of-the-art road 

feature extraction techniques are discussed in Section 2.6. 

2.2 Point Cloud Generation 

Optical imagery and laser scanners are the two major sources for indirectly or directly 

deriving point clouds, both of which can meet the demands of the intended 3D modeling 

applications. The imagery captured by optical sensors can provide spectral information, high 
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spatial resolution, and point clouds through an intersection procedure. On the other hand, laser 

scanners are capable of directly acquiring high precision point clouds along object surfaces in an 

efficient manner. Point cloud generation from optical images and laser scanning systems is 

reviewed in Section 2.2.1 and Section 2.2.2. 

2.2.1 Image-based Point Cloud 

Electro-Optical sensors onboard space-borne, airborne, and terrestrial platforms are 

capable of acquiring imagery with high resolution that could be used for point cloud generation. 

Identification of conjugate points in overlapping images is a key prerequisite for image-based point 

cloud generation. The photogrammetric community has used area-based and feature-based 

matching techniques [14]. Area-based image matching is performed by comparing the gray values 

within a defined template in one image to those within a larger search window in an overlapping 

image to identify the location that exhibits the highest similarity. Pratt [15] proposed the 

Normalized Cross-Correlation (NCC) measure, which compensates for local brightness and 

contrast variations between the gray values within the template and search windows. Feature-based 

matching, on the other hand, compares the attributes of extracted features (e.g., points, lines, and 

regions) from overlapping images. Feature from Accelerated Segment Test (FAST) [16] and the 

Harris descriptor can be used to detect corners as point features. The Scale Invariant Feature 

Transform (SIFT) detector and descriptor can be used to identify and provide the attributes for key 

image points [17]. The SIFT descriptor then can be used to identify conjugate point features in 

overlapping images. Alternatively, Canny edge detection and linking can be used to derive linear 

features from imagery [18]. Then, generalized Hough Transform can be used to identify conjugate 

points along the detected edges [19]. The 3D coordinates of conjugate points and linear features, 

which can be used for a wide range of applications such as building model generation [20], can be 
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derived through a photogrammetric space intersection. However, both area-based and feature-

based image matching techniques are incapable of providing a detailed object description, which 

are needed for 3D object modeling (i.e., they are mainly used for automated recovery of image 

orientation). Compared to area-based and feature-based matching techniques, recently developed 

dense-matching algorithms can provide precise point clouds with high-density through a global 

matching constraint [21]. Hirschmuller [22] proposed Semi-Global Matching (SGM), which 

performs pixel-wise matching using mutual information. Haala [23] showed that pixel-wise dense 

matching and the current software tools are capable of generating high definition landscape Digital 

Surface Model (DSM) from airborne imagery.  

2.2.2 Laser-based Point Cloud  

In contrast to imaging sensors, laser scanners can directly derive dense point clouds. 

Depending on the used platform, a laser scanner can be categorized into ALS, STLS, and MTLS. 

ALS was developed in the early 1990s, and is mainly used for collecting surface data over large 

areas. The level of detail in ALS data depends on the flying height, pulse rate, scanning rate, 

aircraft speed, FOV, among other parameters. The point density for ALS data usually ranges from 

1 to 40 pts/m2 [24] which is suitable for DSM and Digital Terrain Model (DTM) generation as 

well as rough building model generation [7], [25]. Due to the nature of the data acquisition 

mechanism, ALS systems cannot provide the necessary details for extracting objects that do not 

belong to building rooftops and terrain such as building facades, light poles, trees, and fences. As 

a result of their proximity to the objects of interest, STLS and MTLS systems can acquire dense 

point clouds for the extraction and modeling of building facades, fences, trees, and light-poles. 

STLS systems were introduced almost 15 years ago with the improvement in modern terrestrial 

direct geo-referencing systems. MTLS systems were developed in the late 1980s and early 1990s 
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[26]–[28]. In the early stage, MTLS systems usually carried a set of optical cameras and a geo-

referencing system (integrated Global Navigation Satellite Systems and Inertial Navigation 

Systems – GNSS/INS), which is capable of providing an accurate position and orientation of the 

platform at high frequency [29]. With the emergence of laser scanners, modern Mobile mapping 

Systems (MMSs) usually carry both laser scanners and optical cameras as well as a geo-

referencing system. MMSs equipped with LiDAR units are capable of directly acquiring high 

precision point clouds from object surfaces in an efficient manner.  

2.3 Existing Down-sampling Techniques 

Derived point clouds from ALS, STLS, and MTLS systems as well as image-based dense-

matching techniques usually include an excessive number of points. Processing (e.g., registration, 

segmentation, and reconstruction) such huge datasets is time-consuming and unnecessary [30]–

[32]. For example, representing a planar surface only requires a few points to define a reliable 

surface geometrically and spatially. Thus, points along high-density planar surfaces could be 

redundant. The point density can either be reduced during the data collection or processing stages. 

During the data collection stage, density reduction can be achieved by decreasing the scanning 

resolution (i.e., lowering pulse repetition frequency and/or scan rate). However, this approach will 

reduce the point density throughout the entire area (i.e., areas farther from the scanning system 

will suffer from significant loss of detail). Alternatively, the collected point cloud can be thinned 

through data processing. Software tools are available for point cloud thinning, commonly known 

as down-sampling (e.g., “CloudCompare” [33],  which includes down-sampling functions such as 

random down-sampling and point-spacing down-sampling). For random down-sampling, the 

software randomly removes points to achieve the designed number of points. Although it is a quick 

way to down-sample a dataset, it may lose the most information from the point clouds. For the 
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point-spacing down-sampling method, it considers the minimum distance between two points. 

When the distance between two points is less than the designed threshold, the point would be 

removed. However, this approach only considers the distance between two points without 

considering the nature of the local surface, which could be changed after down-sampling. Cabo et 

al. [34] reduced the size of a point cloud through regular voxelization of 3D space and then 

processed the reduced data to extract pole-like features. Another approach is to use octrees to 

remove the redundant points based on the cubic size [35]. Mandow et al. [36] proposed a range-

independent down-sampling method to uniformly thin the STLS data according to their spherical 

scanning characteristics. A given point cloud is down-sampled based on the desired angular 

resolution instead of the distance to the scanner. Puttonen et al. [37] proposed two methods for 

range-based down-sampling of point clouds based on the point-to-scanner distance. 

None of the above techniques consider the point distribution along the physical surfaces 

and the characteristics of the local neighborhoods encompassing such points. In addition, the 

range-independent and range-based down-sampling strategies are only suitable for STLS and 

MTLS datasets (i.e., they cannot be applied to image-based point clouds). Therefore, an optimal 

down-sampling strategy is needed that can consider the physical surface characteristics (i.e., 

planar, linear/cylindrical, and rough surface), internal characteristics (e.g., local point density) and 

the 3D distribution of the point clouds rather than merely considering the point-to-point or point-

to-scanner distances. 

2.4 Existing Segmentation Techniques 

Point-cloud-based object modeling usually starts with a segmentation process to categorize 

the data into subgroups that share similar characteristics. Segmentation approaches can generally 

be classified as being either spatial or parameter domain. The spatial-domain segmentation and 
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parameter-domain segmentation are reviewed in Section 2.4.1 and Section 2.4.2, respectively. 

Because there is variation in the internal characteristics and complexity of scenes, segmentation 

outcomes may suffer from some artifacts. Therefore, a quality control procedure (Section 2.4.3) is 

needed to evaluate and improve the segmentation outcomes.   

2.4.1 Spatial-domain Segmentation Techniques 

For the spatial-domain approach (e.g., region-growing based segmentation), the point 

cloud is segmented into subgroups according to the spatial proximity and similarity of the local 

attributes of its constituents. More specifically, starting from the seed points/regions, the region-

growing process augments neighboring points using a pre-defined similarity measure. The spatial 

proximity and local attribute determinations depend on whether the point cloud is represented as 

a raster, Triangular Irregular Network (TIN), or un-structured set. Rottensteiner and Briese [38] 

interpolated non-organized point clouds to generate a DSM, which they used to detect building 

regions through a height and region-growing analysis of a DSM-based binary image. The region-

growing process is terminated whenever the RMSE of a plane-fitting process exceeds a pre-set 

threshold. Forlani et al. [39] used a region-growing process to segment raster elevation data, where 

the height gradient between neighboring cells was used as the stopping criterion. For TIN-based 

point clouds, the spatial neighborhood among the generated triangles and the similarity of the 

respective surface normals have been used for the segmentation process [40]. For non-organized 

point clouds, data structuring approaches (e.g., Kd-trees or Octree data structures) were used to 

identify local neighborhoods and derive the respective attributes [41], [42]. Yang and Dong [43] 

classified point clouds using Support Vector Machine (SVM) into planar, linear, and spherical 

local neighborhoods. Then, region growing was implemented by checking the similarity of the 

derived attributes (e.g., principal direction, normal vector, and intensity). Region-growing 
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segmentation approaches are usually preferred due to their computational efficiency. However, 

their performance is quite sensitive to the noise level within the point cloud in question as well as 

the selected seed-points/regions [11], [31], [44].  

2.4.2 Parameter-domain Segmentation Techniques 

For the parameter-domain approach, a feature vector is first defined for the individual 

points using their local neighborhoods. Then, the feature vectors are incorporated in an attribute 

space/accumulator array where peak-detection techniques are used to identify clusters (i.e., points 

sharing similar feature vectors). Filin and Pfeifer [45] used a slope-adaptive neighborhood to 

derive the local surface normal for the individual points. Then, they defined a feature vector that 

encompassed the position of the point and the normal vector to the tangent plane at that point and 

used a mode-seeking algorithm to identify clusters in the resulting attribute space [46]. Biosca and 

Lerma [47] utilized three attributes to define a feature vector: 1) the normal distance to the fitted 

plane through a local neighborhood from a defined origin, 2) the normal vector to the fitted plane, 

and 3) the normal distance between the point in question and the fitted plane. Then an unsupervised 

fuzzy clustering approach was implemented to identify peaks in the attribute space. Lari and Habib 

[31] introduced an approach where the individual points were classified as either belonging to 

planar or linear/cylindrical local neighborhoods using PCA. The attributes of the classified features 

then were stored in different accumulator arrays where the peaks were identified without the need 

for tessellating the array to detect the planar and pole-like features. Parameter-domain 

segmentation techniques do not depend on seed points. However, the identification of peaks in the 

constructed attribute space is a time-consuming process, the complexity of which depends on the 

dimensionality of the involved feature vector [11]. The spatially-disconnected segments that share 

the same attributes will be erroneously grouped together as well. In general, the existing spatial-
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domain and parameter-domain segmentation techniques do not perform simultaneous 

segmentation of planar, pole-like, and rough regions in a given point cloud. 

2.4.3 Quality Control Procedures 

The outcome of a segmentation process usually suffers from some artifacts [12]. The 

traditional approach for QC of the segmentation results is based on having reference data, which 

is manually generated, and deriving correctness and completeness measures [48], [49]. The 

correctness measure evaluates the percentage of correctly-segmented constituents of regions in a 

given class relative to the total size of that class in the segmentation outcome. The completeness 

measure, on the other hand, represents the percentage of correctly-segmented constituents of 

regions in a given class relative to the total size of that class in the reference data. The reliance on 

reference data to evaluate the correctness and completeness measures is a major disadvantage of 

such QC measures. Past research addressed the possibility of deriving QC measures that are not 

based on reference data. More specifically, Belton [50], Nurunnabi et al. [51], and Lari and Habib 

[3] developed QC measures that make hypotheses regarding possible segmentation problems, 

propose procedures for detecting instances of such problems, and develop mitigation approaches 

to fix them without the need for reference data. Over-segmentation (where a single planar/pole-

like feature is segmented into more than one region) and under-segmentation (where multiple 

planar/pole-like features are segmented as one region) are key segmentation problems that were 

considered in prior research. More specifically, the problems associated with planar and pole-like 

feature segmentation were independently addressed.  

However, segmentation problems arising from possible competition among neighboring 

planar and pole-like features have not been addressed in the past to the best of the author’s 
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knowledge. For example, one should expect that segmented regions at an earlier stage might 

invade segmented regions at a later stage, as shown in Figure 2.1. 

 

Figure 2.1. Segments invading/invaded and over-segmentation problems 

2.5 Urban Environments – DBM Reconstruction 

In general, DBM generation can be achieved through two main steps: building detection 

and building reconstruction [25]. Building detection aims at distinguishing building objects from 

other objects in the involved dataset for the extraction of building hypotheses or building areas. 

The second step, building reconstruction, derives 3D building models whose accuracy, level of 

automation, and complexity depends on the level of details and geometry of the building (i.e., 

right-angle, multi-orientation, and curved boundary buildings). A great deal of research was 

conducted to generate building models, which will be addressed in terms of the input data sources 

and modeling strategies are presented in Section 2.5.1 and Section 2.5.2, respectively.  
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2.5.1 Data Sources for DBM Generation 

The sources available for DBM generation include remote sensing data (i.e., optical 

imagery and LiDAR data) as well as 2D GIS data (e.g., digital maps and cadastral data). However, 

remote sensing data are preferred over 2D GIS data as the latter could be out of date, lack roof 

structure lines, and/or have low vertical accuracy. The existing approaches to building modeling 

from remote sensing data can be mainly classified into three groups: optical imagery, LiDAR data, 

and integration of LiDAR data and optical imagery.  

For optical imagery, the general method is comprised of image matching and 

reconstruction. Traditional photogrammetric approaches utilize either area-based [15] or feature-

based [17] image matching techniques to identify conjugate points in overlapping images. The 3D 

coordinates of conjugate features are derived through space intersection, and the building models 

are reconstructed based on 3D features [52]. However, traditional image matching techniques are 

not capable of generating dense point clouds and can only support a low level of automation for 

building model generation. Recently developed dense image matching techniques can generate 

point clouds with a high level of detail [22], [23]. However, the quality of these dense point clouds 

depends on the texture of the visible surfaces [53] and the extent of the occluded areas.  

In the case of LiDAR, the data from airborne systems is the most suitable for reconstructing 

the building models according to the shape of the rooftops because of the nature of its data 

acquisition mechanism. More specifically, ALS systems can directly provide the necessary details 

that belong to building rooftops and terrain. Compared with imagery, LiDAR data can provide 

better vertical accuracy as well as rapidly derive 3D surfaces to facilitate automation of building 

reconstruction [54]. Also, LiDAR data are not influenced much by sun shadow and relief 

displacement [55]. Due to the errors in attitude estimation in the case of LiDAR data, however, 
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the horizontal accuracy is worse than that of optical imagery. Therefore, an integration of LiDAR 

data and imagery is developed to combine the accurate height information from LiDAR data with 

the spectral information and the high planimetric resolution from optical imagery [25], [56], [57].  

Awrangjeb et al. [56] proposed a method for 3D roof extraction through the integration of 

LiDAR data and multispectral ortho-imagery. Cheng et al. [58] integrated airborne LiDAR data 

and optical multi-view images to segment roof points and automatically reconstruct 3D building 

models. It is worth noting that fusing more data sources can help ease occlusion difficulties and 

improve the accuracy of building detection and reconstruction. However, in many cases, auxiliary 

data sources may not be available. Moreover, the integration of different data sources requires high 

quality data registration. Inconsistencies between different data sources will decrease the accuracy 

of DBM generation. In this study, the proposed strategy deals with only LiDAR data. So, the 

discussions henceforth mainly focus on LiDAR data. 

2.5.2 Reconstruction Strategies of DBM Generation 

The three mainly used strategies for building reconstruction from LiDAR data are the 

model-driven, data-driven, and hybrid approaches. The model-driven approaches are top-down 

processes that start by establishing a model library [6], [59], [60] and then search the most 

appropriate model for a given building. A building roof model can be composed of either one 

planar surface or a combination of differently oriented planar surfaces. Each of these surfaces is 

described using an initial set of parameters, which is then updated using the information derived 

from existing data. The model-driven methods are preferred when the area in question has many 

buildings with similar roof types as it would enhance the computational performance and the 

accuracy of the outcome models.  However, representation of complex building roofs can be 

challenging because it is difficult to include every building model in the model library. Moreover, 



26 
 

details in the reconstructed models might be compromised because it is necessary to fit the actual 

data to the pre-defined building models. Henn et al. [61] proposed a model-driven reconstruction 

of buildings from sparse LiDAR point clouds. First, the buildings were decomposed into rectangles 

and the parameters of roof planes were estimated using RAndom SAmple Consensus (RANSAC) 

approach. Then, Support Vector Machine (SVM) was adopted to identify the most probable roof 

model (i.e., flat, shed, gabled, hipped, and pyramidal roof).      

The data-driven approaches, on the other hand, are bottom-up processes as they do not 

assume pre-defined models. Therefore, the shape of the generated models is not constrained and 

can theoretically be arbitrary. However, the data-driven approaches could have some limitations 

and assumptions, such as straight line, right angle, perpendicular lines, and parallel lines [8], [62], 

[63]. Moreover, the model’s performance may be sensitive to the noise level of a given point cloud. 

Yan et al. [8] proposed a building reconstruction approach to generate seamless building models 

using straight-line segments. First, planar roof patches from ALS data were extracted, and the roof 

patches were projected to 2D plane to derive topology between roof patches. Then, Douglas-

Peucker algorithm was utilized to derive simplified regularized boundaries which consisted of 

straight-line segments. The simplified boundaries were adjusted by applying 2D snake algorithm 

with parallel and deviation constraints. Shon et al. [63] reconstructed buildings using rectilinear 

lines whiling considering topology between the roof patches. First, the roof patches were extracted 

and the rectilinear lines were extracted. The authors proposed a binary space partitioning tree to 

derive the topology between adjacent linear features for reconstructing seamless building models.  

For the third strategy, a mixture of model-driven and data-driven approach (i.e., hybrid 

approaches) has been adopted in many DBM generation studies in order to exploit the advantages 

of both approaches and overcome their shortcomings. Sohn and Dowman [57] applied a data-
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driven method to LiDAR data and IKONOS imagery in order to extract building line cues and then 

employed a model-driven method  to deduce the missed line cues. Most of the model-based 

approaches, as well as the model-based components of hybrid approaches, adopt a hypothesis-and-

test process [64], [65].  

For building reconstruction using LiDAR data, most of previous work [59-65] mainly 

focuses on the building with straight line. Moreover, some of existing approaches may not consider 

the topology relationship (i.e., step lines and ridge) between the elements of building models [7], 

[61], [66], [67].  

2.6 Transportation Corridors – Lane Width Estimation  

The road surface, road markings, and characteristics of roads (e.g., slope, curvature, 

superelevation, azimuth, and lane width) are crucial factors for road safety inspection, building 

road digital maps, and autonomous vehicle navigation. Gargoum et al. [68] provided a review of 

available approaches for the extraction of road features using LiDAR data. They categorized the 

features into on-road information (road surface, lane markings, and road edge), road side 

information (traffic signs), road side objects (lamp posts, trees, and utility poles), and geometric 

information and assessment (road cross-section information, vertical alignment information, 

pavement condition assessment and monitoring, sight distance assessment, and vertical clearance 

assessment). Guan et al. [69] reviewed the use of mobile LiDAR for road information inventory. 

They discussed three classes of road features: 1) road pavements, 2) road surface structures (road 

markings, manhole covers, and curvilinear pavement cracks), and 3) pole-like objects. Road 

features extraction (road surface, road markings, and characteristics of roads) are discussed in 

Section 2.6.1, Section 2.6.2, and Section 2.6.3, respectively. 
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2.6.1 Road Surface Extraction 

For the road surface feature extraction, Han et al. [70] detected road boundaries and 

obstacles by extracting line segments from the raw point clouds in the polar coordinates. Then, the 

extracted line segments were classified into road and obstacle segments by analyzing the change 

in the roll and pitch angles of each segment. Kang et al. [71] used Hough transform to detect curb 

positions. Then, two Kalman filters were applied to track the curb using a prediction model. At the 

end, a probabilistic decision-making algorithm was applied to accurately estimate the roadside 

curb position. Zhang [72] collected 3D point clouds with an LMS-200 SICK sensor mounted on 

top of a vehicle to detect the road surface and the road surface edges by analyzing the change in 

elevation. First, the candidate road segments were extracted from the elevation data using a local-

extreme-signal detector to identify the road surface edge. Then, the candidate road segment was 

given a weight based on the standard deviation of the elevation and was classified using linear 

SVM to decide whether the candidate was a road segment or not. Finally, the points representing 

the curb were detected by checking whether or not the line segments representing their projections 

onto the ground plane were perpendicular to the road surface. Kumar et al. [73] utilized a Riegl 

VQ-250 laser scanner and an IXSEA LandINS GNSS/INS onboard an MMS to collect point clouds 

and extract road surfaces using a combination of two modified versions of the parametric active 

contour or snake model. The snake model was initialized based on the navigation information 

obtained from the GNSS/INS.  

2.6.2 Lane Marking Extraction 

Transportation agencies apply highly reflective glass beads to lane markings to improve 

their visibility at night. Therefore, well-maintained retro-reflective lane markings along the 
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extracted road surface will be manifested as high-intensity points in LiDAR point clouds. Although 

the material used for road markings can provide high-intensity return, the reflected laser pulse 

intensities fluctuate strongly according to the incident angles and range between the laser beam 

firing point and its footprint. Kumar et al. [74] used a set of range-dependent thresholds to extract 

lane markings. First, the road surface was extracted and divided into blocks along the driving 

direction based on lateral distance from the navigation data representing the trajectory; and 

different thresholds then were applied to different blocks for road marking extraction. Finally, the 

morphological operations and generic knowledge of the dimensions of the road markings were 

applied to complete the shapes of the extracted road markings and remove the noise.  

Yu et al. [75] proposed a multi-segment threshold to mitigate the effects of the intensity 

variation of point clouds acquired from Riegl VMX-450. First, the road surface was partitioned 

into blocks along the trajectory direction and each block was partitioned into a set of segments 

according to the lateral distance from the trajectory. The road markings in each segment were 

detected using Otsu’s thresholding algorithm. The incorrectly classified points were recognized 

and removed by calculating their local point density. Finally, the road marking points were 

classified into specific categories using the following steps: (1) Euclidean distance grouping, (2) 

voxel-based normalized cut segmentation strategy for dividing a group including several types of 

markings, and (3) marking classification using trajectory information, deep learning models, and 

PCA.  

Guan et al. [76] collected point clouds from a Riegl VMX-450 MMS system and extracted 

lane markings using multiple thresholds. First, a curb-based strategy that relied on navigation data 

was applied to extract the points belonging to the road surface by detecting the elevation changes 

along the road profile. Next, the points representing the road surface were interpolated into a geo-
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referenced intensity image. Then, road markings were segmented using multiple thresholds that 

correspond to different ranges as determined by point density. Finally, a morphological operation 

was applied to complete the shape of the road marking and remove the noise.  

Cheng et al. [77] proposed a road marking extraction and classification strategy. The tested 

point clouds were acquired from a RIEGL VMX-450 system. First, the non-ground points were 

removed and the road surface points were rasterized into a 2D intensity image. The road markings 

were extracted using Otsu’s thresholding method. The extracted road markings were partitioned 

into segments using region growing strategy. Finally, the segments were classified using a decision 

tree with the help of the derived geometric attributes. Yang et al. [78] proposed a binary kernel 

descriptor to extract the road information from mobile laser scanning point clouds. Binary kernel 

descriptor encodes the shape and intensity information to detect curbs and road markings.      

2.6.3 Characteristics of Road Extraction 

The characteristics of a road include slope, curvature, superelevation, azimuth, and lane 

width. Cai and Rasdorf [79] modeled road centerlines and predicted their length using LiDAR and 

planimetric road centerline data. The LiDAR data (with a point density of approximately 0.031 

pts/m2) were obtained from the North Carolina Floodplain Mapping Program and the planimetric 

road centerline data were obtained from the GIS unit of North Carolina Department of 

Transportation (NCDOT). A snapping and interpolation approach was used to obtain the 3D points 

along the road centerlines. Holgado-Barco et al. [80] used PCA to analyze point clouds captured 

from an Optech LYNX mobile mapper for deriving road parameters (slope, vertical curves, and 

superelevations) from a segmented cross-sectional road surface extracted with the help of the 

trajectory and setting the scan-angle threshold. The slope and superelevation were computed using 
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PCA for each road segment. After deriving the slope, the characteristics of vertical curves were 

estimated.  

Holgado-Barco et al. [81] extracted lane markings and derived the geometric design of a 

road (i.e., curvature and azimuth). First, the lane marking points were extracted by setting the 

intensity and scan-angle thresholds and the points were segmented every 0.5 m using their time-

stamps. The centroid of each segment was regarded as a point along the lane marking centerline. 

Next, the lane marking centerline was used to derive its azimuth for checking the horizontal 

alignment and curvature of the road. Wang et al. [82] estimated road slope and superelevation 

using point clouds from an Optech Lynx SG1 system. First, the road surface was segmented and 

partitioned into blocks along the driving direction using navigation data. Then, the points from a 

road surface partition were used to derive the slope and superelevation.  

Holgado-Barco et al. [13] proposed a strategy to obtain road cross-section information 

(number of lanes, width of the roadway, width of the shoulder and lanes, and superelevation) using 

a point cloud obtained from an Optech Lynx MMS with a 2D LiDAR. First, the road surface was 

extracted by removing all the points whose heights were out of the range of the roadway height. 

The height threshold was computed based on the set of points that corresponded to the horizontal 

projection of the vehicle using a scan angle threshold specific to the location of the sensors on the 

MMS. Next, a line fitting was applied to the segmented roadway points from each scan line for 

deriving the reference line along the cross-section of the road. When the distance of a point within 

a scan line to the reference line was larger than a pre-defined threshold, the point was regarded as 

a non-road surface point and was removed. Then, the lane markings were detected from each scan 

line by identifying the local maximum in the intensity response. To ensure a better separation 

between consecutive scan lines, the data were collected at a high speed to ensure a separation of 
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approximately 11 cm. To remove false positives, the distance between each two consecutive points 

detected as lane markings within a scan line was determined to check if it was more than a pre-

defined distance threshold. A distance-based clustering technique was applied to the hypothesized 

lane marking points; and based on the acquisition time of the lane marking points within a scan 

line, the clusters were categorized into three classes: 1) right lane marking, 2) left lane marking, 

and 3) ordered (first, second, etc.) center lane markings. Then, a spline was fitted to each class of 

road marking and the lane width was extracted based on the classified lane marking points and the 

derived road axis.  

For road information extraction from point clouds, most of the previous work [70-78] 

mainly focused on deriving the road surface and road markings. Some literature [79-82] proposed 

road characteristics extraction strategies (e.g., slope, curvature, superelevation, and azimuth) but 

only Holgado-Barco et al. [13] provided a strategy for extracting road cross-section information 

which includes lane width estimation – one of the key factors in road safety inspection in work 

zone areas. However, their approach is only suitable for 2D laser scanners and cannot be extended 

to other types of laser scanners as their strategy is dependent on extracting each scan line 

separately, which can be achieved for 2D but not for 3D laser scanners. Moreover, their strategy 

requires availability of the raw measurements of the captured points, such as the timestamp and 

scan angle. These shortcomings are addressed in the proposed strategy in this thesis because it 

does not require any information regarding individual scan lines, timestamps, or scan angles. 

Instead, only the trajectory information and the 3D point cloud with intensity information are 

required in order to derive accurate lane width estimates.   
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3. FIRST TIER OF POINT CLOUD PROCESSING  

3.1 Introduction 

LiDAR-based and image-matching-based point clouds usually have an excessive number 

of points that do not provide semantic information. Point clouds therefore must undergo a sequence 

of procedures to generate useful information for a variety of applications, such as mapping and 

modeling. Point clouds may come from different sources/platforms, and the variance of their 

internal characteristics (LPD and noise level) can profoundly affect the outcomes of procedures. 

Therefore, the characteristics of point clouds (Section 3.2) should be the first consideration to 

ensure the performance of the data processing procedures and the quality of the derived 

information. Processing a huge number of datasets can be time-consuming and unnecessary; at the 

same time, an inappropriate down-sampling also would compromise the data processing results. 

Therefore, an adaptive down-sampling procedure is introduced in Section 3.3 to consider the 

variation of the internal characteristics and the physical surface characteristics. Point cloud 

segmentation is one of the initial steps in the data processing chain to partition points into segments 

and to derive semantic meanings (planar, linear/cylindrical, and rough features). A multi-class 

simultaneous segmentation of planar, pole-like, and rough features therefore is introduced in 

Section 3.4. Since segmentation outcomes might exhibit artifacts as mentioned in Chapter 2, a new 

quality control procedure to improve the segment results is introduced in Section 3.5. Finally, the 

experimental results of this thesis are presented in Section 3.6.      
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3.2 Data Characterization and LPD Estimation 

In this section, two PCA-based approaches for the characterization of local neighborhoods 

together with a procedure for LPD estimation are introduced. For laser scanners, the point density 

depends on the utilized sensor and/or platform as well as the sensor-to-object distance. For image-

based point clouds, on the other hand, the point density depends on the texture of the visible 

surfaces [53] and the extent of the occluded areas. Therefore, a unique LPD must be estimated for 

every point within the dataset in question. In order to facilitate and identify the nearest n-neighbors 

for a given point, which is needed for LPD estimation, a kd-tree data structure is applied for 

organizing the point cloud and increasing the speed of the query process [83].  

Precise LPD estimation should be based on the physical surface characteristics of the local 

neighborhood centered at the query point (i.e., whether the query point is encompassed within a 

planar, linear/cylindrical, or rough region) [3]. To describe the nature of the local neighborhood 

for a given point, the PCA is used to decide whether the point belongs to a planar, 

linear/cylindrical, or rough feature. The dimensionality [84] and threshold-based PCA approaches 

are used for establishing the point classification. First, the n-nearest neighbors (Pn) of a query point 

are searched for using the kd-tree data structure. A covariance matrix (Cov) is then derived using 

the 3D coordinates of the points defining (Pn) and their centroid (𝑃𝑃�) as given by Equations 3.1 – 

3.2. Then, an eigenvalue decomposition of the covariance matrix (Equation 3.3) is used to evaluate 

the nature of the local neighborhood defined by Pn. The eigenvalues (λ1, λ2, and λ3) of the 

covariance matrix (Cov) are positive and can be ordered such that λ1 ≥ λ2 ≥ λ3 > 0. For the 

dimensionality-based approach, the feature classification of the neighborhood can be decided 

according the largest value of the defined dimensionality measures a1D, a2D, and a3D in Equations 

3.4 – 3.6 (i.e., linear/cylindrical, planar, or rough neighborhoods will be reflected by situations 



35 
 

where a1D, a2D, or a3D, respectively, is the largest one). Alternatively, a threshold-based PCA 

approach can be used to classify the local neighborhoods. In this regard, normalizing the ordered 

eigenvalues (λ1n ≥ λ2n ≥ λ3n > 0 – where λin = λi/(λ1+ λ2+ λ3)) is the first priority. A linear/cylindrical 

local neighborhood has one of the normalized eigenvalues significantly larger than the other two, 

which can be mathematically described by Equation 3.7 with the help of an additional threshold. 

A planar local neighborhood, on the other hand, is identified when two of the normalized 

eigenvalues are significantly larger than the third one. This situation can be mathematically 

described by Equations 3.8 and 3.9, which involve two thresholds. A rough local neighborhood 

will be characterized by three normalized eigenvalues that are of similar magnitude (i.e., the local 

neighborhood neither belongs to a planar feature nor a linear/cylindrical region). The LPD for a 

planar feature can be established using Equation 3.10. For a linear/cylindrical feature, a LSA 

model-fitting procedure is used to derive the feature parameters (point along the axis, axis 

orientation, and radius R). When radius R is small, the point is identified as belonging to this linear 

feature and the respective LPD is derived using Equation 3.11. Alternatively, the point is identified 

as part of a cylindrical feature, and the LPD is derived according to Equation 3.12. For a rough 

local neighborhood, the LPD is derived using Equation 3.13. Equations 3.10 - 3.13 also provide 

the corresponding Local Point Spacing (LPS).  

𝐶𝐶𝑜𝑜𝑜𝑜3×3 = 1
𝑛𝑛+1

∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃�)(𝑃𝑃𝑖𝑖 − 𝑃𝑃�)𝑇𝑇𝑛𝑛+1
𝑖𝑖=1                                  (3.1) 

𝑃𝑃� = 1
𝑛𝑛+1

∑ 𝑃𝑃𝑖𝑖𝑛𝑛+1
𝑖𝑖=1                                                                      (3.2) 

𝐶𝐶𝑜𝑜𝑜𝑜3×3 = [𝑝𝑝1���⃑ 𝑝𝑝2���⃑ 𝑝𝑝3���⃑ ] �
𝜆𝜆1 0 0
0 𝜆𝜆2 0
0 0 𝜆𝜆3
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𝑇𝑇

𝑝𝑝2���⃑
𝑇𝑇

𝑝𝑝3���⃑
𝑇𝑇
�                        (3.3) 

𝑝𝑝1𝐷𝐷 = �𝜆𝜆1−�𝜆𝜆2
�𝜆𝜆1

                                                                         (3.4) 



36 
 

𝑝𝑝2𝐷𝐷 = �𝜆𝜆2−�𝜆𝜆3
�𝜆𝜆1

                                                                         (3.5) 

𝑝𝑝3𝐷𝐷 = �𝜆𝜆3
�𝜆𝜆1

                                                                               (3.6) 

𝜆𝜆1𝑛𝑛 > 𝑇𝑇ℎ𝑟𝑟𝑝𝑝𝑝𝑝𝑎𝑎ℎ𝑜𝑜𝑝𝑝𝑎𝑎1                                                                (3.7) 

𝜆𝜆2𝑛𝑛
𝜆𝜆1𝑛𝑛

> 𝑇𝑇ℎ𝑟𝑟𝑝𝑝𝑝𝑝𝑎𝑎ℎ𝑜𝑜𝑝𝑝𝑎𝑎2                                                                (3.8)  

𝜆𝜆3𝑛𝑛 < 𝑇𝑇ℎ𝑟𝑟𝑝𝑝𝑝𝑝𝑎𝑎ℎ𝑜𝑜𝑝𝑝𝑎𝑎3                                                               (3.9) 

𝐿𝐿𝑃𝑃𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝  �𝑝𝑝𝑝𝑝𝑝𝑝
𝑚𝑚2� =  𝑛𝑛+1

𝜋𝜋𝑝𝑝𝑛𝑛2
   𝐿𝐿𝑃𝑃𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝(𝑝𝑝) =  1

�𝐿𝐿𝐿𝐿𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝
                               (3.10) 

𝐿𝐿𝑃𝑃𝐿𝐿𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒𝑝𝑝𝑝𝑝  �𝑝𝑝𝑝𝑝𝑝𝑝
𝑚𝑚2� =  𝑛𝑛+1

2𝑝𝑝𝑛𝑛
   𝐿𝐿𝑃𝑃𝐿𝐿𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒𝑝𝑝𝑝𝑝(𝑝𝑝) =  1

𝐿𝐿𝐿𝐿𝐷𝐷𝑝𝑝𝑙𝑙𝑛𝑛𝑙𝑙𝑝𝑝𝑝𝑝
                                    (3.11) 

𝐿𝐿𝑃𝑃𝐿𝐿𝑐𝑐𝑐𝑐𝑝𝑝𝑖𝑖𝑛𝑛𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐𝑝𝑝𝑝𝑝  �𝑝𝑝𝑝𝑝𝑝𝑝
𝑚𝑚2� =  𝑛𝑛+1

4𝜋𝜋𝜋𝜋𝑝𝑝𝑛𝑛
   𝐿𝐿𝑃𝑃𝐿𝐿𝑐𝑐𝑐𝑐𝑝𝑝𝑖𝑖𝑛𝑛𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐𝑝𝑝𝑝𝑝(𝑝𝑝) =  1

�𝐿𝐿𝐿𝐿𝐷𝐷𝑐𝑐𝑐𝑐𝑝𝑝𝑙𝑙𝑛𝑛𝑐𝑐𝑝𝑝𝑙𝑙𝑐𝑐𝑝𝑝𝑝𝑝
                     (3.12) 

𝐿𝐿𝑃𝑃𝐿𝐿𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟ℎ �
𝑝𝑝𝑝𝑝𝑝𝑝
𝑚𝑚3� =  𝑛𝑛+14

3𝜋𝜋𝑝𝑝𝑛𝑛
3    𝐿𝐿𝑃𝑃𝐿𝐿𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟ℎ(𝑝𝑝) =  1

�𝐿𝐿𝐿𝐿𝐷𝐷𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟ℎ3                                   (3.13) 

Where,  

rn is the distance between the point in question and its nth-farthest neighbor, and R is the radius of 

the cylindrical feature. 

3.3 Adaptive Down-Sampling on Planar Region 

Two of the commonly used point cloud thinning approaches are uniform and point-

spacing-based down-sampling. Uniform down-sampling removes points according to the order 

with which the points are inserted in the input data file and a user-defined number of points. Point-

spacing-based down-sampling, on the other hand, is based on a pre-specified minimum distance 

between neighboring points. However, these methods do not consider the local characteristics of 

the 3D surface encompassing the points in question. Therefore, it is expected that these down-

sampling strategies could compromise further data processing activities such as segmentation and 
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object reconstruction. The proposed adaptive down-sampling strategy considers the physical 

characteristics of local neighborhoods and selectively removes points within planar neighborhoods 

whose LPDs are higher than a user-defined LPD. The proposed strategy is based on the fact that 

for planar neighborhoods, high-density is not crucial for the identification and modeling of such 

features. On the other hand, linear/cylindrical and rough neighborhoods are partially represented 

by point clouds (i.e., neither laser scanning nor imaging systems can capture/derive points that 

completely cover such neighborhoods). Therefore, points within linear/cylindrical and rough 

neighborhoods are maintained. The hypothesis of the proposed down-sampling strategy, which is 

denoted here forward as adaptive down-sampling, is that the method will reduce the data 

processing time while maintaining reliable processing, which is mainly the segmentation of planar, 

linear/cylindrical, and rough neighborhoods.  

When a point belongs to a planar feature, the adaptive down-sampling introduced in Al-

Durgham (2014) is applied to achieve a desired point density through the probability-based test in 

Equation 3.14. 

𝛿𝛿 = 𝐿𝐿𝑃𝑃𝐿𝐿𝑐𝑐
𝐿𝐿𝑃𝑃𝐿𝐿𝑖𝑖�  �> 𝑝𝑝, 𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝

𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝,    𝑎𝑎𝑔𝑔𝑝𝑝𝑜𝑜𝑟𝑟𝑝𝑝      (3.14) 

Where,   

𝐿𝐿𝑃𝑃𝐿𝐿𝑐𝑐 is the desired local point density in pts/m2, 

𝐿𝐿𝑃𝑃𝐿𝐿𝑖𝑖 is the local point density at the ith point local neighborhood in pts/m2, and 

𝑝𝑝 is a random number that is picked from a uniform distribution in the range [0, 1]. 

 

According to Equation 3.14, when the local point density (𝐿𝐿𝑃𝑃𝐿𝐿𝑖𝑖) of a point is below the 

desired point density (𝐿𝐿𝑃𝑃𝐿𝐿𝑐𝑐), the point will be maintained in the down-sampled dataset. This is 

due to the fact that when 𝐿𝐿𝑃𝑃𝐿𝐿𝑖𝑖 is smaller than 𝐿𝐿𝑃𝑃𝐿𝐿𝑐𝑐, the test value (δ) always will be larger than 
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𝑝𝑝  since the random number (𝑝𝑝) is generated from a uniform distribution in the range [0, 1]. 

Alternatively, when the LPD is larger than the desired point density, as shown in Figure 3.1, the 

point will be removed with the probability of (1 - δ). In other words, the point will be maintained 

with the probability of δ (e.g., if 𝐿𝐿𝑃𝑃𝐿𝐿𝑐𝑐 is 30 pts/m2 and a given location 𝐿𝐿𝑃𝑃𝐿𝐿𝑖𝑖 is 100 pts/m2). Then, 

δ is 0.3 and the probability of the generated random number (𝑝𝑝) falling between 0 and 0.3 is 30%, 

meaning that 30% of points will be maintained in the area having 100 pts/m2 point density.    

 

Figure 3.1. An illustration of adaptive down-sampling 
 

An illustration of the adaptive down-sampling strategy on a simulated circular point cloud 

with 3.0m radius is shown in Figure 3.2. The distribution of the point density that corresponds to 

the original simulated point clouds (Figure 3.2 (a)) is shown in Figure 3.2 (c), which is derived 

from Equation 3.10. The distribution of the point density that corresponds to the point cloud after 

applying the adaptive down-sampling (Figure 3.2 (b)) is shown in Figure 3.2 (d). For the original 

point cloud, the maximum point density is about 2000 pts/m2. In this example, the desired point 

density is set as 400 pts/m2; therefore, within the maximum point density area, the probability of 

selecting random values (𝑝𝑝) less than or equal to 1/5 is 1/5. This means that 4/5 of the points in the 

central high-density neighborhood will be removed assuming that there are enough samples drawn 

from such neighborhood. Therefore, after applying the adaptive down-sampling, the high point 

density area will be reduced to the desired point density to achieve a uniform LPD distribution, 

which can be seen in Figure 3.2 (d). 
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Figure 3.2. (a) Simulated point cloud, (b) derived point cloud after applying adaptive down-
sampling, (c) and (d) the point density distribution corresponding to (a) and (b) 

3.4 Multi-Class Simultaneous Segmentation Procedure 

Before starting segmentation, data characterization and LPD estimation (Section 3.2) is 

applied first. Then, the multi-class simultaneous segmentation proceeds according to the following 

steps: 1) Section 3.4.1: distance-based region growing starting from randomly-selected seed points 

to define seed regions with pre-defined size; 2) Section 3.4.2: PCA-based classification and feature 

modeling of generated seed regions; 3) Section 3.4.3): sequential region-growing according to the 

quality of fit between the neighboring points and the fitted-model through the constituents of the 

seed regions; and 4) Section 3.4.4: PCA-based classification, model-fitting, and region growing of 

non-segmented points and distance-based region growing for the segmentation of rough points. 
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3.4.1 Distance-Based Region Growing for the Derivation of Seed Regions 

This step starts by forming a set of seed points that are randomly distributed within the 

point cloud in question. Rather than directly defining seed regions, which are centered at the 

randomly-established seed points, the seed regions are defined through distance-based region 

growing. More specifically, starting from a user-defined percentage of randomly-selected seed 

points, distance-based region growing is applied, for which the only criterion is the spatial 

closeness of the points to the seed point in question as determined by the LPS. The distance-based 

region growing process continues until a pre-specified region size is attained. This approach for 

seed-region definition ensures that the seed region is large enough, while avoiding the risk of 

having the seed region comprised of points from two or more different classes. Therefore, when 

dealing with different features that are spatially close to each other, it is important to confirm that 

the seed regions belong to the individual objects as long as the spatial separation between those 

features is larger than the LPS. Having larger seed regions that belong to individual objects will 

lead to better identification of the respective models associated with those neighborhoods, which 

in turn will increase the reliability of the segmentation procedure. 

3.4.2 PCA-Based Classification and Modeling of Seed Regions 

After the seed regions are defined, PCA is used to identify whether they belong to planar, 

pole-like, or rough neighborhoods. More specifically, the relationships among the normalized 

Eigen values of the dispersion matrix of the points within a seed region relative to its centroid are 

used to identify the planar seed regions (i.e., where two of the normalized Eigen values are 

significantly larger than the third one), pole-like seed regions (i.e., where one of the normalized 

Eigen values is significantly larger the other two), and rough seed regions (i.e., where the three 
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normalized Eigen values are of similar magnitude). For planar and pole-like seed regions, a LSA 

model-fitting procedure is used to derive the plane/pole-like parameters together with the quality 

of fit between the points within the seed region and the defined model as represented by the 

respective a-posteriori variance factor, which will be used as an indication of the local noise level 

within the seed region. For a planar seed region, the LSA estimates the three plane parameters – a, 

b, and c – using either Equations 3.15, 3.16, or 3.17. The choice of the appropriate plane equation 

depends on the orientation of the Eigen vector corresponding to the smallest Eigen value (i.e., the 

one defining the normal to the plane) – as shown in Figure 3.3. For a pole-like feature, the LSA 

estimates its radius together with four parameters that define the coordinates of a point along the 

axis and the axis orientation – p, q, a, and b – using either Equations 3.18, 3.19, or 3.20. The choice 

of the appropriate equation depends on the orientation of the Eigen vector corresponding to the 

largest Eigen value (i.e., the one defining the axis orientation of the pole-like feature) as shown in 

Figure 3.4. One should note that the variable t in Equations 3.18 – 3.20 depends on the distance 

between the projection of any point onto the axis of the pole-like feature and the utilized point 

along the axis: (p,q,0) for the axis defined by Equation 3.18, (p,0,q) for the axis defined by 

Equation 3.19, or (0,p,q) for the axis defined by Equation 3.20 (refer to Figure 3.4). 

 

(a) 

 

(b) 

 

(c) 

Figure 3.3. Representation scheme for 3D planar features; planes that are almost parallel to the 
𝑥𝑥𝑥𝑥 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (a), planes that are almost parallel to the 𝑥𝑥𝑥𝑥 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (b), and planes that are almost 

parallel to the 𝑥𝑥𝑥𝑥 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (c) 

 

𝑥𝑥 

𝑥𝑥 

𝑥𝑥 
𝑥𝑥 = 𝑝𝑝𝑥𝑥 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 

 

𝑥𝑥 

𝑥𝑥 

𝑥𝑥 
𝑥𝑥 = 𝑝𝑝𝑥𝑥 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 

 

𝑥𝑥 

𝑥𝑥 

𝑥𝑥 
𝑥𝑥 = 𝑝𝑝𝑥𝑥 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 
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(a) 

 

(b) 

 

(c) 

Figure 3.4. Representation scheme for 3D pole-like features; pole-like features that are almost 
parallel to the 𝑥𝑥 − 𝑝𝑝𝑥𝑥𝑎𝑎𝑎𝑎 (a), pole-like features that are almost parallel to the 𝑥𝑥 − 𝑝𝑝𝑥𝑥𝑎𝑎𝑎𝑎 (b), and 

pole-like features that are almost parallel to the 𝑥𝑥 − 𝑝𝑝𝑥𝑥𝑎𝑎𝑎𝑎 (c) 
 

 

 

 𝑥𝑥 = 𝑝𝑝𝑥𝑥 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 (3.15) 

 𝑥𝑥 = 𝑝𝑝𝑥𝑥 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 (3.16) 

 𝑥𝑥 = 𝑝𝑝𝑥𝑥 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 (3.17) 

   

 

𝑥𝑥 = 𝑝𝑝 + 𝑝𝑝 𝑝𝑝 

𝑥𝑥 = 𝑞𝑞 + 𝑝𝑝 𝑏𝑏 

𝑥𝑥 = 𝑝𝑝 

 

(3.18) 

 

𝑥𝑥 = 𝑝𝑝 + 𝑝𝑝 𝑝𝑝 

𝑥𝑥 = 𝑝𝑝 

𝑥𝑥 = 𝑞𝑞 + 𝑝𝑝 𝑏𝑏 

 

(3.19) 

 𝑥𝑥 

𝑥𝑥 

𝑥𝑥 

(p, q, 0) 

(a, b, 1) 

 

(a, 1, b) 

𝑥𝑥 

𝑥𝑥 

𝑥𝑥 

(p, 0, q) 

 

𝑥𝑥 

𝑥𝑥 

𝑥𝑥 
(0, p, q) 

(1, a, b) 
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𝑥𝑥 = 𝑝𝑝 

𝑥𝑥 = 𝑝𝑝 + 𝑝𝑝 𝑝𝑝 

𝑥𝑥 = 𝑞𝑞 + 𝑝𝑝 𝑏𝑏 

(3.20) 

 

3.4.3 Region-growing Starting from Optimally-selected Seed Regions 

In this thesis, the seed regions representing the planar and pole-like features are sorted 

according to an ascending order for the evaluated a-posteriori variance factor in the previous step. 

One should note that this a-posteriori variance factor is an indication of the normal distances 

between the points within the seed region and the best-fitted model (i.e., an indication of the 

compatibility of the physical surface and the underlying mathematical model as well as the noise 

level in the dataset). Starting with the seed region that has the minimum a-posteriori variance 

factor, a region-growing process begins while considering the spatial proximity as defined by the 

LPS and the normal distance to the defined model through the seed region as the similarity criteria. 

Throughout the region-growing process, the model parameters and the a-posteriori variance factor 

are sequentially updated. For a given seed region, the growing process proceeds until no further 

points can be added. The sequential region growing according to the established quality of fit (the 

a-posteriori variance factor) ensures that the seed regions showing better fit to the planar or pole-

like feature model are considered first. Thus, rather than starting the region growing from 

randomly established seed points, the growing starts from the locations that exhibit good fit with 

the pre-defined models for planar and pole-like features. 
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3.4.4 Sequential Segmentation of Non-segmented Points and Rough Regions 

Depending on the user-defined percentage of seed points, one should expect that some 

points might not be segmented or considered since they are not within the immediate vicinity of 

seed points that belong to the same class or they happen to be in the neighborhood of rough seed 

regions. To consider such situations, a sequential region-growing process is conducted by going 

through the points within the kd-tree data structure, starting from its root and identifying the points 

that have not been segmented yet. When a non-segmented point within the kd-tree data structure 

is encountered, the following region-growing procedure is implemented: 

1. Starting from a non-segmented point, distance-based region growing proceeds according the 

established LPS until a pre-defined seed-region size is achieved. 

2. For the established seed region, PCA is used to decide whether the seed region represents a 

planar, pole-like, or rough neighborhood. If the seed region is deemed as being part of a planar 

or pole-like feature, the parameters of the respective model are estimated through a LSA 

procedure. 

3. A region-growing process is carried out using the LPS and quality of fit with the established 

model in the previous step as the similarity measures. Throughout the region-growing process, 

the model parameters and the respective a-posteriori variance factor are sequentially updated. 

4. Steps 1 through 3 are repeated until all the non-segmented nodes within the kd-tree data 

structure are considered. 

The last step of the segmentation process, is grouping neighboring points that belong to rough 

regions, which is carried out in the following steps: 
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1. For the seed regions, which have been classified as being part of rough neighborhoods during 

the first or the second stages of the segmentation procedure,  distance-based region-growing is 

conducted of the non-segmented points. 

2. Then, the kd-tree is inspected, starting from its root node, to identify the non-segmented 

nodes. 

3. Finally, the non-segmented nodes are utilized as seed points for distance-based segmentation 

of the rough regions.  

At this stage, the constituents of a point cloud have been classified and segmented into planar, 

pole-like, and rough segments. For the planar and pole-like features, the respective model 

parameters and the a-posteriori variance factor, which describes the average normal distance 

between the constituents of a region and the best-fit model, also have been established. 

3.5 QC of Segmentation Outcomes 

In spite of the facts that 1) the proposed region-growing segmentation strategy has been 

designed to optimally-select seed regions that exhibit the best quality of fit to the LSA-based 

planar/pole-like models and 2) the region growing is based on the established LPS for the 

individual points, one cannot guarantee that the segmentation outcome will be perfect (i.e., the 

segmentation outcome might still exhibit artifacts). For example, the segmented regions from an 

earlier stage might invade the segmented regions at a later stage. Also, due to the location of the 

randomly-established seed points and the nature of the objects within the point cloud, there might 

be instances where the seed regions are wrongly classified. For example, a portion of a planar 

feature is wrongly classified as a pole-like feature (Figure 3.5-a) or a set of contiguous pole-like 

features are identified as a planar segment (Figure 3.5-b).  
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Figure 3.5. Classified point cloud: planar, pole-like, and rough regions are shown in blue, green, 
and red, respectively 

 

As mentioned in Section 2.4, prior research efforts dealt with the detection and mitigation 

of over-segmentation and under-segmentation problems, but the potential artifacts that might arise 

when simultaneously segmenting planar, pole-like, and rough regions were not considered. The 

proposed QC framework proceeds according to the following three stages: 1) developing a list of 

hypothesized artifacts/problems that might take place during the segmentation process; 2) 

developing procedures for the detection of instances of such artifacts/problems without the need 

for having reference data; and 3) developing approaches to mitigate such problems whenever 

detected. The hypothesized problems that might take place within a multi-class simultaneous 

segmentation of planar and pole-like features are described below. Figure 3.6 (a–g) is a schematic 

illustration of these hypothesized problems; in sub-figures 𝑝𝑝, 𝑏𝑏, 𝑐𝑐, 𝑝𝑝, 𝑓𝑓,𝑝𝑝𝑝𝑝𝑎𝑎 𝑔𝑔 classified planar 

regions are displayed in light blue while classified pole-like features are displayed in light green. 

1.Misclassified planar features: Depending on the LPD/LPS and pre-set size for the seed regions, 

a pole-like feature might be wrongly classified as a planar region. This situation might be 

manifested in one of the following scenarios: 

a.  Single pole-like feature wrongly classified as a planar region (Figure 3.6–a) 
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b. Multiple contiguous pole-like features classified as a single planar region (Figure 3.6–b) 

2.Misclassified linear features: Depending on the location of the randomly-established seed points, 

a portion of a planar region might be classified as a single pole-like feature (Figure 3.6–c). 

3.Partially misclassified planar and pole-like features: Depending on the order of the region 

growing process, the segmented planar/pole-like features at the earlier stage of the segmentation 

process might invade neighboring planar/pole-like features. This situation might be manifested 

in one of the following scenarios: 

a.  Earlier-segmented planar regions invade neighboring planar features (Figure 3.6–d), 

b. Earlier-segmented planar regions fully/partially invade neighboring pole-like features 

(Figure 3.6–e&f), where planar region partially invades a neighboring pole-like feature), and 

c. Earlier-segmented pole-like features invade neighboring planar features (Figure 3.6–g).  
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(a) 

 

(b) 

 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Figure 3.6. Possible segmentation artifacts: misclassified planar features (a) and (b); 
misclassified pole-like feature (c); partially misclassified planar features (d), (e), and (f); and 

partially misclassified pole-like feature (g). Planar and pole-like features are displayed in light 
blue and light green, respectively, in subfigures 𝑝𝑝, 𝑏𝑏, 𝑐𝑐, 𝑝𝑝,𝑓𝑓,𝑝𝑝𝑝𝑝𝑎𝑎 𝑔𝑔 
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The above problems can be categorized as follows: 1) interclass competition for 

neighboring points; 2) intraclass competition for neighboring points; and 3) fully/partially 

misclassified planar and pole-like features. The following procedure is proposed to detect and 

mitigate these segmentation problems. 

1. Initial mitigation of interclass competition for neighboring points: A key problem in 

region-growing segmentation is that the derived regions at an early stage might invade the 

neighboring features of the same or different class, which are derived at a later stage. In this QC 

category, this procedure considers potential invasion among features that belong to different 

classes. Specifically, for segmented features in a given class (planar or pole-like features), the 

features in the other classes (including rough regions) are considered as potential candidates that 

could be incorporated into the constituent regions of the former class. For example, the constituents 

of the pole-like features and rough regions are considered as potential candidates that could be 

incorporated into the planar features. In this case, if a planar feature has potential candidates that 

are spatially close as indicated by the established LPS and the normal distance between those 

potential candidates and the LSA-based model through that planar feature is within the respective 

a-posteriori variance factor, those potential candidates are incorporated into the planar feature in 

question. The same procedure is applied for pole-like features while considering planar and rough 

regions as potential candidates. In this regard, the respective QC measure –   

𝑄𝑄𝐶𝐶𝑖𝑖𝑛𝑛𝑝𝑝𝑒𝑒𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑟𝑟𝑚𝑚𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑟𝑟𝑛𝑛 – is evaluated according to Equation 3.21, where 𝑝𝑝𝑖𝑖𝑛𝑛𝑐𝑐𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐 represents 

the number of incorporated points from other classes and 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑒𝑒𝑛𝑛𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑖𝑖𝑐𝑐𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝  represents the 

number of potential candidates for this class. A lower percentage indicates lower instances of 

points that have been incorporated from other classes. 

𝑄𝑄𝐶𝐶𝑖𝑖𝑛𝑛𝑝𝑝𝑒𝑒𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑟𝑟𝑚𝑚𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑟𝑟𝑛𝑛 =  𝑝𝑝𝑖𝑖𝑛𝑛𝑐𝑐𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑒𝑒𝑛𝑛𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑖𝑖𝑐𝑐𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 �                         (3.21) 
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2. Mitigation of intraclass competition for neighboring points: This problem takes place 

whenever a feature, which has been derived at the earlier stage of the region growing, invades 

other features from the same class segmented at a later stage. One can argue that intraclass 

competition for pole-like features is quite limited, mainly due to the narrow spread of pole-like 

features across its axis). Therefore, for this QC measure, only intraclass completion for planar 

features is considered as can be seen in Figure 3.6–d, where the middle planar regions invade the 

left and right planar features (invading portions are highlighted by red ellipses). Detection and 

mitigation of this problem starts by deriving the inner and outer boundaries of the segmented planar 

regions (Figure 3.7 illustrates an example of inner and outer boundaries for a given segment). The 

inner and outer boundaries can be derived using the minimum convex hull and inter-point-

maximum-angle procedures presented by Sampath and Shan [86] as well as Lari and Habib [31], 

respectively. Then, for each of the planar regions, a review is conducted to determine whether 

some of their constituents are located within the boundaries of neighboring regions and that the 

normal distances between the constituents and the fitted model through the neighboring regions 

are within their respective a-posteriori variance factor. In such a case, the individual points that 

satisfy these conditions are transformed from the invading planar feature to the invaded one. For 

this QC category, the respective measure is determined according to Equation 3.22, where 

𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖𝑝𝑝𝑐𝑐𝑖𝑖𝑛𝑛𝑟𝑟 represents the number of invading planar points that have been transformed from the 

invading to the invaded segments and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝  represents the total number of originally-

segmented planar points. In this case, a lower percentage indicates lower instances of such 

problem. 

𝑄𝑄𝐶𝐶𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑟𝑟𝑚𝑚𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑟𝑟𝑛𝑛 =  𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖𝑝𝑝𝑐𝑐𝑖𝑖𝑛𝑛𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝  �                             (3.22) 
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Figure 3.7. Inner and outer boundary derivation for the identification of intraclass competition 
for neighboring points 

 

 
3. Single pole-like feature wrongly classified as a planar feature: To detect such instances 

(Figure 3.6-a illustrates the situation), PCA is conducted on the constituents of the individual 

planar features, and the resulting PCA-based normalized Eigen values will indicate the 1-D spread 

of such regions. Whenever this scenario is encountered, the LSA-based parameters of the fitted 

cylinder through this feature together with the respective a-posteriori variance factor are derived. 

The planar feature will be reclassified as a pole-like one if the latter’s a-posteriori variance factor 

is almost equivalent to the planar-based one. For this case, the respective QC measure, 

𝑄𝑄𝐶𝐶𝑝𝑝𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖𝑒𝑒𝑐𝑐 𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒𝑝𝑝𝑝𝑝 𝑟𝑟𝑒𝑒𝑝𝑝𝑟𝑟𝑝𝑝𝑒𝑒 is represented by Equation 3.23, where 𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖𝑒𝑒𝑐𝑐 𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒𝑝𝑝  is the number 

of points within the reclassified linear features and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 is the total number of points within 

the originally-segmented planar features. In this case, a lower percentage indicates fewer instances 

of such a problem. 

𝑄𝑄𝐶𝐶𝑝𝑝𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖𝑒𝑒𝑐𝑐 𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒𝑝𝑝𝑝𝑝 𝑟𝑟𝑒𝑒𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑒𝑒𝑝𝑝 =  𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖𝑒𝑒𝑐𝑐 𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝  �                      (3.23) 

4. Mitigation of fully or partially misclassified pole-like features: For this problem, which is 

illustrated in Figure 3.6–c and Figure 3.6–g, the pole-like features or portions of pole-like features 

that are encompassed within neighboring planar features are identified. The process starts with 
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identifying neighboring pole-like and planar features where the axis of the pole-like feature is 

perpendicular to the planar-feature normal. Then, the constituents of the pole-like feature are 

projected onto the plane defined by the planar feature. Instances where the pole-like feature is 

encompassed – either fully or partially – within the planar feature, are identified by slicing the 

pole-like feature in the across direction to its axis. For each of the slices, the closest planar point(s) 

that does (do) not belong to the pole-like feature in question (e.g., point 𝒂𝒂 in Figure 3.8–a or points 

𝒂𝒂 & 𝒃𝒃 in Figure 3.8–b) are determined. If the closest point(s) happen to be immediate neighbor(s) 

of the constituents of that slice (as defined by the established LPS), then one can suspect that the 

portion of the pole-like feature in the vicinity of that slice might be encompassed within the 

neighboring planar region and  that portion of the pole-like feature might be invading the planar 

region). To confirm or reject this suspicion, the normal distances between the constituents of the 

slice and the neighboring planar region are evaluated. If these normal distances are within the 

respective a-posteriori variance factor for the planar region, the slice is confirmed to be 

encompassed within the planar region. Whenever the pole-like feature is fully encompassed within 

the planar region (Figure 3.8–a), all the slices will have immediate neighbors from that planar 

region while having minimal normal distances. Consequently, the entire pole-like feature will be 

reassigned to the planar region. On the other hand, whenever the linear feature is partially 

encompassed within the planar region, the slices are identified where the closest neighbors to such 

slices are not immediate neighbors (Figure 3.8–b). The portion of the pole-like feature, which is 

defined by such slices, will be retained while the other portion will be reassigned to the planar 

region. The QC measure in this case is defined by Equation 3.24, where 𝑝𝑝𝑒𝑒𝑛𝑛𝑐𝑐𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐 𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝  

represents the number of points within the pole-like features that are encompassed within the 
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planar feature and 𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 is the total number of points within the originally-segmented linear 

features. A lower percentage indicates fewer instances of such problem. 

𝑄𝑄𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐/𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑐𝑐 𝑚𝑚𝑖𝑖𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖𝑒𝑒𝑐𝑐 𝑝𝑝𝑟𝑟𝑝𝑝𝑒𝑒−𝑝𝑝𝑖𝑖𝑙𝑙𝑒𝑒 𝑟𝑟𝑒𝑒𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑒𝑒𝑝𝑝 =  𝑝𝑝𝑒𝑒𝑛𝑛𝑐𝑐𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐 𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 �              (3.24) 

   

 

(a) 

 

(b) 

Figure 3.8. Slicing and immediate-neighbors concept for the identification of fully/partially 
misclassified pole-like features (a)/(b) 

 

5. Mitigation of fully or partially misclassified planar features: The conceptual basis of the 

implemented procedure to detect instances of such problem (as illustrated by Figure 3.6–b, Figure 

3.6–e, and Figure 3.6–f) is that whenever planar features are either fully (Figure 3.6–b and Figure 

3.6–f) or partially (Figure 3.6–e) misclassified, a significant portion of the encompassing MBR 

will not be occupied by those features (refer to Figure 3.9–a). In this regard, one should note that 

the MBR denotes the smallest area rectangle that encompasses the identified boundary of the 

planar region in question. Therefore, to detect instances of such problem, the MBR for the 

individual planar regions first is defined. Then, the ration between the area of the planar region in 

question and the area of the encompassing MBR is evaluated. Whenever this area is below a pre-

defined threshold, the planar feature in question is suspected of containing pole-like features, 

a

a b
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which can take the form of tentacles to the original planar region (as can be seen in Figure 3.9–a). 

To identify such features, a 2D-linear feature segmentation procedure (Figure 3.9-b) is performed, 

which is similar to the one proposed earlier with the exception that it is conducted in 2D rather 

than 3D (i.e., the line parameters would include slope, intercept, and width. More specifically, a 

pre-defined percentage of seed points are established. Then, a distance-based region growing is 

carried out to define the seed regions with a pre-set size. A 2D-PCA and line fitting procedure is 

conducted to identify seed regions that represent 2D lines. Those seed regions are then 

incorporated within a region-growing process that considers both the spatial closeness of the points 

and their normal distance to the fitted 2D lines. Following the 2D-line segmentation, an over-

segmentation QC is carried out to identify single linear features that have been identified as 

multiple ones. Moreover, as shown in Figure 3.9-c), the QC conducted in the previous step is 

implemented to identify partially misclassified linear features (i.e., the invading portion of the 

linear feature(s). The QC measure for this problem is evaluated according to Equation 3.25, where 

𝑝𝑝𝑚𝑚𝑖𝑖𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖𝑒𝑒𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝 represents the number of points within the planar feature that belong to 

2D lines and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝  is the total number of originally-segmented planar points. A lower 

percentage indicates fewer instances of this problem. 

𝑄𝑄𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐/𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑐𝑐 𝑚𝑚𝑖𝑖𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖𝑒𝑒𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝 𝑟𝑟𝑒𝑒𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑒𝑒𝑝𝑝 =  𝑝𝑝𝑚𝑚𝑖𝑖𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖𝑒𝑒𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝  �  (3.25) 
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(a) 

 

(b) 

 

(c) 

Figure 3.9. Segmented planar feature (in light blue) and the encompassing MBR (in red (a), 
segmented linear features (in green) (b), and final segmentation after the identification of 

partially-misclassified linear features (c) 
 

3.6 Experimental Results 

This chapter introduced the framework for initial point cloud processing, which can be 

summarized in two steps. First, an adaptive down-sampling method is conducted to efficiently 

remove the redundant points within planar neighborhoods. Second, a multi-class simultaneous 

segmentation is conducted to segment the planar, pole-like, and features. In addition, a succession 

of quality-control measures were introduced to evaluate and improve the segmentation results. The 

experiments conducted to confirm the results follow. 

 

3.6.1 Data Description 

Mobile Terrestrial Laser Scanner Dataset – MTLS: This dataset was captured by an Optech 

Lynx mobile mapping system with a 250K Hz pulse repetition rate. The noise level within the 

spatial extent of a given number of points is considered low. As it can be seen in Figure 3.10 (a), 

the covered area includes roads, grass-covered spaces, bushes, poles, cables, and traffic signs. 
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Airborne Laser Scanner Dataset – ALS: This dataset was captured by an Optech ALTM 

3100 over an urban area that includes planar roofs, roads, and trees/bushes. The extent of the 

covered area is roughly 0.5km x 0.5km. Figure 3.10 (b) shows a perspective view of the ALS point 

cloud, where the color is based on the height of the different points.  

First Stationary Terrestrial Laser Scanner Dataset – STLS1: This dataset was captured by 

a FARO Focus3D X330 scanner. The effective scan distance for this scanner ranges from 0.6m up 

to 330m. The ranging error is ±2mm. The scanner was positioned in the vicinity of a building 

façade with planar and cylindrical features whose radii is almost 0.6 m. The extent of the covered 

area is approximately 35m x 20m x 10m. Figure 3.10 (c) illustrates the perspective view of this 

dataset with the colors derived from the scanner-mounted camera. 

Second Stationary Terrestrial Laser Scanner Dataset – STLS2: This dataset was captured 

by a Leica HDS 3000 scanner. The effective scan distance for this unit ranges up to 300m with 

±6mm position accuracy at 50m. The covered area includes a planar building façade, some light 

poles, and trees/bushes. The extent of the covered area is almost 250m x 200m x 26m. A 

perspective view of this dataset is illustrated in Figure 3.10 (d). 

Third Stationary Terrestrial Laser Scanner Dataset – STLS3: This dataset covers an 

electrical substation and was captured by a FARO Focus3D X130 scanner. The effective scan 

distance ranges from 0.6m up to 130m. The ranging error is ±2mm. The dataset is mainly 

comprised of pole-like features with relatively small radii. The extent of the covered area is roughly 

12m x 10m x 6m. A perspective view of this dataset is provided in Figure 3.10 (e) with the colors 

derived from the scanner-mounted camera. 

Dense Image Matching Dataset – DIM: This dataset, which is shown in Figure 3.10 (f), 

was derived from a block of 28 images captured by a GoPro 3 camera onboard a DJI Phantom 2 
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UAV platform over a building with a complex roof structure. The extent of the covered area is 

approximately 100m x 130m x 17m. A Structure from Motion (SfM) approach developed by He 

and Habib [87] is adopted for automated determination of the frame camera EOPs as well as a 

sparse point cloud representing the imaged area relative to an arbitrarily-defined local reference 

frame. Then, a semi-global dense matching is used to derive a dense point cloud from the involved 

images [22]. The noise level within the spatial extent of a given number of points is considered 

high. This dataset has extremely dense point clouds). 
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(a) 

  
  
  
  
 
 

 
 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
 

Figure 3.10. Point clouds from the (a) MTLS, (b) ALS, (c) STLS1, (d) STLS2, (e) STLS3, and 
(f) DIM datasets 
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3.6.2 Experimental Results of Down-sampling Procedure 

The proposed adaptive down-sampling procedure can reduce only the point density within 

planar neighborhoods whose LPD is larger than the desired one. Thus, it is expected that the 

linear/cylindrical and rough regions would be emphasized as no down-sampling would take place 

at local neighborhoods that belong to such regions. Then, the proposed multi-class segmentation 

technique was applied to evaluate the outcome from the down-sampled and original datasets 

according to their completeness and execution times. To evaluate the performance of the proposed 

adaptive down-sampling strategy against other existing approaches (uniform and point-spacing-

based down-sampling), this section presents the experimental results from the MTLS, STLS2, and 

DIM point clouds. The point density in the ALS dataset was lower than that of the MTLS, STLS2, 

and DIM datasets and, there was very little variation in the LPD. Therefore, in this experiment, we 

did not consider the ALS dataset. The main objectives of the conducted experiments were as 

follows:  

1. Investigate the impact of different down-sampling techniques on the LPD for the derived 

point clouds from MTLS, STLS2, and DIM; 

2. Investigate the impact of the noise level within the point cloud on the down-sampling 

process; 

3. Investigate the impact of different point classification techniques (i.e., dimensionality and 

threshold-based PCA classification of local neighborhoods) on the down-sampling process; 

4. Investigate the impact of different down-sampling techniques on the execution time of 

subsequent data processing activities (mainly segmentation of the planar, linear/cylindrical, and 

rough regions); and 
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5. Compare the segmentation outcomes for the down-sampled datasets through the proposed 

and existing approaches in terms of their ability to maintain reliable identification of the planar, 

linear/cylindrical, and rough regions. 

The following strategy was used to establish a common basis for the comparative analysis 

of performance of the different down-sampling techniques; 1) a desired point density was set to 

down-sample a given point cloud through the proposed adaptive down-sampling procedure; 2) the  

LPS corresponding to the desired LPD was used to thin the point cloud through the distance-based 

down-sampling approach; and 3) the resulting number of points from the adaptive down-sampling 

was used  by the uniform down-sampling approach to produce the same number of points. Using 

this strategy, we conducted experiments with three different point clouds derived from MTLS, 

STLS2, and DIM. For these datasets, we investigated the impact of different strategies for PCA-

based point classification and dimensionality and threshold-based PCA approaches. We also 

investigated the outcome of the multi-class segmentation applied to the original and down-sampled 

point clouds using the proposed and existing approaches. The following subsections describe the 

different datasets and segmentation results from the original point cloud as well as the adaptive, 

uniform, and point-spacing-based down-sampled datasets. 

 

3.6.2.1 Data Characteristics 

As mentioned earlier, one of the objectives of the conducted experiments was to evaluate 

the performance of the dimensionality and threshold-based PCA approaches for point 

classification. The noise level within the established extent by the used number of points to define 

the local neighborhood, which will be denoted here forward as the “noise-level-to-area ratio,” had 

a major impact on the classification approaches. Table 3.1 illustrates the noise-level-to-area ratio 
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for different portions that belonged to the planar local neighborhoods in the MTLS, STLS2, and 

DIM datasets. More specifically, for these neighborhoods, the ratio was the RMSE of the normal 

distances between the sample representative points and the best-fitted plane for these 

neighborhoods (𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅𝑛𝑛𝑐𝑐) and the circular area defined by the distance between the query point 

and its 𝑝𝑝𝑝𝑝ℎfurthest neighbor. Table 3.1 clearly shows that the noise-level-to-area ratio within the 

DIM dataset was significantly higher than that for the other datasets. Therefore, it was expected 

that the classification of such datasets would be more challenging.  

 

 

 

 

Table 3.1. Noise-level-to-area ratio for representative sample points in the MTLS, STLS2, and 
DIM datasets 

 MTLS STLS2 
(Dense) 

STLS2 
(Sparse) 

DIM 

Illustration 

    
Number of 
Neighborhoods 
(pts) 

70 70 70 140 

𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅𝑛𝑛𝑐𝑐 (𝑝𝑝) 0.001 0.011 0.017 0.048 
𝑟𝑟𝑛𝑛 (𝑝𝑝)  0.075 0.273 0.551 0.173 
𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅𝑛𝑛𝑐𝑐
𝜋𝜋𝑟𝑟𝑛𝑛2

 (𝑝𝑝/𝑝𝑝2) 0.076 0.050 0.018 0.513 

𝑟𝑟𝑛𝑛 :  the distance between the point in question and its nth-farthest neighbor 
𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅𝑛𝑛𝑐𝑐 : Root Mean Square Error of the normal distance between the points and the 
fitted plane  
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3.6.2.2 Results & Analysis 

In this section, we compare the performance of three down-sampling strategies: 1) 

adaptive, 2) uniform, and 3) point-spacing-based. The adaptive down-sampling strategy was only 

applied on planar features according to Equation 3.14 after specifying the desired LPD. Uniform 

down-sampling was applied using “CloudCompare,” given a pre-specified number of points, 

which was defined by the size of the adaptively down-sampled dataset. For the point-spacing-

based down-sampling, points were removed according to the minimum spacing, which 

corresponded to the desired point density for the adaptive down-sampling. The desired point 

density and minimum distance for the adaptive and point-spacing-based down-sampling, 

respectively, for all the datasets are shown in Table 3.2. The dimensionality-based PCA 

classification approach was applied to all the datasets to identify the nature of the defined local 

neighborhoods (i.e., determine whether they represent planar, linear/cylindrical, or rough regions). 

The respective LPD for the classified local neighborhoods were then estimated according to 

Equations 3.10 through 3.13. For the MTLS and STLS2 datasets, 70 points were used to define 

the local neighborhoods. For the DIM dataset, on the other hand, 140 points were used for defining 

the local neighborhood of the individual points More points were used for the DIM dataset due to 

its extremely high-density and relatively high noise level. The derived point density statistics from 

the dimensionality-based PCA classification approach are shown in Table 3.3 through Table 3.5. 

To compare the results from the two PCA classification alternatives, the LPD for the DIM dataset 

using the threshold-based approach with relaxed values for the thresholds in Equation 3.7 through 

Equation 3.9 were evaluated, which were set as follows: threshold1 = 0.7, threshold2 = 0.6, and 

threshold3 = 0.25. The statistics of the estimated LPD for the DIM dataset using the threshold-

based PCA classification approach are shown in Table 3.6. In Table 3.3 through Table 3.6, the 
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number of planar, linear/cylindrical, and rough points denotes the number of points that are 

deemed to belong to the planar, linear/cylindrical, and rough local neighborhoods, respectively, 

using the dimensionality or threshold-based PCA classification approach. Figure 3.11 illustrates 

the point density maps for the original as well as the adaptive, uniform, and point-spacing-based 

down-sampled DIM datasets (one should note that the adaptive down-sampled dataset was 

generated while using the threshold-based PCA classification). From the density maps in Figure 

3.11, one can see that the adaptive down-sampling thinned the points in the planar areas with high-

density while it retained the points in the planar areas with sparse points as well as the 

linear/cylindrical and rough regions. This characteristic led to emphasized linear/cylindrical and 

rough regions, which are clearly visible in Figure 3.11 (b) where the gable roof edges and ridges 

as well as the trees/bushes maintained a high LPD. The emphasis of the linear/cylindrical features 

by the adaptive down-sampling procedure is also visible in terms of an increase in the number of 

points that belong to such features, especially for the DIM dataset that had a large noise-level-to-

area ratio. 

 

 

Table 3.2. Down-sampling parameters for the adaptive and point-spacing-based approaches 

  
Adaptive down-sampling 
Desired point density 
(pts/m2) 

Point-spacing-based down-sampling 
Minimum spacing between points 
(m) 

MTLS 100 0.1 
STLS2 50 0.141 
DIM 50 0.141 
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Table 3.3. LPD statistics for the original and down-sampled MTLS datasets (Note that the 
dimensionality-based PCA classification is used for adaptive down-sampling) 

 Original 
Adaptive 

down-
sampling 

Uniform 
down-

sampling 

Point-
spacing-

based 
down-

sampling 
Number of Points 1,105,962 139,738 139,738 62,033 

Max. Planar Point Density (pts/m
2
) 30,605 10,652 2,033 142 

Min. Planar Point Density (pts/m
2
) 1.210 1.210 0.494 0.751 

Mean Planar Point Density (pts/m
2
) 2,669 106 336 58.484 

Number of Planar Points 1,050,790 84,343 133,707 52,355 
Max. Linear Point Density (pts/m) 1,119 1,020 N/A N/A 
Min. Linear Point Density (pts/m) 502 16.753 N/A N/A 
Mean Linear Point Density (pts/m) 976 823 N/A N/A 

Number of Linear Points 131 228 N/A N/A 
Max. Cylindrical Density (pts/m

2
) 34,681 26,561 2,416 160 

Min. Cylindrical Point Density (pts/m
2
) 5.448 5.448 3.464 3.521 

Mean Cylindrical Point Density (pts/m
2
) 863 616 141 76.351 

Number of Cylindrical Points 16,425 17,117 2,743 3,338 
Max. Rough Density (pts/m

3
) 482,291 427,195 1,677 425 

Min. Rough Point Density (pts/m
3
) 0.370 0.370 0.059 0.159 

Mean Rough Point Density (pts/m
3
) 3,971 3,173 124 135 

Number of Rough Points 38,616 38,050 3,288 6,340 
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Table 3.4. LPD statistics for the original and down-sampled STLS2 datasets (Note that the 
dimensionality-based PCA classification is used for adaptive down-sampling) 

 Original  
Adaptive 

down-
sampling 

Uniform 
down-

sampling 

Point-
spacing-

based 
down-

sampling 
Number of Points 1,916,238 1,077,791 1,077,791 408,723 

Max. Planar Point Density (pts/m
2
) 65,948 38,362 16,858 73.972 

Min. Planar Point Density (pts/m
2
) 0.001 0.001 0.001 0.001 

Mean Planar Point Density (pts/m
2
) 526 71 292 24.062 

Number of Planar Points 1,266,090 434,340 704,631 225,504 
Max. Linear Point Density (pts/m) 1,872 1,843 1,075 12.535 
Min. Linear Point Density (pts/m) 1.669 1.669 5.960 1.875 
Mean Linear Point Density (pts/m) 671 669 531 4.765 

Number of Linear Points 12,938 12,954 3,292 19 
Max. Cylindrical Density (pts/m

2
) 41,584 41,901 30,805 74.338 

Min. Cylindrical Point Density (pts/m
2
) 0.830 0.830 1.709 0.731 

Mean Cylindrical Point Density (pts/m
2
) 1,420 1,176 851 19.288 

Number of Cylindrical Points 170,941 162,847 87,220 14,644 

Max. Rough Density (pts/m
3
) 1,817,933 1,050,840 358,025 212 

Min. Rough Point Density (pts/m
3
) ≈0.000 ≈0.000 ≈0.000 ≈0.000 

Mean Rough Point Density (pts/m
3
) 1,707 1,281 685 28.809 

Number of Rough Points 466,269 467,650 282,648 168,556 
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Table 3.5. LPD statistics for the original and down-sampled DIM datasets (Note that the 
dimensionality-based PCA classification is used for adaptive down-sampling) 

 Original  
Adaptive 

down-
sampling 

Random 
down-

sampling 

Point-
spacing-

based 
down-

sampling 
Number of Points 4,027,753 1,364,996 1,364,996 447,047 

Max. Planar Point Density (pts/m2) 3,045 2,296 992 97.096 
Min. Planar Point Density (pts/m2) 0.019 0.019 0.018 0.018 
Mean Planar Point Density (pts/m2) 590 197 223 49.206 

Number of Planar Points 3,069,682 588,963 1,268,002 389,970 
Max. Linear Point Density (pts/m) N/A N/A N/A N/A 
Min. Linear Point Density (pts/m) N/A N/A N/A N/A 
Mean Linear Point Density (pts/m) N/A N/A N/A N/A 

Number of Linear Points N/A N/A N/A N/A 
Max. Cylindrical Density (pts/m2) 4,094 3,991 689 84.418 

Min. Cylindrical Point Density 
(pts/m2) 

4.236 3.315 5.975 3.600 

Mean Cylindrical Point Density 
(pts/m2) 

303 360 106 29.550 

Number of Cylindrical Points 60,547 102,013 23,317 7,180 
Max. Rough Density (pts/m3) 19,361 18,049 2,555 130.526 

Min. Rough Point Density (pts/m3) 0.028 0.028 0.087 0.026 
Mean Rough Point Density (pts/m3) 2,308 1,591 271 38.445 

Number of Rough Points 897,524 674,020 73,677 49,897 
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Table 3.6. LPD statistics for the original and down-sampled DIM datasets (Note: the threshold-

based PCA classification is used for adaptive down-sampling) 

 Original 
Adaptive 

down-
sampling 

Uniform 
down-

sampling 

Point-
spacing-

based 
down-

sampling 
Number of Points 4,027,753 761,825 761,825 447,047 

Max. Planar Point Density (pts/m
2
) 3,083 1,050 598 93.005 

Min. Planar Point Density (pts/m
2
) 0.019 0.019 0.017 0.010 

Mean Planar Point Density (pts/m
2
) 634 73.519 128 47.189 

Number of Planar Points 3,706,080 519,580 697,767 367,411 
Max. Linear Point Density (pts/m) N/A N/A N/A N/A 
Min. Linear Point Density (pts/m) N/A N/A N/A N/A 
Mean Linear Point Density (pts/m) N/A N/A N/A N/A 

Number of Linear Points N/A N/A N/A N/A 
Max. Cylindrical Density (pts/m

2
) 3,913 3,383 315.478 74.746 

Min. Cylindrical Point Density (pts/m
2
) 4.236 2.683 3.938 1.482 

Mean Cylindrical Point Density 
(pts/m

2
) 

262 247 59.215 27.944 

Number of Cylindrical Points 44,775 73,524 10,050 8,260 
Max. Rough Density (pts/m

3
) 19,361 6,275 1,208 162.629 

Min. Rough Point Density (pts/m
3
) 0.002 0.002 0.118 ≈0.000 

Mean Rough Point Density (pts/m
3
) 882 181 77.530 60.880 

Number of Rough Points 276,898 168,721 54,008 71,376 
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(a) 

     

(b) 

 

(c) 

 

(d) 

Figure 3.11. Point density maps of (a) original as well as the (b) adaptively, (c) uniformly, and 
(d) point-spacing-based down-sampled DIM datasets (Note: the scale bars show the LPD along 

planar surfaces in 𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎 𝑝𝑝2⁄ ) 
 

Through closer inspection of the reported LPD values in Table 3.3 through Table 3.6, one 

can see that the minimum point density for planar local neighborhoods within the original and 

adaptively down-sampled datasets were identical, which confirmed the expectation that the 

adaptive down-sampling approach retains points in sparse planar neighborhoods. However, within 

the uniform and point-spacing-based down-sampled datasets, the minimum point density 

decreased since neither one of these approaches considers the LPD during the thinning procedure. 

Additional observations regarding the LPD estimates for the original and down-sampled datasets 

include the following: 

1. For the MTLS and STLS2 datasets, the adaptively down-sampled datasets had the closest 

point density along planar neighborhoods to the desired one when compared with the uniform and 
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point-spacing-based down-sampled datasets (refer to the Mean Planar Point Density in Table 3.3 

and Table 3.4).  

2. For all the datasets, the adaptively down-sampled datasets had the closest point density for 

the linear/cylindrical and rough regions to that associated with the original point cloud. On the 

other hand, the uniform and point-spacing-based down-sampling procedures led to significant 

reduction in the LPD for linear/cylindrical and rough neighborhoods (refer to the Mean 

Linear/Cylindrical/Rough Point Density values in Table 3.6). 

3. For the DIM point cloud, the uniform down-sampling led to insufficient reduction of the 

LPD of planar neighborhoods when compared to the desired one.  

4. For the DIM point cloud, the point-spacing-based down-sampling led to a point density 

closer to the desired one when compared with the adaptive down-sampling. This was attributed to 

the relatively high noise level within the established extent by the number of points used for 

defining the local neighborhoods. More specifically, the high noise-level-to-area ratio led to the 

fact that some of the rough points changed their classification to planar points after thinning some 

of the planar points. This can be seen in the significant reduction and the number of points that 

belong to rough neighborhoods (refer to the Number of Rough Points in Table 3.5 and Table 3.6 

for the original and adaptively down-sampled datasets).  

Comparing the dimensionality and threshold-based PCA classification approaches, one can 

make the following observations: 

1. The dimensionality-based PCA was quite conservative in terms of the planar classification 

of the local neighborhoods. In other words, for datasets where the noise level within the extent 

defined by a given number of points was high, which was the case for the DIM data, relatively 

planar local neighborhoods were classified as rough neighborhoods. This sensitivity led to higher 
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point densities along planar neighborhoods after the adaptive down-sampling (refer to the Mean 

Planar Point Density in Table 3.5 for the adaptively down-sampled dataset). 

2. The threshold-based PCA classification approach can be relaxed by using more tolerant 

thresholds to better classify relatively planar local neighborhoods in the presence of noise. 

However, relaxing the thresholds did not sufficiently make the LPD after the adaptive down 

sampling close enough to the desired one (refer to the Mean Planar Point Density in Table 3.6 for 

the adaptively down-sampled dataset). 

Following the down-sampling of the MTLS, STLS2, and DIM datasets, the multi-class 

simultaneous segmentation and QC procedures were applied to the different point clouds. The 

multi-class simultaneous segmentation execution times and results after the QC procedure for the 

different datasets are shown in Table 3.7 and Table 3.8. One should note that the adaptively down-

sampled DIM dataset in Table 3.7 and Table 3.8 refers to the one derived from threshold-based 

PCA classification since it produces better classification of planar features. 

 

Table 3.7. Multi-class simultaneous segmentation execution times for the different datasets 

Dataset Original 
Dataset 

Adaptive 
down-

sampled 
dataset 

Uniform 
down-

sampled 
dataset 

Point-spacing-
based down-

sampled 
dataset 

MTLS 
Number of 

Points 1,105,962 139,738 139,738 62,033 

Time (hh:mm:ss) 01:33:50 00:04:49 00:04:13 00:01:33 

STLS2 
Number of 

Points 1,916,238 1,077,791 1,077,791 408,723 

Time (hh:mm:ss) 02:16:05 01:51:52 01:34:30 00:17:12 

DIM 
Number of 

Points 4,027,753 761,825 761,825 447,047 

Time (hh:mm:ss) 04:07:13 00:58:40 00:56:24 00:30:15 
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Table 3.8. Segmentation results after the QC procedure for the different datasets 

  Original 
Dataset 

Adaptive 
Down-

sampled 
Dataset 

Uniform 
Down-

sampled 
Dataset 

Point-
spacing-

based 
Down-

sampled 
Dataset 

MTLS 
Number of Planar Segments 40 24 20 22 

Number of Linear/Cylindrical 
Segments 146 130 23 37 

Number of Rough Segments 36 31 11 6 
Total Number of Segments 222 185 54 64 

STLS2 
Number of Planar Segments 1,687 1,257 1,128 792 

Number of Linear/Cylindrical 
Segments 3,833 3,727 2,083 184 

Number of Rough Segments 1 3 2 4 
Total Number of Segments 5,521 4,987 3,212 980 

DIM 
Number of Planar Segments 457 424 214 239 

Number of Linear/Cylindrical 
Segments 794 846 155 133 

Number of Rough Segments 28 31 3 3 
Total Number of Segments 1,279 1,301 372 375 

 

As shown in Table 3.7, the proposed down-sampling process led to a reduction in the 

segmentation execution time. In this regard, it is worth noting that the adaptive and uniform down-

sampling approaches led to similar execution times since both of them produces the same number 

of points. The point-spacing-based down-sampling procedure, on the other hand, had the shortest 

execution time since it led to the smallest dataset. As for the segmentation outcome in Table 3.8, 

it is quite clear that the total number of segmented regions (planar, linear/cylindrical, and rough 

regions) was only maintained through the adaptive down-sampling procedure, which was 

confirmed by comparing the number of segmented regions from the down-sampled and original 

datasets). On the other hand, the uniform and point-spacing-based down-sampling procedures led 
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to significant reductions in the number of segmented regions. In addition, the adaptive down-

sampling led to the most complete segmentation outcome when compared with the segmentation 

of the original data. Besides maintaining the number of segmented regions, it also maintained the 

completeness of the segmented regions as will be shown in the next paragraph. 

An illustration of the segmentation results for the original and down-sampled MTLS, 

STLS2, and DIM datasets are shown in Figure 3.12 – Figure 3.14. More specifically, Figure 3.12 

portrays the segmented planar, linear/cylindrical, and rough regions in different colors, for the 

MTLS dataset. Figure 3.13 presents the planar and linear/cylindrical segmentation results for the 

STLS2 dataset with the different segments shown in different colors. Finally, Figure 3.14 presents 

the planar and linear/cylindrical feature segmentation results for the DIM dataset where the planar 

and linear/cylindrical features are shown in light and dark shades of grey, respectively. A closer 

inspection of Figure 3.12 reveals that the segmentation-based classification of the adaptively 

down-sampled dataset is the closest one to that derived from the original dataset (highlighted areas 

in subfigures 3.12 b–d). Figure 3.13 shows snippets that illustrate the comparative impact of 

different down-sampling techniques on the segmentation results from the STLS2 dataset. In these 

snippets, one can see that the segmentation outcome from the adaptively down-sampled dataset is 

the most complete one (the highlighted areas in subfigures 3.13 b–j). For the DIM segmentation 

results in Figure 3.14, it is clearly visible that the adaptive down-sampling procedure yielded the 

best extraction of the linear/cylindrical features, even when compared with the segmentation 

outcome from the original point cloud. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.12. Segmentation-based classification of the (a) original MTLS dataset as well as (b) 
adaptively, (c) uniformly, and (d) point-spacing-based down-sampled datasets   
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(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

 
(f)  

 
(g)  

 
(h)  

 
(i)  

 
(j)  

 
(k)  

 
(l)  

 
(m)  

Figure 3.13. Planar and linear/cylindrical segmentation results of the (a) original STLS2 dataset 
as well as snippets that show zoomed-in areas of the segmentation outcome for the (b – d) 

original, (e – g) adaptively, (h – j) uniformly, and (k-m) point-spacing-based down-sampled 
datasets   
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(a) (b) 

 

(c) 

 

(d) 

Figure 3.14. Planar and linear/cylindrical feature segmentation results for the (a) original DIM 
dataset as well as the (b) adaptively, (c) uniformly, and (d) point-spacing-based down-sampled 

datasets  
 

3.6.3 Experimental Results of Multi-Class Simultaneous Segmentation and QC Procedure 

To illustrate the performance of the segmentation and QC procedure, this section provides 

the segmentation and QC results using ALS, STLS1, STLS2, STLS3, and DIM datasets. The main 

objectives of the conducted experiments were as follows: 

1. Prove the feasibility of the proposed segmentation procedure in handling data with 

significant variations in LPD/LPS as well as the inherent noise level, 

2. Prove the feasibility of the proposed segmentation procedure in handling data with 

different distributions and concentrations of planar, pole-like, and rough regions, 

3. Prove the capability of the proposed QC procedure in detecting and quantifying instances 

of the hypothesized segmentation problems, and 

4. Prove the capability of the proposed QC procedure in mitigating instances of the 

hypothesized segmentation problems. 

The following subsections provide the segmentation results and the outcome of the QC procedure. 
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3.6.3.1 Multi-Class Simultaneous Segmentation Results 

This section provides the segmentation results for the planar, pole-like, and rough regions 

from the different datasets. The proposed region-growing segmentation methodology involves 

three thresholds: 1) Percentage of randomly-selected seed points relative to the total number of 

available points within the dataset – For the above datasets, this percentage was set to 10%. One 

should note that using a larger percentage value did not make a significant impact on the 

segmentation results. 2) Pre-set size of the seed regions – This size should be set-up in a way to 

ensure that the seed region is large enough for reliable estimation of the model parameters 

associated with that region. For the conducted tests, the pre-set region size was 100. 3) Finally, the 

normal distance threshold – In general, the normal distance threshold for the region-growing 

process is based on the derived a-posteriori variance factor from the LSA parameter estimation 

procedure. However, the upper threshold values depended on the sensor specifications (i.e., the 

normal distance thresholds are not allowed to go beyond these values). For the conducted 

experiments, the ALS-based region-growing normal distance was set to 0.2 m. For the STLS and 

DIM datasets, the normal distance threshold was set to 0.05 m. The proposed methodology was 

implemented in C#. The experiments were conducted using a computer with 16 GB RAM and 

Intel(R) Core(TM) i7-4790 CPU @3.60GHz. The time performance of the proposed data 

structuring, characterization, and segmentation are shown in Table 3.9.  
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Table 3.9. Time performance of the proposed segmentation 
  ALS 1 STLS1 STLS2 STLS3 DIM 
Number of Points 812,980 170,296 201,846 455,167 230,434 
Data Structuring and 
Characterization (mm:ss) 

08:15 01:48 02:02 06:57 02:34 

Segmentation Time (mm:ss) 11:40 02:55 01:33 06:37 03:56 
Total Time (mm:ss) 19:55 04:43 03:35 13:34 06:30 

 
    

Figure 3.15 and Figure 3.16 present the feature classification and segmentation results, 

respectively. For the classification results in Figure 3.15, the planar, pole-like, and rough regions 

are shown in blue, green, and red, respectively. As can be seen in Figure 3.15, the ALS, STLS2, 

and DIM datasets are mainly comprised of planar and rough regions. STLS1 and STLS3, on the 

other hand, mainly include planar and pole-like features, where large-radii pole-like features are 

present in STLS1 and the majority of STLS3 is comprised of small-radii cylinders. In Figure 3.16, 

the segmented planar, pole-like, and rough regions are shown in different colors. Visual inspection 

of the results in Figure 3.16 indicates that a good segmentation was achieved. To quantitatively 

evaluate the quality of this segmentation, the previously-discussed QC measures were used to 

denote the frequency of detected artifacts. 
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(a) 

 
 
 

 
 

(b) 
 

 
(c) 

 
 

(d) 

 

 

 
(e) 

Figure 3.15. Perspective views of the classified point clouds for the ALS (a), STLS1 (b), STLS2 
(c), STLS3 (d), and DIM (e) datasets (planar, pole-like, and rough regions are shown in blue, 

green, and red, respectively) 
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(a) 

 

 

 

 
 

 

(b) 

 
(c) 

 

 

 
 

(d) 

 
(e) 

Figure 3.16. Perspective views of the segmented point clouds for the ALS (a), STLS1 (b), 
STLS2 (c), STLS3 (d), and DIM (e) datasets (different segments are shown in different colors) 
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3.6.3.2 Results of QC Outcomes 

The QC procedure was implemented according to the following sequence: QC1) detection 

and mitigation of single pole-like features that have been misclassified as planar ones, QC2) initial 

mitigation of interclass competition for neighboring points, QC3) detection and mitigation of over-

segmentation problems, QC4) detection and mitigation of intraclass competition for neighboring 

points, QC5) detection and mitigation of fully/partially misclassified pole-like features, and finally 

QC6) detection and mitigation of fully/partially misclassified planar features. One should note that 

for QC3, the respective over-segmentation measure was evaluated as the ratio between the merged 

segments in a given class relative to the total number of segments in that class. Figure 3.17 presents 

the segmentation results following these QC procedures. For STLS1 and STLS3, the segmentation 

results for planar and pole-like features are presented separately since those datasets have 

significant portions that pertain to such classes. Figure 3.18 illustrates examples of the 

detected/mitigated problems through the different QC measures. More specifically, Figure 3.18(a) 

shows portions of a cylindrical column, as highlighted by the red rectangle, that were originally 

classified as planar regions and after QC1 were correctly reclassified as pole-like features. Figure 

3.18(b) shows examples of points from other classes, in red, that have been incorporated into planar 

and pole-like features, in yellow, after implementing QC2. An example of corrected over-

segmentation of pole like features after QC3 is illustrated in Figure 3.18(c), compared to the 

segmentation results in Figure 3.16(b)). Detection and mitigation of intraclass competition for 

neighboring points after QC4 is shown in Figure 3.18(d) (refer to the highlighted regions within 

the red rectangles before and after QC4). The results of mitigating fully/partially misclassified 

linear regions after QC5 are shown in Figure 3.18(e) (refer to the results after the over-

segmentation in Figure 3.18(c) and those in Figure 3.18(e), where one can see the correct 
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mitigation of partially-misclassified pole-like features). Finally, Figure 3.18(f) shows an example 

of the segmentation results after applying QC6, which identifies/corrects partially/fully 

misclassified planar features (compare the results in Figure 3.16(b) and Figure 3.18(f)). The 

proposed QC procedures provide quantitative measures that indicate the frequency of the 

segmentation problems. Such quantitative measures are presented in Table 3.10, where closer 

investigation reveals the following: 

1. For STLS1 and STLS3, which include a significant number of pole-like features, a higher 

percentage of misclassified single pole-like features (QC1) can be observed. STLS1 has pole-

like features with larger radii, which means that there is a higher probability that the seed 

regions along the cylindrical features with a high point density are misclassified as planar 

regions. For TLS3, the misclassified pole-like features are caused by having several thin beams 

in the dataset. 

2. For interclass competition for neighboring points (QC2), airborne datasets with predominantly 

planar features have a higher percentage of 𝑄𝑄𝐶𝐶𝑖𝑖𝑛𝑛𝑝𝑝𝑒𝑒𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑟𝑟𝑚𝑚𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑟𝑟𝑛𝑛(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟) ; refer to the 

results for the ALS and DIM datasets. On the other hand, 𝑄𝑄𝐶𝐶𝑖𝑖𝑛𝑛𝑝𝑝𝑒𝑒𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑟𝑟𝑚𝑚𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑟𝑟𝑛𝑛(𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑎𝑎𝑙𝑙𝑝𝑝) 

have a higher percentage of datasets with significant portions belonging to cylindrical features 

(i.e., STLS1 and STLS3). 

3. Due to the inherent noise in the datasets as well as the strict normal distance thresholds as 

defined by the derived a-posteriori variance factor, over-segmentation problems (QC4) were 

present. In this regard, one should note that over-segmentation problems are easier to handle 

than under-segmentation, which can arise from relaxed normal-distance thresholds. 

4. Intraclass competition for neighboring points (QC4) was quite minimal, which is evident by 

the reported low percentages for this category. 
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5. For partially/misclassified pole-like features, higher percentages of QC5 when dealing with a 

low number of points in such classes was not an indication of a major issue in the segmentation 

procedure (e.g., QC5 for ALS and DIM where the percentages of the points that belong to pole-

like feature are almost 0% and 4%, respectively). 

6. For partially/misclassified planar features, higher percentages of QC6 should be expected 

when dealing with datasets that have pole-like features with large radii or several 

interconnected linear features that are almost coplanar as was the case for STLS1 and STLS3, 

respectively.   
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(a) 
 

(b) 

 
(c) 

 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Figure 3.17. Perspective views of the segmented point clouds after the QC procedure for the 
ALS–planar (a), DIM–planar (b), STLS1–planar (c), STLS1–pole-like (d), STLS2–planar (e), 

STLS3–planar (f), and STLS3–pole-like (g) datasets; different segments shown in different 
colors 
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Table 3.10. QC measures for the different datasets 
   ALS STLS1 STLS2 STLS3 DIM 

𝑄𝑄𝐶𝐶1 
𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖𝑒𝑒𝑐𝑐 𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒𝑝𝑝/ 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝/ 
𝑄𝑄𝐶𝐶𝑝𝑝𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖𝑒𝑒𝑐𝑐 𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒𝑝𝑝𝑝𝑝 𝑟𝑟𝑒𝑒𝑝𝑝𝑟𝑟𝑝𝑝𝑒𝑒 

101/ 
716,628/ 
≈0.000 

5,439/ 
123,370/ 
0.044 

402/ 
126,193/ 
0.003 

25,484/ 
224,635/ 
0.113 

71/ 
211,553/ 
≈0.000 

𝑄𝑄𝐶𝐶2 
Planar 

𝑝𝑝𝑖𝑖𝑛𝑛𝑐𝑐𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐/ 
𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑒𝑒𝑛𝑛𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑖𝑖𝑐𝑐𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝/ 
𝑄𝑄𝐶𝐶𝑖𝑖𝑛𝑛𝑝𝑝𝑒𝑒𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑟𝑟𝑚𝑚𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑟𝑟𝑛𝑛 

31,700/ 
96,453/ 
0.328 

5,457/ 
52,365/ 
0.104 

2,788/ 
76,055/ 
0.036 

24,469/ 
256,016/ 
0.095 

3,991/ 
18,952/ 
0.210 

𝑄𝑄𝐶𝐶2 
Pole-
like 

𝑝𝑝𝑖𝑖𝑛𝑛𝑐𝑐𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐/ 
𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑒𝑒𝑛𝑛𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑖𝑖𝑐𝑐𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝/ 
𝑄𝑄𝐶𝐶𝑖𝑖𝑛𝑛𝑝𝑝𝑒𝑒𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑟𝑟𝑚𝑚𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑟𝑟𝑛𝑛 

0/ 
812,879/ 
0 

22,193/ 
123,042/ 
0.180 

4,379/ 
194,014/ 
0.022 

29,340/ 
208,937/ 
0.140 

5,198/ 
227,486/ 
0.022 

𝑄𝑄𝐶𝐶3 
Planar 

𝑝𝑝𝑚𝑚𝑒𝑒𝑝𝑝𝑟𝑟𝑒𝑒𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝/ 
𝑝𝑝𝑝𝑝𝑒𝑒𝑟𝑟𝑚𝑚𝑒𝑒𝑛𝑛𝑝𝑝𝑒𝑒𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝/ 
𝑄𝑄𝐶𝐶𝑟𝑟𝑖𝑖𝑒𝑒𝑝𝑝 𝑝𝑝𝑒𝑒𝑟𝑟𝑚𝑚𝑒𝑒𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑛𝑛 

618/ 
801/ 
0.771 

23/ 
59/ 
0.389 

278/ 
367/ 
0.757 

8/ 
86/ 
0.093 

163/ 
195/ 
0.835 

𝑄𝑄𝐶𝐶3 
Pole-
like 

𝑝𝑝𝑚𝑚𝑒𝑒𝑝𝑝𝑟𝑟𝑒𝑒𝑐𝑐 𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒𝑝𝑝𝑝𝑝/ 
𝑝𝑝𝑝𝑝𝑒𝑒𝑟𝑟𝑚𝑚𝑒𝑒𝑛𝑛𝑝𝑝𝑒𝑒𝑐𝑐 𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒𝑝𝑝𝑝𝑝/ 
𝑄𝑄𝐶𝐶𝑟𝑟𝑖𝑖𝑒𝑒𝑝𝑝 𝑝𝑝𝑒𝑒𝑟𝑟𝑚𝑚𝑒𝑒𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑛𝑛 

0/ 
4/ 
0 

21/ 
113/ 
0.185 

8/ 
144/ 
0.055 

152/ 
430/ 
0.353 

38/ 
55/ 
0.69 

𝑄𝑄𝐶𝐶4 
 

𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖𝑝𝑝𝑐𝑐𝑖𝑖𝑛𝑛𝑟𝑟/ 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝/ 
𝑄𝑄𝐶𝐶𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑟𝑟𝑚𝑚𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑟𝑟𝑛𝑛 

21,690/ 
748,227/ 
0.028 

857/ 
123,388/ 
0.006 

4,521/ 
128,579/ 
0.035 

5,427/  
223,620/  
0.024 

3,381/ 
215,473/ 
0.015 

𝑄𝑄𝐶𝐶5 
 

𝑝𝑝𝑒𝑒𝑛𝑛𝑐𝑐𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐 𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝/ 
𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝/ 
𝑄𝑄𝐶𝐶𝑚𝑚𝑖𝑖𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖𝑒𝑒𝑐𝑐 𝑝𝑝𝑟𝑟𝑝𝑝𝑒𝑒−𝑝𝑝𝑖𝑖𝑙𝑙𝑒𝑒 

101/ 
101/ 
1 

5,841/ 
69,447/ 
0.084 

1,866/ 
12,211/ 
0.152 

9,748/ 
275,570/ 
0.035 

3,427/ 
8,146/ 
0.420 

𝑄𝑄𝐶𝐶6 
 

𝑝𝑝𝑚𝑚𝑖𝑖𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖𝑒𝑒𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝/ 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑒𝑒 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝/ 
𝑄𝑄𝐶𝐶𝑚𝑚𝑖𝑖𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖𝑒𝑒𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝 

N/A 
29,647/ 
123,388/ 
0.240 

N/A 
73,187/  
223,620/  
0.327 

N/A 
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(a) After QC1: reclassified pole-like features 

  

(b) After QC2: interclass competition (planar and pole-like) 

 

(c) After QC3: over-segmentation (pole-like) 

Figure 3.18. Examples of improved segmentation quality by the different QC measures 
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Figure 3.18. Continued 

 

  

(d) Before and after QC4: intraclass competition (planar) 

 

(e) After QC5: misclassified pole-like 

 

(f) After QC6: misclassified planar 
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3.7 Summary 

This chapter introduced a new framework for initial point cloud processing procedures, 

which include data characterization, adaptive down-sampling, multi-class simultaneous 

segmentation, and QC of segmentation outcomes. The presented adaptive down-sampling strategy 

only thins point clouds, which may be generated from either laser scanning or dense image 

matching techniques, in planar local neighborhoods while considering the local point density 

within such datasets. More specifically, a probabilistic approach is introduced in this thesis to 

randomly thin a given point cloud in planar local neighborhoods that exhibit higher local point 

density compared to a user-defined approach. This adaptive down-sampling strategy is based on 

the hypothesis that further processing of adaptively down-sampled datasets (segmentation of 

planar, linear/cylindrical, and rough regions) will not be compromised by the proposed thinning 

strategy. Moreover, the linear/cylindrical features may even be enhanced through the proposed 

down-sampling process, especially when a dataset has a large noise-level-to-area ratio.  
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4. DIGITAL BUILDING MODEL GENERATION FOR COMPLEX 
BUILDINGS 

4.1 Introduction 

After discussing the proposed segmentation technique, this chapter will address how the 

derived segments are used for a given application, specifically a digital building reconstruction 

application. The input segments of this application can come from general segmentation 

approaches. The previous steps ensured the derivation of reliable planar, pole-like, and rough 

segments. In this chapter, the desired objects are buildings with planar rooftops. Therefore, the 

procedures here forward focus on processing only planar segments. The digital building model 

generation procedure consists of the following steps: 1) building primitive boundary extraction 

and spike removal, 2) boundary regularization using Enhanced Recursive Minimum Bounding 

Rectangle (ERMBR) approach, 3) boundary regularization using breakpoint detection approach, 

4) integration of the outcome of the two regularization strategies, 5) water-tight DBM generation. 

The flowchart of the proposed strategy is shown in Figure 4.1.  

First, building primitives are identified from the planar segments using ground and non-

ground classification and building hypothesis generation. Then, boundaries of primitives are 

extracted and a spike removal procedure is applied to remove the outliers. Due to the discrete 

nature of point clouds, the initially extracted building boundaries are irregular. Two boundary 

regularization strategies are introduced in this chapter. The first one is ERMBR approach which 

can regularize boundaries with right-angle corners. The second one is using breakpoint detection 

approach to regularize boundaries with multi-orientation and curved segments. The outcome of 

the two regularization strategies are integrated to produce building models with right-angle, multi-
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orientation, and curved boundaries. At the end, a water-tight DBM generation approach is 

presented to consider the topology between adjacent primitives and generate seamless building 

models. 

 

Figure 4.1. Flowchart of digital building model generation procedure 

4.2 Building Primitive Boundary Extraction and Spike Removal 

The extracted planar segments include both ground and non-ground segments. A heuristic 

ground/non-ground classification technique [88] therefore was implemented in this thesis to 

identify non-ground segments. This approach considers the physical properties (the area and slope) 

of the derived planar segments and the discontinuity among them (the ratio of the height difference 

to the planimetric distance (∆H/D) as well as the height difference between the adjacent planar 

segments). For the extracted non-ground planar segments, two criteria are used to generate the 

building hypotheses. First, the area of the planar segments should not be too small. The second 

hypothesis is based on the height difference between the planar segment in question and its 

adjoining ground segment. Thus, when this height difference and the area of the planar segment 

are both greater than their respective thresholds, then the segment could be recognized as a building 

hypothesis. A building can be composed of several differently oriented planar surfaces, denoted 
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here forward as the building primitives. Then, the sequential boundary points of the building 

primitives are tracked based on a search radius and are extracted using the minimum convex hull 

boundary detection method [86]. It is worth mentioning that the search radius for the boundary 

detection method is derived from the LPS of the building primitives.  

The extracted boundary points of a building are irregular and might consist of points that 

do not belong to the rooftop. For example, this could occur when there is a tree next to the building 

primitive in question, which will be manifested as spikes in the boundary. A partial boundary with 

a spike is shown in Figure 4.2(a). To detect such spikes in a nearly straight boundary, the adjacent 

boundary points first are joined by line segments. From the figure, it can be seen that if the smaller 

angle between two adjacent line segments is smaller than a predefined threshold, then it could 

indicate a spike. Therefore, the included angle between each pair of adjacent line segments is 

calculated (Figure 4.2(b)), and the potential spikes are recognized (i.e., angle < Thangle). However, 

a highly irregular boundary or dense boundary points could also result in small included angles 

(Figure 4.2(e)). In such cases, to avoid eliminating building boundary points, the angles between 

the preceding and succeeding pairs of edges (angles 2 and 3 in Figure 4.2(b)) are also considered. 

When the difference between the potential spike angle and its preceding or succeeding angles is 

large (i.e., angle > Thnei), then the point in question is labeled as a spike and removed. For example, 

in Figure 4.2(b), if the difference between angles 1 and 2 or angles 1 and 3 are large, then the 

potential spike (point A) are removed, as shown in Figure 4.2(c). This process is repeated until no 

further spikes are found. After spike removal, Figure 4.2(a) is transformed into Figure 4.2(d).  
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(a) 
 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 4.2. Illustration of spike removal procedure: (a) a partial boundary with a spike, (b) 
smaller angles between two adjacent edges, (c) boundary after removing spike A, (d) boundary 

after removing spike B, and (e) highly irregular boundary 
 

4.3 Boundary Regularization Using ERMBR Approach 

Because of the discrete nature of a point cloud, the extracted boundaries are irregular. An 

ERMBR procedure is introduced in this sub-section to regularized boundaries with right-angle 

corners. First, the RMBR concept [7] and its shortcomings are discussed. Then, the proposed 

ERMBR procedure is introduced. The ERMBR procedure include two parts: (1) simultaneous 

RMBR and LSA integration and (2) generalized RMBR procedure.  

4.3.1 Conceptual Basis of RMBR 

This approach is based on the assumption that the buildings of interest have right-angled 

corners, i.e., either rectangular or a combination of adjoining rectangles. An MBR is a rectangle 
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with the least area that can contain all the given points among the rectangles with arbitrary 

orientations that encompass the region comprised of those points [89]. The RMBR algorithm [7] 

uses a model-driven approach to determine the MBRs for the boundary points. In the case of a 

building that is composed of adjoining rectangles, the MBR will not be fully aligned with the entire 

boundaries. Thus, a recursive approach is applied to determine the boundary points that do not 

overlap with this 1st level MBR and subsequent MBR levels then are derived. The combination of 

these MBRs, as shown later, will define the shape of the derived building model.  

To determine the 1st level MBR, the rotating calipers algorithm [90] is used. First, a local 

coordinate system (UVW) is defined based on the extracted boundary points. A boundary edge 

connecting two neighboring boundary points is defined as the u-axis, and then the v-axis follows 

a right-handed coordinate system. The bounding box is determined using (umax, umin, vmax, vmin) in 

the newly defined coordinate system and the area is calculated. Each of the boundary edges will 

result in a different local coordinate system, and a bounding box is determined for each of these 

cases. Finally, the bounding box with the least area is recognized as the MBR. However, such box 

may not align with the main orientation of the actual building, as illustrated in Figure 4.3. Hence, 

instead of using the area of the rectangle as the criterion, Kwak and Habib [7] used the number of 

points overlapping the boundary of the rectangle as the criterion (i.e., the bounding box with the 

largest value for this overlap ratio would be recognized as the MBR). One should note that the 

extracted boundary points are irregular so the overlapping points are defined using a threshold 

(Thnd) on the normal distance of the points from the closest edge of the MBR. Kwak and Habib [7] 

determined this threshold according to the average point spacing of the whole dataset. However, 

in this thesis, it is determined according to the local point spacing for the building primitive in 

question. 
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(a)                                           (b) 

Figure 4.3. (a) MBR with minimum area and (b) MBR with maximum overlapping points 
 

As mentioned before, the 1st level MBR cannot capture all the details of some complex 

building boundaries, as shown in Figure 4.4(a) and Figure 4.4(b). Therefore, non-overlapping 

boundary points, as shown in Figure 4.4(c), are extracted to reconstruct sub-level MBRs. Every 

stretch of contiguous non-overlapping points marking the deviation from the 1st level MBR is 

regarded as a segment for constructing a new MBR. According to Kwak and Habib [7], a threshold 

for the number of such points (Thpt) is used to decide whether to construct a sub-level MBR. This 

value is determined based on the point density and the desired level of detail. For the reconstruction 

of the second-level MBRs, non-overlapping points in each segment are projected to the 

corresponding edges of the 1st level MBR, as shown in Figure 4.4(d). Then, non-overlapping points 

of the segment as well as their projections are used together to define a new MBR (Figure 4.4(e)). 

After determining the 2nd level MBRs, the shape of the building model is updated according to 

Equation 4.1, where 𝑎𝑎 represents the MBR level and n represents the total number of RMBR levels. 

The shape of the building model after the incorporation of the 2nd level MBRs is illustrated in 

Figure 4.4(f). Then, the 3rd level MBR is reconstructed, as illustrated in Figure 4.4(g-h). This 
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process is iterated to determine subsequent MBR levels and to update the RMBR building model 

until no further non-overlapping points can be found. The final shape of building model is shown 

in Figure 4.4(i). 

RMBR building model =  ∑ (−1)𝑖𝑖+1𝑅𝑅𝑀𝑀𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖=1             (4.1) 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

Figure 4.4. Illustration of the RMBR procedure: (a) initially-extracted boundary, (b) 1st level 
MBR generation, (c) non-overlapping point identification, (d) projected point generation, (e) 2nd 

level MBRs generation, (f) the shape of building model after the incorporation of the second-
level MBRs,  (g)-(i) repeat the procedure of (c) to (f) while considering 3rd level MBR 
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While this approach can retrieve the boundaries for most right-angled buildings, it has 

some shortcomings. First, in some cases, it can be sensitive to the normal distance threshold (Thnd), 

which is used to define non-overlapping boundary points. As a result, if the extracted boundary 

points are highly irregular, then some of the points may be incorrectly classified as non-

overlapping points for smaller threshold values, leading to erroneous sub-level MBRs. Second, 

this approach may be sensitive to the threshold (Thpt) for the number of contiguous non-

overlapping points, which is used to decide whether to use the corresponding segment to construct 

a sub-level MBR. If this threshold (Thpt) is small, irregularities in the boundary points may be 

regarded as details as well and subsequently extracted as part of the boundary. On the other hand, 

when Thpt is large, some important boundary details may not be extracted, such as indicated in red 

in Figure 4.5. Finally, the previous RMBR strategy is suitable in most cases, but some right-angled 

buildings, such as the one shown in Figure 4.6(a), cannot be correctly reconstructed as the 2nd level 

MBRs (rectangles a and c in Figure 4.6(b)) are overlapping. Subtracting these 2nd level MBRs 

from the 1st level MBRs will result in an incorrect building model, as shown in Figure 4.6(c); and 

after adding the third-level MBRs, the shape of building model is different from the actual building 

model, as shown in Figure 4.6(d). 
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(a)                                                                         (b) 

Figure 4.5. Illustration of incorrect building model as a result of inappropriate Thpt value: (a) 
extracted boundary and (b) shape of building model  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.6. Illustration of previous RMBR strategy leading incorrect shape of building model (a) 
the shape of a building, (b) 2nd level MBRs (MBRs – b, d, e, f, and g as well as overlapping 

MBRs – a and c), (c) updated shape of the building model after subtracting the second-levels, 
and (d) incorrect final shape of building model after adding the 3rd level MBR  
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4.3.2 ERMBR Procedure 

In this section, an ERMBR strategy is proposed that can overcome the shortcomings 

mentioned in the previous section. This approach is more generic and can generate right-angle 

building models without any exceptions. The generalized procedure includes two parts: (1) 

simultaneous RMBR and LSA approach and (2) generalized RMBR procedure.  

4.3.2.1 Simultaneous RMBR and LSA Integration 

1st Level MBR Reconstruction and LSA Integration 

After applying spike removal to the LiDAR boundary points, the first-level MBR needs to 

be determined for the building primitive in question. In order to do this, a planar fitting first is 

done to derive the parameters for the best-fitting plane for the primitives in question. Next, a local 

coordinate system (UVW) is defined with the U and V-axes lying along the plane and the W-axis 

being normal to the plane. Then, the procedure described in Section 4.3.1 is used to determine the 

first-level MBR for the building primitive in this local coordinate system. As mentioned before, 

the number of boundary points overlapping with the bounding rectangle is used as the criteria to 

identify the MBR. These overlapping points are detected using a threshold (Thnd) for their normal 

distance from the closest edge of the bounding rectangle. In previous research, Thnd was 

determined according to the average point spacing of the whole dataset. However, the average 

point spacing for each building primitive could be different because of the variations in scan 

angles, surface orientation, surface reflectance properties, and overlapping strips. This thesis 

suggests that Thnd should be defined as a function of the average local point spacing of each 

primitive. Before proceeding to extract the sub-level MBRs, the obtained 1st level MBR are refined 

to ensure that each edge of the 1st level MBR is the best-fitting line for the corresponding 
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overlapping boundary points. Therefore, an LSA is applied to the 1st level MBR to obtain a more 

reliable rectangle. In the LSA procedure, the sum of the squared normal distances (nd) of the 

overlapping boundary points (shown in orange in Figure 4.7(a)) from the corresponding edges of 

the MBR would be minimized to derive a best-fitting rectangle. Five parameters are derived and 

used in the LSA to refine the 1st level MBR: a reference point (u0, v0), length (L1), width (W1), and 

the orientation of the rectangle (𝜅𝜅) as shown in Figure 4.7(b). The target function is shown in 

Equation 4.2 and the normal distances for one of the edges of the rectangle are depicted in Figure 

4.7(c). The refined MBR, as shown in Figure 4.7(d) as the red rectangle, would be aligned with 

the first-level overlapping boundary points.  

𝑝𝑝𝑎𝑎 =  |(𝑖𝑖𝑙𝑙−𝑖𝑖𝑙𝑙+1)𝑟𝑟𝑝𝑝+(𝑟𝑟𝑙𝑙+1−𝑟𝑟𝑙𝑙)𝑖𝑖𝑝𝑝+(𝑟𝑟𝑙𝑙𝑖𝑖𝑙𝑙+1−𝑟𝑟𝑙𝑙+1𝑖𝑖𝑙𝑙)|
�(𝑟𝑟𝑙𝑙+1−𝑟𝑟𝑙𝑙)2+(𝑖𝑖𝑙𝑙+1−𝑖𝑖𝑙𝑙)2

= 0           (4.2)         

where, (𝑢𝑢𝑝𝑝 , 𝑜𝑜𝑝𝑝) denote the coordinates of the boundary point in question 

(𝑢𝑢𝑖𝑖, 𝑜𝑜𝑖𝑖) denote the coordinates of the corners of the first-level MBR and given by: 

(𝑢𝑢𝑖𝑖, 𝑜𝑜𝑖𝑖) =  𝑓𝑓(𝑢𝑢0, 𝑜𝑜0, 𝐿𝐿1,𝑊𝑊1, 𝜅𝜅), 𝑎𝑎 =  0~3  

�
𝑢𝑢1
𝑜𝑜1� = �

𝑢𝑢0
𝑜𝑜0� + 𝐿𝐿1 �

cos 𝜅𝜅
sin𝜅𝜅� 

�
𝑢𝑢2
𝑜𝑜2� = �

𝑢𝑢0
𝑜𝑜0� + 𝐿𝐿1 �

cos 𝜅𝜅
sin𝜅𝜅� + 𝑊𝑊1 �

− sin𝜅𝜅
cos 𝜅𝜅 � 

�
𝑢𝑢3
𝑜𝑜3� = �

𝑢𝑢0
𝑜𝑜0� + 𝑊𝑊1 �

− sin 𝜅𝜅
cos 𝜅𝜅 � 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 4.7. Illustration of simultaneous RMBR and LSA boundary regularization: (a) 
overlapping point identification (orange points), (b) derived parameters from 1st level MBR 

adjustment using LSA, (c) normal distance for an overlapping point to a corresponding edge of 
the MBR, (d) refined 1st level MBR in red, (e) identification of non-overlapping points (blue 

points), (f) projection of non-overlapping boundary points (red points), (g) 2nd level MBR 
generation, (h) LiDAR boundary points overlapping with 2nd level MBRs (orange points), (i) 
refined 2nd level MBRs in red, (j) the shape of building model after the incorporation of the 

second-level MBRs,  and (k)-(m) repeat the procedure of (f) to (j) 
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Figure 4.7. Continued 

 

 

(i) 

 

 

(j) 

 

 

(k) 

 

(l) 

 

(m) 
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Sub-level MBR Reconstruction and LSA Integration 

After deriving the refined 1st level MBR, the non-overlapping boundary points, whose 

distances are larger than the normal distance threshold (Thnd), are detected (shown in blue in Figure 

4.7(e)). As discussed before, previous research used the number of contiguous non-overlapping 

boundary points to determine whether to construct a sub-level MBR for the segment. However, 

this threshold (Thpt) is sensitive to the local point spacing, the noise level of the data, and the 

desired level of detail. In the current approach, the size of a newly defined sub-level MBR is used 

instead to determine whether to incorporate it in the RMBR process. In order to do this, every 

segment containing contiguous non-overlapping boundary points is used to construct a sub-level 

MBR and its area then is calculated and checked against an area threshold (Thar). The sub-level 

MBR is constructed by first projecting the non-overlapping points in a segment to the 

corresponding edges of the current MBR, as shown in red in Figure 4.7(f). Then, these points, 

along with their projected points, are used to define an MBR with the same orientation as that of 

the 1st level MBR by using the projections on the two edges of the 1st level MBR to complete the 

sub-level MBR (Figure 4.7(g)). Again, this sub-level MBR needs to be refined in a similar manner 

as the 1st level MBR, except that the parameters being solved for in the LSA would be different as 

the orientation of the sub-level MBR will be the same as that of the 1st level MBR and is not to be 

included in the LSA. This is illustrated in Figure 4.7(h-i), but the selection of parameters will be 

discussed in more detail later. Finally, if the size of the refined sub-level MBR is larger than the 

threshold (Thar), it is incorporated into Equation 4.1 to update the shape of the RMBR building 

model, as shown in Figure 4.7(j). The newly derived current level then is used to derive further 

sub-level MBRs (Figure 4.7(k)), and this process is repeated until no further significant sub-levels 

can be generated. The final outcome can be seen in Figure 4.7(m). 
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There are two general cases that can arise while generating and refining sub-level MBRs, 

each leading to a different parameter set. 1) The shared-corner case occurs when a sub-level MBR 

and its parent MBR share a common corner. Figure 4.8 illustrates a situation where the reference 

point (u0, v0) is common to the 1st and 2nd level MBRs. 2) The no shared-corners case occurs when 

a sub-level MBR and its parent MBR have no common corners. This is illustrated in Figure 4.9, 

where none of the corners of the 2nd level MBR (u0~3, v0~3) belong to the 1st level MBR. For both 

cases, the four corners and the orientation of the 1st level MBR already have been adjusted. 

Therefore, these refined 1st level parameters should not be changed while modifying sub-level 

MBRs. The gray areas in Figure 4.8(b) and Figure 4.9(b) depict the section of the building 

boundary that is accurate and should not be adjusted, and the yellow area shows the zone to be 

adjusted within the sub-level MBR generation. For the shared-corner case, the only parameters to 

be modified are the length (L2) and width (W2) of the sub-level MBR (Figure 4.8(b)). As for the 

non-shared-corner case, the reference point is not fixed but rather is constrained to lie along the 

common edge between the first and second-level MBRs. Hence, the reference point coordinates 

(u0, v0) for the 2nd level MBR can be derived using the two corners defining the common edge in 

the 1st level MBR, as shown in Equation 4.3. In this case, three parameters are estimated in the 

LSA: the scale (λ), and the length (L2) and width (W2) of the sub-level MBR (Figure 4.9(b)). 

 

�
𝑢𝑢0
𝑜𝑜0� = �

𝑢𝑢𝐴𝐴
𝑜𝑜𝐴𝐴� − 𝜆𝜆 �

𝑢𝑢𝐵𝐵 − 𝑢𝑢𝐴𝐴
𝑜𝑜𝐵𝐵 − 𝑜𝑜𝐴𝐴�                        (4.3)  
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(a)           (b)          

Figure 4.8. Refinement of sub-level MBR for a shared-corner case 

                       

(a)                    (b)           

Figure 4.9. Refinement of sub-level MBR for a non-shared-corner case 

Global Boundary Refinement 

As discussed earlier, an LSA is applied to each level of MBRs generated for a building 

primitive to increase the accuracy of the final building model. However, the target function for 

LSA used to refine these boundaries only takes into account the overlapping points that lie within 

the normal distance threshold (Thnd), as defined by the LPS for that primitive. For example, some 

of the boundary points may not have been used for LSA initially as they may have a normal 

distance greater than the threshold, Thnd. In order to ensure the generation of a more accurate 
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building model, an iterative MBR edge refinement procedure therefore is adopted for each MBR 

edge while keeping its orientation unchanged, where the boundary points to be used in the edge 

refinement procedure are updated after each iteration. The objective function is to have the refined 

edge such that the sum of the normal distances of these overlapping boundary points from the edge 

is equal to zero. In the first iteration, the initially determined MBR edge is refined using the 

boundary points lying within the normal distance threshold (Thnd). To derive a refined edge, a set 

of overlapping boundary points is identified and then a summation of normal distances with sign 

from overlapping points to the edge is calculated. The shifting amount of an MBR edge is based 

on the summation of normal distances and the shifting direction is perpendicular to the direction 

of the MBR edge. In the next iteration, a new set of overlapping boundary points is identified and 

used to further refine the edge. This process is repeated until the maximum number of overlapping 

points are detected for an edge (i.e., no more points could be added). This approach also ensures 

that the refined boundaries are generated using only the LiDAR points that actually define the 

boundary, instead of including the noise-induced points which might result in degradation of the 

quality of the building model. A building boundary before and after refinement are shown in Figure 

4.10 (a) and Figure 4.10 (b), respectively.  

                

                                             (a)                                                        (b)   

Figure 4.10. Illustration of boundary: (a) before refinement and (b) after refinement          
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4.3.2.2 Generalized RMBR Procedure 

Using RMBR algorithm, reliable MBRs in different levels can be identified. These 

rectangles are used to derive the final shape of the building boundary by the alternate subtraction 

and addition of each sub-level of MBRs to the 1st level MBR, as given by Equation 4.1. However, 

as mentioned before, some right-angled buildings, as in Figure 4.6(a), cannot be accurately 

reconstructed using this approach. More specifically, this approach cannot be adopted when two 

or more MBRs belonging to the same sub-level have overlapping areas. The building primitives 

that can give rise to such a scenario are identified by checking whether the MBRs at the same sub-

level have overlapping projections of the non-overlapping boundary points.  

Figure 4.11 illustrates an instance of such a case. The green rectangle is the 1st level MBR. 

The red rectangles are 2nd level MBRs generated from the non-overlapping boundary points and 

their projections. The projections of the 2nd level MBRs (MBR2a and MBR2c) are overlapping. 

Therefore, those 2nd level MBRs are marked as overlapping MBRs. Moreover, the sub-level MBRs 

of an overlapping MBR are also labeled as overlapping MBRs and are grouped together (denoted 

as a single branch of overlapping MBRs). The contribution of these overlapping MBRs to the 

generation of RMBR is modeled differently.  
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Figure 4.11. Detection of overlapping sub-level MBRs  
 

The underlying principle of this newly devised model for the current case is that the general 

MBRs and each branch of overlapping MBRs are modeled individually. The model for the general 

MBRs (excluding the branches of overlapping MBRs) is the same as described before and is given 

by the term A (General Model) in Equation 4.4. Moreover, while modeling each branch of 

overlapping MBRs (consisting of a parent overlapping MBR and its sub-level MBRs), the parent 

overlapping MBR is considered to be the 1st level MBR (denoted by oMBR1), and its sub-level 

MBRs are alternately subtracted or added to the former. The process is given by the term B 

(Overlapping Model) in Equation 4.4. Finally, subtracting B from A generates the final building 

model for such cases. This approach is discussed in detail later using an example and illustrated 

schematically in Figure 4.12. 
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building model =  𝐴𝐴 − 𝑀𝑀                     (4.4) 

𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 𝑅𝑅𝑜𝑜𝑎𝑎𝑝𝑝𝑝𝑝: 𝐴𝐴 =  �(−1)𝑖𝑖+1𝑅𝑅𝑀𝑀𝑅𝑅𝑖𝑖 
𝑛𝑛

𝑖𝑖=1

 

𝑂𝑂𝑜𝑜𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑔𝑔 𝑅𝑅𝑜𝑜𝑎𝑎𝑝𝑝𝑝𝑝: 𝑀𝑀 =  �(−1)𝑗𝑗+1𝑜𝑜𝑅𝑅𝑀𝑀𝑅𝑅𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

where, 𝑅𝑅𝑀𝑀𝑅𝑅𝑖𝑖 = the MBRs at ith level 

          n = the maximum number of MBR  

           m = the maximum level in a branch of overlapping MBRs (oMBR) 

 

Figure 4.12 (a) shows the building that was previously detected as having overlapping sub-

level MBRs and the approach discussed above is applied to generate its building model. The green 

rectangle in Figure 4.12 (b) denotes the 1st level MBR for this building, and Figure 4.12 (c) shows 

the corresponding 2nd level MBRs. The 2nd level MBRs (b, d, e, f, and g) are general MBRs and, 

the 2nd level MBRs (a and c) are overlapping MBRs (as discussed previously in  

Figure 4.11). Therefore, the general sub-level MBRs are subtracted from the 1st level MBR, 

as shown in Figure 4.12 (d). The resultant RMBR corresponds to the term A in Equation 4.4. MBRa 

is an overlapping MBR and its sub-level MBR is depicted as blue rectangles in Figure 4.12 (e). 

These oMBRs are grouped together as a single branch. According to the definition of the term B 

in Equation 4.4, the blue rectangles are subtracted from the red rectangle, as shown in Figure 4.12 

(f). Finally, the resultant RMBR corresponding to term B (Overlapping model) is subtracted from 

the RMBR corresponding to term A (General model) to generate the appropriate building model 

for this case, as shown in Figure 4.12 (g). 
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(a)       (b) 

 

(c) 

 

(d) 

Figure 4.12. Generalized RMBR procedure: (a) original building, (b) 1st level MBR, (c) 2nd level 
MBRs, (d) subtraction of general 2nd level MBRs, (e) RMBR process of overlapping MBRs, (f) 

subtraction of overlapping 2nd level oMBR, and (g) final building model obtained from the 
subtraction of overlapping models (B1 and B2) from the general model (A) 
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Figure 4.12. Continued 

 

(e) 

 

(f) 

 

(g) 
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4.4 Boundary Regularization Using Breakpoint Detection Approach 

The ERMBR approach is suitable for right-angle buildings with single orientation, but it 

cannot deal with multi-orientation buildings as well as curved boundaries. Therefore, this section 

presents another strategy to regularized boundaries using breakpoint detection approach. The 

approach, inspired from Forstner [91], models for reconstructing one-dimensional surface profiles. 

Forstner [91] reconstructed 1D profile under an assumption that the curvature between the 

consecutive profile points should be zero. According to the assumption, breakpoints of the profile 

can be detected since breakpoints do not have zero curvature between the consecutive points. The 

building boundary can have the same assumption that the curvature between the consecutive 

boundary points should be zero and corners can be detected because the corners do not follow the 

assumption. The breakpoint detection approach for 1D profile is introduced in Section 4.4.1. The 

breakpoint detection approach for 2D building boundary points is discussed in Section 4.4.2. Then, 

the boundary regularization using the detected breakpoints is introduced in Section 4.4.3. 

4.4.1 Conceptual Basis of Breakpoint Detection Approach for 1D Profile 

The one-dimensional profile model assumes the unknowns {x(i), i = 1,….,I} are an equal 

space sequence. Since the distances between a set of given observations are different, the 

observations are densified into equal space. The observation with noise can be model as Equation 

4.5. The noise of the observation is assumed to be independent, which means that the observations 

are statistically independent and have the same weights 𝑤𝑤𝑐𝑐 = 1/𝜎𝜎𝑐𝑐2.  
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𝑥𝑥𝑚𝑚 = 𝑥𝑥(𝑎𝑎) + 𝑝𝑝𝑐𝑐                                                           (4.5) 

where, 

𝑝𝑝 = 1 … …𝑅𝑅  

M: number of observations 

x(i): unknown profile value at the given observation with a range from 1 to M 

𝑝𝑝𝑐𝑐: noise ~ (0,𝜎𝜎𝑐𝑐2), independent of m 

The objective is to estimate the unknowns from a given set of observations. An illustration 

of modeling a 1D profile is shown in Figure 4.13. The solid circles are the observations, and the 

hollow circles are the unknowns (the densified and smoothed points). To derive the unknowns, an 

assumption is introduced that the curvature should be zero for the neighboring densified points. 

Setting curvature as zero means that the profile should be smooth. The approximate curvature is 

derived by the second derivative. The stochastic constraint of the curvature is shown in Equation 

4.6, which is also regarded as smoothness constraint. The smoothness constraint random deviation 

has mean zero and a standard deviation 𝜎𝜎𝑐𝑐 which can be used as a weight in profile reconstruction, 

as shown in Equation 4.7.  
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Figure 4.13. Illustration of modeling the surface profile 
 

𝑐𝑐𝑖𝑖 = 𝑥𝑥(𝑎𝑎 − 1) − 2𝑥𝑥(𝑎𝑎) + 𝑥𝑥(𝑎𝑎 + 1) + 𝑝𝑝𝑐𝑐                                               (4.6) 

where,  

i = 2, …. I-1 

I = number of profile points to be densified and smoothed 

𝑝𝑝𝑐𝑐: smoothness random deviation ~ (0,𝜎𝜎𝑐𝑐2) 

𝑤𝑤𝑐𝑐 = 1/𝜎𝜎𝑐𝑐2                                                                  (4.7) 

The profile reconstruction considers observation equations with stochastic constraints, as 

shown in Equations 4.8 and 4.9. Hence, the profile reconstruction can be expressed with 

observation equations and stochastic constraints as shown in Equation 4.10. The unknowns can be 

derived by minimizing the weighted sum of the squared residuals, as shown in Equation 4.11. 

Since the curvature, 𝑐𝑐𝑖𝑖, is assumed to be zero, the normal equation can be rewritten into Equation 

4.12. The stochastic constraints have large residuals at breakpoints. The weights of stochastic 

constraints with large residuals are adjusted through an iterative LSA procedure while reducing 
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the weight for the curvature constraint with large residuals. In the iterative LSA procedure [91], 

the Huber weight function is adopted in the first three iterations to ensure that the weights of 

stochastic constraints with large residuals can be reduced quickly and the global optimum is 

guaranteed. The exponential weight function is used in the last three iterations to ensure that 

stochastic constraints with large residuals have no influence on the estimations. At the last iteration, 

the weights of the stochastic constraints with a small value are assigned a zero weight, and the 

weights of the rest constraints are assigned equal weight to derive the unknowns (densified and 

smoothed points).  

 

 𝑥𝑥𝑚𝑚 = 𝑥𝑥(𝑎𝑎) + 𝑝𝑝𝑐𝑐,   𝐿𝐿(𝑥𝑥𝑚𝑚) =  𝜎𝜎𝑐𝑐2 ,     𝑤𝑤ℎ𝑝𝑝𝑟𝑟𝑝𝑝 𝑝𝑝 = 1 … …𝑅𝑅                           (4.8) 

𝑐𝑐𝑖𝑖 = 𝑥𝑥(𝑎𝑎 − 1) − 2𝑥𝑥(𝑎𝑎) + 𝑥𝑥(𝑎𝑎 + 1) + 𝑝𝑝𝑐𝑐,     𝐿𝐿(𝑐𝑐𝑖𝑖) =  𝜎𝜎𝑐𝑐2,    𝑎𝑎 = 2 … … 𝐼𝐼 − 1                   (4.9) 

�𝑥𝑥𝑐𝑐� = �𝐴𝐴1
𝐴𝐴2� 𝑥𝑥 + �

𝑝𝑝𝑐𝑐
𝑝𝑝𝑐𝑐�   , 𝐿𝐿 ��

𝑥𝑥
𝑐𝑐�� =  �

𝛴𝛴𝑐𝑐𝑐𝑐 0
0 𝛴𝛴𝑐𝑐𝑐𝑐

� = �
𝜎𝜎𝑐𝑐2 𝐼𝐼𝑀𝑀 0

0 𝜎𝜎𝑐𝑐2 𝐼𝐼𝐼𝐼−2
�                    (4.10) 

𝛺𝛺(𝑥𝑥) =  𝑝𝑝𝑐𝑐𝑇𝑇𝛴𝛴𝑐𝑐𝑐𝑐−1𝑝𝑝𝑐𝑐 + 𝑝𝑝𝑐𝑐𝑇𝑇𝛴𝛴𝑐𝑐𝑐𝑐−1𝑝𝑝𝑐𝑐                                                    (4.11) 

�𝐴𝐴1𝑇𝑇𝑊𝑊𝑐𝑐𝑐𝑐𝐴𝐴1 + 𝐴𝐴2𝑇𝑇𝑊𝑊𝑐𝑐𝑐𝑐𝐴𝐴2�𝑥𝑥 = 𝐴𝐴1𝑇𝑇𝑊𝑊𝑐𝑐𝑐𝑐𝑝𝑝                                              (4.12) 

4.4.2 Breakpoint Detection Approach for 2D Building Boundary 

The introduced breakpoint detection strategy is used for a one-dimensional profile. 

However, LiDAR boundary points are in UV coordinates which mean that boundary points are in 

2D. In order to use this approach, the building boundary is treated as two one-dimensional profiles 

in U-direction and V-direction, separately, to identify breakpoints.   

First, the boundary points are regarded as observations in UV coordinates and the densified 

and smoothed points are treated as unknowns. The 1D breakpoint detection approach is applied to 

boundary points in both U and V directions, as shown in Figure 4.14 (a). A corner can be identified 
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when a densified and smoothed point is detected as a breakpoint either in the U or V profile. Figure 

4.14 (b) shows the boundary points in the U-direction and V-direction (black dot), densified and 

smoothed points (gray dot), and breakpoints (red circle). 

 

 
(a) 

 
(b) 

 
Figure 4.14. Breakpoint detection for building boundary (a) 1D (U-direction and V-direction) 

profiles of building boundary, (b) 2D building boundary, black: LiDAR boundary points, gray: 
densified and smoothed points, red: breakpoints 

4.4.3 Boundary Regularization Using Detected Breakpoints 

A boundary regularization using the detected breakpoints is proposed in this sub-section. 

First, the straight-line and curved segments of a building primitive are identified using the detected 

breakpoints. Second, the segments identified from wrongly extracted breakpoints are recognized 
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and corrected. Third, the vertices of the breakpoint detection (BD) boundary are generated through 

an intersection of neighboring segments.  

 After recognizing the breakpoints, segments are extracted by tracking the successive 

densified and smoothed points which are not deemed to be breakpoints. Then, the corresponding 

LiDAR boundary points to each segment are identified through assigning each LiDAR boundary 

point to the closest segment. For a segment, two model-fitting procedures (i.e., straight-line model 

and arc model) are applied to the corresponding LiDAR boundary points to derive both straight-

line/arc parameters together with the respective a-posteriori variance factor. A segment is 

determined as a curved segment instead of straight-line segment when the former's a-posteriori 

variance factor is much smaller than the straight-line-based one. Incorrected breakpoints could be 

extracted because of highly irregular boundary points, which is shown in Figure 4.15. Therefore, 

neighboring straight-line segments are checked to ensure that they do not belong to a single straight 

line. When neighboring straight-line segments are deemed to belong to the same line, those two 

segments are combined into one straight-line segment. Two criteria are used to merge the 

neighboring straight-line segments into one segment. First, neighboring straight-line segments are 

close to being parallel. Second, the a-posterior variance factors of fitted merged straight-line 

segment is close to the a-posterior variance factors before merging.  

 

Figure 4.15. Wrongly detected breakpoints 
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After identifying the segments of a building primitive, vertices of a BD boundary are 

generated through the intersection of the neighboring segments, either a vertex between two 

straight-line segments or a vertex between a straight-line segment to a curved segment. Three 

situations could happen in the intersection procedure. First, an intersection of two neighboring 

segments (namely, extracted segments) is close to the breakpoints between the segments (i.e., 

distance < Thvertices-dist). Then, this intersection is regarded as a correct vertex, as shown in Figure 

4.16.  

 

Figure 4.16. Correct vertex derived from an intersection of neighboring segments 
 

Second, an intersection of two neighboring segments (extracted segments) is far from the 

breakpoints between the segments (i.e., distance > Thvertices-dist). The intersection is regarded as a 

wrong vertex. This situation could happen when the segments are not really neighboring segments. 

More specifically, a straight-line segment is missing between those two segments because the 

missing segment is identified as breakpoints. Figure 4.17 (a-b) shows the wrong vertices derived 

from the intersection of two straight-line segments and the intersection of a straight-line segment 

to a curved segment. In this situation, a straight-line segment is fitted through the breakpoints 

(namely, breakpoint segment) between the two neighboring segments in question. Then, the 
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vertices are derived from the extracted segment and breakpoint segment, as described in Figure 

4.17 (c-d).  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.17. Wrong vertex derived from the intersection of neighboring segments and the 
derivation of correct vertices: (a, c) a straight-line segment to a straight-line segment, (b, d) a 

straight-line segment to an curved segment 
 

Third, both the intersection of two neighboring extracted segments as well as the 

intersection of breakpoint segment and extracted segment are far from the breakpoints (i.e., 

distance > Thvertices-dist), as shown in Figure 4.18. This situation could happen when the densified 
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points are over-smoothed and breakpoints are not detected correctly. In this case, the middle 

breakpoint between two neighboring extracted segments is used as a vertex. One should note that 

the derived vertex in this case could be incorrect. Therefore, an integration of the outcome of the 

BD and ERMBR strategies are introduced in next section. 

 

Figure 4.18. Wrong vertex from both extracted segments and breakpoint segment 
 

4.5 Integration of the Outcome of the Regularization Strategies  

Both ERMBR and BD approaches have their strengths and weaknesses. ERMBR strategy 

can produce reliable outcome for single orientation and right-angle buildings, but it cannot 

reconstruct buildings with multi-orientation and curved boundaries. Moreover, since the stopping 

criteria for reconstructing the next layer MBR is the size of the area, when boundary points are 

highly irregular, the regularized boundaries could be partially incorrect. Examples of incorrectly 

regularized boundaries generated from ERMBR strategy are shown in Figure 4.19. On the other 

hand, the BD strategy can help in regularizing building primitives with multi-orientation or curved 

boundaries. However, the densified points could be over-smoothed in BD approach, so breakpoints 

cannot be identified correctly and regularized boundaries cannot be generated correctly. 

Furthermore, this approach cannot maintain right-angle in the regularization process. Examples of 



119 
 

the disadvantages of BD approach are depicted in Figure 4.20. Therefore, this section addresses a 

strategy to utilize the strengths of those two regularization approaches and derive an integration 

boundary from BD boundary and ERMBR boundary.  

 

 

(a) 

 

 

(b) (c) 

Figure 4.19. Example of the disadvantage of ERMBR approach, (a) orthophoto, (b) primitive 
with multi-orientation and curved boundary, (c) primitive with highly irregular boundary points, 

red dot: vertices of ERMBR boundaries, black dot: LiDAR boundary points, blue line: 
regularized boundaries 
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(a) 

 

(b) 

 

(c) 

Figure 4.20. Example of the disadvantage of BD approach, (a) orthophoto, (b) incorrectly 
regularized boundary, (c) regularized boundary without right-angle corners, red dot: vertices of 

BD boundaries, black dot: LiDAR boundary points, grey dot: densified and smoothed points, red 
circle: breakpoints, blue line: regularized boundaries, green line: LiDAR boundary 

 

To integrate the outcome from ERMBR and BD approaches, every segment of a BD 

boundary is classified as a trustable segment or a non-trustable segment based on the a-posterior 

variance factor of the fitted segment. The threshold for the segment classification is based on LPS 

of each primitive. Then, corresponding segment pairs between ERMBR boundaries and BD 

boundaries are identified. To identify corresponding segment pairs, two endpoints of each segment 

from a BD boundary can correspond to two closet vertices of an ERMBR boundary. Segments 

within two vertices of an ERMBR boundary are regarded as correspondences to the segment from 

a BD boundary in question. Every segment of a BD boundary corresponds to one/many segments 
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of an ERMBR boundary. Three situations are considered in the integration of a corresponding 

segment pair.  

For the first situation, a trustable segment of a BD boundary corresponds to one/many 

segments of an ERMBR boundary and the orientation of a trustable segment is close to the 

orientation of ERMBR (i.e., angle difference < Thsegment-ori). The ERMBR orientation is regarded 

as a reliable orientation since it is derived from the whole boundary instead of a segment. The 

trustable segment is fitted to a straight line which aligns with the ERMBR orientation through the 

corresponding LiDAR boundary points. The fitting procedure has been mentioned in Section 

4.3.2.2. When a segment pair is one segment to one segment, which is depicted as PairA in Figure 

4.21, the segment from the ERMBR boundary can be adopted without the fitting process. 

However, when the segment pair is one segment to many segment, the fitting process is applied to 

adjust the trustable segment. One should notice that this step can avoid the artificial segments of 

ERMBR boundary (i.e., segments are introduced by noise of point clouds) and also allow for 

regularized primitive with right-angle corners, as shown in Figure 4.22.  

For the second situation, a trustable segment of a BD boundary corresponds to one/many 

segments of an ERMBR boundary and the orientation of a trustable segment is different from the 

orientation of ERMBR (i.e., angle difference > Thsegment-ori). The trustable segment is adopted in 

the integrated boundary. This step can allow for regularized primitives with multi-orientation. The 

illustration of the second situation is shown as PairB in Figure 4.21. For the third situation, a non-

trustable segment of a BD boundary corresponds to one/many segments of an ERMBR boundary. 

The corresponding segments from an ERMBR boundary are used, as described as PairC in Figure 

4.21. In this way, the incorrect segments from ERMBR boundaries can be avoided. After 
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integrated the outcome from BD and ERMBR boundaries, the vertices of the integrated boundary 

are updated through the intersection of neighboring segments. 

 

 

Figure 4.21. Illustration of integration of the outcome of the BD and ERMBR strategies 

 

Figure 4.22. Illustration of integration strategy that can avoid incorrect segments from ERMBR 
boundaries and derive the boundaries with right-angle corners 

 

4.6 Water-tight DBM Generation 

Neighboring building primitives, which share a common vertical wall in the real world, 

should have seamless models which have no gaps between them. However, the regularized 

boundary for each building primitive is derived separately and no topological relationship is 

established or considered between the boundaries, so gaps might exist between adjacent 
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boundaries. In this section, a water-tight DBM generation approach is proposed for the alignment 

and merging of the integrated boundaries for neighboring building primitives. First, we need to 

identify adjacent segments from neighboring primitives. Second, neighboring primitives with all-

straight line segments and similar orientation are adjusted to the same orientation. Finally, adjacent 

segments shared amongst the neighboring primitives are merged together depending on whether 

they are 1) parallel straight-line segment (Figure 4.23 - a), 2) non-parallel straight-line segment 

(Figure 4.23 - b), 3) curved segment to straight-line segment (Figure 4.23 – c), or 4) curved 

segment to curved segment (Figure 4.23 - d). The above steps for water-tight DBM generation are 

discussed in detail in the forthcoming sections. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.23. Illustration of different types of edge merging (a) parallel straight-line segment 
merge, (b) non-parallel straight-line segment merge, and (c) curved segment to straight-line 

segment merge, and (d) curved segment to curved segment merge 
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4.6.1 Identification of Adjacent Segments from Neighboring Primitives  

The first step in the generation of water-tight building models is to identify adjacent 

segments among the different building primitives. This is done using the original LiDAR boundary 

points and LPS of their respective primitives to identify neighboring primitives. Adjacent segments 

of regularized integrated boundaries between neighboring primitives are identified using the 

corresponding LiDAR boundary points and their LPS. Every LiDAR boundary point would belong 

to the closest segment. Neighboring primitives in two dimension, XY-direction, of a LiDAR 

boundary in question are identified by defining a search radius for every LiDAR boundary point 

based on the LPS. The boundary points within the search radius can represent the closest segments 

of neighboring primitives. Therefore, the adjacent segments of regularized boundary among the 

neighboring primitives can be derived. An example of identification of adjacent segments from 

neighboring primitives is shown in Figure 4.24.  Figure 4.24 shows two neighboring primitives 

with their LiDAR boundary points. The neighboring primitive and the adjacent segment can be 

identified using a search radius of a point in question. In this case, primitives A and B are deemed 

to be neighboring to each other. Moreover, segment 2 of primitive A and segment 4 of primitive 

B are regarded as being adjacent to each other.  
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Figure 4.24.  Illustration of identification of adjacent segments from neighboring primitives 
 

4.6.2 Alignment for Primitive with All Straight-line Segments  

Before merging parallel straight-line segment, the entire cluster of similarly oriented 

neighboring primitives with all straight-line segments needs to be commonly oriented to align the 

primitives in the same direction. This is required to maintain the right-angled nature of the 

primitives after segment merging. When the orientation difference between neighboring primitives 

with all straight-line segments is smaller than a threshold (Thprimitive-ori), they are grouped into the 

same cluster. The modified orientation for the cluster is derived by computing the weighted 

average of the individual primitive orientations. The weights are determined based on the area of 

the primitives, with a higher weight assigned to the primitives with larger area, as the orientation 

of a primitive with larger area is considered to be more reliable. An illustration of primitive 

alignment is shown in Figure 4.25.  
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Figure 4.25. Illustration of primitive alignment for primitives with all-straight line segments 

4.6.3 Segment Merging  

After adjusting the orientation of primitives with all straight-line segments and identifying 

adjacent segments, the adjacent segments are merged and adjusted depending on their types. For 

adjacent parallel straight-line segments, the LiDAR boundary points corresponding to adjacent 

parallel segments are fitted a new straight line in the same orientation for these segments. Then, 

the vertices of regularized merged primitives are updated through the intersection of neighboring 

segments. Figure 4.26(a) and (b) show neighboring primitives before and after segment merging, 

respectively. For adjacent non-parallel straight-line segment pair, as depicted in Figure 4.27 (a), 

the longer segment would be regarded as the reliable one. So, its position and orientation are fixed 

during the merging process and it is merged with the other segment by modifying the latter. This 

is done by directly projecting the short segment onto the longer one and then, the vertices of 

regularized merged primitives are updated through the intersection of neighboring segments, as 

shown in Figure 4.27 (b). For adjacent straight-line to curved line segment pair, the process is 

similar to the non-parallel straight-line segment merging. The longer segment is regarded as the 

reliable one and the short segment is projected onto the longer one. The projection is done by 
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assigning the parameters (i.e., arc parameters or straight-line parameters) of the longer segment to 

the shorter segment. In the Figure 4.28 (a), there are totally six adjacent segment pairs. Hence, the 

projection would be applied six times. Those six segments from primitive B would be assigned the 

same arc parameters of the adjacent segment from primitive A. After the projection, the vertices 

of regularized merged primitives are updated through the intersection of neighboring segments. In 

the vertices update procedure, when the neighboring segments have the same parameters (i.e., arc 

parameters or straight-line parameters), the intersection would not be apply, as shown in Figure 

4.28 (b). For adjacent curved segment pair, the LiDAR boundary points corresponding to adjacent 

curved segments are fitted a new curved line, as shown in Figure 4.29. After merging the adjacent 

segments, vertices of regularized merged primitives are updated through the intersection of 

neighboring segments. 

 

 

(a) 

 

(b) 

Figure 4.26. Illustration of (a) before, and (b) after parallel straight-line segment merging 
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(a) 

 

 

(b) 

Figure 4.27. Illustration of (a) before, and (b) after non-parallel straight-line segment merging 
 

 

(a) 

 

(b) 

Figure 4.28. Illustration of (a) before, and (b) after straight-line and curved segment merging 
 

 

(a) 

 

(b) 

Figure 4.29.  Illustration of (a) before, and (b) after curved segment merging 
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4.7 Experimental Results 

To illustrate the performance and the feasibility of the proposed methodology, this section 

provides experimental results from real airborne LiDAR dataset. This dataset is captured by an 

Optech 3100 from two different flying heights, 1 km and 1.4 km. The target area is a semi-urban 

area consisting of buildings with right-angled, multi-orientation, and curved boundary. The extent 

of the covered area is 2 km x 1.4 km and the average point spacing of the whole dataset is 

approximately 0.62m. Figure 4.30 shows a perspective view of the point cloud data which is 

colored based on height. The following sections provides the building identification and boundary 

extraction results, boundary regularization results, and water-tight DBM results. Before discussing 

the experimental results, different thresholds, the rationale for setting them up, and the utilized 

numerical values are introduced first and shown in Table 4.1.  

 

 

  

 

Figure 4.30. Perspective view of the LiDAR point cloud colored by height 
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Table 4.1. Pre-defined thresholds used for DBM generation 
Name of Threshold Value Rationale 

Building Hypotheses Identification (Section 4.2) 

Area of segments 30 m2 A value represents the minimum size of primitive 
in that area. 

Height difference between 
segments and ground segments 

1.5 m A value represents the lowest building in that area. 

Spike Removal (Section 4.2) 

Size of included angle to define 
potential spike (Thangle) 

80º  The potential spike should be large to ensure that 
all the spikes can be identified.  

The difference between the 
potential spike angle and its 
neighboring angles (Thnei) 

40º   The difference should be large while avoiding the 
risk of missing any spike. 

ERMBR Procedure (Section 4.3) 

Area threshold to incorporate 
the sub-level MBR (Thar)  

5 m2 The area size should be set-up in a way to ensure 
that the area is small enough to generate the details 
of building models while avoiding the risk of 
producing the artifact details.  

Boundary Regularization Using Breakpoint Detection Approach (Section 4.4) 

Distance threshold to define 
correct vertex (Thvertices-dist) 

2 m The discrete boundaries may not include the 
corners of buildings. A correct vertex could have a 
considerable distance from boundaries. Therefore, 
Thvertices-dist should be large enough to ensure that a 
correct vertex can be identified while avoiding the 
risk of mis-judgement the wrong vertex as correct 
vertex. 

Integration of the Outcome of the Regularization Strategies (Section 4.5) 

Orientation threshold to define 
whether segments have the 
similar orientation with 
ERMBR boundary (Thsegment-ori) 

6º The value should be small to avoid modifying 
segments into wrong orientation. 

Water-tight DBM Generation (Section 4.6) 

Orientation threshold to define 
whether primitives should be 
clustered (Thptimitve-ori) 

6º The value should be small to avoid modifying 
primitives into wrong orientation. 
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4.7.1 Building Identification and Boundary Extraction Results  

The data processing starts by applying a multi-class simultaneous segmentation to partition 

the point cloud into planar, pole-like, and rough segments, which are shown in Figure 4.31 (a). 

Since the purpose of this thesis is to reconstruct buildings with planar rooftops, it only focuses on 

the planar segments. The segmented result could have over-segmentation and invasion issues as 

discussed in Section 3.5; therefore, a QC process is applied to the planar segments. Figure 4.31 (b) 

shows the planar segments after the QC procedure. Then, a ground and non-ground classification 

technique is used to identify above-ground objects. Figure 4.31 (c) shows non-ground segments in 

red and ground ones in green. After extracting non-ground objects, two criteria listed in Table 4.1 

are used to identify the building hypotheses, as shown in Figure 4.31 (d). Finally, the boundary 

points of the generated building hypotheses are extracted in order to reconstruct the building 

models, as shown in Figure 4.31 (e).  
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(a)  

(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4.31. (a) Segmentation results, (b) planar segments after QC procedure, (c) ground/non-
ground classification, (d) building hypothesis, (e) building boundary 
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4.7.2 Boundary Regularization Results 

This section provides the boundary regularization results from the integration of the 

outcome of the ERMBR and DB strategies. The integrated models are shown on top of the 

orthophoto in Figure 4.32 (a). Some complex areas are marked in Figure 4.32 (a) and closer 

inspections are shown in Figure 4.32 (b-g). Figure 4.32 (b) shows that right-angle buildings were 

reconstructed correctly. Figure 4.32 (c) shows a primitive colored in purple with overlapping 

RMBR which could not be reconstructed correctly using the strategy proposed by Kwak and Habib 

[7] but was reconstructed correctly using the strategy proposed in this thesis. Figure 4.32 (d) shows 

building primitives with multi-orientation that could be reconstructed correctly. However, the 

building model for the inner structure colored in yellow mainly came from ERMBR procedure 

because its corners could not be identified in the BD strategy. Figure 4.32 (e & f) shows that multi-

orientation and right-angle buildings were reconstructed correctly. Figure 4.32 (g) shows buildings 

with right-angle, multi-orientation, and curved boundaries. For the primitive colored in green, its 

corners could not be identified in the BD strategy. Therefore, the segments of this model came 

from the ERMBR approach. 
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(a) 

 

(b) 

 

(c) 

Figure 4.32. Integrated models derived from the integration of the outcome of ERMBR and 
BD approaches (a) overview of whole area, (b)-(g) zoom-in areas 
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Figure 4.32. Continued 

 

(d) 

 

(e) 

 

(f) 

 

(g) 
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In order to evaluate the performance of the proposed approach, the integrated models need 

to be quantitatively evaluated against a reference dataset that is highly accurate. The reference 

dataset for comparison was generated by manually measuring corners in the corresponding true 

orthophoto [92] that has a GSD of 20 cm. The true orthophoto was produced using a set of aerial 

imagery scanned for a 6 cm GSD and the reconstructed building models [93]. The test area used 

for this study consists of 447 primitives. The planimetric coordinates for 1004 corners were used 

to perform the statistical analysis to validate the accuracy of the proposed approach. The location 

of the manual measurements is shown in Figure 4.33. Some areas with small primitives were not 

considered in the validation procedure because the extracted LiDAR boundaries of those small 

primitives were incorrect and the regularized boundaries would be also incorrect, as shown in 

Figure 4.34. There were two reasons to produce the incorrect boundaries. First, trees around the 

buildings could affect the extraction of segments. Then, derived LiDAR building boundaries could 

include points on trees. Moreover, the point spacing of this datasets was relatively large to derive 

high-quality small roof patches.  
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Figure 4.33. Reference data for validation (blue line: integrated models, red points: manual 
measurements) 

 

(a) 

 

(b) 

Figure 4.34 Incorrect results that were not included in the validation procedure (a) LiDAR 
boundaries, (b) integrated models 
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Table 4.2. Statistical evaluation of the deviation between the reference dataset and the integrated 
models 

 X (m) Y(m) 

Absolute min 0.000 0.000 

Absolute max 2.347 1.871 

Absolute mean 0.364 0.399 

Absolute standard deviation 0.294 0.343 

Mean -0.076 0.061 

Standard deviation 0.462 0.521 

RMSE 0.468 0.524 

 

Table 4.2 shows the statistical evaluation of the deviation between the reference dataset 

and the integrated models. As tabulated, the RMSE in X-direction is 46.8 cm and in Y-direction is 

52.4 cm. Apart from the accuracy of the boundary regularization using the proposed approach, 

there were several other sources of error which were inevitable in a test area. For instance, an 

extracted planar rooftop segment would not include the points on the parapet (a low protective 

wall along the edge of a roof) as the latter would have heights different from the height of points 

belonging to the rooftop. Figure 4.35 (a) shows a rooftop with parapet with the corresponding 

segmented points in blue and the LiDAR boundary in green (the segmented points did not include 

those representing the parapet). Therefore, the generated building models may deviate from the 

parapet, Figure 4.35 (b). Moreover, when an edge of a building boundary was short, i.e., as 

highlighted by the yellow circle in Figure 4.36 (b), the extracted boundary points may not be 

accurate enough to define the edge. So, the reconstructed segments in the regularized model could 

be inaccurate. 
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(a) 

 

(b) 

Figure 4.35. Building with a parapet: (a) segmented points (blue) and LiDAR boundary (green), 
and (b) building model in red 

 

 

(a) 

 

(b) 

Figure 4.36. Building with short segments: (a) LiDAR boundary (green), and (b) building model 
in red 
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4.7.3 Water-tight DBM Results 

From the results shown in Figure 4.32, it is obvious that there are gaps between the models 

associated with contiguous building primitives. In order to provide more realistic building models, 

the water-tight building model strategy is adopted to merge both the straight-line and curved 

segments. Figure 4.37 shows the comparison between the building primitives before and after 

applying the water-tight DBM generation strategy. Figure 4.37 (a) and (b) show an example of 

parallel straight-line segment merging, from which it is evident that right-angled buildings can be 

aligned and merged appropriately. The area in Figure 4.37 (c) and (d) mainly depicts curved 

segment to curved segment and straight-line segment merging. One should note that some 

primitives may not be modeled correctly, as highlighted by the yellow circle in Figure 4.37 (c), 

but the shape of models can be improved in the water-tight DBM generation strategy. Figure 4.37 

(e) and (f) depict a complex building with both parallel and non-parallel straight-line segment 

merging. The reconstructed buildings can be displaced as 3D building models in ArcGIS software. 

Some samples of 3D building models corresponding to the areas in Figure 4.37 are shown in Figure 

4.38.     
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 (a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.37. Comparison between the building primitives before and after applying water-tight 
building model generation strategy: (a) – (b) parallel straight-line segment merging, (c) – (d) 

non-parallel segment merging (curved-line to curved-line), and (e) – (h) parallel and non-
parallel straight-line segment merging 
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Figure 4.37. Continued 

 

(e) 

 

(f) 
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(a) 

 

(b) 

 

(c) 

Figure 4.38. Produced 3D seamless digital building models from the proposed methodology 
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Table 4.3. Statistical evaluation of the deviation between the reference dataset and the generated 
water-tight building models 

 X (m) Y(m) 

Absolute min 0.001 0.001 

Absolute max 1.957 1.858 

Absolute mean 0.358 0.419 

Absolute standard deviation 0.292 0.342 

Mean -0.075 0.047 

Standard deviation 0.456 0.539 

RMSE 0.462 0.541 

 

    The same reference data (i.e., 1004 corners) were used to evaluate the accuracy of the 

generated water-tight building models. Table 4.3 shows the statistical evaluation of the deviation 

between the reference dataset and the generated water-tight building models. As tabulated, the 

RMSE in X-direction is 46.2 cm and in Y-direction is 54.1 cm. The difference of RMSE before 

and after applying the water-tight DBM generation in both X and Y direction is within two 

centimeters. The change rate of corners from integrated building models to water-tight building 

model is 85.9%. It shows that the water-tight DBM generation strategy can improve the 

visualization results while maintaining the same level of accuracy.  
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4.8 Summary 

This chapter proposed a boundary regularization strategy as well as a water-tight building 

model generation strategy that can automatically reconstruct seamless building models for right-

angle, multi-orientation, and curved boundary primitives. This approach can generate robust 

building models while considering the characteristics of LiDAR data. Moreover, by means of 

simultaneous RMBR and LSA and the proposed stopping criteria, building models can be less 

sensitive to a highly irregular LiDAR boundary. With the proposed generation of generalized 

RMBR procedure, all the right-angle building can be reconstructed. For the proposed boundary 

regularization using the breakpoint detection approach, multi-orientation and curved boundary 

buildings can be reconstructed correctly. Furthermore, this thesis utilized the advantages of 

ERMBR and the BD approaches to generate more diverse and robust building models. This thesis 

also proposed a strategy for water-tight DBM generation to eliminate gaps between models 

associated with contiguous building primitives and providing better visualization of the outcome 

by analyzing the connectivity relationship of the extracted primitives.  

  

  



146 
 

5. LANE WIDTH ESTIMATION  

5.1 Introduction 

This chapter presents a new method to derive lane width estimates using point clouds 

acquired from a calibrated mobile mapping system. The calibration approach of the MMS is 

introduced first. After generating an accurate LiDAR point cloud, the road surface is extracted 

with the assistance of trajectory data. Lane markings are then identified based on the intensity data; 

and the lane marking centerline is derived for lane width estimation. Comprehensive testing was 

conducted to demonstrate the feasibility and performance of the proposed procedure, using six 

datasets collected in different seasons and different sensors. 

5.2 System Architecture of the TMMS Used in this Thesis 

The test datasets were captured by a designed terrestrial mobile mapping platform, which 

includes a Velodyne VLP-16 laser scanner, Velodyne HDL-32E laser scanner, FLIR Flea-2G 

camera, and SPAN-CPT GNSS/INS, as shown in Figure 5.1. The HDL-32E consists of 32 radially 

oriented laser rangefinders that are aligned from +10.67˚ to -30.67˚. In total, the vertical field of 

view (FOV) is 41.34˚. Also, the whole unit can rotate to achieve a 360˚ horizontal FOV. The point 

capture rate is around 700,000 points per second [94]. The VLP-16, which has 16 radially oriented 

laser rangefinders, is a lite version of HDL-32E. The vertical FOV is from -15˚ to +15˚ and the 

horizontal FOV is 360˚. The point capture rate is around 300,000 points per second [95]. The 

navigation system adopted in this thesis is the SPAN-CPT that combines GNSS and Inertial 

Measurement Unit (IMU) hardware inside a single enclosure. The GNSS collection rate is 20 Hz 

and the IMU measurement rate is 100 Hz [96]. The FLIR Flea-2G camera was used as an auxiliary 
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sensor and was directly georeferenced by the SPAN-CPT unit. The FLIR Flea-2G camera has a 

maximum image resolution of 5 MP and has built-in ports for both triggering and strobe feedback 

signals. 

 

 
Figure 5.1. Terrestrial mobile mapping system used in this thesis 

 

In order to derive a directly georeferenced LiDAR point cloud, the SPAN-CPT supplies 

sequentially precise time pulses, known as pulse-per-second (PPS) signals, which provide the 

ability to generate a time-tagged point cloud. Furthermore, the SPAN-CPT provides a navigation 

message, also known as the GPs Recommended Minimum specifiC - GPRMC message, including 

information related to position, rotation, and GPS time, which is transmitted over a dedicated RS-

232 serial port and is received by the LiDAR unit via the Velodyne interface box in the form of 

serial data. This synchronization process is illustrated in Figure 5.2. 
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Figure 5.2. Synchronization process and data storage for the mobile mapping system 
 

 

The accuracy of the derived LiDAR point cloud can be estimated from the utilized platform 

using error propagation. The SPAN-CPT can attain an accuracy of less than 2 cm in position and 

an accuracy of 0.008˚ and 0.035˚ in the roll/pitch and heading, respectively [96]. The Velodyne 

laser unit has a range accuracy of 2 cm. These values, along with the nominal standard deviation 

of the estimated system mounting parameters, are used to derive the expected accuracy in the 

computed mapping frame coordinates using the LiDAR Error Propagation calculator developed 

by Habib et al. [97]. The calculator specifications indicate an accuracy of around 2-3 cm at a range 

of 30 m. Since the accuracy of lane width estimates would directly depend on the LiDAR point 

cloud accuracy, the expected accuracy of the derived lane width should be around 3 cm. 

5.3 Conceptual Basis of LiDAR Point Positioning and System Calibration 

As illustrated in Figure 5.3, a typical directly geo-referenced multi-unit LiDAR system is 

comprised of three coordinate systems: the mapping frame, the GNSS/INS body frame, and the 

laser unit frame. These coordinate systems and their spatial/rotational relationships are used to 
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define the mapping coordinates of a given point, I, acquired from a mobile multi-unit LiDAR 

mapping system, as given by Equation 5.1, where a reference and slave sensors are considered. In 

the case of the spinning multi-beam laser scanners used in this thesis, the coordinates of a point 

relative to the laser unit coordinate system, 𝒓𝒓𝑰𝑰
𝒍𝒍𝒍𝒍𝒍𝒍(𝒕𝒕), is defined by Equation 5.2 using the vertical 

angle, 𝜷𝜷, determined by the fired laser beam ID; the horizontal angle, 𝜶𝜶, which depends on the 

rotation of the laser unit; and the range, ρ, defined by the distance from the firing point to the 

footprint of the laser beam. The terms 𝒓𝒓𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒓𝒓 and 𝑹𝑹𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒓𝒓 are the rigidly defined lever arm and boresight 

matrix, respectively, relating the reference sensor, 𝒍𝒍𝒍𝒍𝒓𝒓, and the slave sensor, 𝒍𝒍𝒍𝒍𝒍𝒍. The lever arm, 

𝒓𝒓𝒍𝒍𝒍𝒍𝒓𝒓𝒃𝒃 , and boresight matrix, 𝑹𝑹𝒍𝒍𝒍𝒍𝒓𝒓𝒃𝒃 , between the reference laser unit and IMU body frame coordinate 

systems are time-independent since the laser scanner and the IMU are rigidly fixed relative to each 

other. The lever arm components and boresight matrices can be derived from a system calibration 

process. The GNSS/INS integration provides the time-dependent position, 𝒓𝒓𝒃𝒃𝒎𝒎(𝒕𝒕), and orientation, 

𝑹𝑹𝒃𝒃𝒎𝒎(𝒕𝒕), relating the body frame to the mapping frame. 

𝑟𝑟𝐼𝐼𝑚𝑚 = 𝑟𝑟𝑏𝑏𝑚𝑚(𝑝𝑝) + 𝑅𝑅𝑏𝑏𝑚𝑚(𝑝𝑝) 𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑏𝑏 + 𝑅𝑅𝑏𝑏𝑚𝑚(𝑝𝑝) 𝑅𝑅𝑝𝑝𝑟𝑟𝑝𝑝𝑏𝑏  𝑟𝑟𝑝𝑝𝑟𝑟𝑗𝑗𝑝𝑝𝑟𝑟𝑝𝑝 + 𝑅𝑅𝑏𝑏𝑚𝑚(𝑝𝑝) 𝑅𝑅𝑝𝑝𝑟𝑟𝑝𝑝𝑏𝑏  𝑅𝑅𝑝𝑝𝑟𝑟𝑗𝑗𝑝𝑝𝑟𝑟𝑝𝑝 𝑟𝑟𝐼𝐼
𝑝𝑝𝑟𝑟𝑗𝑗(𝑝𝑝) (5.1) 

𝑟𝑟𝐼𝐼
𝑝𝑝𝑟𝑟𝑗𝑗(𝑝𝑝) = �

𝜌𝜌(𝑝𝑝) cos𝛽𝛽(𝑝𝑝) cos𝛼𝛼(𝑝𝑝)
𝜌𝜌(𝑝𝑝) cos𝛽𝛽(𝑝𝑝) sin𝛼𝛼(𝑝𝑝)

𝜌𝜌(𝑝𝑝) sin𝛽𝛽(𝑝𝑝)
� (5.2) 

 

Figure 5.3. Illustration of point positioning of a directly geo-referenced multi-unit LiDAR system 
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The mounting parameters of each sensor are derived by minimizing the discrepancies 

among the conjugate features extracted from the point clouds obtained from different sensors in 

overlapping drive-runs [98]. The ideal mathematical condition for a conjugate point pair from two 

overlapping drive-runs is given by Equation 5.3. After reconstructing the point clouds from several 

drive-runs using the initial estimates for the mounting parameters, different types of geometric 

features (planar, and linear/cylindrical) can be used as conjugate features for the calibration 

procedure. Then, the mounting parameters for multiple sensors are derived simultaneously. In this 

thesis, several hut-shaped targets and highly reflective calibration boards are deployed and used as 

planar features for calibration, as shown in Figure 5.4. Moreover, outdoor objects, such as light 

poles and ground patches, are also used as linear/cylindrical and planar features, respectively. 

𝑟𝑟𝐼𝐼𝑚𝑚(drive-run 1) − 𝑟𝑟𝐼𝐼𝑚𝑚(drive-run 2) = 0 (5.3) 

 

 

Figure 5.4. Calibration test field with hut-shaped targets and highly reflective boards 

5.4 Lane Width Estimation Strategy 

The proposed methodology for lane width estimation proceeds in three major steps: (1) 

road surface and lane marking extraction, (2) derivation of the lane marking centerline, and (3) 

lane width estimation. First, the road surface is extracted with the assistance of vehicle trajectory 
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data. Next, the lane markings are extracted along the road surface by identifying high-intensity 

points. Since lane markings have a certain thickness, their centerline is derived for estimating the 

lane width. The flowchart of the proposed strategy is shown in Figure 5.5. The following 

subsections introduce the technical details of these steps. 

 

Figure 5.5. Flowchart of the lane width estimation strategy, (a) input LiDAR point cloud 
(colored by height), (b) extracted road surface, (c) candidate lane marking points, (d) derivation 

of lane marking centerline, and (e) lane width vs. longitudinal distance plot 
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5.4.1 Road Surface and Lane Marking Extraction 

The proposed method focuses on lane width estimation along the driving lane. In this 

subsection, we introduce a method to extract the road surface and lane marking on the road surface 

along the driving lane. The trajectory data records the information of vehicle position and 

orientation, which are defined by the position and orientation of the IMU body frame of the 

GNSS/INS navigation system. Therefore, the LiDAR point cloud pertaining to the road surface 

can be derived with the help of the trajectory data and the IMU height above the road surface. 

First, the road surface points are extracted by setting a height threshold (hIMU) and a threshold (dw) 

for the lateral distance from the vehicle trajectory, as shown in Figure 5.6. The lateral distance 

threshold (dw) is defined for both sides of the trajectory data across its direction and is used to only 

extract the road surface for the driving lane. The prescribed minimum lane width in highway areas 

is 12 ft [99]. So, in this thesis, the value for dw is set as 3 m (9.843 ft) so the total lateral distance 

would be 6 m (19.686 ft), which is approximately 1.5 times the minimum designated lane width, 

thus ensuring extraction of the lane markings on both sides. The height threshold (hIMU) is the 

expected normal distance from the IMU body frame to the road surface. It can be derived 

automatically by first randomly selecting a trajectory data point and searching the LiDAR point 

(Pi) with the closest (X, Y) coordinates and the least Z-coordinate. Then, a k-nearest neighbor 

search is applied to Pi for defining a road surface; and a plane-fitting is done to estimate the 

parameters of the road surface. Finally, the height threshold can be derived from the normal 

distance between the trajectory data point to the fitted plane. A pre-determined buffer (hbuff) for 

the height threshold (hIMU) is necessary since the road surface may not be flat due to a pavement 

cross slope of 2% that is provided to ensure proper drainage [99]. The cross slope results in a 

height difference within the lane of up to 0.24 ft (0.07 m) for a 12 ft wide lane. Hence, the hbuff in 
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this thesis was set as ± 0.2 m. The height buffer is illustrated in Figure 5.6. When the normal 

distance between a LiDAR point and the trajectory projection onto the road surface is smaller than 

dw and its height is within the height buffer, the LiDAR point is regarded as a road surface point, 

as shown in Figure 5.5(b). After the road surface is extracted, the lane markings can be extracted. 

An intensity threshold (ThI) is pre-defined to extract the points representing the lane markings. 

When the intensity of the extracted road surface points is larger than ThI, they are regarded as 

potential candidate lane markings, as illustrated in Figure 5.5(c). One should note that a constant 

pre-defined value was used for the intensity threshold instead of an adaptive value because the 

laser beams contributing towards the lane markings along the driving direction are homogeneously 

distributed and the intensity value from lane markings  hence are homogeneous as well along the 

entire trajectory. 

 

 

Figure 5.6. Illustration of the various thresholds for road surface extraction: the height threshold 
(hIMU) and the lateral distance threshold (dw) . 
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5.4.2 Derivation of the Lane Marking Centerline 

Since lane markings are strips of a finite width, it is imperative to derive their centerline 

for lane width estimation. The points extracted as potential candidate lane markings in the previous 

step may also arise from other features, such as road markings, road surface pavement, and rubble 

within construction work zones. Therefore, these non-lane marking points must be removed before 

proceeding to derivation of the centerline. The derivation of centerline for lane marking segments 

from the extracted high intensity points is achieved using the following steps: (1) clustering 

potential candidate lane marking points using a distance-based region growing, (2) partitioning 

such clusters into subgroups, (3) removal of non-lane marking points, and (4) centerline generation 

and down-sampling to derive centerline segments.  

First, a distance-based region growing with a distance threshold (Thdist) is conducted to 

group neighboring high intensity points into clusters. Thdist can be decided based on an analysis of 

the local point spacing along the road surface. When the number of points in a cluster is less than 

a threshold (Thpt), which can be decided according to the local point density, the cluster is regarded 

as a non-lane marking and removed, as shown in Figure 5.7(a-b). Since road lanes may not be 

straight, each cluster is divided into small segments to represent curved lane markings by polylines. 

First, the main direction of each cluster is derived using PCA. Then, each cluster is partitioned into 

segments based on a fixed length (Thpartition) along its main direction. The standard curvature design 

for highways states a minimum radius of 2,040 ft for a driving speed of 70 miles/hr [99]. Based 

on this specification, we designate a value of 4 m for Thpartition, which is not only larger than a dash 

line but also can be regarded as a straight line for this radius of curvature. The maximum distance 

between the arc (with 2,040 ft radius of curvature) and the corresponding chord of length 4 m is 

0.32 cm, which is within the noise level of the mobile mapping system. These partitioned segments 
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are assumed to be straight, as illustrated Figure 5.7(c). Next, the non-lane marking points of each 

segment are detected and removed using a RANSAC strategy [100], as depicted in Figure 5.7(d). 

The RANSAC algorithm randomly selects a minimal number of data points required to construct 

an estimate of a model and then checks the number of points from the entire dataset that are 

consistent with the estimated model. Here, the model estimate consists of line parameters. 

Therefore, two randomly selected points are used to define a straight line. Then, the normal 

distances of the remaining points within the partitioned segment to the line are calculated. If the 

normal distance of a point is larger than threshold (Wlane), it is regarded as an outlier. Threshold 

(Wlane) is defined according to the expected width of a lane marking. This procedure is repeated a 

certain number of times while keeping track of the estimated models and their corresponding 

consensus set size. The model with the largest consensus set is designated to be the best model. 

Finally, the largest consensus set is regarded as points belonging to lane markings and are utilized 

to derive the centerline parameters of the segment using a LSA model-fitting. 

Note that RANSAC can only remove outliers within a segment but cannot deal with the 

case where the entire segment does not represent a lane marking. In this case, the trajectory data 

are utilized to identify the segments that do not belong to lane markings. In most cases, the lane 

markings are parallel to the vehicle trajectory. Therefore, this characteristic can be used to 

determine whether a segment represents a lane marking or not. When the direction of a segment is 

similar, (i.e., less than an angle threshold (Thangle)) to the trajectory, it is regarded as a lane marking 

segment, as shown in Figure 5.7(e). Considering scenarios where vehicles might change lanes, 

Thangle is set as 5˚. According to a designated average work zone speed of 45 miles/hr and an 

average time duration of 4 sec during lane change [101], the slope of the trajectory relative to the 

lane alignment would be around 2.6˚. Therefore, a Thangle of 5˚ can ensure that the lane marking 
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points are not removed. The centerline parameters of a segment (a direction vector and a point 

along the vector) represent the direction of the segment. In order to generate a centerline segment, 

all the points in the inlier set of the segment are projected onto the LSA-based centerline, as 

illustrated in Figure 5.7(f). In this case, the projected points would be dense and a down-sampling 

strategy is applied to reduce the number of the projected points, as depicted in Figure 5.7(g). When 

applying the down-sampling strategy, the sample points are picked within a segment at a fixed 

distance interval (Thinterval), as shown in Figure 5.7(g). One should notice that the down-sampling 

strategy is mainly used to remove overlapping points and reduce the processing time. The value 

of Thinterval would not affect the results since the points along the centerline segment represent a 

fitted straight line. Even if the number of points is reduced, those sampled points would still 

represent a fitted straight line.    
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 
 

 
(g) 

 
Figure 5.7. Estimation of lane marking centerline procedure (a) candidate lane marking points, 
(b) region growing-based clustering, (c) cluster partition, (d) outlier removal: RANSAC-based, 

(e) outlier removal: trajectory-based, (f) lane marking centerline, (g) down-sampled lane marking 
centerline 
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5.4.3 Lane Width Estimation 

The lane width is derived as the normal distance between the centerlines of lane markings 

located on opposite sides of the trajectory along the driving lane. First, the two trajectory data 

points closest to the queried centerline point are searched to define a trajectory vector along the 

driving direction. Then, the queried centerline point can be determined to be located either to the 

left or to the right side of the trajectory vector. After identifying the left and right lane markings, 

as shown in Figure 5.8(a) by the blue dash line and red side line, the normal distance from a point 

on one side to the straight line defined by the two closest points on the other side can be derived 

and regarded as the lane width, as illustrated in Figure 5.8(b). 

However, the lane markings may not be continuous (e.g., dash line or lane markings 

without strong reflection), as shown in Figure 5.9. In such cases, they could lead to inaccurate 

estimation of the normal distance. Hence, an interpolation between the centerline points is applied 

first to fill the gaps, as shown in Figure 5.8(c). In this step, the centerline points first are ordered 

along the driving direction based on the trajectory information. When the distance between two 

successive points is larger than a threshold (Thinterval), a linear interpolation is conducted between 

the two points. Figure 5.8(d) is an example of the inaccuracy in the derived normal distance when 

the interpolation is not applied. One should note that after the interpolation, the normal distance 

derived from a point on the left side to the straight line defined by the two closest points on the 

right side would be similar to the normal distance derived from a point on the right side to the 

straight line defined by the two closest points on the left side. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.8. Lane width estimation procedure: (a) illustration of opposite-side lane marking 
centerlines, (b) lane width derivation, (c) interpolation among lane marking centerlines, and (d) 

inaccuracy in lane width estimation without centerline interpolation 
 

 

 

 

Figure 5.9. Non-continuous lane markings: dash line (gray points: lane marking points, blue 
points: lane marking centerline, green points: interpolated points) 
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5.5 Experimental Results 

5.5.1 Data Description 

To illustrate the performance and feasibility of the proposed calibration strategy and lane 

width estimation methodology, this section presents the experimental results from a total of six 

datasets collected for three road segments using different sensors in different seasons. The first 

road segment was surveyed on two different dates and is located in an interstate highway work 

zone area. Both datasets were collected while driving westbound from mile post 19 to mile post 

10 (a total of 9 miles). This road segment is highlighted in Google Maps, as shown in Figure 

5.10(a). The second road segment was surveyed on three different dates and is a 3.7 mile long 

segment located on a U.S. highway, as illustrated in Figure 5.10(b). The datasets for these two 

road segments were used for lane width estimation and repeatability analysis of the proposed 

strategy. The third road segment is located at a main arterial, which is a 0.12 mile long segment, 

as depicted in Figure 5.10(c). This dataset was used to compare the derived lane width values to 

the on-site manual measurements and thye manually digitized lane marking centerline in order to 

demonstrate the accuracy of the proposed method. The details of the test datasets are listed in Table 

5.1. 
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(a) 

  

(b) (c) 

Figure 5.10. Location of test datasets and their trajectory (red): (a) interstate highway, (b) U.S. 
highway, and (c) main arterial 
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Table 5.1. Details of test datasets collected in this thesis 
Road Segment Collection Date Used Sensors Length Driving Speed 

Interstate 

Highway 

2016/11/05 HDL32E-2 

VLP16-1 

9 miles 40 miles/hr 

2017/05/02 HDL32E-2 

HDL32E-3 

40 miles/hr 

U.S. Highway 2016/11/30 HDL32E-2 

VLP16-1 

3.7 miles 40 miles/hr 

2017/02/11 HDL32E-2 

HDL32E-3 

35 miles/hr 

2017/08/17 HDL32E-4 

HDL32E-5 

35 miles/hr 

Main Arterial 2016/10/11 HDL32E-2 

VLP16-1 

0.12 miles 20 miles/hr 

Note: HDL32E-2, HDL32E-3, HDL32E-4, and HDL32E-5 denote different LiDAR sensors of the same 
model 

 

The mobile mapping system was mounted on different vehicles for these six data 

collections. To ensure the accuracy of the acquired point clouds, the calibration procedure was 

applied every time. The mounting parameters (i.e., boresight angles 𝚫𝚫𝝎𝝎,𝚫𝚫𝝋𝝋,𝚫𝚫𝜿𝜿 and lever arm 

𝜟𝜟𝜟𝜟,𝜟𝜟𝜟𝜟,𝜟𝜟𝜟𝜟) derived from the multi-sensor calibration procedure are listed in Table 5.2. Based on 

the mounting parameters and navigation data, the point clouds were generated for lane width 

estimation.  
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Table 5.2. Mounting parameters of the MMS used to collect all datasets, as estimated from the 
multi-sensor system calibration procedure 

Date Mounting Parameters 
 𝚫𝚫𝜟𝜟 (m) 𝚫𝚫𝜟𝜟 (m) 𝚫𝚫𝜟𝜟 (m) 𝚫𝚫𝚫𝚫 (°) 𝚫𝚫𝚫𝚫 (°) 𝚫𝚫𝚫𝚫 (°) 
Interstate Highway 

2016/11/05 

HDL32E-2 Calibration Parameters 𝑹𝑹𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑𝒃𝒃   𝒓𝒓𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑𝒃𝒃  
0.471 0.2057 0.3000 -5.868 -0.1548 -54.0072 
VLP16-1 Calibration Parameters 𝑹𝑹𝑽𝑽𝑯𝑯𝑽𝑽𝟏𝟏𝟏𝟏𝟏𝟏𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑  𝒓𝒓𝑽𝑽𝑯𝑯𝑽𝑽𝟏𝟏𝟏𝟏𝟏𝟏𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑 

-0.271 -0.376 -0.073 -2.092 -4.161 22.014 

2017/05/02 

HDL32E-2 Calibration Parameters 𝑹𝑹𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑𝒃𝒃   𝒓𝒓𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑𝒃𝒃  
0.470 0.196 0.319 -6.110 0.488 -56.728 
HDL32E-3 Calibration Parameters 𝑹𝑹𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑  𝒓𝒓𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑 
-0.246 -0.384 -0.003 -0.734 0.1054 -111.320 

U.S. Highway 

2016/11/30 

HDL32E-2 Calibration Parameters 𝑹𝑹𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑𝒃𝒃   𝒓𝒓𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑𝒃𝒃  
0.476 0.201 0.300 -6.047 -0.095 -58.870 
VLP16-1 Calibration Parameters 𝑹𝑹𝑽𝑽𝑯𝑯𝑽𝑽𝟏𝟏𝟏𝟏𝟏𝟏𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑  𝒓𝒓𝑽𝑽𝑯𝑯𝑽𝑽𝟏𝟏𝟏𝟏𝟏𝟏𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑 

-0.246 -0.400 -0.089 -1.581 -4.274 26.810 

2017/02/11 

HDL32E-2 Calibration Parameters 𝑹𝑹𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑𝒃𝒃   𝒓𝒓𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑𝒃𝒃  
0.466 0.178 0.324 -6.049 0.456 -63.961 
HDL32E-3 Calibration Parameters 𝑹𝑹𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑  𝒓𝒓𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑 
-0.218 -0.378 -0.004 -1.464 -4.425 -105.495 

2017/08/17 

HDL32E-4 Calibration Parameters 𝑹𝑹𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟒𝟒𝒃𝒃   𝒓𝒓𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟒𝟒𝒃𝒃  
0.446 0.204 0.322 -5.692 0.941 -53.531 
HDL32E-5 Calibration Parameters 𝑹𝑹𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟓𝟓𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟒𝟒  𝒓𝒓𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟓𝟓𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟒𝟒 
-0.286 -0.375 -0.009 -0.696 -0.478 -12.616 

Main Arterial 

2016/10/11 

HDL32E-2 Calibration Parameters 𝑹𝑹𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑𝒃𝒃   𝒓𝒓𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑𝒃𝒃  
0.425 0.191 0.300 -5.839 -1.460 -47.953 
VLP16-1 Calibration Parameters 𝑹𝑹𝑽𝑽𝑯𝑯𝑽𝑽𝟏𝟏𝟏𝟏𝟏𝟏𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑  𝒓𝒓𝑽𝑽𝑯𝑯𝑽𝑽𝟏𝟏𝟏𝟏𝟏𝟏𝑯𝑯𝑯𝑯𝑯𝑯𝟑𝟑𝟑𝟑𝑬𝑬𝟑𝟑 

-0.298 -0.336 -0.009 -3.537 -3.147 15.996 
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5.5.2 Experimental Results of Lane Width Estimation 

In the following four sub-sections, four experiments are discussed. First, the lane width 

from a calibrated dataset was estimated and these results then were compared to the results 

obtained from the same dataset generated after adding a bias to the system mounting parameters. 

This comparison showed the importance of accurate system calibration to derive accurate lane 

width estimates. In the second experiment, the 2016/11/30 dataset was used, which included two 

different types of spinning multi-beam laser scanners (VLP16 and HDL32E) to compare their 

performance in lane width estimation. Moreover, the similarity of the derived lane width from the 

two sensors demonstrated the accuracy of the derived mounting parameters from the introduced 

multi-sensor system calibration procedure. The third experiment aimed to confirm the precision of 

the lane width estimation and calibration strategies by comparing the lane width vs the mile post 

plots obtained from five datasets for an interstate and a U.S. highway (with a total length of 

approximately 25 miles) scanned by different sensors in different seasons. Finally, the last 

experiment was conducted to show the accuracy of the derived lane width by comparing the results 

obtained for the dataset collected over the main arterial with that from the manually digitized lane 

marking centerline and the on-site manual measurements. The various thresholds used for these 

experiments, which are listed in Table 5.3, were tested for a road segment of over 25 miles using 

different sensor, seasons, and locations to demonstrate that the derived lane width estimates were 

insensitive to the value of these thresholds.   
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Table 5.3. Pre-defined thresholds for lane width estimation   
Name Value 

Lateral distance threshold for road surface extraction (𝑎𝑎𝑤𝑤) 3.0 m 

Height buffer for road surface extraction (hbuff) ±0.2 m 

Intensity threshold (ThI) 30-40 

Distance threshold for distance-based region growing (Thdist) 0.3 m & 0.4 m* 

Minimum number of points to define candidate lane marking (Thpt) 50 pts & 25 pts* 

Length for the partitioned segments (Thpartition) 4 m 

Lane marking width threshold (Wlane) 0.12 m 

Angle threshold for rejecting non-lane markings based on their 

orientation relative to the trajectory (Thangle) 

5˚ 

A distance interval threshold for down-sampling and interpolation 

(Thinterval) 

0.2 m 

* These values are used while dealing with point clouds obtained from a single VLP-16 scanner. 

 

The proposed method was implemented using a PC with an Intel® Core™ i7-4790 CPU 

at 3.60 GHz. In the case of a point cloud with 0.8 billion points over a stretch of five miles captured 

from two HDL32E sensors, the processing time for each step is listed in Table 5.4. Note that the 

processing time varied according to the performance of the computer and can be improved using 

parallel processing. The proposed strategy mainly focuses on the estimation of the lane width in 

work zones for the inspection process of the delineated lane markings. Hence, real-time processing 

was not critical in this thesis. The computation performance for the proposed strategy 

demonstrated that the lane width can be derived in a short enough period to provide the 

construction project manager with timely information. 
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Table 5.4. Data processing time for each step of lane width estimation 
Item Time  

System calibration 2 hrs 

Point cloud reconstruction 0.5 hr 

Road surface extraction 1.5 hr 

Lane marking extraction and lane width estimation 5 mins 

 

5.5.2.1 Impact of Mounting Parameters on Lane Width Estimation 

In this section, the point clouds generated from the HDL32E-2 and HDL32E-3 sensors on 

2017/02/11 were used to demonstrate that deviations in the mounting parameters can impact the 

derived lane width estimates. In this experiment, a +2˚ and -2˚ bias was added to the boresight 

parameters (𝚫𝚫𝚫𝚫,𝚫𝚫𝚫𝚫,𝚫𝚫𝚫𝚫) of the HDL32E-2 and HDL32E-3 sensors, respectively, to evaluate the 

effect on lane width estimation from the dataset generated using different estimates of the 

mounting parameters. Note that the two cases are characterized only by the difference in their 

mounting parameters and all the other environmental variables, such as the sensors, trajectory, 

time and date of data collection, are identical. Figure 5.11(a) shows the extracted lane marking 

points for the dataset generated using accurate and inaccurate estimates for the mounting 

parameters in green and orange colors, respectively. It can be seen that the lane marking points 

extracted using inaccurate mounting parameters are highly distorted. Figure 5.11(b-c) shows the 

derived centerline (in blue) for the two different cases.  
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(a) (b) (c) 

Figure 5.11. Lane marking points and derived lane marking centerline: (a) lane marking points 
(green: using accurate mounting parameters and orange: using inaccurate mounting 

parameters);(b) lane marking points (green) and derived centerline (blue) using accurate 
mounting parameters; and (c) lane marking points (orange) and derived centerline (blue) using 

inaccurate mounting parameters  
 

The comparison between lane width estimates obtained using the two different sets of 

mounting parameters is shown in Figure 5.12. The mean, standard deviation, and RMSE values 

listed in Table 5.5 quantify the effect of inaccurate mounting parameters on the lane width 

estimation. Table 5 shows that when compared with the results obtained using accurate estimates 

of mounting parameters, a change of 2˚ in the boresight parameters of both sensors resulted in an 

RMSE of 27.91 cm. Although the lane width estimation strategy includes outlier removal and 

LSA-based line fitting that can minimize the effect of inaccurate mounting parameters, it cannot 

mitigate the effects altogether.  
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Table 5.5. Statistics of comparison between lane width estimates using accurate and inaccurate 
values of mounting parameters 

Compared Datasets Mean Standard Deviation RMSE 

2017/02/11 dataset 

with different estimates 

of mounting parameters 

23.28 cm (0.76 ft) 15.40 cm (0.51 ft) 27.91 cm (0.92 ft) 

 

 

Figure 5.12. Comparison of lane width estimates using accurate and inaccurate values of the 
mounting parameters for the 2017/02/11 dataset from U.S. Highway 

 

5.5.2.2 Performance Evaluation of Different Sensors 

The lane width estimates derived from point clouds acquired by the VLP16 and HDL32E 

sensors on 2016/11/30 for the U.S. Highway dataset were used to compare the performance of 

these units for lane width estimation and to analyze the accuracy of the derived mounting 

parameters from the introduced multi-sensor calibration procedure. In this experiment, the distance 

threshold for distance-based region growing (Thdist) for the VLP16 dataset was increased to 0.4 m 

since the point cloud captured using VLP16 was much sparser than that from HDL32. The 
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minimum number of points to define a candidate lane marking (Thpt) for the VLP 16 dataset is 25 

points, which is half of the one for the HDL32E dataset due to the difference in the number of 

acquired pulses per second. The lane width comparison analysis is shown in Figure 5.13 and the 

quantitative evaluation is shown in Table 5.6. 

 

Figure 5.13. Comparison of estimated lane width from VLP16 and HDL32E for the 2016/11/30 
dataset along the U.S. highway  

 

Table 5.6. Statistics of comparison between the lane width estimates from VLP16 and HDL32E 
sensors 

Compared Datasets Mean Standard Deviation RMSE 

VLP16 & HDL32E 

from 2016/11/30 

0.007 cm (0.023 ft) 1.53cm (0.050 ft) 1.68cm (0.055 ft) 

 

The quantitative evaluation in Table 5.6 indicates that the difference between the derived 

lane width estimates from VLP16 and HDL32E was small, which shows that both sensors are 

equally capable of accurate lane width estimation. It also implied that the estimated mounting 

parameters of the two laser scanners are accurate. However, there was a 0.86ft (26.21 cm) 

difference in the location highlighted by the green box in Figure 5.13. This difference was 

attributed to the sparse nature of the VLP16 point cloud, for which the clustered lane marking 
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points were less than the Thpt threshold so centerline extraction at that location was incomplete and 

the interpolated centerline deviated from the lane markings. This problem was exacerbated by a 

curved road segment at this location, thus resulting in inaccuracy in centerline interpolation. Figure 

5.14(a-b) shows the lane marking points (gray) and derived centerline (green and red) from both 

laser scanners. After interpolation of the derived centerline, as illustrated in Figure 5.14(c), the 

maximum deviation in that portion was around 0.86 ft. Since most lane width estimates from the 

VLP16 and HDL32E dataset along this road segment were compatible, the effect of this bias was 

insignificant. However, such a discrepancy would not arise in the case of a straight portion, as 

illustrated in Figure 5.15. This analysis led to the conclusion that the lane width estimates from the 

two sensors were compatible, but in order to avoid the discrepancies caused by the sparse nature 

of the point cloud acquired from VLP16, a lower speed for data collection is recommended when 

using this sensor. 

 

(a) 

 

(b) 

 

(c) 

Figure 5.14. Anomalies in the marked area of Figure 5.11: (a) candidate lane marking points 
(gray) and the derived centerlines (green) from VLP16; (b) candidate lane marking points (gray) 

and the derived centerlines (red) from HDL32E; and (c) candidate lane marking points from 
VLP16 (gray), the interpolated centerline from VLP16 (blue), and the derived centerline from 

HDL32 (red) 
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(a) 

 

(b) 

 

(c) 

Figure 5.15. Interpolation of straight portion: (a) candidate lane marking points (gray) and the 
derived centerlines (green) from VLP16; (b) candidate lane marking points (gray) and the 

derived centerlines (red) from HDL32E; and (c) candidate lane marking points from VLP16 
(gray), the interpolated centerline from VLP16 (blue), and the derived centerline from HDL32 

(red) 

5.5.2.3 Repeatability Analysis of Lane Width Estimation 

This section provides an evaluation of the lane width estimation strategy using the datasets 

collected for two different road segments – an interstate highway work zone area and a U.S. 

highway segment. The intensity of the lane markings can be affected by the sensor units used, the 

weather, the incidence angle of the laser beams, and the quality of the lane markings. Therefore, 

the ThI threshold values used in the processing of these six datasets varied from 30 to 40, depending 

on the above factors for each dataset. For the interstate highway work zone area, two datasets were 

used to derive the lane width; and the obtained values were compared by plotting the lane width 

vs the mile post, as shown in Figure 5.16.  

Figure 5.16 shows a spike in the 2016/11/05 dataset, which is indicated by green box 1. 

This spike was attributed to the poor condition of the lane markings in the work zone, as shown in 

Figure 5.17(a), which in turn resulted in an erroneous lane marking extraction, as illustrated in 
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Figure 5.17(b). However, this anomaly does not appear in the 2017/05/02 dataset, as shown in 

Figure 5.18. Since the poor lane markings faded away after six months, the intensity of the LiDAR 

points at that area was not as strong as the one from the 2016/11/05 dataset.  

 

 

 Figure 5.16. Comparison of estimated lane width from two datasets for the interstate 
highway work zone area 

 

 

 

(a) (b) 

 

Figure 5.17. Anomalies in the 2016/11/05 dataset: (a) RGB image and (b) extracted lane marking 
points (gray) and derived lane marking centerline (red)  
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Figure 5.18. Image from the 2017/05/02 dataset for the area that had poor lane markings in the 
2016/11/05 dataset (Figure 16(a)) 

 

For the U.S. highway segment, the comparisons of lane width estimates from three datasets 

are shown in Figure 5.19. The quantitative evaluation of the repeatability analysis for the interstate 

highway and U.S. highway is shown in Table 5.7, which indicates that the RMSEs from the 

comparison results ranged from 1.49 cm to 3.01 cm, which is acceptable keeping in mind the 

LiDAR point cloud accuracy obtained from error propagation. The statistical results demonstrate 

the repeatability of the proposed strategy when using different sensors to collect data in different 

seasons and the precision of the estimated mounting parameters from the system calibration. 

 

  

Figure 5.19. Comparison of estimated lane width from three datasets (collected on 2016/11/30, 
2017/02/11, and 2017/08/17) for the U.S. highway segment  
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Table 5.7. Statistics of lane width comparison from interstate highway datasets and                
U.S. highway datasets 

Compared Datasets Mean Standard Deviation RMSE 

Interstate Highway 

2016/11/05 & 

2017/05/02 
1.22 cm (0.040 ft) 1.01 cm (0.036 ft) 1.65 cm (0.054 ft) 

U.S. Highway 

2016/11/30 & 

2017/02/11 
0.85 cm (0.028 ft) 1.22 cm (0.040 ft) 1.49 cm (0.049 ft) 

2016/11/30 & 

2017/08/17 
2.74 cm (0.090 ft) 1.25 cm (0.041 ft) 3.02 cm (0.099 ft) 

 

One should note that usually in the case of an area corresponding to an intersection, there 

are no lane markings and hence, the lane width is not defined. Moreover, the lane markings when 

approaching an intersection area would be curved as they are turning to the other road. Therefore, 

the interpolated centerlines would be erroneous, thus leading to larger lane width estimates. Figure 

5.17 depicts such a case, where the spike within the area marked by the red box is taking place at 

an intersection and this spike occurs for each of the three datasets. Figure 5.20(a) shows the 

corresponding image and Figure 5.20(b) shows the extracted lane marking points and lane marking 

centerline after interpolation. 
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(a) (b) 

Figure 5.20. Road intersection area resulting in the spike in Figure 5.19: (a) the captured image 
at the intersection, and (b) the extracted lane marking points (pink) and interpolated lane marking 

centerline (green) 

5.5.2.4 Accuracy Analysis of Lane Width Estimation 

The main arterial segment was selected for comparing the lane width obtained from the 

proposed strategy to that from a manually digitized centerline and on-site manual measurements 

of the corresponding lane width. Figure 5.21 shows the extracted lane markings, their derived 

centerline, and the average lane width estimate for each dash line using the proposed strategy. To 

evaluate the accuracy of the derived lane width, the corresponding values from on-site manual 

measurements was derived by averaging four values: distance between inner bounds, outer bounds, 

inner and outer bounds, and outer and inner bounds of the dash line and side lane markings, as 

shown in Figure 5.22. Moreover, the lane width derived from a manually digitized centerline was 

provided to analyze its difference from the lane width estimates obtained from the proposed 

strategy as well as the ground truth. The comparison of the estimated lane width from the proposed 

strategy and the corresponding value from the manually digitized centerline as well as the ground 

truth for each of the three dash lines is shown in Figure 5.23. The difference among the derived 

lane widths from the proposed strategy and the ground truth was around 0.1 ft (3.04 cm), which 
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validated the accuracy of the lane width estimates from the proposed strategy and also indicated 

the accuracy of the mounting parameter estimates from the system calibration. Also, the difference 

between the lane width obtained from the manually digitized centerline and the ground truth was 

around 0.04 ft (1.31 cm), which again illustrated the accuracy of the mounting parameter estimates.  

 

 

Figure 5.21. Extracted lane marking points (gray) and derived lane marking centerline (green), as 
well as estimated lane width (unit: ft) using the proposed strategy 

 

 

Figure 5.22. On-site manual measurements of lane width for the main arterial segment 
 

 



177 
 

 

Figure 5.23. Comparison of a derived lane width from the proposed strategy and a manually 
digitized centerline and a ground truth lane width 

5.6 Summary 

This chapter introduced a new approach for estimating the lane width along a driving lane 

from dense point clouds acquired by a LiDAR-based MMS. First presented was the system 

architecture of an MMS, which consists of several spinning multi-beam laser scanners, a camera, 

and a GNSS/INS. A LiDAR calibration strategy for deriving the system mounting parameters then 

was introduced, which was used to extract the road surface along the driving lane with the 

assistance of vehicle trajectory data. Next, lane marking points were extracted based on the 

assumption that their LiDAR intensity was higher than those from pavement. A distance-based 

region growing was applied to cluster the potential candidate lane marking points.  The clusters 

then were partitioned into subgroups and the RANSAC algorithm was used along with the vehicle 

trajectory information to remove non-lane marking points from the subgroups. Finally, the lane 

marking centerline was derived from each subgroup for lane width estimation.  

To illustrate the performance of the proposed lane width estimation strategy, the results 

from four different sets of experimental results, which used a total of six datasets for three different 
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road segments surveyed on different dates using different sensors, were analyzed. The first 

experiment emphasized the importance of accurate system calibration for deriving accurate lane 

width estimates by observing the impact of variations in the mounting parameters on lane marking 

extraction and lane width estimation. The second experiment suggested that the VLP16 and 

HDL32E laser scanners produced compatible estimates for lane width, which also confirmed the 

accuracy of the mounting parameters derived using the proposed multi-sensor calibration strategy. 

The results from the third experiment demonstrated the repeatability of the proposed lane width 

estimation strategy by analyzing the precision of the results from multiple datasets for two road 

segments. Finally, the fourth experiment validated the accuracy of the lane width estimates 

obtained using the proposed strategy. The above experiments also indicated the following two 

scenarios where the proposed strategy results were inaccurate or unexpected. 1) The performance 

of the proposed lane width estimation strategy relies on an accurate calibration of the MMS used 

to capture the LiDAR data. This aspect was demonstrated by comparing the lane width estimates 

obtained from a point cloud reconstructed using calibrated mounting parameters and biased 

mounting parameters. 2) The proposed strategy was found to result in unexpected lane width 

estimates in regions where the quality of lane markings was poor or when debris covered the lane 

markings. However, these unexpected results are favorable for work zone monitoring as they could 

aid in identifying issues related to low quality lane markings and reporting them to the construction 

project manager. The precision and accuracy of the results using the proposed strategy were in the 

range of 3.5 cm, which is acceptable keeping in mind the LiDAR point cloud accuracy obtained 

from error propagation. 

  



179 
 

6. CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH 

6.1 Summary of Contributions 

This thesis focused on developing a generic framework for point cloud processing, which 

includes the initial processing procedures (an adaptive down-sampling strategy and a multi-class 

segmentation approach) and two applications. One of the most important objectives for the initial 

processing procedures is to confirm that the proposed approaches are suitable for point clouds from 

various platforms/resources by considering internal characteristics.  

In addition, two applications were carried out in high human activity areas. First, in an 

urban scene, a building model generation strategy using a point cloud from an ALS dataset. The 

second application was in a transportation corridors, where a new lane width estimation framework 

was introduced using the point clouds collected from a homemade mobile mapping system. The 

contributions of each proposed strategy are summarized below: 

First Tier of Data Processing:  

An adaptive down-sampling strategy was proposed, which can accomplish the following:  

• Removes redundant points from high-density planar regions while retaining points in 

planar areas with sparse points as well as all the points within the linear/cylindrical and 

rough neighborhoods.  

• Considers the different local characteristics (noise level, LPD) and feature categories 

(planar, linear/cylindrical, and rough) of a point cloud.    

• Introduces two PCA approaches which can identify the characteristics of planar, 

linear/cylindrical, and rough neighborhoods while considering the noise level within the 

constituents of a point cloud.  
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• Estimates accurate LPDs based on the nature of the local surface.   

• Utilizes a probability-based test to remove points using an evaluated LPD within the planar 

areas. 

• Can be applied to both laser scanning from various platforms and image-based point 

clouds. 

• Enhances the linear/cylindrical features, especially datasets that have large noise-level-to-

area ratios. 

A new spatial-domain region growing approach for the segmentation of planar, linear/cylindrical, 

and rough features was proposed, which can perform the following functions: 

• Simultaneously partitions a given point cloud into planar, linear, varying-radii cylindrical, 

and rough segments. 

• Can be suitable for multi-platforms/resources and multi-resolution point clouds. 

• Proposes a concept of seed region evaluation to reduce the sensitivity of the segmentation 

outcome to the choice of the seed location. 

• Considers the variations in the internal characteristics (noise level, LPD) and feature 

categories (planar, linear/cylindrical, and rough) of point clouds. 

A sequence of QC procedures was proposed to improve and measure the segmentation outcomes 

by doing the following: 

• Identifies several problems that affect the quality of the segmentation outcomes, such as 

competition among neighboring planar and linear/cylindrical features. 

•  Proposes practical solutions to improve the segmentation results and provides quantitative 

measures that reflect the frequency of these problems. 
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Second Tier of Data Processing: 

 For urban environments, a building model generation approach was proposed to reconstruct 

building models from ALS data by doing the following:  

• Reconstructs complex building models with several characteristics, which includes right-

angle, multi-orientation, and curved boundaries using a single data source (ALS data) 

without any ancillary data.  

• Introduces an ERMBR procedure, which includes RMBR and LSA integration as well as 

generalized RMBR procedure, to generate more robust right-angle DBMs. 

• Proposes a new boundary regularization approach using a breakpoint detection strategy, 

which reconstructs building models with multi-orientation/curved boundaries. 

• Integrates the outcome of GRMBR and BD strategies to generate DBM with right-angle, 

multi-orientation, and curved boundary. 

• Proposes a water-tight strategy, which considers the topology between connected 

primitives and generates seamless building models  

For transportation corridors, an accurate lane width estimation framework was proposed using an 

in-house developed mobile mapping system, which: 

• Includes a comprehensive framework for system development, system calibration, road 

surface extraction, lane marking identification, lane width estimation, and validation). 

• Has no limitations as far as the sensor model used and does not require raw measurements 

from a laser scanner.  

• Has been tested for tens of miles of datasets to demonstrate the robustness of the proposed 

lane width estimation strategy. 
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• Has been validated using different sensor models, repeatability tests, and a ground truth 

dataset to prove its feasibility.   

6.2 Recommendations for Future Work 

Recommendations/suggestion for future work related to the proposed strategies are as follows: 

• The future work of the proposed adaptive down-sampling approach should focus on 

investigating the performance of other classification approaches. In other words, rather 

than relying on PCA-based classifications to identify the planar, linear/cylindrical, and 

rough local neighborhoods of the individual points, other approaches should be 

investigated that are more able to correctly classify local neighborhoods even in the 

presence of relatively high noise, which is the case for DIM datasets. Another research 

effort could be to define appropriate local point density values for the extraction and 

modeling of planar, linear/cylindrical, and rough features. 

• Future research regarding the proposed multi-class simultaneous segmentation and quality 

control procedures could focus on establishing additional constraints to ensure an even 

more reliable selection of seed regions. In addition, investigating the application of 

color/intensity information after accurate geometric and radiometric sensor calibration 

could improve the segmentation results. Addressing other segmentation problems that 

could be mitigated through improved QC procedures is another avenue to explore. Finally, 

the outcomes from the segmentation and QC procedures could be used to make hypotheses 

regarding the generated segments (e.g., building rooftops, building façades, light poles, 

road surfaces, trees, and bushes). 
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• Future work regarding building model generation should consider an adjustment approach 

for 2D boundary breakpoint detection. Currently, breakpoints of building boundaries are 

derived from two 1D profiles. In this way, geometry of 2D boundaries are not fully 

considered in the adjustment procedure so detected breakpoints may not represent real 

corners of buildings. Moreover, integration of LiDAR data and imagery for building model 

generation should be focused to improve both the accuracy and the visualization results. 

Although the proposed strategy considers two building model generation approaches and 

combined two building models into one, some building models still cannot be generated. 

The clear edges on the imagery can be used to refine the current results by identifying 

accurate boundaries. Furthermore, edges composed of small edge segments also could be 

fitted to the visible boundaries on the imagery.  

• Future work in lane width estimation should concentrate on deriving lane widths from the 

driving lane as well as the neighboring lanes. Currently, there is a requirement to drive in 

each lane for which the lane width is being estimated. If the proposed strategy is extended 

to include lane width estimation for neighboring lanes, it would significantly reduce the 

time and effort required for dataset collection. LiDAR-based lane width estimation can be 

expanded by incorporating image datasets to make data analysis more efficient as it would 

aid in relaxing the sensitivity of the proposed strategy on the intensity value threshold. 

Moreover, the non-road surface point clouds can be used to extract other important work 

zone objects, such as construction barrels, guard rail, and traffic signs. 
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