
DISTRIBUTED SOLUTIONS FOR A CLASS OF MULTI-AGENT OPTIMIZATION

PROBLEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Xiaodong Hou

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Jianghai Hu, Chair

School of Electrical and Computer Engineering

Dr. Shreyas Sundaram

School of Electrical and Computer Engineering

Dr. Inseok Hwang

School of Aeronautics and Astronautics

Dr. Dengfeng Sun

School of Aeronautics and Astronautics

Approved by:

Dr. Pedro Irazoqui

Head of the School Graduate Program

iii

Dedicated to

My wife, sharer of my life,

My parents, givers of my life.

iv

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Professor Jianghai Hu, for his

exceptional mentoring, guidance, and generous support. His broad and deep knowledge, as

well as keen insights towards research has provided constant inspiration for me. He always

maintains the highest availability for his students, and also allows them the flexibility to

work at their own pace. His expertise together with his caring, gentle personality, made it a

warm and pleasant experience working with him.

I am grateful to Professor Shreyas Sundaram, Dengfeng Sun and Inseok Hwang for

serving on my Ph.D. committee and giving insightful comments and advice at various

stages of this dissertation. Their excellent courses in structure and dynamics of large scale

networks, convex optimization, and applied optimal control, not only inspired and brought

me to the research area of optimization and control over large-scale networks, but also laid

the foundation and contributed to many key parts of this dissertation. I am also thankful

to Professor James Braun, Panagiota Karava from Ray W. Herrick Laboratories at Purdue

University, and Professor Jie Cai from the University of Oklahoma for introducingme to and

collaborating with me on modeling, control and optimization of energy efficient buildings,

which helped diversify my research.

I would also like to thank all my colleagues, Yingying Xiao, Dr. Donghwan Lee, Dr.

Jaewan Joe and Dr. Donghun Kim for their helpful discussions and feedbacks throughout

the years. The presence of many other friends at Purdue, whose names are too numerous to

list, made this journey much more enjoyable and memorable, I am grateful to all of them.

Last but certainly not least, no words of thanks are enough for my family who gives me

constant support and unconditional love. To my parents, thank you for encouraging me in

all my pursuits and inspiring me to follow my dreams. To my wife, my best friend and most

precious gift, thank you for not only being there to share happiness along the journey, but

also helping me through agonizing times in the most positive way.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

SYMBOLS . ix

ABBREVIATIONS . xi

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 Background and Review . 1

1.2 Motivations and Contributions . 4

2 MULTI-AGENT OPTIMIZATION FORMULATIONS AND APPLICATION
EXAMPLES . 9

2.1 Standard Formulation . 9

2.2 Other Formulations . 10

2.3 Application Examples . 14

3 MONOTONE OPERATOR AND FIXED POINT ITERATION 20

3.1 Operators . 20

3.2 Monotone Operator . 21

3.3 Nonexpansive and Averaged Operators 23

3.4 Fixed Point Iteration . 24

3.5 Resolvent and Cayley Operator . 26

3.6 Operator Splitting . 27

4 GENERALIZED RESOLVENT ITERATION AND GENERALIZED OPERA-
TOR SPLITTING . 29

4.1 Generalized Resolvent and Cayley Operator 29

4.2 Generalized Douglas-Rachford Splitting 32

vi

Page

4.3 Generalized Davis-Yin Splitting . 33

5 DISTRIBUTED SYNCHRONOUS ALGORITHMS WITH COORDINATOR . . 36

5.1 Primal-dual Precursor Algorithms . 36

5.2 Saddle Function and Saddle Subdifferential Operator 40

5.3 Proximal Parallel ADMM . 42

5.4 Dual Averaging via Douglas-Rachford Splitting 48

6 DISTRIBUTED SYNCHRONOUS ALGORITHMS WITHOUT COORDINATOR 54

6.1 Dual Consensus via Operator Augmentation with Graph Laplacian Matrix . 54

6.2 Dual Consensus via Operator Augmentation with Incidence Matrix 60

6.3 Dual Consensus via Operator Augmentation and Splitting 65

6.4 Further Extensions . 69

7 DISTRIBUTED ASYNCHRONOUS ALGORITHMWITHOUT COORDINATOR 70

7.1 Modified Synchronous Dual Consensus via Operator Augmentation with
Incidence Matrix . 71

7.2 Asynchronous Dual Consensus via Operator Augmentation with Incidence
Matrix Considering Delays . 74

7.3 Asynchronous Parallel CoordinateUpdates ofNonexpansiveOperatorswith
Uniform Step Size Upper Bound . 80

8 NUMERICAL EXAMPLES . 86

8.1 Exchange Problem . 86

8.2 L1-regularized Exchange Problem . 88

8.3 Resource Allocation Problem . 90

9 CONCLUSION . 94

REFERENCES . 97

vii

LIST OF TABLES

Table Page

1.1 Comparisons against existing algorithms . 6

viii

LIST OF FIGURES

Figure Page

1.1 Algorithm development methodology . 6

3.1 Fixed point iterations applied to nonexpansive and averaged operators 25

8.1 Graph topologies . 86

8.2 Exchange problem: convergence of Algorithm 1, 2 and 3 88

8.3 L1 regularized exchange problem: convergence of Algorithm 6 90

8.4 Resource allocation problem: convergence of Algorithm 4 92

8.5 Resource allocation problem: convergence of Algorithm 5 93

ix

SYMBOLS

R set of real numbers

R+ set of positive real numbers

Rn n-dimensional Euclidean space

Rn
+ positive orthant of n-dimensional Euclidean space

Rn×m set of all n×m real matrix

[L] set of positive integers from 1 to L, i.e., {1, . . . , L}

xT transpose of vector x

〈x, y〉 inner product of vectors x and y, i.e., xTy

〈x, y〉P inner product of vectorsx and y induced by symmetric positive definite

matrix P , i.e., xTPy

(x, y) concatenation of vectors x and y, i.e., (x, y) = [xT yT]T

(xi)i∈N concatenation of vectors based on index set N

AT transpose of matrix A

A � 0 (A � 0) matrix A is symmetric and positive (semi) definite

A � B (A � B) matrix A−B is symmetric and positive (semi) definite

⊗ Kronecker product

In n× n identity matrix

0n×m n×m zero matrix

1n n× 1 vector of all 1s

diag(A1, . . . , AL) block diagonal matrix with matrices A1, . . . , AL on the diagonal

blocks and zeros elsewhere

‖ · ‖ or ‖ · ‖2 Euclidean norm (L2 norm) of a vector, or spectral radius of a matrix

‖ · ‖1 L1 norm of a vector

‖ · ‖∞ L∞ norm of a vector

x

‖ · ‖P P -norm of a vector x ∈ Rn defined as ‖x‖P =
√
xTPx for matrix

P ∈ Rn×n and P � 0

1X(·) convex indicator function on convex set X

PX(·) projection onto set X , i.e., PX(x) = arg miny∈C ‖x− y‖2∏L
i=1Xi Cartesian product of sets Xi, i ∈ [L]

∂xf subdifferential of function f with respect to variable x

gra(T) graph of set-valued operator T , gra(T) := {(x, y) | y ∈ T (x)}

Id identity operator, i.e., Id(x) = x

A−1 (T−1) inverse of matrix A (inverse of set-valued operator T , defined via its

graph so that gra(T−1) = {(y, x) | y ∈ T (x)})

dom domain of an operator, i.e., dom(T) := {x |T (x) 6= ∅}

zer zero set of an operator, i.e., zer(T) := {x ∈ dom(T) | 0 ∈ T (x)}

Fix fixed point set of an operator, i.e., Fix(T) := {x ∈ dom(T) | {x} =

T (x)}

| · | cardinality of a set and absolute value for real numbers

xi

ABBREVIATIONS

ADMM Alternating Directions Method of Multipliers

CCP Closed, Convex and Proper

DR Douglas-Rachford

DY Davis-Yin

KKT Karush-Kuhn-Tucker

NUM Network Utility Maximization

xii

ABSTRACT

Hou, Xiaodong Ph.D., Purdue University, May 2019. Distributed Solutions for a Class of
Multi-agent Optimization Problems. Major Professor: Jianghai Hu.

Distributed optimization over multi-agent networks has become an increasingly popular

research topic as it incorporates many applications from various areas such as consensus

optimization, distributed control, network resource allocation, large scale machine learning,

etc. Parallel distributed solution algorithms are highly desirable as they are more scalable,

more robust against agent failure, align more naturally with either underlying agent network

topology or big-data parallel computing framework. In this dissertation, we consider a

multi-agent optimization formulation where the global objective function is the summation

of individual local objective functions with respect to local agents’ decision variables

of different dimensions, and the constraints include both local private constraints and

shared coupling constraints. Employing and extending tools from the monotone operator

theory (including resolvent operator, operator splitting, etc.) and fixed point iteration of

nonexpansive, averaged operators, a series of distributed solution approaches are proposed,

which are all iterative algorithms that rely on parallel agent level local updates and inter-

agent coordination. Some of the algorithms require synchronizations across all agents

for information exchange during each iteration while others allow asynchrony and delays.

The algorithms’ convergence to an optimal solution if one exists are established by first

characterizing them as fixed point iterations of certain averaged operators under certain

carefully designed norms, then showing that the fixed point sets of these averaged operators

are exactly the optimal solution set of the original multi-agent optimization problem. The

effectiveness and performances of the proposed algorithms are demonstrated and compared

through several numerical examples.

1

1. INTRODUCTION

1.1 Background and Review

There has been an increasing interest in the analysis and optimization over large-scale

networks, which usually consist ofmultiple entities, or agents, with different local objectives.

Some examples include sensor networks [52], cooperative multi-vehicle system [74], smart

grid networks [4], social networks [79], etc. In such a large-scale network, each agent

either has partial knowledge of the global system, or is responsible for making partial

decision for the whole network. The goal of multi-agent optimization is to achieve optimal

operating points, decision variables or network equilibrium in terms of certain global

objective function, though the coordination of agents with limited information exchange.

Due to the topology of such networks, distributed algorithms naturally draw a tremen-

dous amount of interest [16]. Centralized solution methods not only require the aggregate

of all local variables to a central computation unit, which may lead to significant amount

of communication and possible privacy issues since local variables of all agents are passed

along the agent networks, but are also sensitive to subsystem failures. Distributed solution

algorithms on the other hand: 1) are often more computationally efficient because it allo-

cates a global optimization task to multiple local agents; 2) require less communication as

agents often only need to communicate with immediate neighbors for the purpose of coor-

dination and information propagation; 3) and are more scalable and resilient to subsystem

failure. Many distributed optimization algorithms have been proposed and studied in the

literature, we will give a brief review based on problems studied and methodologies used.

Consensus Optimization over Agent Networks This type of problems dates back to

[88], in which all the agents share the same objective function. In a multi-agent network

consisting of L agents over certain (possibly time-varying) communication topology, the

2

global objective is that the L agents work cooperatively to minimize
∑L

i=1 fi(x), where

x ∈ Rn, and fi : Rn → R ∪ {+∞} is the part of the global objective function that is only

known to agent i. These approaches often use consensus models/protocols with doubly

stochastic matrix for the “weighted-averaging” of local variables with their immediate

neighbors. [57, 63, 64] are the first works to study this problem. An extension to the case

of quantized messages was investigated in [62]. Implementations over random networks

were studied in [55]. In some other formulations [65], each agent has an additional private

constraint set Xi that is only known to itself, and the global optimization problem is

minimize
x

L∑
i=1

fi(x)

subject to x ∈ X =
L⋂
i=1

Xi.

This problem is called constrained consensus optimization. [50] proposed a randomized

synchronous algorithm over time-varying graphs while [51] proposed a gossip-based (one

egde activated at one time) asynchronous algorithm over a time-invariant graph. Cases with

communication delays and nonidentical constraints were considered in [54, 92]. In addition,

state-dependent communication was studied in [56]. In [101], additional global equality and

inequality constraints were added to the above formulation, and two distributed primal-dual

subgradient algorithmswere developed for caseswhere only equality or inequality constraint

is present, respectively; then, the algorithms were extended to nonconvex problems in [102].

Notice that for all the problems and studies in this category, each agent is trying to determine

the same global decision variable, a common technique is to create a copy of the global

decision variable for each agent, and at the end of the optimization process, all agents must

reach consensus on the global decision variable. Apparently, all the local decision variables

of different agents have the same dimension, and no explicit couplings between different

agents are considered in this formulation.

Distributed Solutions to Convex Feasibility Problems In particular, if fi(x) = c for

some constant c, the constrained consensus optimization problem becomes the convex

feasibility problem [7, 20], where the objective is to find a common feasible point in the

3

intersection of a group of convex setsXi. The convex feasibility problem is the abstraction

ofmany classes of problems arising in e.g., image recovery [20], sensor network localization

[13, 42], etc. Convex feasibility problems have been studied extensively in the literature.

One important subclass of problems is distributed solutions to linear [61, 82, 3] or nonlinear

[32, 31] equations. In [17, 2] convex feasibility problems are cast as the common fixed point

problem of a family of nonexpansive operators, for which block iterative type algorithms

were developed. Recently, synchronous as well as randomized distributed algorithms were

proposed in [97] based on paracontraction operator for convex feasibility problems with

sparsely coupled constraints.

Distributed Nonconvex Multi-agent Optimization For many applications in big data

and machine learning, such as nonlinear least square, dictionary learning, matrix comple-

tion, and low rank approximation [47], global or local objective functions often turn out to

be nonconvex. Random gossip protocol was combinedwith distributed stochastic projection

algorithm in [12] to solve minx∈X
∑L

i=1 fi(x) where X is a convex set known to all agents

and fi’s are nonconvex functions private to agent i’s. A randomly perturbed push-sum gra-

dient algorithm with diminishing step-size was proposed in [87] to unconstrained problem

min
∑L

i=1 fi(x). A more general formulation minx∈X
∑L

i=1 (fi(x) + g(x)) where fi’s are

smooth, nonconvex, nonspearable functions and g is a nonsmooth, convex, nonseparable

function was investigated in [26, 81]. Successive convex approximation technique was com-

bined with dynamic consensus mechanism and perturbed push-sum consensus mechanism

in [26] and [81], respectively, to show asymptotic convergence to stationary solutions.

Other Problems Besides network problems, multi-agent optimization also has significant

implications in image processing [70], compressive sensing [86], large-scale statistics and

machine learning [14]. For example, for some large scale machine learning problems, one

may also want to decompose a centralized problem into smaller scale subproblems because

of either the large training data size or the large number of model parameters.

4

1.2 Motivations and Contributions

As reviewed in the previous section, most multi-agent optimization formulations in the

literature focus on situationswhere all agents’ local decision variables share the same dimen-

sion. In addition, explicit couplings in constraints across all agents were rarely considered,

sparsity in the couplings was often assumed when dealing with coupling constraints. In

this dissertation, we will consider a more general class of convex multi-agent optimization

problems:

minimize
x1, ..., xL

L∑
i=1

fi
(
xi, (xj)j∈N oi

)
subject to

L∑
i=1

gi
(
xi, (xj)j∈N ci

)
≤ 0,(

xi, (xj)j∈N li

)
∈ Xi, i ∈ [L].

In the above formulation, fi’s and gi’s are closed, convex, proper functions that are private

to respective agents, Xi’s are local private constraint sets. The details of this formulation

will be discussed thoroughly in the next chapter. We only summarize and emphasize its

distinctions and generality here. First of all, the local decision variable xi ∈ Rni for each

agent i do not necessarily have the same dimension. Although in theory, local copies of all

other agents’ decision variables can be created and kept by each agent to force dimension

consistency across all agents’ local decision variables, this inevitably results in excessive

communication and computation and does not scale well as the size of the network grows.

Secondly, a more general affine coupling involves local convex functions in agents’ local

decision variables can be incorporated. Thirdly, neighboring agents may have overlapping

variables in each others’ objective functions, coupling constraint functions and constraint

sets. We assume such overlapping is sparse, i.e., |N o
i |, |N c

i |, |N l
i | � L. We will show in

the next chapter that the most studied multi-agent optimization formulation in the literature,

i.e. constrained consensus optimization problem, is a special cases of our formulation.

Recently, formulationswith general global couplings similar to the one considered in this

dissertation start to attract more attentions from researchers [29, 37, 67, 53, 84]. The push-

5

sum protocol was incorporated into dual subgradient methods in [37] to handle problems

with global coupling constraints
∑L

i=1Aixi = b. The push-sum protocol was also utilized

in [53] for a primal-dual algorithm. Another primal-dual algorithm was developed in [67]

based on relaxations of primal problem and several duality steps. A consensus-based dual

decomposition algorithm was proposed in [84], but it only converges to a neighborhood of

an optimal solution. A distributed algorithm combining dual decomposition and proximal

minimization was proposed in [29].

Almost all of these existing works use analysis based on classic optimization and

duality theory, and have several major drawbacks: 1) they all rely on the assumption

that local constraint sets Xi’s are compact (hence bounded), which may not hold in some

applications. This assumption is often needed in their analysis to guarantee the boundness of

dual subgradients; 2) most of them utilize diminishing step sizes, which might be difficult to

tune in practice to achieve faster convergence; 3) they are all synchronous algorithms which

require one ormultiple rounds of synchronization among all agents during each optimization

iteration, and it is not apparent how they can bemodified to deal with asynchrony and delays;

4) in the case where local objective functions are summations of multiple convex functions

with different structures and smoothness properties, the local updates which often involve

solving a constrained optimization problem in local decision variable might be difficult to

solve.

In this dissertation, we aim to design a series of distributed, parallel algorithms based

on monotone operator theory and fixed point iterations of nonexpansive, averaged maps

for our general multi-agent optimization formulation, which overcome some, or all of the

drawbacks of current literature for similar problems. None of the proposed algorithms needs

the assumption on the boundness of local constraint setXi’s, and all of them utilize constant

stepsizes. All of the proposed algorithms share the same high level algorithm development

methodology as demonstrated in Fig. 1.1: firstly, the optimal solution set of the original

multi-agent optimization problem is characterized as the zero sets of certain carefully

designed monotone operators; next, the equivalence between these zero sets and the fixed

point sets of other operators (resolvent, or generalized resolvent operator) are established;

6

finally, fixed point iterations which yield distributed, parallel, or even asynchronous updates

across agents can be carried out to find such a fixed point, which corresponds to an optimal

solution of the multi-agent optimization problem. Table 1.1 summarizes the comparisons

between the algorithms proposed in this dissertation and other existing algorithms designed

towards similar multi-agent optimization formulations in literature.

Table 1.1.: Comparisons against existing algorithms

Convergence to

optimal solution?

Require bounded

local constraint?

Coupling

constraints

Central

coordinator?

Step

sizes

Synchronous or

asynchronous?

[37] Yes Yes = No Diminishing Synchronous

[67] Yes Yes ≤ No Diminishing Synchronous

[53] No Yes ≤ No Diminishing Synchronous

[84] No Yes ≤ Yes Constant Synchronous

[29] Yes Yes ≤ or = No Diminishing Synchronous

Algorithm 1-3 Yes No ≤ or = Yes Constant Synchronous

Algorithm 4-7 Yes No ≤ or = No Constant Synchronous

Algorithm 8 Yes No ≤ or = No Constant Asynchronous

Optimal Solution
Set

Zero Set of Maximally
Monotone Operator

Fixed Point Sets of
Certain Operators

Optimality Conditions

KKT

(Generalized) Resolvent

Operator Splitting

Distributed Algorithms
Averaged, or firmly nonexpansive

under certain norms

Fig. 1.1.: Algorithm development methodology

Next, we preview the organization of this dissertation and the contributions of each

chapter. In Chapter 2, we introduce themulti-agent optimization formulation in detail, many

other formulations in the literature will be shown as special cases of our general formulation.

Several application examples are given to further motivate our problem formulation.

7

In Chapter 3, we review some of the theoretical background regarding monotone op-

erators, (firmly) nonexpansive operators, averaged operators, resolvent operators and their

fixed point iterations. Operator splitting techniques are also introduced, which play an

important role to reduce the complexity of local update for certain cases where the local

objective function has a summation structure.

In Chapter 4, by pre-conditioning monotone operators with a positive definite matrix P ,

we extend the existing results on resolvent operator and its fixed point iteration to a more

general setting. We also present new operator splitting algorithms using the generalized

resolvent operator and show their convergence. The preconditioning matrix P and the gen-

eralized resolvent operator provide more flexibility, and are fundamental tools for designing

distributed algorithms.

Two distributed synchronous algorithms with coordinator are proposed in Chapter 5.

The first algorithm is a varaint of the alternating direction method of multipliers (ADMM).

This algorithm extends the Gauss-Seidel (sequential) type update between two-blocks of

variables in the standard ADMM to Jacabi (parallel) update of multi-blocks of variables.

The convergence of the algorithm is established by showing each algorithm iteration is

indeed one step of the generalized resolvent iteration of a maximally monotone operator

preconditioned by a particular positive definite matrix P , and resorting to the theoretical

development in Chapter 4. One drawback of the first algorithm is that information exchange

includes primal variables of agents, thus privacy issues need to be discussed. The second

algorithm overcome this drawback by utilizing the Douglas-Rachford splitting method, and

only copies of dual variables are exchanged.

The two algorithms proposed in Chapter 5 enjoy a synchronous parallel updating struc-

ture across agents, but both require a central coordinator, which collects information from

all agents, updates certain variables, and then broadcasts them to all agents again. This

type of algorithms is vulnerable to failure of the central coordinator. In addition, the re-

quirement of central coordinator may not be practical for certain applications. Therefore,

in Chapter 6, we consider a truely distributed algorithm framework with which agents only

communicate and exchange information with its neighbors defined by an underlying graph.

8

The monotone operator used in Chapter 5 is augmented to guarantee the consensus across

all agents on the dual variable at steady states (zeros of the augmented operator). Then,

by utilizing the generalized resolvent iteration as well as generalized DR splitting method,

parallel, distributed algorithms without central coordinator are obtained.

Chapter 7 focuses on extending the synchronous distributed algorithms in Chapter 6 to

an asynchronous setting which also allows delays. The proposed distributed asynchronous

algorithm is characterized as a special instance of random block coordinate fixed point

iteration of an averaged operator. Under key assumptions of independent random agent

activation and uniform upperbound for delay times, almost sure convergence to a random

variable supported by some optimal solution can be guaranteed.

In Chapter 8, several numerical examples are presented. Convergence of different algo-

rithms are demonstrated and compared under different settings. Finally, some concluding

remarks and possible future directions are discussed in Chapter 9.

9

2. MULTI-AGENT OPTIMIZATION FORMULATIONS AND
APPLICATION EXAMPLES

In this chapter, we will discuss the multi-agent optimization formulations in detail. Starting

from a base standard problem, we will gradually increase its generality while establish-

ing equivalency between different formulations. In addition, several important classes of

application examples are introduced to show the significance of studying our multi-agent

optimization formulation. In particular, we will demonstrate that the most studied formula-

tion in literature, i.e., constrained consensus optimization over agent networks, is a special

case.

2.1 Standard Formulation

In this dissertation, we consider multi-agent optimization problems that have the fol-

lowing base standard formulation:

minimize
x

L∑
i=1

fi(xi) (2.1)

subject to Ax = b, (2.2)

xi ∈ Xi, i ∈ [L], (2.3)

where L is the number of agents, A ∈ Rm×n, b ∈ Rm, x = (x1, . . . , xL) ∈ Rn is the

centralized global decision variable and xi ∈ Rni is the local decision variable for agent i

with
∑L

i=1 ni = n.

Assumption 2.1.1 Each fi : Rni → R ∪ {+∞} is an extended-real-valued closed convex

proper (CCP) function, i.e., fi is lower semi-continuous, convex, and fi 6≡ +∞.

Assumption 2.1.2 Local constraint sets Xi’s are nonempty, closed, and convex.

10

Assumption 2.1.3 There exists at least one z∗ = (x∗1, . . . , x
∗
L, λ

∗) that satisfies the KKT

conditions of problem (2.1), which implies that saddle points of the corresponding Lagrange

function exist.

The objective function (2.1) is the summation of local objective functions fi(xi), each of

which represents a cost that depends on xi. The first constraint (2.2) couples local decision

variables’ of all agents together as Ax =
∑L

i=1Aixi, where Ai ∈ Rm×ni contains the

columns in A that correspond to xi. This constraint can be thought of as a shared resource

constraint among all agents. Without loss of generality, we assume b has the partition

b =
∑L

i=1 bi, e.g., bi = b/L, ∀i ∈ [L]. On the other hand, (2.3) represents the local, private

constraint on each individual agent. In addition, we assume that the local objective function

fi, local feasible set Xi, and coupling constraint parameters that pertain to local decision

variables, Ai, bi, are private and only known to agent i.

Remark 2.1.1 We do not assume that each local constraint set is compact, thus bounded,

as in many existing literatures.

Remark 2.1.2 Assumption 2.1.3 guarantees that the optimal solution set of problem (2.1)

is not empty.

2.2 Other Formulations

Next, we discuss several important extensions or variations of the base standard for-

mulation (2.1). These formulations are all equivalent to the base standard formulation

through simple transformation or introduction of extra variables. Therefore, although all

algorithms’ development in later chapters will focus on (2.1), they can be easily modified

to accommodate other formulations.

Linear Inequality Coupling Constraints Instead of coupling linear equality constraints,

some applications might involve coupling linear inequality constraints:

minimize
x

L∑
i=1

fi(xi) (2.4)

11

subject to Ax ≤ b,

xi ∈ Xi, i ∈ [L].

In this case, we can introduce a slack variable xL+1, with private feasible set XL+1 = Rm
+ ,

such that Ax+ xL+1 = b, and the new optimization problem becomes

minimize
(x, xL+1)

L+1∑
i=1

fi(xi)

subject to
[
A Im

] x

xL+1

 = b,

xi ∈ Xi, i ∈ [L+ 1],

where fL+1(xL+1) = 0. Obviously, fL+1 and XL+1 satisfy the predefined assumptions on

convexity, thus the above problem is a special case of the standard formulation in (2.1).

Coupling Objective Functions For some problems, in addition to shared resources cou-

pling constraints between different agents, there might be couplings in the objective func-

tion. That is, local objective functions depend on not only local decision variables, but also

decision variables from other neighboring agents. For example,

minimize
x

L∑
i=1

fi (xi, (xj)j∈Ni) (2.5)

subject to Ax = b,

xi ∈ Xi, i ∈ [L].

In this case, the local objective function for agent i not only depends on xi, but also on

xj where j ∈ Ni. Here, Ni is the set of “neighboring” agents outside agent i that affect

objective function fi. For this problem, we can introduce additional variables (xj,i)j∈Ni for

agent i such that x̂i := (xi, (xj,i)j∈Ni) becomes the new local decision variable for agent

i. At the same time, additional consensus constraints xj,i = xj , ∀j ∈ Ni are introduced to

ensure the consistency between auxiliary variables and neighboring agents’ local decision

variables.

12

Notice that the added consensus constraints can be combined with the coupling equality

constraints to yield the following problem:

minimize
x̂

L∑
i=1

fi (x̂i)

subject to Âx̂ = b̂,

x̂i ∈ X̂i, i ∈ [L],

where x̂ = (x̂i)i∈[L], X̂i = Xi × Rdi , and di =
∑

j∈Ni nj . This becomes the standard

formulation in (2.1).

Convex Inequality Coupling Constraints The base standard formulation (2.1) can also

be generalized to the following formulation:

minimize
x

L∑
i=1

fi(xi) (2.6)

subject to
L∑
i

gi(xi) ≤ b,

xi ∈ Xi, i ∈ [L],

where gi’s are CCP functions. The base standard formulation (2.4) is a special case of the

above formulation where gi’s are affine functions. By adding an extra variable ci ∈ Rm for

each agent, optimization problem (2.6) can be equivalently written as

minimize
x, (ci)i∈[L]

L∑
i=1

fi(xi)

subject to
L∑
i

ci = b,

gi(xi) ≤ ci, xi ∈ Xi, i ∈ [L].

Define the new local decision variable for each agent as x̂i := (xi, ci), and define the new

local constraint set as X̂i := {(xi, ci) ∈ Rni+m |xi ∈ Xi, gi(xi) ≤ ci}, which is nonempty,

13

closed and convex as long asXi is nonempty, closed and convex. Local objective functions

are still CCP functions in x̂i’s. Then the problem can be cast as

minimize
x̂

L∑
i=1

fi(x̂i)

subject to Ax̂ = b,

x̂i ∈ X̂i, i ∈ [L],

which is our base standard formulation with Ai = [0m×ni Im].

General Coupling Formulation Previously, we considered three formulations with dif-

ferent coupling structures, all of which can be recast as the standard formulation. Combining

and extending those coupling structures, we obtain a multi-agent optimization problem with

general coupling structure:

minimize
x

L∑
i=1

fi
(
xi, (xj)j∈N oi

)
(2.7)

subject to
L∑
i=1

gi
(
xi, (xj)j∈N ci

)
≤ b,(

xi, (xj)j∈N li

)
∈ Xi, i ∈ [L].

Sets N o
i , N c

i , and N l
i denotes the sets of agents that have coupling with agent i in its local

objective function, local coupling contraint function, and local constraints, respectively.

Obviously, the standard formulation (2.1) as well as the formulations (2.4), (2.5), (2.6)

are all special cases of the general formulation (2.7). It is straightforward to transform

formulation (2.7) into the standard formulation using the technique presented previously: 1)

introducing additional variables (xj,i)j∈Ni whereNi = N o
i ∪N c

i ∪N l
i and correspondingly

consensus constraints xj,i = xj , ∀j ∈ Ni, ∀i ∈ [L]; 2) introducing slack variables ci
for each agent and convert coupling inequality constraint

∑L
i=1 gi

(
xi, (xj)j∈N ci

)
≤ 0 into∑L

i=1 ci = b and gi
(
xi, (xj)j∈N ci

)
≤ ci; 3) combining gi

(
xi, (xj)j∈N ci

)
≤ ci into local

constraint.

Therefore, all the formulations in this chapter are equivalent through certain transfor-

mations. One only needs to slightly modify Assumption 2.1.3 to guarantee the existence of

14

solutions under different formulations. For examples, for the general coupling formulation

(2.7), Slater’s conditions can be used to guarantee the existence of saddle points of the

corresponding Lagrange function. For the purpose of algorithm development, we will stick

to the base standard formulation (2.1) as it allows for simpler notations.

2.3 Application Examples

Constrained Consensus Optimization in Multi-agent Networks In Chapter 1, it is

mentioned that the constrained consensus optimization problem

minimize
x

L∑
i=1

fi(x)

subject to x ∈ X =
L⋂
i=1

Xi,

has been extensively studied in the literature. It is straightforward to see that this problem

is equivalent to the following formulation

minimize
x̂=(x1,...,xL)

L∑
i=1

fi(xi)

subject to xi = xj, ∀i, j ∈ [L] and i 6= j

xi ∈ Xi, i ∈ [L],

where each agent i keeps a copy of the whole original global decision variable x, and

the consensus constraint between different agents can be written in the form of Ax̂ = 0.

Therefore, the constrained consensus optimization problem is a special case of our base

standard formulation.

Distributed Model Predictive Control of Linear Systems In model predictive control

(MPC) or receding horizon control, at each time step, a new optimal control problem

is formulated based on the current measured or estimated state variables, as well as the

predicted exogenous input in the predicted horizon. Once the optimal control sequence is

determined, only the first control action will be applied to the system and at the next time

step, this process is repeated.

15

For many MPC problems, as the scale of the system or the prediction horizon increases,

the centralized problem becomes very difficult to solve. For some other cases consisting of

multiple subsystems with possibly time-varying interaction topology, even though compu-

tation is not an issue, it will be desirable to have distributed solution methods as they are

often more robust to subsystem failure and more suitable for adding or removing subsystems

without major modification of the algorithm. Much research effort has been devoted to the

so called distributed model predictive control (DMPC) algorithms [80, 91].

A general formulation of a centralized MPC problem for a discrete-time linear system

is

minimize
x(t+1), u(t)

N−1∑
t=0

L∑
i=1

gi (xi(t), ui(t)) (2.8)

subject to x(t+ 1) = Adx(t) +Bdu(t), x(0) = x0, (2.9)

xi(t+ 1) ∈ Xi(t+ 1), ui(t) ∈ Ui(t), (2.10)

i = 1, . . . , L; t = 0, 1, . . . , N − 1, (2.11)

where xi and ui are the local state and control variables, respectively; x = (x1, . . . xL),

u = (u1, . . . , uL); N denotes the prediction horizon. Constraint (2.9) is the dynamics of

the centralized system that needs to be satisfied at all time. Constraint (2.10) could be either

the local constraint imposed on the operation of the system or terminal constraint used to

guarantee stability [91].

Remark 2.3.1 The centralized linear dynamics (2.9) could consist of multiple local dy-

namics in terms of the local variables xi and ui, and those dynamics might be coupled. If

individual local dynamics are uncoupled, then (2.9) can be decomposed and incorporated

into the local constraint (2.10).

By stacking the state and control variables together, and further concatenating the

dynamics of the system during the whole prediction horizon, the optimization problem

(2.8) can be equivalently represented as

minimize
z

L∑
i=1

fi(zi)

16

subject to Az = b, zi ∈ Zi, i ∈ [L],

where z = (z1, . . . , zL), and zi = (xi(1), . . . , xi(N), ui(0), . . . , ui(N − 1)); A and b are

proper matrix and vector, constructed from Ad, Bd, and x0; fi(zi) =
∑N−1

t=0 gi(xi(t +

1), ui(t)). Obviously, this centralized MPC formulation is special case of our base standard

formulation.

Commodity Exchange The exchange problem [89, 90] has the following form

minimize
xi

L∑
i=1

fi(xi)

subject to
L∑
i=1

xi = 0.

This is a classical problem in the economics literature. The interpretation is that each entry

of the local decision variable xi represents how much agent i contributes to the exchange of

the corresponding goods or commodity. If (xi)j is positive, it means that agent i receives

that amount of commodity j through the exchange; if (xi)j is negative, it means that agent i

sends |(xi)j| amount of commodity j to other agents. The constraint
∑L

i=1 xi = 0 balances

the total sent and received amounts of each commodity among all agents. The local objective

function is the total operational cost for each agent to sell and buy certain amount of each

commodity.

A similar formulation also arises in dynamic network energymanagement problem [48],

where each agent denotes a node in the electricity grid, and commodities denote electricity

energy transmitted through a node in a certain time period. The constraint
∑L

i=1 xi = 0

enforces that during that time the energy flow into a node balances the energy flows out of

that node. The exchange problem is apparently one instance of our multi-agent optimization

formulation (2.1), where the local decision variable of each agent has the same dimension.

Resource Allocation The resource allocation problem is very similar to the exchange

problem, and has the following form

minimize
xi

L∑
i=1

fi(xi)

17

subject to
L∑
i=1

xi = b,

xi ≥ 0, i ∈ [L].

Here, each entry bj ≥ 0 represents certain type of resources that is to be allocated into L

activities or agents. Since the resource received by agent i cannot be negative, we have the

extra constraint set Xi = Rni
+ .

One special case that belongs to this class is the network utility maximization (NUM)

problem studied in [10, 93, 94]. In an NUM problem, a network ofm links are considered,

each of which has a finite positive capacity of bi > 0, i ∈ [m]. The network is shared by L

sources that are transmitting information along some predetermined routes. The capacity

constraints on all links can be compactly represented as Ax ≤ b, where A ∈ Rm×L is the

routing matrix defined as

Aij =

1, if link i is on the route of source j;

0, otherwise.

A concave utility function fi is associated with each source i, ∀i ∈ [L], i.e., fi(xi) denotes

the utility of source i as a function of the source rate xi ≥ 0. Assuming additivity of

individual utility functions, the global utility of the whole network is given by
∑L

i=1 fi(xi),

and the NUM is formulated as

maximize
xi

L∑
i=1

fi(xi)

subject to Ax ≤ b,

xi ≥ 0, i ∈ [L],

which is exactly the same as formulation (2.4).

Distributed Model Fitting and Statistical Machine Learning A fairly general convex

formulation for many model fitting problems in statistics and machine learning can be

represented as

minimize
x

g(Cx− d) + r(x), (2.12)

18

where x ∈ Rn is the model parameters to be estimated/learned; C ∈ Rm×n is the feature

matrix that contains all training examples as row vectors; d ∈ Rm is the output vector;

g : Rm → R is a convex loss function; and r : Rn → R is a convex regularization function

that imposes certain desirable properties on the optimal parameter x∗. Some common

regularization functions include Tikhonov regularization or ridge penalty r(x) = β‖x‖22,

where β > 0; and lasso penalty (least absolute shrinkage and selection operator) r(x) =

β‖x‖1.

In some cases, there is a modest number of model parameters but a very large number

of training examples, i.e.,m� n. Many classical estimation problems belong to this class

(large number of low dimensional data). It makes sense to split the training data into smaller

groups such that each group of data can be handled by a different processor. Sometimes,

the data are naturally stored in a distributed fashion and it might be difficult or impractical

to collect all training data into one place, such as social network data, webserver log data,

and other cloud computing applications. The following partitions can be made

C =


CT

1

...

CT
L

 , d =


d1
...

dL

 ,
where CT

i ∈ Rmi×n and di ∈ Rmi with
∑L

i=1mi = m. In this case, CT
i and di corresponds

to the ith block of data that is only available to agent i. Then problem (2.12) is transformed

into

minimize
xi, y

L∑
i=1

gi
(
CT
i xi − di

)
+ r(y),

subject to xi − y = 0, i ∈ [L],

where xi, y ∈ Rn. This formulation is a special instance of (2.1) with the centralized

decision variable x̂ = (x1, . . . , xL, y), b = 0, and

A =


I 0 · · · −I

0 I · · · −I
...

0 · · · I −I

 ∈ RnL×n(L+1).

19

In some other cases, the number of model parameters or features far exceeds the number

of training examples, i.e., m � n. For example, in some natural language processing

problems, the training examples might be a corpus of documents and features including all

possible words and pairs of adjacent words. For problems like this, we can partition the

data as follows: C = [C1 · · ·CL], with Ci ∈ Rm×ni; x = (x1, . . . , xL), with xi ∈ Rni

and
∑L

i=1 ni = n. The regularization function can be conformably decomposed as r(x) =∑L
i=1 ri(xi). Hence, problem (2.12) equivalently becomes

minimize
xi

g

(
L∑
i=1

Cixi − d

)
+

L∑
i=1

ri(xi).

After introducing the auxiliary variable y, the above problem can be rewritten as

minimize
xi, y

g(y − d) +
L∑
i=1

ri(xi),

subject to
L∑
i=1

Cixi − y = 0,

which is a special case of (2.1) with the aggregated decision variable x̂ = (x1, . . . , xL, y),

A = [C − I] and b = 0.

20

3. MONOTONE OPERATOR AND FIXED POINT ITERATION

In this chapter, we will briefly review some basics and facts from monotone operator theory

and fixed point iteration of nonexpansive, averaged operators. These are not only the

theoretical foundations of many iterative algorithms for convex optimization problems, but

also very powerful tools for designing distributed, parallel algorithms in later chapters of

the dissertation.

3.1 Operators

An operator T , also called relation, is a point-to-set map, or set-valued map, defined by

its graph gra(T) := {(x, y) | y ∈ T (x)}. If T (x) is a singleton or empty for any x, then T

is a function or single-valued.

Some useful sets associated with operators and common operations performed on oper-

ators are summarized as follows:

1. (Domain) The domain of an operator T is defined as dom(T) := {x |T (x) 6= ∅}.

2. (Zero set) The zero set an operator T is defined as zer(T) := {x ∈ dom(T) | 0 ∈

T (x)}.

3. (Fixed point set) The fixed point set an operator T is defined as Fix(T) := {x ∈

dom(T) | {x} = T (x)}.

4. (Summation) If T1 and T2 are two operators, their summation is defined by its graph

gra(T1 + T2) = {(x, y + z) | y ∈ T1(x), z ∈ T2(x)}.

5. (Composition) If T1 and T2 are two operators, their composition is defined by its

graph gra(T1 ◦ T2) = {(x, z) | ∃y ∈ T2(x), z ∈ T1(y)}.

21

6. (Inversion) The inverse of an operator T is defined by its graph gra(T−1) =

{(y, x) | y ∈ T (x)}. In general, T−1 ◦ T (x) 6= x, but the equality does hold when

T−1 is a function.

7. (Identity) The identity operator Id, is an operator that maps any point to itself, i.e.,

Id(x) = x.

3.2 Monotone Operator

Definition 3.2.1 A set-valued operator T : Rn ↪→ Rn is called

1. monotone if

〈u− v, x− y〉 ≥ 0, ∀(x, u), (y, v) ∈ gra(T).

2. maximally monotone if T is monotone, and its graph is not properly contained in the

graph of any other monotone operator.

Some operations that preserve monotonicity are summarized as follows [78].

1. (Summation) If T1 and T2 are monotone, then T1 +T2 is also monotone. If T1 and T2
are maximally monotone and dom(T1)∩ int dom(T2) 6= ∅where int dom(T2) denotes

the interior of set dom(T2), then T1 + T2 is also maximally monotone [75].

2. (Non-negative scaling) If T is (maximally) monotone, then αT is also (maximally)

monotone for α ≥ 0.

3. (Inversion) If T is (maximally) monotone, T−1 is also (maximally) monotone.

4. (Concatenation) If T1 and T2 are (maximally) monotone operators on Rm and Rn,

respectively, then the operator T3(x, y) := {(u, v) |u ∈ T1(x), v ∈ T2(y)}, is also

(maximally) monotone onRm+n.

Some classes of (maximally) monotone operators that play important roles in optimization

are summarized below.

22

1. (Subdifferential of CCP function) Suppose f : Rn → R ∪ {∞} is a closed,

convex, proper (CCP) function. Then its subdifferential operator ∂xf(x) is maximally

monotone.

2. (Affine function) An affine function T (x) = Ax + b is maximally monotone if and

only if A + AT � 0. One special case is when A is a skew-symmetric matrix, i.e.,

AT = −A.

3. (Normal cone operator) The normal cone operator of a closed convex set C,

NC(x) =

∅, if x /∈ C

{y | yT (z − x) ≤ 0, ∀z ∈ C} if x ∈ C,

is maximally monotone, since NC(x) is the subdifferential of the convex indicator

function defined as

1C(x) =

0 if x ∈ C,

+∞ if x 6∈ C,

which is CCP if C is closed and nonempty.

4. (KKT operator) Consider the following convex optimization problem

minimize
x

f(x)

subject to g(x) ≤ 0, h(x) = 0,

where f(x) and g(x) are closed, convex, proper functions and h(x) is affine. The

associated Lagrangian function is L(x, λ, µ) = f(x)+λTg(x)+µTh(x), λ ≥ 0. The

KKT operator is defined as

T (x, λ, µ) =


∂xL(x, λ, µ)

−g(x) +N{λ≥0}(λ)

−h(x)

 .
By the operations that preserve monotonicity we summarized before, it is easy to

verify the T is maximally monotone. It should also be noted that 0 ∈ T (x, λ, µ) if

(x, λ, µ) is a primal-dual solution to the above convex optimization problem.

23

3.3 Nonexpansive and Averaged Operators

Definition 3.3.1 Let D be a nonempty subset of Rn and let T : D → Rn. Then T is

1. nonexpansive if

‖T (x)− T (y)‖ ≤ ‖x− y‖, ∀x, y ∈ D;

2. firmly nonexpansive if

‖T (x)− T (y)‖2 ≤ ‖x− y‖2 − ‖(x− T (x))− (y − T (y))‖2, ∀x, y ∈ D;

3. contractive if

‖T (x)− T (y)‖ ≤ β‖x− y‖, ∀x, y ∈ D;

for some β ∈ (0, 1).

Notice that firm nonexpansiveness implies nonexapnsiveness, thus the former is a stronger

notion than the latter. Also, any of the above three properties implies that the underlying

operator T is a function as x = y if and only if T (x) = T (y).

Remark 3.3.1 ‖ · ‖ denotes the Euclidean norm in this chapter. Some of the results will be

extended to other norms in the next chapter.

It is straightforward to verify that the composition of nonexpansive operators is non-

expansive; the composition of contractive operators is contractive; the composition of

nonexpansive operators with contractive operators is contractive. In addition, suppose

T3 = θT1 + (1 − θ)T2, with θ ∈ [0, 1]. If T1 and T2 are both nonexpansive, T3 is also

nonexpansive. Next, we summarize some well-known results regarding nonexpansive and

firmly nonexpansive operators.

Proposition 3.3.1 ([9]) Let D be a nonempty subset of Rn and let T : D → Rn. Then the

following statements are equivalent:

1. T is firmly nonexpansive.

2. Id− T is firmly nonexpansive.

24

3. 2T − Id is nonexpansive.

4. 〈x− y, T (x)− T (y)〉 ≥ ‖T (x)− T (y)‖2, ∀x, y ∈ D.

Definition 3.3.2 Let D be a nonempty subset of Rn, let T : D → Rn and let β > 0. Then

T is called β-cocoercive if 〈x− y, T (x)− T (y)〉 ≥ β‖T (x)− T (y)‖2, ∀x, y ∈ Rn.

Remark 3.3.2 Note that T is β-cocoercive if βT is firmly nonexpansive. We can also show

that T is nonexpansive if and only if Id− T is β-cocoercive.

Definition 3.3.3 An operator T is called averaged with constant θ, or θ-averaged if T =

θId + (1− θ)T0 for some θ ∈ (0, 1) and some nonexpansive operator T0.

An averaged operator is always nonexpansive; composition or convex combinations of

multiple averaged operators are still averaged [21, 23].

Proposition 3.3.2 ([9]) Let D be a nonempty subset of Rn, let T : D → Rn, and let

β ∈ (0, 1). Then the following statements are equivalent:

1. T is θ-averaged.

2. (1− 1/θ)Id + (1/θ)T is nonexpansive.

3. ‖T (x)− T (y)‖2 ≤ ‖x− y‖2 − 1−θ
θ
‖(x− T (x))− (y − T (y))‖2, ∀x, y ∈ D.

Remark 3.3.3 Note that an operator is firmly nonexpansive if and only if it is 1/2-averaged.

Therefore, averagedness is a more general notion compared to firmly nonexpansiveness.

3.4 Fixed Point Iteration

If T is nonexapnsive and domT = Rn, then Fix(T) is closed and convex (could be

empty). In addition, if T is contractive and domT = Rn, then Fix(T) contains exactly one

point. For an averaged operator T = θId + (1− θ)T0 with θ ∈ (0, 1), it is straightforward

25

to verify that Fix(T) = Fix(T0). One of the most fundamental and significant algorithms

in computational mathematics is the fixed point iteration algorithm

xk+1 = T (xk), (3.1)

for T : Rn → Rn with some initial point x0 ∈ Rn. This algorithm dates back over 100

years [6, 73].

Proposition 3.4.1 ([9, 78]) Suppose operator T : Rn → Rn is contractive. Then the fixed

point iteration algorithm (3.1) converges linearly to the unique fixed point of T .

Proposition 3.4.2 ([9, 78]) Suppose operator T : Rn → Rn is averaged and Fix(T) 6= ∅.

Then the fixed point iteration algorithm (3.1) converges to some x∗ ∈ Fix(T).

Corollary 3.4.1 Suppose operator T : Rn → Rn is firmly nonexpansive and Fix(T) 6= ∅.

Then the fixed point iteration algorithm (3.1) converges to some x∗ ∈ Fix(T).

When (3.1) is applied to an averaged operator, it is also called the Mann-Krasnosel’skii

iteration [49, 58]. Note that if we apply the fixed point iteration (3.1) to a nonexpansive

operator, it does not necessarily converge. One example is given in Fig. 3.1, where operator

T0 := 45 degree counter-clockwise rotation, is nonexpansive, but the corresponding fixed

point iteration does not converge. On the other hand, iterations (3.1) converges when applied

to T = 1/2 · Id + 1/2 · T0.

Fig. 3.1.: Fixed point iterations applied to nonexpansive and averaged operators

26

3.5 Resolvent and Cayley Operator

Definition 3.5.1 Let T be a set-valued operator on Rn and β > 0. The resolvent of T is

defined as

RT = (Id + βT)−1. (3.2)

The corresponding Cayley operator is defined as CT = 2RT − Id. The Cayley operator is

also called the reflection or reflected resolvent.

Two important resolvent operators that will be used later are:

1. (Proximal operator) The resolvent of the subddiferential of a CCP function f is

called the proximal operator [69], denoted by

prox
βf

(x) = arg min
u

(
f(u) + (1/2β)‖u− x‖2

)
.

To see this, note that if z = R∂f (x), we have

z = (Id + β∂f)−1(x) ⇐⇒ x ∈ z + β∂f(z)

⇐⇒ 0 ∈ (z − x)/β + ∂f(z)

⇐⇒ z = arg min
u

(
f(u) + (1/2β)‖u− x‖2

)
.

2. (Projection operator) The resolvent of a normal cone operator corresponding to a

nonempty, closed convex set C, is the projection operator onto C, i.e., RNC (x) =

PC(x). To see this, take f(x) = 1C(x), we know ∂f(x) = ∂1C(x) = NC(x), thus

the resolvent ofNC(x) is the proximal operator of f(x), i.e., RNC (x) = proxβf (x) =

arg minu (1C(u) + (1/2β)‖u− x‖2) = PC(x).

Proposition 3.5.1 ([9, 78]) LetT be a set-valued operatorwithdom(T) 6= ∅ anddom(T) ⊆

Rn:

1. If T is monotone, then CT is nonexpansive, and RT is 1/2-averaged, or firmly

nonexpansive.

27

2. If T is further maximally monotone, then domCT = domRT = Rn.

Proposition 3.5.2 ([78]) Suppose a set-valued operator T is monotone. Then, x ∈ zer(T)

if and only if x ∈ Fix(RT) = Fix(CT).

Proof For any x ∈ zer(T), we have 0 ∈ T (x), if and only if x ∈ (Id + βT)x for any

β > 0, if and only if x = (Id + βT)−1(x) = RT (x), i.e., x ∈ Fix(RT). The second part of

the claim follows from the definition of Cayley operator.

Proposition 3.5.2 implies that the zero set of a monotone operator T is the same as the fixed

point set of its resolvent or Cayley operators. Therefore, finding an optimal solution to the

convex optimization problem associated with the operator T is equivalent to finding a fixed

point of the firmly nonexpansive operator RT . If RT is efficient to evaluate, one can apply

the resolvent iteration xk+1 = RT (xk), for k = 0, 1 . . . to find a fixed point. This algorithm

is also called the proximal point algorithm [15, 59, 77], and always converges to a solution

if one exists since RT is averaged when T is maximally monotone.

3.6 Operator Splitting

When the resolvent or Cayley operators are difficult to evaluate or compute directly, one

alternative methodology is operator splitting. Certain monotone operator T admits a natural

splitting into the summation of two or three maximally monotone operators, and the task of

finding a zero point of T is equivalent to solving 0 ∈ (T1 + T2)x or 0 ∈ (T1 + T2 + T3)x,

where T1, T2, T3 are maximally monotone operators. Operator splitting methods aim to

transform such problems into fixed point iterations with operators associatedwith T1, T2, T3
and their corresponding resolvent, Cayley operators, which are often much more efficient

to evaluate or compute compared to those of operator T .

There are many operator splitting methods available, but we will focus on Douglas-

Rachford splitting (two operators) and Davis-Yin splitting (three operators) as they require

milder assumptions on operatorsT1, T2, T3 to guarantee convergence and pertainmore to the

generalization and algorithms development that will be presented later in this dissertation.

28

We refer interested readers to [9] and [78] for other operator splitting methods and their

applications.

Proposition 3.6.1 (Douglas-Rachford Splitting [9]) Suppose T1, T2 are maximally mono-

tone onRn and zer(T1+T2) 6= ∅. Define operatorTDR := Id−2αRT2+2αRT1◦(2RT2−Id)

where α ∈ (0, 1). Then TDR is α-averaged. Starting from any z0, for k = 0, 1, . . ., let

wk+1 = RT2(z
k); (3.3a)

zk+1 = zk + 2α
(
RT1(2w

k+1 − zk)− wk+1
)
. (3.3b)

The sequence (zk)k≥0 converges to some z∗ ∈ Fix(TDR), and the sequence (wk)k≥0 con-

verges to RT2(z
∗) ∈ zer(T1 + T2).

Notice that for Douglas-Rachford splitting, each iteration requires evalutaing RT1 and RT2

each once, and their roles can be switched in (3.3).

Proposition 3.6.2 (Davis-Yin Splitting [25]) Suppose T1, T2 are maximally monotone on

Rn; T3 is β-cocoercive; zer(T1 + T2 + T3) 6= ∅. Define operator TDY := Id − RT2 +

RT1 ◦ (2RT2 − Id− γT3 ◦RT2) where γ ∈ (0, 2β). Then TDY is θ-averaged with coefficient

θ = 2β
4β−γ < 1. Starting from any z0, for k = 0, 1, . . ., let

wk+1 = RT2(z
k); (3.4a)

zk+1 = zk − wk+1 +RT1

(
2wk+1 − zk − γT3(wk+1)

)
. (3.4b)

The sequence (zk)k≥0 converges to some z∗ ∈ Fix(TDY), and the sequence (wk)k≥0 con-

verges to RT2(z
∗) ∈ zer(T1 + T2 + T3).

Notice that for Davis-Yin splitting, each iteration requires evalutaing RT1 , RT2 and T3 each

once, and the roles of RT1 and RT2 can be switched in (3.4).

29

4. GENERALIZED RESOLVENT ITERATION AND
GENERALIZED OPERATOR SPLITTING

In the previous chapter, we reviewed somewell-known facts and results regarding monotone

operators, fixed point iteration of averaged maps and resolvent operators. We demonstrated

that for many convex optimization problems, the optimal solution set can be characterized

by the zero set of certain monotone operators, and an optimal solution can be found by

carrying out the corresponding resolvent iteration. In cases where the resolvent of the

underlying monotone operator is difficult to compute, but yields certain decomposition

of multiple monotone operators, whose resolvent can be computed efficiently, operator

splitting methods can be utilized.

In this chapter, wewill extend the theoretical results in the previous chapter. In particular,

we will define a generalized resolvent operator, which takes the standard resolvent operator

as a special case. The averagedness, or firm nonexpansiveness of the generalized resolvent

operator will be shown under a new norm. This generalization provides greater flexibility

to make the computation of resolvent more efficient, or distributed in nature, which will

play a fundamental role in the development of a series of different distributed algorithms

later. In addition, the operator splitting methods will be extended with the introduction of

generalized resolvent operator.

4.1 Generalized Resolvent and Cayley Operator

Definition 4.1.1 (Generalized Resolvent and Cayley Operator) LetT be a set-valued op-

erator on Rn and P ∈ Rn×n be a symmetric positive definite matrix. The generalized

resolvent of T is defined as

R̂T = (P + T)−1P. (4.1)

30

The corresponding generalized Cayley operator is defined as ĈT = 2R̂T − Id.

Remark 4.1.1 Notice that the standard resolvent and Cayley operator definitions in Defi-

nition 3.5.1 are special cases of the above generalized definitions with P = 1
β
In.

Definition 4.1.2 For a symmetric positive definite matrix P ∈ Rn×n, we define an associ-

ated vector P -norm as ‖x‖P =
√
xTPx, ∀x ∈ Rn.

Proposition 4.1.1 Suppose a set-valued operator T is monotone, then ĈT is nonexpansive

with respect to the norm ‖ ·‖P , and R̂T is an 1/2-averaged, or firmly nonexpansive operator

with respect to the norm ‖ · ‖P .

Proof Let u1 ∈ R̂T (x1) and u2 ∈ R̂T (x2). Then (P +T)u1 3 Px1 and (P +T)u2 3 Px2.

Subtract these to obtain

P (u1 − u2) + (T (u1)− T (u2)) 3 P (x1 − x2).

Multiplying both sides by (u1 − u2)T and utilizing the monotonicity of operator T yields

‖u1 − u2‖2P ≤ (u1 − u2)TP (x1 − x2)

⇐⇒ ‖u1 − u2‖2P ≤ ‖x1 − x2‖2P − (‖x1 − x2‖2P − 2(u1 − u2)TP (x1 − x2)+

‖u1 − u2‖2P)

⇐⇒ ‖u1 − u2‖2P ≤ ‖x1 − x2‖2P − ‖(x1 − u1)− (x2 − u2)‖2P .

Since the choice of (x1, u1) and (x2, u2) is arbitrary, we conclude that R̂T is firmly nonex-

pansive with respect to the norm ‖ · ‖P .

Next, we have ‖ĈT (x1)− ĈT (x2)‖2P = ‖2(u1 − u2)− (x1 − x2)‖2P = 4‖u1 − u2‖2P −

4(u1 − u2)TP (x1 − x2) + ‖x1 − x2‖2P ≤ ‖x1 − x2‖2P . Thus, ĈT is nonexpansive under

the norm ‖ · ‖P . Since R̂T and ĈT are nonexpansive, they are also single-valued. Since

R̂T = 1/2 · Id + 1/2 · ĈT , R̂T is also 1/2-averaged with respect to the norm ‖ · ‖P .

Remark 4.1.2 Suppose u = R̂T (x). Then (P + T)u 3 Px ⇐⇒ (Id + P−1T)u 3 x.

Therefore, R̂T can be equivalently represented as R̂T = (Id + P−1T)−1. Although P−1 is

31

positive definite by assumption, in general P−1T is not necessarily maximally monotone.

Therefore, we cannot directly use the result from standard resolvent operator in the previous

chapter to conclude the firm nonexpansiveness or averagedness of R̂T .

Proposition 4.1.2 Suppose a set-valued operator operator T is monotone. Then, x ∈

zer(T) if and only if x ∈ Fix(R̂T) = Fix(ĈT).

Proof The first part of the claim follows from

0 ∈ T (x) ⇐⇒ Px ∈ (P + T)x,

⇐⇒ x = (P + T)−1Px,

⇐⇒ x = R̂T (x), (4.2)

⇐⇒ x ∈ Fix(R̂T). (4.3)

The second part of the claim follows from the definition of the generalized Cayley operator.

Proposition 4.1.2 implies that the zero set of an operator T is the same as the fixed point

set of its generalized resolvent or Cayley operators. Therefore, if the optimal solution set

of certain optimization problem can be characterized as the zero set of a proper maximally

monotone operator T , we can utilize the following generalized resolvent iteration to find an

optimal solution.

Proposition 4.1.3 (Generalized Resolvent Iteration) Let T be a set-valued operator on

Rn and P ∈ Rn×n be a symmetric positive definite matrix. Then, the sequence (zk)k≥0

generated by the iteration

zk+1 = (P + T)−1Pzk, (4.4)

converges to some z∗ ∈ zer(T) if zer(T) 6= ∅.

32

4.2 Generalized Douglas-Rachford Splitting

Proposition 4.2.1 Suppose T1, T2 are maximally monotone on Rn and zer(T1 + T2) 6= ∅.

Define operator T̂DR := Id− 2αR̂T2 + 2αR̂T1 ◦ (2R̂T2 − Id) where α ∈ (0, 1). Then T̂DR
is α-averaged with respect to the norm ‖ · ‖P . Starting from any z0, for k = 0, 1, . . ., let

wk+1 = R̂T2(z
k); (4.5a)

zk+1 = zk + 2α
(
R̂T1(2w

k+1 − zk)− wk+1
)
. (4.5b)

The sequence (zk)k≥0 converges to some z∗ ∈ Fix(T̂DR), and the sequence (wk)k≥0 con-

verges to w∗ = R̂T2(z
∗) ∈ zer(T1 + T2).

Proof Let w∗ be a point in zer(T1 + T2). Then

0 ∈ (T1 + T2)w
∗

⇐⇒ 0 ∈ (P−1T1 + P−1T2)w
∗

⇐⇒ 0 ∈ (Id + P−1T1)w
∗ − (Id− P−1T2)w∗

⇐⇒ 0 ∈ (Id + P−1T1)w
∗ − ĈT2 ◦ (Id + P−1T2)w

∗

⇐⇒ 0 ∈ (Id + P−1T1)w
∗ − ĈT2(z∗), for some z∗ ∈ (Id + P−1T2)w

∗

⇐⇒ ĈT2(z
∗) ∈ (Id + P−1T1) ◦ R̂T2(z

∗), w∗ = R̂T2(z
∗)

⇐⇒ 2R̂T1 ◦ ĈT2(z∗) = 2R̂T2(z
∗), w∗ = R̂T2(z

∗)

⇐⇒ (ĈT1 + Id) ◦ ĈT2(z∗) = (ĈT2 + Id)z∗, w∗ = R̂T2(z
∗)

⇐⇒ ĈT1 ◦ ĈT2(z∗) = z∗, w∗ = R̂T2(z
∗).

The thrid line to the fourth line is due to the fact that ĈT2 ◦ (Id + P−1T2) = (2(Id +

P−1T2)
−1 − Id) ◦ (Id + P−1T2) = (2Id− Id− P−1T2) = Id− P−1T2.

Therefore, a point w∗ ∈ zer(T1 + T2) can be obtained as w∗ = R̂T2(z
∗) where z∗ is

a fixed point of map ĈT1 ◦ ĈT2 , which is nonexpansive under the norm ‖ · ‖P since it is

the composition of two nonexpansived maps under the norm ‖ · ‖P . Therefore T̂DR :=

(1 − α)Id + αĈT1 ◦ ĈT2 = Id − 2αR̂T2 + 2αR̂T1 ◦ (2R̂T2 − Id) where α ∈ (0, 1) is α-

averaged with respect to the norm ‖ · ‖P . The sequence (zk)k≥0 generated by iteration (4.5)

33

converges to a fixed point z∗ of T̂DR and ĈT1 ◦ ĈT2 , and the sequence (wk)k≥0 converges to

w∗ = R̂T2(z
∗) ∈ zer(T1 + T2). This completes the proof.

Notice that similarly to the standard Douglas-Rachford splitting, each iteration requires

evalutaing R̂T1 and R̂T2 each once, and their roles can be switched in (4.5).

4.3 Generalized Davis-Yin Splitting

Proposition 4.3.1 Suppose T1, T2 are maximally monotone operators on Rn; T3 is β-

cocoercive; zer(T1 + T2 + T3) 6= ∅. Define operator T̂DY := Id − R̂T2 + R̂T1 ◦ (2R̂T2 −

Id− P−1T3 ◦ R̂T2) and suppose λmin(P) > 1
2β
. Then TDY is θ-averaged with respect to the

norm ‖ · ‖P with coefficient θ = 2βλmin(P)
4βλmin(P)−1 < 1. Starting from any z0, for k = 0, 1, . . ., let

wk+1 = R̂T2(z
k); (4.6a)

zk+1 = zk − wk+1 + R̂T1

(
2wk+1 − zk − P−1T3(wk+1)

)
. (4.6b)

The sequence (zk)k≥0 converges to some z∗ ∈ Fix(T̂DY), and the sequence (wk)k≥0 con-

verges to R̂T2(z
∗) ∈ zer(T1 + T2 + T3).

Proof We first show that

R̂T2

(
Fix(T̂DY)

)
= zer(T1 + T2 + T3).

Let w∗ be a arbitrary point in zer(T1 + T2 + T3). Then

0 ∈ (T1 + T2 + T3)w
∗

⇐⇒ 0 ∈ (P−1T1 + P−1T2 + P−1T3)w
∗

⇐⇒ 0 ∈ (Id + P−1T1)w
∗ − (Id− P−1T2)w∗ + P−1T3(w

∗)

⇐⇒ 0 ∈ (Id + P−1T1)w
∗ − ĈT2 ◦ (Id + P−1T2)w

∗ + P−1T3(w
∗)

⇐⇒ 0 ∈ (Id + P−1T1)w
∗ − ĈT2(z∗) + P−1T3(w

∗), for some z∗ ∈ (Id + P−1T2)w
∗

⇐⇒ (ĈT2 − P−1T3 ◦ R̂T2)z
∗ ∈ (Id + P−1T1) ◦ R̂T2(z

∗), w∗ = R̂T2(z
∗)

⇐⇒ 2R̂T1 ◦ (ĈT2 − P−1T3 ◦ R̂T2)z
∗ = 2R̂T2(z

∗), w∗ = R̂T2(z
∗)

34

⇐⇒ (ĈT1 + Id) ◦ (ĈT2 − P−1T3 ◦ R̂T2)z
∗ = (ĈT2 + Id)z∗, w∗ = R̂T2(z

∗)

⇐⇒
(
ĈT1 ◦ (ĈT2 − P−1T3 ◦ R̂T2)− P−1T3 ◦ R̂T2

)
z∗ = z∗, w∗ = R̂T2(z

∗).

We have

1

2
Id +

1

2

(
ĈT1 ◦ (ĈT2 − P−1T3 ◦ R̂T2)− P−1T3 ◦ R̂T2

)
=

1

2
Id +

1

2

(
(2R̂T1 − Id) ◦

(
(2R̂T2 − Id)− P−1T3 ◦ R̂T2

)
− P−1T3 ◦ R̂T2

)
=

1

2
Id +

1

2

(
4R̂T1 ◦ R̂T2 − 2R̂T1 − 2R̂T2 + Id− 2R̂T1P

−1T3 ◦ R̂T2

)
=2R̂T1 ◦ R̂T2 − R̂T1 − R̂T2 + Id− R̂T1P

−1T3 ◦ R̂T2

=Id− R̂T2 + R̂T1 ◦ (2R̂T2 − Id− P−1T3 ◦ R̂T2)

=T̂DY .

Therefore, T̂DY has the same fixed point set as ĈT1 ◦ (ĈT2 − P−1T3 ◦ R̂T2)− P−1T3 ◦ R̂T2 ,

and we have R̂T2

(
Fix(T̂DY)

)
= zer(T1 + T2 + T3).

Next, we show that T̂DY is θ-averaged with respect to the norm ‖ · ‖P with coefficient

θ = 2βλmin(P)
4βλmin(P)−1 . Let T4 = Id − R̂T2 , T5 = 2R̂T2 − Id − P−1T3 ◦ R̂T2 . Since R̂T2 is firmly

nonexpansive with respect to the norm ‖ · ‖P , T4 is also firmly nonexpansive. For any x, y,

we have

‖T̂DY (x)− T̂DY (y)‖2P = ‖T4(x)− T4(y)‖2P + ‖R̂T1 ◦ T5(x)− R̂T1 ◦ T5(y)‖2P

+ 2〈R̂T1 ◦ T5(x)− R̂T1 ◦ T5(y), T4(x)− T4(y)〉P

≤ 〈T4(x)− T4(y), x− y〉P + 〈R̂T1 ◦ T5(x)− R̂T1 ◦ T5(y), T5(x)− T5(y)〉P

+ 2〈R̂T1 ◦ T5(x)− R̂T1 ◦ T5(y), T4(x)− T4(y)〉P

= 〈T4(x)− T4(y), x− y〉P

+ 〈R̂T1 ◦ T5(x)− R̂T1 ◦ T5(y), (2T4 + T5)x− (2T4 + T5)y〉P

= 〈T̂DY (x)− T̂DY (y), x− y〉P

+ 〈R̂T1 ◦ T5(x)− R̂T1 ◦ T5(y), (2T4 + T5 − Id)x− (2T4 + T5 − Id)y〉P

= 〈T̂DY (x)− T̂DY (y), x− y〉P

− 〈R̂T1 ◦ T5(x)− R̂T1 ◦ T5(y), P−1T3 ◦ R̂T2(x)− P−1T3 ◦ R̂T2(y)〉P ,

35

where the inequality is because of the firm nonexpansiveness of operators T4 and R̂T1 . Since

the following equality always holds

〈T̂DY (x)− T̂DY (y), x− y〉P =
1

2
‖x− y‖2P +

1

2
‖T̂DY (x)− T̂DY (y)‖2P

− 1

2
‖(Id− T̂DY)x− (Id− T̂DY)y‖2P ,

plugging it in the previous equality and rearranging items, we have

‖T̂DY (x)− T̂DY (y)‖2P ≤ ‖x− y‖2P − ‖(Id− T̂DY)x− (Id− T̂DY)y‖2P

− 2〈R̂T1 ◦ T5(x)− R̂T1 ◦ T5(y), P−1T3 ◦ R̂T2(x)− P−1T3 ◦ R̂T2(y)〉P

= ‖x− y‖2P − ‖(Id− T̂DY)x− (Id− T̂DY)y‖2P

+ 2〈(Id− T̂DY)x− (Id− T̂DY)y, T3 ◦ R̂T2(x)− T3 ◦ R̂T2(y)〉

− 2〈R̂T2(x)− R̂T2(y), T3 ◦ R̂T2(x)− T3 ◦ R̂T2(y)〉

≤ ‖x− y‖2P − ‖(Id− T̂DY)x− (Id− T̂DY)y‖2P

+
1

2β
‖(Id− T̂DY)x− (Id− T̂DY)y‖2 + 2β‖T3 ◦ R̂T2(x)− T3 ◦ R̂T2(y)‖2

− 2〈R̂T2(x)− R̂T2(y), T3 ◦ R̂T2(x)− T3 ◦ R̂T2(y)〉

≤ ‖x− y‖2P − ‖(Id− T̂DY)x− (Id− T̂DY)y‖2P

+
1

2β
‖(Id− T̂DY)x− (Id− T̂DY)y‖2 + 2β‖T3 ◦ R̂T2(x)− T3 ◦ R̂T2(y)‖2

− 2β‖T3 ◦ R̂T2(x)− T3 ◦ R̂T2(y)‖2

≤ ‖x− y‖2P −
(

1− 1

2βλmin(P)

)
‖(Id− T̂DY)x− (Id− T̂DY)y‖2P

= ‖x− y‖2P −
1− θ
θ
‖(Id− T̂DY)x− (Id− T̂DY)y‖2P ,

where 0 < θ = 2βλmin(P)
4βλmin(P)−1 < 1 since λmin(P) > 1

2β
. The second inequality is due to the

β-cocoercity of operator T3. Therefore, operator T̂DY is θ-averaged with respect to the

norm ‖ · ‖P . The sequence (zk)k≥0 generated by iteration (4.6) converges to a fixed point z∗

of T̂DY , and the sequence (wk)k≥0 converges to w∗ = R̂T2(z
∗) ∈ zer(T1 + T2 + T3). This

completes the proof.

Remark 4.3.1 Notice that the standardDavis-Yin splitting in Proposition (3.6.2) is a special

case of the above generalized Davis-Yin splitting with P = 1
γ
In.

36

5. DISTRIBUTED SYNCHRONOUS ALGORITHMSWITH
COORDINATOR

In this chapter, wewill propose two distributed synchronous algorithms for the base standard

formulation of our multi-agent optimization problem. Both algorithms are designed to find

zero points of saddle subdifferential operators (to be defined later), which are also saddle

points that represent the optimal primal-dual pairs of certain Lagrange functions associated

with the multi-agent optimization problem.

The first algorithm applies the generalized resolvent iteration to the regular Lagrange

function and its corresponding saddle subdifferential operator, and can be thought of as

an extension of the famous alternating direction method of multipliers (ADMM) to the

multi-block case with a parallel updating structure. The second algorithm is an application

of the standard Douglas-Rachford splitting method to a different, but equivalent Lagrange

function and its corresponding saddle subdifferential operator.

Although both algorithms require a central coordinator to collect certain variables

from all agents and perform updates on some dual variable, the second algorithm has

the advantage that no primal local decision variables need to be exchanged between the

coordinator and agents, thus privacy of agents are better protected.

5.1 Primal-dual Precursor Algorithms

Recall our base standard multi-agent optimization problem has the following form,

minimize
x

L∑
i=1

fi(xi)

subject to Ax = b, xi ∈ Xi, ∀i ∈ [L],

where we have the shared coupling equality constraint and the private local constraint

xi ∈ Xi. In fact, since we assume that the local constraint sets Xi’s are convex and

37

nonempty, they can be incorporated into the local objective function fi by adding the

convex indicator functions 1Xi(xi)’s.

Therefore, the base standard formulation is equivalent to

minimize
x

L∑
i=1

(fi(xi) + 1Xi(xi)) (5.1)

subject to Ax =
L∑
i=1

Aixi = b. (5.2)

One classic primal dual algorithm that has been used to solve problem (5.1) is dual

decomposition [28]. The Lagrange function of (5.1) is

L(x, λ) =
L∑
i=1

(fi(xi) + 1Xi(xi)) + λT (Ax− b) (5.3)

=
L∑
i=1

(
fi(xi) + 1Xi(xi) + λTAixi

)
− λT b

=
L∑
i=1

Li(xi, λ)− λT b,

where λ is the Lagrange multiplier, or dual variable. The dual function is d(λ) =

minx L(x, λ) =
∑L

i=1 minxi Li(xi, λ) − λT b. If we assume strong duality holds, then

the original problem is equivalent to the dual problem

maximize
λ

L∑
i=1

(
fi(x

∗
i) + 1Xi(x

∗
i) + λTAix

∗
i

)
− λT b, (5.4)

where x∗ = (x∗1, . . . , x
∗
L) = arg minx L(x, λ). One subgradient of λ for problem (5.4) is

Ax∗ − b. The dual decomposition method iterates between updating primal variable x and

updating dual variable λ,

xk+1 = arg min
x
L(x, λk), (5.5)

λk+1 = λk + αk(Ax
k+1 − b), (5.6)

where the primal update step (5.5) is equivalent to solving L individual smaller problems:

xk+1
i = arg min

xi

Li(xi, λ), ∀i ∈ [L]. (5.7)

38

Obviously, (5.7) can be carried out in parallel.

Notice that dual decomposition is essentially the subgradient method [83] applied to

the dual problem, and the evaluation of the subgradient of dual variable λ during each

iteration involves solving an optimization problem (5.5). However, the convergence of

the subgradient method requires a careful choice of the step size αk and the satisfaction

of some additional assumptions, such as the boundness of local constraint set Xi’s so

that the subgradient ‖Axk+1 − b‖ is bounded for all k. Another drawback of the dual

decomposition/subgradient method is its relatively slow convergence speed at O(1/
√
k).

Another distributed algorithm that dates back to the 70s but has become popular again

in the last decade is the ADMMmethod [36, 34]. The standard ADMMmethod is designed

for a special case of problem (5.1) where L = 2, i.e., there are only two blocks of variables.

It involves the augmented Lagrange function Lρ(x, λ):

Lρ(x, λ) = L(x, λ) +
ρ

2
‖Ax− b‖2

= L1(x1, λ) + L2(x2, λ)− λT b+
ρ

2
‖A1x1 + A2x2 − b‖2.

where ρ > 0 is the penalty parameter. In each iteration, we minimize the augmented

Lagrange function over x1 and x2 separately, followed by a dual update step:

xk+1
1 = arg min

x1

Lρ(x1, xk2, λk),

xk+1
2 = arg min

x2

Lρ(xk+1
1 , x2, λ

k),

λk+1 = λk + ρ(Axk+1 − b),

Notice that the update of x1 and x2 must be performed in a sequential fashion instead of

in parallel. The standard ADMM has good convergence behavior under relatively mild

assumptions. Interestingly, it can be shown that the standard ADMM is a special case of

the Douglas-Rachford splitting technique (3.3) applied to the dual problem (5.4), we refer

readers to [33, 78] for more details.

39

If the standard ADMM is extended to cases where L ≥ 3, the algorithm is called

Gauss-Seidel ADMM, where one sequentially update xi for i = 1, . . . , L as follows

xk+1
i = arg min

xi

Lρ
(
xk+1
1 , . . . , xk+1

i−1 , xi, x
k
i+1, . . . , x

k
L

)
.

The Gauss-Seidel ADMM was proposed recently [40], but has been shown to be not

necessarily convergent [19]. Some additional assumptions are needed for guaranteed con-

vergence. For example, if we assume that local objective functions fi are strongly convex,

then the Gauss-Seidel ADMMmethod converges [38]. One big disadvantage of the Gauss-

Seidel ADMM is that agents have to take turns to update their local decision variables in a

serial fashion since they need the updated information from those indexed before them.

A parallel update scheme across agents such as in the case of dual decomposition is

desirable since it would take better advantage of different parallel computing infrastructure.

That is, all the agents perform local optimization simultaneously without having to wait for

other’s updated information as in the serial scheme. One straightforward modification of

the serial ADMM towards this direction is the parallel ADMM, where at every iteration

each agent will minimize the augmented Lagrange function with respect to its local decision

variable xi, assuming other parts of x fixed:

xk+1
i = arg min

xi

Lρ
(
xk1, . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
L

)
. (5.8)

However, even in the simplest two block setting (L = 2), this scheme does not converge in

general [39].

It is desirable to have distributed algorithms that require minimal set of assumptions

for convergence, such as the standard two block ADMM, and also have a parallel updating

structure as in dual decomposition. We will propose two such algorithms in this chapter.

Both algorithms are designed to find points that satisfy the KKT conditions of optimization

problem (5.1). For constrained convex optimization problems, any points satisfying the

KKT conditions are optimal solutions. To find such points, we start from a more general

concept of saddle function. The Lagrange function (5.3) is a special class of saddle

functions, and KKT points of the original optimization problem are saddle points of the

40

Lagrange function, which are also zero points of the saddle subdifferential operator that

will defined next.

5.2 Saddle Function and Saddle Subdifferential Operator

Definition 5.2.1 ([76]) K : X × Y → R ∪ {+∞, −∞} is called a saddle function on

X × Y ifK(x, y) is a convex function of x for each fixed y and a concave function of y for

each fixed x. The saddle function K is closed if K(x, y) is lower semicontinuous in x for

each fixed y and upper semicontinuous in y for each fixed x. The effective domain of K is

defined as

domK := {(x, y) ∈ X × Y |K(x, y′) < +∞, ∀y′ ∈ Y and K(x′, y) > −∞, ∀x′ ∈ X}.

K is called proper if domK 6= ∅.

A point (x∗, y∗) ∈ X × Y is called a saddle point of the saddle function K if

K(x∗, y) ≤ K(x∗, y∗) ≤ K(x, y∗), ∀x ∈ X, y ∈ Y. (5.9)

In other words, x∗ is a minimizer of K(·, y∗) and y∗ is a maximizer of K(x∗, ·). In this

case, it holds that supy infxK(x, y) = infx supyK(x, y) = K(x∗, y∗).

General saddle functions may have no saddle points. A sufficient condition for the

existence of saddle points based on the Sion’s Minimax Theorem [85] is given below.

Proposition 5.2.1 ([85]) SupposeK is a real-valued closed saddle function onX×Y . Let

C ⊂ X and D ⊂ Y be two nonempty compact convex subsets. Then

min
x∈C

max
y∈D

K(x, y) = max
y∈D

min
x∈C

K(x, y).

For the saddle function K on X × Y , a set-valued operator TK can be defined by

TK(x, y) =

 ∂xK(x, y)

∂y(−K)(x, y)

 , ∀(x, y) ∈ X × Y.

In [78], TK is referred to as the saddle subdifferential operator of K. The condition (5.9)

for a point (x∗, y∗) to be a saddle point of K is equivalent to 0 ∈ ∂xK(x∗, y∗) and

0 ∈ ∂y(−K)(x∗, y∗), i.e., 0 ∈ TK(x∗, y∗). We thus have the following result.

41

Proposition 5.2.2 The set of saddle points of K is zer(TK).

Theorem 5.2.1 ([76]) Let K be a saddle function on X × Y . If K is proper, then TK is

a monotone operator with the domain domTK ⊂ domK. If K is proper and closed, then

TK is a maximally monotone operator.

By the above result, for a closed proper saddle function K, its saddle subdifferential TK
is maximally monotone, thus the corresponding resolvent, denoted by RK , is an averaged

operator with the fixed point set Fix(RK) = zer(TK) being exactly the set of saddle points

of K. The iteration (xk+1, yk+1) = RK(xk, yk) will converge to a point in Fix(RK) and

hence a saddle point of K. We next characterize how RK can be computed. For any

(x, y) ∈ X × Y , (p, q) = RK(x, y) if and only if

(x, y) ∈ (Id + βTK)(p, q)

⇐⇒ (x, y) ∈ (p+ β∂pK(p, q), q + β∂q(−K)(p, q))

⇐⇒

0 ∈ ∂pK(p, q) + (p− x)/β

0 ∈ ∂q(−K)(p, q) + (q − y)/β

(5.10a)

⇐⇒

p = arg minp∈X K(p, q) + 1
2β
‖p− x‖2

q = arg maxq∈Y K(p, q)− 1
2β
‖q − y‖2

(5.10b)

⇐⇒ (p, q) is a saddle point of K(p, q) +
1

2β

(
‖p− x‖2 − ‖q − y‖2

)
. (5.10c)

By letting p = x and q = y in (5.10c), we see that, as expected, fixed points of RK are

exactly the saddle points of K.

For many closed proper saddle functions, the computational cost involved with evaluat-

ing RK directly as in (5.10b) might be high. In order to find saddle points of those saddle

functions, there are three main strategies to reduce the computational cost or make the

computation have a nicer structure, such as parallel structure. Firstly, if the saddle function

has a cartesian structure and is separable, we can easily prove the following proposition.

Proposition 5.2.3 SupposeK(x, y) = K1(x1, y1) + · · ·+KL(xL, yL) is separable, where

Ki(xi, yi) is a closed proper saddle function on Xi × Yi; x = (x1, . . . , xL) ∈ X =

42

X1 × · · · ×XL; and y = (y1, . . . , yL) ∈ Y = Y1 × · · · × YL. Then, (p, q) = RK(x, y) is

given by p = (p1, . . . , pL) and q = (q1, . . . , qL) where (pi, qi) = RKi(xi, yi) for each i.

Secondly, instead of using the standard resolvent RK , generalized resolvent R̂K as defined

in (4.1) with some carefully designed positive definite matrix P can be utilized. Thirdly, in

some cases, a saddle function can be written as the summation of two or three closed proper

saddle functions, for which the resolvent or generalized resolvent operators are much easier

to compute. Then, by utilizing the tools from operator splitting or generalized operator

splitting methods, we can derive iterative algorithms to efficiently compute saddle points of

the original saddle function.

5.3 Proximal Parallel ADMM

Notice that the Lagrange functionL(x, λ) in (5.3) is a saddle function onX×Rm where

X =
∏L

i=1Xi becauseL is a convex function of x for each fixed λ and concave function of λ

for each fixed x. The saddle subdifferential operator of a Lagrange function for a constrained

convex optimization problem is also called the KKT operator as we discussed in Chapter 3.

The saddle subdifferential operator TL(x, λ) with dom(TL) 6= ∅ and dom(TL) ⊆ Rn+m of

the Lagrange function L(x, λ) in (5.3) can be written as:

TL(x, λ) =

 ∂xL(x, λ)

∂λ(−L)(x, λ)

 =

F (x) +NX(x) + ATλ

−Ax+ b

 , (5.11)

where F (x) := (∂x1f1(x1), . . . , ∂xLfL(xL)) ∈ Rn, and NX(x) is the normal cone operator

of set X .

Proposition 5.3.1 The set of optimal primal-dual pairs for optimization problem (5.1) is

zer(TL).

Proposition 5.3.2 Operator TL(x, λ) as defined in (5.11) is maximally monotone.

Proof Note that the indicator function is lower semicontiuous. Therefore, L(x, λ) is

closed since it is lower semicontinuous in x for each fixed λ and upper semicontinuous in

43

λ for each fixed x; it is also proper because its effective domain is nonempty. Therefore,

TL(x, λ) is a maximally monotone operator according to Theorem 5.2.1.

Remark 5.3.1 Another way to prove TL(x, λ) is maximally monotone is by observing that

TL(x, λ) = T1(x, λ) + T2(x, λ) =

F (x) +NX(x)

b

+

 0 AT

−AT 0

x
λ

 .
T1(x, λ) is maximally monotone since individually, F (x), NX(x), and b are all maximally

monotone operators in their respective domains, and both summation and concatenation

operations preserve maximal monotonicity. T2(x, λ) is maximally monotone since it is an

affine mapping with a skew-symmetric matrix. Hence, TL(x, λ) is maximally monotone.

We propose the following proximal parallel ADMM method, which builds on the

parallel ADMM method, and has a parallel update structure across agents. The proximal

parallel ADMM algorithm is summarized in Algorithm 1. At each iteration, local agents

solve the local optimization problems in parallel according to (5.12), followed by an update

on the dual variable (5.13). Notice that the dual update requires the most up to date

information from all the agents, thus needs to be carried out by a central coordinator that

can communicate with all agents.

The proximal parallel ADMM algorithm will next be characterized as a special case of

the generalized resolvent iteration (4.4) applied to the operator TL with a carefully designed

symmetric positive definite matrix P . Therefore, its convergence to some optimal solution

starting from any initial conditions is guaranteed. Notice that the local update of each agent

(5.12) can also be written as

xk+1
i = arg min

xi

Lρ
(
xk1, . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
L

)
+
ϕi
2
‖xi − xki ‖2.

Compared with the parallel ADMMmethod (5.8), a proximal term ϕi
2
‖xi−xki ‖2 is added to

regularize each agent’s subproblem for some ϕi > 0. The motivation and intuition behind

adding this proximal term is that it adds certain levels of “inertia” to the local updates

of all agents, hence agents become less aggressive when moving to a new point. These

“controlled” updates help prevent the divergence of the algorithm.

44

Algorithm 1 Proximal Parallel ADMM
1: Initialize (x0, λ0), set k = 0;

2: while stopping criterion is not satisfied do

3: Coordinator sends λk and cki =
∑

j 6=iAjx
k
j − b to each agent i;

4: Each agent i updates xi (in parallel) according to

xk+1
i = arg min

xi∈Xi

(
fi(xi) + (λk)TAixi +

ρ

2
‖Aixi + cki ‖2 +

ϕi
2
‖xi − xki ‖2

)
; (5.12)

5: Each agent i sends xk+1
i to Coordinator;

6: Coordinator updates λ according to

λk+1 = λk + ρ(Axk+1 − b). (5.13)

7: k ← k + 1;

8: end while

Define matrix P as follows,

P =

Pz − ρATA 0

0 1
ρ
Im

 , (5.14)

where Pz = diag(P1, P2, . . . , PL), and Pi = ϕiIni + ρATi Ai. Pz is symmetric since each

of Pi is symmetric. Therefore, matrix P is symmetric since both of its diagonal blocks are

symmetric.

Definition 5.3.1 ([68]) A matrix B ∈ Rn×n is an M-matrix if 1) any off diagonal entry of

B is non-positive; 2) B is invertible and any entry of B−1 is non-negative.

It is easy to see that any diagonal matrix with positive diagonal entries is anM -matrix.

Definition 5.3.2 Suppose B ∈ Rn×n is a block matrix partitioned as

B =


B11 B12 · · · B1m

B21 B22 · · · B2m

...

Bm1 Bm2 · · · Bmm

 ,

45

where Bii ∈ Rni×ni and
∑m

i=1 ni = n. Then, B is called block diagonally dominant if

‖B−1ii ‖−1 ≥
∑
j 6=i

‖Bij‖, ∀i. (5.15)

If strict inequality holds in (5.15), B is called block strictly diagonally dominant.

Note that the induced matrix norm is defined as ‖B‖ := supx 6=0
‖Bx‖
‖x‖ .

Lemma 5.3.1 ([30], Theorem 9) LetB ∈ Rn×n be block strictly diagonally dominant with

all the diagonal blocks beingM -matrices. Then, any eigenvalue ofB has positive real part.

Proposition 5.3.3 Suppose the parameters ρ and ϕi, ∀i ∈ [L] satisfy that ρ > 0, ϕi >

ρ
∑

j∈[L]\{i} ‖ATi Aj‖, ∀i ∈ [L]. Then the matrix P defined in (5.14) is positive definite.

Proof Since ρ > 0, 1
ρ
Im � 0, it is sufficient to show that P̂ = Pz − ρATA is positive

definite. Writing out P̂ gives

P̂ =


ϕ1In1 −ρAT1A2 · · · −ρAT1AL
−ρAT2A1 ϕ2In2 · · · −ρAT2AL

...

−ρATLA1 · · · −ρATLAL−1 ϕLInL

 . (5.16)

Notice that P̂ is a block matrix with diagonal blocks being positive definite diagonal

matrices, or,M -matrices. The second condition says that

ϕi =

∥∥∥∥ 1

ϕi
I

∥∥∥∥−1 > ρ
∑

j∈[L]\{i}

‖ATi Aj‖,

which means matrix P̂ is block strictly diagonally dominant. Since P̂ is also symmetric,

applying Lemma 5.3.1 yields that P̂ � 0. Therefore, P � 0.

Proposition 5.3.4 The proximal parallel ADMM algorithm, outlined in Algorithm 1, is the

generalized resolvent iteration (4.4) applied to TL(x, λ), with the matrix P defined in (5.14).

46

Proof Let zk = (xk, λk) = (xk1, . . . , x
k
L, λ

k). From the iteration (4.4), we have

(Id + P−1TL)zk+1 3 zk,

⇐⇒ Pzk+1 + TL(zk+1) 3 Pzk. (5.17)

Substituting (5.14) into (5.17) gives the following

∂fi(x
k+1
i) +NXi(x

k+1
i) + Pi(x

k+1
i − xki)− ρATi A(xk+1 − xk) + ATi λ

k+1 3 0, (5.18)

λk+1 = λk + ρ(Axk+1 − b). (5.19)

Notice that (5.19) is exactly the dual update (5.13) in Algorithm 1. Substituting (5.19) into

(5.18) yields

∂fi(x
k+1
i) +NXi(x

k+1
i) + ATi λ

k + ρATi (Axk − b) + Pi(x
k+1
i − xki) 3 0,

⇐⇒ ∂fi(x
k+1
i) +NXi(x

k+1
i) + ATi λ

k + ρATi (Aix
k+1
i +

∑
j 6=i

Ajx
k
j − b)+

ϕi(x
k+1
i − xki) 3 0,

⇐⇒ ∂fi(x
k+1
i) +NXi(x

k+1
i) + ATi λ

k + ρATi (Aix
k+1
i + cki) + ϕi(x

k+1
i − xki) 3 0.

(5.20)

Noe that (5.20) corresponds to the first order optimality condition of the following mini-

mization problem

xk+1
i = arg min

xi

(
fi(xi) + 1Xi(xi) + (λk)TAixi +

ρ

2
‖Aixi + cki ‖2 +

ϕi
2
‖xi − xki ‖2

)
,

= arg min
xi∈Xi

(
fi(xi) + (λk)TAixi +

ρ

2
‖Aixi + cki ‖2 +

ϕi
2
‖xi − xki ‖2

)
, (5.21)

which is exactly the primal update (5.12) in Algorithm 1. Combining (5.19) and (5.21), we

obtain the desired conclusion.

Theorem 5.3.1 (Convergence of Proximal Parallel ADMM) Under Assumptions 2.1.1,

2.1.2 and 2.1.3, and suppose ρ and ϕi, ∀i ∈ [L] are chosen according to Proposition 5.3.3

such that matrix P in (5.14) is positive definite. Then, the sequence (xk, λk)k≥0 generated

by Algorithm 1 converges to (x∗, λ∗) ∈ zer(TL) with TL being defined in (5.11), and x∗ is

an optimal solution to the original problem (5.1).

47

Proof Combining results from Proposition 4.4, Proposition 5.2.2, Proposition 5.3.1,

Proposition 5.3.2, Proposition 5.3.3 and Proposition 5.3.4 yields the desired statement.

Remark 5.3.2 One observation regarding proximal parameter ϕi is that suppose ATi Aj =

0, ∃ i ∈ [L] and ∀j 6= i, then ϕ can be chosen arbitrarity small according to the second

condition of Proposition 5.3.3. This means that for a particular agent i, the stronger

orthogonality its coupling matrix Ai has with those of other agents, the smaller weight

needs be placed on the proximal term, thus the more aggresive agent i can be when

updating local decision variables.

The proposed proximal parallel ADMMhas been applied to distributedmodel predictive

control of multiple thermal zone buildings for minimizing the electricity bill of building’s

air conditioning systems while maintaining the thermal comfort of occupants’ in different

thermal zones [45, 44, 46].

One drawback of the proposed proximal parallel ADMM algorithm is that at each

iteration, the central coordinator needs to collect the most recent optimal local decision

variables xki from all agents, update the dual variable according to (5.13) and calculate cki ,

then send them back to the corresponding agents. The exchange of local decision variables

xki between agents and coordinator is not ideal as xki usually contains important private

information regarding agent i, which agent i may not want to share with others. Suppose

an adversary/eavesdropper intercepts the communication between agents and the central

coordinator, it could be detrimental to the securities of local agents. In addition, variable cki
actually contains information from other agents j 6= i, this may also raise private concerns.

To avoid this issue, we propose a new distributed synchronous algorithm in the next

section, in which each agent will keep a local copy of the dual variable λ. The local updates

of each agent include updates on both local decision variable xi and local dual variable

copy λi. At each iteration, agents will only send information regarding dual variables to

the central coordinator and receive certain feedback. With only dual variable information,

it is much more difficult for an adversary/eavesdropper to decipher private local decision

48

variable information. Also, local decision variables will no longer be shared between

different agents.

5.4 Dual Averaging via Douglas-Rachford Splitting

First, we create a local copy of the dual variable λ for each agent, and deonote the

augmented dual variable as λa := (λ1, . . . , λL) ∈ RmL. The new Lagrange function is

La(x, λa) =
L∑
i=1

(
fi(xi) + λTi Aixi − λTi bi

)
+ µX×Aλ(x, λa) (5.22)

=
L∑
i=1

(fi(xi)) + λTaΦx− λTa ba + µX×Aλ(x, λa),

where Aλ = {λa |λ1 = · · · = λL}, Φ = diag(A1, . . . , AL) ∈ RmL×n, ba = (b1, . . . , bL) ∈

RmL, and

µX×Aλ(x, λa) := 1X(x)− 1(X×Acλ)c(x, λa) =


0 if x ∈ X and λa ∈ Aλ;

−∞ if x ∈ X and λa 6∈ Aλ;

+∞ if x 6∈ X.

The saddle subdifferential operator TLa(x, λa) with dom(TLa) 6= ∅ and dom(TLa) ⊆

Rn+mL of the Lagrange function La(x, λa) in (5.22) can be written as:

TLa(x, λa) =

 ∂xLa(x, λa)

∂λa(−La)(x, λa)

 =

F (x) +NX(x) + ΦTλa

−Φx+ ba +NAλ(λa)

 , (5.23)

where ba = (b1, . . . , bL) ∈ RmL, Φ = diag(A1, . . . , AL) ∈ RmL×n.

Proposition 5.4.1 For any (x∗, λ∗a) ∈ zer(TLa) with TLa being defined in (5.23), we have

λ∗a ∈ {1L⊗λ∗ |λ∗ ∈ Rm}, i.e., λ∗i = λ∗j = λ∗, ∀i, j ∈ [L]. Furthermore, (x∗, λ∗) ∈ zer(TL)

with TL being defined in (5.11), which means (x∗, λ∗) is an optimal primal-dual pair of the

optimization problem (5.1).

Proposition 5.4.2 Operator TLa(x, λa) as defined in (5.23) is maximally monotone.

49

Proof Observing that

TLa(x, λa) =

 0 ΦT

−Φ 0

 x
λa

+

F (x)

ba


︸ ︷︷ ︸

T1(x,λa)

+

 NX(x)

NAλ(λa)


︸ ︷︷ ︸

T2(x,λa)

.

The first part of T1(x, λa) is maximally monotone since it an affine mapping with skew-

symmetric matrix, the second part of T1(x, λa) is maximally monotone since individually,

F (x) and ba are maximally monotone, and concatenation preserves maximally monotonic-

ity. T2(x, λa) is maximally monotone since individually,NX(x),NAλ(λa) are all maximally

monotone operators in their respective domains (in particular,NAλ(λa) is maximally mono-

tone because Aλ is a closed convex set).

To find a saddle point of TLa(x, λa), instead of evaluating the standard resolvent RLa
or the generalized resolvent R̂La directly, we first notice that La(x, λa) can be written as

L(x, λa) = L1(x, λa) + L2(x, λa) where

L1(x, λa) =
∑
i∈[L]

(
fi(xi) + λTi Aixi − λTi bi

)
,

L2(x, λa) = µX×Aλ(x, λa).

Note that L1(x, λa) is closed since it is lower semicontinuous in x for each fixed λa and

upper semicontinuous in λa for each fixed x; it is also proper because its effective domain is

nonempty. In addition, L2(x, λa) is also a closed and proper saddle function since X and

Aλ are both nonempty closed convex sets. Thus TL1 and TL2 are also maximally monotone

operators, whose resolvents RL1 and RL2 are averaged operators.

We adopt the Douglas-Rachford splitting method. Starting from any z0 = (x0, λ0a), for

k = 0, 1, . . ., let

wk+1 = RL2(z
k);

zk+1 = zk + 2α
(
RL1(2w

k+1 − zk)− wk+1
)
,

where α ∈ (0, 1);RL1 andRL2 are the resolvent operator corresponding to saddle functions

L1 and L2, respectively. Next, we show how RL1 and RL2 can be computed in a distributed

fashion by each agent.

50

Further notice that L1(x, λa) =
∑L

i=1 L1,i(xi, λi), where L1,i(xi, λi) = fi(xi) +

λTi Aixi − λTi bi. From Proposition 5.2.3 and the fact that L1,i(xi, λi)’s are closed proper

saddle functions, we know RL1(x, λa) can be computed in a distributed fashion through

each agent by evaluating RL1,i(xi, λa) independently. For the computation of (pi, qi) =

RL1,i(xi, λi), notice that (5.10a) becomes0 ∈ ∂fi(pi) + ATi qi + (pi − xi)/β

Aipi − bi = (qi − λi)/β.

The second equation is equivalent to qi = λi+β(Aipi−bi). Plugging into the first equation

yields 0 ∈ ∂fi(pi)+(pi−xi)/β+ATi λi+βA
T
i (Aipi−bi). Therefore, (pi, qi) = RL1,i(xi, λi)

can be evaluated aspi = arg mins

(
fi(s) + λTi Ais+ β

2
‖Ais− bi‖2 + 1

2β
‖s− xi‖2

)
,

qi = λi + β(Aipi − bi).

As for the computation of RL2 , we have RL2(x, λa) = (PX(x), PAλ(λa)), where

PX(x) = PX1(x1)× · · · × PXL(xL), which can be computed by each agent independently.

Here, PC denotes the orthogonal projection operator onto C. In addition, PAλ(λa) =

1L ⊗ (λ1 + · · · + λL)/L, which will be computed by a central coordinator. The proposed

dual averaging via Doulas-Rachford splitting algorithm is summarized in Algorithm 2.

Theorem 5.4.1 Under Assumptions 2.1.1, 2.1.2 and 2.1.3, the sequence (xk, λ
k
)k≥0 gen-

erated by Algorithm 2 converges to some (x∗, λ∗) ∈ zer(TL), and x∗ is an optimal solution

to the original problem (5.1).

Proof Combing results from Proposition 3.6.1, Proposition 5.4.1, Proposition 5.4.2 yields

the desired statement.

Compared with the proximal parallel ADMM algorithm in Algorithm 1, this algorithm

has the following advantages: 1) The information exchanged between the coordinator and

agents solely contains copies of dual variables, and local optimization step (5.25c) does not

directly involve primal decision variables from other agents, thus the privacies of individual

51

Algorithm 2 Dual Averaging via Douglas-Rachford Splitting

1: Initialize (x0, λ0a, λ
0
), set k = 0;

2: while stopping criterion is not satisfied do

3: Each agent i sends λki to Coordinator;

4: Coordinator calculates λ = (λk1 + · · ·+ λkL)/L and sends it back to each agent;

5: Each agent i updates local decision variables (in parallel) according to

xki = PXi(x
k
i), λ

k
= λ; (5.25a)

x̂ki = 2xki − xki , λ̂ki = 2λ
k − λki ; (5.25b)

x̂k+1
i = arg min

xi

(
fi(xi) + (λ̂ki)

TAixi +
β

2
‖Aixi − bi‖2+

1

2β
‖xi − x̂ki ‖2

)
; (5.25c)

λ̂k+1
i = λ̂ki + β(Aix̂

k+1
i − bi); (5.25d)

xk+1
i = xki + 2α

(
x̂k+1
i − xki

)
; (5.25e)

λk+1
i = λki + 2α

(
λ̂k+1
i − λki

)
; (5.25f)

6: k ← k + 1;

7: end while

agents are better protected. 2) Although there are more local variables that each agent

needs to keep track of, i.e., xki , x̂ki , λ
k

i , λ̂ki , xki , and λki , the local computation cost for

each agent might be reduced. This is because in the proximal parallel ADMM algorithm,

each agent needs to solve a constrained convex optimization problem as in (5.12), whereas

here each agent only needs to complete a projection (5.25a), an unconstrained convex

optimization problem (5.25c), and some other linear operations. If the local objective

function is quadratic, (5.25c) reduces to linear operations.

Notice that in the Douglas-Rachford splitting method, the roles of the two resolvent

operators can be switched, thus giving us a slightly different algorithm, which is summarized

in Algorithm 3.

52

Algorithm 3 Dual Averaging via Douglas-Rachford Splitting, Second Version
1: Initialize (x0, λ0a), set k = 0;

2: while stopping criterion is not satisfied do

3: Each agent i updates local decision variables (in parallel) according to

x̂ki = arg min
xi

(
fi(xi) + (λki)

TAixi +
β

2
‖Aixi − bi‖2 +

1

2β
‖xi − xki ‖2

)
;

λ̂ki = λki + β(Aix̂
k
i − bi);

x̂k+1
i = 2x̂ki − xki , λ̂k+1

i = 2λ̂ki − λki ;

4: Each agent i sends λ̂k+1
i to Coordinator;

5: Coordinator calculates λk+1
= (λ̂k+1

1 + · · · + λ̂k+1
L)/L and sends it back to each

agent;

6: Each agent i updates local decision variables (in parallel) according to

xk+1
i = PXi(x̂

k+1
i), λ

k+1

i = λ
k+1

;

xk+1
i = xki + 2α

(
xk+1
i − x̂ki

)
;

λk+1
i = λki + 2α

(
λ
k+1

i − λ̂ki
)

;

7: k ← k + 1;

8: end while

Theorem 5.4.2 Under Assumptions 2.1.1, 2.1.2 and 2.1.3, the sequence (x̂k, λ̂k)k≥0 gen-

erated by Algorithm 3 converges to some (x∗, λ∗) ∈ zer(TLa) with TLa being defined in

(5.23), and x∗ is an optimal solution to the original problem (5.1).

Remark 5.4.1 The name of the proposed algorithm in this section, “Dual Averaging",

comes from the fact that the coordinator calculates the average of local copies of dual

variables from all agents at each iteration. It should not be confused with a similar notion

in [66, 1, 27, 43, 96], where “dual averaging" refers to taking the average of subgradients.

The two synchronous algorithms proposed in this chapter have a common drawback:

a central coordinator or an agent that is able to communicate with every other agent is

53

required to update certain variable that is used in every agent’s local update. This may

not be feasible for some applications. Even if it is feasible, the algorithm’s convergence is

vulnerable against the single point failure on the central coordinator. Distributed algorithms

that does not require a central coordinator and central data aggregation give more flexibility

and resilience against single point failure. The next chapter will delve into more details.

54

6. DISTRIBUTED SYNCHRONOUS ALGORITHMSWITHOUT
COORDINATOR

In the dual averaging algorithm via Douglas-Rachford splitting in Chapter 5, an indicator

function of the dual variables’ consensus subspace Aλ := {λa |λ1 = · · · = λL} was added

to the Lagrange function to guarantee the agreement among all agents on the value of dual

variables. The resolvent operator of this indicator function is the projection onto the setAλ,

which is the averaging of all λi, ∀i ∈ [L], and has to be evaluated by a central coordinator.

In order to eliminate the need for a central coordinator and make each agent’s local

updates involve only its own decision variables and variables from certain neighbors, we

introduce an undirected multiplier graph, over which agents can exchange information and

reach consensus on λi’s. The multiplier graph is defined as Gλ = ([L], Eλ), (j, i) ∈ Eλ if

agent i can receive certain information from agent j. Agent i’s agent neighbors are defined

as Ni = {j ∈ [L] | (j, i) ∈ Eλ}. Let W be a weighted adjacency matrix associated with

the multiplier graph Gλ whereWji > 0 if j ∈ Ni, andWji = 0 if otherwise. It is assumed

Wii = 0, ∀i ∈ [L], i.e., no self loop exists. Let deg(i) :=
∑

j∈NiWji be the weighted

degree of agent i. Let LG be the corresponding weighted graph Laplacian matrix, i.e.,

LG = diag(deg(1), . . . , deg(L))−W .

Assumption 6.0.1 Multiplier graph Gλ is connected.

With the introduction of this connected, undirected multiplier graph, we can design

alternative ways to enforce the consensus among λi’s.

6.1 Dual Consensus via Operator Augmentation with Graph Laplacian Matrix

For any undirected and connected graph, its graph Laplacian matrix LG ∈ RL×L has an

eigenvector 1L corresponding to eigenvalue 0. Therefore, for p ∈ RmL, (LG ⊗ Im)p = 0mL

55

always implies that p ∈ {1L ⊗ q | q ∈ Rm}, i.e., vector p always contains L identical

sub-vectors. Therefore, we can concatenate the saddle subdifferential operator (5.23) with

(LG ⊗ Im)λa, and correspondingly introduce a set of node auxiliary variables yi ∈ Rm for

each agent, and denote y = (y1, . . . , yL) ∈ RmL. The new operator can be written as

TLa(x, y, λa) =


F (x) +NX(x) + ΦTλa

(LG ⊗ Im)λa

−Φx+ ba

 ,
where F (x) := (∂x1f1(x1), . . . , ∂xLfL(xL)) ∈ Rn, λa = (λ1, . . . , λL) ∈ RmL, ba =

(b1, . . . , bL) ∈ RmL, Φ = diag(A1, . . . , AL) ∈ RmL×n. For any (x∗, y∗, λ∗a) ∈ zer(TLa),

we always have λ∗a ∈ Aλ. However, this new operator as it is is not maximally monotone.

We can make a small modification and obtain the following new augmented operator TLa
with dom(TLa) 6= ∅ and dom(TLa) ⊆ Rn+2mL as

TLa(x, y, λa) =


F (x) +NX(x) + ΦTλa

(LG ⊗ Im)λa

−Φx− (LG ⊗ Im)y + ba

 . (6.1)

Proposition 6.1.1 Operator TLa as defined in (6.1) is maximally monotone.

Proof Notice that the operator in (6.1) can be decomposed as

TLa(x, y, λa) = T1 + T2 (6.2)

=


F (x) +NX(x)

0

ba

+


0 0 ΦT

0 0 LG ⊗ Im
−Φ −LG ⊗ Im 0



x

y

λa

 . (6.3)

It is apparent thatF (x)+NX(x) ismaximallymonotone since individual parts aremaximally

monotone based on previous assumptions. Both 0 and ba are maximally monotone since

they are constant-valued operators. Therefore, T1 is maximally monotone as it is the

concatenation of three maximally monotone operators.

Notice that T2 = Hw is a linear operator in w = (x, y, λa), with H being a skew

symmetric matrix, since LG ⊗ Im is symmetric. Thus T2 is maximally monotone as it is the

summation of two maximally monotone operators.

56

Remark 6.1.1 The augmented operator TLa(x, y, λa) as defined in (6.1) can be interpreted

as the saddle subdifferential operator of the saddle function

L̂a(x, y, λa) =
L∑
i=1

(fi(xi) + 1Xi(xi)) + λTaΦx− λTa ba + λTa (LG ⊗ Im)y.

which is a convex function in (x, y) for fixed λa, and a concave function in λa for fixed

(x, y). It is straightforward to show that L̂λ(x, y, λa) is closed and proper. The variables

y ∈ RmL can be thought of as augmented primal variables.

Proposition 6.1.2 For any (x∗, y∗, λ∗a) ∈ zer(TLa) with TLa being defined in (6.1), we have

λ∗a ∈ {1L⊗λ∗ |λ∗ ∈ Rm}, i.e., λ∗i = λ∗j = λ∗, ∀i, j ∈ [L]. Furthermore, (x∗, λ∗) ∈ zer(TL)

with TL being defined in (5.11), which means x∗ is an optimal solution to the original

optimization problem (2.1).

Proof Suppose (x∗, y∗, λ∗a) ∈ zer(TLa). Then
F (x∗) +NX(x∗) + ΦTλ∗a

(LG ⊗ Im)λ∗a

−Φx∗ + ba − (LG ⊗ Im)y∗

 3


0n

0mL

0mL

 ,
Second row block (LG ⊗ Im)λ∗a = 0mL implies that λ∗a ∈ {1L ⊗ λ∗ |λ∗ ∈ Rm} since

LG is the weighted Laplacian matrix of the connected multiplier graph Gλ. Therefore,

λ∗i = λ∗j = λ∗, ∀i, j ∈ [L].

From the first row block we have 0n ∈ F (x∗) + NX(x∗) + ΦT (1L ⊗ λ∗). Combining

with Φ = diag(A1, . . . , AL) and NX(x∗) = NX1(x
∗
1)× · · · ×NXL(x∗L) yields

0ni ∈ ∂fi(x∗i) +NXi(x
∗
i) + ATi λ

∗, ∀i ∈ [L]. (6.4)

Pre-multiplying both sides of the thrid row block by 1TL ⊗ Im yields 0m =
∑

i∈[L](bi −

Aix
∗
i)−(1TL⊗Im)(LG⊗Im)y∗. Since (1TL⊗Im)(LG⊗Im)y∗ =

(
(1TLLG)⊗ (Im)2

)
y∗ = 0m,

we have

0m = −Ax∗ + b. (6.5)

(6.4) and (6.5) implies that (x∗, λ∗) ∈ zer(TL), which means x∗ is an optimal solution to

the original optimization problem (2.1). This completes the proof.

57

Remark 6.1.2 The above theorem indicates that every zero point of the augmented operator

TLa corresponds to one zero point of TL. From the third row block of operator TLa , it should

be noted that essentially we are decomposing the task of finding x∗ such that Ax∗− b = 0m

into L smaller tasks of finding x∗i ’s such that Aix∗i − bi = z∗i =
∑

j∈Nλi
wij(y

∗
i − y∗j) with∑

i∈[L] z
∗
i = 0m. Therefore, auxiliary variables yi’s can be thought of as coordination

variables that help to find the proper decomposition of z∗i ’s.

Inspired by the work in [98, 100], we define a matrix P as follows:

P =


Υ 0 0

0 Γ−1 La

0 La Σ−1

 , (6.6)

where La = LG ⊗ Im, Υ = diag(υ1In1 , . . . , υLInL), Γ = diag(γ1Im, . . . , γLIm), Σ =

diag(σ1Im, . . . , σLIm). Notice that matrix P is symmetric because La and each of the

diagonal block is symmetric.

Proposition 6.1.3 Suppose the parameters υi, γi, and σi, ∀i ∈ [L] satisfy that υi > 0,

0 < γi <
1

2 deg(i)
, and 0 < σi <

1
2 deg(i)

, ∀i ∈ [L]. Then the matrix P defined in (6.6) is

positive definite.

Proof The above conditions guarantee that matrix P is diagonally dominant with positive

diagonal entries, thus positive definite.

Although the resolvent of TLa(x, y, λa) can be evaluated, it does not yield a distributed

updating rule with which agent only utilizes neighboring agents’ information. Instead,

we will apply the generalized resolvent iteration with matrix P as defined in (6.6). Let

z = (x, y, λa), zk+1 = R̂La(z
k) gives

Pzk+1 + T (zk+1) 3 Pzk,

⇐⇒


Υxk+1

Γ−1yk+1 + Laλ
k+1
a

Lay
k+1 + Σ−1λk+1

a

+


F (xk+1) +NX(xk+1) + ΦTλk+1

a

Laλ
k+1
a

ba − Φxk+1 − Layk+1

 3


Υxk

Γ−1yk + Laλ
k
a

Lay
k + Σ−1λka

 .

58

The second row block results in

yk+1 = yk + ΓLa(λ
k
a − 2λk+1

a). (6.7)

The third row block simplifies to

λk+1
a = λka + Σ(Lay

k + Φxk+1 − ba). (6.8)

Substitute the above equation into the first row block yields

F (xk+1) +NX(xk+1) + ΦTλka + ΦTΣ(Φxk+1 − ba + Lay
k) + Υ(xk+1 − xk) 3 0. (6.9)

The key reason that the updates for x, y and λa can all be completed by each agent

using only local information and information from neighboring agents is that for any

s = (s1, . . . , sL) ∈ RmL, q = (q1, . . . , qL) ∈ RmL, where si, qi ∈ Rm, ∀i, j ∈ [L],

s = Laq can be evaluated in a distributed fashion as

si =
∑
j∈Ni

wij(qi − qj), ∀i ∈ [L].

The proposed algorithm, called dual consensus via operator augmentation with graph

Laplacian matrix, is outlined in Algorithm 4. Each iteration of this algorithm runs in a

certain order: each agent i first communicates and obtains ykj from neighboring agents and

calculates a weighted local consensus error dki,y on variable y, which will be then used in

its local update of xi and λi in (6.10b) and (6.10c), respectively. Once all agents obtain

updated xk+1
i and λk+1

i , another round of communication takes place during which each

agent i collects λk+1
j from its neighboring agents. Then, each agent calculates a weighted

local consensus error dki,λ on variable λ, which will be used in its local update of yi in

(6.11b). In total, two rounds of synchronization and communication are required during

each iteration. The convergence of Algorithm 4 is summarized in the following theorem.

Theorem 6.1.1 Under Assumptions 2.1.1, 2.1.2, 2.1.3 and 6.0.1, and suppose υi, γi, and

σi, ∀i ∈ [L] are chosen according to Proposition 6.1.3 such that matrix P in (6.6) is positive

definite. Then, the sequence (xk, yk, λka)k≥0 generated by Algorithm 4 converges to some

(x∗, y∗, λ∗a) ∈ zer(TLa) with TLa being defined in (6.1), and x∗ is an optimal solution to the

original problem (2.1).

59

Algorithm 4 Dual Consensus via Operator Augmentation with Graph Laplacian Matrix
1: Initialize (x0, y0, λ0a) and (d0i,λ)i∈[L], set k = 0;

2: while stopping criterion is not satisfied do

3: Each agent i collects ykj from neighboring agents j ∈ Ni;

4: Each agent i updates local decision variables (in parallel) according to

dki,y =
∑
j∈Ni

wij(y
k
i − ykj); (6.10a)

xk+1
i = arg min

xi∈Xi

(
fi(xi) + (λki)

TAixi +
σi
2
‖Aixi − bi + dki,y‖2+

υi
2
‖xi − xki ‖2

)
; (6.10b)

λk+1
i = λki + σi

(
Aix

k+1
i − bi + dki,y

)
; (6.10c)

5: Each agent i collects λk+1
j from neighboring agents j ∈ Ni;

6: Each agent i updates node auxiliary variables (in parallel) according to

dk+1
i,λ =

∑
j∈Ni

wij(λ
k+1
i − λk+1

j); (6.11a)

yk+1
i = yki + γi

(
dki,λ − 2dk+1

i,λ

)
; (6.11b)

7: k ← k + 1;

8: end while

Proof Combing results from Proposition 4.1.3, Proposition 6.1.1, Proposition 6.1.2 and

Proposition 6.1.3 yields the desired statement.

Remark 6.1.3 A similar but different algorithm, called proximal dual consensus ADMM

was proposed in [18]. The proximal dual consensus ADMM was derived from the standard

ADMM algorithm, which is special case of the Douglas-Rachford splitting method, while

our algorithm is an instance of the generalized resolvent iteration (4.4). Our convergence

proof based on monotone operator theory and fixed point iteration is much more elegant and

simpler than the proof in [18]. The proximal dual consensus ADMM requires part of each

agent’s local constraint set Xi to be a polyhedra constraint of the form Cixi ≤ di, whereas

60

we do not impose such a requirement. Another difference is that the weighted adjacency

matrix is utilized in our algorithm while the standard adjacency matrix was used in [18].

6.2 Dual Consensus via Operator Augmentation with Incidence Matrix

Instead of using the graph Laplacian matrix, the incidence matrix can also be used to

augment the saddle subdifferential operator in (5.23) for the purpose of eliminating the

central coordinator. We use a similar multiplier graph as defined in the previous section

Gλ = ([L], Eλ), (j, i) ∈ Eλ if agent i can receive certain information from agent j. Suppose

there are M edges between agents (|Eλ| = M), which are labeled with ep, p = 1, . . . ,M .

Without loss of generality, we assume ep = (i, j) is ordered as from agent/node i to

agent/node j. An edge ep belongs to the in-edge-neighbor set of agent i, E ini , if i is the

ending point of edge ep; and it belongs to the out-edge-neighbor set of agent i, Eouti , if i

is the starting point of edge ep. Then denote Ei = E ini ∪ Eouti as the edge neighbor set of

agent i. Note that Ni = {j ∈ [L] | Ei ∩ Ej 6= ∅}. Additionally, we define the in-agent-

neighbor set, and out-agent-neighbor set of agent i as N in
i = {j ∈ [L] | E ini ∩ Eoutj 6= ∅},

N out
i = {j ∈ [L] | Eouti ∩ E inj 6= ∅}, respectively. We also have Ni = N in

i ∪ N out
i and

N in
i ∩N out

i = ∅.

Define the incidence matrix of graph Gλ as V ∈ RL×M where

Vip =


1, if ep ∈ E ini ;

−1, if ep ∈ Eouti ;

0, if ep /∈ Ei.

(6.12)

For any graph, we have 1TLV = 0TM . Since the graph Gλ is assumed to be connected, we

also have V Tp = 0M if and only if p ∈ {q1L | q ∈ R}. Therefore, (V ⊗ Im)T s = 0mM

always implies that s ∈ {1L ⊗ q | q ∈ Rm}, i.e., vector p always contains L identical

sub-vectors. These are the key features of incidence matrix that enables us to use it as a

replacement for the graph Laplacian matrix to augment the saddle subdifferential operator

in (5.23). We introduce a set of edge auxiliary variables yp ∈ Rm for each edge ep, and

denote y = (y1, . . . , yM) ∈ RmM .

61

Assumption 6.2.1 Without loss of generality, we assume that the auxiliary variable yp,

p ∈ [M] is maintained and updated by agent i if ep ∈ Eouti .

Wecan then define another augmented operatorTLa withdom(TLa) 6= ∅ anddom(TLa) ⊆

Rn+mL+mM as

TLa(x, y, λa) =


F (x) +NX(x) + ΦTλa

(V ⊗ Im)Tλa

−Φx− (V ⊗ Im)y + ba

 (6.13)

=


F (x) +NX(x)

0

ba

+


0 0 ΦT

0 0 (V ⊗ Im)T

−Φ −V ⊗ Im 0



x

y

λa

 .
Proposition 6.2.1 Operator TLa as defined in (6.13) is maximally monotone.

Proof This follows from similar arguments as the proof of Proposition 6.1.1.

Remark 6.2.1 The augmented operatorTLa(x, y, λa) as defined in (6.13) can be interpreted

as the saddle subdifferential operator of the saddle function

L̂a(x, y, λa) =
L∑
i=1

(fi(xi) + 1Xi(xi)) + λTaΦx− λTa ba + yT (V ⊗ Im)Tλa,

which is a convex function in (x, y) for fixed λa, and a concave function in λa for fixed

(x, y). It is straightforward to show that L̂λ(x, y, λa) is closed and proper. The variables

y ∈ RmM can be thought of as augmented primal variables.

Proposition 6.2.2 Suppose (x∗, y∗, λ∗a) ∈ zer(TLa) with TLa being defined in (6.13), we

have λ∗a ∈ {1L ⊗ λ∗ |λ∗ ∈ Rm}, i.e., λ∗i = λ∗j = λ∗, ∀i, j ∈ [L]. Furthermore, (x∗, λ∗) ∈

zer(TL) with TL being defined in (5.11), which means x∗ is an optimal solution to the

original optimization problem (2.1).

Proof Uses the facts: 1) (V ⊗ Im)T s = 0mM implies that s ∈ {1L ⊗ q | q ∈ Rm}; 2)

(1TL ⊗ Im)(V ⊗ Im)y∗ =
(
(1TLV)⊗ (Im)2

)
y∗ = 0m, ∀y∗ ∈ RmM . Then follows similar

arguments as the proof of Proposition 6.1.2.

62

Remark 6.2.2 There is an intuitive interpretation of the auxiliary variables yp’s. If b in the

coupling constraint Ax = b is thought of as the shared resources among all agents, then yp
can be regarded as the resource “flow” on edge ep between the starting and ending agents

to reach the balance or satisfaction of the coupling resource constraints.

Inspired by the work in [99], we define a matrix P as follows:

P =


Υ 0 0

0 Γ−1 V T
a

0 Va Σ−1

 , (6.14)

where Va = V ⊗ Im, Υ = diag(υ1In1 , . . . , υLInL), Γ = diag(γ1Im, . . . , γMIm), Σ =

diag(σ1Im, . . . , σLIm). Notice that matrix P is symmetric.

Proposition 6.2.3 Suppose the parameters υi, σi, ∀i ∈ [L], and γp, ∀p ∈ [M] satisfy that

υi > 0, 0 < σi <
1

deg(i)
, ∀i ∈ [L], and 0 < γp < 0.5, ∀p ∈ [M], then the matrix P defined

in (6.14) is positive definite.

Proof The above conditions guarantee that matrix P is diagonally dominant with positive

diagonal entries, thus positive definite.

Similarly, we will apply the generalized resolvent iteration with matrix P as defined in

(6.14). Let z = (x, y, λa), zk+1 = R̂La(z
k) gives

Pzk+1 + T (zk+1) 3 Pzk,

⇐⇒


Υxk+1

Γ−1yk+1 + V T
a λ

k+1
a

Vay
k+1 + Σ−1λk+1

a

+


F (xk+1) +NX(xk+1) + ΦTλk+1

a

V T
a λ

k+1
a

ba − Φxk+1 − Vayk+1

 3


Υxk

Γ−1yk + V T
a λ

k
a

Vay
k + Σ−1λka

 .
The second row block results in

yk+1 = yk + ΓV T
a (λka − 2λk+1

a).

The third row block simplifies to

λk+1
a = λka + Σ(Vay

k + Φxk+1 − ba).

63

Substitute the above equation into the first row block yields

F (xk+1) +NX(xk+1) + ΦTλka + ΦTΣ(Φxk+1 − ba + Vay
k) + Υ(xk+1 − xk) 3 0.

The key reasons that allow the updates on x, y and λa to be performed by each agent in

parallel using only local information and information from neighboring agents are for any

s = (s1, . . . , sL) ∈ RmL, q = (q1, . . . , qM) ∈ RmM , where si, qp ∈ Rm, ∀i ∈ [L] and

∀p ∈ [M]:

1. Operation s = Vaq can be evaluated in a distributed fashion as

si =
∑
ep∈Ei

Vipqp, ∀i ∈ [L].

2. Operation q = V T
a s can be evaluated in a distributed fashion as

qp = sj − si, ep = (i, j) ∈ Eλ, ∀p ∈ [M].

The proposed algorithm, called dual consensus via operator augmentation with inci-

dence matrix, is outlined in Algorithm 5. Each iteration of this algorithm runs in a certain

order: each agent i first communicates and obtains ykp from its in-agent-neighbors N in
i

and calculates a dki,y according to (6.15a), which will be then used in its local update of

xi and λi in (6.15b) and (6.15c), respectively. Once all agents obtain updated xk+1
i and

λk+1
i , another round of communication takes place during which each agent i collects λk+1

j

from its out-agent-neighbors N out
i . Then, each agent calculates dk+1

p,λ according to (6.16a),

which will be used in its local update of edge auxiliary variables yp in (6.16b). Obviously,

two rounds of synchronization and communication are required during each iteration. The

convergence of Algorithm 5 is summarized in the following theorem.

Remark 6.2.3 Intuitively, auxiliary variables dki,y ∈ Rm represents the aggregate amount

of resource change in agent i at the kth iteration, while auxiliary variables dkp,λ ∈ Rm can

be thought of as the resource “flow” on edge ep at the kth iteration. At steady state, dkp,λ
goes to 0, ∀p ∈ [M], and dki,y goes to certain fixed values depending on the network topology

and also the allocation of bi’s in b.

64

Algorithm 5 Dual Consensus via Operator Augmentation with Incidence Matrix
1: Initialize (x0, y0, λ0a) and (d0p,λ)p∈[M], set k = 0;

2: while stopping criterion is not satisfied do

3: Each agent i collects ykp from in-agent-neighbors j ∈ N in
i where ep = (j, i);

4: Each agent i updates its local decision variables (in parallel) according to

dki,y =
∑
ep∈Ei

Vipy
k
p =

∑
ep∈Eini

ykp −
∑

ep∈Eouti

ykp ; (6.15a)

xk+1
i = arg min

xi∈Xi

(
fi(xi) + (λki)

TAixi +
σi
2
‖Aixi − bi + dki,y‖2+

υi
2
‖xi − xki ‖2

)
; (6.15b)

λk+1
i = λki + σi

(
Aix

k+1
i − bi + dki,y

)
; (6.15c)

5: Each agent i collects λk+1
j from out-agent-neighbors j ∈ N out

i ;

6: Each agent i updates its edge auxiliary variables (in parallel) according to

dk+1
p,λ = λk+1

j − λk+1
i , where ep = (i, j), ∀j ∈ N out

i ; (6.16a)

yk+1
p = ykp + γp

(
dkp,λ − 2dk+1

p,λ

)
, ∀ep ∈ Eouti ; (6.16b)

7: k ← k + 1;

8: end while

Theorem 6.2.1 Under Assumptions 2.1.1, 2.1.2, 2.1.3, 6.0.1 and 6.2.1, and suppose υi, σi,

∀i ∈ [L], and γp, ∀p ∈ [M] are chosen according to Proposition 6.2.3 such that matrix P

in (6.14) is positive definite. Then, the sequence (xk, yk, λka)k≥0 generated by Algorithm 5

converges to some (x∗, y∗, λ∗a) ∈ zer(TLa) with TLa being defined in (6.13), and x∗ is an

optimal solution to the original problem (2.1).

Proof Combing results from Proposition 4.1.3, Proposition 6.2.1, Proposition 6.2.2 and

Proposition 6.2.3 yields the desired statement.

Remark 6.2.4 Algorithm 5 should only be applied to network where M ≈ L. Because

when incidence matrix is utilized in the augmented operator (6.13), an additional edge

65

auxiliary variable yp ∈ Rm is introduced for each edge ep. In the scenario whereM � L,

such as when the multiplier graph is nearly fully connected, this will lead to an excessive

number of auxiliary variables. In situation like this, one should consider apply Algorithm 4,

where the graph Laplacian matrix is utilized, and a fixed number (L) of auxiliary variables

need to be introduced.

6.3 Dual Consensus via Operator Augmentation and Splitting

For either dual consensus via operator augmentation with graph Laplacian matrix or

with incidence matrix, the local updates of each agent contain the following step

xk+1 = arg min
xi∈Xi

(
fi(xi) + (λki)

TAixi +
σi
2
‖Aixi − bi + dki,y‖2 +

αi
2
‖x− xki ‖2

)
, (6.17)

which is special case of

xk+1 = arg min
xi

(
f1,i(xi) + f2,i(xi) + (λki)

TAixi +
σi
2
‖Aixi − bi + dki,y‖2+

αi
2
‖x− xki ‖2

)
, (6.18)

by letting f1,i(xi) = fi(xi) and f2,i(xi) = 1Xi(xi). For some other problems where

X = Rn, but local objective function of each agent contains two parts with different

smoothness properties, the local x update step can also be written as (6.18). It is highly

likely that this step is the bottleneck of the algorithm from a computational perspective since

all other steps of the updates are linear operations. The algorithm could be more efficient

if we could break (6.18) into two steps including one step of unconstrained optimization

problem with f1,i(xi) and one step of proximal operator evaluation of f2,i(xi).

Instead of problem (2.1), we consider the following equivalent formulation

minimize
x

f(x) =
∑
i∈[L]

(f1,i(xi) + f2,i(xi)) (6.19)

subject to Ax = b, i ∈ [L].

We can write out the Lagrange function of (6.19)

L(x, λ) =
∑
i∈[L]

(
f1,i(xi) + f2,i(xi) + λTAixi − λT bi

)
, (6.20)

66

which is a closed proper saddle function under the same assumptions as before. Thus, the

saddle points of (6.20) are optimal primal-dual pairs of (6.19). We can write out the saddle

subdifferential operator of (6.20), and augment it with the graph Laplacian matrix using the

same strategy as before and obtain the following augmented operator

TLa(x, y, λa) =


F1(x) + F2(x) + ΦTλa

(LG ⊗ Im)λa

−Φx− (LG ⊗ Im)y + ba

 , (6.21)

where Fr(x) := (∂x1fr,1(x1), . . . , ∂xLfr,L(xL)), r = 1, 2. Similarly, we can show that

TLa(x, y, λa) as defined in (6.21) is maximally monotone, and for any (x∗, y∗, λ∗a) ∈

zer(TLa), we have λ∗a ∈ {1L ⊗ λ∗ |λ∗ ∈ Rm}, i.e., λ∗i = λ∗j = λ∗, ∀i, j ∈ [L], and

x∗ is an optimal solution to the original optimization problem (6.19).

Define matrix P as follows

P =


Υ 0 0

0 Γ−1 La/2

0 La/2 Σ−1

 , (6.22)

where La = LG ⊗ Im, Υ = diag(υ1In1 , . . . , υLInL), Γ = diag(γ1Im, . . . , γLIm), Σ =

diag(σ1Im, . . . , σLIm). Notice that matrix P is symmetric since La is symmetric.

Proposition 6.3.1 Suppose the parameters υi, γi, and σi, ∀i ∈ [L] satisfy that υi > 0,

0 < γi <
1

deg(i)
, and 0 < σi <

1
deg(i)

, ∀i ∈ [L], then the matrix P defined in (6.22) is

positive definite.

Proof The above conditions guarantee that matrix P is diagonally dominant with positive

diagonal entries, thus positive definite.

Instead of directly applying the generalized reolvent iteration (4.4) on operator TLa , we

note that TLa(x, y, λa) can be written as

TLa(x, y, λa) = T1 + T2

67

=


F1(x) + ΦTλa

1
2
(LG ⊗ Im)λa

−Φx− 1
2
(LG ⊗ Im)y + ba

+


F2(x)

1
2
(LG ⊗ Im)λa

−1
2
(LG ⊗ Im)y

 ,
with T1 and T2 both being maximally monotone operators. We adopt the generalized

Douglas-Rachford splitting method (4.5) with matrix P defined in (6.22). Starting from

any z0 = (x0, y0, λ0a), for k = 0, 1, . . ., let

wk+1 = R̂T1(z
k);

zk+1 = zk + 2α
(
R̂T2(2w

k+1 − zk)− wk+1
)
,

whereα ∈ (0, 1); R̂T1 and R̂T2 are the generalized resolvent operator withmatrixP in (6.22)

of T1 and T2, respectively. Then by Proposition 4.2.1, the sequence (wk)k≥0 converges to

some w∗ ∈ zer(TLa). Following similar derivations as in previous sections, we can obtain

distributed solutions for R̂T1 and R̂T2 at each iteration (omitted here for brevity). Combining

them together, we will obtain the dual consensus via operator augmentation and splitting

with graph Laplacian matrix algorithm, which is outlined in Algorithm 6.

In Algorithm 6, Step 1 corresponds to the evaluation of R̂T1 , Step 2 corresponds to

the evaluation of 2wk+1 − zk, Step 3 corresponds to the evaluation of R̂T2 , and Step 4

corresponds to the evaluation of zk+1 = zk + 2α
(
R̂T2(2w

k+1 − zk) − wk+1
)
. Since we

need to evaluate two generalized resolvent operators during each iteration, a total of four

rounds of synchronization, communication and information exchange are required, which

happen in lines 3, 5, 7, and 9. As expected, the constrained optimization step (6.17) has

been broken into two steps: 1) an unconstrained optimization problem involving f1,i(xi)

(second line of Step 1a) 2) the evaluation of the proximal operator corresponding to f2,i(xi)

(Step 3a), and some additional linear operations.

Theorem 6.3.1 Under Assumptions 2.1.1, 2.1.2, 2.1.3 and 6.0.1, and suppose υi, γi, and

σi, ∀i ∈ [L] are chosen according to Proposition 6.3.1 such that matrix P in (6.22) is

positive definite. Then, the sequence (xk, yk, λ
k

a)k≥0 generated by Algorithm 6 converges to

some (x∗, y∗, λ∗a) ∈ zer(TLa) with TLa being defined in (6.21), and x∗ is an optimal solution

to the original problem (6.19).

68

Algorithm 6 Dual Consensus via Operator Augmentation and Splitting with Graph Lapla-

cian Matrix
1: Initialize (x0, y0, λ0a) and (d0i,λ)i∈[L], set k = 0;

2: while stopping criterion is not satisfied do

3: Each agent i collects ykj from neighboring agents j ∈ Ni;

4: Each agent i updates local decision variables (in parallel) according to

Step 1a: dki,y =
∑
j∈Ni

wij(y
k
i − ykj)/2;

xki = arg min
xi

(
f1,i(xi) + (λki)

TAixi +
σi
2
‖Aixi − bi + dki,y‖2 +

υi
2
‖xi − xki ‖2

)
;

λ
k

i = λki + σi
(
Aix

k
i − bi + dki,y

)
;

5: Each agent i collects λkj from neighboring agents j ∈ Ni;

6: Each agent i updates local decision variables (in parallel) according to

Step 1b: dki,λ =
∑
j∈Ni

wij(λ
k

i − λ
k

j)/2, y
k
i = yki + γi

(
dki,λ − 2d

k

i,λ

)
;

Step 2: x̂ki = 2xki − xki , λ̂ki = 2λ
k

i − λki , ŷki = 2yki − yki , d̂ki,λ = 2d
k

i,λ − dki,λ,

7: Each agent i collects ŷkj from neighboring agents j ∈ Ni;

8: Each agent i updates local decision variables (in parallel) according to

Step 3a: x̂k+1
i = prox

f2,i/αi

(
x̂ki
)
, d̂ki,y =

∑
j∈Ni

wij(ŷ
k
i − ŷkj)/2, λ̂k+1

i = λ̂ki + σid̂
k
i,y

9: Each agent i collects λ̂k+1
i from neighboring agents j ∈ Ni;

10: Each agent i updates local decision variables (in parallel) according to

Step 3b: d̂k+1
i,λ =

∑
j∈Ni

wij(λ̂
k+1
i − λ̂k+1

j)/2, ŷk+1
i = ŷki + γi

(
d̂ki,λ − 2d̂k+1

i,λ

)
Step 4: xk+1

i = xki + 2α(x̂k+1
i − xki), λk+1

i = λki + 2α(λ̂k+1
i − λki)

yk+1
i = yki + 2α(ŷk+1

i − yki), dk+1
i,λ = dki,λ + 2α(d̂k+1

i,λ − d
k

i,λ)

11: k ← k + 1;

12: end while

69

Proof Straightforward.

Remark 6.3.1 If f1,i(xi) is a quadratic function, then the corresponding unconstrained

optimization problem has an explicit analytical solution, which reduces to linear operations.

If f2,i(xi) is a convex indicator function, its proximal operator is simply the projection onto

the underlying convex set. Furthermore, the evaluations of certain functions’ proximal

operators have explicit formulae, such as ‖ ·‖1 and ‖ ·‖∞; and for many other functions, the

proximal operators can be evaluated in efficient ways. More details can be found in Chapter

6 of [69]. Therefore, with the application of the generalized Douglas-Rachford splitting,

although more synchronization and information exchange are required, the computation

time and complexity are expected to be significantly reduced for many problems.

Remark 6.3.2 Notice that we can switch the roles between R̂T1 and R̂T2 and obtain a

slightly different algorithm with the same convergence results. In addition, instead of graph

Laplacian matrix, we can also use incidence matrix in the augmented operator (6.21).

Following similar derivations as before, we will be able to obtain two new algorithms.

Details of these algorithms are omitted for brevity.

6.4 Further Extensions

In the previous section, we applied generalized Douglas-Rachford splitting technique on

problem (6.19), where each local objective function has two parts. In some other problems,

each local objective function may have three parts f1,i + f2,i + f3,i. One special case is that

local objective function is the summation of a smooth function and a nonsmooth function,

subject to some local convex constraint set. If one of the functions is Lipschitz continuous,

then its subdifferential is cocoercive. This is referred to as Baillon-Haddad Theorem [5, 8].

In these cases, the generalized Davis-Yin three operator splitting technique (4.6) could

potentially be applied, we leave this as future work.

70

7. DISTRIBUTED ASYNCHRONOUS ALGORITHMWITHOUT
COORDINATOR

The synchronous algorithms we discussed in the previous sections assume that there is a

synchronization clock among all agents. During each iteration, there is one or multiple

rounds of synchronization required. Because of the differences in the computational power

as well as computation schedules among agents, the times required to perform a single

update for different agents might be vastly different. Therefore, all the agents need to

wait for the slowest one, resulting much idle time and waste of computational resource.

Moreover, in many practical applications, a synchronization clock among all agents might

not be feasible. Therefore, it is desirable to design an asynchronous version of the algorithm.

In this chapter, we will employ the tools from randomized block-coordinate fixed point

iteration of nonexpansive operators to design distributed asynchronous algorithms for our

multi-agent optimization problem. Each iteration of the previously proposed distributed

synchronous algorithms can be written as a special case of zk+1 = T (zk) where T is an

averaged or nonexpansive operator. Instead of evaluating the whole operator at the same

time, only the coordinates that correspond to a certain activated agent will be updated

while others remain unchanged, and we denote the new operator corresponding to agent i’s

update as Ti. In the presence of delayed information, an extra step size ηi needs to be added

towards the direction of update, zk − Ti(zk), for relaxation. That is, the new update rule

is zk+1 = zk − ηi(ẑk − Ti(ẑk)) where ẑk characterizes the delayed information. Under the

assumption that the information delay is uniformly bounded by a finite value, it is shown

that ηi’s can be chosen small enough to still guarantee the algorithm’s convergence to some

fixed point of the operator T in a probabilistic sense.

For the synchronous algorithms proposed in Chapter 6, the updates of xi, yp and λi need

to follow a certain sequence. For example, in Algorithm 5, for agent i, the computation

of its local edge auxiliary variable yk+1
p require information about dk+1

p,λ , which depends on

71

λk+1
j from neighboring agent j ∈ N out

i . This type of coupling is fine in the synchronous

algorithms as we can impose multiple rounds of synchronization between neighbors in

each iteration, however, it prevents the implementation of an asynchronous algorithm as it

requires neighboring agents of an activated agent to also perform updates, which contradicts

the idea of asynchrony. Therefore, inspired by [99] we start from modifying the P matrix in

the dual consensus algorithm via operator augmentation with incidence matrix, so that the

local updates of xi, yp, λi only need information of local and neighboring variables from

the last iteration.

7.1 Modified Synchronous Dual Consensus via Operator Augmentation with Inci-

dence Matrix

With the incidence matrix V defined in (6.12), we can compute the edge Laplacian

matrix Le = V TV = (Le)T ∈ RM×M , and it can be verified that

Lepq =



2, if p = q;

1, if ep and eq share the same starting or ending node;

−1, if the ending node of ep (eq) is the starting node of eq (ep);

0, if ep and eq do not intersect.

Interested readers can find more details regarding incidence matrix and edge Laplacian

matrix in [60]. Define the edge neighbor set of edge ep as N e
p = {eq |Lepq 6= 0}. It is

straightforward to see N e
p = Ei ∪ Ej if ep = (i, j).

Assumption 7.1.1 Although auxiliary variable yp associated with edge ep = (i, j) ∈ Eouti

is updated by agent i, we assume that it is also accessible to agent j.

We use the same augmented operator as defined in (6.13). Define a new matrix P̂ [99]

as follows:

P̂ =


Υ 0 ΦT

0 Γ−1 V T
a

Φ Va Σ−1

 , (7.1)

72

where Va = V ⊗ Im, Υ = diag(υ1In1 , . . . , υLInL), Γ = diag(γ1Im, . . . , γMIm), Σ = σImL,

Φ = diag(A1, . . . , AL). Notice that matrix P is symmetric.

Proposition 7.1.1 Suppose the parameters σ, υi, ∀i ∈ [L], and γp, ∀p ∈ [M] satisfy that

0 < σ < 1
δ
, 0 < υi <

1
ρi
, ∀i ∈ [L], and 0 < γp < 0.5, ∀p ∈ [M], where

δ = max
i∈[L]

deg(i) + max
j∈[L]

∑
t∈[ni]

|(Ai)jt|


 ,

ρi = max
j∈[ni]

∑
t∈[L]

|(ATi)jt|

 , ∀i ∈ [L],

then the matrix P̂ defined in (7.1) is positive definite.

Proof The above conditions guarantee that matrix P̂ is diagonally dominant with positive

diagonal entries, thus positive definite.

Remark 7.1.1 In Proposition 7.1.1, (Ai)jt and (ATi)jt denote the entries at the j-th row,

t-th column of matrices Ai and ATi , respectively.

Let z = (x, y, λa), the generalized resolvent iteration with matrix P̂ can be written as

P̂ zk+1 + T (zk+1) 3 P̂ zk,

⇐⇒


Υxk+1 + ΦTλk+1

a

Γ−1yk+1 + V T
a λ

k+1
a

Φxk+1 + Vay
k+1 + Σ−1λk+1

a

+


F (xk+1) +NX(xk+1) + ΦTλk+1

a

V T
a λ

k+1
a

ba − Φxk+1 − Vayk+1



3


Υxk + ΦTλka

Γ−1yk + V T
a λ

k
a

Φxk + Vay
k + Σ−1λka

 .
The third row block simplifies to

λk+1
a = λka + σ(Vay

k + Φxk − ba). (7.2)

The second row block results in

yk+1 = yk + ΓV T
a (λka − 2λk+1

a)

73

=⇒ yk+1 = yk + ΓV T
a

(
−λka − 2σ(Vay

k + Φxk − ba)
)

=⇒ yk+1 = yk − ΓV T
a λ

k
a − 2σΓV T

a Vay
k − 2σΓV T

a (Φxk − ba)

=⇒ yk+1 = yk − ΓV T
a λ

k
a − 2σΓLeyk − 2σΓV T

a (Φxk − ba). (7.3)

The first row block results in

F (xk+1) +NX(xk+1) + ΦT (2λk+1
a − λka) + Υ(xk+1 − xk) 3 0,

then substitute λk+1
a = λka + σ(Vay

k + Φxk − ba) into the above relation yields

F (xk+1) +NX(xk+1) + ΦTλka + 2σΦT (Φxk − ba + Vay
k) + Υ(xk+1 − xk) 3 0. (7.4)

The updates of xi and λi require the information of (yp)ep∈Ei =
(
(yp)ep∈Eouti

, (yp)ep∈Eini
)
,

of which (yp)ep∈Eini are from agent i’s in-agent-neighbors N in
i . The update of (yp)ep∈Eouti

requires (λj)j∈N outi
, (Ajxj − bj)j∈N outi

, and (yq)eq∈N ep = (yq)q∈{q |Lepq 6=0}, which contains

(yq)eq∈Eini from agent i’s in-agent-neighbors N in
i ,
(
(yq)eq∈Eoutj

)
j∈N outi

from agent i’s out-

agent-neighbors N out
i , and

(
(yq)eq∈Einj

)
j∈N outi

from the in-agent-neighbors of agent i’s

out-agent-neighbors N out
i .

Therefore, the local updates of agent i call for variables maintained by its one-hop and

two-hop node/agent neighbors. Since it is assumed that regardless of edge directions that we

arbitrarily assigned, the corresponding auxiliary edge variables are accessible to both the

starting and ending nodes/agents, for agent i, all the information needed for local updates

can be received from its immediate neighbors Ni. Thus, (7.2), (7.3) and (7.4) can all be

carried in a distributed fashion. This modified distributed synchronous dual consensus

algorithm via operator augmentation with incidence matrix is summarized in Algorithm 7.

The convergence result is similar to Theorem 6.2.1 as long as parameters in matrix P̂ are

chosen according to Proposition 7.1.1.

Notice that the updates of xi, yp and λi are independent, i.e., no particular order

needs to be followed. In addition, only one round of synchronization is required at the

beginning of each iteration, and the local updates of an agent only utilize local and neighbor’s

variables from the last iteration. These are key features allowing the implementation of

74

Algorithm 7Modified Dual Consensus via Operator Augmentation with Incidence Matrix
1: Initialize (x0, y0, λ0a), set k = 0;

2: while stopping criterion is not satisfied do

3: Each agent i collects λkj , Ajxkj − bj from its out-agent-neighbors j ∈ N out
i , and

(yq)eq∈N ep from its neighbors j ∈ Ni;

4: Each agent i updates its local decision variables (in parallel) according to

dki,y =
∑
ep∈Ei

Vipy
k
p =

∑
ep∈Eini

ykp −
∑

ep∈Eouti

ykp ;

xk+1
i = arg min

xi∈Xi

(
fi(xi) +

(
λki + 2σi(Aix

k
i − bi + dki,y)

)T
Aixi+

αi
2
‖xi − xki ‖2

)
;

λk+1
i = λki + σi

(
Aix

k
i − bi + dki,y

)
;

dkp,e =
∑
eq∈N ep

Lepqy
k
q , ∀ep ∈ Eouti ;

yk+1
p = ykp − γp(λkj − λki)− 2γpσ(Ajx

k
j − bj − Aixki + bi)−

2γpσd
k
p,e, ∀ep = (i, j) ∈ Eouti ;

5: k ← k + 1;

6: end while

an asynchronous version of the algorithm. We will build upon Algorithm 7 and develop a

distributed asynchronous algorithm in the next section.

7.2 Asynchronous Dual Consensus via Operator Augmentation with Incidence Ma-

trix Considering Delays

In an asynchronous setting, each agent has its individual clock and update its local

variables independently. We use a different iteration increment rule. As opposed to the

synchronous setting where the iteration counter increases by one after all agents finish one

round of updating of all their local variables (or the slowest agent finishes), the iteration

75

counter increases by one whenever an arbitrary agent completes an update on its local

variable in the asynchronous setting.

Assumption 7.2.1 There is a virtual global iteration counter k, which increases by one

whenever an arbitrary agent finishes an update on its local variable.

Recall that the synchronous algorithm in Algorithm 7 roots from evaluating the gen-

eralized resolvent operator of TLa(x, y, λa) as defined in (6.13) with matrix P̂ in (7.1).

For notation simplicity, we will denote the generalized resolvent operator of TLa as

T := R̂Ta . In Algorithm 7, the entire operator T is evaluated at each iteration. Since

z = (x, y, λa) ∈ Rn+mL+mM is the aggregate global variable, we can define L index

vectors I i ∈ Rn+mL+ML, ∀i ∈ [L], where

I ij =

1, if zj is a coordinate of agent i’s local variable,
(
xi, (yp)ep∈Eouti

, λi
)
;

0, otherwise.

Notice that zj and I ij denote the jth element of vectors z and I i, respectively. Index vectors

I i, ∀i ∈ [L] select the coordinates of each agent’s local variables from the global variable

z. Next, we define operator Ti : Rn+mL+mM → Rn+mL+mM , which corresponds to the

update on the global variable whenever agent i is activated:

Ti(z)j :=

T (z)j, if I ij = 1;

zj, if I ij = 0,

where T (z)j and Ti(z)j denote the jth element of vectors T (z) and Ti(z), respectively.

Note that Ti only updates
(
xi, (yp)ep∈Eouti

, λi
)
and leaves local variables of other agents

unchanged. Then, we define S := Id − T , and Si := Id − Ti, which represents the

“direction” of change for the global variable z when the corresponding operator is applied.

We have

Si(z)j :=

zj − T (z)j, if I ij = 1;

0, if I ij = 0.

76

Therefore, without considering delay, the update performed by each agent iwhen active can

be characterized by

zk+1 = zk − Si(zk) = Ti(zk).

In order to guarantee convergence, we introduce an extra step size ηi ∈ (0, 1) such that

instead of moving to zk − Si(zk) directly after agent i’s update, the global variable moves

to

zk+1 = zk − ηiSi(zk),

which is an instance of the randomized block-coordinate fixed point iteration for the corre-

sponding operator T . The convergence results have been investigated in [11] when T is an

averaged operator and in [22] when T is nonexansive. However, neither of those two cases

consider information delays in a practical asynchronous setting. Instead, we resort to the re-

cently development in [72, 71, 95], which not only deals with randomized block-coordinate

update for nonexpansive operators, but also handles potentially out-of-date information.

Next, we characterize delayed information. At iteration k, let τ k ∈ RL
+ be the delay

vector for variables xk and λka, of which τ ki ∈ R+ is the delay time for xki and λki , ∀i ∈ [L];

let δk ∈ RM
+ be the delay vector for variables yk, of which δkp ∈ R+ is the delay time for

ykp , ∀p ∈ [M].

Assumption 7.2.2 (Uniform Delay Upper Bound) There is an uniform upper bound of

delay time 0 < τ < +∞ at any iteration k such that τ ki ≤ τ , ∀i ∈ [L], and δkp ≤ τ ,

∀p ∈ [M].

Remark 7.2.1 Since
(
xki , (y

k
p)ep∈Eouti

, λki
)
is agent i’s local variables, they are assumed to

share the same delay time, i.e., τ ki = δkp , ∀ep ∈ Eouti . The reason we introduce δkp as the

delay time of variable yk is that as discussed before, agent i’s local updates involve not

only (ykp)ep∈Eouti
, but also (ykp)ep∈Eini ,

(
(yq)eq∈Eoutj

)
j∈N outi

and
(
(yq)eq∈Einj

)
j∈N outi

. The latter

three are received fromNi, thus have different delay times than τ ki in general. We keep both

notations τ ki and δkp so that so that the asynchronous distributed algorithm to be presented

later has better clarity regarding delay times.

77

Remark 7.2.2 If agent i is activated at iteration k, it has the most up-to-date information

of its own local variables, i.e., xk−τ
k
i

i = x
k−τki +1
i = · · · = xki , λ

k−τki
i = λ

k−τki +1
i = · · · = λki ,

and yk−δ
k
p

p = y
k−δkp+1
p = · · · = ykp , ∀ep ∈ Eouti , because the activation of agent i at iteration

k implies that it is the k-th (most recent) agent completes an update.

With the definitions of delay vectors, the delayed global variable used in iteration k can

be defined as

ẑk := (xk−τ
k

, yk−δ
k

, λk−τ
k

a) ∈ Rn+m(M+L).

Then, the update applied to the global variable at iteration k with delayed information can

be characterized as

zk+1 = zk − ηik(ẑk − Tik(ẑk)) = zk − ηikSik(ẑk), (7.6)

where ik is a random agent index number from [L]. Iteration (7.6) is an instance of

randomized block-coordinate iteration of nonexpansive operator based on delayed variables

[72, 71, 95]. With proper choices of step sizes, ηik , and some other assumptions to be

stated next, the convergence of iteration (7.6) to fixed point of the nonexpansive operator

T , which is also optimal solution to original problem (2.1), can be guaranteed. Under

Assumption 7.2.3, the relation between the delayed global variable ẑk and zk can be

characterized by the following proposition [72].

Proposition 7.2.1 Under Assumption 7.2.2, it holds that

ẑk = zk +
∑
d∈J(k)

(zd − zd+1), (7.7)

where J(k) ⊆ {k − τ, . . . , k − 1} is an index set.

Proof See [72, Section 1.2].

Assumption 7.2.3 (Independent Random Agent Activation) The probability that agent

i is responsible for the increment of global iteration counter from k to k + 1, i.e., agent

i completes the k-th block coordinate update on global variable is Prob(ik = i | Zk) =

Prob(ik = i) := pi > 0, ∀i ∈ [L] and ∀k, where Zk is the σ-algebra generated by

z0, ẑ
0, . . . , zk, ẑ

k. Let pmin = mini∈[L] pi.

78

As mentioned in [95], Prob(ik = i | Zk) = Prob(ik = i) implies that the agent responsi-

ble for the k-th block coordinate update is independent of of the delays in different rows of

ẑk, which may not be practical for all the cases, but is a key assumption for the convergence

proof to go through.

Assumption 7.2.4 It is assumed that each agent: 1) has dedicated local buffer to store

required information from neighbors; 2) is frequently communicating with or probing

neighboring agents, and whenever new information is received, corresponding local buffer

is instantly updated; 3) sends out information to its appropriate neighbors instantly after

it completes a new round of local update (there is no other agent completing local update

before the current agent sends out updated information).

The proposed asynchronous dual consensus algorithm via operator augmentation with

incidence matrix considering delays is summarized in Algorithm 8, and its convergence

result is stated in the following theorem.

Theorem 7.2.1 Under Assumptions 2.1.1, 2.1.2, 2.1.3, 6.0.1, 6.2.1, 7.1.1, 7.2.1, 7.2.2,

7.2.3 and 7.2.4, suppose σ, υi, ∀i ∈ [L], and γp, ∀p ∈ [M] are chosen according to

Proposition 7.1.1 such that matrix P̂ in (7.1) is positive definite. Suppose step sizes ηi
satisfies that

0 < ηi <
pmin

pi
(
2τ
√
κpmin + κ

) = ηi,max, ∀i ∈ [L],

where κ := λmax(P̂)

λmin(P̂)
is the condition number of matrix P̂ . Then, the sequence (zk)k≥0

generated by Algorithm 8 converges to a z∗-valued random variable with probability 1, for

some z∗ = (x∗, y∗, λ∗a) ∈ zer(TLa) with TLa being defined in (6.13), and x∗ is an optimal

solution to the original problem (2.1).

Proof Under the independent random agent activation assumption, each iteration of Al-

gorithm 8 can be characterized by (7.6), which is a special case of the randomized block-

coordinate fixed point iteration of nonexpansive operator based on delayed variables. If ηi
is smaller than ηi,max as defined above, according to [95, Theorem 4], (7.6) will converge

to a random variable supported by z∗ = (x∗, y∗, λ∗a) ∈ zer(TLa) almost surely.

79

Algorithm 8 Asynchronous Dual Consensus via Operator Augmentation with Incidence

Matrix Considering Delays
1: Initialize (x0, y0, λ0), set k = 0;

2: while stopping criterion is not satisfied do

3: Agent i ∈ [L] independently update its local variables using the most recent infor-

mation received from its neighbors:

Step 1: dki,y =
∑
ep∈Ei

Vipy
k−δkp
p ;

x̃ki = arg min
xi∈Xi

(
fi(xi) +

(
λ
k−τki
i + 2σi(Aix

k−τki
i − bi + dkik,y)

)T
Aixi+

αi
2
‖xi − x

k−τki
i ‖2

)
;

λ̃ki = λ
k−τki
i + σ

(
Aix

k−τki
i − bi + dkik,y

)
;

dkp,e =
∑
eq∈N ep

Lepqy
k−δkq
q , ∀ep ∈ Eouti ;

ỹkp = y
k−δkp
p − γp(λ

k−τkj
j − λk−τ

k
i

i)− 2γpσ(Ajx
k−τkj
j − bj − Aix

k−τki
i + bi)−

2γpσd
k
p,e, ∀ep = (i, j) ∈ Eouti ;

Step 2: xk+1
i = xki + ηi(x̃

k
i − xki);

λk+1
i = λki + ηi(λ̃

k
i − λki);

yk+1
p = ykp + ηi(x̃

k
i − xki), ∀ep ∈ Eouti ;

4: Virtual global counter increases from k to k + 1;

5: Agent i sends out
(
Aix

k+1
i − bi, (yk+1

p)ep∈Eouti
, λk+1

i

)
and (y

k−δkp
p)ep∈Eini to appropri-

ate neighbors;

6: end while

Remark 7.2.3 Several observations can be made regarding step sizes ηi’s:

1. In order to correctly set the step size ηi, each agent i needs to be aware of its own

activation probability pi as it appears in the equation defining ηi,max, but this may

not be practical for some applications.

80

2. In general, longer delays leads to smaller ηi,max, and slower convergence speed.

3. The more ill-conditioned the matrix P̂ is (smaller condition number κ), the larger

ηi,max is.

4. Let j = arg mini∈[L] pi, then larger pj implies larger ηi,max, ∀i ∈ [L] and i 6= j.

In other words, the more frequent the least active agent performs updates, the more

aggressive other agents can be.

5. Fixing the least active agent and its activation probability pmin, for other agents, the

less active (smaller pi) they are, the larger step size upper bounds they have.

7.3 Asynchronous Parallel CoordinateUpdates of NonexpansiveOperatorswithUni-

form Step Size Upper Bound

ARock [72] is a general algorithmic framework for asynchronous parallel coordinate

updates of nonexpansive operators in Euclidean norm, which also handles delayed informa-

tion. The distributed asynchronous algorithm proposed in the previous section builds upon

the theoretical results in [95], which is an extension of ARock to nonexpansive operators

under the more general norm ‖ · ‖P where P � 0. Both algorithms in [72, 95] has the form

zk+1 = zk − ηikSik(ẑk) = zk − η

Lpik
Sik(ẑk). (7.8)

Obviously, each agentmust be aware its activation probability pi in order to correctly set local

step size ηi. However, this assumption may not be practical or realistic for many problems

unless all agents have uniform activation probability 1/L. In ARock [72], the upper bound

for η is pmin
2τ
√
pmin+1

, thus the upper bound for the step size of agent i is pmin
pi(2τ

√
pmin+1)

.

In this section, we modify the ARock algorithm framework to the following

zk+1 = zk − ηSik(ẑk), (7.9)

where all agents utilize the same step size η. An uniform upper bound will be derived for

η such that the almost sure convergence of the asynchronous parallel coordinate updates

81

algorithm to a random variable supported by some fixed point of the underlying nonex-

pansive operator T can still be guaranteed. This new algorithm (7.9) eliminates individual

agent activation probability from the step size, thus is more practical for some applica-

tions. For all development in this section, we will assume operator T is nonexpansive on

H = Rn+mL+mM under the Euclidean norm instead of the norm ‖ · ‖P .

We define the full update (all agents perform updates) at the k-th iteration:

zk+1 =: zk − ηS(ẑk). (7.10)

Notice that (7.10) is defined for the purpose of analysis only, and is never computed in the

asynchronous setting. Recall the following result we reviewed in Chapter 3.

Lemma 7.3.1 Operator T : H → H is nonexpansive if and only if S = Id − T is

1/2-cocoercive, i.e., 〈x− y,S(x)− S(y)〉 ≥ 1
2
‖S(x)− S(y)‖2, ∀x, y ∈ H.

LetH ∈ Rn+mL+mM be a diagonal matrix with diagonal elements defined asHjj = 1
pi

if I ij = 1, ∀j ∈ [n + mL + mM]. Due to the construction method of I ij , all diagonal

elements are positive, thus H is symmetric postive definite.

Proposition 7.3.1 Let (zk)k≥0 be the sequence generated by iteration (7.9). Then for any

z∗ ∈ Fix(T) and γ > 0, it holds that

E
(
‖zk+1 − z∗‖2H | Zk

)
≤ ‖zk − z∗‖2H + γ

k−1∑
d=k−τ

‖zd − zd+1‖2

+

(
1 +
|J(k)|
γ
− 1

η

)
‖zk − zk+1‖2. (7.11)

Proof We have

E
(
‖zk+1 − z∗‖2H | Zk

) (7.9)
= E

(
‖zk − ηSik(zk)− z∗‖2H | Zk

)
= ‖zk − z∗‖2H + E

(
2η〈Sik(ẑk), z∗ − zk〉H + η2‖Sik(ẑk)‖2H | Zk

)
= ‖zk − z∗‖2H +

L∑
i=1

2ηpi〈Si(ẑk), z∗ − zk〉H + η2
L∑
i=1

pi‖Si(ẑk)‖2H

= ‖zk − z∗‖2H + 2η〈S(ẑk), z∗ − zk〉+ η2
L∑
i=1

pi‖Si(ẑk)‖2H . (7.12)

82

Note that
L∑
i=1

pi‖Si(ẑk)‖2H = ‖S(ẑk)‖2 (7.10)
=

1

η2
‖zk − zk+1‖2, (7.13)

and

〈S(ẑk), z∗ − zk〉 (7.7)=

〈
S(ẑk), z∗ − ẑk +

∑
d∈J(k)

(zd − zd+1)

〉

= 〈S(ẑk), z∗ − ẑk〉+
∑
d∈J(k)

〈S(ẑk), zd − zd+1〉

(7.10)
= 〈S(ẑk)− S(z∗), z∗ − ẑk〉+

1

η

∑
d∈J(k)

〈zk − zk+1, zd − zd+1〉

≤ −1

2
‖S(ẑk)− S(z∗)‖2 +

1

η

∑
d∈J(k)

〈zk − zk+1, zd − zd+1〉

≤ −1

2
‖S(ẑk)− S(z∗)‖2 +

1

2η

∑
d∈J(k)

(
1

γ
‖zk − zk+1‖2 + γ‖zd − zd+1‖2

)
(7.10)
= − 1

2η2
‖zk − zk+1‖2 +

|J(k)|
2γη

‖zk − zk+1‖2 +
γ

2η

∑
d∈J(k)

‖zd − zd+1‖2, (7.14)

where the third equality is due to S(z∗) = z∗ − T (z)∗ = 0, for any z∗ ∈ Fix(T); the first

inequality is due to the 1/2-cocoercivity of operator S; the second inequality is because of

the fact that 1
γ
‖p‖2 + γ‖q‖2 ≥ 2〈p, q〉, ∀p, q ∈ H. Plugging (7.13) and (7.14) into (7.12)

yields (7.11).

LetHτ+1 =
∏τ

i=0H be a product space. Then define a matrix Û ∈ R(τ+1)×(τ+1) as:

Û =



1 + τ −τ

−τ 2τ − 1 1− τ

1− τ 2τ − 3 2− τ
.

−2 3 −1

−1 1


,

and define U = Û ⊗H , which is symmetric and positive definite since both Û and H are

symmetric and positive definite. We define

zk := (zk, zk−1, . . . , zk−τ) ∈ Hτ+1, k ≥ 0,

83

z∗ := 1τ+1 ⊗ z∗ ∈ Hτ+1,

where zk = z0 for k < 0. It can be verified that

‖zk+1 − z∗‖2U = ‖zk − z∗‖2H +
k−1∑

d=k−τ

(
d− (k − τ) + 1

)
‖zd − zd+1‖2H . (7.15)

Proposition 7.3.2 Let (zk)k≥0 be the sequence generated by iteration (7.9). Then for any

z∗ = 1τ+1 ⊗ z∗ ∈ Hτ+1 where z∗ ∈ Fix(T), it holds that

E
(
‖zk+1 − z∗‖2U | Zk

)
≤ ‖zk − z∗‖2U +

(
τ + 1 + pmaxτ −

1

η

)
‖zk − zk+1‖2, (7.16)

where pmax = maxi∈[L] pi.

Proof Let γ = 1
pmax

in (7.11), we have

E
(
‖zk+1 − z∗‖2U | Zk

)
(7.15)
= E

(
‖zk+1 − z∗‖2H | Zk

)
+

k∑
d=k+1−τ

(
d− (k − τ)

)
E
(
‖zd − zd+1‖2H | Zk

)
= E

(
‖zk+1 − z∗‖2H | Zk

)
+

k−1∑
d=k+1−τ

(
d− (k − τ)

)
‖zd − zd+1‖2H

+ τE
(
‖zk − zk+1‖2H | Zk

)
(7.9)
= E

(
‖zk+1 − z∗‖2H | Zk

)
+

k−1∑
d=k+1−τ

(
d− (k − τ)

)
‖zd − zd+1‖2H

+ τη2E
(
‖Sik(ẑk)‖2H | Zk

)
(7.10)
= E

(
‖zk+1 − z∗‖2H | Zk

)
+

k−1∑
d=k+1−τ

(
d− (k − τ)

)
‖zd − zd+1‖2H + τ‖zk − zk+1‖2

≤ ‖zk − z∗‖2H +

(
τ + 1 + pmaxτ −

1

η

)
‖zk − zk+1‖2 +

1

pmax

k−1∑
d=k−τ

‖zd − zd+1‖2

+
k−1∑

d=k+1−τ

(
d− (k − τ)

)
‖zd − zd+1‖2H

≤ ‖zk − z∗‖2H +

(
τ + 1 + pmaxτ −

1

η

)
‖zk − zk+1‖2 +

k−1∑
d=k−τ

‖zd − zd+1‖2H

84

+
k−1∑

d=k+1−τ

(
d− (k − τ)

)
‖zd − zd+1‖2H

= ‖zk − z∗‖2H +
k−1∑

d=k−τ

(
d− (k − τ) + 1

)
‖zd − zd+1‖2H

+

(
τ + 1 + pmaxτ −

1

η

)
‖zk − zk+1‖2

(7.15)
= ‖zk − z∗‖2U +

(
τ + 1 + pmaxτ −

1

η

)
‖zk − zk+1‖2,

where the first inequality is due to the plugging in of inequality (7.11) and the fact that

|J(k)| ≤ τ ; the second inequality is due to the fact that H � 1
pmax

In+mL+mM . Therefore,

inequality (7.16) holds.

Remark 7.3.1 Suppose

0 < η <
1

τ(1 + pmax) + 1
= ηmax, (7.17)

then we have

E
(
‖zk+1 − z∗‖2U | Zk

)
≤ E

(
‖zk − z∗‖2U | Zk

)
= ‖zk − z∗‖2U ,

i.e., the sequence (zk) is stochastic Fejer monotone. Notice thatE
(
‖z− z∗‖2U | Zk

)
can also

be thought of as a Lyapunov function from the stability of a dynamical system’s perspective.

Theorem 7.3.1 Suppose T is a nonexpansive operator under the Euclidean norm. Under

Assumptions 7.2.2 and 7.2.3, the sequence (zk)k≥0 generated by iteration (7.9), with η

satisfying (7.17) converges to a Fix(T)-valued random variable almost surely.

Proof Notice that condition (7.17) guarantees that
(
τ + 1 + pmaxτ − 1

η

)
< 0, then follow

the same argument in [72, Lemma 12 & 13, Theorem 14].

In general, smaller delay upper bound τ leads to larger ηmax. In the extreme case where

there is no delay, i.e., τ = 0, the uniform step size upper bound reduces to ηmax = 1, and the

global variable update becomes zk+1 = zk − ηSik(zk), for η ∈ (0, 1), which is exactly the

randomized Krasnosel’skii Mann iterations of the averaged operator (1−η)Id+ηT studied

85

in [11, Theorem 3]. In contrast, the upper bound for agent i’s step size in ARock reduces

to pmin/pi ≤ 1 when τ = 0, which is more conservative than ours. Another comment

regarding the bound in (7.17) is that the smaller pmax ∈ [1/L, 1) is, the larger ηmax is.

This implies that roughly speaking, less discrepancies in agents’ activation probability, i.e.,

smaller variance of pi’s distribution, allows larger step sizes.

The investigation of (7.9) in the scenario where operator T is a nonexpansive operator

with respect to the norm ‖ · ‖P is left as future work.

86

8. NUMERICAL EXAMPLES

In this chapter, we will test the effectiveness and performance of the proposed distributed al-

gorithms through several numerical examples: exchange problem, L1 regularized exchange

problem, and resource allocation problem. For algorithms involved with multiplier graph

Gλ (Algorithm 4-8), three possible graph topologies might be used: fully connected net-

work, star network, and ring network, see Fig. 8.1 (a representation of the graph structures,

and does not indicate the exact number of agents used in different numerical examples).

1 2

4 3

Ring

1 2

4 3

Fully Connected

1

2

34

Star

Fig. 8.1.: Graph topologies

When investigating the performance of a particular algorithm under different graph

topologies, the weighted adjacency matrix W or the incidence matrix V are always first

normalized such that the average weighted degree 1
L

∑L
i deg(i) is the same with different

graph topologies.

8.1 Exchange Problem

Firstly, we study the commodity exchange problem. We consider a network of L agents

exchangingm goods, and the local objective function or each agent is a quadratic function:

minimize
x

L∑
i=1

‖Cixi − di‖2 (8.1)

87

subject to
L∑
i=1

xi = 0,

where xi ∈ Rni , Ci ∈ Rp×ni , di ∈ Rp and p < ni. The above problem is in the

standard formulation (2.1) with fi(xi) = ‖Cixi − di‖2 = xTi C
T
i Cixi − 2dTi Cixi + dTi di,

Xi = Rni , Ai = Ini and bi = 0. Apparently, for this particular problem, we have m = ni,

∀i ∈ [L]. Since p < ni, we have CT
i Ci � 0. Therefore, the global objective function∑L

i=1 ‖Cixi − di‖2 is a convex function (but not strictly or strongly convex) in x.

Thematrices and vectors in the above problemare randomly generated as follows. Firstly,

randomly generate Ci’s from normal distribution, then randomly generate x∗i , ∀i ∈ [L− 1]

from normal distribution and compute x∗L = −
∑L−1

i=1 x
∗
i and di = Cix

∗
i , ∀i ∈ [L]. It is easy

to see for any problem generated in this fashion, x∗ = (x∗i)i∈[L] is an optimal solution with

optimal objective function value being 0. We choose L = 20, ni = m = 50, p = 20, all

the parameters and initial values are generated once and stored, then used under different

simulation runs.

First, we test the proximal parallel ADMM algorithm (Algorithm 1) and the dual

averaging algorithms via Douglas-Rachford splitting (Algorithm 2 and 3). The algorithm

design parameters aremanually chosen based on trial and error. ForAlgorithm1, parameters

are chosen from ρ ∈ {1, 5, 10} and φi ∈ {4ρ, 10ρ, 20ρ, 50ρ}, and it turns out ρ = 5,

ϕi = 20 give the fastest convergence rates. Notice that ϕi = 20 is smaller than the

bound provided in Proposition 5.3.3, which means that the sufficient conditions therein are

conservative. For Algorithm 2 & 3, parameters are chosen from α ∈ {0.05, 0.5, 0.95} and

β ∈ {0.1, 1, 10, 100}, and it turns out α = 0.5, β = 10 is “optimal”.

The global objective function values
∑L

i=1 ‖Cixki−di‖2 aswell as the coupling constraint

violations ‖
∑L

i=1 x
k
i ‖ after the first 800 iterations are plotted in Fig. 8.2. For Algorithm 2

and 3, since they are essentially two generalized resolvent iterations that originated from

the same averaged operator, they generate the exact same variable values at each iteration k.

Notice that the convergence speed of the dual averaging algorithms via Douglas-Rachford

splitting is significantly faster than proximal parallel ADMM algorithm. This is possibly

due to the fact that Algorithm 2 & 3 introduce more auxiliary variables (copies of dual

88

0 200 400 600 800

Iteration no.

10
-30

10
-20

10
-10

10
0

10
10

Objective Function Value

Algorithm 1

Algorithm 2 & 3

0 200 400 600 800

Iteration no.

10
-30

10
-20

10
-10

10
0

10
10

Constraint Violation

Fig. 8.2.: Exchange problem: convergence of Algorithm 1, 2 and 3

variables at each agent) which bring higher computation costs in each iteration, thus smaller

number of iterations compared to Algorithm 1 are needed to reach the same accuracy level.

8.2 L1-regularized Exchange Problem

We add an extraL1 regularization term to the objective function of the exchange problem

in (8.1) to impose sparsity in the optimal solution:

minimize
x

L∑
i=1

‖Cixi − di‖2 + ‖x‖1 (8.2)

subject to
L∑
i=1

xi = 0.

Since the regularization term is separable, i.e., ‖x‖1 =
∑L

i=1 ‖xi‖1, the above formulation

can be equivalently written as

minimize
x

L∑
i=1

(
‖Cixi − di‖2 + ‖xi‖1

)
(8.3)

subject to
L∑
i=1

xi = 0,

89

which is a special case of the formulation in (6.19). Although this problem can be solved

directly using Algorithms 1-5, as discussed in Section 6.3, it is expected that local opti-

mization problem minxi (‖Cixi − di‖2 + ‖xi‖1 + another quadratic function), may be the

bottleneck of the algorithm because it does not have an explicit analytical solution.

On the other hand, if we apply Algorithm 6 to this problem, the local optimization prob-

lem will be broken into two steps: an unconstrained quadratic program and an evaluation of

the proximal operator of L1 norm function, both of which have explicit analytical solutions.

Particularly, the proximal operator of the L1 norm function at y ∈ Rn can be evaluated

elementwise as (
prox
β‖·‖1

(y)

)
j

= sign (yj) max (|yj| − β, 0) , ∀j ∈ [n],

which is also called soft thresholding. Therefore, by applying Algorithm 6, local updates

of all agents become linear expressions, which will be efficient to compute.

We choose L = 20, ni = m = 50, p = 20. The parameter matrices are generated simi-

larly as before, which are stored and used under different simulation runs. We firstly solve

optimization problem (8.2) centrally and the optimal objective function value turns out to

be 65.9877. All three graph topologies in Fig. 8.1 are utilized and compared under the same

set of parameter values: υi = 10, γi = σi = 1
1.05 deg(i)

< 1
deg(i)

, ∀i. The global objective

function values
∑L

i=1 (‖Cixi − di‖2 + ‖xi‖1) as well as the coupling constraint violations

‖
∑L

i=1 x
k
i ‖ after the first 800 iterations are plotted in Fig. 8.3. Algorithm 6 converges to an

optimal solution (with objective function value 65.9877) under all three graph topologies.

As expected, the fully connected network renders the fastest convergence speed while the

ring network gives slowest convergence speed under the same set of algorithm parameters

and average node degree, but the convergence speed difference between fully connected

network and star network is minimal.

90

0 200 400 600 800

Iteration no.

10
1

10
2

10
3

Objective Function Value

Optimal Objective Function Value = 65.9877

Fully Connected Network

Star Network

Ring Network

0 200 400 600 800

Iteration no.

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

Constraint Violation

0 200 400 600 800

Iteration no.

10
-15

10
-10

10
-5

10
0

10
5

Dual Variable Consensual Error

Fully Connected Network

Star Network

Ring Network

0 200 400 600 800

Iteration no.

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

Distance to Optimal Solution

Fig. 8.3.: L1 regularized exchange problem: convergence of Algorithm 6

8.3 Resource Allocation Problem

Modifying the global coupling constraint of the exchange problem in (8.1), we obtain

the following resource allocation problem:

minimize
x

L∑
i=1

‖Cixi − di‖2 (8.4)

91

subject to
L∑
i=1

(
xTi xi − 2 · 1Tnixi + ni

)
≤ 360,

which is a special case of the convex inequality coupling constraints formulation in (2.6),

with gi(xi) = xTi xi − 2 · 1Tnixi + ni = ‖xi − 1ni‖2, and bi = 360/L. The problem in (8.4)

is equivalent to the following problem

minimize
x, y

L∑
i=1

‖Cixi − di‖2 (8.5)

subject to
L∑
i=1

yi = 360,

‖xi − 1ni‖2 ≤ yi, ∀i ∈ [L],

where (xi, yi) is the local decision variable for agent i,

We will apply dual consensus algorithms via operator augmentation with graph Lapla-

cian matrix (Algorithm 4) and incidence matrix (Algorithm 5) to solve (8.4). For Algo-

rithm 4, all three multiplier graph topologies in Fig. 8.1 will be utilized and compared

under the same set of parameters: υi = 1, γi = σi = 1
2.1 deg(i)

< 1
2 deg(i)

, ∀i ∈ [L].

However, for Algorithm 5, only the star network and ring network will be utilized and

compared under the same set of parameters: υi = 1, σi = 1
2.1 deg(i)

< 1
2 deg(i)

, ∀i ∈ [L], and

γp = 0.45 < 0.5, ∀p ∈ [M], because of the reason discussed in Remark 6.2.4. We choose

L = 20, ni = m = 50, p = 20. The parameter matrices are generated similarly as before,

which are stored and used under different simulation runs. We firstly solve optimization

problem (8.4) centrally and the optimal objective function value turns out to be 73.2774.

The global objective function values
∑L

i=1 (‖Cixi − di‖2), the “resource” constraint

violations ‖
∑L

i=1 y
k
i −360‖2, the dual variables consensual error

∑L
i=1 ‖λki −

∑L
i=1 λ

k
i /L‖2

and the distance to an optimal solution
∑L

i=1 ‖xki − x∗i ‖2 after the first 100 iterations are

plotted in Fig. 8.4 (Algorithm 4) and Fig. 8.5 (Algorithm 5). Algorithm 4 converges to

an optimal solution with all three graph topologies. The fully connected network and star

network render similar convergence speed while the ring network is slower under the same

set of algorithm parameters and average node degree. Similarly, Algorithm 5 also converges

92

to an optimal solution with the two graph topologies utilized and the convergence speed

under star network is faster.

0 20 40 60 80 100

Iteration no.

10
0

10
1

10
2

10
3

10
4

10
5

Objective Function Value

Optimal Objective Function Value = 73.2774

Fully Connected Network

Star Network

Ring Network

0 20 40 60 80 100

Iteration no.

10
-20

10
-15

10
-10

10
-5

10
0

10
5

10
10

Constraint Violation

0 20 40 60 80 100

Iteration no.

10
-20

10
-15

10
-10

10
-5

10
0

10
5

Dual Variable Consensual Error

Fully Connected Network

Star Network

Ring Network

0 20 40 60 80 100

Iteration no.

10
-6

10
-4

10
-2

10
0

10
2

10
4

Distance to Optimal Solution

Fig. 8.4.: Resource allocation problem: convergence of Algorithm 4

93

0 20 40 60 80 100

Iteration no.

10
0

10
1

10
2

10
3

10
4

10
5

Objective Function Value

Optimal Objective Function Value = 73.2774

Star Network

Ring Network

0 20 40 60 80 100

Iteration no.

10
-20

10
-15

10
-10

10
-5

10
0

10
5

10
10

Constraint Violation

0 20 40 60 80 100

Iteration no.

10
-20

10
-15

10
-10

10
-5

10
0

10
5

Dual Variable Consensual Error

Star Network

Ring Network

0 20 40 60 80 100

Iteration no.

10
-6

10
-4

10
-2

10
0

10
2

10
4

Distance to Optimal Solution

Fig. 8.5.: Resource allocation problem: convergence of Algorithm 5

94

9. CONCLUSION

The distributed solutions for a general class of convex multi-agent optimization problems

with global shared resource couplings are studied in this dissertation. A series of syn-

chronous and asynchronous distributed solution algorithms are proposed. Different from

most of the distributed optimization algorithms in literature, our proposed algorithms are

designed following a common procedure. Firstly, the optimal solution set of the multi-agent

optimization problem is characterized by the zero sets of certain maximally monotone op-

erators. Secondly, the equivalence of these zero sets with the fixed point sets of certain

nonexpansive, or averaged operators are established. Then, iterative distributed algorithms

are derived from (generalized) fixed point iterations of these nonexpansive, averaged opera-

tors. The most obvious advantage of this algorithm design procedure is that convergence to

some optimal solution is automatically established when the algorithm is derived, while the

biggest challenge being finding the proper operators that not only encapsulate the optimal

solution set, but also whose fixed point iterations can be carried out in a distributed fashion.

We summarize and highlight the main contributions of this dissertation before discussing

some future directions.

Main Contributions

1. The convex multi-agent optimization problem formulation proposed is very general

that many other formulations studied in the literature can be treated as special cases

of our formulation, which not only naturally deals with the scenario where the local

decision variables of different agents are of different dimensions, but also handles

general convex shared resource coupling constraints.

2. The algorithms proposed in this dissertation require rather mild assumptions: local

objective functions and local coupling functions are CCP, local constraint sets are

95

closed, convex and nonempty, there exists at least one point that satisfies that KKT

conditions. No assumption needs to be made on the differentiability of local objective

functions. Furthermore, we do not assume the boundness of agents’ local constraint

sets Xi’s, which is a key assumption for many existing algorithms to guarantee the

boundness of subgradients in their analysis.

3. All the algorithms proposed utilize fixed step sizes as opposed to diminishing step

sizes, which are ubiquitous in literature. Diminishing step sizes are more difficult to

tune from the perspective of achieving better convergence speed.

4. Since the algorithmic framework proposed in this dissertation is the fixed point itera-

tion of certain nonexpansive, averaged operators, the adaptation of certain algorithm

from a synchronous setting to an asynchronous setting with delayed information is

achieved in Chapter 7. Many existing algorithms in the literature are based on duality

theory, and it is not apparent how they can be modified to asynchronous algorithms

with delays.

5. Our algorithmic framework provides better flexibility when the local objective func-

tion of an agent contains both smooth and nonsmooth parts. By applying operator

splitting methods, the local constrained optimization problem can often be further

broken down into simpler steps involving smooth part and nonsmooth part separately,

e.g., Algorithm 6 in Chapter 6.

6. Generalized resolvent operator and generalized resolvent iteration are presented and

studied. Although it is not exactly the first time they appear in literature, to the best

our knowledge, it is the first time DR and DY splitting methods have been modified

to utilize generalized resolvent operators.

7. The proximal parallel ADMM algorithm (Algorithm 1) proposed in Chapter 5 is

an extension of the popular standard Gauss-Seidel (sequential) two-block ADMM

algorithm to the Jacobi (parallel) multi-block scenario, which will be particularly

useful for many large-scale classical machine learning training problems.

96

8. The general algorithmic framework for asynchronous parallel coordinate updates of

nonexpansive operators proposed in [72] is modified to amore practical updating rule,

and a new upper bound for the single relaxation step size is derived. The proposed

modification eliminates individual agent activation probabilities from their step sizes.

Future Work

1. Most of the algorithms proposed in this dissertation are special cases of generalized

resolvent iteration, or (generalized) DR splitting. The convergence orders of standard

resolvent iteration (proximal point algorithm) and standard DR splitting method have

been studied in [41, 24, 35], just to name a few. However, little work has been done to

characterize the convergence rates of generalized resolvent operator and generalized

DR splitting methods, or how to optimally select design parameter values, i.e., the P

matrix associated with the generalized resolvent operator.

2. The multiplier graph is proposed in Chapter 6 over which agents can communicate

and exchange information with neighbors. The convergence of subsequent algorithms

under different graph topologies were compared in Chapter 8 through simulations, it

will be interesting to quantitatively characterize how graph properties and network

topologies affect the convergence speed. Currently, the multiplier graph is assumed to

be time invariant. It would be interesting to study how existing algorithm framework

can be modified to handle time-varying graphs.

3. In Chapter 7, we modified the asynchronous parallel coordinate updates algorithm

proposed in [72] to allow a single step size to be used by all agents and eliminate

the involvement of individual agent activation probabilities in their step sizes. A new

uniform upper bound for the step size is derived with which probabilistic convergence

to some fixed point can be guaranteed when the underlying operator is nonexpansive

with respect to the Euclidean norm. The natural next step would be extending this

result to the case when the underlying operator is nonexpansive with respect to the

P -norm (defined in Chapter 4).

REFERENCES

97

REFERENCES

[1] A. Agarwal, M. J. Wainwright, and J. C. Duchi. Distributed dual averaging in
networks. In Advances in Neural Information Processing Systems, pages 550–558,
2010.

[2] R. Aharoni and Y. Censor. Block-iterative projection methods for parallel computa-
tion of solutions to convex feasibility problems. Linear Algebra and Its Applications,
120:165–175, 1989.

[3] B. Anderson, S. Mou, A. S. Morse, and U. Helmke. Decentralized gradient algorithm
for solution of a linear equation. arXiv preprint arXiv:1509.04538, 2015.

[4] I. Atzeni, L. G. Ordóñez, G. Scutari, D. P. Palomar, and J. R. Fonollosa. Demand-
side management via distributed energy generation and storage optimization. IEEE
Transactions on Smart Grid, 4(2):866–876, 2013.

[5] J.-B. Baillon and G. Haddad. Quelques propriétés des opérateurs angle-bornés etn-
cycliquement monotones. Israel Journal of Mathematics, 26(2):137–150, 1977.

[6] S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux
équations intégrales. Fund. math, 3(1):133–181, 1922.

[7] H. H. Bauschke and J. M. Borwein. On projection algorithms for solving convex
feasibility problems. SIAM review, 38(3):367–426, 1996.

[8] H. H. Bauschke and P. L. Combettes. The baillon-haddad theorem revisited. arXiv
preprint arXiv:0906.0807, 2009.

[9] H. H. Bauschke, P. L. Combettes, et al. Convex analysis and monotone operator
theory in Hilbert spaces, volume 408. Springer, 2011.

[10] A. Beck, A. Nedic, A. Ozdaglar, and M. Teboulle. Optimal distributed gradient
methods for network resource allocation problems. IEEE Transactions on Control of
Network Systems, 1(1):64–74, 2014.

[11] P. Bianchi, W. Hachem, and F. Iutzeler. A coordinate descent primal-dual algorithm
and application to distributed asynchronous optimization. IEEE Transactions on
Automatic Control, 61(10):2947–2957, 2016.

[12] P. Bianchi and J. Jakubowicz. Convergence of a multi-agent projected stochastic
gradient algorithm for non-convex optimization. IEEE Transactions on Automatic
Control, 58(2):391–405, 2013.

[13] D. Blatt and A. O. Hero. Energy-based sensor network source localization via
projection onto convex sets. IEEE Transactions on Signal Processing, 54(9):3614–
3619, 2006.

98

[14] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations
and Trends® in Machine Learning, 3(1):1–122, 2011.

[15] H. Brézis and P. L. Lions. Produits infinis de résolvantes. Israel Journal of Mathe-
matics, 29(4):329–345, 1978.

[16] Y. Cao, W. Yu, W. Ren, and G. Chen. An overview of recent progress in the study of
distributed multi-agent coordination. IEEE Transactions on Industrial informatics,
9(1):427–438, 2013.

[17] S.-s. Chang, J. Kim, andX.Wang. Modified block iterative algorithm for solving con-
vex feasibility problems in banach spaces. Journal of Inequalities and Applications,
2010(1):869684, 2010.

[18] T.-H. Chang. A proximal dual consensus admm method for multi-agent constrained
optimization. IEEE Transactions on Signal Processing, 64(14):3719–3734, 2016.

[19] C. Chen, B. He, Y. Ye, and X. Yuan. The direct extension of admm for multi-
block convex minimization problems is not necessarily convergent. Mathematical
Programming, 155(1-2):57–79, 2016.

[20] P. Combettes. The convex feasibility problem in image recovery. Advances in imaging
and electron physics, 95:155–270, 1996.

[21] P. L. Combettes*. Solving monotone inclusions via compositions of nonexpansive
averaged operators. Optimization, 53(5-6):475–504, 2004.

[22] P. L. Combettes and J.-C. Pesquet. Stochastic quasi-fejér block-coordinate fixed point
iterations with random sweeping. SIAM Journal on Optimization, 25(2):1221–1248,
2015.

[23] P. L. Combettes and I. Yamada. Compositions and convex combinations of aver-
aged nonexpansive operators. Journal of Mathematical Analysis and Applications,
425(1):55–70, 2015.

[24] D. Davis. Convergence rate analysis of the forward-douglas-rachford splitting
scheme. SIAM Journal on Optimization, 25(3):1760–1786, 2015.

[25] D. Davis and W. Yin. A three-operator splitting scheme and its optimization appli-
cations. Set-Valued and Variational Analysis, 25(4):829–858, 2017.

[26] P. Di Lorenzo and G. Scutari. Next: In-network nonconvex optimization. IEEE
Transactions on Signal and Information Processing over Networks, 2(2):120–136,
2016.

[27] J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for distributed
optimization: Convergence analysis and network scaling. IEEE Transactions on
Automatic control, 57(3):592–606, 2012.

[28] H. Everett III. Generalized lagrange multiplier method for solving problems of
optimum allocation of resources. Operations research, 11(3):399–417, 1963.

[29] A. Falsone, K. Margellos, S. Garatti, andM. Prandini. Dual decomposition for multi-
agent distributed optimization with coupling constraints. Automatica, 84:149–158,
2017.

99

[30] D.G. Feingold andR.Varga. Block diagonally dominantmatrices and generalizations
of the gerschgorin circle theorem. Pacific Journal of Mathematics, 12(4):1241–1250,
1962.

[31] D. Fullmer, J. Liu, and A. S. Morse. An asynchronous distributed algorithm for
computing a common fixed point of a family of paracontractions. In Decision and
Control (CDC), 2016 IEEE 55th Conference on, pages 2620–2625. IEEE, 2016.

[32] D. Fullmer, L. Wang, and A. S. Morse. A distributed algorithm for computing a com-
mon fixed point of a family of paracontractions. IFAC-PapersOnLine, 49(18):552–
557, 2016.

[33] D. Gabay. Applications of the method of multipliers to variational inequalities,
in,(1983), 299. doi: 10.1016. S0168-2024 (08), pages 70034–1, 1983.

[34] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear varia-
tional problems via finite element approximation. Computers & Mathematics with
Applications, 2(1):17–40, 1976.

[35] P. Giselsson and S. Boyd. Linear convergence and metric selection for douglas-
rachford splitting and admm. IEEE Transactions on Automatic Control, 62(2):532–
544, 2017.

[36] R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un,
et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non
linéaires. Revue française d’automatique, informatique, recherche opérationnelle.
Analyse numérique, 9(R2):41–76, 1975.

[37] C. Gu, Z. Wu, J. Li, and Y. Guo. Distributed convex optimization with coupling
constraints over time-varying directed graphs. arXiv preprint arXiv:1805.07916,
2018.

[38] D. Han and X. Yuan. A note on the alternating direction method of multipliers.
Journal of Optimization Theory and Applications, 155(1):227–238, 2012.

[39] B. He, L. Hou, and X. Yuan. On full jacobian decomposition of the augmented la-
grangianmethod for separable convex programming. SIAM Journal on Optimization,
25(4):2274–2312, 2015.

[40] B. He, M. Tao, and X. Yuan. Alternating direction method with gaussian back
substitution for separable convex programming. SIAM Journal on Optimization,
22(2):313–340, 2012.

[41] B. He and X. Yuan. On the convergence rate of douglas–rachford operator splitting
method. Mathematical Programming, 153(2):715–722, 2015.

[42] A. O. Hero and D. Blatt. Sensor network source localization via projection onto
convex sets (pocs). In Acoustics, Speech, and Signal Processing, 2005. Proceed-
ings.(ICASSP’05). IEEE InternationalConference on, volume3, pages iii–689. IEEE,
2005.

[43] S. Hosseini, A. Chapman, and M. Mesbahi. Online distributed admm via dual
averaging. In Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on,
pages 904–909. IEEE, 2014.

100

[44] X. Hou, Y. Xiao, J. Cai, J. Hu, and J. Braun. A distributed model predictive control
approach for optimal coordination of multiple thermal zones in a large open space.
In Proc. 4th International High Performance Buildings Conference, pages 160–169,
2016.

[45] X. Hou, Y. Xiao, J. Cai, J. Hu, and J. E. Braun. Distributed model predictive control
via proximal jacobian admm for building control applications. In American Control
Conference (ACC), 2017, pages 37–43. IEEE, 2017.

[46] X. Hou, Y. Xiao, J. Joe, J. Cai, P. Karava, J. Hu, and J. Braun. An agent-based
control implementation for the coordination of multiple rooftop units. In Proc. 6th
International High Performance Buildings Conference, pages 324–333, 2018.

[47] Z. John Lu. The elements of statistical learning: data mining, inference, and pre-
diction. Journal of the Royal Statistical Society: Series A (Statistics in Society),
173(3):693–694, 2010.

[48] M. Kraning, E. Chu, J. Lavaei, and S. Boyd. Message passing for dynamic network
energy management. arXiv preprint arXiv:1204.1106, 2012.

[49] M. A. Krasnosel’skii. Two remarks on the method of successive approximations.
Uspekhi Matematicheskikh Nauk, 10(1):123–127, 1955.

[50] S. Lee and A. Nedic. Distributed random projection algorithm for convex optimiza-
tion. IEEE Journal of Selected Topics in Signal Processing, 7(2):221–229, 2013.

[51] S. Lee and A. Nedić. Asynchronous gossip-based random projection algorithms over
networks. IEEE Transactions on Automatic Control, 61(4):953–968, 2016.

[52] V. Lesser, C. L. Ortiz Jr, and M. Tambe. Distributed sensor networks: A multiagent
perspective, volume 9. Springer Science & Business Media, 2012.

[53] X. Li, X. Yi, and L. Xie. Distributed online optimization for multi-agent networks
with coupled inequality constraints. arXiv preprint arXiv:1805.05573, 2018.

[54] P. Lin, W. Ren, and Y. Song. Distributed multi-agent optimization subject to non-
identical constraints and communication delays. Automatica, 65:120–131, 2016.

[55] I. Lobel and A. Ozdaglar. Distributed subgradient methods for convex optimization
over random networks. IEEE Transactions on Automatic Control, 56(6):1291, 2011.

[56] I. Lobel, A. Ozdaglar, and D. Feijer. Distributed multi-agent optimization with state-
dependent communication. Mathematical programming, 129(2):255–284, 2011.

[57] C. Lopes and A. H. Sayed. Distributed processing over adaptive networks. In Proc.
adaptive sensor array processing workshop, pages 1–5, 2006.

[58] W. R. Mann. Mean value methods in iteration. Proceedings of the American Math-
ematical Society, 4(3):506–510, 1953.

[59] B. Martinet. Détermination approchée dâĂŹun point fixe dâĂŹune application
pseudo-contractante. CR Acad. Sci. Paris, 274(2):163–165, 1972.

[60] M. Mesbahi and M. Egerstedt. Graph theoretic methods in multiagent networks,
volume 33. Princeton University Press, 2010.

101

[61] S.Mou, J. Liu, and A. S.Morse. A distributed algorithm for solving a linear algebraic
equation. IEEE Transactions on Automatic Control, 60(11):2863–2878, 2015.

[62] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis. Distributed subgradient
methods and quantization effects. In Decision and Control, 2008. CDC 2008. 47th
IEEE Conference on, pages 4177–4184. IEEE, 2008.

[63] A. Nedic and A. Ozdaglar. Distributed subgradient methods for multi-agent opti-
mization. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

[64] A. Nedic and A. Ozdaglar. Cooperative distributed multi-agent optimization. Convex
Optimization in Signal Processing and Communications, 340, 2010.

[65] A. Nedic, A. Ozdaglar, and P. A. Parrilo. Constrained consensus and optimization
in multi-agent networks. IEEE Transactions on Automatic Control, 55(4):922–938,
2010.

[66] Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical
programming, 120(1):221–259, 2009.

[67] I. Notarnicola and G. Notarstefano. A duality-based approach for distributed opti-
mization with coupling constraints. IFAC-PapersOnLine, 50(1):14326–14331, 2017.

[68] A. Ostrowski. Über die determinanten mit überwiegender hauptdiagonale. Commen-
tarii Mathematici Helvetici, 10(1):69–96, 1937.

[69] N. Parikh, S. Boyd, et al. Proximal algorithms. Foundations and Trends® in
Optimization, 1(3):127–239, 2014.

[70] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma. Rasl: Robust alignment by sparse
and low-rank decomposition for linearly correlated images. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 34(11):2233–2246, 2012.

[71] Z. Peng, T.Wu, Y.Xu,M.Yan, andW.Yin. Coordinate friendly structures, algorithms
and applications. arXiv preprint arXiv:1601.00863, 2016.

[72] Z. Peng, Y. Xu, M. Yan, and W. Yin. Arock: an algorithmic framework for
asynchronous parallel coordinate updates. SIAM Journal on Scientific Computing,
38(5):A2851–A2879, 2016.

[73] E. Picard. Mémoire sur la théorie des équations aux dérivées partielles et la méthode
des approximations successives. Journal de Mathématiques pures et appliquées,
6:145–210, 1890.

[74] W. Ren and R. W. Beard. Distributed consensus in multi-vehicle cooperative control.
Springer, 2008.

[75] R. Rockafellar. On the maximality of sums of nonlinear monotone operators. Trans-
actions of the American Mathematical Society, 149(1):75–88, 1970.

[76] R. T. Rockafellar. Monotone operators associated with saddle-functions andminimax
problems. Nonlinear functional analysis, 18(Part 1):397–407, 1970.

[77] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM
journal on control and optimization, 14(5):877–898, 1976.

102

[78] E. K. Ryu and S. Boyd. Primer on monotone operator methods. Appl. Comput. Math,
15(1):3–43, 2016.

[79] J. Sabater and C. Sierra. Reputation and social network analysis in multi-agent
systems. In Proceedings of the first international joint conference on Autonomous
agents and multiagent systems: Part 1, pages 475–482. ACM, 2002.

[80] R. Scattolini. Architectures for distributed and hierarchical model predictive control–
a review. Journal of process control, 19(5):723–731, 2009.

[81] G. Scutari and Y. Sun. Distributed nonconvex constrained optimization over time-
varying digraphs. arXiv preprint arXiv:1809.01106, 2018.

[82] G. Shi and B. D. Anderson. Distributed network flows solving linear algebraic
equations. In American Control Conference (ACC), 2016, pages 2864–2869. IEEE,
2016.

[83] N. Z. Shor. Minimization methods for non-differentiable functions, volume 3.
Springer Science & Business Media, 2012.

[84] A. Simonetto and H. Jamali-Rad. Primal recovery from consensus-based dual de-
composition for distributed convex optimization. Journal of Optimization Theory
and Applications, 168(1):172–197, 2016.

[85] M. Sion et al. On general minimax theorems. Pacific Journal of mathematics,
8(1):171–176, 1958.

[86] M. Tao and X. Yuan. Recovering low-rank and sparse components of matrices from
incomplete and noisy observations. SIAM Journal on Optimization, 21(1):57–81,
2011.

[87] T. Tatarenko and B. Touri. Non-convex distributed optimization. IEEE Transactions
on Automatic Control, 62(8):3744–3757, 2017.

[88] J. N. Tsitsiklis. Problems in decentralized decision making and computation. Tech-
nical report, MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR IN-
FORMATION AND DECISION SYSTEMS, 1984.

[89] H. Uzawa. Market mechanisms and mathematical programming. Econometrica:
Journal of the Econometric Society, pages 872–881, 1960.

[90] H. Uzawa. Walras’ tatonnement in the theory of exchange. The Review of Economic
Studies, pages 182–194, 1960.

[91] A. N. Venkat, J. B. Rawlings, and S. J. Wright. Stability and optimality of distributed
model predictive control. InDecision and Control, 2005 and 2005 European Control
Conference. CDC-ECC’05. 44th IEEE Conference on, pages 6680–6685. IEEE,
2005.

[92] D. Wang, Z. Wang, M. Chen, andW.Wang. Distributed optimization for multi-agent
systems with constraints set and communication time-delay over a directed graph.
Information Sciences, 438:1–14, 2018.

[93] E. Wei, A. Ozdaglar, and A. Jadbabaie. A distributed newton method for net-
work utility maximization–i: Algorithm. IEEE Transactions on Automatic Control,
58(9):2162–2175, 2013.

103

[94] E. Wei, A. Ozdaglar, and A. Jadbabaie. A distributed newton method for network
utility maximizationâĂŤpart ii: Convergence. IEEE Transactions on Automatic
Control, 58(9):2176–2188, 2013.

[95] T. Wu, K. Yuan, Q. Ling, W. Yin, and A. H. Sayed. Decentralized consensus opti-
mization with asynchrony and delays. IEEE Transactions on Signal and Information
Processing over Networks, 4(2):293–307, 2018.

[96] L. Xiao. Dual averaging methods for regularized stochastic learning and online
optimization. Journal of Machine Learning Research, 11(Oct):2543–2596, 2010.

[97] Y. Xiao and J. Hu. Distributed solutions of convex feasibility problems with sparsely
coupled constraints. In Decision and Control (CDC), 2017 IEEE 56th Annual Con-
ference on, pages 3386–3392. IEEE, 2017.

[98] P.Yi andL. Pavel. A distributed primal-dual algorithm for computation of generalized
nash equilibria with shared affine coupling constraints via operator splitting methods.
arXiv preprint arXiv:1703.05388, 2017.

[99] P. Yi and L. Pavel. Asynchronous distributed algorithm for seeking general-
ized nash equilibria under full and partial decision information. arXiv preprint
arXiv:1801.02967, 2018.

[100] P. Yi and L. Pavel. Distributed generalized nash equilibria computation of monotone
games via double-layer preconditioned proximal-point algorithms. IEEE Transac-
tions on Control of Network Systems, 2018.

[101] M. Zhu and S. Martínez. On distributed convex optimization under inequality and
equality constraints. IEEE Transactions on Automatic Control, 57(1):151–164, 2012.

[102] M. Zhu and S. Martínez. An approximate dual subgradient algorithm for multi-agent
non-convex optimization. IEEE Transactions on Automatic Control, 58(6):1534–
1539, 2013.

