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ABSTRACT

Mall, Kshitij PhD, Purdue University, December 2018. Advancing Optimal Con-
trol Theory Using Trigonometry For Solving Complex Aerospace Prob-
lems. Major Professor: Michael James Grant.

Optimal control theory (OCT) exists since the 1950s. However, with the advent of

modern computers, the design community delegated the task of solving the optimal

control problems (OCPs) largely to computationally intensive direct methods instead

of methods that use OCT. Some recent work showed that solvers using OCT could

leverage parallel computing resources for faster execution. The need for near real-

time, high quality solutions for OCPs has therefore renewed interest in OCT in the

design community. However, certain challenges still exist that prohibits its use for

solving complex practical aerospace problems, such as landing human-class payloads

safely on Mars.

In order to advance OCT, this thesis introduces Epsilon-Trig regularization method

to simply and efficiently solve bang-bang and singular control problems. The Epsilon-

Trig method resolves the issues pertaining to the traditional smoothing regularization

method. Some benchmark problems from the literature including the Van Der Pol

oscillator, the boat problem, and the Goddard rocket problem verified and validated

the Epsilon-Trig regularization method using GPOPS-II.

This study also presents and develops the usage of trigonometry for incorporat-

ing control bounds and mixed state-control constraints into OCPs and terms it as

Trigonometrization. Results from literature and GPOPS-II verified and validated

the Trigonometrization technique using certain benchmark OCPs. Unlike traditional

OCT, Trigonometrization converts the constrained OCP into a two-point bound-

ary value problem rather than a multi-point boundary value problem, significantly

reducing the computational effort required to formulate and solve it. This work
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uses Trigonometrization to solve some complex aerospace problems including prompt

global strike, noise-minimization for general aviation, shuttle re-entry problem, and

the g-load constraint problem for an impactor. Future work for this thesis includes

the development of the Trigonometrization technique for OCPs with pure state con-

straints.
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1. Motivation and Background

1.1 Motivation

O
ptimization is a very broad field of study and an integral part of many real-

world engineering problems. It is a branch of pure mathematics but has appli-

cations in every major branch of science and engineering. [1] The field of aerospace

engineering contains many complex trajectory optimization problems. [2, 3] To solve

such complicated optimal control problems (OCPs), researchers developed and used

two major optimization methods to date: direct and indirect methods. [2, 4]

Since the dawn of modern computing, academia and industry have preferred direct

methods of optimization over indirect methods. [5–10] General purpose optimal con-

trol software (GPOPS-II) [11] and DIDO [12–14], based on pseudospectral methods,

are the current state-of-the-art optimization software. Pseudospectral methods are a

class of direct methods, where the optimization tool transcribes the OCP to a non-

linear programming (NLP) problem by parameterizing the state and control using

global polynomials. These methods perform the collocation of differential–algebraic

equations using nodes obtained from a Gaussian quadrature. [15–21] Since these meth-

ods ignore the necessary conditions of optimality, they do not guarantee high quality

and optimal solutions. [4, 5] Moreover, tools like GPOPS-II require designer to know

some “tricks” a priori in problem formulation to avoid jittery control solutions.

OCT is the other major branch of optimization based on calculus of variations,

where the problem parameters are functions of time. [22–24] This theory has been

extensively used in the aerospace engineering field to solve a wide variety of problems.

Shooting methods, based on OCT and having inherent parallelism, can extensively

use parallel computing. [25–28] Graphical processing units (GPUs) were originally

designed for use in 3D graphics on computers. [29] Since the early 2000’s, the scien-
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tific community exploited GPUs for general purpose computing applications including

scientific research. [30–33] GPUs significantly reduce computation time, thereby en-

abling indirect methods for use as an on-board, real-time trajectory optimization

tool. [34] Several real-world applications desire high quality optimal solutions for

real-time trajectory planning. [35–44] One of these applications require unmanned

aerial vehicles to reconstruct optimal trajectories when encountering an obstacle in

their original proposed path as shown in the animated Fig. 1.1. [36] Indirect methods

could be game changers for such real-world applications, prompting further research

and advancements in OCT. Furthermore, this thesis reduces the complexity of the

tricks associated with the usage of GPOPS-II for OCPs by offering less complex and

advanced indirect methods.
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Figure 1.1.: An example of real-time trajectory optimization for an unmanned aerial

vehicle to avoid obstacles. [36]
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This study discovered many areas in OCT that require improvements. One such

area consists of bang-bang and singular control problems, where the control appears

in a linear form in the Hamiltonian. The optimal control for such problems stays

at extremal values. [24, 45, 46] When the control switches between these values, the

boundary value problem (BVP) solver such as MATLAB’s bvp4c encounters numeri-

cal issues. The trajectory becomes discontinuous and the solver is unable to evaluate

the state equations at the switch points. [47, 48] A regularization technique can re-

solve these issues by introducing error controls and error parameters to solve for a very

close approximate problem. [48] This traditional regularization technique also suffers

from certain fundamental drawbacks that require improvement to support practical

aerospace problems. The first contribution of this thesis is an improved regularization

technique that resolves the issues with the traditional regularization technique.

Real-world complex OCPs also involve constraints on the controls and states of the

trajectory. [49] The traditional way of treating OCPs with pure control constraints

is to introduce and solve for extra parameters. [5, 24] The problem thus converts

from a two-point boundary value problem (TPBVP) to a multi-point boundary value

problem (MPBVP). Hence, the problem formulation and problem solving process

become more complicated and time intensive. On the other hand, for pure state or

mixed state-control inequality constraints, the design community follows the theory

described by Bryson et al. [50] in practice. However, the study by Jacobson et al. [51]

found this theory to be underspecified. OCT requires certain additional necessary

conditions to avoid spurious results, which make the problem formulation and solving

process even more difficult. This thesis aims at resolving all such issues.

Once the improvements introduced and suggested in this thesis are made to the

existing OCT, it would be possible to quickly formulate and solve many challenging

and complicated aerospace problems like landing human-class payloads on the sur-

face of Mars. The following section provides an overview of theory, concepts, and

underlying principles used in this thesis for verification, validation, and advancement

of OCT.
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1.2 Overview

Literature often cites the following three reasons that prevent the usage of indirect

optimization methods in a practical manner to perform trajectory optimization. [25]

• Issue 1: The use of indirect methods requires knowledge of OCT, which is quite

complicated.

• Issue 2: It is necessary to make a priori estimate of the sequence and number

of constrained and unconstrained trajectory segments for an OCP with path

inequality constraints.

• Issue 3: It is difficult to provide a good initial guess for the mathematical and

non-intuitive costates of the OCP.

The research work performed at the Rapid Design of Systems Laboratory (RDSL),

including this thesis, primarily aim at addressing these issues with indirect methods

of optimization. The following is a brief overview of direct and indirect methods of

optimization, which form the basis for optimization solvers used in this thesis.

1.2.1 Direct Methods

The direct methods address the OCPs directly by utilizing Karush-Kuhn-Tucker

(KKT) conditions. [3,52] The optimization tool converts the OCP into an NLP prob-

lem by the discretization of both the states and controls. [4, 53] The objective func-

tion and the constraints upon the problem in the NLP are non-linear functions. NLP

solvers like SNOPT [54] or IPOPT [55–58] then aim at finding values for many dif-

ferent user-specified variables that can optimize the objective function for the given

constraints from initial and terminal points of the trajectory. SNOPT employs se-

quential quadratic programming based on a sparse matrix structure [59–61], which

finds locally optimal solutions.
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Since it is impossible to perform infinite function evaluations, the trajectory is

divided into a finite number of points, also known as nodes. The placement of these

nodes is not arbitrary and the equations of motion (EOMs) should be satisfied at

these nodes. The direct methods employ collocation for this purpose.

The optimization research community developed collocation as an alternative to

explicit integration. [6] Only the controls are discretized while using the explicit in-

tegration methods with the aim of finding the optimal control through corrections.

On the other hand, both the controls and the states of the OCP are discretized while

using the collocation methods. [62] Due to the discretization of states, the OCP grows

larger in size, which appears to be a disadvantage at first. However, the inclusion of

states helps in developing quadrature rules and in enforcing EOMs at the discretized

locations. The collocation method devised in Ref. 6 uses cubic and linear polyno-

mials to interpolate the states and the control, respectively. The solution obtained

using the collocation method is identical to an explicit Runge-Kutta 4th order (RK4)

integration scheme with an adequate accuracy level. [63] Thus, collocation methods

serve as implicit integration methods. [7]

The direct methods employing collocation are unable to estimate the costates of

indirect solutions. To resolve this issue, the optimization research community intro-

duced and developed advanced direct methods known as pseudospectral methods.

1.2.1.1 Pseudospectral Methods

Before the inception of pseudospectral methods, the design community often un-

willingly chose between direct and indirect methods of optimization. Direct methods

have been a popular choice due to ease of implementation for a wide variety of OCPs.

However, the design studies desire rapid convergence of indirect methods. [5] Pseu-

dospectral methods aim at bridging the gap existing between direct and indirect

methods while capitalizing on the strengths of these two methods. [7, 15,64]
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There are two ways to solve a general trajectory optimization problem, represented

as Problem B shown in Fig. 1.2. [65,66] The first approach is to apply the optimality

conditions using an indirect method and then to discretize it. Another approach is

to discretize Problem B first by using a direct method and then to apply optimality

conditions upon the discretized problem. N represents the discretization process and

λ represents the application of optimality conditions.
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Figure 1.2.: Schematic of the Covector Mapping Theorem. [65,66]

Discretization is a common step during the conceptual design phase while solving

for optimal trajectories. As the number of discretized points increases to infinity, the

discrete solution is assumed to converge to the continuous solution. Since it is impos-

sible to perform infinite calculations during the optimization process, the number of

discretized points is kept large enough for practical engineering applications. How-

ever, the assumption that the discretized solutions approach continuous solutions for

a large number of discretized points is not necessarily true. [67] Many direct methods

were actually developed without knowing how to fix this assumption.
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As illustrated in Fig. 1.2, the direct and indirect methods approach problem B

in an inverted manner. Direct methods first discretize the problem B to obtain the

problem BN. These methods then apply KKT optimality conditions to dualize BN

and obtain BNλ. On the other hand, indirect methods dualize the continuous prob-

lem through the adjoint of costates. Indirect methods then discretize the resulting

augmented problem, Bλ, for a computer-based solution. Thus, there seems to be

a similarity between the discrete costates of indirect methods and the KKT multi-

pliers of direct methods. However, even when these two methods obtained similar

results for controls and states, the KKT multipliers of direct methods and the discrete

costates of indirect methods were not necessarily consistent. [66] The discretization

and dualization processes thus seemed to be immutable.

For certain OCPs, the KKT multipliers were found to be non-unique, resulting in

this discrepancy. [66] To resolve this issue, researchers developed the Covector Map-

ping Theorem (CMT) [18] using pseudospectral methods. The CMT provides a set

of closure conditions that enforce unique, properly scaled KKT multipliers, consis-

tent with the discrete costates of indirect methods. Pseudospectral methods enable

computation of costates using the CMT, as suggested by prior work in collocation

methods. [7] These costates validate the necessary conditions of optimality provided

by indirect methods. [68] Pseudospectral methods enable the designer to use intuitive

direct methods and still obtain a converged indirect solution, which is otherwise dif-

ficult to obtain. The initial converged solution helps to perform rapid trade studies

on different parameters of the OCP using the indirect methods.

Pseudospectral methods use global polynomial approximations for the state func-

tions with Gaussian quadrature collocation points. [15, 20] Legendre–Gauss (LG),

Legendre–Gauss–Radau (LGR), and Legendre–Gauss–Lobatto (LGL) points are the

three most commonly used sets of collocation points. [20] Linear combinations of a

Legendre polynomial and its derivatives help in obtaining these three sets of collo-

cation points. LGL [18, 69] and LGR pseudospectral methods [70], based on these

sets of collocation points, are most well documented in literature. The LG and LGR
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methods have different convergence properties from the LGL method as they use a

distinct mathematical form. The optimal control software used for validation of the

OCPs in this thesis, GPOPS-II, employs LGR collocation points. [11]

Unlike traditional collocation methods, the global polynomials enable high-order

LGR quadrature rules. The LGR points have a non-uniform distribution along the

trajectory. The distribution of LGR nodes near the endpoints is dense, which helps

in avoiding large interpolation errors resulting from the Runge phenomenon. [68] The

KKT multipliers are appropriately scaled with the LGR weights to obtain the costates.

[70] Thus, the solutions for OCPs obtained using pseudospectral methods like LGR

method could be checked through the Hamiltonian obtained using the estimated

costates. The Hamiltonian for the OCPs usually has a constant value and is not

a function of time. The Hamiltonian time-history can then be compared between

pseudospectral and indirect methods to check the quality of solutions obtained using

the former. Although pseudospectral methods are able to estimate the costates well

for most OCPs, but they do not guarantee high quality solutions. Indirect methods,

on the other hand, guarantee high quality solutions.

1.2.1.2 Optimization Tool

For verification and validation purposes, this thesis uses a popular optimal control

software called GPOPS-II, which is based on pseudospectral methods and is used to

solve a wide variety of OCPs. [11] It implements LGR quadrature orthogonal collo-

cation method to convert a continuous OCP into a sparse NLP. It uses collocation

at LGR points and approximates the states as Lagrange polynomials by using the

values at the initial point and at the N LGR points. The LGR method approximates

costates as Lagrange polynomials by using the value at the terminal point and at

the N LGR points. GPOPS-II utilizes LGR collocation method because it provides

highly accurate state, control, and costate approximations while maintaining a rela-

tively low-dimensional approximation of the continuous-time problem. An adaptive
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mesh refinement method determines the number of mesh intervals and the degree of

the approximating polynomial within each mesh interval for achieving a specified ac-

curacy. GPOPS-II interfaces with NLP solvers like SNOPT or IPOPT, where sparse

finite-differencing of the OCP functions approximates all derivatives required by the

solver. [11]

Although GPOPS-II is a powerful software to solve a wide variety of OCPs, it

suffers from few drawbacks as described below.

1. GPOPS-II is a proprietary optimization tool.

2. Solvers can parallelize GPOPS-II only to a certain extent.

3. GPOPS-II obtains jittery control solutions for many OCPs, which are unrealistic

to implement in real-world scenarios. Fig. 1.3 shows one such example of a

jittery angle of attack control time-history for a Mars aerocapture problem.
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Figure 1.3.: An example of jitters in control solutions obtained using GPOPS-II.
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GPOPS-II does not satisfy the necessary and sufficient conditions of optimality

stated in OCT, leading to jitters in the solutions. The trajectory designer needs

to express non-linear path constraints in a logarithmic form in order to avoid

such jittery control solutions.

4. LGR method needs more computationally efficient, numerical linear algebra

techniques [71] to identify LGR node locations.

The following subsection discusses indirect methods, which can resolve issues with

direct methods including pseudospectral methods.

1.2.2 Indirect Methods

OCPs involve the calculation of the time-history of the control variable(s), as-

sociated with a system that optimizes a given performance index, while satisfying

problem-specific constraints at the initial point, terminal point, and interior points

as well as path constraints. An OCP generally attains the form given in Eq. (1.1). J

is the cost functional, with φ being the terminal cost and
∫ tf
t0
L(x,u, t) dt being the

path cost, where t0 is chosen to be 0 s. Eq. (1.2) specify the EOMs for the OCP.

Indirect methods also need to simultaneously satisfy initial and terminal constraints,

Ψ and Φ, shown in Eq. (1.3) and Eq. (1.4), respectively.

Minimize: J = φ(x(tf ), tf ) +

∫ tf

t0

L(x,u, t)dt (1.1)

Subject to: ẋ = f(x,u, t) (1.2)

Ψ(x(t0), t0) = 0 (1.3)

Φ(x(tf ), tf ) = 0 (1.4)

Indirect methods optimize the cost functional, J , shown in Eq. (1.1) by formu-

lating a MPBVP that represents the necessary conditions of optimality. If indirect
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methods satisfy these boundary conditions, the solution will be locally optimal in

the design space. To accomplish this, indirect methods augment the dynamic equa-

tions of the system with a set of costates. Euler-Lagrange equations then help with

formulation of the necessary conditions of optimality described as follows. [24]

1.2.2.1 Necessary Conditions of Optimality using Calculus of Variations

A mathematical quantity called the Hamiltonian generates the necessary condi-

tions of optimality. Eq. (1.5) defines the Hamiltonian, where λ is the costate vector

with its corresponding dynamic equations defined in Eq. (1.6). Eq. (1.7) shows the op-

timal control law, u(t), as a function of the states and costates. Eq. (1.8) and Eq. (1.9)

specify the initial and terminal boundary conditions on the costates, where ν0 and

νf are sets of undetermined parameters, which are used to adjoin these boundary

conditions to the cost functional. The free final time condition, shown by Eq. (1.10),

determines the time of flight of the trajectory. Eqs. (1.6)–(1.10) define the necessary

conditions of optimality, and they form a well-defined TPBVP. BVP solvers can solve

such TPBVP.

H = L(x,u, t) + λT (t)f(x,u, t) (1.5)

λ̇ = −∂H
∂x

(1.6)

∂H

∂u
= 0 (1.7)

λ(t0) = νT0
∂Ψ

∂x(t0)
(1.8)

λ(tf ) =
∂φ

∂x(tf )
+ νTf

∂Φ

∂x(tf )
(1.9)

(
H +

∂φ

∂t
+ νTf

∂Φ

∂t

)
t=tf

= 0 (1.10)
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When more than one option exists after solving Eq. (1.7), Pontryagin’s Minimum

Principle (PMP) helps select the optimal control as shown in Eq. (1.11), where *

refers to the optimal value. [24] It states that the optimal control will minimize the

Hamiltonian, H, for all admissible values of control. [24]

H(t,x∗(t),u∗(t),λ∗(t)) ≤ H(t,x∗(t),u(t),λ∗(t)) (1.11)

Please note that Eq. (1.12), popularly known as the transversality condition [24]

in the literature, is also used in this thesis to validate that the results obtained are

optimal based on the time-history of the Hamiltonian. Usually, the Hamiltonian is not

an explicit function of time and is a constant function. The value of the Hamiltonian

obtained at the terminal point should thus be a constant over the entire time interval

of the trajectory. The first part of Eq. (1.12), H(tf ) + φtfdtf , is used to determine

the constant value of the Hamiltonian. This terminal value of the Hamiltonian can

then be matched with the Hamiltonian time-history plot to further verify and validate

whether the results obtained are optimal. In Eq. (1.12), φ is the terminal cost, which

is a function of the final time, tf , and the final states, xf .[
H(tf ) +

∂φ

∂tf

]
dtf +

[
λ(tf )

T +
∂φ

∂xf

]
dxf = 0 (1.12)

1.2.2.2 Control Constraints

Control constraints are usually of the form shown in Eq. (1.13). The traditional

approach augments the Hamiltonian as shown by Eq. (1.14) and obtains the control

law for the constraint boundary by solving C = 0.

C(u, t) ≤ 0 (1.13)

H = L+ λTf + µTC (1.14)
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The modified dynamic EOM for the costates along the constraint arcs is shown

in Eq. (1.15), where Eq. (1.16) calculates the multipliers µ.

λ̇ = −∂H
∂x

= −Lx − λTfx − µTCx (1.15)

∂H

∂u
= Lu + λTfu + µTCu = 0 (1.16)

The traditional approach pieces the constrained and the unconstrained arcs to-

gether. If the Hamiltonian is regular (i.e., the optimal control law for the OCP is

unique), then the control stays continuous across the unconstrained and constrained

arcs. [51, 72,73]

1.2.2.3 Path Constraints

The presence of path constraints further complicates the boundary conditions by

introducing corner conditions in certain costates and effectively splitting the trajec-

tory into multiple arcs. Path constraints are usually of the form shown in Eq. (1.17).

To obtain the control history for the constrained arc, the solution process takes time

derivatives of the path constraints until a control variable appears explicitly. If this

happens with the qth derivative, the solution process augments the Hamiltonian as

shown in Eq. (1.18), and obtains the control law for the constraint boundary by

solving S(q) = 0. [24,50]

S(x, t) ≤ 0 (1.17)

H = L+ λTf + µTSq (1.18)

The addition of path constraints also modifies the dynamic equations of the

costates along the constrained arcs as shown in Eq. (1.19), where Eq. (1.20) de-

termines the multipliers µ.

λ̇ = −∂H
∂x

= −Lx − λTfx − µTSqx (1.19)
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∂H

∂u
= Lu + λTfu + µTSqu = 0 (1.20)

The states are continuous at the entry (t1) and exit (t2) of the constrained arc

as shown in Eq. (1.21). The solution process chooses corner conditions on costates

such that the costates are continuous at the exit of the constrained arc as shown in

Eq. (1.22). The tangency conditions described in Eq. (1.23) and corner conditions in

Eq. (1.24) and Eq. (1.25) apply at the entry point of the constrained arc, where Π

are the multipliers corresponding to the tangency constraint conditions.

x(t1
+) = x(t1

−)

x(t2
+) = x(t2

−)
(1.21)

λ(t2
+) = λ(t2

−)

H(t2
+) = H(t2

−)
(1.22)

N (x, t) =
[
S(x, t) S1(x, t), ..., Sq−1(x, t)

]T
(1.23)

λ(t1
+) = λ(t1

−) + ΠTNx (1.24)

H(t1
+) = H(t1

−) + ΠTNt (1.25)

1.2.2.4 Additional Necessary Conditions

Eq. (1.26) states the additional necessary conditions needed for OCPs with path

constraints in a general form, where q is the order of the path constraint. [50, 51, 73]

Note that the superscript for µ represent the order of its time-derivative.
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πk−1 − (−1)q−kµq−k(t+ENTRY)

≥ 0 if k = 1

= 0 if k = 2, ..., q, q > 1

(1.26a)

(−1)q−kµq−k(t−EXIT)

≥ 0 if k = 1,

= 0 if k = 2, ..., q, q > 1

(1.26b)

(−1)qµq(t) ≥ 0 if t ∈ [tENTRY, tEXIT] (1.26c)

1.2.2.5 Bang-Bang Control and Singular Arcs

Suppose a bounded OCP with a scalar control, u, has a Hamiltonian, H, as shown

in Eq. (1.27). [24] The control stays bounded between -k and +k. Since H is linear

in u, Eq. (1.7) results in Eq. (1.28).

H = H0(t,x(t),λ(t)) +H1(t,x(t),λ(t))u (1.27)

∂H

∂u
= H1 (1.28)

The choice of u cannot influence H0(t,x
∗(t),λ(t)), so the solution process ignores

this term. If H1 is a positive number, then the solution process picks the lowest value

of u to minimize H. Similarly, if H1 is less than 0, the process picks the maximum

value of u. In summary, the PMP gives the control law shown in Eq. (1.29).

u =


−k if H1 > 0

unknown if H1 = 0

k if H1 < 0

(1.29)

OCT defines the coefficient H1(t,x
∗(t),λ(t)) as the switching function. When H1

oscillates through positive and negative values, the control law switches back and

forth between its lower and upper bounds, attaining a “bang-bang” form. When H1
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≡ 0 units on some non-zero time interval, say [t1,t2] ≤ [t0,tf ], then the subarc [t1,t2]

becomes a singular subarc and the control no longer influences H, leading to non-

uniqueness issues. To determine unique candidate singular controls, the traditional

approach differentiates Eq. (1.7) with respect to time as shown in Eq. (1.30). The

last term in Eq. (1.30) vanishes because the derivative of Hamiltonian with respect

to the control, Hu, is a constant and ∂Hu

∂u
becomes 0 units as a result.

d

dt
(Hu) = 0 =

∂Hu

∂t
+
∂Hu

∂x
ẋ+

∂Hu

∂λ
λ̇+

∂Hu

∂u
u̇ (1.30)

The solution process forms d2

dt2
Hu ≡ 0, and if u appears explicitly, the process uses

the condition specified in Eq. (1.30) along with the Generalized Legendre-Clebsch

Condition (GLCC) as shown in Eq. (1.31) to determine the singular control law. If u

does not appear explicitly, the solution process takes even time derivatives of Hu until

the process satisfies GLCC along with the conditions specified by odd time-derivatives

of Hu [24] to obtain the singular control law.

(−1)q
∂

∂u

(
d2qH∗u
dt2q

)
≥ 0 (1.31)

1.2.2.6 Optimization Tool

This thesis uses MATLAB’s BVP solver, bvp4c [74,75], to implement the indirect

method of optimization. This solver is a finite difference code that implements the

three-stage Lobatto IIIa formula. This is a collocation formula through which the

collocation polynomial provides a C1 continuous solution that is fourth-order accurate.

The residual of the continuous solution forms the basis for mesh selection and error

control.

The solver bvp4c aims at solving BVPs of the form shown in Eq. (1.32a) subjected

to non-linear boundary conditions shown in Eq. (1.32b). Please note that x here
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ranges between the values a and b. Also, p is the vector of unknown parameters and

n is the number of mesh points for the BVP.

y′ = f(xn,S(xn)) (1.32a)

g(y(a),y(b),p) = 0 (1.32b)

The approximate solution to this BVP, S(x), is a cubic polynomial on each mesh

subinterval, which satisfies the boundary conditions specified in Eq. (1.33a). S(x)

also satisfies the differential equations specified by the collocation at both end points

and the mid-point of each mesh subinterval as shown in Eqs. (1.33b)–(1.33d).

g(S(a),S(b)) = 0 (1.33a)

S′(xn) = f(xn,S(xn)) (1.33b)

S′((xn + xn+1)/2) = f((xn + xn+1)/2,S((xn + xn+1)/2)) (1.33c)

S′(xn+1) = f(xn+1,S(xn+1)) (1.33d)

The solver bvp4c employs some interesting properties of the Simpson method for

solving BVPs with poor initial guesses. [76] Ultimately, bvp4c calculates the residual

r(x) given by Eq. (1.34) and the residual in the boundary conditions, g(S(a),S(b)).

Here S′(x) is the exact solution for the BVP. For a low enough value of these residuals,

bvp4c converges to a good solution, very close to S′(x).

r(x) = S′(x)− f(x,S(x)) (1.34)

1.2.2.7 Advantages and Disadvantages of Direct and Indirect Methods of

Optimization

Table 1.1 summarizes the major advantages and disadvantages of direct and indi-

rect methods. [5,53,77,78] The problem formulation for OCPs with path constraints

using indirect methods becomes difficult as it requires a priori knowledge of the se-

quence and number of constrained and unconstrained arcs. [5, 79] Moreover, the tra-

jectory designer faces difficulty while selecting an initial guess for the non-intuitive
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costates. However, the advantages of indirect methods prompt further development

of OCT. The research community working on OCT decreased massively since 1970’s

due to the difficulties presented by indirect methods in solving OCPs. Recently, this

small community, including researchers at RDSL, addressed the issues with indirect

methods to an extent.

Table 1.1.: Comparison between direct and indirect methods of optimization.

Feature Direct Methods Indirect Methods

Problem formulation Fast Slow

Sensitivity to an initial guess Low High

Handling path constraints Easy Difficult

Convergence accuracy Can be inaccurate Accurate

Parallel computing Difficult Easy

Developer and user community Very large Very small

Available solvers Many Few

1.2.2.8 Resolution of Issues for Indirect Methods

The research work done at RDSL has successfully addressed the three issues re-

garding use of indirect methods as mentioned previously.

• Resolution of Issue 1 (Concerning Problem Formulation): Advancements in

modern symbolic computation enable the automated derivation of the necessary

conditions of optimality.

• Resolution of Issue 2 (Concerning Path Constraints): Continuation of in-

direct methods enables real-time assessment of the constrained-arc sequence

and the automated inclusion of appropriate constraints.
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• Resolution of Issue 3 (Concerning Initial Guess): Continuation of indirect

methods enables rapid evolution to complex optimal solutions without a good

initial guess.

The MATLAB-Mathematica based framework developed at RDSL and used in

this study is shown in Fig. 1.4. [5] This framework is the culmination of the Ph.D.

research work carried out by Grant.
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Figure 1.4.: MATLAB and Mathematica based rapid optimization framework devel-

oped at RDSL.

Mathematica is a state-of-the-art symbolic computation toolbox, which Grant

used to resolve issue 1 with the indirect methods. [5, 80] An input MATLAB file in-

cludes the problem statement and constants used to generate the boundary conditions

and EOM files. In order to generate the optimal control law, MATLAB links with

Mathematica to generate a MATLAB file listing all the optimal control options. PMP

then selects the best control combination at each node of the trajectory. Thus, the

necessary conditions for optimality are automatically generated in this framework.

This framework can use an initial guess file. A simpler and faster option is to

obtain the initial guess using auto-generation, where MATLAB’s ODE45 propagates
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initial (or terminal) values of the states with an EOM file for a small, predetermined

time. MATLAB’s codegen then generates MEX files corresponding to the boundary

conditions, EOMs, and optimal control options.

A simpler problem is thus solved for the initial guess provided to MATLAB’s

bvp4c, increasing the likelihood of obtaining convergence. By marching the values

of the states to terminal (or initial) values, the complexity of the problem increases.

The converged solution for the simpler problem serves as a guess for the subsequent

complex problem. This process is popularly known as continuation. [81] The con-

tinuation process can break during an intermediate step if the BVP is very difficult

(or impossible) to solve, thereby generating an error message: a singular Jacobian

encountered. To resolve this issue, the solution process requires changing the number

of steps or the order of continuation sets. For example, running a continuation first

on altitude and then on velocity can result in a faster convergence as against running

continuation on altitude and velocity simultaneously.

Mansell and Singh made further improvements to the RDSL’s optimization frame-

work for addressing issue 3 with indirect methods. Mansell developed a heuristic ana-

lytical method to control the order and selection of continuation sets for the OCP. [82]

On the other hand, Singh used homotopy based approximation methods to obtain a

good initial guess for complex OCPs that guarantee convergence. [83,84] The order of

continuation is an ongoing work at RDSL and can substantially help in rapidly solv-

ing complex OCPs. Researchers at RDSL have also been developing a Python based,

open-source and more efficient optimization framework named Beluga. However, this

thesis has used the MATLAB based framework in entirety.

At RDSL, Grant and Mall devised a new innovative way of landing human class

payloads on the surface of Mars, which sets motivation for this thesis. The following

discussion includes the issues with solving this high mass Mars landing problem using

traditional OCT.
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1.2.2.9 Spurious Results for the High Mass Mars Problem

To date, Mars exploration and human spaceflight used blunt bodies, such as

sphere-cones and capsules. The research community views entry, descent, and land-

ing (EDL) at Mars as a deceleration challenge within a finite time-line. Braun and

Manning outlined that without some combination of the following: 1) decreasing

the hypersonic ballistic coefficient, 2) extending the established supersonic parachute

deployment region, 3) moving to a more effective supersonic decelerator, or 4) in-

creasing the vertical lift of the entry vehicle, landing a mass as low as 2 mT on the

Martian surface may be infeasible. [85] Christian et al. concluded that the extension

of traditional EDL technologies may be insufficient for human Mars exploration. [86]

Steinfeldt et al. made comparisons between different technologies for a human-class

payload mission to Mars. These comparisons concluded that as the required payload

mass increases, the severity of the deviation from traditional Mars EDL technologies

also increases. [87]

Hypersonic Inflatable Aerodynamic Decelerators (HIADs) have been predomi-

nantly identified as a key enabler for Mars missions based on points 1) and 3) of

Braun and Manning, and testing of these systems is underway. [85] The current re-

search estimates the diameter of HIADs necessary for human-class payloads between

20 and 40 m, which is very large. [88] This results in a low ballistic coefficient, low

L/D, and supersonic terminal velocities at Mars. Inflating large inflatables is also a

cause of concern and involves risk. Moreover, it is hard to control and guide such

blunt and voluminous inflated systems. Supersonic retropropulsion was found to de-

liver even lower payloads than HIAD-based architectures by EDL systems analysis

conducted at NASA. [89,90]

At NASA Ames, Venkatapathy et al. carried out a feasibility study of an umbrella-

based EDL system, popularly called as Adaptable, Deployable Entry Placement Tech-

nology (ADEPT). [91] Both HIAD and ADEPT configurations do not offer protection

for payload. [92, 93] There are concerns about heating on the payload during aero-
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capture and entry for an exposed payload. These drag based technologies require

a significant amount of additional mass to mitigate this risk. SpaceX has initially

been a proponent of propulsion based EDL systems such as supersonic retropropul-

sion (SRP) for high mass Mars exploration. [94, 95] However, SRP requires carrying

a large amount of rocket propellant, leading to higher mission costs. [90, 96] A part

of the EDL community thus started investigating lift-based architectures to explore

and provide more EDL options for high mass Mars missions.

Many studies looked into using bank angle modulation to impact vertical lift of

the entry vehicle. [97, 98] In 2009, Lafleur and Cerimele proposed augmenting angle

of attack modulation with bank angle modulation to maximize the terminal altitude

for a Mach 3.5 terminal velocity at Mars and to utilize the lifting properties of the

vehicle for deceleration. [99] Recently, Cerimele et al. proposed a rigid mid L/D ap-

proach to human-class EDL. [100] In 2012, Cruz-Ayoroa and Braun investigated high

lift and drag properties of slender entry vehicles (SEVs) with deployable aerosurfaces

and performed an in-depth systems study including aerodynamics and aerothermo-

dynamics. [101] The major focus of their study was to decrease the ballistic coefficient

of such SEVs by increasing drag. These lift-based EDL technologies jettison the de-

ployable aerosurfaces at the supersonic phase and do not fully utilize the aerosurfaces

to decrease the energy further. Thus, these prior studies did not explore the true

potential of the lift of SEV. Grant and Mall developed a new innovative way of fly-

ing and landing human class payloads to the surface of Mars using SEVs with high

lift. [102] At the International Astronautical Congress in 2017, Elon Musk shared

his approach to make life interplanetary by landing on Mars using a similar flying

technique, highlighting its importance. [103]

The objective for the lift-based high mass Mars problem is to maximize the termi-

nal altitude for a safe terminal descent phase. The trajectory includes three phases:

dive, cruise, and loft. The dive phase implements the heat-rate and g-load constraints.

During the cruise phase, the SEV maintains a constant safe altitude. Finally, the SEV
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lofts to a higher altitude from where it initiates the terminal descent phase. Fig. 1.5

illustrates this EDL technique.
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Figure 1.5.: The lift-based EDL architecture developed at RDSL. [102]

This study encountered an issue while using traditional indirect methods to solve

this problem. The trajectory plot, shown in Fig. 1.6, gives an impression that the

solution is correct. However, the flight path angle time-history plot indicates other-

wise. For the SEV to fly at a constant altitude, the flight path angle, γ, should be

00. But as shown in Fig. 1.7, γ ranges between -600 and 00.

Upon further investigation, it was found that the traditional smoothing regular-

ization method employed in traditional indirect methods, is unable to bound the

error controls used in this problem. The smoothing method, discussed in Sec. 2.2,

uses Eq. (1.35) to solve this problem, where the error control appears explicitly after

taking the first derivative of the constraint, S. This method introduces a small error

into the EOM corresponding to the altitude, ḣ, to regularize the problem. Although

the error term, εuε1 , usually remains small in Eq. (1.35a); it has the potential to blow

up while staying unbounded.

S1 = ḣ = v sin γ + εuε1 = 0 (1.35a)
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Figure 1.6.: The altitude time-history plot for the high mass Mars problem.
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Figure 1.7.: The flight path time-history plot for the high mass Mars problem.
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uε1 = −v sin γ

ε
(1.35b)

Eq. (1.35b) shows the unbounded form of the error control, uε1 . Thus, it blows up

for a large value of velocity, v, coupled with a very low value of error parameter, ε, and

a non-zero flight path angle, γ, as shown in Fig. 1.8. This leads to unrealistic results,

which give a false impression of obtaining correct solutions for the OCP. Realistically,

error controls of traditional smoothing technique should be close to 0 units.
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Figure 1.8.: An Unrealistically large error control for the high mass Mars problem.

The spurious result for the high mass Mars problem paved the way for the devel-

opment of two new regularization methods at RDSL. These new methods simplify and

advance OCT for better resolution of issue 2 with indirect methods. The following

discussion includes an overview of regularization methods developed at RDSL.

1.2.2.10 Regularization Methods

Regularization, in mathematics and statistics, refers to a process of introducing

additional information to solve an ill-posed problem. [104–114] Regularization meth-

ods developed at RDSL aim at reducing the problem formulation time and to handle

the path constraints with ease. The core idea of these methods is to remove possible

discontinuities in the state EOMs of the OCPs with control and path constraints by
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modifying controls using smoothing functions. Saturation functions are a class of

smoothing functions used for path constraint regularization. Some of the common

examples of saturation functions are the sigmoid, arc-tangent, and hyperbolic tan-

gent functions. Antony developed a regularization method based on these saturation

functions at RDSL called Integrated Control Regularization Method (ICRM). [79,115]

Ref. 116 forms the basis for ICRM in which the path constraints of the OCP, ci(x),

are shown in Eq. (1.36). A suitable saturation function, ψ, replaces these constraints

as shown in Eq. (1.37).

ci(x) ∈ [ci
-, ci

+], i = 1...p (1.36)

ci(x) = ψ(ξi,1), i = 1...p (1.37)

The solution process then successively differentiates ci(x) with respect to time

until the control variable appears. For example, if ci(x) is of the order 2, the control

appears by differentiating the constraint equation twice as shown in Eq. (1.38a) and

Eq. (1.38b). The solution process introduces new state variables, ξi,j, and new control

variable, uε1 , with EOMs as shown in Eq. (1.38c) and Eq. (1.38d).

c(1)(x) = ψ′ξ̇i,1 := h1 (1.38a)

c(2)(x) = ψ′′ξ2i,2 + ψ′ξ̇i,2 := h2 (1.38b)

ξ̇i,1 = ξi,2 (1.38c)

ξ̇i,2 = uε1 (1.38d)

The objective functional, J , has an added term to the path cost with respect to

Eq. (1.1) as shown in Eq. (1.39a), where ε is a regularization parameter. Finally, an

equality constraint, is also added to the problem as shown in Eq. (1.39b), where q

is the order of the constraint. A suitable numerical method then solves the resulting

extended OCP with path constraints.

Minimize: J= φ(x(tf ), tf ) +

∫ tf

t0

(L(x,u, t) + εuε1)dt (1.39a)

ci
(q)(x)− hq= 0 (1.39b)
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Ref. 116 recommends a sigmoid function for two-sided functions. The method

formulates Eq. (1.40a) so that the resulting function has a slope of 1 at ξ = 0.

Eq. (1.40b) shows the scaling of the exponential term, s, in this resulting function.

ψ(ξ) = c+ − c+ − c-

1 + exp(sξ)
(1.40a)

s =
4

c+ − c-
(1.40b)

ICRM adds the EOM for the control variable, u, to the OCP, and obtains the

control numerically. ICRM is a well-developed regularization technique to solve OCPs

with control and path constraints. However, there are three issues with ICRM.

• Issue 1: The constraint is never active in this method, which might affect the

overall result for the OCP. Moreover, ICRM cannot solve OCPs with boundary

points on the constraint.

• Issue 2: The use of extra variables and equations significantly increases the amount

of mathematics involved in ICRM, thereby affecting the problem solving process.

• Issue 3: ICRM cannot obtain the control law analytically, thereby affecting the

quality of solutions to the OCPs.

This thesis provides a complimentary solution to ICRM by investigating the usage

of periodic trigonometric functions instead of saturation functions for regularization

of OCPs with control and path constraints. The following section describes the con-

tributions and outline of this thesis.

1.3 Contributions and Outline of Thesis

To improve and advance the current literature on OCT, this study has the follow-

ing three major research objectives.

1. Devise a new regularization technique for bang-bang and singular control prob-

lems that can overcome the drawbacks suffered by the traditional smoothing

method.
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2. Develop a simplified, complete and improved methodology for solving OCPs

with pure control constraints and non-linear controls in the Hamiltonian.

3. Develop a simplified and improved methodology for solving OCPs with mixed

state-control constraints and pure state constraints.

This thesis also comprises of the following four chapters. Chapter 2 introduces a

new regularization method to solve bang-bang and singular control problems. Chap-

ter 3 extends the idea proposed in chapter 2 to OCPs with control constraints

where controls appear in a non-linear form in the Hamiltonian using a method called

Trigonometrization. Chapter 4 extends the Trigonometrization technique to OCPs

with mixed state-control constraints and pure state constraints. Chapter 5 sum-

marizes this thesis and lists the future work needed to further advance OCT using

Trigonometrization. Fig. 1.9 shows the class of OCPs solved in the different chapters

and the overall flow of this thesis.
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Figure 1.9.: Flow of this thesis.
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2. Advancements in Solving Bang-Bang and Singular

Control Problems

OPTIMAL 

CONTROL 

PROBLEMS
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2.1 Introduction

B
ang-bang control problems are a class of OCPs where the control appears in

a linear form in the Hamiltonian. The optimal control for such problems often

stays at extremum values. When switches in control between these values occur,

the optimization solver encounters numerical issues when using OCT that relies on

derivatives.

A common approach to solving these numerical issues is to regularize the OCP

by adding a perturbed energy term in the cost functional. [47, 117–121] The focus of

this chapter is the class of regularization methods that perturb the dynamics of the

system. Silva and Trélat [48] developed one such smooth regularization technique
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(Sec. 2.2) that uses the concept of error controls and an error parameter, ε, to obtain

a smooth control structure. This smoothing method provides a relation between the

error controls and the smooth control, using a particular condition, which is discussed

in Sec. 2.2.

However, this chapter uncovers some issues with the traditional smooth regu-

larization method. This chapter introduces a new method termed as Epsilon-Trig

regularization (Sec. 2.3), which addresses the issues encountered by the traditional

smooth regularization approach using trigonometric functions.

2.2 Traditional Smooth Regularization Method

Bang-bang control problems have numerical issues, when there are discontinuities

in the control structure, while using OCT that relies on derivatives. Researchers de-

veloped various types of regularization methods to resolve these numerical issues by

solving for an auxiliary problem instead of the original problem. The first smoothing

regularization method is energy-based, where the cost functional is perturbed. Some

of the penalty functions used in this approach are the quadratic penalty, extended log-

arithmic penalty, and logarithmic barrier. [47] There are also piecewise-linear methods

in the energy-based approach, commonly known as simplicial methods that build a

piecewise linear approximation of homotopy to solve the auxiliary problem. [122] An

important aerospace problem on low thrust trajectory optimization has been solved

using various forms of energy-based homotopic regularization methods. [123–126]

This study focuses on another class of regularization methods, in which the solu-

tion process introduces perturbation in the dynamics of the state system. [127] Silva

and Trélat [48] devised one such method to pose the bang-bang control problem as

shown in Eq. (2.1). The smoothing method introduces a small error into k state equa-

tions, where the control is absent, using the combination of an error parameter, ε,

and error controls, uεn . Graphically, this is shown in Fig. 2.1, where the error controls

(shown in blue) solve for a smooth optimal control (shown in green) instead of the
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original discontinuous control structure (shown in red). Please note that the error

controls happen to be orthogonal to the smooth control, which was not explained in

the traditional regularization method. The general form of the state equations with

error parameter and error controls is shown in Eq. (2.1b), where n ranges between 1

and k. For simplicity, only one state equation has the original control as shown in

Eq. (2.1c).

Issues due to 
discontinuity
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Figure 2.1.: Resolving discontinuity issues with bang-bang control by smoothing it.

Minimize: J = J(tf ,x(tf )) (2.1a)

Subject to: ẋεn = fn(t,x(t)) + εuεn (2.1b)

ẋk+1 = fk+1(t,x(t)) + u (2.1c)

u2 +
k∑

n=1

u2εn = 1 (2.1d)

PMP requires Eq. (2.1d) to hold along non-singular sub arcs and obtains u at the

boundary of the control constraint. Upon calculations using Eq. (1.7) and Eq. (2.1d),

the values of controls, u and uε, are found as shown in Eq. (2.2).

u∗ =
−λxk+1√√√√ε2
k∑

n=1

λ2xn + λ2xk+1

(2.2a)

u∗εn =
−ελxn√√√√ε2
k∑

n=1

λ2xn + λ2xk+1

(2.2b)
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It becomes possible to solve a problem very close to the original OCP that has

a bang-bang control solution, where ε determines the amount of smoothing of the

bang-bang control. Usually, the value of ε is small (e.g., 0.01 units).

2.2.1 Existing Issues

Although the traditional smooth regularization method resolves issues related to

switches in control, it fails to address the following issues.

1. Introducing too many error controls complicates the problem formulation and

solution process.

2. For OCPs with path constraints, the resulting control law for the constraint

arc violates an important condition on controls as specified in Eq. (2.1d). The

resulting error controls grow very large in magnitude and become unrealistic.

3. The error parameter, ε, becomes dimensionally inconsistent when used in more

than one state equation, which introduces numerical issues while scaling the

original problem. Scaling the OCP can convert it from an ill-conditioned to a

well-conditioned form.

Eq. (2.3) determines the unit of ε. Since the state equations generally have differ-

ent units, the unit of ε for the same control will also be different. Thus, ε becomes

dimensionally inconsistent. For e.g., if angle of attack is the control measured in ra-

dians and if ε is present in two state equations, one corresponding to altitude, h, and

other corresponding to velocity, v, then the same ε has two different units of m/(s

rad) and m/(s2rad), respectively.

Unit of ε =
The unit of state equation

The unit of control
(2.3)
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2.2.2 Solving a Bounded Control Oscillator Problem using Traditional

Smoothing Method

A minimal time oscillator problem [24] is shown in Eq. (2.4), where the traditional

smooth regularization method is used. Table 2.1 contains the constants used in this

problem.

Minimize: J = tf (2.4a)

Subject to: ẋ1 = x2 + εuε (2.4b)

ẋ2 = −x1 + u (2.4c)

Table 2.1.: Constants for the oscillator problem.

Parameter x10 x20 x1f x2f ε

Value 1 1 0 0 0.001

The Hamiltonian, H, for the above problem, is shown in Eq. (2.5). Eq. (1.7) helps

in generating the optimal control law shown in Eq. (2.6). The Hamiltonian also helps

in generating the EOMs for the costates as shown in Eq. (2.7).

H = λx1(x2 + εuε) + λx2(−x1 + u) (2.5)

u∗ =
−λx2√

ε2λ2x1 + λ2x2
(2.6a)

u∗ε =
−ελx1√
ε2λ2x1 + λ2x2

(2.6b)

˙λx1 = λx2 (2.7a)

˙λx2 = −λx1 (2.7b)
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2.3 Epsilon-Trig Regularization Method

Trigonometry is one of the most basic elements of mathematics, used in problems

involving measurements, number theory, Fourier series and Fourier transforms. [128]

The controls need to be bounded in bang-bang control problems. When the controls

assume a trigonometric form, they gain implicit bounds. This study developed a new

regularization method to bound controls using trigonometry, named as the Epsilon-

Trig regularization method, where epsilon stands for the parameter introducing a

small disturbance in the state equations and trig stands for the error control expressed

in a trigonometric form.

This method is very similar to the traditional approach except for one major

addition. Instead of posing the OCP with different controls, this method reformulates

the problem to have only one control, uTRIG. Trigonometric functions can then help

in forming two orthogonal control components, one is the smooth control and the

other is the error control. This method uses the concept of projection. [129]

The projection and error for b (represented byOB) at an angle θ on a (represented

by OA) is shown in Fig. 2.2. OP represents the projection, p, and calculates the

dot product of a and b. It shows how much b is in the direction of a. On the other

hand, the error, e (represented by PB) shows how much b is away from a. Please

note that e is orthogonal to the projection, p.

!"
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!!
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Figure 2.2.: Projection and error of b on a.
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As shown in Fig. 2.3, the control can attain a maximum value of OB for the

original normalized bang-bang control problem indicated in red. OA represents the

smoothed bang-bang control (indicated in green) andBA represents the error control.

!"#$%
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Figure 2.3.: Smoothing of control using Trigonometrization.

The error control is orthogonal to the smooth control such that a triangle is formed

with sides measuring sin uTRIG, cos uTRIG and 1. Eq. (2.1) reformulates into Eq. (2.8),

where the value of n varies from 2 to k.

Minimize: J = J(tf ,x(tf )) (2.8a)

Subject to: ẋε = f1(t,x(t)) + ε cosuTRIG (2.8b)

ẋn = fn(t,x(t)) (2.8c)

ẋk+1 = fk+1(t,x(t)) + sinuTRIG (2.8d)

Please note that the control, sin uTRIG, and the error control, cos uTRIG, are present

only in one state equation, respectively. This makes the entire system very simple

to solve and ensures that the new system of equations is very close to the original

system. Thus, the Epsilon-Trig method greatly simplifies the problem formulation

and solution process as compared to the traditional regularization method. Also, note

that this method introduces the error control into any state equation to solve the OCP,

including a state equation that contains the control. Moreover, the error parameter,

ε, helps in smoothing the bang-bang control structure indirectly by determining the

magnitude of error control needed to solve the problem.
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Eq. (1.7) determines the optimal control options shown in Eq. (2.9) and PMP

helps in choosing the optimal control from these options. The smooth control is sin

uTRIG and the error control is cos uTRIG. Thus, based on the choice of the placement of

error into the state equations system, only one EOM is perturbed in the Epsilon-Trig

method. In the traditional smoothing method nearly all the EOMs are perturbed,

which makes the problem formulation and solving process more complicated and less

efficient.

uTRIG
∗ =



arctan

(
λxk+1

ελx1

)

arctan

(
λxk+1

ελx1

)
+ π

(2.9)

The Epsilon-Trig method generates a unique control law even when λxk+1
, which

happens to be the switching function for the original bang-bang problem, becomes 0

units. Usually, the switching function does not become exactly 0 units while using the

Epsilon-Trig method due to the errors introduced into the state equations, thereby

obtaining a near-singular control law. It might happen that the costates λx1 and

λxk+1
in Eq. (2.9) simultaneously vanish, which can lead to numerical issues. It is a

very rare situation that has not been encountered in this study. Nolan from RDSL

suggested addition of the error control and error parameter in the objective function.

This step eliminates the presence of a costate in the denominator of the control law,

thereby avoiding singularity issues when that costate vanished.

2.3.1 Applicability Range

The Epsilon-Trig method can be used for OCPs for which the following hold.

1. The controls appear in a linear form in the Hamiltonian.

2. The controls have constant upper and/or lower bounds upon them.
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3. This method can be combined with the Trigonometrization technique described

later in this thesis.

2.3.2 Assumptions

Following are the assumptions used in the Epsilon-Trig method.

1. PMP suffices for the sufficient condition of optimality.

2. All costates do not vanish simultaneously.

2.3.3 Solving the Bounded Control Oscillator Problem using the Epsilon-

Trig Regularization Method

When using the Epsilon-Trig regularization method for this problem, the state

equations in Eq. (2.4) change to Eq. (2.10).

ẋ1 = x2 + ε cosuTRIG (2.10a)

ẋ2 = −x1 + sinuTRIG (2.10b)

Eq. (2.11) and Eq. (2.12) describe the Hamiltonian, H and the optimal control

options, respectively. PMP then selects the optimal control option from among these

options.

H = λx1(x2 + ε cosuTRIG) + λx2(−x1 + sinuTRIG) (2.11)

u∗TRIG =



arctan

(
λx2
ελx1

)

arctan

(
λx2
ελx1

)
+ π

(2.12)
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A comparison was drawn between the two regularization methods. The phase and

the control time-history plots are shown in Fig. 2.4. There is one switch involved in

the control time-history plot. The costates time-history plots are shown in Fig. 2.5,

where λx2 is the switching function.
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Figure 2.4.: Phase and control time-history plots for the oscillator problem.
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Figure 2.5.: Costates time-history plots for different regularization techniques.
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The value of ∂φ
∂tf

is 1 unit for this problem since the objective is to minimize the

final time. According to Eq. (1.12), the terminal value of Hamiltonian, H(tf ), is

found to be -1 unit. Moreover, the Hamiltonian is a constant because it is not an

explicit function of time. The Hamiltonian time-history plot, shown in Fig. 2.6, is in

excellent agreement with the result obtained using the transversality condition and

has an accuracy of 10-7. Please note that the Hamiltonian is non-dimensional for this

problem.
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Figure 2.6.: Hamiltonian time-history plots for different regularization techniques.

The two methods are in excellent agreement with each other. When using the

traditional regularization method, the solution satisfies Eq. (2.1d). But, the next ex-

ample shows that the solution can easily violate this equation when the same problem

includes a path constraint.
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2.4 Motivation for Development of Epsilon-Trig Method through Oscil-

lator Problem with a Bounded Control and a Path Constraint

The Epsilon-trig regularization method proves useful for OCPs with path con-

straints. To demonstrate this point, the previous problem includes a path constraint

on the state variable x1 as shown in Eq. (2.13).

S = x1 − x1MAX
6 0 (2.13)

In addition to Eq. (2.4), the solution must satisfy a tangency constraint, N . Eqs.

(2.14a)–(2.14c) show N , its state derivative, Nx, and its time derivative, Nt, respec-

tively. Since N does not contain the time, t, explicitly, its time derivative, Nt, vanishes

and there is no discontinuity in the Hamiltonian at the entry point of the constraint

boundary.

N = x1 − x1MAX
(2.14a)

Nx =
[
1, 0

]T
(2.14b)

Nt = 0 (2.14c)

Eq. (2.15) describes the augmented Hamiltonian for this problem, which results

in a modified costate EOM, ˙λx1 , as shown in Eq. (2.16). Eq. (2.17) determines the

value of the multiplier for the path constraint, µ. Using the traditional regularization

method, the state equation corresponding to x1 should vanish as shown by Eq. (2.18a)

and Eq. (2.18b) calculates the value of uε for the constraint boundary. ε has a value

of 0.1 units in this problem.

H = λx1(x2 + εuε) + λx2(−x1 + u) + µ(x1 − x1MAX
) (2.15)

˙λx1 = λx2 − µ (2.16)
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µ =

0 if x1 < x1MAX

π if x1 = x1MAX

(2.17)

S1 = ẋ1 = x2 + εuε = 0 (2.18a)

uε = −x2
ε

(2.18b)

Eq. (2.14) and Eq. (2.18) along with Eqs. (1.18)–(1.25), as mentioned in Sec.

1.2.2.3, were used to solve this problem. The value of control, u, and the other error

controls were calculated using Eq. (2.2).

The Epsilon-Trig method follows on similar lines except that the control is ex-

pressed in a trigonometric form. The Hamiltonian for this problem then assumes the

form as shown in Eq. (2.19).

H = λx1(x2 + ε cosuTRIG) + λx2(−x1 + sinuTRIG) + µTRIG(x1 − x1MAX
) (2.19)

Eq. (2.20) evaluates the Lagrange multiplier, µTRIG, corresponding to the path

constraint. The traditional approach using OCT requires taking derivatives of the

constraint, S, until the control appears in an explicit form. The first derivative of

the constraint, S1, contains the control in an explicit form as shown in Eq. (2.21a).

The value of the control at the constraint boundary in this method is then found

using Eq. (2.21b), which is obtained after rearranging Eq. (2.21a) and is a slight

modification to Eq. (2.18b).

µTRIG =

0 if x1 < x1MAX

π if x1 = x1MAX

(2.20)

S1 = ẋ1 = x2 + ε cosuTRIG = 0 (2.21a)

uTRIG = arccos

(
−x2
ε

)
(2.21b)
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This section analyzes two cases based on the constraint on the state variable x1: a

realistic case and an unrealistic case. The traditional regularization and the Epsilon-

Trig methods solved both these cases as discussed in the following subsections.

2.4.1 A Realistic Case

The maximum value of x1 was found to be 1.231 units in the state unconstrained

problem. In the realistic case, the maximum value of x1 was reduced by 0.008 units.

The time-history plot of x1 is shown in Fig. 2.7, where the black line shows its

maximum original value and red line signifies its new allowable maximum value. The

smoothed and the error control history plots using both methods are shown in Fig. 2.8.

It is clear that both methods lead to the same results. As seen in Fig. 2.8, the controls

are already reaching bounds in this case.

Zoom-in View

Figure 2.7.: x1 time-history plot for unconstrained and path constraint cases.
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Figure 2.8.: Controls time-history plots for different regularization methods.

2.4.2 An Unrealistic Case

The issue with the traditional method is that it cannot impose bounds on the error

control, uε, while using Eq. (2.18b). This enables unrealistic solutions such as trying

to decrease the maximum allowable value for x1 by 0.01 units. Thus, by using the

traditional approach, one can solve even for a reduction of 0.01 units in the maximum

value of x1 as shown in Fig. 2.9.
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Figure 2.9.: Unrealistic controls time-history plots using the traditional smoothing

method.
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It can be seen that uε attains a value of -2.624 units, which is less than the

minimum possible value of -1 unit, needed to satisfy Eq. (2.1d). Thus, the Epsilon-

Trig method proves to be superior to the existing traditional approach because in

the latter it is possible to make ε close to zero and get an illusion that the solution

obtained is realistic. In such cases, uε can grow to very large magnitudes instead of

remaining bounded between -1 and 1. Trajectories with singular arcs involve issues of

obtaining a singular control, which can also be addressed very simply by the Epsilon-

Trig method as shown in the examples that follow in the next section.

2.5 Verification and Validation of Epsilon-Trig Regularization Method

using Popular Bang-Bang and Singular Control Problems from Lit-

erature

The Epsilon-Trig method is applicable to a wide variety of problems including

bang-bang control, bang-singular-bang control, bang-bang-singular control, and so on.

The following subsections contain solutions to some example problems using Epsilon-

Trig method. GPOPS-II is used to verify and validate the Epsilon-Trig method for

these problems.

2.5.1 Boat Problem

This subsection demonstrates the ability of the Epsilon-Trig regularization method

to accommodate bang-singular control problems. It also shows that only one error

control is sufficient for a system with more than two state equations. Consider the

case of a boat moving at constant speed, V, traveling from the origin to (xf , yf ) in a

minimum time as shown in Eq. (2.22). Thus, the objective is to minimize the time

for the boat to travel from the origin to the terminal point as shown in Eq. (2.22a).

Using the Epsilon-Trig method, the error is introduced in the EOM corresponding

to x as shown in Eq. (2.22b). The remaining EOMs for this problem are shown in
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Eq. (2.22c) and Eq. (2.22d). The control for this OCP is α̇, which is written in a

trigonometric form using the Epsilon-Trig method and is shown in Eq. (2.22d).

Minimize: J = tf (2.22a)

Subject to: ẋ = V cosα + ε cosuTRIG (2.22b)

ẏ = V sinα (2.22c)

α̇ = sinuTRIG (2.22d)

This problem was solved in Ref. [24] by using GLCC. Please note that the error

control can be introduced in any one of the state equations, ẋ or ẏ. Table 2.2 includes

the constants and boundary conditions used for the boat problem.

Table 2.2.: Constants for the boat problem.

Parameter x(0) y(0) α(0) x(tf) y(tf) V ε

Value 0 0 0 2.05 2 1 0.01

Eq. (2.23) describes the Hamiltonian for the boat problem. The Euler-Lagrange

necessary conditions then use this Hamiltonian to obtain the EOMs for the costates

as shown in Eq. (2.24).

H = λx(V cosα + ε cosuTRIG) + λyV sinα + λα sinuTRIG (2.23)

λ̇x = 0 (2.24a)

λ̇y = 0 (2.24b)

λ̇α = V (λx sinα− λy cosα) (2.24c)
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The Euler-Lagrange necessary conditions also generate the optimal control law,

shown in Eq. (2.25). PMP performs the sufficiency check and selects the optimal

control from among the control law options.

uTRIG =


arctan

(
λα
ελx

)
if λα < 0

arctan

(
λα
ελx

)
+ π if λα > 0

(2.25)

2.5.1.1 Analytical Solution

This problem can be solved analytically and a comparison can be drawn between

the analytical and Epsilon-Trig regularization methods. The boat is expected to

utilize maximum control initially to align itself toward the terminal point, (xf , yf ).

Thus, the value of control is 1 unit until the time becomes t1 and then the control

stays at 0 units until the terminal time, tf . At t1, the switching function, λα, too

becomes 0 units, leading to a singular arc from t1 to tf . It should be noted that

when OCT utilizes analytical method in solving this problem, it considers the entire

trajectory to be broken into two arcs. Thus, OCT uses multiple arcs because certain

derivatives corresponding to the costates become infinite at the points where the

control jumps from the minimum value to the maximum value and vice versa. The

analytical method just combines the two arcs in the form of a single solution.

The following is a brief discussion about GLCC used in the analytical method,

which would validate that the control attains a 0 value for the singular arc. GLCC

thus obtains a unique control law for a singular arc. The first time derivative of

Hamiltonian, calculated in Eq. (2.26), generates options for α as shown in Eq. (2.27).

Ḣu = λ̇α = −Hα = λxV sinα− λyV cosα = 0 (2.26)

tanα =
λy
λx

=
−λy
−λx

(2.27)



47

The solution process then calculates the second time derivative of Hu to obtain

control in an explicit form as shown in Eq. (2.28). The control for the singular part of

the trajectory turns out to be 0 units based on Eq. (2.28). The derivative of Ḧu with

respect to u obtains GLCC as shown in Eq. (2.29), which then selects the negative

option for tanα given in Eq. (2.27). The control law is summarized in Eq. (2.30).

Ḧu = (λxV cosα + λyV sinα)u = 0 (2.28)

− ∂

∂u
(Ḧu) = −(λxV cosα + λyV sinα) ≥ 0 (2.29)

u = α̇ =

1 for 0 ≤ t ≤ t1

0 for t1 ≤ t ≤ tf

(2.30)

Upon integration, Eq. (2.30) results in Eq. (2.31). The expression for α is used to

perform integration upon and obtain expressions for the states, x and y, as shown in

Eq. (2.32a) and Eq. (2.32b), respectively.

α =

t for 0 ≤ t ≤ t1

t1 for t1 ≤ t ≤ tf

(2.31)

x=

V sin t for 0 ≤ t ≤ t1

V sin t1 + V sin t1(t− t1) for t1 ≤ t ≤ tf

(2.32a)

y=

1− V cos t for 0 ≤ t ≤ t1

1− V cos t1 + V cos t1(t− t1) for t1 ≤ t ≤ tf

(2.32b)

The terminal values of x and y are substituted in Eq. (2.32). After rearrangement,

these two equations are found to be related to each other through the expression,

tf − t1, as shown in Eq. (2.33).

tf − t1 =
xf − sin t1

cos t1
=
yf − (1− cos t1)

sin t1
(2.33)
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A trigonometric equation in t1 can be formed using Eq. (2.33), which can then

be used to obtain expressions for sin t1, cos t1, and t1. Upon cross multiplication,

Eq. (2.33) transforms into Eq. (2.34a). Both the sides of Eq. (2.34a) are then squared

to obtain a quadratic equation for sin t1 as shown in Eq. (2.34b).

xf sin t1= 1 + yf cos t1 − cos t1 (2.34a)

[x2f + (yf − 1)2] sin2 t1−2xf sin t1 + [1− (yf − 1)2] = 0 (2.34b)

Eq. (2.34b) results in two solutions for t1 as shown in Eq. (2.35). The solution

for t1 is chosen from Eq. (2.35) after checking for the consistency of this solution

between Eq. (2.32) and the given terminal values. The value of tf is then obtained

using Eq. (2.33).

sin t1 =
xf ±

√
x2f − [x2f + (yf − 1)2][1− (yf − 1)2]

x2f + (yf − 1)2
(2.35)

The values of sinα and cosα obtained using GLCC for time between t1 and tf are

shown in Eq. (2.36a) and Eq. (2.36b), respectively. It should be noted that α has a

constant value, t1, for Eq. (2.36a) and Eq. (2.36b).

sinα = sin t1=
−λy√
λ2x + λ2y

(2.36a)

cosα = cos t1=
−λx√
λ2x + λ2y

(2.36b)

Since λ̇x and λ̇y are 0 units based on Eq. (2.24a) and Eq. (2.24b), λx and λy are

constants. Using Eq. (2.36a) and Eq. (2.36b), the values of λx and λy are obtained

as shown in Eq. (2.37a) and Eq. (2.37b), respectively, where k is a constant. Finally,

Eq. (2.38) specifies the expressions for λα based on time.

λx= k cos t1 (2.37a)

λy= k sin t1 (2.37b)



49

λα =

1− cos t for 0 ≤ t ≤ t1

1− cos t1 for t1 ≤ t ≤ tf

(2.38)

Although GLCC is able to generate a control law when the switching function

vanishes, it is a complicated and lengthy process. This could be easily avoided by

using the Epsilon-Trig regularization method.

2.5.1.2 Results Comparison

The results for the boat problem are shown in Fig. 2.10 and Fig. 2.11. The boat

turns at the maximum rate until the turn angle aligns with the terminal point, (xf , yf ),

at time t1 = 0.9078 seconds. The turn angle remains constant for the remainder of

the trajectory, which is a singular arc.

The smoothed and error control histories are shown in Fig. 2.11. The results using

the analytical approach and the Epsilon-Trig method were found to be in excellent

agreement with each other. According to the Epsilon-Trig method, if the switching

function, λxk+1
, becomes exactly 0 units, the singular control will also become 0 units

and the error control will become 1 unit. The boat problem is a specific problem

where both the analytical and the Epsilon-Trig methods lead to the same singular

control law. In general, the singular control can be different from 0 units, but one

can still solve for a near-singular control using the Epsilon-Trig method.

For this time-minimization problem, the value of ∂φ
∂tf

is 1 unit. The terminal value

of Hamiltonian, H(tf ), is found to be -1 unit according to Eq. (1.12). Moreover, the

Hamiltonian is not an explicit function of time and hence has a constant value. The

Hamiltonian time-history plot, shown in Fig. 2.12, is in excellent agreement with the

result obtained using the transversality condition and has an accuracy of 10-9. Please

note that the Hamiltonian is non-dimensional for this problem.
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Figure 2.10.: States and costates time-history comparison plots.
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Figure 2.11.: Controls time-history comparison plots for the boat problem.
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Figure 2.12.: Hamiltonian time-history comparison plots for the boat problem.

2.5.2 Van Der Pol Oscillator Problem

This subsection demonstrates the ability of the Epsilon-Trig regularization method

to solve bang-bang-singular control problems. Eq. (2.39) expresses the Van Der Pol

oscillator problem. Table 2.3 shows the constants for this problem.

Minimize: J = x3(tf ) (2.39a)

Subject to: ẋ1 = x2 + ε cosuTRIG (2.39b)

ẋ2 = −x1 + x2(1− x21) + sinuTRIG (2.39c)

ẋ3 =
1

2
(x21 + x22) (2.39d)

Table 2.3.: Constants for the Van der Pol oscillator problem.

Parameter x1(0) x2(0) x3(0) tf ε

Value 0 1 0 4 0.001
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Eq. (2.40) describes the Hamiltonian for this problem. Eq. (2.41) shows the EOMs

for the costates obtained using this Hamiltonian.

H = λx1(x2 + ε cosuTRIG) + λx2 [−x1 + x2(1− x21) + sinuTRIG] +
λx3(x

2
1 + x22)

2
(2.40)

˙λx1 = λx2(1 + 2x1x2)− λx3x1 (2.41a)

˙λx2 = λx2(x
2
1 − 1)− λx1 − λx3x2 (2.41b)

˙λx3 = 0 (2.41c)

The optimal control law is the same as that in Eq. (2.9). The time-history plots

for the states are shown in Fig. 2.13.
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Figure 2.13.: States time-history plots for the Van Der Pol oscillator problem.
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The smoothed and error control history plots are shown in Fig. 2.14. The blue

color indicates the arc corresponding to the bang-bang control and red color indicates

the near-singular arc at the end of the trajectory, where the control is not at the

extremal values and the switching function, λx2 , is close to 0 units.
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Figure 2.14.: Controls time-history plots for the Van Der Pol problem.

Fig. 2.14 shows that a unique control exists for the near-singular arc, since the

switching function is not exactly 0 units. The optimal value of the objective function

is found to be 0.7575 units, which matches very closely with Ref. [130] where its

value is 0.7585 units. Thus, the Epsilon-Trig method greatly simplifies solving OCPs

involving singular arcs. In this problem the switching function, λx2 becomes exactly

0 units at the terminal point of the trajectory and the control history plot matches

with Ref. [130] except at this point. It is not a concern because any change in control

at the terminal point does not influence the trajectory.
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2.5.2.1 A Note on the Control Options of the Epsilon-Trig Method

The traditional smoothing technique for bang-bang and singular control problems

specify the smooth control and the error controls with a negative sign in the numerator

as shown in Eq. (2.2). This corresponds to the second control option obtained using

the Epsilon-Trig method, where both the smooth and error controls are in the third

quadrant. This choice of controls is made to minimize the Hamiltonian. Since the

costates are usually related to each other and are not always positive valued, such

a choice of controls in the traditional method may lead to spurious results. This

chapter utilizes three different control laws for the Van Der Pol oscillator problem to

demonstrate this issue.

The first case involves only the first control option of the Epsilon-Trig method

corresponding to the first quadrant as shown in Eq. (2.9). The second case involves

both the control options specified in the Epsilon Trig method that covered the first

and the third quadrants of Eq. (2.9). The final case involves only the control option

corresponding to the traditional method that covers the third quadrant of Eq. (2.9).

All three cases converged to yield the same solution for the states but with different

optimal control histories. Since the Hamiltonian is not an explicit function of time, it

must remain constant for this problem. Furthermore, the value of Hamiltonian must

be zero based on Eq. (1.12). Only case 2 corresponding to the Epsilon-Trig method

was found to obtain the expected results. The spurious results obtained by using the

traditional smoothing method and the correct result found using Epsilon-Trig method

are both shown in Fig. 2.15. The Hamiltonian was found to be non-zero for the

traditional smoothing technique. Thus, the Epsilon-Trig method ensures capturing

all possible control options and obtaining the correct optimal control solutions.

This section used GPOPS-II to validate the Epsilon-Trig method regarding the

correct solution for the Van Der Pol oscillator problem. The results obtained from

GPOPS-II were found to be very noisy for the singular part of the solution as shown
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Figure 2.15.: Optimal control and Hamiltonian time-history comparison plots between

the traditional and Epsilon-Trig methods.

in Fig. 2.16. Thus, the solutions obtained by using the Epsilon-Trig method were

found to be of higher quality than GPOPS-II.
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2.5.3 Goddard Rocket Maximum Ascent Problem

This subsection demonstrates the ability of the Epsilon-Trig regularization method

to solve bang-singular-bang control problems. Consider the well-known OCP shown

in Eq. (2.42).

Minimize: J = −hf (2.42a)

Subject to: ḣ = v + ε cosTTRIG (2.42b)

v̇ =
T −D
m

− g (2.42c)

ṁ = − T

V e

(2.42d)

T =
TMAX(sinTTRIG + 1)

2
(2.42e)

D = D0v
2e

−h
H (2.42f)

In Eq. (2.42) h is the altitude, v is the velocity, m is the mass, T is the thrust, D is

the drag, g is the acceleration due to gravity, ρ0 is the air density at sea-level, H is

the scale height of Earth’s atmosphere, and V e is the exhaust velocity.

The Epsilon-Trig method introduces the smoothed control for the thrust, T ,

present in two state equations. This method also introduces the error control in

the remaining state equation. This problem is one of the benchmark problems in

GPOPS-II [11] and has been modified only by including the error in the state equa-

tion, ḣ, and by using Trigonometrization of the controls. This study then verifies

and validates the Epsilon-Trig method using GPOPS-II. This problem uses English

units for consistency with literature. [11] The boundary conditions for this problem

are shown in Table 2.4.

Table 2.4.: Boundary conditions for the Goddard rocket problem.

Parameter h0 (ft) v0 (ft/s) m0 (lbm) mtf (lbm)

Value 0 0 3 1
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The constants used in this problem are shown in Table 2.5. Please note that the

error parameter has a unit of ft/s.

Table 2.5.: Constants for Goddard rocket problem.

Parameter ρ0 H V e g D0 TMax ε

Value 0.002378 23800 1580.9425 32.174 5.49153485e-5 193 0.5

Unit slugs/ft3 ft ft/s ft/s2 slugs/ft lbf s/slug

Eq. (2.43) shows the Hamiltonian for the Goddard rocket problem. Eq. (2.44)

shows the EOMs for the costates obtained using this Hamiltonian.

H = λh(v + ε cosTTRIG) + λv

(
T −D
m

− g
)
− λmT

V e

(2.43)

λ̇h = −λvD
mH

(2.44a)

λ̇v =
2λvD

mv
− λh (2.44b)

λ̇m =
λv(T −D)

m2
(2.44c)

Eq. (1.7) obtains the control law as shown in Eq. (2.45). Since the control is present

in two state equations, the costates corresponding to both of them are present in the

control law. PMP then chooses the optimal control from the control law options.

TTRIG
∗ =



arctan

[
TMax

2ελh

(
λv
m
− λm
Ve

)]

arctan

[
TMax

2ελh

(
λv
m
− λm
Ve

)]
+ π

(2.45)

The results are in excellent agreement with GPOPS-II as shown in Fig. 2.17. This

shows that Epsilon-Trig method is extremely useful for conceptual design and can

solve non-uniqueness issues related to the singular arc, by solving a problem very



58

similar to the original problem. It gives the designer a good estimate of the singular

control law and expedites the design process. Choosing a good value for ε is a part

of the design process and involves experimentation on the part of the designer. The

author advises to start with a slightly large value of ε, say 0.5 units, and then to use a

numerical continuation [49] to reduce it to a smaller value (e.g., 0.001 units). Fig. 2.18

shows an excellent agreement between the Epsilon-Trig method and GPOPS-II for

the costate time-history plots.
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Figure 2.17.: Results comparison for the states and control of the Goddard rocket

problem.
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Figure 2.18.: Results comparison for the costates of the Goddard rocket problem.



60

For this problem, the value of ∂φ
∂tf

is 0 ft/s. Hence, the terminal value of Hamil-

tonian, H(tf ), is also 0 ft/s according to Eq. (1.12). Since the Hamiltonian is not an

explicit function of time, it has a constant value. The Hamiltonian time-history plot,

shown in Fig. 2.19, matches well with the result obtained using the transversality

condition and has an accuracy of 10−2. Please note that the results for the Hamilto-

nian obtained using GPOPS-II are not as accurate as the Epsilon-Trig regularization

method.
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Figure 2.19.: Results comparison for the Hamiltonian of the Goddard rocket problem.

2.6 A Complex Aerospace Problem: Scramjet Based Prompt Global

Strike

Earlier, the United States (US) used to have military bases around the world to

deter any conflict with the Soviet Union and its allies, especially at unstable regions.

With the demise of the Soviet Union, the US has restructured its army deployment

and in many cases reduced its overseas military presence. [131] To deter and con-
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tain unexpected threats from unexpected regions of the world, the US developed

the Prompt Global Strike (PGS) program. This program enables the US to main-

tain and enhance its long-range strike capability from military bases in or near the

US. [131,132]

The focus of the Joint Technology Office on Hypersonics road maps has been on

developing hypersonic PGS weapons with a nominal range of 600-1000 nautical miles.

These weapons should enable and improve time-sensitive regional strike missions with

precision engagement of high payoff, fixed or relocatable, moving, and deeply buried

targets. [133,134] An expendable, fuel-cooled scramjet engine, capable of an extended

flight at Mach 6 or above, is a prime candidate to fulfill this requirement. It is

important to understand the optimal trajectories of hypersonic systems based on

such an engine in order to further improve and develop such systems. [134]

Certain assumptions or simplifications forms the basis for the traditional ap-

proaches of solving hypersonic thrusting problems. Please note that the air-breathing

thrusting model used in these approaches has been curve-fitted from a tabulated data

of a specific mission. [134,135]

1. Issue with assumptions: Ref. 136 used GPOPS-II to maximize the down-

range of an aircraft-dropped, rocket-boosted scramjet missile. The trajectory

comprises of three predetermined phases: ascent, cruise, and descent. The cruise

phase had a fixed altitude of 20 km and a fixed velocity of 2 km/s. Similarly, in

Ref. 137, a fuel-optimal trajectory is split into two sub-problems: ascent and

maximum glide. The solutions to these sub-problems then reconstruct the op-

timal flight. These assumptions constrain the optimal search region and might

overlook more optimal solutions.

2. Issue with simplifications: Refs. 49 and 138 employed indirect methods to

solve trajectory optimization problems similar to the scramjet problem. While

using OCT, the optimal control law for the angle of attack control in these

problems, α, assumed a transcendental form for which there was no closed form
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solution. Therefore, a small angle approximation of α removes the trigonometric

terms in α from the problem statement. Thus, the resulting optimal trajectories

can potentially have a large error corresponding to a large value of α.

Moreover, Ref. [139] solved a minimum fuel orbital ascent by a hypersonic air-

breathing vehicle using OCT. Numerical methods obtain the control laws for the

angle of attack and throttle instead of finding a closed-form, higher quality analytical

solution. The scramjet PGS problem solved in this study is devoid of such assump-

tions and approximations. Sec. 3.4 includes a detailed discussion on the approach

adopted here to avoid the transcendental control equations. Additionally, this section

uses a scramjet thrusting model based on a parametric, ideal, thermodynamic cycle

analysis. The inlet area control, A, of the engine, which has a simulated, variable inlet

geometry achieved by adjusting wedge angles, forms the basis for its thrust control.

This chapter further assumes the inlet to be in the optimal position for the entire

trajectory.

Eq. (2.46) describes the scramjet PGS problem, where the objective is to minimize

the time of flight of the missile as shown in Eq. (2.46a). The EOMs are shown in

Eqs. (2.46b)–(2.46f) with important expressions included in Eqs. (2.46g)–(2.46q).

Please note that the expression for thrust in this problem contains more variables

due to coupling of the propulsion system with Earth’s atmosphere. Additionally, this

problem is planar and excludes bank angle control.

Minimize: J = tf (2.46a)

Subject to: ḣ = v sin γ (2.46b)

θ̇ =
v cos γ

r
(2.46c)

v̇ =
T cosα−D

m
− µ sin γ

r2
(2.46d)

γ̇ =
L+ T sinα

mv
+
(v
r
− µ

vr2

)
cos γ (2.46e)

ṁ = −ṁ0f + ε1 cos α̇TRIG + ε2 cosATRIG (2.46f)
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Where: ρ = ρ0e
−h
H (2.46g)

CL = CL1α + CL0 (2.46h)

CD = CD2α
2 + CD1α + CD0 (2.46i)

D =
1

2
ρv2CDA (2.46j)

L =
1

2
ρv2CLA (2.46k)

ṁ0 = ρAv (2.46l)

f =
cpT 0

hpr

[
TMAX

T0

(
1 +

γ − 1

2
M2

c

)
−
(

1 +
γ − 1

2
M2

0

)]
(2.46m)

T = ρAv2

√√√√√√√
TMAX

T0

(
1 +

γ − 1

2
M2

c

)
1 +

γ − 1

2
M2

0

− 1 (2.46n)

M0 =
v√
γRT0

(2.46o)

r = rE + h (2.46p)

A = AMAX

(
1 + sinATRIG

2

)
(2.46q)

In the Eq. (2.46), h is the altitude, r is the radial magnitude, θ is the downrange,

v is the velocity magnitude, γ is the flight path angle, m is the mass of the vehicle,

T is the thrust force magnitude, D is the drag force magnitude, L is the lift force

magnitude, and α is the angle of attack. CL0 , CL1 , CD0 , CD1 , and CD2 are constants

related to the coefficients of lift and drag. A is the reference area of the vehicle, µ

is the gravitational parameter of the planet, rE is the radius of the Earth, ρ0 is the

Earth’s surface atmospheric density, and H is the Earth’s atmospheric scale height.

Ref. [134] and Appendix A outline a more detailed discussion of this engine model,

where f is the ratio of mass flow rates of fuel injected into the burner to that of the

air passing through the engine, M0 is the free-stream Mach number, and Mc is the

combustion chamber Mach number.

Table 2.6 includes the constants required for this OCP [140], where parameters

like the specific heat ratio, γ, the Earth’s atmospheric gas constant, R, and the heat

capacity at a constant pressure, cp, have values corresponding to a perfect gas. The
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free-stream temperature, T 0, remains constant assuming an exponential atmosphere.

The fuel heating value, hpr, corresponds to JP-7 used in the SR-71 Blackbird. [141–

144] The endothermic properties of JP-7 allow for active cooling while cracking the

fuel before combustion, making JP-7 a popular fuel choice. [145–148]

Table 2.6.: Constants for the scramjet PGS problem.

Parameter Value

rE (km) 6378

µ (km3/s2) 398600

ρ0 (kg/m3) 1.2

H (km) 7.5

CL1 (1/rad) 10.305

CL0 0.1758

CD2 (1/rad2) 18.231

CD1 (1/rad) -0.4113

CD0 0.26943

γ (nd) 1.4

R (m2/s2K) 287.058

cp (m2/s2K) 1004

hpr (m2/s2) 43903250

M c (nd) 3

TMAX (K) 1600

T 0 (K) 230

AREF (m2) 0.35

AMAX (m2) 0.3

ε1 (kg/rad) 0.5

ε2 (kg/(m2s)) 10-13



65

Table 2.7 specifies the boundary conditions for the scramjet PGS problem. The

initial conditions are set to values that are obtainable by a booster and conducive

to scramjet operations. The terminal boundary conditions specify both the target’s

location and the missile’s dry weight.

Table 2.7.: Initial and final conditions for the scramjet PGS problem.

Attribute Initial Value Final Value

Time (s) 0 free

Altitude (km) 20 0

Downrange (km) 0 1700

Velocity (km/s) 1.3 free

Flight Path Angle (deg) free free

Mass (kg) 1300 600

Angle of Attack (deg) free free

The Hamiltonian for this problem is shown in Eq. (2.47). The Euler-Lagrange

necessary conditions of optimality use this Hamiltonian to generate the EOMs for

the costates as shown in Eq. (2.48).

H = λhv sin γ +
λθv cos γ

r
+ λv

(
T cosα−D

m
− µ sin γ

r2

)
+ λγ

[
(L+ T sinα)

mv
+
(v
r
− µ

vr2

)
cos γ

]
+ λm (−ṁ0f + ε1 cos α̇TRIG + ε2 cosATRIG)

(2.47)

λ̇h = λγ

[
T sinα + L

mvH
+

(
v

r2
− 2µ

vr3

)
cos γ

]
− λmṁ0f

H

+ λv

(
T cosα +D

mH
− 2µ sin γ

r3

)
+
λθv cos γ

r2
(2.48a)

λ̇θ = 0 (2.48b)

λ̇v = −λh sin γ − λθ cos γ

r
+ λv

[
ρAv

√
P1

1 + P2v2

(
v2

1 + P2v2
− 2

)
− 2D

v

]
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− λγ

{[
ρAv

√
P1

1 + P2v2

(
v2

1 + P2v2 − 1

)
+

L

mv2

]}
(2.48c)

λ̇γ = −λh sin γ +
λθv sin γ

r
+
λvµ cos γ

r2
+ λγ sin γ

(v
r
− µ

vr2

)
(2.48d)

λ̇m =
λv(T cosα−D)

m2
+
λγ(L+ T sinα)

m2v
(2.48e)

P1 =
TMAX

T0

(
1 +

γ − 1

2
M2

c

)
(2.48f)

P2 =
(γ − 1)v2

2γRT0
(2.48g)

The necessary conditions of optimality also help in obtaining the optimal control

law for the two controls involved as shown in Eq. (2.49a) and Eq. (2.49b). ATRIG

shows the increased complexity of the control law, which requires expressions defined

in Eqs. (2.48f), (2.48g), (2.49c), and (2.49d).

ATRIG =



arctan


P3

m

(√
P1

P2

− 1

)
(λvv cosα + λγ sinα)− λmP3P4(P1 − P2)

ε2λm



arctan


P3

m

(√
P1

P2

− 1

)
(λvv cosα + λγ sinα)− λmP3P4(P1 − P2)

ε2λm

+ π

(2.49a)

α̇TRIG =



arctan

(
αRATEλα
ε1λm

)

arctan

(
αRATEλα
ε1λm

)
+ π

(2.49b)

P3 =
ρvAMAX

2
(2.49c)

P4 =
cpT 0

hpr
(2.49d)

The results obtained for this problem using indirect methods employing the Epsilon-

Trig technique are in excellent agreement with GPOPS-II. The scramjet missile im-
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mediately dives into a thicker portion of the atmosphere contrary to avoiding atmo-

spheric drag for a rocket-type missile. This maneuver, as shown in the trajectory plot

of Fig. 2.20, leads to larger dynamic pressures, thereby generating higher thrust. The

scramjet missile climbs to a higher altitude with lower drag after burning a significant

amount of fuel to gain a higher velocity initially. [134]
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Figure 2.20.: Comparison plots between GPOPS-II and Epsilon-Trig method for the

states of the scramjet PGS problem.
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The mass time-history plot shown in Fig. 2.20 indicates that most of missile’s

fuel burn is at the initial and final segments of the trajectory. Both these segments

occur at lower parts of the atmosphere, where oxygen is available aplenty. The first

major fuel burn occurs to provide maximum acceleration to the missile. The second

major fuel burn compensates for the deceleration during the near-cruise descent phase,

which occurs in between these two major fuel burn segments. As a result, the missile

nearly reaches the terminal downrange at the near-cruise altitude and then performs

a steep dive to the target. The optimal solution includes these rapid fuel burn and

near-cruise phases as expected. [134] The dynamic pressure is found to be within the

realistic range for a sustainable engine operation as given in Ref. [149]. For high

dynamic pressures, the missile would have to either reduce velocity or climb to higher

altitudes without enough oxygen for sustainable combustion. Both these options

would result in a longer time to the target and are therefore not optimal. [134]

The optimal controls are shown in Fig. 2.21. The throttle control time-history

shows that the missile burns all its fuel for the mass flow rate of air that passes into

its inlet until the missile depletes all its fuel. The control results are in agreement

with the literature and are optimal. [134]
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Figure 2.21.: Comparison plots between GPOPS-II and Epsilon-Trig method for the

controls of the scramjet PGS problem.
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The solution process of this complicated scramjet PGS problem includes a prudent

choice in introducing error into the EOMs. If the Epsilon-Trig method introduces er-

ror into the EOM corresponding to the altitude, the computation time to obtain the

optimal solution increased significantly. The resulting optimal control law amounts

to an increase in the computation time, which has λh in its denominator. As seen

in Fig. 2.22, λh crosses the zero value at two places. These lead to singularity issues

and consequently require placement of more number of nodes around the singularity

regions. The solution process resolves this issue by placing an error in EOM cor-

responding to mass as λm never crosses zero value throughout the trajectory. [134]
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Figure 2.22.: Comparison plots between GPOPS-II and Epsilon-Trig method for the

costates of the scramjet PGS problem.
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Table 2.8 summarizes the complexity of the scramjet PGS problem. The major

complexity in this problem is to derive and to solve for a very complicated control

law corresponding to the missile’s thrust.

Table 2.8.: Complexities of the scramjet PGS problem.

Parameter Complexity

States Five states

Controls Bounded and complicated functions dependent on the states and costates

Control law Initially transcendental

State equations Highly non-linear and coupled

Costate equations Highly non-linear, lengthy, and coupled

2.7 Conclusions

Bang-bang control problems have numerical issues due to discontinuities in the

control structure, when using OCT that relies on derivatives. The smooth regular-

ization method developed by Silva and Trélat resolved these issues, but was found to

have the following three limitations.

1. Traditional smoothing method introduces too many error controls into the state

equations system, which complicates the problem formulation and solution pro-

cess.

2. When OCP includes path constraints, the resulting control law for the constraint

arc violates an important condition on controls. As a result, the error controls

grow very large in magnitude and become unrealistic.

3. The error parameter, ε, become dimensionally inconsistent when used in more

than one state equation.
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To overcome these limitations, this chapter proposed and developed a new method

using the concept of Trigonometrization, named the Epsilon-Trig method. This

method introduces the error parameter, ε, and the error control only into one state

equation, which greatly simplifies the problem formulation and solution process.

Trigonometry proves that the smooth control and error control are orthogonal to

each other. This study used the traditional and Epsilon-Trig methods to solve a

bounded oscillator problem with path constraints. For an unrealistic case of this

problem, the traditional method was able to generate results by using very large

unrealistic values of one error control. Thus, the traditional regularization method

was shown to generate spurious results, whereas the Epsilon-Trig method was able

to solve only realistic cases. Moreover, since this method has ε in only one state

equation, it has dimensional consistency using the Epsilon-Trig method. This study

solved some benchmark examples, including the Goddard rocket problem, to show

that the Epsilon-Trig method can generate near-singular controls in case of singular

arcs.

This chapter includes solutions to a very complicated aerospace problem using the

Epsilon-Trig method. This OCP requires minimizing the time of flight of a scramjet

based PGS missile. The Epsilon-Trig method solved this problem in a simple manner

while generating high quality solutions. These solutions matched well with the results

obtained using GPOPS-II, thereby verifying and validating the Epsilon-Trig method.

A class of OCPs comprises of pure control constraints, where the controls appear in

non-linear forms in the Hamiltonian. The next chapter introduces a unique technique

inspired from the Epsilon-Trig method to solve this class of OCPs.
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3. Advancements in Optimal Control Theory for Problems

with Pure Control Constraints and Non-Linear Controls

OPTIMAL 

CONTROL 

PROBLEMS


BANG-BANG 

AND SINGULAR 

CONTROLS


PURE CONTROL 

CONSTRAINTS


MIXED STATE-CONTROL 

CONSTRAINTS (q = 0)


PURE STATE 

CONSTRAINTS (q > 0)


CONTINUOUS


CONTROLS


PURE CONTROL 

CONSTRAINTS


CONTINUOUS


CONTROLS


3.1 Introduction

T
he use of trigonometry in solving bounded control problems was first applied by

using the Epsilon-Trig regularization method [150], as discussed in the previous

chapter. In the Epsilon-Trig regularization method the control appears in a linear

form in the Hamiltonian of the OCP. This study extends the use of the bounding

property of trigonometric functions to OCPs with control constraints, where the con-

trol appears in a non-linear form in the Hamiltonian. This chapter identified three

issues with such OCPs having control constraints.

1. The traditional application of control constraints requires the solution to a MP-

BVP, which is very complicated and difficult to solve for practical aerospace



73

problems. [50, 51] An example of the control structure for such a complicated

MPBVP is shown in Fig. 3.1, where arcs 1 and 3 correspond to control con-

straints and arcs 2 and 4 correspond to unconstrained trajectory arcs.

OCPs with path constraints


uMIN


uMAX


u*



time


Arc 1


Arc 2


Arc 3


Arc 4


Figure 3.1.: A complicated control solution for an OCP with control constraints.

2. An issue arises when the problem contains both polynomial and trigonomet-

ric terms of control, often resulting in a transcendental equation when solving

for the optimal control law. Since such transcendental equations are devoid of

closed-form solutions, the EOMs are traditionally rewritten based on certain

approximations (e.g., small angle approximations) that convert trigonometric

terms to polynomial terms. [49, 151, 152] The polynomial-based, closed-form

optimal solution is thus obtained only for specific applications where the ap-

proximations are valid.

3. Since the solver usually employs only the necessary conditions of optimality

when solving OCPs, the results obtained may correspond to the wrong ex-

tremum. To avoid such wrong results, the solver needs to have additional control

options.

Posing the control in a trigonometric form, defined as Trigonometrization, ad-

dresses the aforementioned issues and greatly simplifies the problem formulation and

solution process. Secs. 3.3, 3.4, and 3.5 describe the benefits of using Trigonometriza-

tion with an example problem. Sec. 3.6 includes the solutions to a very complicated

general aviation based trajectory optimization problem using Trigonometrization.

Sec. 3.7 concludes this chapter.
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3.2 Trigonometrization of OCPs with Pure Control Constraints and Non-

Linear Controls

Chapter 2 described a class of OCPs that can utilize the Epsilon-Trig method,

where the Hamiltonian, H, has the control in a linear form. In order to solve a wider

set of OCPs with control constraints, this chapter introduces the Trigonometrization

approach. [153] In this second set of OCPs, the control appears in the Hamiltonian

in a polynomial form, f(u), with order more than 1, as shown in Eq. (3.1).

H = H0(t, x, λ) +H1(t, x, λ)f(u) (3.1)

The control in real world OCPs is usually constrained between an upper limit and

a lower limit as shown in the inequality Eq. (3.2). Eq. (3.3a) shows a trigonometric

form of this bounded control. The values of constants c1 and c0 are shown in Eq. (3.3b)

and Eq. (3.3c), respectively.

uLB ≤ u ≤ uUB (3.2)

u = c1 sinuTRIG + c0 (3.3a)

Where : c1 =
uUB − uLB

2
(3.3b)

c0 =
uUB + uLB

2
(3.3c)

Using Eq. (1.7), the optimal control options are shown in Eq. (3.4). The values

±π/2 for uTRIG restrict control, u, between uLB and uUB. The control, u, can attain

unbounded values when uTRIG is arcsin(f(t, x, λ)). It may happen that f(t, x, λ)

becomes less than -1 unit or more than unit 1, leading to imaginary values for

arcsin(f(t, x, λ)). In such cases, PMP determines the control, u, from only two options

for uTRIG, ±π/2.

uTRIG
∗ =



−π
2

arcsin(f(t, x, λ))

π

2

(3.4)
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3.2.1 Applicability Range

The Trigonometrization technique developed in this chapter is applicable to the

OCPs for which the following hold.

1. The controls appear in a non-linear form in the Hamiltonian.

2. The controls have constant lower and/or upper bounds upon them.

3. This technique can be combined with the Epsilon-Trig method.

3.2.2 Assumptions

Following are the assumptions used in the Trigonometrization technique for this

chapter.

1. PMP suffices for the sufficiency condition of optimality.

2. The states are unconstrained.

Please note that the Epsilon-Trig method can be coupled with the Trigonometriza-

tion technique to solve OCPs in which certain controls appear in a linear form and

rest of the controls appear in a non-linear form in the Hamiltonian. There are three

benefits of using Trigonometrization for OCPs with non-linear control expressions in

the Hamiltonian, which are discussed in the following sections.

3.3 Benefit 1: Avoid Solving a Multi-Point Boundary Value Problem

Traditionally, the design community uses the methodology described in Sec. 1.2.2.2

to solve OCPs with constraints on control, where the control may appear in a non-

linear form in the Hamiltonian. This section chose the Rayleigh problem, as specified

in Eq. (3.5), to illustrate this traditional approach. [72, 154] Table 3.1 contains the

constants used in this problem.
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Minimize: J =

∫ tf

t0

(u2 + x21)dt (3.5a)

Subject to: ẋ1 = x2 (3.5b)

ẋ2 = −x1 + x2(1.4− 0.14x2
2) + 4u (3.5c)

|u| ≤ 1 (3.5d)

Table 3.1.: Constants for the Rayleigh problem.

Parameter x10 x20 t0 tf

Value -5 -5 0 4.5

Eq. (3.6) gives the Hamiltonian for this problem. The Hamiltonian then helps

generate the EOMs for the costates as shown in Eq. (3.7). The expressions for µ1 and

µ2 are shown in Eq. (3.8a) and Eq. (3.8b), respectively.

H = λx1ẋ1 + λx2ẋ2 + µ1(−u− 1) + µ2(u− 1) + u2 + x21 (3.6)

˙λx1= −2x1 + λx2 (3.7a)

˙λx2= −λx1 − λx2(1.4− 0.42x22) (3.7b)

µ1 =

0 if u > −1

4λx2 − 2 if u = −1

(3.8a)

µ2 =

0 if u < 1

−4λx2 − 2 if u = 1

(3.8b)
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Ref. 72 gives the control structure of the solution. This control structure is shown

in Eq. (3.9), where the optimal control, u∗, first stays at the upper bound until time

t1, followed by an unconstrained arc until time t2, a lower bound constrained arc until

time t3, and finally an unconstrained arc for the remaining time.

u∗ =



1 if 0 ≤ t ≤ t1

−2λx2(t) if t1 ≤ t ≤ t2

−1 if t2 ≤ t ≤ t3

−2λx2(t) if t3 ≤ t ≤ tf

(3.9)

Since the Hamiltonian is regular, the control should be continuous across the

unconstrained and constrained arcs. [72] An additional set of boundary conditions is

thus obtained as shown in Eq. (3.10).

u(t1) = −2λx2(t1) = 1 (3.10a)

u(t2) = −2λx2(t2) = −1 (3.10b)

u(t3) = −2λx2(t3) = −1 (3.10c)

The traditional approach results in a five-point BVP and becomes much more diffi-

cult to solve as compared to a TPBVP. This study reformulates the Rayleigh problem

by substituting a trigonometric form of u into Eq. (3.5), as shown in Eq. (3.11), which

ensures u stays bounded between the values ±1, and the problem remains a TPBVP.

u = sinuTRIG (3.11)

Using the Euler-Lagrange necessary conditions, the optimal control law obtained

for this reformulated Rayleigh problem is shown in Eq. (3.12).

uTRIG
∗ =


−π/2

arcsin(−2λx2)

π/2

(3.12)
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PMP forms the basis for the control selection and imposes implicit constraints on

the control. The selection process discards large positive or negative values of λx2

that violate the bounds of arcsin. Trigonometrization retains a TPBVP form and

obtains the same solution as the traditional method without segmenting the problem

explicitly into multiple constrained and unconstrained arcs. To justify this point, a

comparison was made between the traditional and Trigonometrization approaches,

and the results match as expected. The phase and control time-history comparison

plots are shown in Fig. 3.2.
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Figure 3.2.: Comparison plots between the traditional and Trigonometrization meth-

ods for the Rayleigh problem.

For this problem, the value of ∂φ
∂tf

is 0 units. Hence, the terminal value of Hamil-

tonian, H(tf ), is also 0 units according to Eq. (1.12). Since the Hamiltonian is not

an explicit function of time, it has a constant value. The Hamiltonian time-history
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plot, shown in Fig. 3.3, matches well with the result obtained using the transversality

condition. Please note that the results for the Hamiltonian obtained using GPOPS-II

are not as accurate as the Epsilon-Trig regularization method.
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Figure 3.3.: Comparison plots between the traditional and Trigonometrization meth-

ods for the Rayleigh problem.

A comparison between various features of the traditional and Trigonometrization

approaches is presented in Table 3.2, which demonstrates that Trigonometrization

is an effective means to solve OCPs with constraints on control. Please note that

a built-in BVP solver, bvp4c, in MATLAB 2014b performed all computations on a

2.5-GHz Intel i5 processor.

Table 3.2.: Comparison between the traditional and Trigonometrization methods for

the Rayleigh problem.

Attribute Traditional Method Trigonometrization

Type Five-Point BVP TPBVP

Number of Trajectory Arcs 4 1

Number of Boundary Conditions 34 13

Computation Time (s) 5 3.5
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3.4 Benefit 2: Avoiding Transcendental Equations of Optimality

For certain OCPs, the optimal control law assumes a transcendental form such

that the solver cannot obtain a closed-form solution for the control. In practice, a

Taylor series expansion enables a closed-form solution for the control at the cost of

loss in accuracy. This study chose to solve an impactor problem to illustrate this

issue and aimed at minimizing its time of flight. For simplicity, the analysis considers

only planar motion as shown in Eq. (3.13), and assumes that the thrust magnitude

is constant.

Minimize: J = tf (3.13a)

Subject to: ḣ = v sin γ (3.13b)

θ̇ =
v cos γ

r
(3.13c)

v̇ =
T cosα−D

m
− µ sin γ

r2
(3.13d)

γ̇ =
L+ T sinα

mv
+
(v
r
− µ

vr2

)
cos γ (3.13e)

ṁ = − T

g0Isp
(3.13f)

ρ = ρ0e
−h
H (3.13g)

CL = CL1α + CL0 (3.13h)

CD = CD2α
2 + CD1α + CD0 (3.13i)

D =
1

2
ρv2CDA (3.13j)

L =
1

2
ρv2CLA (3.13k)

r = rp + h (3.13l)

In the above equations, r is the radial magnitude, h is the altitude, θ is the downrange,

v is the velocity magnitude, γ is the flight path angle, m is the mass of the vehicle, A

is the reference area of the vehicle, µ is the gravitational parameter of the planet, rp

is the radius of the planet, ρ0 is the surface atmospheric density of the planet, D is
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the drag force magnitude, L is the lift force magnitude, and α is the angle of attack.

CL0 , CL1 , CD0 , CD1 , and CD2 are constants related to the coefficients of lift and drag.

The only control is the angle of attack, α, bounded between ±20◦, and the bank

angle is fixed at 0◦. This section used Ref. 155 to select an impactor. Table 3.3 shows

the constants used in this problem with Earth as the planet.

Table 3.3.: Constants for the impactor problem.

Parameter Value

rp (km) 6378

µ (km3/s2) 398600

ρ0 (kg/m3) 1.2

H (km) 7.5

g0 (m/s2) 9.80665

A (m2) 557.4

CL1 (1/rad) 0.4639

CL0 -0.0278

CD2 (1/rad2) 0.3216

CD1 (1/rad) -0.0305

CD0 0.03

T (kN) 2000

Isp (s) 400

Eq. (3.14) shows the Hamiltonian for this problem. The Euler-Lagrange necessary

conditions then utilize this Hamiltonian to obtain the costate EOMs as shown in

Eq. (3.15).

H = λhv sin γ +
λθv cos γ

r
+ λv

(
T cosα−D

m
− µ sin γ

r2

)
+ λγ

[
(L+ T sinα)

mv
+
(v
r
− µ

vr2

)
cos γ

]
− λmT

g0Isp

(3.14)
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λ̇h = −λvD
mH

(3.15a)

λ̇v =
2λvD

mv
− λh (3.15b)

λ̇m =
λv(T −D)

m2
(3.15c)

The optimal control law for the unbounded control problem is shown by Eq. (3.16).

The control law becomes transcendental because of the presence of polynomial and

trigonometric expressions of control, α.

∂H

∂α∗
=
λv[ρv

2A(−2CD2α
∗ − CD1)− T sinα∗]

2m
+
λγ(ρv

2ACL1 + T cosα∗)

2mv
= 0 (3.16)

Traditionally, the small angle approximation reduces the trigonometric expres-

sions of α to a polynomial form, which enables the construction of a closed-form but

approximate optimal control expression. [49,138,151,152] As an example, Eq. (3.17a)

and Eq. (3.17b) represent a small angle approximation that enables a closed-form

solution of the optimal control as shown in Eq. (3.17c). [49,138,151,152]

sinα = α (3.17a)

cosα = 1 (3.17b)

α∗ =
λγ(Aρv

2CL1 + 2T )− λvAρv3CD1

2λvAρv3CD2

(3.17c)

This scenario can be altogether avoided by converting the controls to trigonometric

forms. The original control, α, could be made a state variable and its time-derivative

could be made the new control, u, as shown in Eq. (3.18).

α̇ = u (3.18)
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The reformulated OCP utilizes the Epsilon-Trig regularization method, which

happens to be a specific case of the Trigonometrization technique applicable only to

bang-bang and singular control problems. [150] A trigonometric form then describes

the control as shown in Eq. (3.19a). The state equation corresponding to v now in-

cludes an error parameter, ε, and an error control, cosuTRIG, as shown in Eq. (3.19b).

This choice of error placement into the dynamics of the problem is purely based on

the observation that such a choice resulted in faster convergence. The value of αRATE

used in this problem is 5 deg/s. ε is kept to a small value of 0.001 m/(rad s) for more

accurate results.

α̇ = αRATE sinuTRIG (3.19a)

v̇ =
T cosα−D

m
− µ sin γ

r2
+ ε cosuTRIG (3.19b)

The optimal control law becomes very simple as compared to the previous scenario

and is shown in Eq. (3.20). PMP then selects the optimal control.

uTRIG
∗ =



arctan

(
λαTRIG

ελv

)

arctan

(
λαTRIG

ελv

)
+ π

(3.20)

The boundary conditions for the problem are shown in Table 3.4. This study draws

a comparison between the features of the typical approximation and Trigonometriza-

tion methods. Using α̇ as the control is valid for realistic aerospace problems as α̇

specifies a definite realistic rate at which the angle of attack, α, can change.
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Table 3.4.: Initial and final conditions for the impactor problem.

Attribute Initial Value Final Value

Time (s) 0 free

Altitude (km) 26 0

Downrange (km) 0 340

Velocity (km/s) 1.5 free

Flight Path Angle (deg) free free

Mass (kg) 136000 free

Angle of Attack (deg) free free

Comparisons between the typical approximation and Trigonometrization methods

for the impactor problem are shown in Fig. 3.4 and Fig. 3.5. Although the results

match closely for this problem, there might be situations where the control is too large

and small angle approximation is not valid, leading to large errors. This impactor

problem demonstrates how to avoid a transcendental control law scenario.
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Figure 3.4.: States time-history comparison plots for the impactor problem.
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Figure 3.5.: Costates and control time-history comparison plots between the typical

approximation and Trigonometrization methods.

According to Eq. (1.12), the terminal value of Hamiltonian, H(tf ), is -1 unit for

this time-minimization problem. Since the Hamiltonian is not an explicit function of

time, it has a constant value. The Hamiltonian time-history plot, shown in Fig. 3.6,

matches well with the result obtained using the transversality condition and has an

accuracy of 10−7.
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Figure 3.6.: Hamiltonian time-history comparison plots between the typical approxi-

mation and Trigonometrization methods.

3.5 Benefit 3: Avoiding Convergence to a Wrong Extremal

Consider a Mars aerocapture problem with an entry vehicle as specified in Ref.

11. The vehicle enters at a very high speed and eliminates a desired amount of

kinetic energy before exiting the Martian atmosphere. Eq. (3.13) (discussed in the

last section) describes this problem except it has a constant mass and no thrust.

The constants related to the vehicle and Mars are shown in Table 3.5. Please note

that real-world aerocapture problems have different objectives as compared to this

problem. This particular aerocapture problem is chosen to illustrate an advantage of

using Trigonometrization.

This section analyzes two test cases, first with an unbounded control and the

second with a bounded control using Trigonometrization. The optimal control law

for the unbounded control problem is shown by Eq. (3.21). There is only one control

option in this case.

α∗ =
1

2CD1

(
λγCL1

λvv
− CD2

)
(3.21)
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Table 3.5.: Constants for the Mars aerocapture problem.

Parameter Value

rp (km) 3397

µ (km3/s2) 42828.37

ρ0 (kg/m3) 0.02

H (km) 11.1

mass (kg) 92080

A (m2) 250

CL1 (1/rad) 1.6756

CL0 -0.2070

CD2 (1/rad2) 2.04

CD1 (1/rad) -0.3529

CD0 0.0785

For the latter case, Eq. (3.22) describes the control, where αTRIG becomes the

control instead of α. The values of the lower bound, αLB, and the upper bound, αUB,

are -160 and 160, respectively.

α = α1 sinαTRIG + α0 (3.22a)

α1 =
αUB − αLB

2
(3.22b)

α0 =
αUB + αLB

2
(3.22c)

By using Trigonometrization, the optimal control law gains more than one option

to choose from, and PMP can then select the optimal control. Eq. (1.7) for this

problem reduces to the expression shown in Eq. (3.23) and the control law for the

bounded problem is shown by Eq. (3.24).

∂H

∂u∗
= [−2vλvCD1(α1 sinαTRIG + α0)− vλvCD2 + λγCL1 ] cosαTRIG = 0 (3.23)
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αTRIG
* =



−π
2
π

2

arcsin

[
1

2CD1α1

(
λγCL1

λvv
− CD2

)
− α0

α1

] (3.24)

The conditions on the initial and final states of the TPBVP for both the cases are

shown in Table 3.6. A comparison of the results obtained for the two cases is shown

in Table 3.7. The minimum time for the unbounded case is more than 2000 s, and

the angle of attack remains small even without imposing constraints upon it. The

bounded control case, on the other hand, has an optimal time of flight of around 100

s, which matches with intuitive expectations.

Table 3.6.: Initial and final conditions for the Mars aerocapture problem.

Attribute Initial State Final State

Time (s) 0 free

Altitude (km) 80 80

Downrange (km) 0 free

Velocity (km/s) 6 4

Flight Path Angle (deg) free free

Table 3.7.: Results comparison for the Mars aerocapture problem.

Attribute Unbounded Control Bounded Control

Time of Flight (s) 2192.54 96.56

Downrange (km) 19178.16 828.05

Initial Flight Path Angle (deg) -6.13 -22.06

Terminal Flight Path Angle (deg) 3.02 23.47

The states and control time-history plots comparison between the unbounded

and bounded control cases are shown in Fig. 3.7. Since the solver minimizes the
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time of flight, the control attains very large positive values, and the vehicle dives

deep into the atmosphere using a steep initial flight path angle, thereby removing a

large amount of kinetic energy in a short amount of time. However, the results for

the unbounded case are opposite from this expectation, indicating that the control

should maintain a low negative value and fly with a shallow flight path angle to stay

longer in the atmosphere. This should actually happen when maximizing the time

of flight. The solution process often finds it challenging to construct solutions that

satisfy the necessary conditions of optimality, and it omits a sufficiency check to avoid

a further increase in complexity.
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Figure 3.7.: States and control time-histories for the Mars aerocapture problem.

In the case of a bounded control, the control law has the options listed in Eq. (3.24),

and PMP leads to a simple sufficiency check for each option. This process easily

guarantees that the solution will be a local minimum and not a maximum. When the

unbounded case used the Trigonometrization solution as a guess, it still resulted in a
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local maximum, proving that there is no way the unbounded formulation can output

a minimum time solution.

Since the optimal control law and the boundary condition on the Hamiltonian de-

pend on costates, a particular combination of them can lead to a local maximum even

when the problem is to find the local minimum. Fig. 3.8 shows such a combination of

costates for the unbounded control case and draws a comparison with the costates ob-

tained for the trigonometrized problem. Thus, Trigonometrization avoids such wrong

extremals while simultaneously making the OCP more realistic by imposing practical

bounds on the control.
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Figure 3.8.: Costates time-history plots for the Mars aerocapture problem.

The terminal value of Hamiltonian, H(tf ), is -1 unit according to Eq. (1.12) for

this time-minimization problem. The Hamiltonian is not an explicit function of time
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and has a constant value. The Hamiltonian time-history plot, shown in Fig. 3.9,

matches well with the result obtained using the transversality condition and has an

accuracy of 10−7.
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Figure 3.9.: Hamiltonian time-history plots for the Mars aerocapture problem.

The Trigonometrization technique resolved the three issues pertaining to OCPs

with pure control constraints containing non-linear controls. This technique can be

used to solve very complicated aerospace OCPs as shown in the following section.

3.6 A Complex Aerospace Problem: Noise-Minimal Trajectories For En-

abling Night Flights

Optimization of flight trajectories is an area of vital importance in air traffic

management from the operations point of view. Generally, studies under this topic

aim to define optimal flight paths that ultimately lead to energy-efficient flights. [156]

Noise of commercial aircraft has been a cause of serious concern for the population

around airports. [157] This problem manifests during night-time operations when an
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aircraft significantly disturbs the surrounding area. While constant descent approach

(CDA) is a possible solution [158], many countries impose night flying restrictions

wherein the airport is closed and no aircraft operations can take place. Hence, flight

authorities can cancel the flight at the airport of origin if they scheduled an aircraft

to land at a particular airport. Alternatively, flight authorities can divert the aircraft

to the nearest airport open for night-time operations. Such laws become a serious

impediment, especially in the European Union (EU) where almost all airports do not

permit night-time operations. [159] The cost incurred due to these impediments is

likely to be high.

Improvement of engine characteristics as well as development of new flight paths

are two solutions that reduce aircraft noise. [156, 160] The goal of the investigation

in this section is to maintain the high safety standards of flight operations when

designing new flight paths that minimize noise. [157] This study formulates an OCP

and solves to minimize the noise of an aircraft during landing. The flight dynamics

of an aircraft represent a system of ordinary differential equations along with some

safety and comfort constraints used in general practice to satisfy public transport

requirements. [161, 162] Trigonometrization imposes realistic bounds on the controls

to simulate and solve a real-world, noise minimal aircraft landing problem, which has

not been done before. [153] Previously, researchers conducted a 2-DOF study on noise

minimization aircraft trajectories whereas this section focuses on a more complicated

and realistic 3-DOF case. [163] Subsequently, this section defines a cost functional

that aims to minimize the noise index of an aircraft landing event. [157,160,164]

To design minimal noise trajectories, the OCP should consist of a suitable noise

index. The general aircraft noise indices, which effectively describe the noise during

an aircraft landing event, are Sound Exposure Level, Overall Sound Pressure Level

[165], Effective Perceived Noise Level (EPNL), and Equivalent Noise Level. [157] This

chapter selects minimization of the EPNL (i.e., the noise level that a person standing

at a fixed distance perceives from the aircraft). In any aircraft landing event [160], it

is necessary to consider the person who is nearest to the aircraft and who is affected
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the most by the aircraft’s noise. Hence, the noise index is a function of the altitude,

z. This function represents the zoning-plan of the community surrounding the airport

and approximates the altitude as (z+50) to avoid issues related to singularity when

the altitude, z, becomes 0 units. [160]

It is also necessary to consider the duration for which the noise lasts. Hence,

this study choses minimization of the EPNL. [160] Thus, the cost functional is to

minimize the EPNL over the entire trajectory, termed as Integral Effective Perceived

Noise Level (IEPNL). Eq. (3.25a) [160] shows IEPNL while Appendix B contains

the mathematical background about it. This problem uses EOMs describing a 3-

DOF trajectory of an aircraft as shown in Eqs. (3.25b)-(3.25g) [161]. Eq. (3.25h) and

Eq. (3.25i) approximate the lift force, L, and the drag force, D, respectively. [156,160]

Minimize: J =

∫ tf

0

18.73 T 5.2

v(z + 50)2.5
cos γ dt (3.25a)

Subject to: ẋ = v cos γ cosψ (3.25b)

ẏ = v cos γ sinψ (3.25c)

ż = v sin γ (3.25d)

v̇ =
T cosα−D

m
− g sin γ (3.25e)

ψ̇ =
(T sinα + L) sinφ

mv cos γ
(3.25f)

γ̇ =
(T sinα + L) cosφ

mv
− g cos γ

v
(3.25g)

L = W = mg (3.25h)

D = c1v
2 +

c2
v2

(3.25i)

In the above equation, J is the noise minimization cost functional, x is the down-

range, y is the crossrange, z is the altitude, v is the velocity, ψ is the heading angle,

γ is the flight path angle, m is the mass of the vehicle, D is the drag force magni-

tude, L is the lift force magnitude, φ is the bank angle, α is the angle of attack, and

T is the thrust force magnitude. The constants used in this problem, as shown in
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Table 3.8, are the weight of the aircraft, W, the acceleration due to Earth’s gravity, g,

and constants related to the drag force, c1 and c2. The literature studies used these

constants for this problem, which correspond to a light fighter aircraft. This problem

is particularly difficult to solve because the general tendency to minimize noise based

on the cost functional (as shown in Eq. (3.25a)) would be to fly at high altitudes with

low thrust and high velocity. While considering a landing event, not only the altitude

but also the velocity must decrease to satisfy operational constraints, which would

inevitably lead to an increase in the noise level. [164]

Table 3.8.: Parameters for the aircraft noise minimization trajectory problem.

Parameter c1 c2 W g

Value 0.226 5.2e6 7.18 9.81

Unit kg/m kg m3/s4 kN m/s2

Trigonometrization converts the bank angle and the angle of attack to the form

shown in Eq. (3.26a) and Eq. (3.26b), respectively. The bounds on the bank angle and

angle of attack are ±60◦ (±π/3) and ±15◦ (±π/12), respectively. Thrust is similarly

trigonometrized as shown in (3.26c) with a lower bound of 300 N and an upper bound

of 3420 N. [160]

φ =
π

3
sinφTRIG (3.26a)

α =
π

12
sinαTRIG (3.26b)

T = 1560 sinTTRIG + 1860 (3.26c)
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The Hamiltonian for this problem is shown in Eq. (3.27). Eq. (1.6) evaluate the

EOMs corresponding to the costates as shown in Eq. (3.28).

H =
18.73 T 5.2

v(z + 50)2.5
cos γ + λxv cos γ cosψ + λyv cos γ sinψ + λzv sin γ

+ λv

(
T cosα−D

m
− g sin γ

)
+
λψ(T sinα + L) sinφ

mv cos γ

+ λγ

[
(T sinα + L) cosφ

mv
− g cos γ

v

] (3.27)

λ̇x = 0 (3.28a)

λ̇y = 0 (3.28b)

λ̇z =
46.825 T 5.2

v(z + 50)3.5
cos γ (3.28c)

λ̇v =
18.73 T 5.2

v2(z + 50)2.5
cos γ − λx cos γ cosψ − λy cos γ sinψ − λz sin γ

+
2λv(c1v

4 − c2)
mv3

+
λψ(T sinα + L) sinφ

mv2 cos γ

+ λγ

[
(T sinα + L) cosφ

mv2
− g cos γ

v2

]
(3.28d)

λ̇ψ = λxv cos γ sinψ − λyv cos γ cosψ (3.28e)

λ̇γ =
18.73 T 5.2

v(z + 50)2.5
sin γ + λxv sin γ cosψ + λyv sin γ sinψ

− λzv cos γ + λvg cos γ − λψ(T sinα + L) sinφ sin γ

mv cos2 γ
− λγg sin γ

v
(3.28f)

Using OCT, the optimal control options obtained for this problem are shown in

Eqs. (3.29)–(3.31) for bank angle, angle of attack, and thrust control, respectively.
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PMP, described in Eq. (1.11), then selects the optimal combination of controls from

among these options.

φ∗TRIG =



−π
2

arcsin

arctan

(
λψ

λγ cos γ

)
π
3


arcsin

arctan

(
λψ

λγ cos γ

)
+ π

π
3


π

2

(3.29)

α∗TRIG =



−π
2

arcsin

arctan

(
λψ sinφ

vλv cos γ
+
λγ cosφ

vλv

)
π
12


arcsin

arctan

(
λψ sinφ

vλv cos γ
+
λγ cosφ

vλv

)
+ π

π
12


π

2

(3.30)

T ∗TRIG =



−π
2

arcsin

[
1

1560

(
v(z + 50)2.5

97.396 cos γ

) 1
4.2

(
−λv cosα

m
− λψ sinα sinφ

mv cos γ
− λγ sinα cosφ

mv

) 1
4.2

− 1860

1560

]
π

2

(3.31)

Eq. (3.30) shows that the calculation of the angle of attack, α*
TRIG, requires

optimal values of bank angle, φ*
TRIG. Similarly, φ*

TRIG and α*
TRIG are necessary to

evaluate optimal thrust control, T ∗TRIG, as shown in Eq. (3.31). Thus, it is mandatory
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to evaluate the optimal bank angle first, followed by the optimal angle of attack and

lastly the optimal value of thrust. There are four options for optimal bank angle, four

options for optimal angle of attack and three options for optimal thrust, resulting in

a total of 48 optimal control options to select by using PMP.

3.6.1 Results

This subsection presents and solves an example scenario for the initial and final

conditions enforced upon the aircraft trajectory as shown in Table 3.9. A 3-DOF

problem described in Ref. 160 defines the values in this table.

Table 3.9.: Initial and final conditions for the aircraft noise minimization problem.

Attribute Initial Value Final Value

Time (s) 0 free

Downrange (km) 0 5.4

Crossrange (km) 0 4.6

Altitude (km) 1.197 0

Velocity (m/s) 124 77.5

Heading Angle (deg) 0 45

Flight Path Angle (deg) 0 0

The results obtained by satisfying necessary conditions of optimality in OCT for

this OCP were matched with the results obtained using GPOPS-II. The 3D trajectory

plot and the noise generated by the aircraft are shown in Fig. 3.10. The IEPNL

generated by the aircraft is found to be 6395 dB-s. [156, 160] The time-histories of

the states are shown in Fig. 3.11. The velocity along the trajectory is within the

acceptable range for comfort and safety of the passengers.
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Figure 3.10.: 3D trajectory and objective plots for the noise minimization problem.
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Figure 3.11.: State time-history plots for the aircraft noise minimization problem.
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The control time-history plots for the bank angle, the angle of attack, and the

thrust are shown in Fig. 3.12. These controls stay within the required bounds.
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Figure 3.12.: Controls time-history plots for the aircraft noise minimization problem.

Fig. 3.13 shows that the magnitudes of the costates are extremely high, thus

highlighting the need to scale the problem under consideration. However, no scaling

has been employed to solve this problem in its current form, which goes to show

the robustness of the solver employed. Please note that a different combination of
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costates from GPOPS-II results in the same optimal controls, and, hence, there is a

difference in the costates between OCT and GPOPS-II as shown in Fig. 3.13.
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Figure 3.13.: Costates time-history plots for the aircraft noise minimization problem.

The value of ∂φ
∂tf

for this problem is 0 dB. Hence, the terminal value of Hamiltonian

is also 0 dB according to Eq. (1.12). The Hamiltonian also has a constant value since

it is not an explicit function of time. The Hamiltonian time-history plot is shown in

Fig. 3.14, which matches very well with the result obtained using the transversality

condition. Please note in Fig. 3.14 that the results for the Hamiltonian obtained using

GPOPS-II are inaccurate.
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Figure 3.14.: Results comparison for the Hamiltonian of the aircraft noise minimiza-

tion problem.

This is the first instance when an aerospace problem with six states and three

bounded controls, as presented in this chapter, has been solved using Trigonometriza-

tion. This sets the confidence to increase the fidelity of the noise minimization func-

tional by incorporating a population model, thus accounting for a more realistic per-

ceived noise, as described in the next subsection.

3.6.2 Higher Fidelity Population Model

In the prior example, the cost functional minimized is the IEPNL as perceived by

the person nearest to the aircraft. In order to model and simulate a realistic scenario,

it is important to incorporate the population distribution around the airport. If the

latitudinal and the longitudinal coordinate data corresponding to the area around

the airport is available, a polynomial function can model the population data. This

equation, when multiplied with the noise model, yields a weighted cost functional
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that is representative of the noise perceived by the total number of people in an area

rather than the noise perceived when considering a unit population distribution. Such

a weighted cost functional will ensure that the aircraft’s noise affects a minimum

number of people during its terminal descent. Eq. (3.32) shows the modified cost

functional, which is essentially the product of Eq. (3.25a) and the PDF.

J =

∫ tf

0

(PDF)
18.73 T 5.2

v(z + 50)2.5
cos γ dt (3.32)

Due to unavailability of the aforementioned coordinate data for the population

model, this study employed a general polynomial function as shown in Eq. (3.33),

which is representative of a population change as the aircraft flies towards the airport.

This non-linear function models the population variation based on the changes in the

crossrange as shown in Fig. 3.15.

PDF =
4600

y + 1
(3.33)
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Figure 3.15.: The chosen PDF.
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The problem formulation is similar to Sec. 3.6 except that Eq. (3.32) describes

the objective functional, where the PDF is as shown in Eq. (3.33). Eq. (3.34) shows

the optimal control law for thrust. The optimal control law for the angle of attack

and bank angle controls remain unchanged from the previous example. Also, the

modified EOMs for the costates are shown in Eqs. (3.35a)–(3.35d). The costates for

the downrange, x, and the heading angle, ψ, remain unmodified.

T ∗TRIG =



−π
2

arcsin

[
1

1560

(
v(1 + y)(z + 50)2.5

448021.6 cos γ

) 1
4.2

(
−λv cosα

m
− λψ sinα sinφ

mv cos γ
− λγ sinα cosφ

mv

) 1
4.2

− 1860

1560

]
π

2

(3.34)

λ̇y =
86158 T 5.2 cos γ

v(1 + y)2(z + 50)2.5
(3.35a)

λ̇z =
215395 T 5.2 cos γ

v(1 + y)(z + 50)3.5
(3.35b)

λ̇v =
86158 T 5.2 cos γ

v2(1 + y)(z + 50)2.5
− λx cos γ cosψ − λy cos γ sinψ

− λz sin γ +
2λv(c1v

4 − c2)
mv3

+
λψ(T sinα + L) sinφ

mv2 cos γ

+ λγ

[
(T sinα + L) cosφ

mv2
− g cos γ

v2

]
(3.35c)

λ̇γ =
86158 T 5.2 sin γ

v(1 + y)(z + 50)2.5
+ λxv sin γ cosψ + λyv sin γ sinψ

− λzv cos γ + λvg cos γ − λψ(T sinα + L) sinφ sin γ

mv cos2 γ
− λγ

g sin γ

v
(3.35d)
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This section draws a comparison between the results obtained while considering

the effect of the PDF given by Eq. (3.33) and the results obtained in Sec. 3.6. The

3D trajectory and noise time-history plots, as shown in Fig. 3.16, indicate a different

flight path adopted by the aircraft resulting in a higher noise. The IEPNL obtained is

6860 dB-s. As expected, the PDF in this scenario has significantly higher magnitudes

than the uniform population distribution investigated previously.
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Figure 3.16.: 3D trajectory and noise time-history comparison plots between two

population models for aircraft noise minimization problem.

Since the population is very high initially in the crossrange direction, the aircraft

flies at a higher altitude to minimize the total perceived noise. The state time-history

plots as shown in Fig. 3.17 illustrate this finding.
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Figure 3.17.: States time-history comparison between two population models.

Given the final state constraints, the aircraft utilizes extremal controls and follow

the optimal trajectory as seen in Fig. 3.18. OCT requires the costates to be of high

magnitudes in order to obtain such extremal controls. The costates time-history plots

as shown in Fig. 3.19, are consistent with the expected results.
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Figure 3.18.: Controls time-history comparison between two population models.
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Figure 3.19.: Costates time-history comparison between two population models.
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Additionally, to study the practicability of the proposed method, it is interesting to

draw comparisons with the currently accepted CDA. The flight trajectory employing

CDA has been simulated using the EOMs as described in Eqs. (3.25b)–(3.25f) and

the constant parameters as described in Table 3.10.

Table 3.10.: Constant parameters for CDA.

Parameter Value

Angle of attack (deg) 10

Bank angle (deg) 12.5

Thrust (N) 1700

Flight path angle (deg) -8.5

The optimal noise trajectory reduces the IEPNL by approximately 7% over CDA.

This analysis compares the simulated CDA trajectory and corresponding noise time-

history with the optimal results in Fig. 3.20.
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Figure 3.20.: Comparison of 3D trajectory and noise time-history of the aircraft

between optimal approach and CDA.
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Table 3.11 summarizes the complexity of the noise minimization problem. The

major complexities of this problem is the complicated objective function, a large

number of optimal control options, and very complicated EOMs for costates.

Table 3.11.: Complexities of the aircraft noise minimization problem.

Parameter Complexity

States Six states

Controls Three bounded controls

State equations Highly non-linear and coupled

Costate equations Highly non-linear, lengthy, and coupled

Objective functional Highly non-linear and complex

3.7 Conclusions

This chapter proposed and tested the use of trigonometry in reformulating con-

trol expressions in an OCP. It identified three major issues concerning OCPs with

constraints upon control, which appear in a non-linear form in the Hamiltonian.

1. Solving a MPBVP using the traditional approach when solving OCPs with

control constraints is very complicated.

2. When the necessary conditions for optimality became transcendental, tradi-

tional methods cannot guarantee obtaining analytic control solutions.

3. Some unconstrained OCPs may converge to the wrong extremum as they satisfy

only the necessary conditions of optimality.

For issue 1, trigonometrizing the controls ensured the OCP remained a TPBVP,

which is much simpler to solve and leads to faster computation of results. This study

used the Rayleigh problem to validate this point. For issue 2, it was shown through an
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impactor problem that the use of Trigonometrization avoids transcendental control

laws and employs more realistic controls. Moreover, Trigonometrization of OCPs

described in issue 3 generates additional control options corresponding to the limits of

control, thereby permitting the usage of PMP to check for the sufficiency of solutions

to identify the correct extremum. This benefit of Trigonometrization was shown using

the Mars aerocapture problem with a SEV, where the objective was to minimize

the time of flight. When the OCP was left unbounded, the vehicle followed the

maximum time of flight trajectory whereas for the bounded case, the vehicle followed

the minimum time of flight trajectory. Verification and validation in this chapter

utilized GPOPS-II, and the results obtained from the two solvers match well.

After verification and validation of Trigonometrization, this chapter involved solv-

ing a 3-DOF flight trajectory problem to find noise-minimal trajectories for an aircraft

during its terminal descent phase. OCT requires satisfying necessary conditions of

optimality, thus guaranteeing a high-quality solution. This chapter, therefore, uses

OCT along with Trigonometrization to find the optimal solution. To demonstrate

the effect of variable population on the noise optimal trajectories of the aircraft, an

example scenario has been presented with a simplistic PDF. OCT solves the consid-

ered scenario and yields a relatively different 3D trajectory to the original problem

that does not take population into account while calculating total perceived noise.

Comparisons drawn with the CDA trajectory reveal that the solvers indeed mini-

mize IEPNL. Thus, this chapter lays the foundation for assessing the practicability

of constrained night time operations, especially cargo operations. This chapter gains

high relevance in the current scenario where the flight authorities plan on using the

NextGen air transportation system, part of which aims to reduce noise pollution.

The successful application of the Trigonometrization technique to OCPs contain-

ing pure control constraints prompted further development of this technique for two

other big classes of OCPs: first with mixed state-control constraints and second with

pure state constraints. The next chapter includes the development and usage of the

Trigonometrization technique for these classes of OCPs.
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4. Advancements in Optimal Control Theory for Problems

with Mixed State-Control and Pure State Constraints

4.1 Introduction

T
rigonometry can successfully solve OCPs with pure control constraints as

shown in Chapters 2 and 3 of this thesis. This chapter extends the use of

the bounding property of trigonometric functions to OCPs with mixed state control

constraints, where the bounds on control are variable and dependent on the state.

The traditional approach for OCPs with mixed constraints requires formulating

and solving a MPBVP, which is very complicated and difficult for practical aerospace

problems. Sec. 1.2.2.3 contains a brief discussion about this traditional approach.

Fig. 4.1 shows an example of the constraint structure for such a complicated MPBVP,

where arcs 1 and 3 correspond to mixed state-control and arcs 2 and 4 correspond

to unconstrained trajectory. Here, f(u, x) is the mixed state-control constraint with

SMIN and SMAX as its extremal values. Posing the control in a trigonometric form

greatly simplifies the problem formulation and solution processes by keeping the prob-

lem as a TPBVP.

SMIN


SMAX


time


Arc 1


Arc 2


Arc 3


Arc 4


Integrated Control Regularization Method (ICRM) unable to handle 

A complicated multi-point BVP needs to be solved



Figure 4.1.: A complicated constraint history for an OCP with mixed constraints.
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This chapter comprises of the following four sections. Sec. 4.2 introduces and

describes the concept of Trigonometrization for mixed constraint problems. Sec. 4.3

verifies and validates Trigonometrization using Rayleigh mixed constraint problem.

Sec. 4.4 shows a complex aerospace application of the Trigonometrization approach

developed for mixed constraint OCPs through a space shuttle reentry problem with

a complicated heating constraint. Sec. 4.5 and Sec. 4.6 describe the development

and application of the Trigonometrization technique to OCPs with mixed constraints

containing non-linear controls and OCPs with pure state constraints, respectively.

Sec. 4.7 forms the conclusion of this chapter.

4.2 Trigonometrization of Mixed Constraint Optimal Control Problems

OPTIMAL 

CONTROL 

PROBLEMS


BANG-BANG 

AND SINGULAR 

CONTROLS


PURE CONTROL 

CONSTRAINTS


MIXED STATE-CONTROL 

CONSTRAINTS (q = 0)


PURE STATE 

CONSTRAINTS (q > 0)


CONTINUOUS


CONTROLS


MIXED STATE-CONTROL 

CONSTRAINTS (q = 0)


A set of OCPs has constraints on the states and controls as shown in the inequality

Eq. (4.1), where SLB and SUB are constant lower and upper bounds on the constraint,

respectively. The constraint on state is dependent on the control. Another way to

look at it is that the constraint on control is dependent on the state. This set of OCPs

has the order of path constraint (described in Sec. 1.2.2.3), q, as 0. As a result, this

set does not require the additional necessary conditions described in Sec. 1.2.2.4.
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Literature calls the constraint for such OCPs as mixed state control constraint or in

short, mixed constraint. For simplicity, this section assumes that u appears linearly

in the mixed constraint.

SLB ≤ f(x) + g(x) u ≤ SUB (4.1)

Eq. (4.1) gains the form of inequality constraint on the control as shown in Eq. (4.2a).

Eq. (4.2a) can be further simplified to show lower and upper limits on control, u, given

by Eq. (4.2b). The Hamiltonian remains the same as Eq. (3.1) discussed in previous

chapter. The major difference here is that the control has variable bounds on it based

on the state of the system, thereby increasing the complexity in solving the OCP.

SLB − f(x)

g(x)
≤ u ≤ SUB − f(x)

g(x)
(4.2a)

uLB(x) ≤ u ≤ uUB(x) (4.2b)

Trigonometrization poses the control, u, in a trigonometric form, uTRIG, as shown

in Eq. (4.3a). The values of variables c1 and c0, used in Eq. (4.3a), are shown in

Eq. (4.3b) and Eq. (4.3c), respectively.

u = c1 sinuTRIG + c0 (4.3a)

c1 =
uUB(x)− uLB(x)

2
(4.3b)

c0 =
uUB(x) + uLB(x)

2
(4.3c)

Using Eq. (1.7), the optimal control options are obtained as shown in Eq. (4.4),

which is similar to Eq. (3.4). It may happen that h(t, x, λ) becomes less than -1 unit

or more than 1 unit, leading to imaginary values for arcsin(h(t, x, λ)). In such cases,

PMP chooses the control, u, from among two options for uTRIG, ±π/2.

uTRIG
∗ =



−π
2

arcsin(h(t, x, λ))

π

2

(4.4)
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4.2.1 Applicability Range

The Trigonometrization technique developed in this chapter is valid for the fol-

lowing.

1. The controls have lower and/or upper bounds depending upon the states of the

OCP.

2. Many mixed constraints are present in the OCP.

3. Pure control constraints are present for certain controls along with mixed con-

straints upon rest of the controls in the OCP.

4.2.2 Assumptions

Following are the assumptions used in this method.

1. PMP suffices for the sufficiency condition of optimality.

2. Pure and mixed constraints are not present simultaneously for a control.

3. Pure state constraints are absent.

Please note that g(u, x) in Eq. (4.1) can have higher powers of the control, u.

However, the procedure to obtain trigonometric bounds on u becomes very compli-

cated for mixed constraint expressions where u appears in a non-linear form. Sec.

4.4 showcases a complex aerospace problem involving such complicated mixed con-

straints with a non-linear control. For simplicity, the following section discusses only

one mixed constraint with one control.

4.3 Verification and Validation

Traditionally, the design community applies the methodology described in Sec.

1.2.2.3 to solve OCPs with mixed constraints, where the order of path constraint,
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q, is 0. This chapter uses the Rayleigh mixed constraint problem, as specified in

Eq. (4.5), to illustrate this traditional approach. [72, 166] Table 4.1 describes the

constants used in this problem.

Minimize: J =

∫ tf

t0

(u2 + x21)dt (4.5a)

Subject to: ẋ1 = x2 (4.5b)

ẋ2 = −x1 + x2(1.4− 0.14x2
2) + 4u (4.5c)

−1 ≤ u+
x1
6
≤ 0 (4.5d)

Table 4.1.: Constants for the Rayleigh mixed constraint problem.

Parameter x10 x20 t0 tf

Value -5 -5 0 4.5

Eq. (4.6) expresses the Hamiltonian for this problem. The EOM for the costate

λx1 is shown in Eq. (4.7). The EOM for the costate λx2 is the same as shown in

Eq. (3.7b) in Sec. 3.3. The expressions for µ1 and µ2 used in the Hamiltonian are

shown in Eq. (4.8a) and Eq. (4.8b), respectively.

H = λx1ẋ1 + λx2ẋ2 + µ1

(
−1− u− x1

6

)
+ µ2

(
u+

x1
6

)
+ u2 + x21 (4.6)

˙λx1= −2x1 + λx2 +
µ1 − µ2

6
(4.7)

µ1 =

0 if u + x1/6 > −1

4λx2 + 2u if u = −1− x1/6

(4.8a)

µ2 =

0 if u + x1/6 < 0

−4λx2 − 2u if u = −x1/6

(4.8b)
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Ref. [72] helps in obtaining the control structure of the traditional solution as

shown in Eq. (4.9). The optimal control, u∗, first stays at the upper variable bound

until time t1, followed by an unconstrained arc until time t2, a lower variable bound

constrained arc until time t3, followed by an unconstrained arc until time t4, an upper

variable bound constrained arc until time t5, and finally, an unconstrained arc for the

remaining time.

u∗ =



−x1(t)
6

if 0 ≤ t ≤ t1

−2λx2(t) if t1 ≤ t ≤ t2

−1− x1(t)

6
if t2 ≤ t ≤ t3

−2λx2(t) if t3 ≤ t ≤ t4

−x1(t)
6

if t4 ≤ t ≤ t5

−2λx2(t) if t5 ≤ t ≤ tf

(4.9)

The traditional approach results in a seven-point BVP and becomes significantly

more difficult to formulate and solve as compared to a TPBVP. The Rayleigh mixed

constraint problem becomes a TPBVP using Trigonometrization such that u stays

bounded between -1 - x1/6 and -x1/6 as described in Eq. (4.10a). Thus, Eq. (4.5)

uses a trigonometric form of u as shown in Eq. (4.10b).

−1− x1
6
≤ u ≤ −x1

6
(4.10a)

u =
sinuTRIG

2
− 1

2
− x1

6
(4.10b)

Using the Euler-Lagrange necessary conditions, the optimal control law obtained

for this reformulated Rayleigh mixed constraint problem is shown in Eq. (4.11).

uTRIG
∗ =


−π/2

arcsin
(

1− 4λx2 +
x1

3

)
π/2

(4.11)
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PMP forms the basis for the control selection, and constraints are implicitly

placed on the control. The selection process discards imaginary values of arcsin.

Trigonometrization retains a TPBVP form and obtains the same solution as the tra-

ditional method without segmenting the problem explicitly into multiple constrained

and unconstrained arcs. To justify this point, this study compares the traditional ap-

proach with the Trigonometrization approach, and the results match as expected. The

states, control, and constraint time-history comparison plots are shown in Fig. 4.2.

The constraint time-history sub-plot shows the seven points of the MPBVP as red

circular dots, which divide the optimal trajectory into six arcs. Fig. 4.3 shows the

costate time-history plots, in which the costates are not well estimated by GPOPS-II.
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Figure 4.2.: States, control, and constraint time-history comparison plots for the

Rayleigh mixed problem.
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Figure 4.3.: Costates time-history comparison for the Rayleigh mixed problem.

The value of ∂φ
∂tf

is 0 units for this OCP and hence the terminal value of the

Hamiltonian, H(tf ), is also 0 units based on Eq. (1.12). Since the Hamiltonian is not

an explicit function of time, its value is constant. The Hamiltonian time-history plots

for the traditional and Trigonometrization methods for this OCP, shown in Fig. 4.4,

are in excellent agreement with the result obtained using the transversality condition.

However, the results for the Hamiltonian obtained using GPOPS-II are not accurate

as shown in Fig. 4.4.
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Figure 4.4.: The Hamiltonian comparison for the Rayleigh mixed problem.
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A comparison between the various features of the traditional and Trigonometriza-

tion approaches is presented in Table 4.2, which demonstrates that Trigonometriza-

tion is an effective means to solve OCPs with mixed constraints. Trigonometrization

reduced the computation time by about 66% and significantly reduced the problem

formulation time. Please note that all computations performed in this study uti-

lized a 2.5-GHz Intel i5 processor using a built-in BVP solver, bvp4c, in MATLAB

2014b. The results have also been compared to and are in excellent agreement with

the results from GPOPS-II.

Table 4.2.: Results comparison for the Rayleigh mixed constraint problem.

Attribute Traditional Method Trigonometrization

Type Seven-Point BVP TPBVP

Number of Trajectory Arcs 6 1

Number of Boundary Conditions 48 13

Computation Time (s) 9.5 3.5

4.4 A Complex Aerospace Problem: Space Shuttle Reentry with a Re-

radiative Heating Constraint

This section includes solution to a complicated OCP in which a space shuttle

type vehicle reenters the Earth’s atmosphere with a re-radiative heating constraint.

[28, 167–171] For many years, the research community considered this OCP as one

of the most demanding real-life applications during the development of the multiple

shooting code. [169, 170] The objective is to increase the crossrange capacity for a

space shuttle orbiter-type vehicle to allow for more frequent return opportunities

from the orbit. This analysis ignores the EOM corresponding to the latitude and

formulates this OCP as shown in Eq. (4.12) because the latitude is not coupled with
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other states in the EOMs and can be calculated independently. Additionally, there

are no boundary conditions on latitude.

Minimize: J = −φf (4.12a)

Subject to: ḣ = v sin γ (4.12b)

φ̇ =
v cos γ sinψ

r
(4.12c)

v̇ = −D
m
− µ sin γ

r2
(4.12d)

γ̇ =
L cosσ

mv
+
(v
r
− µ

vr2

)
cos γ (4.12e)

ψ̇ =
L sinσ

mv cos γ
− v cos γ cosψ tanφ

r
(4.12f)

ρ = ρ0e
−h
H (4.12g)

CD = C1.86
L + CD0 (4.12h)

D =
1

2
ρv2CDA (4.12i)

L =
1

2
ρv2CLA (4.12j)

r = rE + h (4.12k)

In the above equation, r is the radial magnitude, h is the altitude, φ is the

crossrange angle, v is the velocity magnitude, γ is the flight path angle, ψ is the

heading angle, A is the reference area of the vehicle, µ is the gravitational parameter

of Earth, rE is the radius of Earth, ρ0 is the surface atmospheric density of Earth, D

is the drag force magnitude, L is the lift force magnitude, and σ is the bank angle.

CL is the coefficient of lift and CD0 is a constant related to the coefficient of drag,

CD. Table 4.3 includes the constants used in this problem. [169,170]

Table 4.3.: Constants for the space shuttle reentry problem.

Parameter rE (km) µ (km3/s2) ρ0A/2m (1/m) H (km) CD0

Value 6371.2 398600 3.33e-3 6.897 0.04
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Using Trigonometrization, the bank angle, σ, is implicitly bounded between -90◦

and 90◦ as shown in Eq. (4.13).

σ =
π sinσTRIG

2
(4.13)

The lift coefficient of the space shuttle depends on the re-radiative heating con-

straint as shown in Eq. (4.14). CLH(h, v) comprises of 20 terms based on Eqs. (4.14b)–

(4.14i). [169, 170, 172, 173] The skin temperature of the space shuttle forms the basis

for ∆CLH, which helps with tightening the heating constraint. The lower the value

of ∆CLH, the tighter the heating constraint is. The non-linear nature of CLH coupled

with the large number of terms in it immensely complicates the problem formulation

and solution process. The OCP becomes very ill-conditioned and very sensitive to

the initial guess. Please note that the value of b in Eq. (4.14) is 0.095 and its unit is

1/s. Ref. 174 and Appendix C contain a detailed description about Eq. (4.14).

CL − CLH(h, v)−∆CLH ≤ 0 (4.14a)

CLH(h, v) =
5∑
i=1

BiH i (4.14b)

Bi =
4∑
j=1

gij

(
h

50000
− 1

)j−1
(4.14c)

H1 =

(
bh

v

)2

(4.14d)

H2 =
bh

v
−H1 (4.14e)

H3 = 1− bh

v
−H2 (4.14f)

H4 =
v

bh
− 2 +

bh

v
−H3 (4.14g)

H5 =
( v
bh

)2
− 3v

bh
+ 3− bh

v
−H4 (4.14h)
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gij =



0.110717 0.834519 1.213679 −1.060833

−0.672677 2.734170 −0.864369 −12.1

0.812241 2.337815 10.31628 22.97486

−3.151267 −13.62131 −40.4855 −57.83333

2.368095 19.0734 69.86905 127.777778


(4.14i)

This analysis utilizes a weighted approach along with Trigonometrization and

scaling in order to remedy the sensitivity issue. A weighting factor, w, converts

the OCP from an unconstrained form to the one with a heating constraint. [175]

Trigonometrization transcribes the lift coefficient, CL, into Eq. (4.15). CL has a fixed

lower bound, CLLB, and initially a fixed upper bound, CLUB when w is 0. The upper

bound for CL changes to a variable value based on CLH when the value of w changes

to 1. In short, CL has a weighted upper bound, CLWUB, as shown in Eq. (4.16). The

solution to the unconstrained OCP serves as an initial guess for the OCP with the

heat constraint. The continuation approach has small changes first in the values of

w and then in the values of ∆CLH. [49, 175]

CL =
(CLWUB − CLLB) sinCLTRIG + CLWUB + CLLB

2
(4.15)

CLWUB = (1− w)CLUB + w(CLH + ∆CLH) (4.16)

The Hamiltonian is shown in Eq. (4.17). Appendix C includes the extremely

lengthy and complicated costates.

H = λhv sin γ + λφ
v cos γ sinψ

r
+ λv

(
−D
m
− µ sin γ

r2

)
+ λγ

[
L cosσ

mv
+
(v
r
− µ

vr2

)
cos γ

]
+ λψ

[
L sinσ

mv cos γ
− v cos γ cosψ tanφ

r

]
(4.17)

Eq. (1.7) obtains the optimal control laws for CLTRIG and σTRIG as shown in

Eq. (4.18a) and Eq. (4.18b), respectively. Trigonometrization obtains 12 possible
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optimal combinations between the lift coefficient and bank angle. PMP then selects

the most optimal combination from them.

CLTRIG
∗ =



−π
2

arcsin

 2

CLWUB − CLLB

λγ cosσ +
λψ sinσ

cos γ

1.86vλv


1

0.86

− CLWUB + CLLB

CLWUB − CLLB


π

2

(4.18a)

σTRIG
∗ =



−π
2

arcsin

[
4

π
arctan

(
λψ

λγ cos γ

)]
arcsin

[
4

π

(
arctan

(
λψ

λγ cos γ

)
+ π

)]
π

2

(4.18b)

Trigonometrization upon the lift coefficient and bank angle controls results in solv-

ing for a TPBVP. The boundary conditions for this problem are shown in Table 4.4.

Table 4.4.: Initial and final conditions for the space shuttle reentry problem.

Attribute Initial Value Final Value

Time (s) 0 free

Altitude (km) 95 30

Crossrange Angle (deg) 0 free

Velocity (km/s) 7.85 1.116

Flight Path Angle (deg) -1.25 -2.7

Heading (deg) 0 free
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The time-history plots of the states of the space shuttle for three different values of

∆CLH are shown in Fig. 4.5. When the value of ∆CLH is 0.12 units, the OCP remains

as an unconstrained problem and the constraint is inactive for the entire duration of

flight.
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Figure 4.5.: States time-history plots for the space shuttle reentry problem.

The result from the unconstrained problem then serves as a good initial guess

for the mixed constraint version of the problem. As the value of ∆CLH decreases

to 0 units, the flight becomes safer as the heating constraint tightens and the space

shuttle avoids denser regimes of the atmosphere at higher velocities. Additionally,

the trajectory becomes more stable and less oscillatory in nature. The flight path

angle time-history plot is a testimonial to this phenomenon. This section uses a plot

for ∆CLH with a value of -0.05 units for comparison with existing literature on this
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problem. The results obtained in this section are in excellent agreement with the

results obtained in previous studies from the literature.

The crossrange capability of the space shuttle and the time-history for three differ-

ent heating constraints are shown in Fig. 4.6. It can be clearly seen that the constraint

becomes active for a significant amount of time for ∆CLH as 0 units and -0.05 units.
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Figure 4.6.: Crossrange capability and constraint time-history plots for the space

shuttle reentry problem.

The comparison results of the three different heating scenarios for the space shuttle

are shown in Table 4.5. As the heating constraint tightens, the maximum crossrange

capability of the space shuttle decreases and the time of flight increases.
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Table 4.5.: Results for different heat constraint scenarios for space shuttle’s reentry.

Attribute ∆CLH=0.12 ∆CLH=0 ∆CLH=-0.05

Time of Flight (s) 2332 2449 2609

Crossrange Angle (deg) 44.42 43.36 34.63

Heading Angle (deg) 81.19 79.68 75.91

The optimal control time-history plots for the lift coefficient and the bank angle

are shown in Fig. 4.7. The bank angle primarily aims at maximizing the crossrange

while the lift coefficient enables flying higher in the atmosphere at lower speeds. Thus,

the lift coefficient enables the space shuttle to follow a tighter heating constraint and

a safer trajectory. Fig. 4.8 depicts the costate time-history plots for this problem.
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Figure 4.7.: Control time-history plots for the space shuttle reentry problem.
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Figure 4.8.: Costates plots for the space shuttle reentry problem.

The value of ∂φ
∂tf

is 0 rad/s for this problem. Hence the terminal value of the

Hamiltonian, H(tf ), is also 0 rad/s based on Eq. (1.12). The Hamiltonian is not

an explicit function of time and therefore has a constant value. The Hamiltonian

time-history plot for this OCP, shown in Fig. 4.9, is in excellent agreement with the

result obtained using the transversality condition and has an accuracy of 10-3.
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Figure 4.9.: The Hamiltonian plot for the space shuttle reentry problem.

This section proves that Trigonometrization can solve very complicated OCPs

with multiple states and controls while maintaining the problem as a TPBVP. The

complicated control law for the Trigonometrization approach can be quite easily gen-

erated using state-of-the-art symbolic computation software, Mathematica.

Table 4.6 summarizes the complexity of the space shuttle reentry mixed constraint

problem. The main complexities in this problem are the extremely lengthy EOMs for

the costates, some of which are five pages long as shown in appendix C. The control

law for the coefficient of lift, CL, is also very complicated. All previous studies on

this problem avoided writing the EOMs for the costates for this reason.

Table 4.6.: Complexities of the space shuttle reentry mixed constraint problem.

Parameter Complexity

States Five states

Controls Complicated bounded functions of states and costates

State equations Highly non-linear and coupled

Costate equations Highly non-linear, extremely lengthy, and coupled

Mixed heating constraint 21-term long, highly non-linear, and coupled
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4.5 Trigonometrization of Optimal Control Problems with Mixed State-

Control Constraints containing Non-Linear Controls

A complicated subset of OCPs with mixed constraints exist, where the control

appears in a high order polynomial form in the state-control constraint inequality.

Developing a control law for such OCPs is quite challenging. Eq. (4.19) describes one

such OCP with a g-load constraint on an impactor, where the problem is planar. As

a result, this problem has only one control, angle of attack, α. Table 4.7 includes the

aerodynamic coefficients required for the impactor. [49]

Minimize: J = −v2f (4.19a)

Subject to: ḣ = v sin γ (4.19b)

θ̇ =
v cos γ

r
(4.19c)

v̇ = −D
m
− µ sin γ

r2
(4.19d)

γ̇ =
L

mv
+
(v
r
− µ

vr2

)
cos γ (4.19e)

ρ = ρ0e
−h
H (4.19f)

CL = CL1α (4.19g)

CD = CD2α
2 + CD0 (4.19h)

D =
1

2
ρv2CDA (4.19i)

L =
1

2
ρv2CLA (4.19j)

r = rE + h (4.19k)

Table 4.7.: Aerodynamic constants for the impactor problem with a g-load constraint.

Parameter CL1 CD0 CD2

Value 1.5658 0.0612 1.6537
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G-load is the ratio of the aerodynamic (or contact) forces upon the impactor to its

inertial force. [5, 176–178] This is shown in the inequality Eq. (4.20), where its lower

and upper limits are 0 and gMAX, respectively. The value of g is 9.80665 as g-loads

are always measured in Earth gs. [5]

0 ≤ gLOAD :=

√
L2 +D2

mg
≤ gMAX (4.20)

Since g-loads are always positive for the impactor in the atmospheric regime con-

sidered, inequality Eq. (4.20) reduces to inequality Eq. (4.21).
√
L2 +D2

mg
≤ gMAX (4.21)

Rearrangement of Eq. (4.21) leads to Eq. (4.22a), which then uses Eq. (4.19i) and

Eq. (4.19j) to obtain Eq. (4.22b). Inequality Eq. (4.22b) can be further expanded to

inequality Eq. (4.22c) using Eq. (4.19g) and Eq. (4.19h).

L2 +D2≤ (mggMAX)2 (4.22a)

CL
2 + CD

2≤
(

2mggMAX

ρv2A

)2

(4.22b)

(CL1α)2 + CD2

2α4 + 2CD2CD0α
2 + CD0

2≤
(

2mggMAX

ρv2A

)2

(4.22c)

The bi-quadratic inequality in α converts into a quadratic inequality in αNEW as

shown in Eq. (4.23a). Eq. (4.23b)–(4.23d) show the coefficients of this quadratic

inequality.

aαNEW
2 + bαNEW + c ≤ 0 (4.23a)

a= CD2

2 (4.23b)

b= CL1

2 + 2CD2CD0 (4.23c)

c= CD0

2 −
(

2mggMAX

ρv2A

)2

(4.23d)

The inequality constraints upon the new control, αNEW, are shown in Eq. (4.24).

The left hand side of this inequality is always negative and thus discarded from further

discussion. Eq. (4.25) shows the final set of constraints on angle of attack, α.

−b−
√
b2 − 4ac

2a
≤ αNEW ≤

−b+
√
b2 − 4ac

2a
(4.24)
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−

√
−b+

√
b2 − 4ac

2a
≤ α ≤

√
−b+

√
b2 − 4ac

2a
(4.25)

Trigonometrization can then place variable bounds on α, where the bounds are

dependent on the altitude, velocity, and other parameters of the impactor. Eq. (4.26)

describes the control, α. Please note that these equations will hold only for CD0 ≤
2mggMAX

ρv2A
.

α =

√
−b+

√
b2 − 4ac

2a
sinαTRIG (4.26)

The Hamiltonian for this problem is shown in Eq. (4.27). Eq. (1.7) obtains the

optimal control law as shown in Eq. (4.28). The following subsections discuss about

two types of g-load constraint impactor problem.

H = λhv sin γ +
λθv cos γ

r
+ λv

(
−D
m
− µ sin γ

r2

)
− λγ

[
L

mv
+ cos γ

(v
r
− µ

vr2

)] (4.27)

αTRIG
∗ =



−π
2

arcsin

[√
2a

−b+
√
b2 − 4ac

(
λγCL1

CD2vλv

)]
π

2

(4.28)

4.5.1 Case 1: The G-Load Constraint Active Between the Boundary

Points of the Trajectory

In this scenario, the maximum g-load value on the impactor is chosen as 25 Earth

gs. The boundary value conditions for this problem are shown in Table 4.8. The state

plots for this case obtained using the Trigonometrization technique and GPOPS-II

are shown in Fig. 4.10, where a zoom-in view of the active constraint part of the

trajectory is also shown. Thus, the trajectory comprises of three parts: unconstrained,

constrained, and unconstrained, respectively.
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Table 4.8.: Initial and final conditions for case 1 of the impactor g-load problem.

Attribute Initial Value Final Value

Time (s) 0 free

Altitude (km) 50 0

Downrange (km) 0 300

Velocity (km/s) 4 free

Flight Path Angle (deg) free free
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Figure 4.10.: States time-history plots for case 1 of the g-load constraint problem.



132

The control plots obtained for this case using the Trigonometrization technique

and GPOPS-II are shown in Fig. 4.11. A zoom-in view of the control touching its

lower bounds based on the g-load constraint is also included in Fig. 4.11. Please note

that the upper and lower bounds on the control based on the g-load constraint are

shown in magneta and black colors, respectively. The costate plots for this case are

shown in Fig. 4.12. The results obtained using the Trigonometrization technique are

in excellent agreement with GPOPS-II results.
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Figure 4.12.: Costates time-history plots for case 1 of the g-load constraint problem.

The g-load constraint history for this case is shown in Fig. 4.13. This figure

depicts that the constraint is active for a short duration in between the boundary

points of the trajectory. For this OCP, the value of ∂φ
∂tf

and the terminal value of the

Hamiltonian, H(tf ), are found to be 0 m2/s3 based on Eq. (1.12). The Hamiltonian

has a constant value for the entire trajectory as it is not an explicit function of

time. The Hamiltonian time-history plot for the Trigonometrization method, shown

in Fig. 4.13, is in excellent agreement with the result obtained using the transversality

condition. However, the results for the Hamiltonian obtained using GPOPS-II are

not accurate as shown in Fig. 4.13.
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Figure 4.13.: G-load and Hamiltonian time-history plots for case 1 of the g-load

constraint problem.

4.5.2 Case 2: G-Load Constraint Active at the Terminal Point of the

Trajectory

In this scenario, the maximum g-load value on the impactor is chosen as 21 Earth

gs. The boundary value conditions for this case of the impactor g-load problem are

kept the same as shown in Table 4.8. However, the objective of the impactor problem

for this case is changed to minimize the time of flight. ICRM (discussed in Sec.

1.2.2.10) is unable to handle this case because ICRM utilizes saturation functions

and error parameters, which approach closely but never actually touch such terminal

constraints. Since the terminal point is on the constraint arc, ICRM cannot solve this

OCP. ICRM needs to change this OCP using an error parameter and error controls

such that the terminal point is not on the constraint arc.
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The state plots for this case obtained using the Trigonometrization technique and

GPOPS-II are shown in Fig. 4.14. These plots show that the trajectory comprises of

an unconstrained part followed by a constrained part. Thus, the terminal point of

this BVP lies on the constrained part.
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Figure 4.14.: States time-history plots for case 2 of the g-load constraint problem.

The control plot for this case obtained using the Trigonometrization technique is

shown in Fig. 4.15 and the results match well with GPOPS-II. The control touches

its g-load constraint based lower bound for the terminal part of the trajectory. Please

note that the g-load constraint based upper and lower bounds on the control are

shown in magneta and black colors, respectively.



136

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4

A
n

g
le

 o
f 

A
tt

a
c

k
 [

ra
d

]

Time [s]

 

 

Trigonometrization

GPOPS−II

Upper Bound

Lower Bound

Figure 4.15.: The control time-history for case 2 of the g-load constraint problem.

The costate plots obtained for this case using the Trigonometrization technique

are shown in Fig. 4.16. These results are in excellent agreement with GPOPS-II. The

g-load constraint history for this case is shown in Fig. 4.17, where the g-load stays

at the maximum value during the terminal part of the trajectory. For this OCP, the

terminal value of the Hamiltonian, H(tf ), is found to be -1 unit based on Eq. (1.12)

for the minimum time impactor OCP. The Hamiltonian has a constant value for the

entire trajectory as it is not an explicit function of time. The Hamiltonian time-

history plots for the Trigonometrization and GPOPS-II methods, shown in Fig. 4.17,

are in excellent agreement with the result obtained using the transversality condition

with an accuracy of 10-7.
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Figure 4.16.: Costates time-history plots for case 2 of the g-load constraint problem.
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Figure 4.17.: G-load and Hamiltonian time-history plots for case 2 of the g-load

constraint problem.
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4.6 Extending Trigonometrization to Optimal Control Problems with

Pure State Constraints

Periodic trigonometric functions can possibly bound OCPs in which constraints

are purely imposed upon states. The traditional approach obtains the control law

by taking time derivatives of such pure state constraints until the control appears

explicitly. Trigonometrization can address two issues regarding such OCPs.

1. Some OCPs with state constraints may converge to a wrong solution using the

classical indirect methods.

2. The traditional approach requires solving for a MPBVP, which is very compli-

cated. [179]

OCPs described in issue 1 converge to the correct solution by using the additional

necessary conditions devised by Jacobson et al. These additional conditions further

complicate the problem formulation and problem solving processes. This prompted

the author to investigate the use of Trigonometrization for solving such OCPs. The

future work thus includes completion of the unified Trigonometrization approach for

all classes of OCPs as shown in Fig. 4.18. The following subsections discuss the

advantages of using Trigonometrization for solving OCPs with pure state constraints.

4.6.1 Benefit 1: Avoiding Convergence to a Wrong Solution

For certain OCPs with state constraints, Jacobson et al. demonstrated that cer-

tain additional necessary conditions were missing in the approach devised by Bryson

et al. that led to erroneous results [50, 51, 73]. Jacobson et al. posed a fourth order

problem to demonstrate this issue. The following discussion includes the traditional

approach, its erroneous result and the benefit of using Trigononomerization for solving

such OCPs.
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Figure 4.18.: The class of OCPs yet to successfully employ Trigonometrization.

4.6.1.1 Traditional Approach for a Fourth Order Problem

Jacobson et al. posed a fourth order path constraint problem as shown in Eq. (4.29).

The objective functional for this problem is shown in Eq. (4.29a). Eqs. (4.29b)–

(4.29e) describe EOMs for the states and Eqs. (4.29f)–(4.29i) show the boundary

conditions on these states. Eq. (4.29j) shows the constraint on the state x1.

Minimize: J =

∫ 10

0

u2

2
dt (4.29a)

Subject to: ẋ1 = x2 (4.29b)

ẋ2 = x3 (4.29c)

ẋ3 = x4 (4.29d)

ẋ4 = u (4.29e)

x1(0) = 0 = x1(10) (4.29f)

x2(0) =
15

12
= −x2(10) (4.29g)

x3(0) = −15

12
= x3(10) (4.29h)
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x4(0) =
15

16
= −x4(10) (4.29i)

S = x1(t)− x1MAX
≤ 0 for t ∈ [0, 10] (4.29j)

The Hamiltonian for this problem is shown in Eq. (4.30). Eq. (1.19) then uses

this Hamiltonian to determine the EOMs for the costates as shown in Eq. (4.31).

H =
u2

2
+ λx1x2 + λx2x3 + λx3x4 + λx4u+ µu (4.30)

˙λx1 = 0 (4.31a)

˙λx2 = −λx1 (4.31b)

˙λx3 = −λx2 (4.31c)

˙λx4 = −λx3 (4.31d)

Eq. (1.7) uses the Hamiltonian to calculate the optimal control for the uncon-

strained arcs of the solution as shown in Eq. (4.32a). The Lagrange parameter cor-

responding to the constraint on state x1, µ, is shown in Eq. (4.32b).

u∗ = −λx4 (4.32a)

µ = 0 (4.32b)

When the path constraint is active, the EOMs for the states vanish as shown

in Eqs. (4.33a)–(4.33d). The control and the Lagrange parameter, µ, are shown in

Eq. (4.33e) and Eq. (4.33f), respectively.

ẋ1 = 0 (4.33a)

ẋ2 = 0 (4.33b)

ẋ3 = 0 (4.33c)

ẋ4 = 0 (4.33d)

u = 0 (4.33e)

µ = −λx4 − u (4.33f)
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On the other hand, when the state constraint is active, the EOMs for the costates

happen to be independent of the Lagrange parameter, µ, and hence remain unmodified

using Eq. (1.19). Eq. (4.34) shows the tangency constraint matrix, N . Eq. (4.35)

determines the jumps in the costates at the entry to the constraint.

N (x, t) =


x1 − x1MAX

x2

x3

x4

 (4.34)

π1 = λx1(tENTRY
+)− λx1(tENTRY

−) (4.35a)

π2 = λx2(tENTRY
+)− λx2(tENTRY

−) (4.35b)

π3 = λx3(tENTRY
+)− λx3(tENTRY

−) (4.35c)

π4 = λx4(tENTRY
+)− λx4(tENTRY

−) (4.35d)

The complete solution to this problem can be found in Ref. 51. A non-extremal

solution that satisfies all the necessary conditions specified by Bryson et al. was

obtained, which violated some of the necessary conditions specified by Jacobson et

al. corresponding to the jump at the junction of unconstrained and constraint arcs.

The unconstrained optimal trajectory for state x1, which stays well within the bounds,

gives a cost of 0.2897 units. On the other hand, the path constraint imposed on the

trajectory using the necessary conditions specified by Bryson et al. yields a cost

of 0.293 units. Thus, the cost for an active path constraint solution is higher and

hence non-extremal as compared to the unconstrained case. The Trigonometrization

approach is able to impose the additional necessary conditions implicitly as shown

below.
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4.6.1.2 Trigonometrization Approach for the Fourth Order Problem

To avoid spurious results generated by the traditional approach, the simpler and

efficient technique of Trigonometrization converts the state, x1, into a trigonometric

form as shown in Eq. (4.36a). The modified EOM and boundary conditions for this

state are represented by Eq. (4.36b) and Eq. (4.36c), respectively.

x1 = x1MAX
sinx1TRIG

(4.36a)

ẋ1TRIG
=

x2
x1MAX

cosx1TRIG

(4.36b)

x1TRIG
(0) = 0 = x1TRIG

(10) (4.36c)

The Hamiltonian for the trigonometrized problem is shown in Eq. (4.37). Eq. (1.19)

uses this Hamiltonian to obtain the EOMs for costates as shown in Eq. (4.38).

H =
u2

2
+

λx1
TRIG

x2

x1MAX
cosx1TRIG

+ λx2
TRIG

x3 + λx3
TRIG

x4 + λx4
TRIG

u (4.37)

λ̇x1TRIG
=
−λx1TRIG

sinx1TRIG
x2

x1MAX
cosx21TRIG

(4.38a)

λ̇x2TRIG
=

−λx1TRIG

x1MAX
cosx1TRIG

(4.38b)

λ̇x3TRIG
= −λx2TRIG

(4.38c)

λ̇x4TRIG
= −λx3TRIG

(4.38d)

The results between unconstrained, traditional path constraint and Trigonometriza-

tion approaches were compared as shown in Figs. 4.19, 4.20 and 4.21. The uncon-

strained solution remains within the limits of the constraint. Additionally, the results

from Trigonometrization are in excellent agreement with the more optimal uncon-

strained solution. Thus, the Trigonometrization technique can simply and effectively

avoid the spurious results obtained using the traditional approach.
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Figure 4.19.: States time-history comparison plots for the fourth order problem.

For this OCP, the value of ∂φ
∂tf

and the terminal value of the Hamiltonian, H(tf ),

are found to be 0 units based on Eq. (1.12). The Hamiltonian has a constant value

for the entire trajectory as it is not an explicit function of time. The Hamiltonian

time-history plot for the three different methods, shown in Fig. 4.20, is in excellent

agreement with the result obtained using the transversality condition and has an ac-

curacy of 10-2. Fig. 4.21 shows the jumps in the costates while using the traditional

approach, which are absent in the costate plots of the unconstrained and Trigonomer-

ization methods.
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Figure 4.20.: Control and Hamiltonian time-history comparison plots for the fourth

order problem.
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Figure 4.21.: Costates time-history comparison plots for the fourth order problem.
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4.6.2 Benefit 2: Avoid Solving a Multi-Point Boundary Value Problem

To demonstrate this benefit, this subsection uses a second order path constraint

problem, popularly known as the Bryson Denham problem. [50] This subsection con-

sists of two sub-subsections: first describing the traditional approach and second

describing the Trigonometrization approach to solve this problem.

4.6.2.1 Traditional Approach for Bryson Denham Problem

The Bryson Denham problem was set up as shown in Eq. (4.39). Eq. (4.39a)

shows the objective functional and Eq. (4.39b) and Eq. (4.39c) describe the state

EOMs for this problem. Eq. (4.39d)and Eq. (4.39e) specify the boundary conditions

for the states. Eq. (4.39f) shows the constraint on the state x1.

Minimize: J =

∫ 1

0

u2

2
dt (4.39a)

Subject to: ẋ1 = x2 (4.39b)

ẋ2 = u (4.39c)

x1(0) = 0 = x1(1) (4.39d)

x2(0) = 1 = −x2(1) (4.39e)

S = x1(t)− x1MAX
≤ 0 fort ∈ [0, 1] (4.39f)

The Hamiltonian for this problem is shown in Eq. (4.40). Using this Hamiltonian,

Eq. (1.19) evaluates the EOMs for the costates equations as shown in Eq. (4.41).

H =
u2

2
+ λx1x2 + λx2u+ µu (4.40)

λ̇x1 = 0 (4.41a)

λ̇x2 = −λx1 (4.41b)
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Eq. (1.7) uses the Hamiltonian to obtain the optimal control for the unconstrained

arcs of the solution as shown in Eq. (4.42a). The Lagrange parameter corresponding

to the constraint on state x1, µ, is shown in Eq. (4.42b).

u∗ = −λx2 (4.42a)

µ = 0 (4.42b)

When the path constraint is active the EOMs for the states vanish as shown in

Eq. (4.43a) and Eq. (4.43b). The control and the Lagrange parameter, µ, are shown

in Eq. (4.43c) and Eq. (4.43d), respectively.

ẋ1 = 0 (4.43a)

ẋ2 = 0 (4.43b)

u = 0 (4.43c)

µ = −λx2 − u (4.43d)

The EOMs for the costates happen to be independent of the Lagrange parameter,

µ, when the state constraint is active. Therefore, the EOMs for the costates remain

unmodified. Eq. (4.44) determines the tangency constraint matrix, N . Eq. (4.45)

then calculates the jumps in the costates at the entry to the constraint.

N (x, t) =

x1 − x1MAX

x2

 (4.44)

π1 = λx1(tENTRY
+)− λx1(tENTRY

−) (4.45a)

π2 = λx2(tENTRY
+)− λx2(tENTRY

−) (4.45b)

Using the additional necessary conditions specified in the enhanced method in

Sec. 1.2.2.4, the jumps in the costates were found to match with Eq. (4.45). These

jump conditions are shown in terms of the Lagrange parameter, µ, in Eq. (4.46).

π1 + µ̇(tENTRY
+) ≥ 0 (4.46a)

π2 = µ(tENTRY
+) = −λx2(tENTRY

+) (4.46b)
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Fig. 4.22 draws a comparison between these two cases. The states and costates

time-history plots match exactly for both the traditional method and the enhanced

method devised by Jacobson et al.

For this OCP, the value of ∂φ
∂tf

and the terminal value of the Hamiltonian, H(tf ),

are found to be 0 units based on Eq. (1.12). The Hamiltonian has a constant value

for the entire trajectory as it is not an explicit function of time. The Hamiltonian

time-history plot for the enhanced and traditional methods, shown in Fig. 4.22, is in

excellent agreement with the result obtained using the transversality condition and

has an accuracy of 10-4.
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Figure 4.22.: Results comparison between the traditional and enhanced methods for

the Bryson Denham problem.
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Once the Trigonometrization technique is developed to address OCPs with active

pure state constraints, the complicated and tedious traditional approach to solve such

OCPs can be avoided. The current effort is to solve certain benchmark OCPs such

as the Bryson Denham problem and problems specified in Ref. 179. The ideas to

develop the Trigonometrization technique for such OCPs are described in the next

chapter as a part of future work.

4.7 Conclusions

This chapter proposed and tested the use of trigonometry in reformulating control

expressions in an OCP with mixed state and control constraints. Trigonometrizing

the control kept the OCP as a TPBVP, which leads to simpler problem formulation

and faster computation of results. This chapter used the Rayleigh problem with

a mixed constraint for verification and validation. An aerospace application of the

Trigonometrization technique for OCPs with mixed constraints was made through a

complicated space shuttle reentry problem. This problem included a very complicated

heating constraint comprising of both states and controls for a realistic and safe

trajectory. Trigonometrization was able to quickly and simply solve this problem.

A weighting factor and a scaling process generated a good initial guess and well-

conditioned form for this problem. The results obtained using Trigonometrization

for the space shuttle reentry mixed constraint problem were found to be in excellent

agreement with the results from the literature.

This chapter then presented the development of Trigonometrization approach for

OCPs with mixed state-control constraints, in which the controls appeared in a non-

linear form in the constraint. Two different g-load constraint scenarios for an impactor

were chosen to showcase the effectiveness of the Trigonometrization technique in solv-

ing such complicated OCPs. In the first scenario, the mixed constraint was active in

between the boundary points of the trajectory. On the other hand, in the second sce-
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nario, the mixed constraint was active at the entire terminal phase of the trajectory.

These results were validated through GPOPS-II.

This chapter then proposed further development of the Trigonometrization tech-

nique for OCPs with pure state constraints to obtain two benefits. The first benefit

is to avoid spurious results as obtained for the fourth order problem, where the tra-

ditional OCT methods obtained an optimal solution with an active path constraint

when the unconstrained solution was actually more optimal. The Trigonometrization

technique was able to avoid the additional necessary conditions specified by Jacobson

et al. to solve the fourth order problem. The second benefit of the Trigonometrization

technique for OCPs with pure state constraints is to avoid solving a MPBVP. The

development of the Trigonometrization technique to reap benefit 2 for such OCPs

is an ongoing effort and a part of the future work, which is discussed in the next

chapter.
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5. Summary and Future Work

5.1 Summary of Contributions

Since the dawn of modern computing, the design community preferred direct

methods over indirect methods of optimization. Among various direct methods, pseu-

dospectral methods have been predominantly used in the state-of-the-art optimization

software like GPOPS-II. Pseudospectral methods generate solutions based on approx-

imations that do not employ necessary and sufficient conditions of optimality. The

quality of such solutions can suffer resulting in many jitters. Moreover, pseudospec-

tral methods are hard to parallelize for on-board real-time applications based on GPU

computing. Recent advancements in OCT have enabled indirect methods to overcome

these drawbacks of direct methods.

Although many advancements have been made in OCT, this study identified cer-

tain areas of improvement. The smoothing regularization method developed to solve

bang-bang control problems had certain issues with dimensional consistency. Ad-

ditionally, this smoothing method generated unrealistic results for OCPs with path

constraints. A powerful regularization method developed at RDSL to solve OCPs with

path constraints, ICRM, utilized saturation functions to bound controls and states of

the OCP. Certain issues were found with ICRM, including more complicated problem

formulation and problem solving processes.

Chapters 2-4 of this thesis advance the OCT and compliment ICRM by propos-

ing a new unified approach based on trigonometry. This new approach utilizes im-

plicit bounding property of periodic trigonometric functions in bounding the controls

for various class of OCPs. Chapter 2 proposed and developed a new regularization

technique, Epsilon-Trig method, to address first class of OCPs, popularly known as

bang-bang and singular control problems. Inspired from the Epsilon-Trig regulariza-
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tion method, Chapter 3 proposed a new method called Trigonometrization for second

class of OCPs. In this second class of OCPs, the control appears in a non-linear form

in the Hamiltonian. Chapter 4 extended Trigonometrization to two other classes of

OCPs: one with mixed state-control constraints and the other with pure state con-

straints. The future work section of this thesis includes ideas to further develop the

Trigonometrization technique for the OCPs with pure state constraints. The unified

theory of Trigonometrization can then be complete. The subsections below summarize

the advancements made by this thesis in the field of OCT.

5.1.1 Solving Bang-Bang and Singular Control Problems

To address numerical issues with bang-bang and singular control problems, Silva

and Trélat devised a smoothing regularization method. This powerful smoothing

method includes error controls and error parameters while solving a new problem

that is very close to the original bang-bang problem. However, this method was

unable to impose the bounds on the error controls while solving OCPs with path

constraints, leading to highly unrealistic results. This thesis devised the Epsilon-Trig

regularization method based on the traditional smoothing method, which revealed a

trigonometric relationship between the main control and error controls. It was also

found that the error parameter, ε, introduced by the traditional smoothing method in

all the state equations leads to dimensional inconsistency. The Epsilon-Trig method

was able to resolve this dimensional consistency issue by using ε in only one state

equation. Moreover, the Epsilon-Trig method was able to solve for a singular control

in a very simple manner. Instead of solving for multiple controls (including error

controls) using the traditional smoothing method in an OCP, the Epsilon-Trig method

solved for only one control. The sine and cosine components of this single control

then generates the smooth and error controls, respectively.

Certain benchmark problems including the boat problem, the Van der pol prob-

lem, and the Goddard rocket problem were used in the verification and validation of
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the Epsilon-Trig method. This verification and validation process compared the re-

sults obtained from the Epsilon-Trig method and GPOPS-II. The results comparison

showed an excellent agreement between the Epsilon-Trig method and GPOPS-II for

all the benchmark problems. After verification and validation, this study used the

Epsilon-Trig method to solve a very complicated aerospace problem in a simple and

effective manner. This aerospace problem involved a scramjet missile with an objec-

tive to minimize its time of flight. The thrust model for the scramjet missile is very

complicated. Moreover, this complex OCP involves five states, two bounded controls

and highly non-linear, coupled EOMs for the states. The Epsilon-Trig method was

able to solve this complicated aerospace OCP simply and quickly while maintaining

dimensional consistency of the error parameters involved.

The Epsilon-Trig method formed the motivation for the Trigonometrization tech-

nique used in the other class of OCPs with bounded controls. The Trigonometrization

technique forms the basis for the following two contributions.

5.1.2 Solving Optimal Control Problems with Pure Control Constraints

and Non-Linear Controls

This study developed a new technique, termed as Trigonometrization, to implicitly

bound the controls using periodic trigonometric functions while solving OCPs with

pure control constraints. Unlike bang-bang control problems, the control appears in

a non-linear form in the Hamiltonian of this new class of OCPs. The Trigonometriza-

tion technique solved the OCP as a TPBVP as against the traditional method that

converted it into a MPBVP, which becomes more complicated to solve. Moreover,

Trigonometrization solved certain OCPs where the control law becomes transcenden-

tal in form. This study presented an example of an aerocapture problem on Mars,

where the solution obtained was a maximum for a minimization problem and the

optimal solution was actually at -∞. Trigonometrization placed realistic bounds on

this problem to resolve this issue.
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For verification and validation, Trigonometrization used Rayleigh’s problem with

a pure control constraint. An excellent agreement was found between the results

obtained using the Trigonometrization approach, GPOPS-II, and the results from

literature studies. Trigonometrization was found to significantly impact the problem

formulation and problem solving processes.

After verification and validation process, Chapter 3 used the Trigonometrization

method to solve a very complicated general aviation OCP. The objective of this

OCP is to determine the minimal-noise trajectory for aircraft to enable night flight

operations. This OCP is already very complicated as it involves six states, three

controls with constraints upon them, and a highly non-linear objective function. This

objective function became further complicated upon multiplication with a non-linear

population model to account for a variable population around an airport, which the

existing literature did not explore. Trigonometrization was able to simply and quickly

solve this complicated aerospace OCP with pure control constraints.

5.1.3 Solving Optimal Control Problems with State Constraints

The ability of the Trigonometrization technique to handle OCPs with pure con-

trol constraints motivated the author to look into third class of OCPs involving ze-

roth order path constraints. In this class of OCPs, called mixed state-control prob-

lems, the constraints on states depend directly on the controls. This study extended

Trigonometrization to the OCPs with mixed type constraints by reposing the controls

in a trigonometric form with bounds depending on the states.

Traditional OCT poses the OCPs with mixed state-control constraints as a com-

plicated and hard-to-formulate MPBVP. The additional necessary conditions further

complicate the problem formulation and problem solving processes for OCPs with

path constraints. Moreover, the traditional approach requires determination of the

order and the number of constrained and unconstrained arcs a priori to solving such

OCPs. Trigonometrization keeps the OCP as a TPBVP and significantly impacts
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the problem formulation and solving processes. The verification and validation of

the Trigonometrization technique utilized Rayleigh’s problem with a mixed state-

control constraint. The traditional approach involved solving a seven-point BVP

with a very complicated control structure. The results obtained using Trigonometriza-

tion matched well with the results obtained from this traditional approach and from

GPOPS-II.

After the verification and validation, the Trigonometrization technique solved

a very complicated aerospace OCP with a mixed state-control constraint. This

aerospace OCP involved maximization of the crossrange capability of a space shut-

tle type vehicle. The trajectory of this vehicle had a highly non-linear re-radiative

heating constraint comprising of 21 terms. The coefficient of lift of the vehicle was

dependent on its altitude and its velocity. Since this OCP is very ill-conditioned

and sensitive to the initial guess, the solution process employed a weighting-based

continuation strategy. In this continuation, the OCP was first solved for a pure con-

trol constraint. The solution for the OCP with pure control constraint serves as a

guess for the OCP with mixed state-control constraint. The weights change between

0 and 1 from the former to the latter in a stepwise manner. For different values of

an important heating parameter, the results obtained using Trigonometrization tech-

nique matched very well with literature. Thus, the Trigonometrization technique was

able to successfully solve OCPs with mixed state-control constraints containing linear

controls.

The Trigonometrization technique was further developed to solve OCPs with

mixed state-control constraints containing non-linear controls. A particular prob-

lem from this class of OCPs was solved in this thesis, where the terminal velocity

of an impactor was to be maximized and a g-load constraint was imposed on this

impactor. After eliminating certain mathematical inequalities that are always true

while solving the g-load problem, the lower and upper bounds of the control were

found. Thus, the control was modified to a trigonometric form based on the g-load

constraint. It was further shown that the Trigonometrization technique was able
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to solve OCPs where the mixed state-control constraints are active on the terminal

point. Trigonometrization was found to be a simple yet powerful technique to solve

a wide variety of OCPs as a result.

The success of the Trigonometrization technique in solving OCPs with pure control

constraints and mixed state-control constraints further motivated its development for

OCPs with pure state constraints. The method specified by Bryson et al. for solving

OCPs with pure state constraints obtained spurious results for a fourth order problem.

Jacobson et al. introduced additional necessary conditions needed to obtain correct

results for the fourth order problem. The Trigonometrization technique was able to

solve the fourth order problem in a simple and an efficient manner without introduc-

ing any new necessary conditions. However, the success of the Trigonometrization

technique was obtained for the OCPs with pure state constraints only when the state

constraints were not active.

Although the Trigonometrization technique is able to solve several OCPs of dif-

ferent classes, it can be further improved upon. Furthermore, OCPs with pure state

constraints can employ Trigonometrization to obtain converged solutions even with

an active state constraint. The following section entails future work for this thesis.

5.2 Future Work

5.2.1 Improving the Epsilon-Trig Regularization Method

The future work for the Epsilon-Trig method involves determining a mathematical

basis for the placement of the error into the system of state EOMs. Future work

also involves determining the approximate value of ε in an automated manner while

ensuring quick convergence. At the moment, a trial and error process determines the

location and magnitude of the error in the system of equations.
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5.2.2 Improving the Trigonometrization Technique for Optimal Control

Problems with Pure Control Constraints

The Trigonometrization technique is able to handle all OCPs with pure control

constraints. However, future work is required for developing and solving a more

complicated version of the aircraft landing trajectory noise minimization problem. In

this complicated version, the population around real world airports is included in the

problem statement. One such airport is Hartsfield-Jackson international airport in

Atlanta and the population distribution around this airport is shown in Fig. 5.1.

Figure 5.1.: Population distribution model for the Hartsfield-Jackson airport, Atlanta.

Ref. 180 has the population data based on 2010 census. [181] Additionally, a

more realistic aircraft needs to be considered. The optimal solutions for this problem

might consist of interesting flight trajectories circumnavigating high population zones.

These optimal solutions would be useful in planning and enabling night flights around

busy airports with varied density of population.
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5.2.3 Improving the Trigonometrization Technique for Optimal Control

Problems with Mixed State-Control Constraints

This thesis showed that the Trigonometrization technique is able to handle some

OCPs with mixed state-control constraints. However, Trigonometrization cannot

handle some other OCPs in this class, where a high order polynomial form of the

control, u, is constrained by the states, x, as shown in Eq. (5.1). Here C0 to Cn are

n number of constants or state-dependent expressions.

f(x) ≤ C0u
n + C1u

n−1 + ...+ Cn−1u+ Cn ≤ g(x) (5.1)

The difficulty with Eq. (5.1) is to obtain explicit expressions for the bounds on the

control. The Trigonometrization technique requires unique upper and lower bounds

on the control, which may not be possible to obtain for complicated mixed control-

state constraint expressions.

5.2.4 Improving the Trigonometrization Technique for Optimal Control

Problems with Pure State Constraints

The Trigonometrization technique was able to solve OCPs with pure state con-

straints only when these constraints were not active. Some ideas to use the Trigonometriza-

tion technique in order to solve such OCPs when the pure state constraints became

active are discussed as follows.

5.2.4.1 Top Down Trigonometrization Approach

The Top Down Trigonometrization approach involves trigonometrizing the state

with constraints. The state EOMs are then determined based on the new trigonometrized

state. The new Hamiltonian is evaluated based on the transformed state EOMs, which

is then used to compute the new control law and the EOMs for the costates. Please

note that in indirect methods, the controls are determined based on the costates and
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the states depend on the controls. Therefore, this method is named as the Top Down

Trigonometrization approach as the effect of trigonometric bounding trickles down

from the state to the controls and finally to the costates. The process flow for this

approach is shown in Fig. 5.2.

Constraints  
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Figure 5.2.: Process flowchart of the Top Down Trigonometrization approach.

The Top Down Trigonometrization approach was found to have some issues, which

are demonstrated using the Bryson Denham problem (shown in Eq. (4.39) and dis-

cussed in subsection 4.6.2). In this problem, λ1 affects λ2 and u, which then affect

x2. Finally, x2 affects x1. Upon converting the state, x1, to a trigonometric form, the

changes to the Bryson Denham problem are found to be very similar to Eq. (4.36) for

the fourth order problem (discussed in subsection 4.6.1) and are shown in Eq. (5.2).

Eq. (5.2a) is the trigonometrized form for the state x1, which introduces a new state,

x1TRIG
. Eq. (5.2b) is the transformed EOM corresponding to x1TRIG

and Eq. (5.2c)

specifies the new boundary conditions upon this new state. The major difference be-
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tween the solutions to the fourth order and Bryson Denham problem is that the state

constraint is active only for the latter. This leads to a singularity issue discussed as

follows.

x1= x1MAX
sinx1TRIG

(5.2a)

ẋ1TRIG
=

x2
x1MAX

cosx1TRIG

(5.2b)

x1TRIG
(0)= 0 = x1TRIG

(1) (5.2c)

The Hamiltonian for the trigonometrized problem is shown in Eq. (5.3). The

EOMs for the costates of this problem are shown in Eq. (5.4) and were found to be

similar to Eq. (4.38a) and Eq. (4.38b) of the fourth order problem.

H =
u2

2
+

λx1TRIG
x2

x1MAX
cosx1TRIG

+ λx2TRIG
u (5.3)

λ̇x1TRIG
=
−λx1TRIG

sinx1TRIG
x2

x1MAX
cosx21TRIG

(5.4a)

λ̇x2TRIG
=

−λx1TRIG

x1MAX
cosx1TRIG

(5.4b)

The optimal control law for the Top Down Trigonometrization approach for the

Bryson Denham problem is shown in Eq. (5.5). Please note that Eq. (5.5) is very

similar to Eq. (4.42a) of the traditional approach for the Bryson Denham problem.

u∗ = −λx2TRIG
(5.5)

When the path constraint becomes active, the optimal control attains a non-

unique form as the EOMs assume a 0/0 form. To resolve this issue, Table 5.1 includes

the EOMs and controls for the path constraint part, where the states, controls and

costates are found to stay constant during the path constraint segment of the solution.
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Table 5.1.: Constraint conditions for the Bryson Denham problem.

Parameter x1 x1TRIG
ẋ1TRIG

ẋ2 u λ̇x1TRIG
λ̇x2TRIG

Value x1MAX
π/2 0 0 0 0 0

Even after specifying unique values for the EOMs to resolve the 0/0 issue, bvp4c

crashed due to sharp changes in the part of the trajectory just before and after the

state constraint becomes active. An alternative approach to resolve this issue is

proposed as follows.

5.2.4.2 Epsilon-Trig Approach

In order to avoid issues present in the Top Down Trigonometrization approach, the

OCP can be regularized by introducing an error into the state with constraints, x1.

Thus, Eqs. (5.2)–(5.4) of the Top Down Trigonometrization approach are converted

into Eq. (5.6) for the Epsilon-Trig approach. The optimal control using the Epsilon-

Trig approach for the Bryson Denham problem stays the same as Eq. (5.5).

x1= x1MAX
(sinx1TRIG

+ ε cosx1TRIG
) (5.6a)

ẋ1TRIG
=

x2
x1MAX

(cosx1TRIG
− ε sinx1TRIG

)
(5.6b)

x1TRIG
(0)= −arctan(ε) = x1TRIG

(1) (5.6c)

H =
u2

2
+

λx1TRIG
x2

x1MAX
(cosx1TRIG

− ε sinx1TRIG
)

+ λx2TRIG
u (5.6d)

λ̇x1TRIG
=
−λx1TRIG

(sinx1TRIG
+ ε cosx1TRIG

)x2

x1MAX
(cosx1TRIG

− ε sinx1TRIG
)2

(5.6e)

λ̇x2TRIG
=

−λx1TRIG

x1MAX
(cosx1TRIG

− ε sinx1TRIG
)

(5.6f)

Since there are sharp changes in the area where the path constraint on x1 becomes

active, Trigonometrization was expected to benefit from the use of error controls.
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However, adding error controls to the Hamiltonian could not resolve issues with the

trigonometrized Bryson Denham problem thus far. An alternative approach to the

Epsilon-Trig approach is discussed as follows.

5.2.4.3 Auxiliary Approach

Just like ICRM, the Top Down Trigonometrization approach can be converted

into an Auxiliary approach by introducing not just new states but also new controls.

The Auxiliary approach for the Bryson Denham problem is shown in Eq. (5.7), where

x1TRIG
and x2TRIG

are the new states and uNEW is the new control.

ẋ1= x1MAX
cosx1TRIG

x2TRIG
(5.7a)

ẋ2= x1MAX
[cosx1TRIG

uNEW − sinx1TRIG
(x2TRIG

)2] (5.7b)

ẋ1TRIG
= x2TRIG

(5.7c)

ẋ2TRIG
= uNEW (5.7d)

Table 5.1 shows the boundary conditions on the states of the Bryson Denham

problem using the Auxiliary approach. This approach is still under development and

is a part of the future work.

Table 5.2.: New boundary conditions for the Bryson Denham problem based on the

Auxiliary approach.

Parameter x1 x2 x1TRIG
x2TRIG

Initial Value 0 1 0 1/x1MAX

Final Value 0 -1 0 -1/x1MAX

The high mass Mars problem described in Sec. 1.2.2.9 motivated this thesis orig-

inally. In addition to the g-load and surface path constraints, the high mass Mars
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problem has a heat rate constraint. This heat rate constraint, popularly known as the

Sutton Graves equation, is shown in Eq. (5.8) and is a second order path constraint

(q = 2). [182–185] In Eq. (5.8), q is the convective heating, k is the heat rate constant,

and rn is the nose radius of the entry vehicle.

q̇ = k

√
ρ

rn
v3 (5.8)

Trigonometrization is unable to handle such path constraints with q > 0 at the

moment. The design community needs to look into the development of a unified

Trigonometrization approach, which can also solve complicated aerospace OCPs with

pure state constraints in a simpler manner. ICRM devised at RDSL can possibly com-

bine with Trigonometrization to solve OCPs like the high mass Mars problem. Such

a new hybrid regularization technique to solve all classes of OCPs can possibly utilize

the advantages of both these regularization methods. Only further research and inves-

tigation can answer the questions pertaining to the limits of the Trigonometrization

approach.
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A. The Analytical Model of an Air-Breathing Engine

Traditionally, trajectory optimization of air-breathing vehicles has been based on

tabulated engine models. OCT relies upon continuous derivatives and cannot obtain

higher quality solutions for complex problems involving such discrete models. Ref.

134 introduces an analytical model for the scramjet propulsion system to resolve this

issue. The analytical relationships may also help in determining better performing

operating ranges for scramjets. This analytical model uses a parametric ideal scramjet

cycle analysis, developed in Ref. 155 and based on the Brayton cycle. The major

assumptions included in this analysis are:

1. an isentropic inlet,

2. a constant pressure combustion,

3. an isentropic nozzle,

4. a constant pressure heat rejection,

5. and the static pressures at nozzle’s exit and the ambient freestream are the same.

Following discussion describes the relation of the freestream Mach number and

freestream temperature to the operational parameters of scramjet engine like fuel-air

ratio and specific thrust. An adiabatic inlet for the scramjet engine leads to an inlet

temperature ratio, τr, shown in Eq. (A.1), where M0 is the freestream Mach number.

τr = 1 +

(
γ − 1

2
M2

0

)
(A.1)
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Eq. (A.2) determines the total temperature at the nozzle exit, T ′MAX, where TMAX

is the upper limit of combustor material’s temperature. Please note that combustion

occurs at supersonic speeds in a scramjet engine. A more compact evaluation of the

specific thrust and fuel-air ratio results in creation of another ratio, τλ, as shown in

Eq. (A.3), where T 0 is the freestream temperature.

T ′MAX = TMAX

(
1 +

γ − 1

2
M2

c

)
(A.2)

τλ =
T ′MAX

T 0

(A.3)

The ratios τr and τλ help in the evaluation of two performance variables of the

analytical model. The ratio of mass flow rates of fuel injected into the burner to

that of the air passing through the engine, f, is the first performance variable and is

calculated as shown in Eq. (A.4). Here cp is a specific heat at a constant pressure

and hpr is the fuel heating value.

f =
cpT0

hpr

(τλ − τr) (A.4)

The other performance variable, specific thrust, is shown in Eq. (A.5). Varying

ṁ0, as shown in Eq. (A.6), scales both specific thrust and fuel-air ratio. Finally,

specific thrust multiplies with ṁ0 to obtain thrust.

F

ṁ0

=
V0
gc

(√
τλ
τr
− 1

)
(A.5)

ṁ0 = ρAcV 0 (A.6)

These two performance parameters indicate the scramjet engine’s efficiency. For

example, a smaller value of f means lesser fuel burnt for a given mass flow rate.

Additionally, for a larger specific thrust, same mass flow rate generates more thrust.

The expressions obtained for f, ṁ0, and thrust feed back into the EOMs, thereby

completing the coupled nature of the flight dynamics and propulsion system.
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B. The Objective Functional for the Aircraft Landing Noise

Minimization Problem

An appropriate performance index requires an estimation of the amount of noise

inconvenience for people living in the vicinity of an airport including its runway.

Eq. (B.1) defines the maximum perceived noise level of an aircraft. [186,187] PN dB0

in Eq. (B.1) is the perceived noise level at a distance RREF (152 m) from the aircraft

with its maximum thrust. The second and third terms in Eq. (B.1) account for the

impacts of the distance from the aircraft and its thrust on noise levels, respectively.

PN dB = PN dB0 + 25 log

(
RREF

R

)
+ 52 log

(
T

TMAX

)
(B.1)

The derivation of Eq. (B.1) uses the following assumptions.

1. The noise field is spherically symmetrical.

2. The compressor noise is small as compared to the jet noise.

3. The community surrounds the area before a point 472 m horizontally distant

from the touchdown point, and outside a line 61 m laterally away from the

centerline of the runway. [186]

Assumption 3 results in Eq. (B.2) for R, where d is the horizontal distance from the

touchdown point.

R =

h if d ≥ 472 m

√
h2 + 612 if d < 472 m

(B.2)

To avoid complicated analysis, h + 50 forms approximation for R. The effect of

the noise duration adds to PN dB from Eq. (B.1) to calculate the maximum EPNL

as shown in Eq. (B.3). [188]

EPN dB = PN dB + 20 log

(
V REF

V

)
(B.3)
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Substitution of Eq. (B.1) into Eq. (B.3) leads to a performance index for the

maximum IEPNL, J0, as shown in Eq. (B.4). In this equation ln represents natural

logarithm and Ki’s (i=1,..., 4) are positive constants.

J0 =

∫ xf

x0

(K1 −K2 ln(h+ 50) +K3 lnT −K4 lnV )dx (B.4)

Division of the performance index, J0, by the total horizontal flight distance results

in the average value of the performance index, as shown in Eq. (B.5).

EPN dB =
1

xf − x0

∫ xf

x0

(EPN dB)dx (B.5)

However, J0 was found to be deficient due to the use of the logarithmic form and

failed to capture coupled effects of thrust and altitude on the noise level. A new

performance index, 10EPNL, resolved this issue by incorporating an effective penalty

for the use of high thrust at low altitudes. Thus, Eq. (B.6) expresses this new per-

formance index, where CN is a constant given by Eq. (B.7).

J =

∫ xf

x0

(
CNT

5.2

V 2(h+ 50)2.5

)
dx (B.6)

CN = 10PN dB0

(
RREF

2.5V REF
2

TMAX
5.2

)
(B.7)
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C. The Re-radiative Heating Constraint for the Space

Shuttle Reentry Problem

C.1 Background

Medium and high lifting vehicles have a thermal protection system (TPS) com-

prising of re-radiative and ablative elements at different parts of the vehicle. [189]

The L/D of such lifting entry vehicles determines the amount of re-radiation of the

TPS. A quasi-steady approximation leads to the formulation of heating constraint on

the outer skin of an entry vehicle as shown in Eq. (C.1), where v is the aerodynamic

velocity, h is the altitude, and α is the angle of attack of the vehicle. [174]

φ(h, v, α) = 0 (C.1)

CL(α, h, v) eliminates α in order to reduce the computational effort. As a result,

Ref. 174 obtains the expression for CLH based on intuition and trial. CLH actually

determines different levels of limit skin temperature, T , for the entry vehicle as shown

in Eq. (C.2).

T = 1093 + 3704 CLH (C). (C.2)

∆CLH is an adjustment parameter for CLH. h and b are the scaling parameters for

altitude and velocity, respectively. These parameters keep the values in the coefficient

matrix, g, closer to 1.

The partial derivatives of CL with respect to the altitude and the velocity are

shown in Eq. (C.3a) and Eq. (C.3b), respectively. Here i ranges between 1 and 5, and

Eq. (C.3c) gives the expression for C i.

∂CLH

∂h
= C iH i +Bi

∂H

∂h
(C.3a)

∂CLH

∂v
= Bi

∂H

∂v
(C.3b)
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C i =
4∑
j=1

(j − 1) gijh
(j−2)

(C.3c)

Eq. (C.3a) and Eq. (C.3b) then lead to Eq. (C.4) as shown below.

∂h

∂v

∣∣∣
CLH

= −

 ∂CLH

∂v
∂CLH

∂h

 (C.4)

The approximation for CLH was found to be in excellent agreement with the

original input data as shown in Fig. C.1. Ref. 174 supplied the input data for a limit

temperature of 20000 F. For maximum range trajectories, the lift coefficients stay

around maximum L/D, thereby eliminating the need for the 70 km curve.

Figure C.1.: Comparison between the approximate values and original data for the

re-radiative heating constraint of a space shuttle. [174]
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C.2 Equations of Motion for the Costates

This section includes the complicated and lengthy EOMs for the costates, which

previous studies in the literature omitted. The first lengthy costate EOM is corre-

sponding to the altitude.

λ̇h = λγ((v cos(γ))/(h+rE)2−(2mu cos(γ))/(v(h+rE)3)−SAv cos((π(sin(σTRIG)+

1))/4) exp(−h/H)(0.5w((v/(bh2)− (3b)/v + (2b2h)/v2)(40.4855(h/hs − 1)2 +

57.83333(h/hs − 1)3 + (13.62131h)/hs − 10.470043)− ((80.971(h/hs − 1))/hs +

(173.49999(h/hs−1)2)/hs+13.62131/hs)(v/(bh)−(b2h2)/v2+(3bh)/v−3)+((b2h2)/v2−

(2bh)/v + 1)((20.63256(h/hs − 1))/hs + (68.92458(h/hs − 1)2)/hs + 2.337815/hs) −

((2b)/v − (2b2h)/v2)(10.31628(h/hs − 1)2 + 22.97486(h/hs − 1)3 + (2.337815h)/hs −

1.525574) + ((139.7381(h/hs − 1))/hs + (383.333334(h/hs − 1)2)/hs + 19.0734/hs)

(v2/(b2h2)− (4v)/(bh)+(b2h2)/v2− (4bh)/v+6)− (b/v− (2b2h)/v2)(0.864369(h/hs−

1)2 + 12.1(h/hs − 1)3 − (2.73417h)/hs + 3.406847)− (69.86905(h/hs − 1)2 +

127.777778(h/hs−1)3 +(19.0734h)/hs−16.705305)((4b)/v−(4v)/(bh2)−(2b2h)/v2 +

(2v2)/(b2h3))+((b2h2)/v2− (bh)/v)((1.728738(h/hs−1))/hs+(36.3(h/hs−1)2)/hs−

2.73417/hs)+(b2h2((2.427358(h/hs−1))/hs−(3.182499(h/hs−1)2)/hs+0.834519/hs))/

v2+(2b2h(1.213679(h/hs−1)2−1.060833(h/hs−1)3+(0.834519h)/hs−0.723802))/v2)+

0.5w sin(CLw)((v/(bh2) − (3b)/v + (2b2h)/v2)(40.4855(h/hs − 1)2 + 57.83333(h/hs −

1)3 + (13.62131h)/hs − 10.470043) − ((80.971(h/hs − 1))/hs + (173.49999(h/hs −

1)2)/hs + 13.62131/hs)(v/(bh) − (b2h2)/v2 + (3bh)/v − 3) + ((b2h2)/v2 − (2bh)/v +

1)((20.63256(h/hs − 1))/hs + (68.92458(h/hs − 1)2)/hs + 2.337815/hs) − ((2b)/v −

(2b2h)/v2)(10.31628(h/hs−1)2 + 22.97486(h/hs−1)3 + (2.337815h)/hs−1.525574) +

((139.7381(h/hs − 1))/hs + (383.333334(h/hs − 1)2)/hs + 19.0734/hs)(v
2/(b2h2) −

(4v)/(bh)+(b2h2)/v2−(4bh)/v+6)−(b/v−(2b2h)/v2)(0.864369(h/hs−1)2+12.1(h/hs−

1)3 − (2.73417h)/hs + 3.406847) − (69.86905(h/hs − 1)2 + 127.777778(h/hs − 1)3 +

(19.0734h)/hs−16.705305)((4b)/v−(4v)/(bh2)−(2b2h)/v2+(2v2)/(b2h3))+((b2h2)/v2−

(bh)/v)((1.728738(h/hs−1))/hs+(36.3(h/hs−1)2)/hs−2.73417/hs)+(b2h2((2.427358

(h/hs−1))/hs−(3.182499(h/hs−1)2)/hs+0.834519/hs))/v
2+(2b2h(1.213679(h/hs−
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1)2−1.060833(h/hs−1)3+(0.834519h)/hs−0.723802))/v2))+(SAv cos((π(sin(σTRIG)+

1))/4) exp(−h/H)(0.5CLLB + 0.5w(∆CLH − (40.4855(h/hs − 1)2 + 57.83333(h/hs −

1)3 + (13.62131h)/hs − 10.470043)(v/(bh)− (b2h2)/v2 + (3bh)/v − 3) + ((b2h2)/v2 −

(2bh)/v+1)(10.31628(h/hs−1)2+22.97486(h/hs−1)3+(2.337815h)/hs−1.525574)+

((b2h2)/v2−(bh)/v)(0.864369(h/hs−1)2+12.1(h/hs−1)3−(2.73417h)/hs+3.406847)+

(69.86905(h/hs−1)2+127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)(v2/(b2h2)−

(4v)/(bh)+(b2h2)/v2−(4bh)/v+6)+(b2h2(1.213679(h/hs−1)2−1.060833(h/hs−1)3+

(0.834519h)/hs− 0.723802))/v2)− 0.5CLUB(w− 1)− 0.5 sin(CLw)(CLLB−w(∆CLH−

(40.4855(h/hs − 1)2 + 57.83333(h/hs − 1)3 + (13.62131h)/hs − 10.470043)(v/(bh) −

(b2h2)/v2+(3bh)/v−3)+((b2h2)/v2−(2bh)/v+1)(10.31628(h/hs−1)2+22.97486(h/hs−

1)3+(2.337815h)/hs−1.525574)+((b2h2)/v2−(bh)/v)(0.864369(h/hs−1)2+12.1(h/hs−

1)3 − (2.73417h)/hs + 3.406847) + (69.86905(h/hs − 1)2 + 127.777778(h/hs − 1)3 +

(19.0734h)/hs − 16.705305)(v2/(b2h2)− (4v)/(bh) + (b2h2)/v2 − (4bh)/v + 6) + (b2h2

(1.213679(h/hs − 1)2 − 1.060833(h/hs − 1)3 + (0.834519h)/hs − 0.723802))/v2) +

CLUB(w−1))))/H)−λψ((v cos(γ) cos(ψ)tan(φ))/(h+rE)2+(SAv sin((π(sin(σTRIG)+

1))/4) exp(−h/H)(0.5w((v/(bh2)− (3b)/v + (2b2h)/v2)(40.4855(h/hs − 1)2 +

57.83333(h/hs − 1)3 + (13.62131h)/hs − 10.470043)− ((80.971(h/hs − 1))/hs +

(173.49999(h/hs−1)2)/hs+13.62131/hs)(v/(bh)−(b2h2)/v2+(3bh)/v−3)+((b2h2)/v2−

(2bh)/v + 1)((20.63256(h/hs − 1))/hs + (68.92458(h/hs − 1)2)/hs + 2.337815/hs) −

((2b)/v − (2b2h)/v2)(10.31628(h/hs − 1)2 + 22.97486(h/hs − 1)3 + (2.337815h)/hs −

1.525574) + ((139.7381(h/hs−1))/hs + (383.333334(h/hs−1)2)/hs + 19.0734/hs)(v
2/

(b2h2)−(4v)/(bh)+(b2h2)/v2−(4bh)/v+6)−(b/v−(2b2h)/v2)(0.864369(h/hs−1)2+

12.1(h/hs−1)3−(2.73417h)/hs+3.406847)−(69.86905(h/hs−1)2+127.777778(h/hs−

1)3 + (19.0734h)/hs − 16.705305)((4b)/v − (4v)/(bh2) − (2b2h)/v2 + (2v2)/(b2h3)) +

((b2h2)/v2− (bh)/v)((1.728738(h/hs− 1))/hs + (36.3(h/hs− 1)2)/hs− 2.73417/hs) +

(b2h2((2.427358(h/hs− 1))/hs− (3.182499(h/hs− 1)2)/hs + 0.834519/hs))/v
2 + (2b2h

(1.213679(h/hs − 1)2 − 1.060833(h/hs − 1)3 + (0.834519h)/hs − 0.723802))/v2) +

0.5w sin(CLw)((v/(bh2) − (3b)/v + (2b2h)/v2)(40.4855(h/hs − 1)2 + 57.83333(h/hs −

1)3 + (13.62131h)/hs − 10.470043) − ((80.971(h/hs − 1))/hs + (173.49999(h/hs −
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1)2)/hs + 13.62131/hs)(v/(bh) − (b2h2)/v2 + (3bh)/v − 3) + ((b2h2)/v2 − (2bh)/v +

1)((20.63256(h/hs − 1))/hs + (68.92458(h/hs − 1)2)/hs + 2.337815/hs) − ((2b)/v −

(2b2h)/v2)(10.31628(h/hs−1)2 + 22.97486(h/hs−1)3 + (2.337815h)/hs−1.525574) +

((139.7381(h/hs − 1))/hs + (383.333334(h/hs − 1)2)/hs + 19.0734/hs)(v
2/(b2h2) −

(4v)/(bh)+(b2h2)/v2−(4bh)/v+6)−(b/v−(2b2h)/v2)(0.864369(h/hs−1)2+12.1(h/hs−

1)3 − (2.73417h)/hs + 3.406847) − (69.86905(h/hs − 1)2 + 127.777778(h/hs − 1)3 +

(19.0734h)/hs−16.705305)((4b)/v−(4v)/(bh2)−(2b2h)/v2+(2v2)/(b2h3))+((b2h2)/v2−

(bh)/v)((1.728738(h/hs−1))/hs+(36.3(h/hs−1)2)/hs−2.73417/hs)+(b2h2((2.427358

(h/hs−1))/hs−(3.182499(h/hs−1)2)/hs+0.834519/hs))/v
2+(2b2h(1.213679(h/hs−

1)2 − 1.060833(h/hs − 1)3 + (0.834519h)/hs − 0.723802))/v2)))/ cos(γ)− (SAv sin((π

(sin(σTRIG)+1))/4) exp(−h/H)(0.5CLLB+0.5w(∆CLH−(40.4855(h/hs−1)2+57.83333

(h/hs−1)3+(13.62131h)/hs−10.470043)(v/(bh)−(b2h2)/v2+(3bh)/v−3)+((b2h2)/v2−

(2bh)/v+1)(10.31628(h/hs−1)2+22.97486(h/hs−1)3+(2.337815h)/hs−1.525574)+

((b2h2)/v2−(bh)/v)(0.864369(h/hs−1)2+12.1(h/hs−1)3−(2.73417h)/hs+3.406847)+

(69.86905(h/hs−1)2+127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)(v2/(b2h2)−

(4v)/(bh)+(b2h2)/v2−(4bh)/v+6)+(b2h2(1.213679(h/hs−1)2−1.060833(h/hs−1)3+

(0.834519h)/hs− 0.723802))/v2)− 0.5CLUB(w− 1)− 0.5 sin(CLw)(CLLB−w(∆CLH−

(40.4855(h/hs − 1)2 + 57.83333(h/hs − 1)3 + (13.62131h)/hs − 10.470043)(v/(bh) −

(b2h2)/v2+(3bh)/v−3)+((b2h2)/v2−(2bh)/v+1)(10.31628(h/hs−1)2+22.97486(h/hs−

1)3+(2.337815h)/hs−1.525574)+((b2h2)/v2−(bh)/v)(0.864369(h/hs−1)2+12.1(h/hs−

1)3 − (2.73417h)/hs + 3.406847) + (69.86905(h/hs − 1)2 + 127.777778(h/hs − 1)3 +

(19.0734h)/hs − 16.705305)(v2/(b2h2)− (4v)/(bh) + (b2h2)/v2 − (4bh)/v + 6) + (b2h2

(1.213679(h/hs − 1)2 − 1.060833(h/hs − 1)3 + (0.834519h)/hs − 0.723802))/v2) +

CLUB(w−1))))/(H cos(γ)))−λv((2mu sin(γ))/(h+rE)3+(SAv2 exp(−h/H)((0.5CLLB+

0.5w(∆CLH−(40.4855(h/hs−1)2+57.83333(h/hs−1)3+(13.62131h)/hs−10.470043)(v/

(bh) − (b2h2)/v2 + (3bh)/v − 3) + ((b2h2)/v2 − (2bh)/v + 1)(10.31628(h/hs − 1)2 +

22.97486(h/hs−1)3+(2.337815h)/hs−1.525574)+((b2h2)/v2−(bh)/v)(0.864369(h/hs−

1)2 +12.1(h/hs−1)3− (2.73417h)/hs+3.406847)+(69.86905(h/hs−1)2 +127.777778

(h/hs−1)3+(19.0734h)/hs−16.705305)(v2/(b2h2)−(4v)/(bh)+(b2h2)/v2−(4bh)/v+
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6)+(b2h2(1.213679(h/hs−1)2−1.060833(h/hs−1)3+(0.834519h)/hs−0.723802))/v2)−

0.5CLUB(w−1)−0.5 sin(CLw)(CLLB−w(∆CLH−(40.4855(h/hs−1)2+57.83333(h/hs−

1)3 + (13.62131h)/hs − 10.470043)(v/(bh)− (b2h2)/v2 + (3bh)/v − 3) + ((b2h2)/v2 −

(2bh)/v+1)(10.31628(h/hs−1)2+22.97486(h/hs−1)3+(2.337815h)/hs−1.525574)+

((b2h2)/v2−(bh)/v)(0.864369(h/hs−1)2+12.1(h/hs−1)3−(2.73417h)/hs+3.406847)+

(69.86905(h/hs−1)2+127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)(v2/(b2h2)−

(4v)/(bh)+(b2h2)/v2−(4bh)/v+6)+(b2h2(1.213679(h/hs−1)2−1.060833(h/hs−1)3+

(0.834519h)/hs−0.723802))/v2)+CLUB(w−1)))1.86+0.04))/H−1.86SAv2 exp(−h/H)

(0.5w((v/(bh2) − (3b)/v + (2b2h)/v2)(40.4855(h/hs − 1)2 + 57.83333(h/hs − 1)3 +

(13.62131h)/hs− 10.470043)− ((80.971(h/hs− 1))/hs + (173.49999(h/hs− 1)2)/hs +

13.62131/hs)(v/(bh)− (b2h2)/v2 + (3bh)/v− 3) + ((b2h2)/v2− (2bh)/v+ 1)((20.63256

(h/hs−1))/hs+(68.92458(h/hs−1)2)/hs+2.337815/hs)−((2b)/v−(2b2h)/v2)(10.31628

(h/hs− 1)2 + 22.97486(h/hs− 1)3 + (2.337815h)/hs− 1.525574) + ((139.7381(h/hs−

1))/hs+(383.333334(h/hs−1)2)/hs+19.0734/hs)(v
2/(b2h2)−(4v)/(bh)+(b2h2)/v2−

(4bh)/v+6)−(b/v−(2b2h)/v2)(0.864369(h/hs−1)2+12.1(h/hs−1)3−(2.73417h)/hs+

3.406847)−(69.86905(h/hs−1)2+127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)

((4b)/v−(4v)/(bh2)−(2b2h)/v2+(2v2)/(b2h3))+((b2h2)/v2−(bh)/v)((1.728738(h/hs−

1))/hs+(36.3(h/hs−1)2)/hs−2.73417/hs)+(b2h2((2.427358(h/hs−1))/hs−(3.182499

(h/hs−1)2)/hs+0.834519/hs))/v
2+(2b2h(1.213679(h/hs−1)2−1.060833(h/hs−1)3+

(0.834519h)/hs−0.723802))/v2)+0.5w sin(CLw)((v/(bh2)−(3b)/v+(2b2h)/v2)(40.4855

(h/hs − 1)2 + 57.83333(h/hs − 1)3 + (13.62131h)/hs − 10.470043)− ((80.971(h/hs −

1))/hs + (173.49999(h/hs − 1)2)/hs + 13.62131/hs)(v/(bh) − (b2h2)/v2 + (3bh)/v −

3) + ((b2h2)/v2− (2bh)/v+ 1)((20.63256(h/hs− 1))/hs + (68.92458(h/hs− 1)2)/hs +

2.337815/hs) − ((2b)/v − (2b2h)/v2)(10.31628(h/hs − 1)2 + 22.97486(h/hs − 1)3 +

(2.337815h)/hs−1.525574)+((139.7381(h/hs−1))/hs+(383.333334(h/hs−1)2)/hs+

19.0734/hs)(v
2/(b2h2)−(4v)/(bh)+(b2h2)/v2−(4bh)/v+6)−(b/v−(2b2h)/v2)(0.864369

(h/hs − 1)2 + 12.1(h/hs − 1)3 − (2.73417h)/hs + 3.406847)− (69.86905(h/hs − 1)2 +

127.777778(h/hs−1)3 +(19.0734h)/hs−16.705305)((4b)/v−(4v)/(bh2)−(2b2h)/v2 +

(2v2)/(b2h3))+((b2h2)/v2− (bh)/v)((1.728738(h/hs−1))/hs+(36.3(h/hs−1)2)/hs−
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2.73417/hs)+(b2h2((2.427358(h/hs−1))/hs−(3.182499(h/hs−1)2)/hs+0.834519/hs))/

v2+(2b2h(1.213679(h/hs−1)2−1.060833(h/hs−1)3+(0.834519h)/hs−0.723802))/v2))

(0.5CLLB+0.5w(∆CLH−(40.4855(h/hs−1)2+57.83333(h/hs−1)3+(13.62131h)/hs−

10.470043)(v/(bh)−(b2h2)/v2+(3bh)/v−3)+((b2h2)/v2−(2bh)/v+1)(10.31628(h/hs−

1)2+22.97486(h/hs−1)3+(2.337815h)/hs−1.525574)+((b2h2)/v2−(bh)/v)(0.864369

(h/hs − 1)2 + 12.1(h/hs − 1)3 − (2.73417h)/hs + 3.406847) + (69.86905(h/hs − 1)2 +

127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)(v2/(b2h2)−(4v)/(bh)+(b2h2)/v2−

(4bh)/v + 6) + (b2h2(1.213679(h/hs − 1)2 − 1.060833(h/hs − 1)3 + (0.834519h)/hs −

0.723802))/v2)−0.5CLUB(w−1)−0.5 sin(CLw)(CLLB−w(∆CLH−(40.4855(h/hs−1)2+

57.83333(h/hs−1)3+(13.62131h)/hs−10.470043)(v/(bh)−(b2h2)/v2+(3bh)/v−3)+

((b2h2)/v2−(2bh)/v+1)(10.31628(h/hs−1)2+22.97486(h/hs−1)3+(2.337815h)/hs−

1.525574)+((b2h2)/v2−(bh)/v)(0.864369(h/hs−1)2+12.1(h/hs−1)3−(2.73417h)/hs+

3.406847)+(69.86905(h/hs−1)2+127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)

(v2/(b2h2) − (4v)/(bh) + (b2h2)/v2 − (4bh)/v + 6) + (b2h2(1.213679(h/hs − 1)2 −

1.060833(h/hs−1)3+(0.834519h)/hs−0.723802))/v2)+CLUB(w−1)))0.86)+(λφv cos(γ)

sin(ψ))/(h+ rE)2

The costate EOM corresponding to the crossrange angle, φ, is relatively very

small.

λ̇φ = (λψv cos(γ) cos(ψ)(tan(φ)2 + 1))/(h+ rE)

The second lengthy costate EOM is corresponding to the velocity.

λ̇v = λv(2SAv exp(−h/H)((0.5CLLB+0.5w(∆CLH−(40.4855(h/hs−1)2+57.83333

(h/hs−1)3+(13.62131h)/hs−10.470043)(v/(bh)−(b2h2)/v2+(3bh)/v−3)+((b2h2)/v2−

(2bh)/v+1)(10.31628(h/hs−1)2+22.97486(h/hs−1)3+(2.337815h)/hs−1.525574)+

((b2h2)/v2−(bh)/v)(0.864369(h/hs−1)2+12.1(h/hs−1)3−(2.73417h)/hs+3.406847)+

(69.86905(h/hs−1)2+127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)(v2/(b2h2)−

(4v)/(bh)+(b2h2)/v2−(4bh)/v+6)+(b2h2(1.213679(h/hs−1)2−1.060833(h/hs−1)3+

(0.834519h)/hs− 0.723802))/v2)− 0.5CLUB(w− 1)− 0.5 sin(CLw)(CLLB−w(∆CLH−

(40.4855(h/hs − 1)2 + 57.83333(h/hs − 1)3 + (13.62131h)/hs − 10.470043)(v/(bh) −

(b2h2)/v2+(3bh)/v−3)+((b2h2)/v2−(2bh)/v+1)(10.31628(h/hs−1)2+22.97486(h/hs−
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1)3+(2.337815h)/hs−1.525574)+((b2h2)/v2−(bh)/v)(0.864369(h/hs−1)2+12.1(h/hs−

1)3 − (2.73417h)/hs + 3.406847) + (69.86905(h/hs − 1)2 + 127.777778(h/hs − 1)3 +

(19.0734h)/hs − 16.705305)(v2/(b2h2)− (4v)/(bh) + (b2h2)/v2 − (4bh)/v + 6) + (b2h2

(1.213679(h/hs − 1)2 − 1.060833(h/hs − 1)3 + (0.834519h)/hs − 0.723802))/v2) +

CLUB(w − 1)))1.86 + 0.04)− 1.86SAv2 exp(−h/H)(0.5w(((2b2h2)/v3 − (2bh)/v2)

(10.31628(h/hs− 1)2 + 22.97486(h/hs− 1)3 + (2.337815h)/hs− 1.525574) + (1/(bh) +

(2b2h2)/v3− (3bh)/v2)(40.4855(h/hs− 1)2 + 57.83333(h/hs− 1)3 + (13.62131h)/hs−

10.470043)+((2b2h2)/v3−(bh)/v2)(0.864369(h/hs−1)2+12.1(h/hs−1)3−(2.73417h)/hs

+3.406847)+(69.86905(h/hs−1)2+127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)

(4/(bh)−(2v)/(b2h2)+(2b2h2)/v3−(4bh)/v2)+(2b2h2(1.213679(h/hs−1)2−1.060833

(h/hs−1)3+(0.834519h)/hs−0.723802))/v3)+0.5w sin(CLw)(((2b2h2)/v3−(2bh)/v2)

(10.31628(h/hs− 1)2 + 22.97486(h/hs− 1)3 + (2.337815h)/hs− 1.525574) + (1/(bh) +

(2b2h2)/v3− (3bh)/v2)(40.4855(h/hs− 1)2 + 57.83333(h/hs− 1)3 + (13.62131h)/hs−

10.470043)+((2b2h2)/v3−(bh)/v2)(0.864369(h/hs−1)2+12.1(h/hs−1)3−(2.73417h)/hs

+3.406847)+(69.86905(h/hs−1)2+127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)

(4/(bh)−(2v)/(b2h2)+(2b2h2)/v3−(4bh)/v2)+(2b2h2(1.213679(h/hs−1)2−1.060833

(h/hs−1)3+(0.834519h)/hs−0.723802))/v3))(0.5CLLB+0.5w(∆CLH−(40.4855(h/hs−

1)2+57.83333(h/hs−1)3+(13.62131h)/hs−10.470043)(v/(bh)−(b2h2)/v2+(3bh)/v−

3)+((b2h2)/v2−(2bh)/v+1)(10.31628(h/hs−1)2+22.97486(h/hs−1)3+(2.337815h)/hs

−1.525574)+((b2h2)/v2−(bh)/v)(0.864369(h/hs−1)2+12.1(h/hs−1)3−(2.73417h)/hs+

3.406847)+(69.86905(h/hs−1)2+127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)(v2/

(b2h2)−(4v)/(bh)+(b2h2)/v2−(4bh)/v+6)+(b2h2(1.213679(h/hs−1)2−1.060833(h/hs−

1)3+(0.834519h)/hs−0.723802))/v2)−0.5CLUB(w−1)−0.5 sin(CLw)(CLLB−w(∆CLH−

(40.4855(h/hs − 1)2 + 57.83333(h/hs − 1)3 + (13.62131h)/hs − 10.470043)(v/(bh) −

(b2h2)/v2+(3bh)/v−3)+((b2h2)/v2−(2bh)/v+1)(10.31628(h/hs−1)2+22.97486(h/hs−

1)3+(2.337815h)/hs−1.525574)+((b2h2)/v2−(bh)/v)(0.864369(h/hs−1)2+12.1(h/hs−

1)3 − (2.73417h)/hs + 3.406847) + (69.86905(h/hs − 1)2 + 127.777778(h/hs − 1)3 +

(19.0734h)/hs − 16.705305)(v2/(b2h2)− (4v)/(bh) + (b2h2)/v2 − (4bh)/v + 6) + (b2h2

(1.213679(h/hs − 1)2 − 1.060833(h/hs − 1)3 + (0.834519h)/hs − 0.723802))/v2) +
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CLUB(w − 1)))0.86) − λh sin(γ) − λγ(cos(γ)/(h + rE) + (mu cos(γ))/(v2(h + rE)2) +

SA cos((π(sin(σTRIG) + 1))/4) exp(−h/H)(0.5CLLB + 0.5w(∆CLH − (40.4855(h/hs −

1)2+57.83333(h/hs−1)3+(13.62131h)/hs−10.470043)(v/(bh)−(b2h2)/v2+(3bh)/v−

3)+((b2h2)/v2−(2bh)/v+1)(10.31628(h/hs−1)2+22.97486(h/hs−1)3+(2.337815h)/hs

−1.525574)+((b2h2)/v2−(bh)/v)(0.864369(h/hs−1)2+12.1(h/hs−1)3−(2.73417h)/hs

+3.406847)+(69.86905(h/hs−1)2+127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)

(v2/(b2h2) − (4v)/(bh) + (b2h2)/v2 − (4bh)/v + 6) + (b2h2(1.213679(h/hs − 1)2 −

1.060833(h/hs−1)3+(0.834519h)/hs−0.723802))/v2)−0.5CLUB(w−1)−0.5 sin(CLw)

(CLLB − w(∆CLH − (40.4855(h/hs − 1)2 + 57.83333(h/hs − 1)3 + (13.62131h)/hs −

10.470043)(v/(bh)−(b2h2)/v2+(3bh)/v−3)+((b2h2)/v2−(2bh)/v+1)(10.31628(h/hs−

1)2+22.97486(h/hs−1)3+(2.337815h)/hs−1.525574)+((b2h2)/v2−(bh)/v)(0.864369

(h/hs − 1)2 + 12.1(h/hs − 1)3 − (2.73417h)/hs + 3.406847) + (69.86905(h/hs − 1)2 +

127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)(v2/(b2h2)−(4v)/(bh)+(b2h2)/v2−

(4bh)/v + 6) + (b2h2(1.213679(h/hs − 1)2 − 1.060833(h/hs − 1)3 + (0.834519h)/hs −

0.723802))/v2) + CLUB(w − 1)))− SAv cos((π(sin(σTRIG) + 1))/4) exp(−h/H)(0.5w(

((2b2h2)/v3−(2bh)/v2)(10.31628(h/hs−1)2+22.97486(h/hs−1)3+(2.337815h)/hs−

1.525574) + (1/(bh) + (2b2h2)/v3 − (3bh)/v2)(40.4855(h/hs − 1)2 + 57.83333(h/hs −

1)3 + (13.62131h)/hs − 10.470043) + ((2b2h2)/v3 − (bh)/v2)(0.864369(h/hs − 1)2 +

12.1(h/hs−1)3−(2.73417h)/hs+3.406847)+(69.86905(h/hs−1)2+127.777778(h/hs−

1)3 + (19.0734h)/hs − 16.705305)(4/(bh) − (2v)/(b2h2) + (2b2h2)/v3 − (4bh)/v2) +

(2b2h2(1.213679(h/hs−1)2−1.060833(h/hs−1)3+(0.834519h)/hs−0.723802))/v3)+

0.5w sin(CLw)(((2b2h2)/v3 − (2bh)/v2)(10.31628(h/hs − 1)2 + 22.97486(h/hs − 1)3 +

(2.337815h)/hs − 1.525574) + (1/(bh) + (2b2h2)/v3 − (3bh)/v2)(40.4855(h/hs − 1)2 +

57.83333(h/hs− 1)3 + (13.62131h)/hs− 10.470043) + ((2b2h2)/v3− (bh)/v2)(0.864369

(h/hs − 1)2 + 12.1(h/hs − 1)3 − (2.73417h)/hs + 3.406847) + (69.86905(h/hs − 1)2 +

127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)(4/(bh)−(2v)/(b2h2)+(2b2h2)/v3−

(4bh)/v2) + (2b2h2(1.213679(h/hs − 1)2 − 1.060833(h/hs − 1)3 + (0.834519h)/hs −

0.723802))/v3)))+λψ((cos(γ) cos(ψ) tan(φ))/(h+rE)−(SA sin((π(sin(σTRIG)+1))/4)

exp(−h/H)(0.5CLLB + 0.5w(∆CLH − (40.4855(h/hs − 1)2 + 57.83333(h/hs − 1)3 +
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(13.62131h)/hs−10.470043)(v/(bh)−(b2h2)/v2+(3bh)/v−3)+((b2h2)/v2−(2bh)/v+

1)(10.31628(h/hs−1)2+22.97486(h/hs−1)3+(2.337815h)/hs−1.525574)+((b2h2)/v2−

(bh)/v)(0.864369(h/hs−1)2+12.1(h/hs−1)3−(2.73417h)/hs+3.406847)+(69.86905

(h/hs−1)2+127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)(v2/(b2h2)−(4v)/(bh)+

(b2h2)/v2−(4bh)/v+6)+(b2h2(1.213679(h/hs−1)2−1.060833(h/hs−1)3+(0.834519h)/

hs−0.723802))/v2)−0.5CLUB(w−1)−0.5 sin(CLw)(CLLB−w(∆CLH−(40.4855(h/hs−

1)2+57.83333(h/hs−1)3+(13.62131h)/hs−10.470043)(v/(bh)−(b2h2)/v2+(3bh)/v−

3)+((b2h2)/v2−(2bh)/v+1)(10.31628(h/hs−1)2+22.97486(h/hs−1)3+(2.337815h)/hs

−1.525574)+((b2h2)/v2−(bh)/v)(0.864369(h/hs−1)2+12.1(h/hs−1)3−(2.73417h)/hs

+3.406847)+(69.86905(h/hs−1)2+127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)

(v2/(b2h2) − (4v)/(bh) + (b2h2)/v2 − (4bh)/v + 6) + (b2h2(1.213679(h/hs − 1)2 −

1.060833(h/hs − 1)3 + (0.834519h)/hs − 0.723802))/v2) + CLUB(w − 1))))/ cos(γ) +

(SAv sin((π(sin(σTRIG) + 1))/4) exp(−h/H)(0.5w(((2b2h2)/v3 − (2bh)/v2)(10.31628

(h/hs−1)2+22.97486(h/hs−1)3+(2.337815h)/hs−1.525574)+(1/(bh)+(2b2h2)/v3−

(3bh)/v2)(40.4855(h/hs− 1)2 + 57.83333(h/hs− 1)3 + (13.62131h)/hs− 10.470043) +

((2b2h2)/v3−(bh)/v2)(0.864369(h/hs−1)2+12.1(h/hs−1)3−(2.73417h)/hs+3.406847)

+(69.86905(h/hs−1)2+127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)(4/(bh)−

(2v)/(b2h2) + (2b2h2)/v3− (4bh)/v2) + (2b2h2(1.213679(h/hs− 1)2− 1.060833(h/hs−

1)3+(0.834519h)/hs−0.723802))/v3)+0.5w sin(CLw)(((2b2h2)/v3−(2bh)/v2)(10.31628

(h/hs−1)2+22.97486(h/hs−1)3+(2.337815h)/hs−1.525574)+(1/(bh)+(2b2h2)/v3−

(3bh)/v2)(40.4855(h/hs− 1)2 + 57.83333(h/hs− 1)3 + (13.62131h)/hs− 10.470043) +

((2b2h2)/v3−(bh)/v2)(0.864369(h/hs−1)2+12.1(h/hs−1)3−(2.73417h)/hs+3.406847)

+(69.86905(h/hs−1)2+127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)(4/(bh)−

(2v)/(b2h2) + (2b2h2)/v3− (4bh)/v2) + (2b2h2(1.213679(h/hs− 1)2− 1.060833(h/hs−

1)3 + (0.834519h)/hs − 0.723802))/v3)))/ cos(γ))− (λφ cos(γ) sin(ψ))/(h+ rE)

The third lengthy costate EOM is corresponding to the flight path angle, γ.

λ̇γ = λγ((v sin(γ))/(h+rE)−(mu sin(γ))/(v(h+rE)2))−λψ((v cos(ψ) sin(γ)tan(φ))/

(h+rE)+(SAv sin((π(sin(σTRIG)+1))/4) exp(−h/H) sin(γ)(0.5CLLB +0.5w(∆CLH−

(40.4855(h/hs − 1)2 + 57.83333(h/hs − 1)3 + (13.62131h)/hs − 10.470043)(v/(bh) −
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(b2h2)/v2+(3bh)/v−3)+((b2h2)/v2−(2bh)/v+1)(10.31628(h/hs−1)2+22.97486(h/hs−

1)3+(2.337815h)/hs−1.525574)+((b2h2)/v2−(bh)/v)(0.864369(h/hs−1)2+12.1(h/hs−

1)3 − (2.73417h)/hs + 3.406847) + (69.86905(h/hs − 1)2 + 127.777778(h/hs − 1)3 +

(19.0734h)/hs − 16.705305)(v2/(b2h2)− (4v)/(bh) + (b2h2)/v2 − (4bh)/v + 6) + (b2h2

(1.213679(h/hs − 1)2 − 1.060833(h/hs − 1)3 + (0.834519h)/hs − 0.723802))/v2) −

0.5CLUB(w−1)−0.5 sin(CLw)(CLLB−w(∆CLH−(40.4855(h/hs−1)2+57.83333(h/hs−

1)3 + (13.62131h)/hs − 10.470043)(v/(bh)− (b2h2)/v2 + (3bh)/v − 3) + ((b2h2)/v2 −

(2bh)/v+1)(10.31628(h/hs−1)2+22.97486(h/hs−1)3+(2.337815h)/hs−1.525574)+

((b2h2)/v2−(bh)/v)(0.864369(h/hs−1)2+12.1(h/hs−1)3−(2.73417h)/hs+3.406847)+

(69.86905(h/hs−1)2+127.777778(h/hs−1)3+(19.0734h)/hs−16.705305)(v2/(b2h2)−

(4v)/(bh) + (b2h2)/v2 − (4bh)/v + 6) + (b2h2(1.213679(h/hs − 1)2 − 1.060833(h/hs −

1)3 + (0.834519h)/hs − 0.723802))/v2) + CLUB(w − 1))))/ cos(γ)2) − λhv cos(γ) +

(λvmu cos(γ))/(h+ rE)2 + (λφv sin(γ) sin(ψ))/(h+ rE)

The last costate EOM for the space shuttle mixed heating constraint problem is

corresponding to the heading angle, ψ.

λ̇ψ = −(λφv cos(γ) cos(ψ))/(h+ rE)− (λψv cos(γ) sin(ψ)tan(φ))/(h+ rE)
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