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ABSTRACT

Ebaid, Amr Ph.D., Purdue University, May 2019. A Systems Approach to Rule-
Based Data Cleaning. Major Professors: Walid G. Aref, Ahmed K. Elmagarmid
and Mourad Ouzzani.

High quality data is a vital asset for several businesses and applications. With

flawed data costing billions of dollars every year, the need for data cleaning is unprece-

dented. Many data-cleaning approaches have been proposed in both academia and

industry. However, there are no end-to-end frameworks for detecting and repairing

errors with respect to a set of heterogeneous data-quality rules.

Several important challenges exist when envisioning an end-to-end data-cleaning

system: (1) It should deal with heterogeneous types of data-quality rules and in-

terleave their corresponding repairs. (2) It can be extended by various data-repair

algorithms to meet users’ needs for effectiveness and efficiency. (3) It must support

continuous data cleaning and adapt to inevitable data changes. (4) It has to provide

user-friendly interpretable explanations for the detected errors and the chosen repairs.

This dissertation presents a systems approach to rule-based data cleaning that

is generalized, extensible, continuous and explaining. This proposed system

distinguishes between a programming interface and a core to address the above chal-

lenges. The programming interface allows the user to specify various types of data-

quality rules that uniformly define and explain what is wrong with the data, and how

to fix it. Handling all the rules as black-boxes, the core encapsulates various algo-

rithms to holistically and continuously detect errors and repair data. The proposed

system offers a simple interface to define data-quality rules, summarizes the data,

highlights violations and fixes, and provides relevant auditing information to explain

the errors and the repairs.
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1 INTRODUCTION

1.1 The Vital Need for Data Quality

High quality data is by far the most valuable asset of any corporation or organi-

zation, especially in the era of (big) data intensive economy. In a typical use case,

a business would manage and process large amounts of data, in order to extract

valuable information; a key component vital for providing services or making any de-

cisions. The Data Warehousing Institute estimated that data quality problems cost

U.S. businesses more than $600 billion a year [1], and a recent study estimated that

dirty and duplicate data cost the U.S. economy in excess of $3 Trillion every year [2].

Moreover, the fact that more than 25% of critical data in Fortune 1000 companies is

flawed [3] shows how important, yet challenging, realizing high quality data is. Hence,

the evident urge for data cleaning systems; Gartner reported that the market for data

cleaning systems is growing at 17% annually, substantially outpacing the 7% average

of other IT segments [4].

When dealing with data quality, users and businesses face several challenging

problems. Of which the most popular is data duplicates, when there are two or more

data records referring to the same real world entity. This is a very familiar problem for

data warehousing applications or when integrating data from multiple data sources.

Another critical problem is data inconsistency, when records do not obey data

quality rules, such as integrity constraints or business rules. Then, comes data in-

accuracy, when the data may be consistent with the rules, but contradicts with the

truth. Data incompleteness is another problem encountered when there are missing

records or values.

Even when the data might be consistent, accurate and complete, it still can be-

come obsolete not reflecting the true recent values, hence data outdatedness. Experts
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estimate that 2% of records in a customer file become obsolete in one month [1],

i.e., in a database of 500K customer records, 10K records may go stale per month,

120K records per year, and within two years about 50% of all the records may be

obsolete [5].

These problems are caused by several reasons. Human errors come on top of

list, with incorrect data entry and missing values. Then come technical factors such

as inaccurate readings from sensors or devices, erroneous applications populating

databases, faulty database designs that do not enforce the right quality constraints

or integrating data from multiple heterogeneous sources. Moreover, because of data

such as addresses, telephones, appointments, etc. changing all the time, databases

can become obsolete giving outdated untruthful representation of the dynamic real

world.

1.2 Data Cleaning Approaches

A recent study [6] categorized existing data cleaning solutions into these four

different categories:

Quantitative Error Detection to expose outliers and data glitches. This comes

very handy when dealing with sensory data or data streams to find values that

deviate from the distribution of data in a column or table.

Record Linkage (a.k.a. Data Deduplication) with the goal of identifying distinct

data tuples that refer to the same real world entities, and applying data fusion

to consolidate those duplicate records into one.

Pattern Enforcement and Transformation to discover wither syntactic or se-

mantic patterns in the data and detect the records that do not follow these

patterns. This set of tools can resolve issues with formatting, misspellings,

unmatching data types, etc.
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Rule-Based Data Cleaning when a set of rules is enforced on the data. Data

cleaning tools try to detect violations of these rules and repair data records to

reach a consistent database instance satisfying the rules. Rules can vary from

simple not-null constraints, to integrity constraints or multi-attribute depen-

dencies, up to user-defined functions and custom business rules.

In this dissertation, we focus on rule-based data cleaning. Data quality rules,

such as dependencies [7], denial constraints [8,9] or business rules, are used to detect

violations and repair the data accordingly. A violation is a group of cells that do

not conform to a given data quality rule. Intuitively, in order to resolve a violation,

one or more of the data attributes involved in the violation must be changed, a.k.a.

a data repair. This is the data cleaning approach that US national statistical agencies,

among others, have been practicing for decades [10]. Thus, a typical data cleaning

system would involve two phases in an iterative process, violations detection, to find

errors in the data, and data repairing, to actually fix these errors. Such a process

would target consistency, making the data satisfy the quality rules, and accuracy,

being as close as possible to the ground truth, according to a specific cost model, e.g.,

the least possible number of data changes or the minimal cost to repair the data.

1.3 Motivating Example

As a motivating example, consider the data in Figure 1.1. First, if we have an

FD (Functional Dependency) [11] ϕ1 : CC → country, this will signal a violation in

the tuples t1, t2 and t3, since all of them have the same country code, but different

countries. So, one possible repair would be to change t3[country] to UK.

Now, let’s have another rule, an MD (Matching Dependency) [12] ϕ2, stating that

if two records from transactions and customers both match on first name, last name,

street, city and country, then the transaction country code and phone in transactions

should match those of the master data in customers. With this rule, and the latest
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FN LN street city country CC tel

c1: David Jordan 12 Holywell Street Oxford UK 44 66700543

c2: Paul Simon 5 Ratcliffe Terrace Oxford UK 44 44944631

(a) C: An instance of schema customers

FN LN street city country CC phone when where

t1: David Jordan 12 Holywell Street Oxford UK 44 66700543 12:00 6/5/2012 Netherlands

t2: Paul Simon 5 Ratcliffe Terrace Oxford UK 44 44944631 11:00 2/12/2011 Netherlands

t3: David Jordan 12 Holywell Street Oxford Netherlands 44 66700541 6:00 6/5/2012 NY, USA

t4: Peter Austin 7 Market Street Amsterdam Netherlands 31 55384922 9:00 6/2/2012 Netherlands

(b) T : An instance of schema transactions

Figure 1.1. Motivating Example

country change of t3, t3 would match c1, and hence t3[phone] should be updated

accordingly to 66700543.

Finally, let’s assume we have a third business rule, ϕ3, that would mark two

transactions as either a fraud or erroneously recorded, if both were by the same

person (identified by the first name, last name, country code, and phone) and in two

different locations within 1 hour (considering different time zones). Again, with the

recent phone change of t3, a violation would be encountered between t1 and t3; two

different transactions by David Jordan, in both NY, USA and Netherlands at the

same exact time.

Clearly, we can see that when taken together, different data quality rules help

each other, and interleaving their repairs gives better results than dealing with each

type individually. In [13], it was shown that repairing can effectively help identify

matches, and vice versa. It was one of the first few steps in that direction, but dealt

only with CFDs (Conditional Functional Dependencies) [10,14] and MDs. We propose

the first data cleaning system capable of handling heterogeneous data quality rules,

including user-defined ones.
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1.4 Related Work

There has been an increasing amount of research about dependency theory (a.k.a.

integrity constraints) [7] to specify data consistency, e.g., FDs (Functional Dependen-

cies) [11], its extension CFDs (Conditional Functional Dependencies) [10, 14], inds

(Inclusion Dependencies) [15], its extension CINDs (Conditional Inclusion Dependen-

cies) [16], MDs (Matching Dependencies) [12] and Denial Constraints [8,9]. However,

limited expressiveness often does not allow to state problems commonly found in real

life data as violations of these dependencies [7].

Different approaches for data repairing were proposed in literature, adopting differ-

ent methods and techniques: Heuristic methods for FDs and inds [15] or CFDs [10],

graph-based data repairing [17, 18], user-provided confidence values [10, 15], user-

guided repairs [19, 20] and statistical inference [19].

A number of studies have also been proposed to tackle different data quality rules

in one framework. Fan et al. [13] studied the interaction between record matching

(MDs) and data repairing (CFDs). Chu et al. [18] discussed holistically cleaning the

data w.r.t. to a set of denial constraints. We propose the only system that deals with

heterogeneous types of data quality rules including dependencies and custom business

rules.

Moreover, because of data dynamism, several techniques have been proposed tar-

geting continuous data cleaning. The underlying concept when encountering data

changes is to avoid reprocessing data that has previously been processed. However,

these techniques are also far from heterogeneity and only target specific types of data

quality rules. For example, [10] discussed an incremental repairing algorithm, but

only for CFDs. Recently, [21] proposed a continuous data cleaning framework for

environments where the data and constraints are changing, but they also considered

FDs only. SmartClean was introduced in [22] as an incremental data cleaning tool,

but can only deal with some restricted data quality problems at the attribute level,

e.g., missing values and domain violations.
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Furthermore, there has been an increasing interest in data cleaning explanations

in the recent years. A recent study of explainability in data integration systems [23]

shows that there have been some approaches towards explaining and explainable

systems for tasks like schema matching, schema mapping, record linkage and data

fusion. However, the state-of-the-art data cleaning solutions often target goals like

consistency, accuracy and minimality, but do not provide useful explanations to the

end-user about the repairing model or their decision process.

1.5 Limitations of Existing Solutions

Taking all of these approaches into consideration, we can clearly notice some lim-

itations of the existing data cleaning solutions. We do not know about any other

end-to-end data cleaning system that can handle a set of heterogeneous data quality

rules. There is no unified language for rule definition, hence the different overwhelm-

ing syntax and semantics of miscellaneous rules, and most importantly the lack of

support for ad-hoc or user-defined rules. Consequently, unaffordability comes next,

as involving a data cleaning expert is not always a cheap option. Even if affordable,

it is infeasible to build a separate algorithm for each different rule type from scratch.

Moreover, existing solution offer no interaction among the various types of data qual-

ity rules, which greatly improves the data cleaning process, as we have shown in our

motivating scenario.

1.6 Challenges and Objectives in Rule-Based Data Cleaning Systems

Comparing to state-of-the-art approaches and considering these limitations of ex-

isting solutions, when envisioning a modern data cleaning system, we need to tackle

these challenges:
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1.6.1 Heterogeneity and Interdependency

It needs to support heterogeneous types of data quality rules, e.g., ETL (Extract,

Transform and Load) rules, dependencies, and user-defined rules. It also has to

interleave the repairs of these various types of rules for better cleaning results.

1.6.2 Extensibility

It can be extended by plugging different repairing algorithms to meet the user

needs for effectiveness and efficiency.

1.6.3 Continuity

It should be able to efficiently handle data changes – insertions, deletions and

updates – without re-processing the data from scratch.

1.6.4 Explainability

It has to provide user-friendly explanations for detected violations and chosen

fixes, to explain the model as a whole and the individual data repairs.

1.6.5 Other Challenges

Other important challenges arise too, but are out of the scope of this dissertation.

Interactivity where the system provides a data quality dashboard to summarize the

data, violations and repairs. This intersects with different research areas such as

data profiling, violations visualization, and sampling/summarizing techniques.

Scalability is also an important aspect, where the system can scale to real world big

data and clean the data in a distributed or parallel environment.
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1.7 Research Contributions

We propose NADEEF 1, an end-to-end data cleaning system that is

Generalized: Covers a more general spectrum of data quality rules, including stan-

dard dependencies and user-defined rules.

Extensible: Users can plug-in their own data repairing algorithms.

Continuous: Can easily adapt to continuous data changes.

Explaining: Keeps the end-user in the loop through the whole process from start

(defining rules) to finish (explaining violations and repairs).

Figure 1.2. Overview of NADEEF

Figure 1.2 gives an overview of the system. Data comes from different sources,

e.g., a data file, a DBMS or a distributed file system. NADEEF provides a unified

programming interface that allows the user to specify various types of data quality

rules. Inside its core, the cleaning process is an iterative process of two phases:

violations detection and data repairing. Finally, the output can be fed into a data

quality dashboard, to show cleaned data, summarize the violations and repairs and

bring the user into the loop.

1http://www.nadeef.info/
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Specifically, we can outline our contributions as follows:

Generalized and Extensible Data Cleaning [24,25]: Despite the rich theoreti-

cal and practical contributions in all aspects of data cleaning, there is no single

end-to-end off-the-shelf solution to (semi-)automate the detection and the re-

pairing of violations w.r.t. a set of heterogeneous and ad-hoc quality constraints.

In this dissertation, we present NADEEF, a generalized and extensible data

cleaning platform that distinguishes between a programming interface and a

core. The programming interface allows the users to specify multiple types of

data quality rules, which uniformly define what is wrong with the data and

(possibly) how to repair it through writing code that implements predefined

classes. Treating user implemented interfaces as black-boxes, the core provides

algorithms to detect the errors and clean the data holistically without differen-

tiating between various types of rules. We showcase different implementations

for repairing algorithms to demonstrate the extensibility of our core, which can

also be replaced by other user-provided algorithms. Using real-life data, we ex-

perimentally verify the generality, extensibility and effectiveness of our system.

Continuous Data Cleaning: Flawed data costing billions of losses every year urged

the need for data cleaning systems and several approaches have been proposed

since. However, with today’s data dynamism and velocity, new use cases ap-

peared against which the current state-of-the-art approaches stand helpless,

such as interactive data cleaning and cleaning of data streams, hence arises the

necessity for continuous data cleaning. Existing frameworks are still limited to

supporting only certain types of rules, suffer from errors propagation with data

changes and offer no way to undo misinformed repairs. In this dissertation, we

extend NADEEF to support these various use cases which traditional frame-

works cannot deal with. We present the modified architecture of the system,

explain how it can continuously detect violations and repair data and experi-

ment the system against synthetic and real-world dynamic data.
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Data Cleaning Explanations: With human involvement, data cleaning systems

should provide explanations for their models. In this dissertation, we discuss

properties of explanations, and highlight a recent classification of explainability

in data integration systems. We discuss how NADEEF explains its process

via providing detailed auditing information about detected violations and data

repairs. We also discuss explanations beyond rule-based data cleaning and

target entity resolution as a use case. We also propose a tool to understand

and explain entity resolution classifiers with different granularity levels, and we

demonstrate how it can handle different scenarios for a variety of classifiers on

several benchmark datasets.

1.8 Dissertation Outline

Chapter 2 presents the structure of our end-to-end rule-based data cleaning sys-

tem, and describes the system architecture. We define NADEEF’s programming

interface and dive inside its core to cover the two phases of the data cleaning process,

violations detection and data repairing.

Chapter 3 highlights the need for continuous data cleaning due to dynamic data

and constant change. We explain how existing approaches cannot deal properly with

data updates, and propose an extension to NADEEF to support continuity in data

cleaning.

Chapter 4 focuses on the human involvement and on the need for explainabil-

ity. It discusses explanations in NADEEF and explanations beyond rule-based data

cleaning with entity resolution as a use case.

Finally, Chapter 5 concludes the dissertation by presenting our vision for how this

line of research can be extended further to achieve the end-goal of higher data quality.
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2 NADEEF: GENERALIZED AND EXTENSIBLE DATA CLEANING

2.1 An End-to-End Rule-Based Data Cleaning System

Data has become an important asset in today’s economy. Extracting values from

large amounts of data to provide services and to guide decision making processes has

become a central task in all data management stacks. The quality of data becomes

one of the differentiating factors among businesses and the first line of defense in

producing value from raw input data. Ensuring the quality of the data with respect

to business and integrity constraints has become more important than ever.

Despite the need of high quality data, there is no end-to-end off-the-shelf solution

to (semi-)automate error detection and correction w.r.t. a set of heterogeneous and

ad-hoc quality rules. In particular, there is no commodity platform similar to general

purpose DBMSs that can be easily customized and deployed to solve application-

specific data quality problems. Although there exist more expressive logical forms

(e.g., first-order logic) to cover a large group of quality rules, e.g., CFDs, MDs or

Denial Constraints, the main problem for designing an effective holistic algorithm

for these rules is the lack of dynamic semantics, i.e., alternative ways about how to

repair data errors. Most of these existing rules only have static semantics, i.e., what

is wrong in the data. For instance, an FD will tell us that two tuples are inconsistent

because of identical LHS but different RHS, but not how to fix this inconsistency.

2.1.1 Challenges

Emerging data quality applications place the following challenges in building a

commodity data cleaning system:
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Heterogeneity: Business and dependency theory based quality rules are expressed

in a large variety of formats and languages from rigorous expressions (e.g., func-

tional dependencies) to plain natural language rules enforced by code embedded

in the application logic itself (as in many practical scenarios). Such diversified

semantics hinders the creation of one uniform system to accept heterogeneous

quality rules and to enforce them on the data within the same framework.

Interdependency: Data cleaning algorithms are normally designed for one specific

type of rules. Fan et al. [13] show that interacting two types of quality rules

(CFDs and MDs) may produce higher quality repairs than treating them inde-

pendently. However, the problem related to the interaction of more diversified

types of rules is far from being solved. One promising way to help solve this

problem is to provide unified formats to represent not only the static semantics

of various rules (i.e., what is wrong), but also their dynamic semantics (i.e.,

alternative ways to fix the wrong data).

Deployment and Extensibility: Although many algorithms and techniques have

been proposed for data cleaning [13, 15, 20], it is difficult to download one of

them and run it on the data at hand without tedious customization. Adding to

this difficulty is when users define new types of quality rules, or want to extend

an existing system with their own implementation of cleaning solutions.

Metadata Management: Data is not born an orphan. Real customers have lit-

tle trust in the machines to mess with the data without human consulta-

tion. Several attempts have tackled the problem of including humans in the

loop [20,26,27]. However, they only provide users with information in restrictive

formats. In practice, the users need to understand much more meta-information,

e.g., summarization or samples of data errors, lineage of data changes and pos-

sible data repairs before they can effectively guide any data cleaning process.
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2.1.2 Contributions

We introduce NADEEF, a generalized and extensible data cleaning system that

leverages two main tasks: (1) Isolating rule specification that uniformly defines what

is wrong and (possibly) how to fix it; and (2) Developing a core that holistically

applies these routines to handle the detection and cleaning of data errors.

In this work, we make several notable contributions:

• We describe the first end-to-end commodity data cleaning system that allows

the users to specify multiple types of data quality rules defining what is wrong

with the data and (possibly) how to repair it, and provides algorithms to detect

the errors and clean the data holistically without differentiating between these

various types of rules.

• We propose a novel programming interface that supports the generality of

NADEEF by providing users with ways to specify the semantics, both static

and dynamic, of multiple types of data quality rules.

• We discuss how violations detection works inside NADEEF. We also describe

partitioning and compression to improve violations detection. The former is to

reduce the number of pairwise comparisons when computing violations, while

the latter is to reduce the number of comparisons and the size of violations.

• To demonstrate the extensibility of our system, we present two core implemen-

tations for data cleaning algorithms. The first one, designed to achieve higher

accuracy, employs a weighted MAX-SAT solver to compute repairs while mini-

mizing their overall cost. The second one, designed to be more efficient, lever-

ages the idea of equivalence classes [15]. It merges violating data into multiple

equivalence classes and assigns a unique value to each equivalence class.

• We conduct extensive experiments to verify the generality, extensibility and

effectiveness of our system using real-life datasets.
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2.2 Related Work

The first serious discussions and analysis of data repairing have emerged in [28].

After that, a large and growing body of literature has investigated ETL tools (see [29]

for a survey), which support data transformations, and can be employed to merge

and repair data [30]. Recently, there has been an increasing amount of literature

on dependency theory (a.k.a. integrity constraints) [7] to specify data consistency

for data repairing, e.g., FDs [11], CFDs [10, 14], inds [15], CINDs [16], MDs [12] and

Denial Constraints [8,9]. However, they are in the class of universally quantified first-

order sentences. Their limited expressiveness often does not allow to state problems

commonly found in real life data as violations of these dependencies [7]. Through its

programming interface, our framework is expressive enough to specify these standard

constraints as well as custom business rules.

Data quality techniques often rely on domain-specific similarity and matching op-

erators, beyond pure first-order logic. While these domain-specific operations may not

be themselves expressible in any reasonable declarative formalism, it is still possible

to integrate them into the framework of dependencies, especially for record matching

(a.k.a. record linkage, entity resolution or duplicate detection. See [31] for a survey).

In contrast to matching rules [12, 32, 33], our approach is more general since it also

considers data repairing.

Several repairing algorithms were proposed over the past few decades [10,15,17–20,

27,28]. Heuristic methods have been developed based on FDs and inds [15], CFDs [10]

and editing rules [27,28]. Several graph-based heuristics have been also proposed for

data repairing, e.g., vertex-cover [17] and hyper-graphs [18]. The methods of [10, 15]

employ confidence values provided by the users to guide a repairing process. Other

approaches [19,20] require consulting the users to ensure the accuracy of the generated

repairs. Statistical inference is studied in [19] to derive missing values.

A few approaches have been proposed to tackle different data quality rules in

one framework. The interaction between record matching (MDs) and data repairing
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(CFDs) was discussed in [13]. AJAX [34] and TAILOR [35] are toolboxes for record

linkage. Most recently, [18] proposed a hyper-graph-based solution to clean the data

holistically w.r.t. a set of denial constraints.

In contrast, we propose a system that: (a) Covers a wider spectrum of data

quality rules; and (b) Is extensible such that users can plug-in their own cores for

error detection and data repairing.

2.3 Fundamentals

In this section, we present some of the notations and concepts needed before we

introduce NADEEF’s architecture in more details.

Recall back our example from Section 1.3, shown again in Figure 2.1, and its

different data quality rules:

1. An FD ϕ1 : CC→ country.

2. An MD ϕ2 stating that if two records from transactions and customers both

match on first name, last name, street, city and country, then the transaction

country code and phone in transactions should match those of the master data

in customers.

3. A business rule ϕ3 that would mark two transactions as either a fraud or erro-

neously recorded, if both were by the same person (identified by the first name,

last name, country code, and phone) and in two different locations within 1

hour (considering different time zones).

We consider a database D = {D1, · · · , Dm}, where each Dj (j ∈ [1,m]) is an

instance whose relation schema is Rj as Rj = {Aj1 , · · · , Ajn}. We use the term cell

to denote a combination of a tuple and an attribute of a table, i.e., D.s[A]. For

simplicity, we write a cell as s[A], when D is clear from the context. For example, in

Figure 2.1, T is an instance of relation transactions, t1 is a tuple from that instance

and t1[FN] is a cell from that tuple whose value is David.



16

FN LN street city country CC tel

c1: David Jordan 12 Holywell Street Oxford UK 44 66700543

c2: Paul Simon 5 Ratcliffe Terrace Oxford UK 44 44944631

(a) C: An instance of schema customers

FN LN street city country CC phone when where

t1: David Jordan 12 Holywell Street Oxford UK 44 66700543 12:00 6/5/2012 Netherlands

t2: Paul Simon 5 Ratcliffe Terrace Oxford UK 44 44944631 11:00 2/12/2011 Netherlands

t3: David Jordan 12 Holywell Street Oxford Netherlands 44 66700541 6:00 6/5/2012 NY, USA

t4: Peter Austin 7 Market Street Amsterdam Netherlands 31 55384922 9:00 6/2/2012 Netherlands

(b) T : An instance of schema transactions

Figure 2.1. Database with violations of various heterogeneous rules

Data Quality Rules

In contrast to traditional ways of defining data quality rules by strictly follow-

ing some declarative logical formalism, our programming interface (covered in details

shortly) provides a unified and generic object-oriented programming interface. Such

interface is expressive enough to allow users to easily capture both static and dy-

namic semantics of a large spectrum of data quality rules, as well as complex (e.g.,

probabilistic or knowledge-based) processes.

Violations and Candidate Fixes

Violations specify what is wrong, while candidate fixes capture how to repair it.

Violation: A violation V is a nonempty set of cells that is detected by a data

quality rule ϕ, referred to as a violation of ϕ.

Intuitively, in a violation, at least one of the cells is erroneous and should be

modified. For example, the two tuples t1 and t3 shown in Figure 2.1 violate ϕ1, since

they have the same CC value, but carry different country values. The corresponding

violation consists of four cells {t1[CC], t1[country], t3[CC], t3[country]}.

For a database D and a data quality rule ϕ, we denote by vio(D, ϕ) the set of

all violations returned by ϕ. For a database D and a set Σ of rules, we denote by

vio(D,Σ) =
⋃

ϕ∈Σ vio(D, ϕ) the set of all violations for data D and rules Σ.
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Candidate Fix: A candidate fix F is a conjunction of expressions of the form

“c← x”, where c is a cell, and x is either a constant value or another cell.

Intuitively, a candidate fix F is a set of expressions on a violation V , such that to

resolve violation V , the modifications suggested by the expressions of F must be taken

together. That is, to resolve a violation, more than one cell may have to be changed.

For instance, the violation from previous example would have two candidate fixes, but

each contains only one single expression in that case, either assigning V.t1[country] to

V.t3[country] or V.t3[country] to V.t1[country]; either way can resolve the violation V .

Cost Functions

As a database can be repaired in multiple ways, an immediate question is which to

choose. Similarly to what most data cleaning methods use to make their decision, we

adopt minimality, i.e., compute an instance that repairs a database while incurring

the least cost in terms of fixing operations. Let cost(c, v1, v2) be the cost of changing

the cell c from value v1 to v2, and cost(D,Dr) is defined as the sum of cost(c, v1, v2) for

each cell whose value is modified from v1 in D to v2 in Dr. Since the users can plugin

their own repairing algorithms, they can also replace the cost functions by their own.

Consistent Database

Consider an instance D of R, and a data quality rule ϕ, we say that D satisfies

ϕ, denoted by D |= ϕ, if no violations are detected by ϕ for all tuples in D. We say

that D satisfies a set Σ of data quality rules, denoted by D |= Σ, if D satisfies each

ϕ in Σ. We say that D is consistent w.r.t. Σ if D |= Σ.

Fixed Database

For an instance D of R and a data quality rule ϕ, we say that D is fixed w.r.t. ϕ,

if for each violation V of D w.r.t. ϕ, fix(V ) returns an empty set of candidate fixes.

We say D is fixed w.r.t. a set Σ of data quality rules, if D is fixed w.r.t. each ϕ in Σ.

Consider our example in Figure 2.1. After all changes, we obtain a modified database

D′. While one violation still remains, i.e., tuples (t1, t3) w.r.t. rule ϕ3, it has no
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candidate fixes. Hence, the database D′ is said to be fixed, although it is inconsistent,

e.g., it does not satisfy the rule ϕ3 in Σ.

Unresolved Violations

Note that, in our system, Dr must be fixed, but may contain unresolved violations,

i.e., Dr may be inconsistent w.r.t. Σ. As opposed to traditional approaches that

compute a fix D′r that must be consistent, i.e., detect(D′r, ϕ) is also empty for each

ϕ in Σ, the problem we study only repairs dirty data for which candidate fixes are

known. This is based on the fact that in practice and for some rules, there may not

exist sufficient knowledge on how to resolve the corresponding violations; neither the

users know a priori nor the data cleaning system could guess. Heuristically resolving

such violations may introduce more errors, triggering a disastrous domino effect.

Further Data Quality Aspects

There are several fundamental problems associated with quality rules. The con-

sistency problem is to determine, given Σ and schemas R, whether there exists a

nonempty instance D (each table in D is nonempty) of R such that D |= Σ. The

implication problem is to decide, given Σ and another data quality rule ψ, whether Σ

implies ψ. In simpler terms, the consistency problem is to decide whether the data

quality rules are dirty themselves, and the implication problem is to decide whether a

data quality rule is redundant. When treating the rules as black-boxes, it is difficult,

if not impossible, to check whether they are internally consistent.

It has been verified in [13] that given CFDs only, or CFDs and MDs taken together,

the consistency (resp. implication) problem is NP-complete (resp. coNP-complete).

However, when either the database schema is predefined or no attributes involved

in the CFDs have a finite domain, the consistency check for CFDs is PTIME [14],

which actually covers many practical applications. For that case and for common

rules such as CFDs and MDs, several algorithms have been proposed [12,14] to check

their consistency. It is worth mentioning that we have implemented default classes

for CFDs (FDs) and MDs; the consistency of such particular rules can be checked by

those algorithms. In this work, we assume collections of Σ and D that are consistent.
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2.4 System Architecture

Rule Collector

Data Quality Dashboard

NADEEF

Data owners
Domain experts

Rules

Data

ETLs, CFDs, MDs,
Business rules

Violation Detection

Data Repairing

Rule Compiler

Detection and Cleaning Algorithms
Core

Metadata

Data Loader

Metadata Management
Auditing and Lineage

Indices

Probabilistic models

Figure 2.2. Architecture of NADEEF

We show NADEEF’s architecture in Figure 2.2. In a nutshell, NADEEF first

collects data and rules defined by the users. The rule compiler then compiles these het-

erogeneous rules into homogeneous constructs. Next, the violations detection module

finds what data is erroneous and possible ways to repair them, based on user-provided

rules. After identifying errors, the data repairing module handles the interdependency

of these rules by treating them holistically. Since data cleaning is usually an iterative

process and new violations might be introduced when updating data values during

repairing, NADEEF adopts a simple strategy to ensure that the process terminates.

NADEEF also manages metadata related to its different modules. This metadata

can be used to allow domain experts and users to actively interact with the system.

It employs a data quality dashboard that would exploit this metadata and provide

information such as error summarization and error distribution.

NADEEF contains these components: (1) the Rule Collector to gather user-

specified quality rules; (2) the Core which encapsulates violations detection and data

repairing for heterogeneous rules and allows for holistic data cleaning; and (3) the

Metadata Management and Data Quality Dashboard modules that are concerned with

maintaining and querying various metadata for data errors and their possible fixes.

They also allow domain experts and users to easily interact with the system.
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Rule Collector

It collects user-specified data quality rules such as ETL rules, CFDs (FDs), MDs,

deduplication rules and other customized rules.

NADEEF Core

It contains components: rule compiler, violations detection and data repairing.

Rule Compiler: This module compiles all heterogeneous rules and manages them

in a unified format.

Violations Detection: This module takes the data and the compiled rules as input,

and computes a set of data errors.

Data Repairing: This module encapsulates holistic repairing algorithms that take

violations as input, and computes a set of data repairs, while (by default) targeting

the minimization of some pre-defined cost metric. This module may interact with

domain experts through the data quality dashboard to achieve higher quality repairs.

Inside the core of NADEEF, we also implement an extensible Updater that de-

cides which computed data changes will be finally committed. The Updater is needed

since data cleaning is an expensive, (mostly) non-deterministic and iterative process.

When applied to the database, updates computed by repairing algorithms may trigger

new violations and the cleaning process may not terminate. The Updater provides a

termination test, ensuring that the entire data cleaning process terminates.

We adopt a simple termination test in each iteration of the data repair process

that is similar to data cleaning techniques proposed in [10,17]; the Updater applies the

computed updates only if an attribute value is not changed more than x times. Oth-

erwise, the Updater changes the attribute value to a special null value that eliminates

any potential violations on this attribute value in the future.
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Metadata Management and Data Quality Dashboard

Building a commodity data cleaning system requires collecting and handling sev-

eral types of metadata to help understand and improve the cleaning process. The

role of a metadata management module is to keep full lineage information about data

changes, the order of changes, as well as maintaining indices to support efficient meta-

data operations. The data quality dashboard helps the users understand the health

of the database through progress indicators, data quality health information, as well

as summarized, sampled or ranked data errors. It also facilitates the solicitation of

users’ feedback for data repairs.

2.5 NADEEF’s Programming Interface

As a generalized data cleaning system, NADEEF introduces a simple program-

ming interface through which the user can define heterogeneous types of data quality

rules. Such a unified interface allows to treat all these rules as black-boxes when de-

tecting violations and repairing the data accordingly. This also gives a great flexibility

to define rules that represent business logic or custom rules. Moreover, NADEEF

provides optimized implementations of some rules, e.g., FDs and MDs, to cover the

standard dependency-based widely used rules. Figure 2.3 shows the programming

interface for defining the semantics of data errors and possible ways to fix them.

Interface Rule {

Violations detect(Tuples tuples);

Fixes fix(Violation violation);

}

Figure 2.3. NADEEF’s Programming Interface
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2.5.1 Programming Interface Operators

We define two main functions:

• detect: Takes a single tuple or a pair of tuples as input, and returns a set of

problematic cells (violations), if any, in order to express the static semantics

(what is wrong) of the rule.

• fix: Takes a nonempty set of problematic cells as input, and returns a set

of suggested expressions to repair these data errors. It reflect the dynamic

semantics (how to repair errors) of the rule. It suggests a set of candidate fixes

for a violation, from which the repair module would later choose the “best”

repairs to apply on data.

We refer to a class that inherits from Rule and implements the error detection

function detect() as a data quality rule. We show different examples for various rule

types in the following section.

The presence of a function fix() is optional, and its absence indicates that the

users are not clear about its dynamic semantics, e.g., ϕ3 from our example.

In practice, many types of violations are usually defined on either a single tuple

(e.g., constant CFDs and many ETL rules), two tuples (e.g., FDs, variable CFDs,

MDs and deduplication rules) or a set of tuples (e.g., aggregation constraints [36]).

Supporting aggregation functions and other data quality rules defined on a subset of

the data triggers a different class of challenges which are beyond the scope of this

work. This is especially true for the efficiency of the violations detection process. We

focus on the first two classes of violations, i.e., violations defined on one tuple or two

tuples. These two classes already cover a very large spectrum of data quality rules

found in practice, thus not diminishing the expressiveness of NADEEF.
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Class Rule1 {

Violations detect (Tuple t1, Tuple t2) {

if (t1[CC] = t2[CC] ∧ t1[country] 6= t2[country])

return {t1[CC, country], t2[CC, country]};

return ∅;

}

Fixes fix (Violation v) {

Fixes fixes;

fixes.insert(v.t1[country] ←v.t2[country]);

fixes.insert(v.t2[country] ←v.t1[country]);

return fixes;

}

}

Class Rule2 {

Violations detect (Tuple t, Tuple c) {

if (t[LN, street, city, country]=c[LN, street, city, country]∧t[FN] ≈ c[FN]∧t[CC, phone] 6=c[CC, tel])

return { t[FN, LN, street, city, country,CC, phone], c[FN, LN, street, city, country,CC, tel]; }

return ∅;

}

Fixes fix (Violation V) {

return { V.t[CC]← V.c[CC]∧V.t[phone]← V.c[tel]}

}

}

Class Rule3 {

Violations detect (Tuple t1, Tuple t2) {

if (t1[LN,CC, phone] = t2[LN,CC, phone] ∧ t1[FN] ≈ t2[FN]

∧t1[where] 6= t2[where]

∧time diff(t1[when,where], t2[when,where]) < 1)

return { t1[FN, LN,CC, phone,when,where],

t2[FN, LN,CC, phone,when,where]; }

return ∅;

}

}

Figure 2.4. Sample Rules in NADEEF
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2.5.2 Sample Rules

Figure 2.4 illustrates how the rules in our example are represented via the unified

programming interface. In a nutshell, the users specify a rule’s static semantics over

either one tuple or two tuples via a detect() function, where an error is represented by

a set of attribute values. Moreover, the users can also, if possible, specify its dynamic

semantics by providing different alternatives to repair the data via a fix() function.

1. Rule1 (for ϕ1) specifies how to identify the violations via a detect() function

on two tuples from table transactions. It also defines via a fix() function two

options to resolve a violation V : Either update V.t2[country] to V.t1[country], or

update V.t1[country] to V.t2[country].

2. Rule2 (for ϕ2) is defined on two tables customers and transactions. When it

identifies that the same person from different tables has different phones (i.e.,

the violation is not empty via a detect() function), it updates the phone value

in transactions to the tel value from customers (in fix()). Actually, the user

indicates that the values from customers are more reliable. Here, the ≈ could

be any (domain-specific) similarity function that a user defines.

3. Rule3 (for ϕ3) only specifies how to detect a violation via a detect() function. No

fix() function is given since the users do not know how to resolve this violation.

By allowing multiple types of rules NADEEF provides a simple way to determine

what is wrong via the detect() function and how to repair it via the fix() function.

2.5.3 Programming Interface Optimizations

Going back to our programming interface, we introduce a few other (optional)

operators to help “efficiently” detect data quality errors, as shown in Figure 2.5.

Should the user implement these methods, it would help speed up the detection phase.

Note that these methods are already provided for pre-defined rules implemented in

NADEEF, e.g., FDs and MDs.
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Interface Rule {

Table scope(Table table);

Tables block(Table table);

Tuples iterator(Table block);

Violations detect(Tuples tuples);

Fixes fix(Violation violation);

}

Figure 2.5. NADEEF’s Optimized Programming Interface

We define these functions:

• scope: Takes a database table as input, and returns a smaller table with only

the relevant rows and columns needed to check for violations.

• block: Takes a table as input, and partitions it into smaller independent tables

(blocks), such that tuples from different blocks will not encounter any violations.

Tuples within the same partition only need to be compared together checking

for possible violations.

• iterator: Takes a block as input, and defines the ordering in which its tuples

should be passed to the detect method for a faster and more efficient traversal,

rather than comparing all pairs of tuples within the block.

The optimized flow is given in Figure 2.6. For example (Refer to Figure 2.7), for

the FD ϕ1 from our example, the violations detector uses the rule methods, among

other rules, as follows:
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Figure 2.6. NADEEF’s Violations Detection Flow for Optimized Rules

1. transactions data table is loaded from database

2. For ϕ1, among other rules, scope method is used to scope the table horizontally

and vertically to only keep the relevant rows and columns to this rule, i.e., CC

and country

3. The table is then partitioned into smaller blocks, to avoid comparing all data

tuples, but rather compare possibly violating tuples only. In this case, all tuples

with the same LHS will be in the same block.

4. Inside every block, instead of comparing all pairs of tuples, an efficient iterator

would sort the tuples on RHS and linearly scan the tuples searching for tuples

with different country values.

5. As explained earlier, for every pair of tuples, detect method would produce

a violation marking those tuples that share the same CC, but have different

country, and fix method would suggest the corresponding candidate fixes.
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FN LN street city country CC phone when where

t1: David Jordan 12 Holywell Street Oxford UK 44 66700543 12:00 6/5/2012 Netherlands

t2: Paul Simon 5 Ratcliffe Terrace Oxford UK 44 44944631 11:00 2/12/2011 Netherlands

t3: David Jordan 12 Holywell Street Oxford Netherlands 44 66700541 6:00 6/5/2012 NY, USA

t4: Peter Austin 7 Market Street Amsterdam Netherlands 31 55384922 9:00 6/2/2012 Netherlands

(a) T : An instance of schema transactions

country CC

t1: UK 44

t2: UK 44

t3: Netherlands 44

t4: Netherlands 31

(b) scope

country CC

t1: UK 44

t2: UK 44

t3: Netherlands 44

country CC

t4: Netherlands 31

(c) block

country CC

t3: Netherlands 44

t1: UK 44

t2: UK 44

country CC

t4: Netherlands 31

(d) iterator

Violations

V1 : {t1[CC, country], t3[CC, country]}

V2 : {t2[CC, country], t3[CC, country]}
(e) detect

Candidate Fixes

F1 : {t1[country]← t3[country]}

F2 : {t3[country]← t1[country]}

F3 : {t2[country]← t3[country]}

F4 : {t3[country]← t2[country]}
(f) fix

Figure 2.7. Violations Detection Flow for ϕ1 on transactions
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6. Eventually, for all rules, all candidate fixes are fed into the repair module, in

order for the repairing algorithm to choose the appropriate data repairs holis-

tically, considering the data quality rules altogether at the same time.

7. Those repairs might introduce other violations to other rules, so the process is

repeated until the data is consistent or the Updater decides to terminate it.

2.6 Inside NADEEF: System Core

2.6.1 Violations Detection

We describe a basic approach to compute violations as well as optimization tech-

niques, namely partitioning and compression, possible under some restricted settings.

Finding Violations and Candidate Fixes

Given a database D and a set Σ of data quality rules, the method for violation

detection, referred to as GetViolations, returns a set V of violations and a set F of

candidate fixes, where V (resp. F) is the union of the violations (resp. candidate

fixes) of Vϕ (resp. Fϕ) for each ϕ in Σ. A straightforward way to compute V and F

for each ϕ, is to invoke the functions detect(t) and detect(t1, t2) for each single tuple

and each pair of tuples on which ϕ is defined, respectively. The fix() function will be

invoked for each violation returned by detect(t) or detect(t1, t2).

Considering our ongoing example from Figure 2.1, The detected violations and

suggested candidate fixes are shown in Table 2.1. By applying ϕ1, attribute values

from tuples t1 and t3 (resp. t2 and t3) violate ϕ1, i.e., violation V1 (resp. V2), leading

to two candidate fixes F1 and F2 (resp. F3 and F4). Next, ϕ2 detects a violation V3

between t3 and c1 and suggests F5 as a candidate fix to copy the data from the more

reliable master data. Finally, ϕ3 marks the two transactions t1 and t3 as fraud or

erroneous, but with no suggested fixes.
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Table 2.1.
Sample Violations and Candidate Fixes

Rule Violation Candidate Fixes

ϕ1 V1: {t1[CC, country], t3[CC, country]} F1: t1[country] ← t3[country]

F2: t3[country] ← t1[country]

ϕ1 V2: {t2[CC, country], t3[CC, country]} F3: t2[country] ← t3[country]

F4: t3[country] ← t2[country]

ϕ2 V3:{t3[FN, LN, street, city, country,CC, phone], F5: t3[CC]← c1[CC]

c1[FN, LN, street, city, country,CC, tel]} ∧ t3[phone]← c1[tel]

ϕ3 V4: {t1[FN, LN,CC, phone,when,where], ∅

t3[FN, LN,CC, phone,when,where]}

Note that resolving the violations of ϕ1 introduced the violation of ϕ2, whose fix

in turn led to another violation of ϕ3. That is why NADEEF performs detection

and repairing in an iterative manner until the Updater terminates the process.

Optimizations for Violations Detection

Usually, systems that are general and extensible have to trade in performance for

generality and extensibility. This is also the case of NADEEF. We hereby discuss

some optimization techniques that are possible in more restricted settings.

For instance, violation detection upon all pairs of tuples using the detect(t1, t2)

function is inherently expensive. However, it should be possible to do better in more

restricted settings.

One typical optimization is to divide large sets of input tuples into groups, referred

to as partitions (Recall the block operator in our optimized programming interface),

such that violations are detected on each partition, provided that some information is

known about the rules. For example, if we are resolving country code (CC) violations

(e.g., ϕ1 in our example), we may be able to divide them using the CC attribute.
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Thus, violations of tuples with the same CC but different country values need to be

only detected inside each partition.

Another way to reduce the number of pairwise comparisons is to merge tuples.

Specifically, two tuples t1 and t2 can be merged for a rule ϕ, if (1) (t1, t2) do not violate

ϕ; and (2) for any t3, (t1, t3) 6|= ϕ iff (t2, t3) 6|= ϕ. Intuitively, the second condition

requires that t1 and t2 can be merged if for any tuple t3, they either both violate ϕ

with t3, or neither violates ϕ with t3. We refer to this as violations compression.

In order to apply the above two techniques, we need users to provide some knowl-

edge about their rules and how they use the attributes. Concretely, the system needs

to know (a) the set of attributes that are used to indicate why two tuples should

be compared; and (b) the set of attributes that need to be modified when there is a

violation. Such knowledge can be passed through the different operators of our pro-

gramming interface (scope, block, iterator, detect and fix) and is already provided

for several pre-defined rules that are implemented and employed in NADEEF, e.g.,

FDs, CFDs and MDs.

We highlight two functions LHS(ϕ) and RHS(ϕ) to return the set of attributes for

the above (a) and (b), respectively. For example, consider Rule1 (ϕ1) in our ongoing

example, we have LHS(ϕ1) = {CC} and RHS(ϕ1) = {country}.

Next, we first discuss the case for one data quality rule, and then extend to multiple

quality rules. For simplicity, in the following, we focus our discussion on equality

comparison. For various similarity comparisons, several blocking-based techniques

are already in place [37,38] and can be leveraged within NADEEF.

Single data quality rule

For a single data quality rule ϕ, partitioning groups all tuples whose LHS(ϕ)

attribute values are the same. Using a hash table, the partitioning can be performed

in linear time, assuming that a hash table requires a constant cost per operation.

For compression, two tuples t1 and t2 are merged into t12 w.r.t. ϕ if t1[LHS(ϕ) ∪

RHS(ϕ)] = t2[LHS(ϕ) ∪ RHS(ϕ)]. When they are merged, their cell values related to

attributes LHS(ϕ) ∪ RHS(ϕ) are the same and will be compressed as t12[LHS(ϕ) ∪
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RHS(ϕ)] = t1[LHS(ϕ) ∪ RHS(ϕ)]. We use the term super cell for a compressed cell.

A super cell c is a cell with a set of identifiers of original cells, referred to as the

extension of cell c, denoted by ext(c). For the attributes that are irrelevant to ϕ,

their cell values in t12 are set to null, and their extensions are empty. It is worth

noting that when similarity comparisons are considered, two cells whose values are

similar cannot be compressed, if the similarity function is not transitive.

Reconsider the database in Figure 2.1 and the rule Rule1 (ϕ1) in Figure 2.4.

Figure 2.8 illustrates how the partitioning and compression techniques work. Here,

LHS(ϕ1) = {CC} and RHS(ϕ1) = {country}.

Figure 2.8. Partitioning and Compression for ϕ1

Partitioning table transactions gives two partitions: Partition1 with three tuples

t1–t3 since their CC values are the same (44), and Partition2 with one tuple t4.

For compression, since t1[CC, country] = t2[CC, country], the two tuples t1 and t2

(shaded tuples) will be merged into t12. Their cells t1[CC] and t2[CC] (resp. t1[country]

and t2[country]) are merged into a super cell cc12 (resp. country12) in t12 whose exten-

sion is ext(cc12) = {t1[CC], t2[CC]} (resp. ext(country12) = {t1[country], t2[country]}).

The other cells of t12, which are irrelevant to ϕ1, have empty extensions and are

omitted here. The other tuples (t3 and t4) are not compressed as shown in Figure 2.8.

From Partition1 and after compression (tuples t12 and t3), one violation with four

cells, i.e., {cc12, country12, cc3, country3}, is detected. Note that this violation was

originally represented by two violations had we not applied compression, and that

there are no violations from Partition2.
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Multiple data quality rules

Given a databaseD and a set Σ of data quality rules as input, NADEEF computes

and returns a set V of all violations.

It first creates partitions for each data quality rule. Then, it compresses tuples

for each partition. The violations for each rule will be computed within its parti-

tions. After computing all violations, the system needs to expand violations that

have intersections across different rules before the violations are then returned.

Notably, a super cell is originally related to one rule, and all the cells in one super

cell have the same value. Hence, extensions of any two super cells should be either

the same, or disjoint, such that the value assignment to different super cells, for any

cleaning algorithm, should be irrelevant. Otherwise, we need to expand these super

cells. We illustrate how the expansion works with the example below.

For table transactions (Figure 2.1), assume that there another rule ϕ4 that causes

another violation Vb as shown in Figure 2.9. The violation Va in Figure 2.9 is the one

derived in Figure 2.8. Note that the two cells, country12 in Va and country1 in Vb are

not the same, but overlap on t1[country]. Hence, violation Va needs to be expanded

to Va1 and Va2, as depicted in Figure 2.9.

Figure 2.9. Violations Expansion

One can derive original tuples from a compressed tuple, by un-compressing their

super cells. Similarly, one can derive original violations from the violations given by

super cells.
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Performance Gain

Considering the worst case complexity of brute force method, Table 2.2 shows the

benefits of partitioning and compression using a table of 10K tuples of hosp dataset

(More about datasets in Section 2.7). Without any optimization, it requires more

than 1 billion pairwise comparisons and produces 130K violations. With partitioning

and compression, it requires only 4.4K pairwise comparisons and produces only 4.4K

violations.

Table 2.2.
Benefits of Partitioning and Compression

Method Comparisons Violations

Brute force 1,199,880,000 130,038

Partitioning 6,797,429 130,038

Compression 52,512,009 4,434

Partitioning + Compression 4,434 4,434

2.6.2 Data Repairing

In this section, we describe two algorithms for the data repairing module (imple-

mented in NADEEF), referred to as GetFixes. The first algorithm, which is designed

to achieve higher accuracy, encodes a data cleaning problem to a variable-weighted

conjunctive normal form (CNF) such that existing MAX-SAT solvers can be invoked

to compute repairs with minimum cost. The second algorithm, which is designed to

be more efficient, heuristically computes repairs by extending the idea of equivalence

classes employed by many existing data cleaning solutions. These two implementa-

tions illustrate the extensibility of our system using different repairing approaches.

Better still, users can override these core classes with their own implementations.
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Variable-Weighted MAX-SAT Solver Repair Module

Given a set V of violations and a set F of candidate fixes, the algorithm computes

a set F ′ of fixes with the target that (1) when F ′ is applied to a database D, the

updated database D′ is fixed, and (2) the overhead cost(D,D′) of changing D to D′

is minimum.

We propose to achieve the above target by converting our problem to a variable-

weighted MAX-SAT problem, a well studied NP-hard problem. Given a CNF where

each variable has an associated weight, this problem is to decide a set of Boolean

assignments of variables such that (1) the maximum number of clauses can be satisfied

(the whole CNF being satisfied translates to D′ being fixed); and (2) the total weight

of variable assignments to true is minimum, which translates to the cost of changing

D to D′ being minimum. Several high-performance tools for SAT (SAT-solvers) are

in place [39] and have proved to be effective in areas such as software verification, AI

and operations research.

Weighted Variables

Each assignment t[A]← a in a candidate fix F is represented by a Boolean variable

xat[A]. We denote by wt(xat[A]) the weight of xat[A]. Intuitively, a variable xat[A] set to

true means that the attribute value of t[A] should be changed to value a and if this

update is applied to the database the cost is wt(xat[A]). Naturally, if t[A] = a, we

have wt(xat[A]) = 0. Note that the compression technique discussed previously can be

readily applied here. For each variable in a CNF corresponding to a super cell c, its

weight is the cost of changing a normal cell multiplied by the cardinality of the super

cell, i.e., |ext(c)|.

Clauses

The clauses are designed to represent three different semantics: (a) inclusive as-

signments: Each cell that causes a violation should be assigned a (possibly) new value;

(b) exclusive assignments: Each cell can be assigned only one value; and (c) violation

avoidance: Cells that cause a violation cannot coexist with current values.
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Given a set F of candidate fixes, let val(F , t[A]) denote {t[A]}∪{ai | (t[A]← ai) ∈

F}, i.e., the set of all values that t[A] can be assigned to, including its current value.

For example, for the candidate fix F2 in Table 2.1, we have val({F2}, t3[country]) =

{Netherlands, UK}.

(a) Inclusive Assignments: For each cell t[A] such that n > 1 where n =

|val(F , t[A])|, we generate a clause with the form (xa1t[A] ∨ · · · ∨ x
an
t[A]). Intuitively,

this clause is to ensure that at least one of the values should be assigned to t[A].

(b) Exclusive Assignments: For each cell t[A] such that n > 1 where n =

|val(F , t[A])|, we generate n(n − 1)/2 clauses, where each clause is in the form of

(¬xait[A] ∨ ¬x
aj
t[A]), for each ai, aj ∈ val(F , t[A]), and ai 6= aj. Intuitively, these clauses

assure that at most one of the values can be assigned to t[A].

(c) Violations Avoidance: For each violation that consists of a set of n cells in the

form of ti[Ai] = ai for i ∈ [1, n], Ai an attribute in ti and ai the current value of ti[Ai],

we generate a clause (¬xa1t1[A1] ∨ · · · ∨ ¬x
an
tn[An]). Intuitively, this clause assures these

values cannot all be true simultaneously to avoid the violation when put together.

Recall that the cost of each variable is determined by a function cost(c, v1, v2) that

returns a value representing the cost of changing the value of cell c from v1 to v2. By

default, it returns 1 (i.e., update unit) when v1 6= v2 and 0 otherwise.

To better understand how the variable-weighted MAX-SAT solver works, we con-

sider slightly modified versions of our data quality rules, so that the violations and

their candidate fixes are encountered together in the same iteration:

1. An FD ϕ1 : CC→ country.

2. An MD ϕ′2: If two records match on first name and last name, then the trans-

action country code and phone in transactions should match those of customers.

3. A business rule ϕ′3 that would mark two transactions as fraud or erroneous if

both were by the same person (identified by the first name and last name) in

two different locations within 1 hour.
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Variables with weight 1 are shown in Table 2.3, e.g., the variable xUK
t3[country] indi-

cates that t3[country] can be changed to UK. Variables with weight 0 are omitted.

Table 2.3.
MAX-SAT Solver Weighted Variables

xNetherlands
t1[country] xNetherlands

t2[country] xUK
t3[country] x66700543

t3[phone]

We generate four inclusive (resp. exclusive) clauses, corresponding to the above

four non-zero weight variables, as shown in Table 2.4.

Table 2.4.
Inclusive and Exclusive Assignments for MAX-SAT Solver

Inclusive Assignments Exclusive Assignments

(xUK
t1[country] ∨ xNetherlands

t1[country] ) (¬xUK
t1[country] ∨ ¬xNetherlands

t1[country] )

(xUK
t2[country] ∨ xNetherlands

t2[country] ) (¬xUK
t2[country] ∨ ¬xNetherlands

t2[country] )

(xUK
t3[country] ∨ xNetherlands

t3[country] ) (¬xUK
t3[country] ∨ ¬xNetherlands

t3[country] )

(x66700541
t3[phone] ∨ x66700543

t3[phone]) (¬x66700541
t3[phone] ∨ ¬x66700543

t3[phone])

Moreover, four clauses are generated to guarantee avoidance of the existing four

violations, as shown in Table 2.5.

Table 2.5.
Violations Avoidance for MAX-SAT Solver

Violations Avoidance

(¬x44
t1[CC] ∨ ¬xUK

t1[country] ∨ ¬x44
t3[CC] ∨ ¬xNetherlands

t3[country] )

(¬x44
t2[CC] ∨ ¬xUK

t2[country] ∨ ¬x44
t3[CC] ∨ ¬xNetherlands

t3[country] )

(¬xDavid
t3[FN] ∨ ¬xJordant3[LN] ∨ ¬x44

t3[CC] ∨ ¬x66700541
t3[phone]

¬xDavid
c1[FN] ∨ ¬xJordanc1[LN] ∨ ¬x44

c1[CC] ∨ ¬x66700543
c1[tel] )

(¬xDavid
t1[FN] ∨ ¬xJordant1[LN] ∨ ¬x

12:00−6/5/2012
t1[when] ∨ ¬xNetherlands

t1[where]

¬xDavid
t3[FN] ∨ ¬xJordant3[LN] ∨ ¬x

6:00−6/5/2012
t3[when] ∨ ¬xNY,USA

t3[where] )
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A variable-weighted MAX-SAT solver will take the conjunction of all the above

clauses as input. There are two possible ways to fix the database, i.e., the whole CNF

is satisfiable, with a cost of 3 and 2, respectively, as in Table 2.6.

Table 2.6.
Possible Repairs of MAX-SAT Solver

Cost Truth Assignments of non-zero Weighted Variables

3 xNetherlands
t1[country] , xNetherlands

t2[country] , x66700543
t3[phone]

2 xUK
t3[country], x

66700543
t3[phone]

The variable-weighted MAX-SAT solver will choose the second option above,

which will update two cells, i.e., changing t3[country] to UK and t3[phone] to 66700543,

since it has the lowest total cost of 2.

Equivalence Classes Repair Module

An alternative implementation of our core algorithm for data repairing is based

on equivalence classes. It was originally introduced for FD and CFD repairs [10], but

we extend it for our generalized system to support other rules. We hereby revise the

concept and present our strategy.

Equivalence Classes

An equivalence class consists of a set E of cells. In a database D, each cell c has an

associated equivalence class, denoted by eq(c). An equivalence class E is associated

with a set of candidate values, denoted by cand(E), and a unique target value, denoted

by targ(E).

Reconsider the violations and candidate fixes of ϕ1 in Table 2.1. Given a set V of

violations and a set F of candidate fixes as input, we build equivalence classes and

find fixes as follows (See Figure 2.10):
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Figure 2.10. Equivalence Classes Repair Module

1. Initialization: Each cell c involved in V is an equivalence class eq(c), and its

candidate value is its current cell value.

2. Merge equivalence classes:

(a) If there are two candidate fixes c1 ← c2 and c2 ← c1 in F , the two equiva-

lence classes eq(c1) and eq(c2) will be merged into one, and the new set of

candidate values is the union of the two sets of candidate values for eq(c1)

and eq(c2), i.e., cand(eq(c1)) ∪ cand(eq(c2)).

(b) If there is only one candidate fix c1 ← c2 (i.e., c2 ← c1 is not a candidate

fix), the candidate values of eq(c1) will become cand(eq(c1))∪cand(eq(c2)).

3. Assign a target value: For each equivalence class E, select one target value

targ(E) from its candidate values cand(E), such that the total cost of changing

all cell values in E to targ(E) is minimum.

Using equivalence classes, we separate the decision of which cell values should be

the same from that of what target value should be assigned to an equivalence class.

We defer the assignment of targ(E) as late as possible to reduce poor local decisions.

Note again that the compression technique discussed previously can be readily

applied here. The cost of making a super cell value change in an equivalence class is

multiplied by |ext(c)|, the cardinality of the super cell.
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2.7 Experimental Study

We evaluated our data cleaning system NADEEF along four dimensions:

Generality: The programming interface can specify multiple types of rules.

Extensibility: Different core algorithms can be used to detect errors and clean data.

Effectiveness: Our system can find a fixed database with high accuracy.

Efficiency: Our system can work on data in reasonable sizes.

2.7.1 Experimental Settings

Datasets

We used two real-life datasets:

1. hosp data was taken from the US Department of Health & Human Services 1.

It has 100K records with 9 attributes used in data quality rules: Provider

Number (PN), zip, city, state, phone, Measure Code (MC), Measure Name (MN),

condition, and stateAvg. We also downloaded another table of US zip codes 2

that has 43K tuples with two attributes: zip and state.

2. bus data is a one-table dataset obtained by joining 8 tables using primary-

foreign key relationships from the UK government public datasets 3. The table

has 160K tuples with 16 attributes relevant to data quality rules: Locality Code

(LC), Locality Name (LN), Locality Name Language (LL), Administrative Area

Code (AC), Area District Code (AD), Creation DateTime (CT), Modification

DateTime (MT), Revision Number (RN), Modification (MD), Area Name (AN),

Region Code (RC), Region Name (RN), District Code (DC), District Name

(DN), Bus Zone Code (ZC) and country.

1http://www.hospitalcompare.hhs.gov
2http://databases.about.com/od/access/a/zipcodedatabase.htm
3http://data.gov.uk/data
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Dirty Datasets

Dirty data was generated as follows: For any dataset D, we first cleaned D to

get D′ by using some cleaning algorithms followed by careful manual check, ensuring

that D′ is consistent w.r.t. the defined rules. We treated D′ as the ground truth. We

then added noise to D′, which is controlled by noise rate noise%. Note that, we only

added noise to the attributes that are used in data quality rules.

Data Quality Rules

All data quality rules have been designed manually (as detailed shortly).

Algorithms

NADEEF was implemented initially in C++, including the following algorithms:

1. The algorithm for violation detection, using partitioning and compression tech-

niques by default, referred to as GetViolations.

2. The algorithm for computing fixes using the variable-weighted SAT-solver, re-

ferred to as WSAT. We used a variable-weighted MAX-SAT solver from [40].

3. The algorithm for computing fixes using equivalence classes, referred to as EQU.

For comparison, we obtained the implementation of two algorithms for FD repair-

ing, a cost-based heuristic method [15], referred to as HEU, and a vertex cover based

approach [17], referred to as VER. Both approaches were implemented in Java.

We conducted all experiments on a Microsoft Windows machine with a 3.4GHz

Intel CPU and 8GB of memory.

Measuring Quality

To assess the accuracy of data cleaning algorithms, we used precision, recall and

F-measure, which are commonly used in measuring the result of repairs, where

F-measure = 2 · (precision · recall)/(precision + recall).

Here, precision is the ratio of attributes correctly updated to the number of all

the attributes that have been updated, and recall is the ratio of correctly updated

attributes to the number of all erroneous attributes.
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2.7.2 Generality

We show the generality of our framework by demonstrating that it can be used to

specify multiple types of data quality rules as shown in Figure 2.11.

We define 10 rules over the hosp dataset, where rules 1-9 are all FDs and rule10

is an MD. For example, rule9 states that in table hosp, MC and state determines

StateAvg. Rule10 states that if two zip code values from table hosp and table zip

are the same, but their state values are different, then the state value from zip table

is more reliable. All of these data quality rules are defined over a pair of tuples.

There are 11 rules defined over the bus dataset, where rules 1-10 are FDs, and

rule11 is a customized rule. Rule11, a single tuple rule, states that for each tuple, if

its Creation DateTime (CT) and Modification DateTime (MT) are the same, then its

Revision Number (RN) must be 0, and its status Modification (MD) must be new.

We can use rule11 to fix erroneous cells as well as capturing missing values since the

values for many RN and MD cells are missing.

For the rule classes that the users have to implement, FDs (resp. MDs) only

require 65 and 34 (resp. 45 and 46) lines of code to define the functions for detecting

violations and generating candidate fixes, respectively. For the customized rule (i.e.,

rule11 for bus data), the users need to write 50 lines of code in total. We see that

using the concept of programming interface as defined in NADEEF, users will have

to write only a few lines of code for data quality rules that are relevant to their

dataset, without having to write an entire data cleaning system specially crafted for

these rules. Note that for the FDs mentioned above, we assign them a default dynamic

semantics of fixing errors by changing the values from the right hand side of the rules.

Remark: To ease the use of NADEEF, we have implemented some common classes

that follow our optimized programming interface in Figure 2.5 and can be easily reused

by users, e.g., FDs, CFDs and MDs. For example, to specify various FDs, users only

need to specify the LHS and RHS attributes of each FD. We have also implemented

some common similarity functions, with string edit distance employed by default.
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(a) Rules for hosp Dataset

(b) Rules for bus Dataset

Figure 2.11. Data Quality Rules for Datasets
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2.7.3 Extensibility

We have already mentioned in Section 2.6 that we provide two different algorithms

for fixing errors (i.e., GetFixes), namely WSAT(Weighted MAX-SAT Solver Repair

Module) and EQU (Equivalence Classes Repair Module). A user can specify through

a configuration file which repair module to use. Users can also specify a totally

different core algorithm GetFixes as long as that algorithm can take as input sets

of violations and candidate fixes, and returns a set of fixes to be applied to the

database. Moreover, not only GetFixes, but also the algorithm for GetViolations can

be overridden.

2.7.4 Effectiveness

We evaluate the accuracy of different cleaning algorithms by varying noise rate

(noise%) and the size of data. Noise is added by either introducing typos to an

attribute value or changing an attribute value by another one from the active domain

of that specific attribute.

Noise from the active domain:

In this series of experiments, we fix the overall noise rate to 1 percent, and then

vary the noise rate from the active domain (x-axis in both charts in Figure 2.12). The

results of comparing WSAT, EQU, HEU and VER are given in the figure (the y-axis

represent F-measure values), where Figure 2.12(a) is for hosp data and Figure 2.12(b)

is for bus data. We use 10K tuples for both datasets with FDs only in order to compare

against HEU and VER that only support FDs.

Figure 2.12 illustrates that when there is no noise from active domain, i.e., x-axis

value is 0, both WSAT and EQU have comparable F-measure values with HEU as in

Figures 2.12(a) and 2.12(b).

However, when there is noise from active domain, the F-measure values of both

EQU and HEU drop quickly. Thus, while EQU and HEU are sensitive to noise from the

active domain, WSAT is not.
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(a) hosp Dataset

(b) bus Dataset

Figure 2.12. F-Measure with noise from active domain
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We explain the above results as follows:

1. WSAT is not sensitive to noise from active domain since it treats variables in-

dependently with the target of selecting variables with the least cost to satisfy

the whole CNF or a maximum number of clauses.

2. EQU is sensitive since when there are erroneous values from the active domain,

the algorithm merges (originally) irrelevant equivalence classes. Hence, when

making decision to set a target value for an equivalence class, many assignments

are wrong. The case for HEU is similar.

3. VER is sensitive since when there are errors from the active domain, the al-

gorithm will erroneously connect some tuples using hyper-edges (see [17]) as

violations, which might connect two previously irrelevant violations and reduce

the accuracy when repairing the data.

4. The reason that our approaches have higher accuracy is that users have to

specify possible ways to fix errors, which avoids blindly making the database

consistent by only targeting minimality.

From this group of experiments, we can observe the following:

1. The new problem studied in this work is meaningful, i.e., instead of trying to

compute a consistent database, we should try to resolve errors when candidate

fixes are known. It highlights the need for users to provide useful information

to guide the process of repairing data.

2. Equivalence class based solutions, which are efficient enough to cover a large

part of existing data cleaning algorithms, are sensitive to the noise from the

active domain.

In the following, to favor the other approaches, we only consider noise from typos.

Since the algorithms WSAT and VER cannot scale well, we focus our comparisons

mainly on algorithms EQU and HEU.
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(a) hosp Dataset (b) bus Dataset

Figure 2.13. F-Measure with variable data size

(a) hosp Dataset (b) bus Dataset

Figure 2.14. F-Measure with variable noise rate
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Noise from typos only:

We evaluate the effectiveness of different algorithms when there is only noise from

typos. Figure 2.13(a) (resp. Figure 2.13(b)) shows the case for hosp (resp. bus)

dataset when fixing noise% at 1% while varying the size of the data from 20K to 100K

tuples (resp. 20K to 160K tuples). Moreover, Figure 2.14(a) (resp. Figure 2.14(b))

shows the results for hosp (resp. bus) dataset when varying the noise rate noise%

from 1% to 10%, with 100K tuples (resp. 40K tuples). The results for the datasets

of different sizes show similar trend, and hence are omitted here.

Figures 2.13(a) and 2.13(b) show that for different sizes of data, the F-measure

values of different algorithms stay almost the same if the noise is only from typos,

which verifies the previous group of experiments. The reason that EQU is better

confirms that it is really helpful to have users specify the dynamic semantics of rules,

i.e., telling the system about the different alternatives to modify attributes when

there is a violation.

Figures 2.14(a) and 2.14(b) show that when there is only noise from typos, existing

algorithms are not sensitive to the noise rate. On the one hand, typos will only

introduce independent violations. When treating these violations separately, the same

algorithm will get a similar F-measure value. On the other hand, when there are

errors from the active domain, most algorithms will associate (originally) irrelevant

violations. This will negatively affect the results of most algorithms, which has been

verified in Figure 2.12.

Interleaving various types of data quality rules:

We evaluate the effect of executing various types of data quality rules together

versus executing them sequentially. Recall from Figure 2.11 that for hosp dataset, the

MD rule10 overlaps with other FD rules, but for bus dataset, the customized rule11

has no overlap with other FD rules. Hence, we focus on evaluating the cleaning of

hosp in different rule order. For bus, since there is no overlap of rules, executing

them in any order makes no difference.
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Figure 2.15. Interleaving various types of rules

We run Algorithm HEU on the hosp data with 100K tuples, varying the noise rate

(noise%) from 1% to 10%. To clearly show the result, we add 5% extra noise to the

attributes that are related to the intersected rules, i.e., attributes zip and state. The

result is given in Figure 2.15. When executing FDs first followed by MDs, the overall

performance is worse than executing MDs first. Moreover, executing MDs and FDs

together has the same performance as executing MDs first.

From this experiment, observe that the order of executing multiple types of rules

matters. That is, executing multiple types of rules in different orders will get dif-

ferent results. However, in practice, it is impossible to know the optimal order a

priori. Hence, when having to deal with multiple types of rules, we should treat them

holistically, as verified by the experiment in Figure 2.15.
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2.7.5 Efficiency

(a) hosp Dataset (b) bus Dataset

Figure 2.16. Running time with variable data size

In the last group of experiments, we study the efficiency of various algorithms. We

start by comparing EQU and HEU running times, and then evaluate WSAT efficiency

on both datasets.

Figure 2.16 shows running times of EQU and HEU: Figure 2.16(a) relates to Fig-

ure 2.13(a), and Figure 2.16(b) relates to Figure 2.13(b). In these two figures, the

x-axis represents the number of tuples while the y-axis represents the running time.

We show two components of the running time of our method, where the lower part is

for detecting violations (i.e., GetViolations) and the upper part is for repairing errors

using EQU. The time for Updater is in milliseconds and thus not reported here.

The results show the following:

1. EQU and HEU deliver good results but for different applications, e.g., HEU is

faster for hosp (Figure 2.16(a)) while EQU is faster for bus (Fig. 2.16(b)).

2. While GetViolations takes some time, the EQU repair module for computing fixes

is quite efficient, which proves the benefits of our partitioning and compression

techniques (Recall the results from Table 2.2).
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Table 2.7.
Running Times for WSAT

hosp time (sec) bus time (sec)

20K 617.4 20K 131.8

40K 4759.3 40K 482.1

60K > 2 hours 80K 2473.2

80K > 2 hours 120K > 2 hours

100K > 2 hours 160K > 2 hours

Moreover, we study the efficiency of WSAT on Datasets hosp and bus, where we

fix noise% at 1% while varying the size of data from 20K to 100K for hosp and 20K

to 160K for bus. The running times are given in Table 2.7. The running times above

2 hours are not given because they do not run to completion. The high running times

come from the inherent complexity of the problem of variable-weighted MAX-SAT

problem, which is NP-hard. Thus, using WSAT for the whole dataset is not practical.

However, it opens the opportunities to design an optimizer that first partitions the

whole data cleaning problem into many smaller independent groups, then determines

which repair module, e.g., WSAT or EQU, to invoke for each group.

2.7.6 Summary

From the above experimental study, we conclude that:

1. Providing a generalized programming interface, which requires minimum user

efforts to specify heterogeneous data quality rules, is practically needed and is

possible (see Section 2.7.2).

2. By making our system extensible, we can benefit from algorithms that expert

users implement for their own applications to replace the default core algo-

rithms, especially for GetViolations and GetFixes (see Section 2.7.3).
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3. Our system, NADEEF, can achieve better accuracy than existing methods

since the users provide the system with the dynamic semantics to resolve vio-

lations (see Section 2.7.4).

4. Multiple types of data quality rules should be treated holistically, since in prac-

tice, it is difficult to know a priori the best order of sequential execution for

algorithms designed for different rules (see Section 2.7.4).

5. NADEEF, can work for data in reasonable sizes (see Section 2.7.5).

2.8 Concluding Remarks

We present NADEEF, a commodity data cleaning system. The main design con-

cept of NADEEF is to separate a programming interface that allows users to flexibly

define multiple types of data quality rules and provide both their static semantics and

dynamic semantics, and a core that implements algorithms to detect and repair dirty

data by treating multiple types of quality rules holistically. We have demonstrated

the system generality and that our interface is expressive enough to define data qual-

ity rules beyond the well known ETL rules, CFDs and MDs. We have also shown the

extensibility of NADEEF by showing that users can plug in other core algorithms,

allowing experts to further customize our system.

The system has been open-sourced 4 and is available as a live demo 5 with a more

user friendly interface (i.e., GUI) to help the users define their rules easier and a

data quality dashboard to summarize the data, violations and repairs. It is the first

approach towards an end-to-end generalized data cleaning system, and has since been

highly cited with a notable impact on the data cleaning and data quality research

communities.

4https://github.com/daqcri/NADEEF
5http://nadeef.da.qcridemos.org/
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3 CONTINUOUS DATA CLEANING

3.1 Dynamic Data and the Need for Continuous Data Cleaning

We have already discussed how vital high quality data can be for any business

and noted that low quality data is costing trillions of losses every year. This shows

how much important, yet challenging, realizing high quality data is and highlights

the urging need for data cleaning systems; a need that easily justifies why the market

for data cleaning systems is growing much larger than other IT segments [4].

Data Cleaning has been studied for several years, and various approaches and

systems have been proposed. Some embraced ETL tools [30], while some dealt with

dependencies [7] and integrity constraints [10–12, 14, 15, 20]. Other approaches tar-

geted significant problems particularly, such as Data Deduplication [31].

With today’s data dynamism and velocity, new use cases appeared against which

the current state-of-the-art approaches stand helpless, such as interactive data clean-

ing and cleaning of dynamic data, hence arises the urgent necessity for continuous

data cleaning.

Current techniques assume that the data and rules are static and available be-

forehand. They are inefficient dealing with dynamic use cases, neither as complicated

as data streams when chunks of data come periodically and the data is not wholly

available at once, nor even as simple as some slight changes of a few records. Of

course, some incremental frameworks that can handle data changes have been pro-

posed [10, 21, 22], but they actually stand limited to a few specific types of data or

quality rules.
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3.1.1 Motivating Scenarios

We present some fundamental scenarios to showcase the limitations of traditional

data cleaning systems, highlighting the necessity of a continuous generalized data

cleaning system and how vital such a system has become for today’s big data and

applications.

name city zipcode areacode phone

c1: Homer Simpson Springfield 12345 111 1234567

c2: Marge Simpson Springfield 12345 111 2345678

c3: Brian Griffin Springfield 67890 111 9876543

c4: Peter Griffin Quahog 67890 999 8765432

c5: Lois Griffin Quahog 67890 999 7654321

(a) C: An instance of schema customers

name card city country time

t1: Homer Simpson 1111111 Springfield USA 01 Nov 2014, 01:00 PM ET

t2: Homer Simpson 1111111 Springfield USA 01 Nov 2014, 01:15 PM ET

t3: Peter Griffin 2222222 Quahog USA 03 Dec 2014, 10:00 PM CT

t4: Marge Simpson 1111111 Springfield USA 22 Nov 2014, 10:00 AM ET

t5: Lucille Botzcowski 1111111 London UK 22 Nov 2014, 02:47 PM GMT

t6: Peter Griffin 2222222 Quahog USA 03 Nov 2014, 11:00 AM CT

t7: Steve Bellows 2222222 Vegas USA 03 Dec 2014, 08:15 PM PT

(b) T : An instance of schema transactions

Figure 3.1. Motivating Example for Continuous Data Cleaning

Iterative Data Cleaning

Data cleaning is actually an iterative process. In one iteration, violating cells

are identified; Then, the cleaning algorithm chooses the proper data changes for

violating data cells to reach a fixed database. New violations might be introduced

when applying those changes, which requires even more iterations to obtain a clean

consistent data instance.
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Refer to Figure 3.1. Consider Table C that contains customers information along

with the following two rules: ϕ1 (zip code uniquely determines customer’s city)

and ϕ2 (city uniquely determines customer’s area code). On the one hand, in one

iteration, a traditional data cleaning system, say X, finds that c3 is in violation with

c4 and c5 according to ϕ1, as they all share the same zip code while having different

city values.

Then, it would fix that error by modifying the wrong city field of c3 to Quahog,

A change that would cause another violation of the same records according to ϕ2,

as they all share the same city now, but have different area code values. This

violation can only be discovered in the second iteration, during which, System X

would unnecessarily repeat some irrelevant comparisons such as c1 − c2 and c4 − c5

again finding no new corresponding violations.

On the other hand, an incremental data cleaning system should optimize this

iterative cleaning process. After each iteration, it should incrementally handle data

changes, reflecting on the data and the violations, and proceed to the next iteration

without repeating the same irrelevant tuples comparisons or data changes again.

Interactive Data Cleaning

Another typical scenario would be a data cleaning system that allows the user

to define the data source(s) along with the corresponding quality rules, provides the

user with an interactive dashboard that visualizes the data, the rules, the detected

violations and possible fixes, and allows for user interaction with those elements. This

interaction with the data mainly helps the user analyze it, understand the connections

among the data records themselves and with the rules, and investigate where the

violations come from and possibly how to fix them.

More importantly, by allowing the user to change some values and immediately

notice how this reflects on the data and violations, the system helps the user develop

profound data quality rules that can indeed represent the semantics of the user’s

business or application.
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This interactive dashboard would be impractical, rather impossible, to implement

within a traditional data cleaning system that lacks any support for continuity. Even

a small change of a single data cell in the database would require re-performing the

whole cleaning process from scratch, which cannot be afforded in today’s evolving

big-data world.

Cleaning of Dynamic Data

In most of the applications, data is not available entirely at once, but rather comes

in periodic chunks or batches, as soon as they are available. Consider the T table

holding credit cards transactions in Figure 3.1, where the data comes into 3 different

blocks as shown, and the rule ϕ3 (If two transactions of the same card occur within

one hour difference in two locations, mark those transactions as prospective fraud).

Thus, the flow of a continuous data cleaning system proceeds as follows. When

the first block arrives, it only needs to examine the pair t1 − t2 for rule violations.

When the second block arrives, the new records t4 and t5 need to be compared along

with the old ones, i.e., t1 and t2, and the possible fraud transactions t4− t5 are noted

(Note the time difference between different time zones). Notice that the system should

intelligently avoid redoing any steps that have been conducted with the arrival of the

first block (e.g., t1 − t2 comparison). Then, when the third block arrives, the newest

records t6 and t7 need to be compared with the old t3, and the pair t3 − t7 is marked

as possible fraud. Again, a smart system would avoid repeating any vain operations

that have been already performed with the arrival of the first two blocks of data (e.g.,

t1 − t4 comparison).

Observe that fraud detection, as most of data streams cleaning scenarios, needs to

be performed in real time, and cannot afford reprocessing all the old data again. With

today’s data volume and velocity, a continuous data cleaning system that would avoid

reprocessing billions of records with each new block of data arriving, is no longer a

luxury, but rather an essential approach for data quality.
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3.1.2 Challenges

Looking back at our data cleaning system, NADEEF, like other state-of-the-

art systems, its process assumes static data and rules, standing helpless against any

dynamism. A user should first provide all the data tables, and the various data quality

rules; Then, violations are detected, and, if specified by rules, repaired accordingly.

For even a single change of just one cell, the current NADEEF can only handle it as

a fresh new data instance, and would redo the whole process of violations detection

and data repairing, repeating all the tuples comparisons and cells changes. With such

inefficiency, it is incapable of coping with today’s evolving data and applications.

Inspired by those aforementioned motivating scenarios, we propose several exten-

sions to NADEEF’s architecture to support continuous data cleaning. Recall that

NADEEF distinguishes between a programming interface and a core to achieve gen-

erality and extensibility. The programming interface allows users to specify multiple

types of data quality rules, while the core provides algorithms to detect violations

and clean the data holistically without differentiating between these different types

of rules.

Support for continuous data cleaning, that can efficiently handle small and big

data changes, should target the following challenges:

Iterativity: Better performance for the traditional iterative data cleaning process;

Each iteration should build upon the output of the previous one, instead of

redoing insignificant tasks.

Interactivity: Interactive data cleaning, where the user can interact with the data

and inspect the effect of data changes on the go.

Continuity: Cleaning of dynamic data, when the data is not available at once, but

rather comes into periodic increments.

Generality: Holistic data cleaning, with the capability of simultaneously handling

different types of data quality rules.
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3.1.3 Contributions

In this work, we build upon NADEEF support for generality, and propose several

changes to its architecture, both the programming interface and the core, to support

the other challenges incurred by data minor and major changes.

In this chapter, we make the following contributions:

• We optimize NADEEF’s iterative data cleaning to incrementally handle data

changes throughout the cleaning process iterations. Recall that NADEEF is

already generalized (supports multiple types of data quality rules) and exten-

sible (allows defining new types of rules, or extending its core detection and

cleaning algorithms).

• We formalize a changes-aware programming interface to facilitate opti-

mized performance of user-defined rules, and we provide its compatible imple-

mentations for some predefined rules.

• We propose a dynamic graphs repair module as an extension in NADEEF’s

core that can efficiently handle minor and major data changes incurred by con-

tinuous data cleaning, and avoid the problems other traditional techniques suffer

from.

• We experiment our proposed extension against NADEEF, with multiple types

of rules on various data sets, to evaluate their performance in different scenarios

and use cases.

In the following, we refer to our extended framework for continuous data clean-

ing as NADEEF+, encompassing the changes-aware programming interface and the

graph-based repair module, in contrast to NADEEF’s MAX-SAT solver and equiv-

alence classes repair modules.
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3.2 Related Work

Data Quality has gained much attention recently with several data cleaning and

repairing approaches proposed in the literature. However, many of these approaches

and systems target only certain types of data quality rules. Among these, [30] uses

ETL (Extract, Transform and Load) tools and data transformations to merge and re-

pair data. Other approaches focus on data repairing with regard to dependencies [7]

and integrity constraints, such as Functional Dependencies (FDs) [11], Conditional

Functional Dependencies (CFDs) [10,14,20], Inclusion Dependencies (inds) [15], Con-

ditional Inclusion Dependencies (CINDs) [16], Matching Dependencies (MDs) [12] and

Denial Constraints [8, 18].

Several techniques have been proposed targeting incremental data cleaning to deal

with data changes without reprocessing the data from scratch. However, they also

target only specific types of quality rules. A continuous data cleaning framework

for FDs where the data and constraints are changing has been proposed in [21]. An

incremental repairing algorithm for CFDs is introduced in [10]. SmartClean [22] is

another incremental data cleaning tool, but can only deal with problems like missing

values and domain violations.

Data Deduplication, being one of the most significant data quality problems (See

[31] for a survey), has also been studied extensively in incremental context, in which

data updates are encountered, making old linkage results obsolete. For Example, [41]

introduces the idea of representative records of the whole original database; Still, the

challenge is how these representatives get chosen. [42] proposed progressive techniques

with the goal of maximizing the deduplication quality within a fixed time slot. Also,

[43] proposes an end-to-end incremental record linkage framework using incremental

graph clustering over similarity graphs. However, again, all these approaches target

the problem of data deduplication specifically, and consequently could be leveraged

to address MDs, but are incapable of tackling other types of data quality rules.
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Some systems address data cleaning through an interactive process, in which the

user’s feedback is employed to improve the accuracy of the model selection of can-

didate fixes. For example, AJAX [34] proposes modeling the data cleaning process

as a directed graph of data transformations, allowing for user involvement to handle

exceptional cases and inspect intermediate results. Potter’s Wheel [26] allows users

to gradually build transformations to clean the data by adding or undoing transforms

on a spreadsheet-like interface. Recently, [44] has also introduced a data cleaning

framework that leverages user feedback through an interactive process, but it could

only handle CFDs, CINDs and MDs. Observe also that these approaches handle only a

limited set of rules types. Moreover, they deal only with small data changes and can-

not support batch continuous data cleaning scenarios, when the data is not available

all at once, but rather comes as periodic (big) incremental updates.

Other approaches have been proposed that target the cleaning of data streams.

For example, [45] introduces the ESP framework for online cleaning of receptor data

streams, to account for missing readings or outliers. It only targets specific types of

data, and is inapplicable in other data cleaning scenarios.

NADEEF [24,25] is the first quest for a generalized data cleaning system that could

handle different types of data quality rules, including user-defined rules that allow

for custom data quality semantics. Yet, the current system stands ineffective against

even the slightest data changes incurred within any of the aforementioned typical

continuous data cleaning scenarios. We hereby propose NADEEF+ to target these

scenarios and to address their corresponding challenges.

3.3 Limitations of Existing Data Cleaning Approaches

Other than lacking generality and supporting limited types of data quality rules,

existing data cleaning solutions suffer from two main problems when it comes to

continuous data cleaning: (1) Errors propagation from old data to new data; and

(2) Committing to old “wrong” decisions taken due to incomplete information.
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3.3.1 Domino Effect: Violations Propagation

country CC

t1: Netherlands 44

t2: Netherlands 44

t3: UK 44

t4: UK 44

t5: UK 44

(a) Dynamic Data

country CC

t1: Netherlands 44

t2: Netherlands 44

t3: Netherlands 44

t4: Netherlands 44

t5: Netherlands 44

(b) Violations Propagation

country CC

t1: UK 44

t2: UK 44

t3: UK 44

t4: UK 44

t5: UK 44

(c) Correct Data Repair

Figure 3.2. Dynamic Data and Domino Effect

Recall that with dynamic data as in our motivating scenarios, data might not be

available as a whole from the beginning, but rather comes into separate batches. In

such case, data cleaning systems suffer from the domino effect of violations propagat-

ing from old data to new data.

Consider the example in Figure 3.2, and assume that data arrives into 3 consec-

utive chunks (Figure 3.2(a)). Let X be a data cleaning solution trying to clean the

data w.r.t. a single FD ϕ1 : CC→ country and targeting minimality.

When the first block of data arrives, X would detect a violation among tuples

t1 : t3 since they all share the same CC, but have different country. A typical repair

would be to change the cell t3[country] to Netherlands since it is the minimal possible

change to reach a consistent database. When the second block of data arrives, t4 now

violates with the other tuples in the database, and again X would change its country

to Netherlands to achieve consistency. The same would happen again for t5 when the

third block arrives, and this could keep going indefinitely (Figure 3.2(b)).

Had we had the full data from the beginning, the error in the old data would

not have propagated to new data, and the end result would have been the correct

consistent data repair in Figure 3.2(c).
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3.3.2 Memoryless Repairs

Another tricky problem traditional solutions suffer from is what we can call mem-

oryless repairs; data cleaning algorithms would make some decisions regarding data

repairs at some point of time, then later when data changes are encountered, they

focus on detecting new violations and how to repair them, but do not reconsider those

old decisions to rollback any “wrong“ ones taken due to incomplete information.

Consider another example in Figure 3.3. Let X be our equivalence-classes-based

data cleaning solution (see Section 2.6), and assume we have two FDs: ϕ1 : CC →

country and ϕ2 : city, state, zipcode→ country. The process would go as follows:

1. According to the first rule, X would detect a violation between tuples t1 : t3

since they have the same zipcode but different country. Hence, their country

cells are all merged into one equivalence class eq1.

2. X would also detect another similar violation between tuples t4 : t7, so their

country cells are all merged into one equivalence class eq2 as well.

3. The second rule would trigger a violation between t3 and t4 because of their dif-

ferent country values. Consequently, the two corresponding equivalence classes

eq1 and eq2 are merged into one eqm.

4. With country cells of t1 : t7 all in one equivalence class, X targeting minimality

would “repair” the data as shown in Figure 3.3(b).

5. Now, consider an update to t4 state and zipcode as shown in Figure 3.3(b), X

would not detect any inconsistencies and the database is considered “fixed”.

6. However, the connection between t3 and t4 is no longer applicable, and the two

equivalence classes eq1 and eq2 should be un-merged, an operation that is not

supported by traditional disjoint sets data structures.

Had we had the full data from the beginning, the resulting repair (Figure 3.2(c))

would have had no trouble with old “wrong” decisions that need to be reconsidered.
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city state zipcode country CC

t1: Oxford - OX1 2PH UK 44

t2: Oxford - OX1 4AU UK 44

t3: London - WC2E 9DD Finland 44

t4: London - WC2E 9DD Canada 1

t5: Lafayette IN 47905 USA 1

t6: West Lafayette IN 47906 USA 1

t7: West Lafayette IN 47907 USA 1

(a) Dirty Data

city state zipcode country CC

t1: Oxford - OX1 2PH USA 44

t2: Oxford - OX1 4AU USA 44

t3: London - WC2E 9DD USA 44

t4: London OH 43140 USA 1

t5: Lafayette IN 47905 USA 1

t6: West Lafayette IN 47906 USA 1

t7: West Lafayette IN 47907 USA 1

(b) Memoryless Repairs

city state zipcode country CC

t1: Oxford - OX1 2PH UK 44

t2: Oxford - OX1 4AU UK 44

t3: London - WC2E 9DD UK 44

t4: London OH 43140 USA 1

t5: Lafayette IN 47905 USA 1

t6: West Lafayette IN 47906 USA 1

t7: West Lafayette IN 47907 USA 1

(c) Correct Data Repair

Figure 3.3. Dynamic Data and Memoryless Repairs
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3.4 Support for Continuous Data Cleaning in NADEEF+

We can formalize our problem as follows: Given the current database instance D,

a set of data quality rules Σ and an incremental batch of data changes ∆D(insertions,

deletions and/or updates), clean the data as if it were all available at once, to output

a new fixed data instance D′.

A continuous data cleaning system should avoid reprocessing data during viola-

tions detection, and its data repairing should deal with problems such as: (1) The

domino effect via keeping a history of data changes and data lineage; and (2) Mem-

oryless repairs via undoing “wrong” repairs chosen because of incomplete data.

3.4.1 Continuous Violations Detection

Recall the task of violations detection in NADEEF from Section 2.6, the flow

needs to be modified accordingly. The process should only inspect data partitions

with new or changed tuples to avoid re-performing unnecessary tuple comparisons.

We explain how to adjust the programming interface so that it can handle data

changes, how to modify the violations detection flow accordingly, and analyze how

this would affect the task complexity.

Changes-Aware Programming Interface

Looking back at our optimized programming interface in Figure 2.5 in the context

of dynamic data, we note that: (1) The scope operator does not need to be changed as

the relevant rows and columns selection criteria would still be the same. (2) Similarly,

the detect and fix operators are not affected; a collection of tuples would produce a

violation, and the corresponding candidate fixes would still be the same as well,

regardless of the fact that it contains old or new tuples. (3) However, to gain better

performance, the block and iterator operators can be supplied with extra information

about the changed tuples. We highlight the changes-aware interface in Figure 3.4.
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Interface Rule {

Table scope(Table table);

Tables block(Table table, Map changes);

Tuples iterator(Table block, Map changes);

Violations detect(Tuples tuples);

Fixes fix(Violation violation);

}

Figure 3.4. Changes-Aware Programming Interface in NADEEF+

Continuous Violations Detection Flow

Notice that the flow is modified to handle the newly inserted tuples. Yet, when

tuples are deleted, the corresponding violations are simply deleted from the violations

table. Moreover, an updated tuple can be considered a newly inserted tuple after a

deletion operation. In that sense, we can say that NADEEF+ violations detection

can support insertions, deletions and updates as data changes.

We highlight the flow to handle pair-tuple rules. For single-tuple rules, our sys-

tem needs only to detect the violations for the newly inserted or updated tuples

individually and delete the obsolete violations corresponding to the deleted tuples.

Recall that violations are detected in multiple separate parallel threads corre-

sponding to different rules, without any communication between them. Violations

are repaired holistically to gain better quality, but detecting violations for a rule can

be handled separately in its own flow. Hence, here we focus on changes to the detec-
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Figure 3.5. Violations Detection Flow in NADEEF+

tion flow for a single rule. It can be directly extended to multiple rules without any

loss of generality. The changes-aware detection flow is given in Figure 3.5.

Recall that the block operator allows the user to define a way in which a table

is partitioned into smaller blocks that are later iterated to find violations, such that

any problematic tuples would fall into the same block. As an illustrative example,

the block operator for an FD is given in Figure 3.6. It should return the set of blocks

containing only tuples that are relevant to data changes. Blocks that have no changes

are not expected to give any new violations, and hence should be skipped. The values

of the left-hand-side (LHS) columns of changed tuples would be transformed into a

filtration expression, upon which the table is filtered before it is partitioned. A table

is partitioned on the values of the rule LHS, because for an FD, two tuples might

cause a violation only if they share the same LHS.

As for the iterator operator, it is meant to allow the user to optimize the iteration

over a block, in order to gain better performance than the default pair-wise traversal.

An example for the FD rule is given in Figure 3.6, in which a block is sorted on the
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Class FD {

Tables block(Table table, Map changes) {

formulate changed tuples into a filter expression exp

table.filter(exp);

return table.groupOn(LHS);

}

Tuples iterator(Table block, Map changes) {

block.orderBy(RHS);

while linearly scanning the block do

...

if tuple is a changed tuple then

...

output tuples for comparison

}

}

Figure 3.6. Sample Changes-Aware Rule

values of the right-hand-side (RHS) columns of its tuples, and then linearly scanned

to find violating tuples that have different values; Recall that any two tuples inside a

block already have the same left-hand-side columns. To handle data changes, while

linearly scanning the block, a tuple-pair is output to the stream if either one of the

tuples is new; otherwise, the tuple-pair is already checked before and any possible

violation is already detected and repaired.

It is worth noting that these changes-aware operators are also optional, to be

implemented for the sake of an optimized performance. Otherwise, NADEEF+

would use the brute-force methods by default. We already provide optimized built-in

implementations for a number of data quality rules, e.g., FDs, CFDs and MDs.
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Performance Gain

Suppose we have a database table of size N , and a set of newly inserted tuples of

size M , for which we need to decide how to find the new resulting violations. We can

either merge the whole data altogether and rerun the detection process from scratch,

or we can apply our proposed continuous detection flow. On the one hand, rerunning

the detection process on the merged data has an O((N +M)2) time complexity. On

the other hand, with continuous violations detection, comparing only the new M

tuples with themselves and with the old data, hence avoiding comparing tuples that

have been inspected before, gives an O(M ∗(N+M)) performance, which proves very

efficient in typical cases when M � N .

3.4.2 Continuous Data Repairing

Looking back at the core of NADEEF, one of its main contributions is its exten-

sibility, where users can plug different repairing algorithms to meet their needs for

effectiveness and efficiency.

Recall the two repair modules introduced in Section 2.6 with different goals and use

cases: (1) The Weighted SAT-Solver repair module that targets accuracy, but could

not scale to reasonable data sizes users face in realistic applications; and (2) The

equivalence classes repair module that targets efficiency while maintaining accept-

able accuracy, but proved ineffective when it comes to continuous data cleaning as

discussed in Section 3.3.

We propose a new repair module that can effectively and efficiently support con-

tinuous data cleaning, and that avoids the problems other techniques suffer from,

e.g., violations propagation and memoryless repairs.
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Dynamic Graphs Repair Module

The equivalence classes repair module employs the disjoint sets (union-find) data

structure to support the operations required for data repairing, i.e., the merging of

two equivalence classes (union), and assigning a target value (fix) to every equivalence

class from its candidate values (find). In the context of continuous data cleaning, data

is changing, and the repairing algorithm needs to adapt accordingly, so that it may

reconsider some of the decisions made earlier. However, with no support for un-

merging in its data structure, the equivalence classes repair module cannot effectively

deal with dynamic data, because it assumes that all the data is available and is static,

and that all candidate fixes will be provided for it to choose which ones to apply as

a data repair.

For the above reasons, we propose our graph-based repair module that can support

connecting two data cells when a fix suggests so, and disconnecting them when the

underlying data changes imply otherwise.

Graph Connected Components

A graph connected-component consists of a set, say C, of cells. In a database,

say D, each cell, say c, has an associated component, denoted by cc(c). A connected

component C is associated with a set of candidate values, denoted by cand(C), and

a unique target value, denoted by targ(C).

Recall back our ongoing example from Figures 1.1 and 2.1, and reconsider the

corresponding violations and candidate fixes of ϕ1 in Table 2.1. Figure 3.7 gives an

example of the proposed dynamic graphs repair module in action. We show a subset

of the data again in Figure 3.7(a) highlighting the violating cells. Given a set V of

violations and a set F of candidate fixes as input, the proposed dynamic graphs repair

module would act as follows (See Figure 3.7(b)):

1. Initialization: Each cell c involved in V and F is a single graph node rep-

resenting its own component cc(c), and its candidate value is its current cell

value.
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country CC

t1: UK 44

t2: UK 44

t3: Netherlands 44

(a) Cells in violation with ϕ1

(b) Connected Components of the Dynamic Graphs Repair Module

Figure 3.7. Dynamic Graphs Repair Module

2. Connect components:

(a) If there is a candidate fix, say c1 ← c2 (or c2 ← c1) in F , then the two nodes

c1 and c2 will be connected with an edge, and the new set of candidate

values is the union of the two sets of candidate values for cc(c1) and cc(c2),

i.e., cand(cc(c1)) ∪ cand(cc(c2)).

(b) If there is a candidate fix, say c1 ← x (i.e., c1 should be assigned the value

x), then the candidate values of cc(c1) will become cand(cc(c1)) ∪ {x}.

3. Disconnect components: Whenever a data change is encountered in one tu-

ple, it is marked as a changed tuple. Its cells should be disconnected from

other cells by breaking any edges coming into or out of them, because these

connections might have become obsolete, representing fixes for violations that

no longer exist. Candidate values for each component should be updated ac-

cordingly. Changed tuples are passed in the changes map to the rule operators

and would be inspected again in case they cause any new violations.
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4. Assign a target value: For each connected component, say C, select one

target value targ(C) from its candidate values cand(C), such that the total cost

of changing all cell values in C to targ(C) is minimum.

We separate the decision of which cell values should be the same from that of

what target value should be assigned to a graph connected-component. We defer the

assignment of targ(C) as late as possible to reduce poor local decisions.

Furthermore, notice that the compression technique discussed previously can be

readily applied here. The cost of making a super cell value change in a component is

multiplied by |ext(c)|, the cardinality of the super cell.

Solution for Domino Effect

Our proposed repair module would consider not only the values of the repaired

data cells, but also their original values and reliable data changes. This way, whenever

assigning a target value for a connect component, errors will not propagate from the

old data to the new data, and the data would be repaired as if it has been entirely

available from the beginning.

Looking back at the example in Figure 3.2 that demonstrates the domino effect

in the propagation of violations, the country cells of tuples t1 : t5 would all be in the

same connected component because they all violate ϕ1 sharing the same CC. But

when choosing a target value for this component, NADEEF+ would figure out that

assigning UK as their country would be the repair requiring the minimum number of

changes, acquiring the correct fixed database instance given in Figure 3.2(c), as if all

the data has been available in one single chunk in the first place.

Solution for Memoryless Repairs

As explained earlier, data changes may trigger disconnections in the underlying

graph data structure. In this case, our proposed repair module would reconsider its

relevant old decisions and undo or rollback any “wrong” ones when the entire data

has not been available, or has been missing or incomplete.
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Figure 3.8. Dynamic Data and Memoryful Repairs

Refer to the example in Figure 3.3 that showcases the issue with memoryless

repairs and committing to old “wrong” decisions. When t4’s state and zipcode changes

are reported to NADEEF+, the proposed dynamic graphs repair module would

eliminate the edge between t3 and t4 breaking the underlying graph into two separate

connected components, as in Figure 3.8.

When choosing a target value for these components, the repairing algorithm and

the Updater, for the sake of minimality, would assign UK as the country for the tuples

t1 : t3 and USA for the tuples t4 : t7, obtaining the correct fixed database instance of

Figure 3.3(c), again as if all the data has been available from the beginning and no

changes have been encountered.
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Complexity

In contrast to equivalence classes, dealing with dynamic graphs incurs some extra

complexity, when querying for connectivity to find connected components and assign

target values. However, the data is actually partitioned into small blocks such that

the various graph operations, e.g., inserting, deleting and querying for connectivity,

are practically fast enough (despite the worst-case O(N) time-complexity). We em-

pirically verify the efficiency of our proposed repair module in the experimental study

in Section 3.5.

Moreover, to emphasize NADEEF’s extensibility, we could further extend our

repairing algorithm or plug in an enhanced repair module, to use some more efficient

poly-logarithmic techniques proposed for dynamic graphs connectivity [46,47] without

requiring any other modifications inside the system core.

3.5 Experimental Study

We evaluate our continuous data-cleaning system NADEEF+ against real-world

datasets to measure its performance against dynamic data. Our goal is to achieve the

same data quality as if the whole data has been available from the beginning, while

avoiding reprocessing the data unnecessarily during violations detection, and dealing

with the domino effect and memoryless repairs issues while repairing the data.

We monitor how NADEEF+ responds to data changes in two cases:

Minor Data Changes: For example, interactive data cleaning when the user might

change a few tuples and wants to explore how this would reflect on the under-

lying data and rules violations.

Major Data Changes: For example, when the data is not available in whole from

the beginning, but rather comes in incremental batches.
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3.5.1 Experimental Settings

Datasets

In these experiments, we use the same two real-life datasets hosp and bus that

we use for evaluating NADEEF’s effectiveness and efficiency (Section 2.7):

1. hosp dataset: Taken from the US Department of Health & Human Services

with 100K records and 9 attributes.

2. bus dataset: A one-table dataset obtained by joining 8 tables using primary-

foreign key relationships from the UK government public datasets with 160K

tuples and 16 attributes.

Algorithms

We run the experiments using the recent open-sourced Java implementation of

NADEEF 1 evaluating mainly two scenarios:

1. Assuming all data is available at once and running NADEEF’s violations de-

tection and data repairing (via the equivalence classes repair module EQU) from

scratch on the whole data.

2. Acquiring the dynamic data and the corresponding data changes in batches,

and running NADEEF+’s continuous violations detection and data repairing

(via the dynamic graphs repair module) after each batch.

In all experiments, we verify that the two mentioned scenarios give the same

output in terms of cleaning quality as if the whole data has been available all at

once: (1) Re-running NADEEF’s cleaning process on the whole data from scratch,

or (2) Running NADEEF’s continuous data cleaning on the “cleaned” data with

only the new data changes being considered.

All the experiments are conducted on an Ubuntu 18.04 machine with a 3.4GHz

Intel CPU and 8GB of memory.

1https://github.com/daqcri/NADEEF
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3.5.2 Continuity

Graphs Connected-Components

Table 3.1.
Graphs Connected Components for hosp Dataset

Count 29

Minimum Size 50

Maximum Size 75

Average Size 52.79

In the first set of experiments we evaluate the extra cost incurred in NADEEF+

due to querying for connectivity in dynamic graphs, in contrast to querying for connec-

tivity in NADEEF’s equivalence classes. Despite the worst case O(N) time complex-

ity, the sizes of the graphs’ connected-components are reasonably small in practice,

yielding cheap operations that are not costly for real-world data.

Table 3.1 shows the corresponding results when running data cleaning on the hosp

dataset. Observe that the small average size of the graphs’ connected-components

would result in cheap operations when inserting or deleting nodes or edges, or querying

for connectivity in the underlying graphs.

In other words, in reality, we are not sacrificing the efficiency of the repairing

algorithm, in spite of replacing the equivalence classes module in NADEEF with

the dynamic graphs module in NADEEF+ to handle dynamic data and support

continuous data cleaning.

Minor Data Changes

In this set of experiments, we evaluate how NADEEF+ would handle minor data

changes. This is typically encountered with interactive data cleaning, when the user

would issue changes for a few tuples, and explore how these changes would affect the

current data quality status or trigger new violations.
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Table 3.2.
Response Times for Minor Data Changes

∆ Size hosp - Time (msec) bus - Time (msec)

1 421 395

10 431 1,005

100 858 4,217

Consequently, with the user involvement, response time has to be small enough

to allow for interactivity through the data cleaning process. A response is expected

momentarily as shown in Table 3.2 for various sizes of data changes for our two

datasets. In comparison to the 12.52 minutes needed to clean 100K records of hosp

dataset (resp. 18.53 minutes for bus dataset) initially, the reported response times

are acceptable.

Major Data Changes

In this set of experiments, we evaluate how NADEEF+ would handle the more

challenging use case of major data changes. In this scenario, data is not available in

whole at once, but rather comes incrementally in batches, a use case that mandates

the need for continuous data cleaning in the first place.

In Figure 3.9, data arrives in batches of 25K each. Thus, in a sense, the x-axis may

also resemble the progression over time as the data arrives continuously. There is an

overhead in the beginning with all the modifications within NADEEF+ that makes

it initially less efficient than NADEEF. However, as the data grows, continuously

detecting violations and repairing data pays off, and the gain overcomes that overhead.

This observation illustrates the much-needed efficient process of continuous data

cleaning in NADEEF+ that can integrate major data changes or a new data batch

with the old accumulated “cleaned” data in minutes rather than rerunning the whole

lengthy process from scratch; a process that can take hours or even days with real-

world data sizes.



76

(a) hosp Dataset

(b) bus Dataset

Figure 3.9. Running Times for Major Data Changes
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3.6 Concluding Remarks

We present NADEEF+, an extension to NADEEF, to support continuous data

cleaning. Continuity is a serious challenge that needs to be addressed when dealing

with either minor or major data changes. We demonstrate how the proposed system

can handle various use cases that traditional data cleaning systems cannot support,

e.g., interactive data cleaning and cleaning of dynamic batch data.

On the one hand, existing solutions assume the data is static and available in

whole in the first place, and consequently suffer from different critical problems when

dealing with dynamic data, e.g., errors propagation and memoryless repairs. On the

other hand, NADEEF+ can efficiently and continuously detect violations and repair

the data while avoiding these problems.

We propose a modified changes-aware programming interface for continuous vio-

lations detection without reprocessing the whole data from scratch. We also propose

a dynamic-graphs repair module that can support continuous data repairing. Fi-

nally, we experimentally evaluate NADEEF+ on real-world datasets to verify its

effectiveness and efficiency against both minor and major changes in dynamic data.
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4 DATA CLEANING EXPLANATIONS

4.1 Human-in-the-Loop and the Need for Explainability

Data cleaning has received considerable attention in both industry and academia

lately. Rule-based methods [7, 18], including NADEEF [24, 25], have been proposed

as effective and efficient solutions. However, several other studies [19,20,48,49] demon-

strate that machine learning (ML)-based methods provide comparable results.

Although ML-based methods bring in high-accuracy results, they are usually dif-

ficult to understand. Data cleaning systems often aim for higher accuracy and better

performance without enough focus on the explainability of the model or the repairs.

Some approaches rely on human-in-the-loop data cleaning [19,20] because it yields

more reliable repairs. They leverage the knowledge they learn from the user, but very

few of them try to explain their processes back to the user.

Nowadays, ML affects life-altering actions, e.g., loan approval, job hiring, and

medical diagnosis. There is the critical need and motivation for explainability of ML

results. Explanations are necessary to build trust in the decision process, and to

increase the adoption of (semi-)automated systems. Explanations allow for informed

human involvement and for obtaining user feedback. Moreover, explanations help

experts and developers debug errors, compare approaches, and improve functionality.

Besides, this transparency is now required by new laws and regulations to justify how

these decisions are made.

A recent study of explainability in data integration systems [23] concurs that there

have been some approaches towards explainability for tasks like schema matching,

schema mapping, record linkage and data fusion. However, more attention is usually

paid to effectiveness and efficiency at the expense of explainability of the repairing

model, the detected violations, or the applied repairs.
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4.1.1 Challenges

The following challenges arise when targeting data cleaning explanations:

Interpretability: We need to provide understandable user-friendly explanations to

the end-user.

Model-Agnostic Explainability: We cannot assume any knowledge of the under-

lying data cleaning model internals.

Interactivity: A data cleaning framework should explain how the model would be-

have if certain features are different, provide flexibility to navigate through

different granularity levels of explanations, and allow for comparing between

different underlying models.

Audience Diversity: A data cleaning framework has to target different audience

types and levels of expertise, and provide different functionalities for either

regular users who want to visualize explanations of a cleaning model on a specific

dataset, or experts who want to improve the model, engineer its features, or

debug its errors.

4.2 Related Work

Several data cleaning approaches have been proposed in literature for the past

few decades. Some leverage experts’ knowledge via enforcing a set of pre-defined

data quality rules on the data, i.e., that data has to obey the rules and be consistent.

[7] provides an overview of dependency-theory and different constraints in the context

of data cleaning. Our own proposal for NADEEF [24,25] is also an approach towards

a generalized rule-based data cleaning system that can deal with different types of

rules. The approaches that employ data quality rules are relatively intuitive and

explainable by definition.
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More recently, other approaches employ machine learning techniques aiming for

more accuracy and scalability. For example, Yakout et al. [48] propose a new data

repairing approach based on maximizing the likelihood of replacement data given the

data distribution that can be modeled using statistical machine learning techniques.

HoloClean [49] proposes holistic data repairing driven by probabilistic inference lever-

aging statistical properties of the input data to ensure scalability to databases with

millions of tuples. However, ML-based methods are relatively complicated and more

challenging to explain.

Data repairing or cleaning cannot always be a completely automated process. Of-

ten, humans are involved to assist in cleaning the data. Sometimes, expert users

provide their help by answering some questions or by verifying data repairs. Other

approaches adopt active learning, where the model chooses the data instances to learn

to improve its quality, e.g., GDR [20] a Guided Data Repair framework that incorpo-

rates user feedback in the data cleaning process, ALIAS [50] a learning-based system

that uses the idea of ”reject region” to reduce the training data size, and [51] that

targets higher quality and scalability. With the lack of affordable expert users, other

approaches have employed crowdsourcing, in various data management contexts to

enhance the quality with multiple users’ feedback. For example, CrowdDB [52] uses

crowdsourcing to process queries that neither database systems nor search engines

can adequately answer. KATARA [53] employs knowledge bases and crowds to inter-

pret table semantics, identify correct and incorrect data, and generate top-k possible

repairs for incorrect data. CrowdER [54] uses a hybrid human-machine approach

in which machines are used to do an initial coarse pass over all the data, and then

humans verify only the most likely matching pairs.

However, most of the techniques focus on how to learn from the user, and neglect

how to teach the user. Although there have been some trials towards explaining and

explainable data management systems, as recently investigated in [23], we are still far

from user-friendly data cleaning explanations, and several efforts are yet to be made

towards enhancing the interpretability of data management systems.
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4.3 Properties of Explanations

When discussing the explainability of data cleaning systems, we have to take

multiple properties of explanations [23] into account.

First, we have to highlight the causality of data cleaning systems. A causal expla-

nation provides enough evidence to support or refute the task outcome. Non-causal

explanations might not provide such evidence, but help understand the results via

illustrative examples, visualizations or summaries.

Data cleaning systems should put their audience as top priority. Different users

have different skills and different needs. With the right tools, one can leverage the

users’ skills and meet their needs. The depth of details and flexibility in explanations

should match the users’ expectations, whether it is a domain expert that analyzes a

whole model, an educated user that is inspecting an area of interest or regular non-

experts that are trying to understand the reasoning for some specific data repairing

decisions.

This naturally leads to various formats of explanations, being it in the form of

rules or decision trees, some statistics of the data, visualizations of violations and data

repairs, or post-processing of data instances, e.g., summarization and top-K represen-

tatives. We highlight various examples in our coverage of explanations in NADEEF

and explanations beyond rule-based data cleaning in the following sections.

Moreover, data cleaning explanations should target high coverage that measures

the amount of evidence w.r.t. the data cleaning results, i.e., how much one can

replicate the algorithm decisions based on its explanations.

Lastly, and on top of the list, comes the understandability of explanations, such

that they are interpretable enough and user-friendly for different types of users. Data

management tasks are complicated enough that we do not need an extra layer of

complex explanations.



82

Figure 4.1. Explainability in Data Integration Systems

4.4 Explainability in Data Integration Systems

Wang et al. [23] study the explainability in recent data integration systems, and

provide a neat hierarchy of data cleaning explanations, as in Figure 4.1. In this

section, we cover these different classes of systems in terms of explainability, and

identify where our different pieces of work would fit in this ontology.

The first distinction comes between systems that provide explanations for their de-

cisions vs. those that do not. Systems without explanations account for a broad class

of unexplainable data integration systems. Examples include several probabilistic-

based [49] and ML-based [20,48] approaches.
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Then, comes the next dimension within the class of systems with explanations

that separates their explanations into two sub-classes: (1) Causal explanations that

could answer ”how” or ”why” a specific decision has been made by providing the

reasoning behind different steps of a data integration process; and (2) Non-causal

explanations that focus on ”what” the decision is without giving much attention to

why it has been made.

While causal explanations try to justify the process decisions, non-causal expla-

nations illustrate them through simplifications, summarizations, examples, visual-

izations, etc. These illustrative techniques are common practices in systems that

involve the human-in-the-loop [50,55–57].

The final branching within the class of systems with causal explanations distin-

guishes between explaining and explainable systems. On the one hand, explaining

systems provide explicit explanations of the data and the task, with goals such as con-

ciseness, so they often provide understandable and simple explanations [58–60]. On

the other hand, in explainable systems, implicit explanations come as a by-product;

these systems focus more on the accuracy and scalability of their tasks, and this often

results in hard and complex explanations [61–63].

In this dissertation, we highlight how we target the challenge of explainability in

data cleaning systems that we outline in the introduction of Chapter 1. We locate

NADEEF under the class of explaining data cleaning systems, because it provides

clear explicit explanations to the end user highlighting the violations of the rules and

the corresponding data repairs.

We propose ExplainER, a tool for model-agnostic entity resolution explana-

tions, to illustrate explainability beyond rule-based data cleaning, and showcase our

approach towards interpreting some unexplainable data cleaning systems.
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4.5 Data Cleaning Explanations in NADEEF

Recall that NADEEF employs a data-quality dashboard to keep full lineage and

auditing information about violations and repairs to help understand the health of

the database as well as its data cleaning process. Through this dashboard, NADEEF

provides explanations for both detected violations and data repairs.

As for the violations, it explains why a tuple or a tuple-pair is detected as an

error by which data quality rule via providing the violating cells. This helps explain

the errors and how they have been introduced in the first place, whether through the

initial data, after some data changes, or even due to data repairs w.r.t. to other data

quality rules.

As for the repairs, it highlights each data repair the Updater selects, from what

and to which value the cell is changed, to resolve which violation, and according to

the semantics of which rule. This helps verify the validity of the repair and explains

how it has been derived.

4.5.1 Violations Explanations

Table 4.1.
Violations (Explanations) in NADEEF

Rule Violation Values

ϕ1 V1: {t1[CC, country], t3[CC, country]} {[44, UK], [44, Netherlands]}

ϕ1 V2: {t2[CC, country], t3[CC, country]} {[44, UK], [44, Netherlands]}

ϕ2 V3:{t3[FN, LN, street, city, country,CC, phone], {[David, . . . 44, 66700541],

c1[FN, LN, street, city, country,CC, tel]} [David, . . . 44, 66700543]}

ϕ3 V4: {t1[FN, LN,CC, phone,when,where], {[David, . . . Netherlands],

t3[FN, LN,CC, phone,when,where]} [David, . . . ‘NY, USA’]}
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Refer to our ongoing example in Figures 1.1 and 2.1, and the corresponding vi-

olations and candidate fixes in Table 2.1. By definition, a violation is a set of cells

that together cause some error w.r.t. to the static semantics of a specific data quality

rule. We show again the violations of our example in Table 4.1 to highlight that each

violation indicates what rule is violated and defines exactly which cells together cause

the violation as a form of explicit explanations for the detected errors.

In NADEEF, we have further implemented some charts and graphs to summarize

and explain violations as in Figure 4.2.

Overview: This indicates the amount of data that is either involved in violations or

is considered clean.

Error Distribution on Rules: This shows how many violations are detected for

each rule, and how many data tables are involved.

Error Distribution on Attributes: This shows the number of values that are in-

volved in violations for each attribute. This is to reflect the dirtiness relative

to various attributes.

Violations Graph: This reflects the violations w.r.t. each data quality rule. In

this graph, each node represents a rule. There is an edge between two nodes

indicating that there are common cells that are involved in the violations for

each rule (i.e., node). The thickness of an edge indicates the number of common

cells involved in the violation over both rules (i.e., two ends of the edge).

For each, the users can drill down to see the corresponding part in the violations

table, or they can specify search predicates to select the data they want to further

explore, as shown in the bottom of Figure 4.2.

By leveraging the data quality dashboard, NADEEF allows easy interaction with

the users such that they can easily switch between different visualization modalities

and identify errors based on their expertise and knowledge of the data.
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Figure 4.2. NADEEF’s Data Quality Dashboard



87

4.5.2 Repairs Explanations

Figure 4.3. Repairs Auditing in NADEEF

Moreover, NADEEF provides a data auditing facility such that, after data re-

pairs, the users may inspect the different changes made to the data. Figure 4.3 shows

some examples. The first five attributes identify the updated cells, the attribute User

identifies who or what changed the data, either a specific user, a data change or

NADEEF, and Timestamp specifies when this update has been committed to the

database.

Table 4.2.
Repairs (Explanations) in NADEEF

table tuple id attribute old value new value rule violation fix

transactions 3 country Netherlands UK ϕ1 V1 F2

transactions 3 phone 66700541 66700543 ϕ2 V3 F5

Specifically, this auditing information functions as explanations for the data re-

pairs. It shows how each specific repair has been derived, via logging the data-value

changes, linking to the corresponding rules, violations and candidate fixes. Table 4.2

shows the explanations of the data repairs for our continuing example.
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4.6 Explanations beyond Rule-based Data Cleaning

In this chapter, we try to address explainability beyond rule-based data cleaning

via interpreting some unexplainable data cleaning systems. We target entity resolu-

tion as a use-case, and propose a tool that can explain entity resolution classifiers

with different levels of granularity.

4.6.1 Use Case: Entity Resolution Explanations

Entity Resolution (ER, for short), a.k.a. Record Linkage, Entity Matching, or

Duplicate Detection, is a fundamental data cleaning and integration problem that

has received notable attention in the past few decades. It identifies pairs of data

instances that refer to the same real-world entity, and it has been the subject of

many investigations [31,64]. Several recent studies [65–67] show that machine learning

(ML)-based methods often provide state-of-the-art results for ER.

While rule-based methods have been used in many practical scenarios and are often

easy to understand, machine-learning-based methods provide the best accuracy, but

the state-of-the-art classifiers are very opaque. There has been some work towards

understanding and debugging the early stages of the entity resolution pipeline, e.g.,

blocking and generating features (similarity scores). However, there are no such efforts

for explaining the model or its predictions.

A key impediment to using these ML-based solutions in practice is that end-users

are given the output (i.e., the matching tuples) without sufficient explanation of why

these tuples are matching. This state of affairs may hinder the use of these ML-based

solutions even if they deliver the best results.

The aforementioned study of explainability in data integration systems [23] notes

that there have been several approaches towards explaining systems (i.e., explicit

causal explanations) for tasks like schema matching, schema mapping and data fusion.

However, none of the current ER systems explicitly explain their results.
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4.6.2 Contributions

In this chapter on Data Cleaning eXplanations 1, we propose ExplainER, a tool

to understand and explain entity resolution classifiers with different granularity levels

of explanations. It takes two input datasets to be deduplicated along with an ML

model that is trained for such task, and in turn helps users understand the outcome

of the ML model from various angles. We demonstrate how ExplainER can handle

different scenarios for a variety of classifiers.

For this purpose, we adapt general-purpose explanation tools into the context

of ER. More specifically, we leverage LIME [68] and Anchors [69] for local explana-

tions, Bayesian Rule Lists (BRL) [70] for global explanations, and Skater [71] for an

industry-level hybrid of both flavors. While these frameworks provide useful instance-

level or model-level explanations, these are not sufficient in the context of ER. In

ExplainER, we build upon them and extend their functionalities to provide more

profound explanations and deeper analyses of their collective outcomes.

ExplainER provides the following functionalities for explaining ML-based ER:

• Global Explanations: We post-process local explanations to help explain

the whole model and how different features drive its predictions. In this re-

gard, along with the tools-provided global explanations, we also derive feature

importance, visualize predictions (explanations) against features values (contri-

butions), and select representatives for the different explanations clusters.

• Model Analysis: We provide a mechanism to analyze where the model works

well (true positives and true negatives), and where it does not (false positives

and false negatives). We also mine the explanations for interesting patterns,

such as features frequent itemsets and rules, e.g., association rules, that can

demystify the model decisions.

• Differential Analysis: We compare the explanations of two different classifiers

with a focus on where their predictions disagree.
1https://dcx.cs.purdue.edu
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4.6.3 Overview of ExplainER

We give an overview of the typical ER pipeline, and how ExplainER weaves in

to explain the model and its predictions. Notice that we are not investigating the

ER pipeline itself (e.g., blocking and feature selection), but are rather focusing on

interpreting its predictions.

Entity Resolution

Let R and R′ be two relations with aligned schema {A1, A2, . . . , Am}. Further-

more, let t[Aj] be the value of Attribute Aj on Tuple t. Given all distinct tuple

pairs (t, t′) ∈ R × R′, ER aims to identify the pairs of tuples that refer to the same

real-world entities.

Blocking

Typically, ER solutions first run blocking methods that generate a candidate set

C ⊆ R×R′ that includes tuple pairs that are likely to match.

Training/Testing Data

Most, if not all, ER solutions need training/testing data that can be formalized

as follows: A labeled dataset is a set of triplets L ⊆ R × R′ × {0, 1}, where Triplet

(t, t′, 1) (resp. (t, t′, 0)) denotes that Tuples t and t′ are (resp. are not) duplicates.

Explanations for Entity Resolution

While machine learning provides amazing results in many applications, an oft-

time reservation against its use is the lack of transparency and understanding of why

a decision is made by a given ML algorithm. Thus, explaining ML algorithms has

been the subject of intense research activity.

Some models (e.g., Decision Trees and Linear Models) are interpretable, but many

other models are harder to understand. To explain a black-box model, model-agnostic
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tools either learn an interpretable model on the predictions of the underlying model,

or alter the model inputs and monitor its respective reactions.

Some tools focus on how different features contribute to every single instance

prediction (local explanations), while other tools compute the combined feature im-

portance, or summarize the model as a whole (global explanations).

In this chapter, we leverage various general-purpose explanation tools for explain-

ing ML-based ER. These tools have been used to provide local and/or global expla-

nations for several applications in both academic and industrial domains. LIME [68]

explains the predictions of any classifier by approximating the classifier locally with

an interpretable model for perturbed inputs. It also presents a set of representative in-

stances, selected via submodular optimization, as an explanation of the whole model.

Anchors [69] is another tool that targets local explanations by providing explanations

based on if-then rules (anchors) that sufficiently anchors the prediction locally, such

that changes to the rest of the feature values of the instance do not change its pre-

dicted class. BRL [70] aims to output global explanations that consist of a series

of if-then-else statements. These rules discretize the feature space into a series of

simple interpretable decision statements. Finally, Skater [71], by datascience.com,

is a professional approach towards interpretation for black box models both globally

and locally. It uses a combination of algorithms to clarify the relationships between

the data a model receives and the output it produces.

While these tools provide local and global explanations, we build upon their col-

lective multiple-granularity explanations to support further use-cases in the ER con-

text. ExplainER takes in the tuple pairs, labeled data, features and trained model,

and processes the explanations from the underlying tools to output more profound

analyses. An overview of the ER pipeline and ExplainER architecture is given in

Figure 4.4.
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Figure 4.4. Entity Resolution Pipeline and ExplainER Architecture

4.6.4 Case Studies

We showcase ExplainER in action. The users can choose among various datasets

and classifiers, for which ExplainER provides explanations at multiple granularities.

These help users understand the dataset and the classifier, figure out the important

features and fine-tune them, and inspect when and why the model performs badly

and address the model’s shortcomings.
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We experiment on several multi-domain benchmark datasets [72, 73] that have

been frequently used in ER research, along with different classifiers from Magel-

lan [65]. Since ExplainER deals with classifiers as black-boxes and does not assume

any knowledge of the underlying models, it can be easily extended to work with others

without loss of generality.

We highlight the following scenarios and case studies: (1) Global Explanations to

present a global interpretation of an ER model via post-processing the instance-level

explanations; (2) Model Analysis to provide a deeper understanding, and highlight

when the model works well and when it does not; and (3) Differential Analysis to

compare two different classifiers with a focus on where they differ.

Global Explanations Several frameworks provide local explanations for predictions

on instance-level. Our goal is to provide the end-user with a global understanding

of the ER model as a whole. To this end, ExplainER uses different channels to

communicate various aspects and properties of the model to the end user:

Figure 4.5. Global Explanations in ExplainER - Feature Importance
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Figure 4.6. Global Explanations in ExplainER - Bayesian Rule List (BRL)

• Feature Importance provided by Skater [71] or derived from feature contributions

over all local explanations (Figure 4.5). This helps understand how significant

each feature is, and how it affects the model decisions.

• Approximating the model as a BRL [70] (Figure 4.6). This helps compare

features’ importance, and visualize how each guides the model through the

feature space.

• Plotting all predictions (training and testing data) against feature values to

visualize different clusters, and inspect predictions in each cluster.

• Plotting all local explanations against feature weights (Figure 4.7(a)) to visual-

ize how effectively different features can distinguish matches from non-matches.

• Choosing a set of representative explanations as a summary of all explanations

(Figure 4.7(b)), as an attempt to globally understand the classification model.

While SP-LIME [68] calculates top-K diverse explanations, it assumes equal

contributions for features, and does not distinguish between important and
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(a) Feature Weights for All Explanations

(b) Feature Weights for Representative Explanations

Figure 4.7. Global Explanations in ExplainER - Feature Weights for Explanations
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unimportant ones. We propose to use the K-Medoids algorithm [74] in order

to take feature weights into consideration as well. The K-Medoids algorithm

chooses representatives among the explanations, in an attempt to minimize the

distance (in feature weights) between those in the same cluster.

The above system aspects and properties can help the non-expert user have an

overall perspective of the ER model, and identify important features and their cor-

responding contributions to the classifier. Moreover, they allow experts to carry out

feature engineering, and proceed further with improving and fine-tuning the model.

Model Analysis

The goal is to have a deeper understanding of the model and features via analysis

on the explanations. Some of the underlying tools provide local explanations for indi-

vidual predictions, but we exploit these further to construct more advanced informed

interpretations:

Figure 4.8. Model Analysis in ExplainER - Local Explanation by LIME
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Figure 4.9. Model Analysis in ExplainER - Incorrect Predictions

Figure 4.10. Model Analysis in ExplainER - Features Frequent Itemsets

• Inspecting every individual explanation by LIME [68] (Figure 4.8) and An-

chors [69]. This can help answer why a specific instance is a match (true posi-

tive) or a non-match (true negative), and more interestingly explain erroneous

predictions (false positives and false negatives).
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• Visualizing representative explanations of incorrect predictions (Figure 4.9),

i.e., false positives and false negatives, to highlight where the model fails.

• To highlight possible correlations between features and explain which sets of

features contributed together towards a prediction, we propose to mine frequent

itemsets and association rules [75] from explanations formatted as vectors of

feature weights (Figure 4.10). Through this mining, we can highlight the corre-

lation between features and explain which sets of features contribute together

towards a prediction.

• Mining FD (CFD) rules [76] from explanations that are formatted as binary

feature vectors to compare against rule-based global explanations and feature

importance results.

The above approaches towards batch explanations allow to zoom in beyond local

explanations and contrast against global explanations. Additionally, they can help

spot and address issues in the dataset itself, e.g., dealing with heterogeneous values in

the same attribute or detecting the more serious issue of wrong labels in the dataset.

Differential Analysis

In this case, we have two different models, say M1 and M2, and the goal is

to understand how they compare against each other. We investigate each model’s

predictions, contrast the two models together, generate explanations for each pair of

tuples for both models, and highlight where they disagree.

The user specifies an input dataset and two classifiers, and is then provided with

different comparisons of their predictions and explanations (Figure 4.11). Like other

scenarios, we can still explain each model from a global perspective (e.g., feature

importance, BRL and representative explanations), or look closely at the explanations

and the model analysis (e.g., local explanations, incorrect predictions and features

frequent itemsets), but more importantly, we can easily inspect these predictions

where the two models agree and where they disagree (Figure 4.12).
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Figure 4.11. Differential Analysis in ExplainER - User Interface

Figure 4.12. Differential Analysis in ExplainER - Predictions Disagreement
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4.7 Concluding Remarks

In this chapter, we highlight how involving the human-in-the-loop mandates the

need for explainability, and discuss the challenges arising from that involvement. We

investigate explainability in state-of-the-art data integration systems, explore how

they can be classified w.r.t. providing explanations, and discuss various properties of

those explanations.

As for our dissertation proposal, we show how NADEEF can be categorized as

an explaining data cleaning system that provides explicit causal explanations for its

detected violations and selected data repairs.

We further address explainability beyond rule-based data cleaning and introduce

ExplainER, a tool to study ER classifiers as a use-case of unexplainable data-

cleaning systems. We showcase how ExplainER can explain an ER model in differ-

ent levels of granularity in order to help the user understand the whole model, analyze

its predictions, investigate its strengths and weaknesses, or compare it against other

models.



101

5 CONCLUSIONS

Summary

In this dissertation, we propose NADEEF, an end-to-end generalized, exten-

sible, continuous and explaining data cleaning system, that allows the user to

specify multiple types of data quality rules, offers various algorithms for detecting

the errors and cleaning the data, can adapt to data changes, and provides the end-

user with user-friendly explanations of its cleaning process via auditing the detected

violations and data repairs.

In Chapter 2, we present NADEEF, a generalized and extensible easy-to-deploy

data cleaning system. NADEEF distinguishes between a programming interface and

a core to achieve generality and extensibility. The programming interface can be used

to express many types of data-quality rules beyond the well-known FDs, CFDs, MDs

and ETL rules, and it allows users to specify data-quality rules by writing code that

implements predefined classes. These classes uniformly define what is wrong with

the data, and (possibly) how to fix it. The core algorithms can interleave multiple

types of rules to detect and repair data errors holistically. Moreover, users can easily

customize NADEEF by defining new types of rules, or by extending the core.

In Chapter 3, we extend our data cleaning system to support continuity, and

handle both minor and major data changes. With dynamic evolving data in today’s

big-data era, continuous data cleaning is not a luxury, but rather a must to handle use-

cases that other traditional data cleaning systems cannot handle, e.g., interactive data

cleaning, and cleaning of dynamic data (streams) in which the data is not available

as a whole, but arrives in increments. We propose NADEEF+ as a continuous data-

cleaning solution, that can efficiently and incrementally detect violations in dynamic

data and repair it while mending the inevitable side effects.
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In Chapter 4, we highlight the need for explainability due to human involvement.

We discuss explainability in state-of-the-art data integration systems and different

properties of explanations. We point out how NADEEF targets explainability via

providing explicit causal explanations for violations and repairs, which places it under

the umbrella of scarce explaining data-cleaning systems. We further address explain-

ability beyond rule-based data cleaning and presented ExplainER, our tool for ER

explanations, as a use case of unexplainable data cleaning systems. We showcase how

ExplainER helps the user understand the whole model, analyze its predictions or

compare it against other models.

Other Challenges

When envisioning an end-to-end data cleaning system, one ought to take other

important challenges into consideration as well. With human involvement, interac-

tivity is a top priority; users should be able to investigate the data, monitor its health

and quality, and explore samples and summaries of the errors and repairs. This calls

for more research and future work in tracks such as data profiling, data discovery,

data visualization and sampling/summarizing techniques.

Besides, one missing aspect is seeking the wisdom of the crowd through what we

call user-assisted data cleaning. Users can be classified and only problems relevant to

their knowledge are addressed to them. Classification criteria can include languages,

location, age, interests, ares of expertise, work experience, education, etc. This would

increase the probability of getting correct answers, increase the users potential to help,

and employ users feedback more adequately so that such a valuable resource is not

wasted in vain. This drives more research in the areas of crowdsourcing, user profiling

and expertise matching.

Scalability is another necessary aspect. A modern data cleaning system has to

scale to real world big data with millions, if not billions, of tuples. With cloud

computing on the rise in several applications, this triggers a lot of interest in the

study of distributed and parallel environments, data partitioning and communication

cost optimizations in the realm of data quality and data cleaning.
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Open Research Problems

Although addressing these other challenges has been out of the scope of this dis-

sertation, we have designed and prototyped NADEEF as an extensible data cleaning

system that can allow replacing its core detection and repairing modules to support

different use cases, including those we have just touched upon but have not investi-

gated their details in the scope of this dissertation.

Several extensions make for future work that might be of much interest to other

researchers or students seeking promising ideas in data quality and data cleaning:

• Involving the human-in-the-loop; users can submit feedback to guide the repair-

ing process or validate the decisions made by the system core and modules. This

would require smart techniques to summarize and visualize the data, violations

and repairs.

• For user-assisted data cleaning, NADEEF needs to be modified into a multi-

user framework. It should profile its users, and classify their areas of expertise,

seek users’ help based on their knowledge and edit-history, and also resolve any

prospective conflicts among their edits.

• Partitioning a big data-cleaning problem into multiple small ones such that

each problem can be executed separately. This would provide opportunities

for designing an optimizer to select the appropriate core implementation (i.e.,

detection and repairing) for each partition, and running NADEEF in a parallel

and distributed environment.

• Incorporating various indices and blocking techniques in the framework to effi-

ciently support similarity comparisons, and extending the expressions supported

by the fix() operator to be more general, e.g., by including inequality.

• To handle large volumes of data, NADEEF can be transformed from memory-

based to disk-based, through integration with an open-source database man-

agement system (DBMS), e.g., PostgresSQL.
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