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ABSTRACT

Ho, David Joon PhD, Purdue University, May 2019. Three Dimensional Segmentation
and Detection of Fluorescence Microscopy Images. Major Professors: Edward J.
Delp and Paul Salama.

Fluorescence microscopy is an essential tool for imaging subcellular structures in

tissue. Two-photon microscopy enables imaging deeper into tissue using near-infrared

light. The use of image analysis and computer vision tools to detect and extract infor-

mation from the images is still challenging due to the degraded microscopy volumes

by blurring and noise during the image acquisition and the complexity of subcel-

lular structures presented in the volumes. In this thesis we describe methods for

segmentation and detection of fluorescence microscopy images in 3D. We segment

tubule boundaries by distinguishing them from other structures using three dimen-

sional steerable filters. These filters can capture strong directional tendencies of the

voxels on a tubule boundary. We also describe multiple three dimensional convolu-

tional neural networks (CNNs) to segment nuclei. Training the CNNs usually require

a large set of labeled images which is extremely difficult to obtain in biomedical im-

ages. We describe methods to generate synthetic microscopy volumes and to train

our 3D CNNs using these synthetic volumes without using any real ground truth vol-

umes. The locations and sizes of the nuclei are detected using of our CNNs, known as

the Sphere Estimation Network. Our methods are evaluated using real ground truth

volumes and are shown to outperform other techniques.



1

1. INTRODUCTION

1.1 Background in Fluorescence Microscopy

Fluorescence microscopy is an optical microscopy imaging subcellular structures

in three dimensions which are too small to see with the naked eye [1, 2]. Electron

microscopy, another type of microscopy, uses electrons to image subcellular structures

with a higher magnification [3]. Electron microscopy cannot image living and/or mov-

ing specimens because its high energy from the electron beam can harm the specimens.

Optical microscopy, or light microscopy, using photons for visualization is preferred

among biologists because it is harmless to specimens which enables visualizing liv-

ing and/or moving specimens [4]. Optical microscopy can image multiple subcellular

structures simultaneously using various fluorescent molecules emitting lights in dis-

tinct wavelengths. Optical microscopy does not cost as much as electron microscopy.

In this section, we will address (1) physics of fluorescence, (2) types of fluorescence

microscopy, and (3) limitations of fluorescence microscopy.

1.1.1 Physics of Fluorescence

Fluorescence is a phenomenon of emitting light by absorbing and releasing energy

from fluorescent molecules called fluorophores. The process of fluorescence is shown

in Figure 1.1, known as the Jablonski diagram [1, 5], which is composed of three

steps: (1) excitation, (2) vibrational relaxation, and (3) fluorescence. When light

with a specific wavelength is used as an excitation source, electrons in fluorophores

can absorb photons and get excited. The electrons in the fluorophores move from the

ground state to the excited state which occurs in femtoseconds (10−15 seconds). For

the next few picoseconds (10−12 seconds), the excited fluorophores have vibrational
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relaxation as they transfer some vibrational energy to heat energy. Most molecules

collapse to the ground state again as the energy is released to fluorescence emission

in nanoseconds (10−9 seconds). The energy of a photon is formulated as

E =
hc

λ
(1.1)

where h is the Planck’s constant, c is the speed of light, λ is the wavelength, and E is

the energy of a photon [1]. The energy released during the emission is less than the

energy absorbed during the excitation because some energy is lost during vibrational

relaxation. According to Equation 1.1, the wavelength of emitted light is longer

than the wavelength from the light source. The wavelength difference between the

maximum intensity of absorption and the maximum intensity of emission is known

as the Stokes shift [1]. By using interference filters to capture lights within a range

of specific wavelength, fluorescence images can be generated. Using the property of

the Stokes shift, the interference filters desire to capture fluorescent light and reject

the source light.

Fig. 1.1.: The Jablonski diagram that describes the basic principles of fluorescence

microscopy

Although most of excited molecules collapse to the ground state, some molecules

transit from the excited state to the triplet state. Photobleaching is a phenomenon
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that fluorophores are permanently no longer able to fluoresce due to photon-induced

chemical damage and covalent modification [1]. The triplet state potentially generates

radical oxygen species which causing photobleaching. As the fluorophores collide

with those radical oxygen species, an electron will be donated to be stable, and

the fluorophores will be permanently destroyed. In order to reduce photobleaching,

antifade reagents such as oxygen scarvagent buffers can be used.

Fluorophores, also known as fluorescent molecules or fluorescent dyes, are parti-

cles which have fluorescent properties. Fluorophores having a larger Stokes shift are

desired because it is easier to isolate the emitted light from the incoming light by

interference filters. The quantum yield is another physical property of fluorophores,

where the quantum yield is the ratio of the number of emitted fluorescent photons

to the number of absorbed photon. Higher quantum yield is desired for generating

brighter images from the same light intensity. Green fluorescent protein (GFP) [6–8],

which is naturally from a jellyfish, aequorea victoria, and its variants are used as

fluorophores due to their usage in living cells. Fluorophores are injected to specimens

to image them using optical microscopes.

1.1.2 Types of Fluorescence Microscopy

We will investigate various types of fluorescence microscopy such as widefield

microscopy, confocal microscopy, and two-photon microscopy.

Widefield microscopy, a type of an optical microscopy, is a technique which is

based on Koehler illumination. Koehler illumination is a method for having uniform

illumination on the sample [1]. If a fluorophore is located within the region illuminated

from the light source, the emitted light from the fluorophore passes through dichroic

mirror and a tube lens, and is imaged on a detector. Figure 1.2 shows a system of

widefield microscopy.

One of the drawbacks of widefield microscopy is that emitted light from fluo-

rophores in different focal planes would cause a blurred background and low-contrast
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Fig. 1.2.: Widefield microscopy

images. To solve this issue, confocal microscopy, another optical microscopy method,

was developed [1, 9]. Confocal microscopy uses a pinhole in front of a detector. The

light focuses on one focal plane after passing an objective lens. As the emitted light

from a fluorophore on that focal plane passes through dichroic mirror, a tube lens,

and pinhole, it will be imaged on a detector. Note other fluorophores from different

focal plane would be filtered out at the pinhole. Using galvanometer mirrors, one for

x-direction and the other one for y-direction, the light can scan the entire focal plane

in a raster order. In order to image faster, multiple points can be scanned simulta-

neously using a spinning/Nipkow disk which is more efficient than other single-point

scanning methods [10]. Figure 1.3 shows a system confocal microscopy. Note the

source light in red in Figure 1.2 illuminates the sample uniformly in widefield mi-

croscopy whereas the source light in in red Figure 1.3 is focused on one focal plane

using an objective lens in confocal microscopy.

Confocal microscopy has some limitations with detecting photons in deeper tis-

sue. The number of photons from fluorescent molecules in deeper tissue may be
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Fig. 1.3.: Confocal microscopy

reduced due to light scattering. Two-photon microscopy [1,11–14] with near-infrared

(IR) illumination can image deeper in tissue because IR light scatters less in deeper

tissue. According to Equation 1.1, IR light contains less energy than visible light

because the wavelength of IR light is larger than the wavelength of visible light. It

is necessary that two or multiple photons must excite the fluorescent molecules si-

multaneously. Note that “simultaneously” means within about 10−18 seconds [12].

Figure 1.4 shows the Jablonski diagram of two-photon microscopy. Using two-photon

microscopy, photobleaching and photodamage can be reduced [1]. To visualize in

deeper tissue, multi-photon microscopy techniques are also developed [15].

1.1.3 Limitations of Fluorescence Microscopy

Fluorescence microscopy images are suffered from lens and a detector in a micro-

scope system. As a fluorescence microscope system is introduced, degradations of

fluorescence microscopy images are addressed below.
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Fig. 1.4.: Jablonski diagram of two-photon microscopy

When the light pass through lens such as an objective lens or a tube lens in

confocal microscopy or two-photon microscopy, blur can occur due to a point spread

function (PSF) of the lens [16, 17]. The PSF is a diffraction pattern occurred from a

point source through a microscope system. The PSF can also be defined as an impulse

response of an imaging system. In an imaging system such as confocal microscopy,

an image is generated as the convolution of the input light and the PSF. Due to

the PSF, the image generated from a fluorescence microscope is blurred and it is

extremely difficult to distinguish multiple objects which are overlapped. One way to

reduce blurriness occurred by the PSF is increasing numerical aperture.

The emitted light from fluorophores will be captured by detectors [1,2] to digitize

light into an image. Photomultiplier tube (PMT), avalanche photodiode (APD), and

multi-pixel detectors such as charge-coupled device (CCD), electron-multiplying CCD

(EMCCD), and complementary metal-oxide semiconductor (CMOS) can be used as

a detector in a microscope. The main idea of those detectors are from photoelectric

effect which is the following: light can eject electrons from a metal. Those electrons

ejected by light are called photoelectrons. We will investigate the CCD in detail below

which is widely used as a detector in microscopes.
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A CCD is composed of a CCD chip to detect photons, a shutter to expose and

block light, a window to cover the chip from dusts, electronics for the readout of

photoelectrons from pixels on the chip, and a cooler to reduce the thermal noise.

A CCD chip, or an imager, is composed of a thin wafer of silicon to trap and hold

photoelectrons. The silicon surface is covered with grids called pixels. To capture the

emitted light using a CCD, two steps are needed, which are an exposure step and a

readout step. During the exposure step, the CCD chip is exposed by the light, and

pixels on the CCD chip can accumulate and store photoelectrons until the readout.

During the readout step, each row on the parallel register containing accumulated

photoelectrons in pixels will be transferred to the serial register which moves the

accumulated photoelectons on each pixel to an amplifier to convert them into the

corresponding voltage. When the serial register becomes empty, the next row in the

parallel register will be transferred to the serial register repeatedly until the entire

parallel register becomes empty. Note pixels on the chip corresponds to pixels on a

computer monitor when images are displayed.

An image generated by an ideal detector would be completely black if there is

no sample. Unfortunately, even in those cases, the readout from some sensors in the

detector is not completely zero. These undesired signal are known as noise [2]. If an

input signal to a detector is strong, even with a small noise from the detector, noise

may be ignored. If an input signal is weak which is especially true for fluorescence

microscopy, noise can degrade images. Note there are only limited photons captured

by the detector due to photobleaching which generates weak signals.

There are three main noises generated from a detector: dark current noise, photon

noise, and readout noise [2,4,18]. Dark current noise are occurred when sensors detect

electrons emitted by thermal motion. As the integration time and the temperature

of a CCD chip increase, electrons excited by heat will be detected as noise. A cooler

in CCD can reduce the dark current noise. Photon noise, also known as shot noise,

happens due to the randomness of photons. Although the light is emitted uniformly,

the frequency of photons arriving at a sensor is random. Therefore, photon noise
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can be modeled as a Poisson distribution. Note fluorescence images may be highly

affected by the Poisson noise due to the weak signals from fluorophores. Lastly,

readout noise is generated while electrons detected by sensors are converted into

voltage and digitization. Readout noise can be modeled as a Gaussian distribution.

As we investigated the principles of fluorescence microscopy, we observe many

limitations: (1) photobleaching reduces the number photons to the detector so that

most of the fluorescence microscopy images have low contrast and low signal-to-noise

ratio, (2) a point spread function (PSF) from a microscope system blurs the images,

(3) a detector causes a mixture of Poisson and Gaussian noises. It is impossible to

generate perfect images due to the physical limitations in fluorescence microscopy.

To solve these issues, techniques using image processing or machine learning are

developed to analyze fluorescence microscopy images which will be described in detail

in Chapter 2. Some techniques are available in platforms such as ImageJ [19, 20],

Fiji [21], Icy [22], and CellProfiler [23–25].

1.2 Challenges

To analyze fluorescence microscopy images/volumes, detection and segmentation

of subcellular structures are required steps. For example, an accurate segmentation

of tubule borders can identify and characterize a single nephron in a kidney. Also, an

accurate detection and segmentation of nuclei can help analyzing the status of tissue.

Analysis of fluorescence microscopy images can be challenging due to the following

reasons:

• As mentioned above, fluorescence microscopy images are degraded by noise and

blurring caused during image acquisition. When the ideal pixel intensity of

fluorescence microscopy images is x, the real pixel intensity, z can be modeled

as [26–28]:

z = y + b (1.2)
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where y ∼ P(x) is a Poisson random variable with a mean of x, b ∼ N (µ, σ2)

is a Gaussian random variable with a mean of µ and a variance of σ2. As men-

tioned above, the low level of fluorescence from photobleaching, low fluorophore

concentrations, or short period of exposure time, only a limited number of pho-

tons is received in a detector causing noise. A point spread function (PSF) in

a microscope system can blur microscopy volumes which can reduce the reso-

lution. Therefore, boundaries of subcellular structures may not be well-defined

due to noise and the PSF.

• Multiple structures can be presented in a fluorescence microscopy data set and

the structures need to be distinguished to detect and segment specific structures.

A single type of fluorophore may label multiple structures. For example, a

phalloidin labels both the basement membrane of the tubules and the brush

border of the proximal tubules [29, 30]. Additionally, crosstalk [5] can image

structures in different color channel. Crosstalk can happen when fluorophores

emits light with a wide range of wavelength. When multiple structures are

labeled or presented, segmentation can be extremely challenging. For example,

a simple thresholding [31] would segment all structures. An advanced technique

may be required to distinguish them.

• Subcellular structures may have various sizes, shapes, and intensities [32, 33].

For example, nuclei in fluorescence microscopy volumes may have various sizes

and shapes. Some fluorescence microscopy volumes have inhomogeneous inten-

sity [29,34], so a simple thresholding [31] may lose structures on the boundary of

a volume and capture noise in the center of a volume. To correct inhomogeneous

intensity, a pre-processing step such as adaptive histogram equalization [35] or

inhomogeneous correction process [34] may be required.

• Touching or overlapping structures need to be separated. For example, sepa-

rating touching or overlapping nuclei is required to count the number of nuclei

in a fluorescence microscopy volume. By separating structures it is possible to
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analyze structures individually. Watershed technique [36] which can be used to

separate touching objects tends to over-segment nuclei due to irregular structure

shapes. Separating touching nuclei is an open research problem.

1.3 Notation

Fig. 1.5.: Notation used in thesis to describe a volume

Fluorescence microscopy data sets can be generated in 5D in width (x), height (y),

depth (z), time (t), and color channel (c), as shown in Figure 1.5. In general, we can

represent Izp,tq ,cr as a 2D grayscale image of size X×Y with the pth focal plane along

the z-direction, the qth time sample, and rth color channel, where p ∈ {1, . . . , Z},

q ∈ {1, . . . , T}, and r ∈ {1, . . . , C}. Note Z is the number of focal planes, T is the

number of time samples, and C is the number of color channels of a fluorescence

microscopy data set. In this thesis, we use data sets in 3D with a single time sample

and a single color channel. Therefore, we denote I as a 3D image volume of size

X × Y × Z. Also, we denote Izp as the pth 2D focal plane image of size X × Y along

the z-direction. For example, Iorigz23
is the 23rd focal plane image of an original volume,
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Iorig. In addition, we denote I(qi:qf ,ri:rf ,pi:pf) as a subvolume of I, whose x-coordinate

is qi ≤ x ≤ qf , y-coordinate is ri ≤ y ≤ rf , z-coordinate is pi ≤ z ≤ pf , where

qi ∈ {1, . . . , X}, qf ∈ {1, . . . , X}, ri ∈ {1, . . . , Y }, rf ∈ {1, . . . , Y }, pi ∈ {1, . . . , Z},

and pf ∈ {1, . . . , Z}. It is required to have qi ≤ qf , ri ≤ rf , and pi ≤ pf . For example,

I
seg

(241:272,241:272,131:162) is a subvolume of a segmented volume, Iseg, whose x-coordinate

is 241 ≤ x ≤ 272, y-coordinate is 241 ≤ y ≤ 272 and z-coordinate is 131 ≤ z ≤ 162.

1.4 Data Sets

In this thesis, we analyze two types of data sets.

The first type contains images with tubular structures. There are four data sets

belonging to this first type: Data-T1, Data-T2, Data-T3, and Data-T41. Data-T1 is

collected from rat kidney using two-photon microscopy. Both the basement membrane

of the tubules (we will denote it as “tubule”) and the brush border of the proximal

tubules (we will denote it as “lumen”) are labeled with phalloidin. The goal of Data-

T1 is to distinguish tubule from lumen to segment the boundary of renal tubules to

characterize a single nephron in the kidney. Data-T2, Data-T3, and Data-T4 are

collected from liver samples using two-photon microscopy. Both cell boundaries and

endothelia are labeled with a fluorescent tomato lectin. Our goal of Data-T2, Data-

T3, and Data-T4 is to segment blood vessels and cell-cell junctions to characterize

the vascular space and hepatocytes. Figure 1.6 shows sample images of Data-T1,

Data-T2, Data-T3, and Data-T4.

The second type contains images with nuclei structures. There are nine data

sets belonging to the second type: Data-N1, Data-N2, Data-N3, Data-N4, Data-N5,

Data-N6, Data-N7, Data-N8, and Data-N92.

1Data-T1 was provided by Malgorzata Kamocka of Indiana University and was collected at the
Indiana Center for Biological Microscopy. Data-T2, Data-T3, and Data-T4 were provided by Sherry
Clendenon and James Sluka of the Biocomplexity Institute, Indiana University at Bloomington.
2Data-N1 was provided by Malgorzata Kamocka of Indiana University and was collected at the
Indiana Center for Biological Microscopy. Data-N2, Data-N3, and Data-N4 were provided by Tarek
Ashkar of the Indiana University School of Medicine. Data-N5, Data-N6, and Data-N8 were provided
by Kenneth W. Dunn of the Indiana University School of Medicine. Data-N7 was provided by Sherry



12

(a) I
orig
z95

of Data-T1 (b) I
orig
z17

of Data-T2

(c) I
orig
z1

of Data-T3 (d) I
orig
z81

of Data-T4

Fig. 1.6.: Sample images of data sets containing tubular structures

Data-N1, Data-N2, Data-N3, Data-N4, Data-N5, Data-N6, Data-N7, and Data-N8

are collected from rat kidney using two-photon microscopy where nuclei are labeled

with Hoechst 33342. Data-N9 is collected from mouse intestine using two-photon

microscopy where nuclei are labeled with DAPI. The goal is to segment nuclei by

rejecting other subcellular structures. Figure 1.7 shows sample images of Data-N1,

Data-N2, Data-N3, Data-N4, Data-N5, Data-N6, Data-N7, Data-N8, and Data-N9.

Table 1.1 lists the size of data sets in x, y, and z-directions.

Clendenon collected while at the Indiana Center for Biological Microscopy. She is currently at the
Department of Intelligent Systems Engineering of Indiana University. Data-N9 was provided by
Mike Ferkowicz of the Indiana University School of Medicine.
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(a) I
orig
z67

of Data-N1 (b) I
orig
z9

of Data-N2 (c) I
orig
z17

of Data-N3

(d) I
orig
z6

of Data-N4 (e) I
orig
z16

of Data-N5 (f) I
orig
z9

of Data-N6

(g) I
orig
z403

of Data-N7 (h) I
orig
z14

of Data-N8 (i) I
orig
z137

of Data-N9

Fig. 1.7.: Sample images of data sets containing nuclei structures

1.5 Contributions Of The Thesis

In this thesis we describe multiple methods to analyze fluorescence microscopy

images3.

3The work described in Chapter 4 was jointly done with Dr. Chichen Fu of Purdue University.
The work described in Chapter 5 was jointly done with Dr. Chichen Fu of Purdue University. The
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Table 1.1.: The size of data sets

Name X Y Z

Data-T1 512 512 512

Data-T2 512 512 36

Data-T3 512 512 1

Data-T4 512 512 156

Data-N1 512 512 512

Data-N2 512 512 36

Data-N3 512 512 41

Data-N4 512 512 23

Data-N5 512 512 45

Data-N6 512 512 26

Data-N7 512 512 415

Data-N8 512 512 32

Data-N9 512 930 157

This thesis focuses on segmentation and detection of subcellular structures pre-

sented in three dimensional fluorescence microscopy images. We mainly focus on two

types of microscopy data sets. Our method to analyze images of the first type con-

taining tubular structures is described in Chapter 3. Our methods to analyze images

of the second type containing nuclei structures are described in Chapter 4, Chapter

5, Chapter 6, and Chapter 7. Our color labeling method for nuclei segmentation is

described in Chapter 8. The main contributions of this thesis are listed as follows:

• Boundary Segmentation Using Steerable Filters

work described in Chapter 6 was jointly done with Ms. Shuo Han and Dr. Chichen Fu of Purdue
University. The work described in Chapter 7 was jointly done with Dr. Chichen Fu and Mr. Daniel
Mas Montserrat of Purdue University. The work described in Chapter 8 was jointly done with Mr.
Soonam Lee of Purdue University.
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We describe a method to segment tubular boundary of biological structures.

To segment foreground in fluorescence microscopy images having non-uniform

intensity a 3D adaptive histogram equalization is used to correct inhomogeneity.

The main challenge of this work is to segment only tubule structures while

other structures such as lumen are presented in fluorescence microscopy images.

To distinguish tubule in foreground from lumen, steerable filters [37] are used

because steerable filters can capture strong directional tendencies on tubule.

Our method can successfully segment tubule boundaries in various data sets

from rat kidney and liver.

• Nuclei Segmentation Using Convolutional Neural Networks

We present a nuclei segmentation method of fluorescence microscopy images.

We design and train three dimensional convolutional neural networks (CNNs).

A large set of labeled training volumes is necessary to train CNNs. The la-

beling process especially in 3D is tedious. In this work we generate synthetic

microscopy volumes to train our CNNs. We assume nuclei are in ellipsoidal

shapes and we add a blurring operation modeled from a PSF and a noise op-

eration which is a mixture of a Poisson noise and a Gaussian noise. Our 3D

CNNs trained by synthetic microscopy volumes can successfully segment nuclei

in real microscopy volumes without using any real ground truth volumes.

• Nuclei Detection and Segmentation Using Convolutional Neural Networks

We introduce a nuclei detection and segmentation method to label nuclei dis-

tinctly. To detect center locations of nuclei a 3D adaptive histogram equaliza-

tion [38], a 3D distance transform, and a 3D classification CNN are used. After

the detection stage, each nucleus is distinctly segmented using a segmentation

CNN in a 3D patch surrounding the nucleus. The segmentation CNN is trained

by a set of synthetic microscopy volumes. Due to the detection stage, non-nuclei

structures presented in real fluorescence microscopy volumes are rejected which

improves our segmentation accuracy.
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• Center-Extraction-Based Nuclei Instance Segmentation

We describe a two-stage method of segmenting nuclei in distinct labels. Our

first CNN detects the center locations of nuclei and generates a binary segmen-

tation mask. Using the nuclei center locations and the binary segmentation

mask from the first CNN, our second CNN individually segments nuclei in 3D

patches surrounding each nucleus. To train our CNNs, realistic synthetic vol-

umes generated by a spatially constrained cycle-consistent adversarial network

(SpCycleGAN) [39] are used without using any real ground truth volumes. Our

method can detect and segment nuclei in real microscopy volumes accurately.

• Nuclei Detection Using Sphere Estimation Network

We develop a Sphere Estimation Network (SphEsNet) which can detect nuclei

in fluorescence microscopy volumes. Our network is a fully three dimensional

CNN. In this work we assume nuclei presented in fluorescence microscopy vol-

umes are spherical. Our network not only finds the locations of nuclei but also

estimates the radii of nuclei. The SphEsNet is trained by realistic synthetic

microscopy volumes using the SpCycleGAN [39] without using any real ground

truth volumes. Our evaluation shows that the spheres at the estimated loca-

tions with the estimated radii generated by the SphEsNet highly overlap with

nuclei presented in multiple real microscopy data sets.

1.6 Publications Results From Our Work

Journal Papers

1. D. J. Ho, C. Fu, D. Mas Montserrat, P. Salama, K. W. Dunn and E. J.

Delp, “Sphere Estimation Network: Three Dimensional Nuclei Detection of

Fluorescence Microscopy Images”, To be submitted to the IEEE Transactions

on Medical Imaging.
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2. C. Fu, S. Han, S. Lee, D. J. Ho, P. Salama, K. W. Dunn and E. J. Delp, “Three

Dimensional Nuclei Synthesis and Instance Segmentation”, To be submitted to

the IEEE Transactions on Medical Imaging.

Conference Papers

1. D. J. Ho, S. Han, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, “Center-

Extraction-Based Three Dimensional Nuclei Instance Segmentation of Fluores-

cence Microscopy Images”, Submitted to Proceedings of the IEEE-EMBS Inter-

national Conference on Biomedical and Health Informatics, May 2019, Chicago,

IL.

2. C. Fu, S. Lee, D. J. Ho, S. Han, P. Salama, K. W. Dunn, and E. J. Delp,

“Three Dimensional Fluorescence Microscopy Image Synthesis and Segmenta-

tion,” Proceedings of the Computer Vision for Microscopy Image Analysis work-

shop at Computer Vision and Pattern Recognition, pp. 2302-2310, June 2018,

Salt Lake City, UT.

3. D. J. Ho, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, “Nuclei Detection

and Segmentation of Fluorescence Microscopy Images Using Three Dimensional

Convolutional Neural Networks,” Proceedings of the IEEE International Sym-

posium on Biomedical Imaging, pp. 418-422, April 2018, Washington D.C.

4. D. J. Ho, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, “Nuclei Segmenta-

tion of Fluorescence Microscopy Images Using Three Dimensional Convolutional

Neural Networks,” Proceedings of the Computer Vision for Microscopy Image

Analysis workshop at Computer Vision and Pattern Recognition, pp. 834-842,

July 2017, Honolulu, HI.

5. C. Fu, D. J. Ho, S. Han, P. Salama, K. W. Dunn, and E. J. Delp, “Nuclei

Segmentation of Fluorescence Microscopy Images Using Convolutional Neural

Networks,” Proceedings of the IEEE International Symposium on Biomedical

Imaging, pp. 704-708, April 2017, Melbourne, Australia.
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2. LITERATURE REVIEW

In this chapter we will review previous techniques related to segmentation and detec-

tion of fluorescence microscopy images using computer vision, image processing, and

machine learning methods.

2.1 Computer Vision and Image Processing Based Methods

Computer vision and image processing are research fields for analyzing images

which are multi-dimensional arrays [40]. The goal of this thesis is to “segment”

subcellular structures in fluorescence microscopy images. Therefore, we will focus on

reviewing various segmentation techniques in this section.

One of the simplest methods of segmenting structures in foreground is thresholding

[31,40]:

Iseg(v) =











255, if Iorig(v) ≥ τ

0, otherwise

(2.1)

where Iorig is an input (original) image, Iseg is an output (segmented) image, and τ

is the thresholding value. One of the challenges is to select the threshold to segment

foreground regions accurately. Otsu developed a method to select the threshold au-

tomatically by maximizing an inter-class variance [41]. Some fluorescence microscopy

images have inhomogeneous intensities, so global thresholding may not successfully

segment structures especially on the boundary of volumes with lower pixel intensi-

ties. Adaptive thresholding methods may help enhancing structures in the boundary

of volumes. For example, the thresholding value of each pixel can be selected by a

mean value of a local window [42].

After segmenting foreground regions, the next step is to separate touching or

overlapping structures. A simple connected component analysis [40] cannot separate
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touching or overlapping structures. One method to separate touching structures is to

use morphological operations [40]. The erosion of set A by set B is defined as

A⊖B = {z|(B)z ⊆ A} (2.2)

where (B)z = {c|c = b + z for b ∈ B} is the translation of set B. Similarly, the

dilation of set A by set B is defined as

A⊕B = {z|(B̂)z 6= ∅} (2.3)

where B̂ = {w|w = −b for b ∈ B} is the reflection of set B. Morphological opera-

tions with the erosion and the dilation can be used to separate structures. Morpholog-

ical multiscale decomposition is described in [43] to separate cell clusters. Markers for

individual cell are selected during multiscale erosions. When the markers are found,

dilation is performed to recover the markers to the original cell. It is still challenging

to separate overlapping objects using morphological operations especially when the

overlapping region between two structures is large.

Watershed [36, 40] can be used to separate touching or overlapping structures.

Watershed has been used for cell segmentation [31–33]. Let us consider an image as a

landscape where the pixel intensity illustrates its elevation. As water is flooded into

the landscape, the water would be filled from low elevation, or local minima of an

image. The local minima are denoted as watershed markers. One can construct dams

between local minima to avoid merging different catchment basins. The dams are

denoted as watershed lines. As the watershed lines are built, touching regions are split.

The landscape can be generated by using a distance transform [44] of a thresholded

image. One drawback of watershed is that watershed tends to over-segment structures

when the structures are in irregular shapes. To avoid over-segmentation for nuclei

segmentation in time-lapse microscopy, marker-controlled watershed is described [45].

Watershed markers are selected by condition erosion where the erosion occurs only

when the size of the region is larger than a thresholding value. Additionally, fine

erosion structures and coarse erosion structures are used based on the shape of the
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region. Marker-controlled watershed can segment nuclei more accurately than the

classical watershed technique [40]. Another marker-controlled watershed is introduced

in [46] to segment surface-stained living cells in 3D where watershed markers are

automatically selected after ridge enhancement.

To segment biological structures in irregular shapes, deformable models such as

active contours [47], also known as snakes, are used in microscopy data sets [33, 48].

Active contour is an optimization problem to minimize an energy. As the energy is

being minimized, a curve iteratively evolves towards the boundary of objects. The

energy can be formulated as a sum of three terms:

Eac(C) = Eint(C) + Eext(C) + Econst(C) (2.4)

where C is a curve, Eint is defined as an internal energy to smooth the curve, Eext is

defined as an external energy to attract the curve to the region of interest, and Econst

is defined as a constraint energy to interact between a user and the curve. Then the

final contour, Cfinal, would be

Cfinal = argmin
C

Eac(C) (2.5)

Active contours are used to segment various biological structures such as nerve fibers

[49], Entamoeba histolytica cells [50], and leukocytes (white blood cells) [51].

The main challenges for active contours are the following: (1) initial curves need

to be manually placed near the region of interest, (2) curves tend to be sensitive to

noise presented in fluorescence microscopy images, (3) it is challenging to capture

the region of interest when concavities are presented. To solve these issues, gradient

vector flow is used in the external energy [52, 53]. Vector field convolution is used in

the external energy to improve segmentation performance to segment concave objects

accurately especially when heavy noise is presented [54]. An automatic initialization

method using Poisson inverse gradient is addressed in [55].

The previous methods [47,49–55] are edge-based active contour models where the

energy in Equation 2.4 is formulated as

Eac(C) = α1

∫ 1

0

|C ′(s)|
2
ds+ α2

∫ 1

0

|C ′′(s)|
2
ds− α3

∫ 1

0

|∇I(C(s))|2 ds (2.6)
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to evolve curves on edges which are the boundaries of objects. I is an image, C(s) :

[0, 1] → R
2 is a parametrized curve, and α1, α2, and α3 are positive parameters. It

is difficult for the edge-based active contour models to find edges when images are

blurred and noisy such as fluorescence microscopy images. Inspired by the Mumford-

Shah functional [56], Chan and Vese introduced region-based active contour model [57]

where the energy can be formulated as:

Eac(C) = λin

∫

inside(C)

|I(x, y)− cin|
2
dxdy

+ λout

∫

outside(C)

|I(x, y)− cout|
2
dxdy

+ µLength(C) + νArea(inside(C))

(2.7)

where λin, λout, µ, ν are weighting parameters greater than zero, cin and cout are the

mean intensity of I inside C and outside C, respectively.

Using the level set method from [58], [57] defines a level set function φ : Ω → R

such that


























C = ∂ω = {(x, y) ∈ Ω : φ(x, y) = 0}

inside(C) = ω = {(x, y) ∈ Ω : φ(x, y) > 0}

outside(C) = Ω \ ω̄ = {(x, y) ∈ Ω : φ(x, y) < 0}

(2.8)

where ω ⊂ Ω and C = ∂ω. Then in Equation 2.7, C can be replaced by φ in the

energy:

Eac(φ) = λin

∫

Ω

|I(x, y)− cin|
2
H(φ(x, y))dxdy

+ λout

∫

Ω

|I(x, y)− cout|
2 (1−H(φ(x, y)))dxdy

+ µ

∫

Ω

δ(φ(x, y)) |∇φ(x, y)| dxdy

+ ν

∫

Ω

H(φ(x, y))dxdy

(2.9)

where H is the Heaviside function and δ is the Dirac function. With an initial φ at

t = 0, minimizing Eac with respect to φ can be done according to

∂φ

∂t
= δ(φ)

[

−λin(I − cin)
2 + λout(I − cout)

2 + µdiv

(

∇φ

|∇φ|

)

− ν

]

(2.10)
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Region-based active contour models have been used in fluorescence microscopy

images because they can segment objects accurately when blurring and noise are

presented. In [59], the active contour model in [57] is expanded in three dimension,

known as an active surface model, to segment nuclei in three dimensional fluorescence

microscopy volumes from rat kidney. The work in [59] is further developed in [34] by

including an inhomogeneity correction [60] to segment nuclei when intensity inhomo-

geneity is presented in fluorescence microscopy volumes.

To segment structures distinctly, multiple active surfaces can be used. Coupled

active surfaces are developed to segment and track cells in 3D+time microscopy vol-

umes [18]. In [18] multiple active surfaces are evolved to segment individual cells.

A penalty term for overlapping surfaces and a constraint term for volume conser-

vation are included in the energy to be minimized to separate touching cells. An

improvement of the coupled active surfaces in [18] is done in [61] by incorporating the

Radon transform, a non-partial differential equation (PDE)-based energy minimiza-

tion method, and the watershed technique.

Active contour models are further developed including statistical modeling of im-

ages. A stochastic active contour scheme (STACS) is designed with the energy in-

cluding an edge-based term, a region-based term, and a shape-based term to segment

heart structures in cardiac MR images [62]. Active mask [63] is introduced by mod-

ifying [62] to segment cells in fluorescence microscopy images which have punctate

pattern. In [63] active mask uses multiresolution, multiscale, and region-growing

methods with an active contour model.

Many alternative methods have been developed used in fluorescence microscopy

images. A model-based nuclei segmentation method by identifying nuclei using an

attributed relational graph of nuclei boundaries and delineating them using a region-

growing technique is presented in [64]. In [65], a method to segment fluorescently

labeled endosomes when the number of object is unknown is presented using region-

competition technique [66]. A method coupling image restoration and segmentation

is introduced as Squassh (segmentation and quantification of subcellular shapes) [67,
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68]. In [69], a method of counting and segmenting nuclei using a marked point

process (MPP) [70] is introduced. Alternatively, a method to detect cells with various

size using a denoising technique, a thresholding technique, a fast radial symmetric

transform, and a dilation-based non-maxima suppression is described in [28].

The techniques described above cannot distinguish various structures presented

in fluorescence microscopy images. Due to problems of a single type of fluorophores

labeling multiple subcellular structures [29, 30] and crosstalk [5], distinguishing dif-

ferent structures can be an important task in fluorescence microscopy images. To

segment a specific structure and reject other structures, a more careful analysis is

needed.

The methods below are specifically designed to segment tubular structures in

biomedical images. A minimal path technique by globally minimizing an energy

is developed to detect boundaries between two points in 2D medical angiographic

images [71]. In [72] the minimal path technique is extended into 3D to segment brain

vessels in magnetic resonance angiography (MRA) images. Alternatively, a model-

based segmentation method is used for vessels in 3D MRA images where the model

couples a central vessel axis and a vessel wall surface [73]. A deformable model is

designed in [74] where the curve evolution is controlled by geodesic active contours.

A 4D curve method is developed by combining a minimal path technique [72] and

active contour models [73,74] used for vessel segmentation in 3D brain MRA images

and aorta segmentation in 3D computed tomography angiography (CTA) images. A

4D curve represents with different points on the centerline (3D) with their radii (1D):

C̃(s) = (C(s), r(s)) (2.11)

where C̃ is a 4D curve representing a 3D tubular structure surface, C is a 3D location

of the centerline, r is a radius of a sphere centered at C, and s ∈ [0, 1]. As a 3D vessel

surface is represented as a 4D curve, a minimal path is used in 4D. Furthermore,

Optically Oriented Flux (OOF) [75] is used for a faster propagation to the vessel’s

centerline [76]. Similarly, a vessel tree model requiring fewer degrees-of-freedom can
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stably capture the centerline [77]. Only a few methods [29, 30] have investigated to

segment tubule boundary in a rat kidney which is still an open research problem.

2.2 Machine Learning Based Methods

Machine learning is a field that a system can automatically learn some meaningful

features in a training set to make decisions [78,79]. One strength of machine learning

methods is that the system can continue to learn and refine their performances when

additional training sets are provided. Many decision-making techniques have been

introduced such as a nearest neighbor classifier [78], a decision tree classifier [78],

a random forest classifier [80], and a support vector machine (SVM) [78, 81]. For

example, an interactive segmentation toolkit called ilastik [82] is developed to segment

structures in biomedical images. A user can select initial masks/regions of multiple

types of structures. Then a random forest classifier [80] trained by the initial masks

labels pixel in an image based on features of color, edge, texture, and orientation. If

the prediction is not satisfied, the user can label more masks until the prediction is

satisfied.

Recently, deep learning [83,84] has been shown remarkable performances in com-

puter vision [85], natural language processing [86, 87], and graph analysis [88, 89].

Deep learning is a type of machine learning using neural networks with a series of

multiple layers with non-linear activation functions. Deep learning was introduced

several decades ago. For example, LeNet-5 trained by MNIST dataset can recognize

digits [90]. Deep learning becomes more popular in a recent few years due to the

advancement of graphics processing units (GPUs) [91] and the availability of public

data sets such as ImageNet [92, 93], PASCAL VOC [94, 95], Microsoft COCO [96],

and ADE20K [97,98]. With the labeled data sets, the neural network can be trained

based on its training loss function using optimization techniques such as stochastic

gradient descent (SGD) [99] with momentum or the Adam optimizer [100]. Many

deep learning frameworks such as Caffe [101], Caffe2, TensorFlow [102], Torch [103],
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and Pytorch [104] are implemented. For the rest of the section, we will first address

detection and segmentation methods using convolutional neural networks (CNNs)

in computer vision. Then we will describe how these methods are used to analyze

biomedical images. Lastly, we will describe generative adversarial networks (GANs)

which are used to produce synthetic training images to train CNNs.

2.2.1 Detection and Segmentation Using Convolutional Neural Networks

Convolutional neural networks (CNNs) become a powerful tool in computer vision

because local features are invariant in locations [83]. For example, if a convolutional

filter can detect a nucleus in one location, the same filter with the same weights

can highly detect another nucleus in a different location. The first few layers of the

CNNs detect simple features such as edges whereas the deeper layers can incorporate

previous features to detect more sophisticated features [105, 106]. CNNs have shown

many progress in image classification, object detection, and image segmentation which

are described in detail below.

Image classification is one of the popular topics in computer vision and many

outstanding techniques have been developed from challenges such as ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC). AlexNet [85] was the first CNN-based

winner of ILSVRC. AlexNet uses five convolutional layers, three max-pooling layers,

and three fully connected layers. AlexNet uses a Rectified Linear Unit (ReLU) as their

non-linear activation function because it avoids vanishing gradient problem from the

Sigmoid function or the tanh function. The ReLU function is defined as

f(x) = max(x, 0) (2.12)

AlexNet uses data augmentation techniques to avoid overfitting problems. Data aug-

mentation is a technique to multiply labeled training images to produce synthetic

images using simple transformation such as image translation, horizontal reflection,

and color jittering. To have a large receptive field, AlexNet uses a large convolutional

filters. For example, the filter size of the first convolutional layer is 11 × 11 and the
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filter size of the second convolutional layer is 5 × 5. To reduce the number of filter

parameters, VGGNet [107] uses a series of convolutional filters with small size such

as 3 × 3. For example, to have a receptive field of 7 × 7, 49C2 parameters are re-

quired using one 7× 7 filter, but 3× 9C2 = 27C2 parameters are required using three

consecutive 3× 3 filters, where C is a channel number for the input and the output.

Inception modules [108] are developed to have various receptive fields using 1 × 1

convolutional filters, 3× 3 convolutional filters, and 5× 5 convolutional filters. 1× 1

convolutional bottleneck filters are used to avoid expansive computations by reduc-

ing the number of channels before 3× 3 and 5× 5 convolutional filters. By stacking

multiple Inception modules, GoogLeNet [108] is introduced with a high classification

performance. More recently, residual network (ResNet) is described in [109]. ResNet

stacks residual blocks to go deeper such as 152 layers. A residual block contains two

convolutional layers with a shortcut connection so the output of the residual block

becomes F (x) + x where x is an input and F (x) is an output of two convolutional

layers. With shortcut connections, it becomes possible to train deeper layers without

degradation.

With the advancement in image classification, many object detection methods

have been introduced [110]. Object detection is a task where objects in an image

are detected and classified in bounding boxes. R-CNN [111] is developed for object

detection. First of all, nearly 2000 region proposals are chosen using selective search

[112]. After warping each region proposals, AlexNet [85] extracts features which are

used to classify objects in region proposals using a linear SVM classifier. One of the

drawbacks of R-CNN is an expansive computation because the CNN needs to process

all region proposals. Fast R-CNN [113] uses a pre-trained CNN [107] to first generate

a feature map on an entire input image. Then, region proposals on the input image

are projected on the feature map and a region of interest (RoI) pooling layer extracts

the corresponding features. The RoI pooling layer converts the projected regions into

a small region in a fixed size using max pooling. Lastly, the RoI pooled regions are

used to classify objects and regress bounding boxes. Majority computations in Fast
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R-CNN are spent during the region proposal stage [112]. Therefore, a region proposal

network (RPN) is developed in Faster R-CNN [114]. In the RPN, a small network is

slided on a feature map generated by a pre-trained CNN. At each location, or anchor,

various anchor boxes with different scales and aspect ratios are used to produce the

classification (if there is an object or not) scores and bounding box coordinates. To

avoid detecting multiple bounding boxes for one object, non-maximum suppression

(NMS) is used on the classification score. Once the locations of objects with their

bounding box coordinates are selected, then the object is classified after the RoI

pooling layer as it is done in Fast R-CNN [113]. There are some other object detection

approaches using a single-stage such as single shot multibox detector (SSD) [115] and

you only look once (YOLO) [116–118] to be used in a light computational device but

they do not perform as good as Faster R-CNN [114].

CNNs have impacted image segmentation. Semantic segmentation, a type of im-

age segmentation, is defined as a pixel-wise classification problem where each pixel is

classified to one of objects [119]. One of the naive methods for semantic segmenta-

tion is to classify each pixel in a patch centered the pixel to be classified [120]. The

method in [120] is computationally inefficient because there are redundant compu-

tations on overlapping patches. For more efficient computation, Fully Convolutional

Network (FCN) is designed [121,122]. FCN is composed of an encoder and a decoder.

An encoder finds low dimensional features and a decoder reconstructs feature map

into the size of the original image. FCN uses an architecture from VGGNet [107] as

the encoder but replaces fully connected layers to a transposed convolutional layer

as the decoder. Transposed convolutional layers both convolve and upsample fea-

ture maps. One drawback of FCN is that the spatially detailed information can be

lost during transposed convolutional layers with a large upsampling rate. To resolve

this issue, many semantic segmentation networks have been developed. Instead of

one transposed convolutional layer with a large upsampling rate, DeconvNet [123]

contains multiple transposed convolutional layers with a small upsampling rate. Seg-

Net [124] introduced max unpooling layers. A max unpooling layer in the decoder
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is paired with the corresponding max pooling layer in the encoder where the pool-

ing indices in the max pooling layer is stored and used during the max unpooling

operation. U-Net [125] not only uses multiple transposed convolutional layers with a

small upsampling rate but also introduces skip connections between an encoder and a

decoder to transfer feature maps. Alternatively, DilatedNet [126] is introduced using

dilated convolutions according to Equation 6.4. Dilated convolutions are originally

developed for efficient wavelet transform [127] and they are used in [126] to expo-

nentially increase receptive fields in convolutional layers. DilatedNet [126] develops a

context module after their prediction module to refine segmentation map where the

receptive field of the last layer in the context module is larger than the size of an

input patch. Pyramid scene parsing network (PSPNet) is developed in [128] where a

pyramid pooling module uses both local and global context information for accurate

segmentation performance. RefineNet can achieve high resolution segmentation by

fusing feature maps from various resolutions [129]. More recently, a series of DeepLab

is presented [130–133]. DeepLab [130–133] uses atrous convolutions, also known as

dilated convolutions [126], and develops atrous spatial pyramid pooling (ASPP) layer

containing multiple filters with various atrous factors. In addition, DeepLab incorpo-

rates conditional random fields (CRFs) [134] to increase segmentation accuracy and

depthwise separable convolutions and the Xception model [135] for efficient perfor-

mance.

Due to the advancement in object detection and semantic segmentation, instance

segmentation methods have been introduced. Instance segmentation, a type of image

segmentation, is a task where objects are detected and segmented in distinct masks.

One of the most popular instance segmentation methods is Mask R-CNN [136]. Mask

R-CNN is developed from Faster R-CNN by adding the third branch which is a

segmentation branch using the FCN [121, 122]. To avoid an expensive annotation

process to train CNNs for instance segmentation, many techniques are being devel-

oped [137,138].
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2.2.2 Detection and Segmentation of Biomedical Images Using Convolu-

tional Neural Networks

With the advancement of convolutional neural networks in computer vision, CNNs

have made a big impact in biomedical image analysis especially for detection and seg-

mentation problems [139]. To accurately detect location of objects in microscopy

images, many CNN-based methods have been introduced. A patch-based method to

detect mitosis in breast cancer histology images is described in [140]. A patch sliding

over an input image generates a probability of the center pixel of the patch being to

mitosis. Local maxima of the smoothed probability map are selected the centroids of

mitosis. Similarly, Tyrosine Hydroxylase-containing cell detection method in larval

zebrafish brain images uses a patch-based approach [141]. To collect a training set for

the CNN in [141], an SVM classifier [142] is used to select patches centered at pixels

in cells and background. One problem of patch-based methods is that they require

an expensive computation because there are redundant convolutional operations for

overlapping patches. Deep voting [143] uses fast scanning [144] for an efficient com-

putation and produces a voting offset vector and a voting confidence vector to detect

nuclei in microscopy images. Alternatively, a structured regression method is intro-

duced where higher values are assigned toward the center of nuclei in a proximity

mask for training a CNN [145]. In [146] a stacked sparse autoencoder (SSAE) is used

to detect nuclei in breast cancer histopathology images. A spatially constrained CNN

(SC-CNN) is developed where the CNN contains a parameter estimation layer and

a spatially constrained layer for more accurate nuclei detection [147]. To accurately

detect the location of nuclei, a method in [148] convolves ground truth points and

the output of the CNN is deconvolved to produce nuclei center points. These meth-

ods can successfully find centroids of nuclei as a set of coordinates, but they do not

generate segmentation masks of nuclei.

One of the most popular segmentation CNNs widely used in biomedical community

is known as U-Net [125]. As mentioned above, U-Net is composed of an encoder part
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and a decoder part and skip connections transfer feature maps from the encoder part

to the decoder part to preserve spatial information which can be lost during pooling

layers, as shown in Figure 2.1. Data augmentation techniques such as random elastic

deformation are used to train the U-Net using 30 labeled images. U-Net [125] won

the ISBI EM segmentation challenge 2012 [149] and the ISBI cell tracking challenge

2014 and 2015 [150].

Fig. 2.1.: U-Net Architecture

U-Net [125] has been implemented and used in many platforms such as CellProfiler

[25] and ImageJ [19]. CellProfiler is a platform specifically designed for cell analysis

for biomedical images. CellProfiler provides many image processing tools such as

Watershed technique and morphological operations. Users can select image processing

tools provided by CellProfiler and build their own pipeline to analyze their data

sets. Recently, a plugin known as ClassifyPixels-Unet is implemented in CellProfiler

using a pretrained U-Net [125] to segment nuclei in input images. ClassifyPixels-

Unet produces output images with three labels: nuclei interior, nuclei boundary,

and background. This plugin can be included in a pipeline to analyze nuclei in
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fluorescence microscopy images. To use this plugin, users need to install TensorFlow

[102] and can run on local CPUs or GPUs. ImageJ [19] is another popular platform

to analyze biomedical images and many image processing plugins are developed and

shared with the public. More recently, an ImageJ plugin for cell counting, detection,

and segmentation using U-Net [125] is presented in [151]. In this ImageJ plugin,

pretrained networks are provided. To adapt the networks to users’ own data sets,

tools to train the networks are provided as well. More specifically, users can use the

plugin to label their own data sets. After using data augmentation techniques such as

rotation and elastic deformation, the labeled images can be used to train the networks

to analyze input images more accurately. This adaptation step can be done either

using local GPUs or using cloud services.

There are several other CNNs for segmenting subcellular structures. In [152] a

multiple-input multiple-output (MIMO) network is described to segment cells in var-

ious size in fluorescence microscopy images. The work in [152] is extended in [153] to

segment glands in histology images. To segment each gland in distinct labels, deep

contour-aware network (DCAN) is developed [154]. The DCAN produces two outputs,

gland objects and gland boundary. After separating touching gland using the bound-

ary information, connected component can label each gland distinctly. The DCAN

won the Gland Segmentation Challenge Contest in MICCAI 2015 [155]. In [156] the

DCAN is further tested on nuclei segmentation. Similarly, a set of hematoxylin and

eosin (H&E)-stained images is released where the annotation is done in three classes,

foreground (inside nuclei), background (outside nuclei), and nuclei boundary, to sep-

arate touching nuclei [157]. To separate touching nuclei, assigning higher weights on

cell contours to overcome the class imbalance problem during a training step is de-

scribed in [158]. Similarly, a stain-aware multi-scale (SAMS) network is developed to

assign higher weights on nuclei boundary to ensure separating touching nuclei [159].

In [160] detecting individual cells in star-convex polygons is described. An object

probability and radial distances in 32 directions are produced using an U-Net archi-

tecture [125]. Alternatively, a cell proposal network (CPN) [161], similarly done as



33

a region proposal network (RPN) [114], produces bounding boxes surrounding cells.

A cell segmentation proposal network [162] is further developed from [161] to gen-

erate not only bounding boxes but also masks on cells by adding region of interest

(ROI) pooling layer [113]. In [163] Mask R-CNN [136] is directly used to label nuclei

distinctly in microscopy images. A neural cell detection and segmentation method

based on a SSD detector [115] is described in [164].

The work mentioned above are done using 2D operations. Some modalities includ-

ing fluorescence microscopy generate images in various depth to produce 3D volumes.

Instead of independently analyzing the images in 2D without using the depth infor-

mation, analyzing them in 3D can produce a better segmentation performance. A

triplanar CNN architecture is described in [165] to segment knee cartilage in MRI

images. The outputs of three independent CNNs for xy, xz, and yz planes are con-

catenated and processed in the last layer to classify each voxels. Similarly, a CNN

with three input channels, xy, xz, and yz planes, is developed to segment lymph node

in computed tomography (CT) [166]. We described a 3D segmentation method using

a 2D CNN on xy, xz, and yz planes of a microscopy volume and combine the results

using a majority voting technique in [167]. These pseudo-3D methods using 2D CNNs

still cannot fully utilizing the entire 3D information. A fully 3D U-Net, an extension

of a 2D U-Net [125], is introduced in [168] to analyze Xenopus kidney visualized by

confocal microscopy. Fully 3D operations such as 3D convolutional layers, 3D max-

pooling layers, and 3D transposed convolutional layers are used in the architecture.

The 3D U-Net in [168] is trained by a set of sparsely labeled 2D images. A 3D CNN

which can both segment and detect nuclei in microscopy images is developed [169].

The 3D CNN in [169] is composed of a 3D U-Net [168] for generating a segmenta-

tion mask followed by a series of convolutional layers for generating detection points.

The 3D CNN in [169] is trained by real ground truth volumes which would be ex-

tremely tedious to manually generate them. A 3D cell instance segmentation method

is described in [170] where bounding boxes on all cells and segmentation masks on

some cells are required to train the network. As mentioned above, data augmentation
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techniques are used to multiply ground truth images [85]. Data augmentation uses

a simple linear and nonlinear transformation to produce synthetic training images

from real ground truth images. Although it has shown a remarkable improvement

especially to avoid overfitting problems, data augmentation techniques still require

some real ground truth images. Our goal is to train 3D CNNs without using any real

ground truth volumes. In the next subsection, we will describe generative adversarial

networks which generates synthetic training images.

2.2.3 Generative Adversarial Networks

Generative adversarial networks, also known as GANs, have been used to produce

synthetic images [171,172]. GANs are widely used in biomedical research community

to synthesize images to train CNNs [173,174] because creating labeled training images

from biomedical images is expensive and tedious. For example, synthetic cells in

fluorescence microscopy [175], synthetic histopathology images [176, 177], synthetic

red blood cell images [178], synthetic lesions [179], and synthetic CT images [180] can

be generated using GANs.

GANs are composed of two networks, a generative network, G, and a discrimina-

tive network, D. The goal of the generative network is to produce realistic synthetic

images whereas the goal of the discriminative network is to discriminate synthetic

images from real images. More specifically, G maps from an array of noise, z, to an

image, x, whereas D determines whether x is real or not. We want to train D to

maximize the probability of labeling x as a real image. We also want to train G to

minimize the probability of labeling G(z), a synthetic image from noise, as a synthetic

image. Therefore, G and D are trained according to the following equation with a

value function V (D,G) [171]:

min
G

max
D

V (D,G) = Ex[logD(x)] + Ez[log(1−D(G(z)))] (2.13)

As both G and D are trained simultaneously, the generative network, G, can produce

more realistic synthetic images.
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GANs are further developed to translate labels to synthetic images. A conditional

GAN, known as pix2pix, is presented in [181]. One drawback of pix2pix is that it

requires real ground truth images to train GAN. To produce synthetic images without

using any real ground truth images, a cycle-consistent GAN, known as CycleGAN, is

developed [182]. A cycle consistency loss is included in the training loss function of

the CycleGAN which is defined as [39, 182]:

L(G1, G2, D1, D2) =LGAN(G1, D1, I
label, Iorig) + LGAN(G2, D2, I

orig, I label)

+ λLcycle(G1, G2, I
orig, I label)

(2.14)

where λ is a weight coefficient and ||.||1 is L1 norm. The three loss terms in Equation

2.14 are defined as:

LGAN(G1, D1, I
label, Iorig) = EIorig [log(D1(I

orig))] + EIlabel [log(1−D1(G1(I
label)))]

(2.15)

LGAN(G2, D2, I
orig, I label) = EIlabel [log(D2(I

label))] + EIorig [log(1−D2(G2(I
orig)))]

(2.16)

Lcycle(G1, G2, I
orig, I label) = EIlabel [||G2(G1(I

label))− I label||1]

+ EIorig [||G1(G2(I
orig))− Iorig||1]

(2.17)

In Equation 2.14, G1 is a generative network generating I
orig using I label, G2 is a gener-

ative network generating I label using Iorig, D1 is a discriminative network distinguish-

ing between Iorig and G1(I
label), and D2 is a discriminative network distinguishing

between I label and G2(I
orig).

We developed a spatially constrained cycle consistent GAN (SpCycleGAN) by

including a spatial constraint term in the training loss function to generate synthetic

nuclei at spatially accurate locations [39]. Note our SpCycleGAN does not require any

real ground truth images. The training loss function of the SpCycleGAN is defined

as [39]:

L(G1, G2, H,D1, D2) =LGAN(G1, D1, I
label, Iorig) + LGAN(G2, D2, I

orig, I label)

+ λ1Lcycle(G1, G2, I
orig, I label) + λ2Lsp(G1, H, Iorig, I label)

(2.18)
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where λ1 and λ2 are weight coefficients and ||.||2 is L2 norm. The first three terms are

defined as Equation 2.15, Equation 2.16, Equation 2.17 and the last term is defined

as:

Lsp(G1, H, Iorig, I label) = EIlabel [||H(G1(I
label))− I label||2] (2.19)

In Equation 2.18, H is a generative network generating a binary mask, H(G1(I
label)),

from G1(I
label). By minimizing a L2 loss between H(G1(I

label)) and I label, synthetic

nuclei spatially match to the nuclei label. Using the synthetic microscopy images

generated from the SpCycleGAN, our segmentation CNN has shown an outstanding

performance [39]. The SpCycleGAN is used to generate synthetic microscopy images

in Chapter 6 and Chapter 7.
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3. BOUNDARY SEGMENTATION

USING STEERABLE FILTERS

Boundary segmentation is an important step in analyzing subcellular structures in

fluorescence microscopy images. For example, boundary segmentation can help char-

acterizing a nephron in kidney or vascular space in liver. Segmentation of fluores-

cence microscopy is challenging due to blur and inhomogeneous intensity presented

in fluorescence microscopy volumes. Boundary segmentation is especially challenging

because other subcellular structures may present in fluorescence microscopy images.

It is necessary to distinguish and separate other structures from the boundaries we

desire to segment. We observe boundary structures generally have a thin shape. Us-

ing steerable filters [37], strong directional tendencies are captures at voxels on the

boundary structures. In this chapter, we segment and separate boundaries using

3D adaptive histogram equalization, 3D steerable filters in various orientations, con-

nected component analysis, and z-propagation refinement for data sets with tubular

structures.

3.1 Proposed Method

Figure 3.1 is a block diagram of the proposed method. 3D adaptive histogram

equalization is first used on the original 3D stack of images for enhancement purposes.

The histogram equalized images are then segmented by a foreground/background

technique described below. Our goal is to segment tubule boundaries from lumen on

foreground regions. We want to place “seeds” as growing points on tubule bound-

aries to separate tubule boundaries from lumen. Three-dimensional steerable filters

are used to generate potential seeds that will be used to identify and grow tubule

boundaries. This is followed by a small blob removal stage through which undesired
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Fig. 3.1.: Block diagram of the proposed method

seeds are removed and the remaining seeds are used to separate tubule boundaries

from lumen in images using two-dimensional connected components. Finally, the re-

sults for each image are correlated along the z-direction to remove any mis-labeled

voxels.

3.1.1 Histogram Equalization and Foreground Segmentation

Since fluorescence microscopy images have non-uniform intensities, with low in-

tensities being visible in the vicinity of the image boundaries, a pre-processing step

is used to enhance regions close to the boundaries. This is achieved via 3D adaptive

histogram equalization that employs a 17 × 17 × 9 rectangular window, where voxels

near the stack boundaries are mirrored past the boundaries. Since the resolution

along the z-direction is smaller than along the x and y-directions, the window dimen-

sions were chosen accordingly. This step is used since it brightens only “foreground

pixels” locally.

Foreground segmentation, in which the images are separated into “foreground”

(F) and “background” (B) regions, is then done next. The foreground/background

regions are determined by:
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IFS(v) =











255, if IAHE(v) > 255 · (1− aFB)

0, otherwise

(3.1)

where IAHE is the histogram equalized image volume, v = (x, y, z) is a voxel location,

and aFB denotes the ratio of the number of voxels in the foreground to the total num-

ber of voxels. The value of aFB is changed according to the desired size of foreground

(F) and background (B) regions. For example, if the value of aFB is increased, then

the number of voxels belonging to foreground region may also increase.

3.1.2 Seed Selection Using Steerable Filters

In order to distinguish tubule boundaries within the foreground, “seeds” for con-

structing/growing each potential tubule boundary are needed. Since tubule bound-

aries tend to be thinner than lumen, seed selection is accomplished through the use

of steerable filters [37] having various orientations that are capable of capturing the

directional tendencies of thin regions. A property of steerable filters is that they can

be synthesized as a linear combination of basis filters [37]. The advantage of steerable

filters is that they can be used to detect local orientation of edges [183]. For example,

facial wrinkles are detected using steerable filters in various orientations [184].

A 3D steerable filter with orientation angles θ and φ (see Figure 3.2), hθ,φ, can be

obtained as:

hθ,φ(v) = sin2(φ) cos2(θ)gxx(v) + sin2(φ) sin2(θ)gyy(v) + cos2(φ)gzz(v)

− sin2(φ) sin(2θ)gxy(v)− sin(2φ) cos(θ)gxz(v)− sin(2φ) sin(θ)gyz(v)
(3.2)

where v = (x, y, z) denotes voxel location, θ an angle in the xy-plane relative to

the x-axis, φ an angle relative to the z-axis, and g(v) a Gaussian function given

by g(x, y, z) = e−(x2+y2+z2) with rectangular support that is 24 × 24 × 24 in size.

Allowing the values of θ and φ to vary between 0◦ to 180◦ in intervals of 22.5◦ results

in 64 steerable filters.



40

x

y

z

θ

v

φ

Fig. 3.2.: Spherical coordinates

Generally, tubules have thin boundaries and voxel intensities on tubule boundaries

are higher than voxel intensities in the background. Therefore, a voxel intensity

function will be locally concave along the normal to a tubule boundary. Consequently,

the second derivative of the intensity function will typically be small near tubule

boundaries. We utilize this fact and initially generate 64 steerable filter responses,

Rθ,φ, which are responses with orientation θ and φ, respectively, of the 64 different

steerable filters to the output of the adaptive histogram equalization step, IAHE, that

is:

Rθ,φ = IAHE ∗ ∗hθ,φ (3.3)

where ** denotes 3D convolution.

Next we obtain the minimum responses:

IMR(v) = min
θ,φ

Rθ,φ(v) (3.4)

Iθ(v) = argmin
θ

Rθ,φ(v) (3.5)

Iφ(v) = argmin
φ

Rθ,φ(v) (3.6)

The smaller IMR(v) is at voxel v the stronger directional tendency that voxel will

have. Similarly, Iθ(v) and Iφ(v) provide the strong directional tendencies at voxel v

along the θ and φ directions, respectively.
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In order to decide how many voxels will be selected as seed candidates, we define

the seed ratio, rs, as the ratio of the number of seed candidates to the total number

of voxels:

rs =

X
∑

x=1

Y
∑

y=1

Z
∑

z=1

Iorig(x, y, z)

255XY Z
(3.7)

where the size of the stack is X × Y × Z. The brighter the voxel intensities in Iorig

are the more voxels are selected as seed candidates. For each focal plane image, we

obtain the Ns = ⌊rsXY ⌋ smallest values of IMR
zp

and choose these voxels to be seed

candidates. Therefore, we have Ns seed candidates for each 2D image. The resulting

image wherein seeds have been selected is denoted by ISSzp
.

3.1.3 Small Blob Removal and Tubule/Lumen Separation

In the prior seed selection stage, seed candidates were selected, but not all can-

didates lie on tubule boundaries. Thus, it is necessary to remove seed candidates

not belonging to tubule boundaries. Initially, all seeds not belonging to foreground

sections in IFS are removed. In the previous step, we created 3D stacks, Iθ(v) and

Iφ(v), which contain the orientation of strong directional tendencies at v. For each

orientation pair (θ, φ) on every 2D image, ISSzp
, seed candidates having the orientation

(θ, φ) and that reside in a connected region of size (size here denotes the number

of connected components) less than a blobsize threshold, tb, are removed using 2D

connected component analysis where the threshold is given by

tb = aTLrsXY Z (3.8)

Note aTL is the ratio of the number of seed candidates in the largest blob in a lumen

to the total number of seed candidates in the image. After removing small blobs in

each orientation, the remaining seeds are selected to be final candidates denoted as

ISBR.

Subsequent to small blob removal, tubule/lumen separation is performed based

on the location of the final seeds in ISBR. Using 2D connected component analysis all
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foreground (F) blobs on every focal plane image, IFS
zp

, that contain seeds are labeled

as tubule boundaries (T), whereas the remaining voxels in the foreground are labeled

as lumen (L). The value of aTL can be tuned according to the desired size of tubule

boundaries (T) and lumen (L) regions. For example, if aTL is increased, then tb will

be increased and the number of final seed candidates will be reduced, which may

result in smaller tubule regions in the foreground region.

3.1.4 z-Propagation Refinement

We assume that sudden changes in the biological structure are unlikely to occur

between adjacent slices along the z-direction and hence adjacent voxels along the

z-direction will typically have the same label or belong to the same tubule boundary.

Since some adjacent voxels along the z-direction may not have the same label, an

extra post-processing step is necessary. We choose a set of voxels along the z-direction

that have the same (x, y) position. Recall that each voxel is labeled as T, L, or B,

representing tubule boundary, lumen, or background respectively. Next we divide

this set into disjoint subsets such that each subset contains only voxels labeled as T

or L (see Figure 3.3). For each such subset, a majority vote decides whether T or L

is assigned to all pixels of that subset.

Figure 3.3 depicts a set of labeled voxels consisting of voxels belonging to a spe-

cific (x, y) position but differing z-planes. This set is divided into multiple subsets

separated by the voxels labeled as B. In subset-1, most of the voxels are labeled as L,

therefore all the voxels from subset-1 will be labeled as L, based on majority voting.

In contrast, in subset-2 and subset-3, all voxels are labeled as T, based on respective

majority votes.

3.2 Experimental Results

We tested our method on Data-T1. For this particular data aFB was empirically

found to be 0.2138 and aTL empirically determined to be 5.86 × 10−7. Figure 3.4
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Fig. 3.3.: Example of z-propagation refinement

shows the images obtained at each step for Iz95 in Data-T1. In addition, Figure 3.5

shows the results produced by the proposed method for several images located at

various depths. Figure 3.6 shows the 3D visualization of a subvolume of Data-T1

using Voxx [185].

We compare the performance of the proposed method to several other segmen-

tation methods used in microscopy images including active contours [54], Jacob

and Unser’s ImageJ plugin known as steerableJ [183], region competition [65], and

Squassh [67,68], as shown in Figure 3.7.

It was observed that in the case of active contours, which required the manual

selection of initial curves for each tubule boundary, most of the initial curves evolved

poorly although they were initialized very closely to the actual boundaries. This was

observed to be the case since the tubule boundaries in the Data-T1 were not well

defined. As can be observed SteerableJ detects not only tubule boundaries but also

lumens although it failed to detect tubule boundaries located at image boundaries

where the pixel intensities were low. As far as region competition was concerned it

had no ability to distinguish between tubule boundary and lumen. Similarly Squassh

also failed to distinguish between tubule boundary and lumen and it only segmented

foreground regions located in the central area of the image.
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(a) Original image, Iorigz95
(b) Adaptive histogram equal-

ized image, IAHE
z95

(c) Foreground segmented im-

age, IFS
z95

(d) Seeds before small blob re-

moval, ISS
z95

(e) Seeds after small blob re-

moval, ISBR
z95

(f) Tubule/lumen separation

before z-propagation, ITLS
z95

(g) Tubule/lumen separation

after z-propagation

(h) Tubule boundaries only af-

ter z-propagation, Isegz95

Fig. 3.4.: Original, intermediate, and segmented images of Data-T1

All methods were also evaluated using reference data that was generated by man-

ually segmenting the images. The metrics used in the evaluation were segmentation
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(a) I
orig
z32

(b) I
seg
z32

(c) I
orig
z95

(d) I
seg
z95

(e) I
orig
z127

(f) I
seg
z127

Fig. 3.5.: Original and segmented images of Data-T1
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(a) I
orig

(1:512,1:512,15:214) (b) I
seg

(1:512,1:512,15:214)

Fig. 3.6.: 3D visualization of Data-T1

accuracy and the Type-I and Type-II error ratios. Accuracy, Type-I error, and Type-

II error ratios were defined as

accuracy =
nTP + nTN

ntotal

(3.9)

Type-I error =
nFP

ntotal

(3.10)

Type-II error =
nFN

ntotal

(3.11)

where nTP, nTN, nFP, nFN, ntotal denote the number of true-positives (pixels on tubule

boundary that are correctly labeled as belonging to a tubule boundary), true-negatives

(lumen/background pixels that are correctly labeled as either lumen/background),

false-positives (number of pixels belonging to lumen/background that are wrongly

labeled as belonging to tubule boundary), false-negatives (number of pixels on tubule

boundaries that are wrongly labeled as either lumen/background), and the total num-

ber of pixels, respectively [186, 187]. As can be observed from Table 3.1 our method

outperformed the other techniques. It is to be noted that the parameters of the

aforementioned techniques were tuned to produce the best results.

Our method was also tested on three liver datasets: Data-T2, Data-T3, and Data-

T4. Figure 3.8, Figure 3.9, and Figure 3.10 show segmentation results in various
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(a) The original image (b) Reference segmentation (c) Active contours initial

curves

(d) Active contours final curves (e) SteerableJ segmentation

outcome

(f) Output image from region

competition plugin

(g) Squassh segmented image (h) Outcome of the proposed

method with tubule boundary

only

Fig. 3.7.: Comparison of other segmentation methods and our proposed method of

Iz95 in Data-T1
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Table 3.1.: Accuracy, Type-I and Type-II errors for various methods on Iz95 of the

Data-T1

Accuracy Type I error Type II error

Active Contours [54] 85.56% 1.83% 12.61%

steerableJ [183] 78.40% 12.16% 9.44%

Region Competition [65] 76.58% 12.99% 10.43%

Squassh [67,68] 68.45% 22.33% 9.22%

Proposed Method 90.86% 1.63% 7.51%

Table 3.2.: Accuracy, Type-I and Type-II errors for various methods on Iz17 of the

Data-T2

Accuracy Type-I error Type-II error

Active Contours [54] 78.76% 0.56% 20.68%

steerableJ [183] 82.44% 4.18% 13.38%

Region Competition [65] 69.50% 11.64% 18.86%

Squassh [67,68] 85.61% 10.09% 4.30%

Proposed Method 86.35% 6.62% 7.03%

depth of Data-T2, Data-T3, and Data-T4, respectively. As shown in Figure 3.11,

Figure 3.12, Figure 3.13 and observed from Table 3.2, Table 3.3, and Table 3.4, our

method successfully identified tubule and cell boundaries in various focal planes. In

this case the values utilized for the parameters aFB and aTL were aFB = 0.27 and

aTL = 1.00× 10−5 for Data-T2, aFB = 0.27 and aTL = 1.50× 10−3 for Data-T3, and

aFB = 0.20 and aTL = 6.41× 10−7 for Data-T4, respectively.
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Table 3.3.: Accuracy, Type-I and Type-II errors for various methods on Iz1 of the

Data-T3

Accuracy Type-I error Type-II error

Active Contours [54] 82.04% 0.66% 17.30%

steerableJ [183] 84.68% 3.52% 11.80%

Region Competition [65] 72.92% 11.08% 16.00%

Squassh [67,68] 85.83% 11.41% 2.76%

Proposed Method 88.05% 5.84% 6.11%

Table 3.4.: Accuracy, Type-I and Type-II errors for various methods on Iz81 of the

Data-T4

Accuracy Type-I error Type-II error

steerableJ [183] 87.38% 4.18% 8.44%

Region Competition [65] 85.42% 4.16% 10.41%

Squassh [67,68] 90.07% 1.33% 8.60%

Proposed Method 88.27% 3.18% 8.55%

(a) I
orig
z17

(b) I
seg
z17

Fig. 3.8.: Original and segmented images of Data-T2
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(a) I
orig
z8

(b) I
seg
z8

Fig. 3.9.: Original and segmented images of Data-T3
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(a) I
orig
z15

(b) I
seg
z15

(c) I
orig
z81

(d) I
seg
z81

Fig. 3.10.: Original and segmented images of Data-T4
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(a) The original image (b) Reference segmentation (c) Active contours initial

curves

(d) Active contours final curves (e) SteerableJ segmentation

outcome

(f) Output image from region

competition plugin

(g) Squassh segmented image (h) Outcome of the proposed

method with tubule boundary

only

Fig. 3.11.: Comparison of other segmentation methods and our proposed method of

Iz17 in Data-T2
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(a) The original image (b) Reference segmentation (c) Active contours initial

curves

(d) Active contours final curves (e) SteerableJ segmentation

outcome

(f) Output image from region

competition plugin

(g) Squassh segmented image (h) Outcome of the proposed

method with tubule boundary

only

Fig. 3.12.: Comparison of other segmentation methods and our proposed method of

Iz1 in Data-T3
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(a) The original image (b) Reference segmentation (c) SteerableJ segmentation

outcome

(d) Output image from region

competition plugin

(e) Squassh segmented image (f) Outcome of the proposed

method with tubule boundary

only

Fig. 3.13.: Comparison of other segmentation methods and our proposed method of

Iz81 in Data-T4
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4. NUCLEI SEGMENTATION USING

CONVOLUTIONAL NEURAL NETWORKS

In this chapter, we describe a nuclei segmentation method using convolutional neural

networks (CNNs). To utilize the information in depth for more accurate segmentation,

we develop a “fully” three dimensional CNN. To train the CNN, a large set of labeled

training microscopy volume/images is required, the availability of which is extremely

limited in biomedical data sets [139]. It is extremely tedious for one to manually

generate labeled training images due to the complexity of data. Data augmentation

approaches [85] are used to increase the amount of labeled training images. This has

shown promising results to train CNNs using a limited number of labeled training

images in biomedical applications [125, 167]. Data augmentation approaches still

require a small number of actual ground truth images. Our goal is to train our CNNs

without using any actual ground truth images. We automatically generate synthetic

microscopy images to train our segmentation CNNs. We assume nuclei are in an

ellipsoidal shape and we add blur and noise operations to produce realistic synthetic

microscopy images.

4.1 Proposed Method

Figure 4.1 shows a block diagram of our proposed method to segment nuclei in

three dimension. Synthetic volumes containing nuclei, Isyn, with their corresponding

labeled volumes (synthetic ground truth volumes), I label, are first randomly gener-

ated as described below. The synthetic volumes and labeled volumes then used to

train a 3D CNN, M . Finally, the 3D CNN is used to segment nuclei in fluorescence

microscopy images volumes, Iorig. The segmented image volume is denoted by Iseg.
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Fig. 4.1.: Block diagram of the proposed method

4.1.1 Synthetic Volume Generation

Fig. 4.2.: Block diagram for Synthetic Volume Generation

Figure 4.2 is a block diagram of the Synthetic Volume Generation stage. As

we noted earlier, one of the major challenges in segmentation of biomedical im-

ages/volumes using a CNN is the lack of training images/volumes [139]. Manual

segmentation to generate ground truth, especially in three dimension, is inefficient

and laborious. Our approach is to use synthetic image volumes to train the CNN.

In synthetic image volumes, voxels belonging to nuclei which we are interested

in segmenting are defined as foreground and other voxels are defined as background.

We assume that nuclei can be modeled as an ellipsoid. Let N be the number of

nucleus candidates. The jth nucleus candidate, Ican,j, is first generated where 1 ≤
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j ≤ N , with randomly generated lengths of the semi-axes, translation, rotation, and

intensity of the ellipsoid. Then for each j, Ican,j is included in the nuclei synthetic

image volume, Inuc. Inuc is initialized to a volume with all voxel intensities to zero,

unless it overlaps with other nucleus candidates. Note that Inuc is composed of non-

overlapping nuclei with randomly assigned nonzero intensities and voxel intensities

in background are zero. From Inuc, a labeled volume, I label, is generated as a binary

volume where foreground voxels (non-overlapping nuclei) are 1 and background voxels

are 0. Fluorescence microscopy volumes are blurred and noisy due to the point spread

function of the microscope and noise from the light detector [17, 18, 27]. We observe

that the background in florescence microscopy volumes are not completely dark. To

make our synthetic image volume resemble a fluorescence microscopy volume, we first

increase the voxel values in the background to a randomly generated non-zero value.

The volume is then filtered using a Gaussian filter with standard deviation, σb, to

blur it and then Gaussian noise with standard deviation, σn, and a Poisson noise with

mean, λ, are added to generate the final synthetic image volume, Isyn.

The synthetic image volumes will be used to train our 3D CNN. If the volumes

are too small, not enough information can be learned. If the volumes are too big, the

training time will take long. Therefore, we select the size of the synthetic volumes to

be 64× 64× 64.

Note that the forward model is used to model the image acquisition process of

fluorescence microscopy [188]:

g[n] ∼ Q(P((A{f})[n] + b) + w[n]) (4.1)

where f is the actual signal from fluorophores, A is an operator for a PSF, b is

a background signal, P is a Poisson distribution produced by photon noise, w is

readout noise modeled as a Gaussian distribution, Q is a quantization operator, and

g is the output signal acquired by a fluorescence microscope. To accurately analyze a

3D PSF in widefield microscopy, a more sophisticated model such as the Gibson and

Lanni model [189] is used in [190]. The work in [190] localizes particles in a 3D volume

generated by a widefield microscope and the work in [188] accurately restores volumes
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containing C. elegans embryo generated by a widefield microscope but they do not

generate images containing nuclei. In this chapter, we model a PSF, background

noise, photon noise, and readout noise to synthesize nuclei in fluorescence microscopy

images for training our 3D CNN.

Nucleus Candidate Generation

In order to generate a synthetic volume with multiple nuclei, we first generate a

single nucleus which can be potentially included in the synthetic volume. We first

assume that nuclei are ellipsoidal shape. To train our CNN with various synthetic

nuclei, we generate nuclei which have random size, are located in random positions,

are oriented in random directions, and have random intensity. In this step, N nucleus

candidates are generated in a volume of size 64× 64× 64.

To generate the jth nucleus candidate, where 1 ≤ j ≤ N , we first find the

translated and rotation coordinates, (x̃, ỹ, z̃), from the original coordinates, (x, y, z)

with a random translation vector, t = (tx, ty, tz), and a random rotation vector,

r = (rx, ry, rz). tx, ty, tz, rx, ry, rz are the translations in x, y, and z-direction and

the rotations around x, y, and z-axes, respectively.










x̃

ỹ

z̃











= Rz(rz)Ry(ry)Rx(rx)











x− tx

y − ty

z − tz











(4.2)

Rx(θ), Ry(θ), Rz(θ) are rotation matrices around the x, y, z-axes, respectively, with

an angle θ.

Rx(θ) =











1 0 0

0 cos(−θ) − sin(−θ)

0 sin(−θ) cos(−θ)











(4.3)

Ry(θ) =











cos(−θ) 0 sin(−θ)

0 1 0

− sin(−θ) 0 cos(−θ)











(4.4)
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Rz(θ) =











cos(−θ) − sin(−θ) 0

sin(−θ) cos(−θ) 0

0 0 1











(4.5)

The jth nucleus candidate, Ican,j, is then generated with random length of semi-

axes, a = (ax, ay, az) and random intensity, i:

Ican,j =











i, if x̃2

a2x
+ ỹ2

a2y
+ z̃2

a2z
< 1

0, otherwise

(4.6)

We set N to be 100. For each j, with uniform distribution, a is randomly selected

between 4 and 6, t is randomly selected between 1 and 64, r is randomly selected

between 1 and 360, and i is randomly selected between 200 and 255. Those parameters

are set based on nuclei in our actual microscopy volumes.

Overlapping Nuclei Removal

A synthetic volume with multiple nuclei, Inuc, can now be generated by adding

N nuclei candidate volumes, Ican,j, generated in the previous step. However, in a

biological structure, no nuclei are physically overlapping. So it is necessary to remove

nuclei overlapping with other nuclei.

First, Inuc is initialized to zeros with the size of 64 × 64 × 64. Note that Inuc is

initialized to be all background (non-nuclei region). For 1 ≤ j ≤ N , in a sequential

order, the jth single nucleus candidate, Ican,j, would be added in the synthetic volume,

Inuc, if there is no intersection between foreground region in Ican,j and foreground

region in Inuc. However, Ican,j would not be added in Inuc if Ican,j have intersection

between foreground region in Ican,j and foreground region in Inuc. After this step, no

nuclei will overlap to other nuclei in Inuc.
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A labeled volume (a synthetic ground truth volume), I label, corresponding to the

synthetic volume is generated by assigning 1 to foreground voxels and 0 to background

voxels:

I label(x, y, z) =











1, if Inuc(x, y, z) 6= 0

0, otherwise

(4.7)

Blur and Noise

When images of specimens are acquired from fluorescence microscope, images

are degraded by blurring and noise. First, the point spread function (PSF) of the

microscope causes blurring [17]. Additionally, fluorescence microscopy images contain

a combination of Gaussian noise and Poisson noise because only a limited number

of photons are detected in the detector of microscope due to photobleaching, low

fluorophore concentration, and short exposure time [18,27]. Therefore, it is necessary

to include blur and noise in our generate synthetic image volumes.

Initially, background voxel intensities of Inuc are set to b because voxel intensities

of the background region for real fluorescence microscopy images are not completely

zero. We let b be randomly selected between 50 and 100 with an uniform distribution.

We then use a simple synthetic PSF to blur the volumes where we assume the PSF is

a normalized Gaussian filter with window size of 5× 5× 5 and standard deviation of

σn = 20. Lastly, zero-mean Gaussian noise with σn = 5 and Poisson noise with λ = 5

are added to the blurred volume to generate Isyn. Figure 4.3 shows three examples

of synthetic image volumes with their corresponding labeled volumes. Figure 4.4

compares two original image volumes at various depths and a synthetic image volume

with the size of 64× 64× 64. The size of the nuclei, the intensity of the nuclei, and

the background noise of synthetic image volumes are close to original image volumes.
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(a) I
syn,1 (b) I

gt,1

(c) I
syn,2 (d) I

gt,2

Fig. 4.3.: Examples of synthetic image volumes and their labeled volumes

(a) I
orig

(225:288,225:288,71:134) (b) I
orig

(225:288,225:288,171:234) (c) I
syn,1

Fig. 4.4.: Comparison between original volumes and a synthetic volume
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Fig. 4.5.: Architecture of our 3D CNN

4.1.2 3D CNN Training

Figure 4.5 shows our architecture of a 3D CNN with an encoder-decoder structure.

Each 3D convolutional layer consists of a convolutional operation with a 5×5×3 kernel

with 2×2×1 voxel padding followed by 3D batch normalization [191] and a rectified-

linear unit (ReLU) activation function. The kernel size is chosen accordingly because

the resolution along the z-direction is smaller than along the x and y-directions.

Voxel padding is used to maintain the same volume size during the convolutional

operation. A 3D max-pooling layer uses 2× 2× 2 window with stride of 2 to preserve

feature information while proceeding to the deep of the architecture. In the decoder,

a 3D max-unpooling layer is used to retrieve feature information according to the

indices that saved in the corresponding 3D max-pooling layer. An input volume to

the network is a single channel volume with size of 64× 64× 64 and a 3D voxelwise

classification with size of 64×64×64 is generated as an output volume of the network.

Our architecture,M , is implemented in Torch [103]. To train our model,M , stochastic

gradient descent (SGD) with a fixed learning rate of 10−6 and a momentum of 0.9 is

used. 100 pairs of synthetic image volumes, Isyn, and labeled image volumes (ground

truth volumes for synthetic image volumes), I label, are used to train the model. For

each iteration, a randomly-selected training volume is used to train M . The training

of our 3D CNN took approximately 2∼3 days using NVIDIA’s GeForce GTX Titan

X.
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4.1.3 3D CNN Inference

Fig. 4.6.: 3D CNN Inference

Our 3D CNN, M , segments a subvolume of size of 64× 64× 64. While cropping

the subvolume from the original volume, some nuclei on the boundary of the subvol-

ume may be partially included and lose their shape information. This may lead to

incomplete segmentation near the boundary of the subvolume. To avoid this, we use

the central subvolume of the output volume with size of 32 × 32 × 32 to make sure

nuclei in the output volume are completely segmented using their entire information.

Additionally, if X, Y , or Z of Iorig is greater than 64, it is necessary to slide a 3D

window with size of 64× 64× 64 to segment the entire Iorig.

Figure 4.6 describes our method for 3D CNN inference. In order to have Iseg the

same size as Iorig, we zero-pad Iorig by 16 voxels on boundaries, denoted as Izeropad.

In this case, the size of Izeropad would be (X + 32)× (Y + 32)× (Z + 32). Placing a

3D window on the top, left, frontal corner of Izeropad (see blue window in Figure 4.6),

I
zeropad

(1:64,1:64,1:64) becomes the input volume of the 3D CNN, M , with size of 64× 64× 64

to generate Iseg(1:32,1:32,1:32), a subvolume of Iseg on the top, left, frontal corner with size

of 32× 32× 32. Next, the 3D window is slided to x-direction by 32 voxels (see green

window in Figure 4.6), then I
zeropad

(33:96,1:64,1:64) becomes the next input volume of the 3D

CNN, M , to generate I
seg

(33:64,1:32,1:32), a subvolume slided to x-direction by 32 voxels
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from the previous subvolume, Iseg(1:32,1:32,1:32). This operation continues to x, y, and

z-direction until the entire volume is processed. The inference of a volume with size

of 512× 512× 512 took approximately 2∼3 minutes using NVIDIA’s GeForce GTX

Titan X.

4.2 Experimental Results

We tested our method on four different rat kidney data sets: Data-N1, Data-N2,

Data-N3, and Data-N4. Figure 4.7 shows the segmented images on Data-N1 located

at various depths.

Our method was compared to other segmentation methods used in microscopy

images including 3D active surface (3Dac) [59], 3D active surface with inhomogeneity

correction (3DacIC) [34], 3D Squassh [67,68], and 2D+ convolutional neural network

(2D+ CNN) [167]. In order to evaluate our method, we used three 3D ground truth

subvolumes of Data-N1, Igt(241:272,241:272,31:62), I
gt

(241:272,241:272,131:162), I
gt

(241:272,241:272,231:262)

in different depth with size of 32×32×32. The ground truth volumes for evaluation are

manually generated from a real microscopy data set. Figure 4.8, Figure 4.9, Figure

4.10 are the 3D visualization of various segmentation method results on different

subvolumes, helped by Voxx [185].

It was observed that 3D active surfaces had poor results as subvolumes are ac-

quired deeper into tissue because voxel intensities on nuclei gets dimmer and more

blurred. This issue was resolved by counting inhomogeneity correction, yet it has no

ability to distinguish between nuclei and other subcellular structures. Squassh also

failed to distinguish nuclei and other structures. Although 2D+ CNN produced good

results, discontinuity may be observed between planes because it has not utilized all

three dimensional information. However, 3D CNN can segment in ellipsoidal shape

which is close to the shape of nuclei. Note that the segmentation results are gener-

ated in a short running time (2∼3 minutes) using NVIDIA’s GeForce GTX Titan X

without any manually generated ground truth volumes to train the network.
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(a) I
orig
z67

(b) I
seg
z67

(c) I
orig
z155

(d) I
seg
z155

(e) I
orig
z230

(f) I
seg
z230

Fig. 4.7.: Original and segmented images of Data-N1
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(a) Original volume (b) 3D ground truth volume (c) 3D active surfaces

(d) 3D active surfaces with in-

homogeneity correction

(e) 3D Squassh

(f) 2D+ CNN (g) Proposed method

Fig. 4.8.: 3D visualization comparison of other segmentation methods and our pro-

posed method of I(241:272,241:272,31:62) of Data-N1

All segmentation methods were evaluated using 3D ground truth volumes based

on the accuracy, Type-I error, and Type-II error metrics. We define

accuracy =
nTP + nTN

ntotal

(4.8)
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(a) Original volume (b) 3D ground truth volume (c) 3D active surfaces

(d) 3D active surfaces with in-

homogeneity correction

(e) 3D Squassh

(f) 2D+ CNN (g) Proposed method

Fig. 4.9.: 3D visualization comparison of other segmentation methods and our pro-

posed method of I(241:272,241:272,131:162) of Data-N1

Type-I error =
nFP

ntotal

(4.9)
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(a) Original volume (b) 3D ground truth volume (c) 3D active surfaces

(d) 3D active surfaces with in-

homogeneity correction

(e) 3D Squassh

(f) 2D+ CNN (g) Proposed method

Fig. 4.10.: 3D visualization comparison of other segmentation methods and our pro-

posed method of I(241:272,241:272,231:262) of Data-N1

Type-II error =
nFN

ntotal

(4.10)
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where nTP, nTN, nFP, nFN, ntotal are defined to be the number of true-positives (voxels

correctly segmented as nuclei), true-negatives (voxels correctly segmented as back-

ground), false-positives (voxels wrongly segmented as nuclei), false-negatives (voxels

wrongly segmented as background), and the total number of voxels in a volume, re-

spectively [186, 187]. Table 4.1, Table 4.2, Table 4.3 shows the accuracy for various

segmentation methods and the proposed method on different subvolumes.

As shown in the 3D visualization from Figure 4.8, Figure 4.9, Figure 4.10, and

accuracy test from Table 4.1, Table 4.2, Table 4.3, our 3D CNN achieved similar

results “without” any ground truth volumes from Data-N1 during training. Training

with synthetic volumes can be extremely helpful for automatic segmentation due to

the difficulty of manually generating ground truth volumes in biomedical data sets.

Table 4.1.: Accuracy, Type-I and Type-II errors for various methods on

I(241:272,241:272,31:62) of Data-N1

Accuracy Type-I error Type-II error

3Dac [59] 84.09% 15.68% 0.23%

3DacIC [34] 87.36% 12.44% 0.20%

3D Squassh [67,68] 90.14% 9.07% 0.79%

2D+ CNN [167] 94.25% 5.18% 0.57%

Proposed Method 92.20% 5.38% 2.42%

Our method can successfully segment nuclei from different rat kidney data (Data-

N2, Data-N3, Data-N4). Since the size of nuclei in Data-N2, Data-N3, and Data-N4

is smaller than the size of nuclei in Data-N1, we used a, length of semi-axes of a

synthetic nucleus, randomly generated between 2 and 3. Figure 4.11, Figure 4.12,

Figure 4.13 show the segmented images on different data sets.
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Table 4.2.: Accuracy, Type-I and Type-II errors for various methods on

I(241:272,241:272,131:162) of Data-N1

Accuracy Type-I error Type-II error

3Dac [59] 79.25% 20.71% 0.04%

3DacIC [34] 86.78% 13.12% 0.10%

3D Squassh [67,68] 88.26% 11.67% 0.07%

2D+ CNN [167] 95.24% 4.18% 0.58%

Proposed Method 92.32% 6.81% 0.87%

Table 4.3.: Accuracy, Type-I and Type-II errors for various methods on

I(241:272,241:272,231:262) of Data-N1

Accuracy Type-I error Type-II error

3Dac [59] 76.44% 23.55% 0.01%

3DacIC [34] 83.47% 16.53% 0.00%

3D Squassh [67,68] 87.29% 12.61% 0.10%

2D+ CNN [167] 93.21% 6.61% 0.18%

Proposed Method 94.26% 5.19% 0.55%
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(a) I
orig
z9

of Data-N2 (b) I
seg
z9

of Data-N2

(c) I
orig
z17

of Data-N2 (d) I
seg
z17

of Data-N2

Fig. 4.11.: Original and segmented images of Data-N2
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(a) I
orig
z17

of Data-N3 (b) I
seg
z17

of Data-N3

Fig. 4.12.: Original and segmented images of Data-N3

(a) I
orig
z6

of Data-N4 (b) I
seg
z6

of Data-N4

Fig. 4.13.: Original and segmented images of Data-N4
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5. NUCLEI DETECTION AND SEGMENTATION

USING CONVOLUTIONAL NEURAL NETWORKS

In Chapter 4 we described a 3D CNN to segment nuclei in fluorescence microscopy

volumes. We trained our CNN without using any real ground truth volumes. Nu-

clei were synthesized in ellipsoids in our synthetic microscopy training volumes so

our CNN can successfully segment nuclei. We observed that our CNN still segment

non-nuclei structures causing high Type-I error because non-nuclei structures were

not synthesized in our synthetic microscopy training volumes. In this chapter we

describe a nuclei detection and segmentation method. To reject non-nuclei structures

presented in real microscopy volumes, we first detect the locations of nuclei by using

a 3D adaptive histogram equalization [38], a 3D distance transform [44], and a 3D

classification CNN. We denote the detected coordinates as seeds. We then segment

each nucleus in subvolumes centered at the seeds using our 3D segmentation CNN

which is similarly trained as [192]. Our evaluation shows that the method described

in this chapter outperforms our previous method described in Chapter 4 by reducing

Type-I error.

5.1 Proposed Method

Fig. 5.1.: Block diagram of the proposed method



74

Figure 5.1 is a block diagram of the proposed method to segment individual nuclei

in three dimensions. In this chapter, we define voxels in a nucleus as foreground and

other voxels as background. Our goal is to segment nuclei individually. To achieve

this, the first step is 3D nuclei detection to select seeds, Iseed, of a grayscale original

microscopy volume, Iorig. Potential centers of nuclei are defined as “seeds.” After

selecting seeds, the 3D nuclei segmentation stage segments nuclei surrounding each

seed individually. The segmented image volume is denoted by Iseg. Our CNNs are

implemented in Torch [103].

5.1.1 3D Nuclei Detection

Fig. 5.2.: Block diagram of the 3D nuclei detection

Figure 5.2 shows the block diagram of the 3D nuclei detection stage. We assume

that the nuclei are ellipsoidal and we use the 3D distance transform [44] to select

seeds. To use the 3D distance transform, an original microscopy volume, Iorig, needs

to be converted to a binary volume. Since fluorescence microscopy volumes generally

have inhomogeneous intensities, a 3D adaptive histogram equalization is used as a

pre-processing step to enhance the image volumes. The equalized image volume,

IAHE, is then binarized, IBW , with a threshold, t. The 3D distance transform is then

used to transform IBW to generate IDT . Next, seed candidates, Ican, are selected by

the following steps: (1) suppress noise and non-nuclei structures by thresholding IDT

to generate Isu and (2) find local maxima from Isu. Finally, a model, M cls, of a 3D
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classification CNN is trained using subvolumes of a real microscopy volume, Icls, with

their ground truth labels, gcls. M cls is used to finalize a set of seeds, Iseed.

3D Adaptive Histogram Equalization and Binarization

To use the 3D distance transform, it is necessary to convert an original microscopy

volume to a binary volume. Fluorescence microscopy volumes generally have non-

uniform intensities, so using a fixed binary threshold for the original volume may not

extract the foreground successfully. Therefore, a 3D adaptive histogram equalization

is used to enhance the volume as a pre-processing step. A 17 × 17 × 9 rectangular

window is used to equalize each voxel, where voxels near the volume boundaries are

reflected past the boundaries. The size of the window is chosen according to the ratio

of the resolution along the x, y, and z-directions.

After enhancement, binarization is defined as:

IBW (v) =











255, if IAHE(v) > t

0, otherwise

(5.1)

where IAHE is the histogram equalized volume, v is a voxel location, and t is a

threshold to have all voxels on nuclei in foreground region. t can be estimated by

the ratio of the number of voxels in the background to the total number of voxels

in a volume scaled by a factor of 255. This approach is the same as foreground

segmentation step we presented in [38].

3D Distance Transform and Seed Candidate Selection

In this step, we use the 3D distance transform [44] on IBW to find seed candidates.

For each voxel location on IBW , the minimum Euclidean distance to a background

voxel is calculated.
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To select seed candidates of centers of nuclei, we first suppress noise and non-nuclei

structures by:

Isu(v) =











IDT (v), if IDT (v) > amin

2

0, otherwise

(5.2)

amin is the minimum semi-axis of the nuclei. The intensity of IDT at the center of the

nuclei must be greater than amin

2
, so the suppression process helps find seed candidates

by removing noise and non-nuclei structures.

Since it is assumed that nuclei have ellipsoidal shape, voxels which is local maxima

of Isu would be seed candidates. Hence, a voxel, v, is selected as a seed candidate if

(1) v is the maximum in a window with size of 13× 13× 9 centered at v of Isu and

(2) there is no other seed candidates in the window to avoid selecting two or more

seeds on one nucleus.

A 3D Convolutional Neural Network for Classification

Fig. 5.3.: Architecture of our 3D CNN for Classification

The suppression process may not remove all non-nuclei structures. Therefore, a

3D classification CNN is used to filter out seed candidates which do not belong to

nuclei.

Figure 5.3 shows the architecture of our 3D classification CNN. A 3D convolutional

layer consists of a convolutional operation with a 3×3×3 kernel with 1 voxel padding,
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3D batch normalization [191], and a rectified-linear unit (ReLU) activation function.

A 3D max-pooling layer uses 2 × 2 × 2 window with a stride of 2. As a final stage,

two fully connected layers with size of 1024 and 2 are used. An input volume to

the network is a subvolume of Iorig with size of 16 × 16 × 16 centered at a seed

candidate. The output of the network is a score vector with size of 2 to determine if

the seed candidate is located in a nucleus. To train our model, M cls, we use stochastic

gradient descent (SGD) with a fixed learning rate of 10−3 and a momentum of 0.9.

Three hundred manually selected training volumes from a real fluorescence microscopy

volume, Icls, and their ground truth labels, gcls, are used to train the model. 150

training volumes contain nuclei and the other 150 training volumes contain non-

nuclei structures. The training of our 3D classification CNN took less than a day and

the inference took approximately 10−2 second using NVIDIA’s GeForce GTX Titan

X.

5.1.2 3D Nuclei Segmentation

Fig. 5.4.: Block diagram of the proposed 3D nuclei segmentation
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Figure 5.4 shows a block diagram of the proposed segmentation stage. For each

seed, Iseed, selected from the 3D nuclei detection stage, 3D segmentation CNN, M seg,

segments nuclei individually on a subvolume of Iorig centered at the seed. Training

3D segmentation CNN requires many training volumes and ground truth volumes.

It is extremely difficult to have manual 3D ground truth volumes from fluorescence

microscopy volumes. Therefore, our approach is to generate synthetic microscopy

volumes, ISM , and their synthetic ground truth volumes, ISGT , automatically to

train the CNN. This approach is similar to the use of synthetic training we presented

in [192]. The size of synthetic nuclei can be chosen based on the size of nuclei from

the original microscopy volume to be segmented. After training the 3D segmentation

CNN using ISM and ISGT , M seg can now segment individual nuclei.

Synthetic Volume Generation

Synthetic ground truth volumes, ISGT , and synthetic microscopy volumes, ISM ,

are automatically generated to train our 3D segmentation CNN. ISGT is first gen-

erated with an assumption that nuclei have ellipsoidal shape. Using ISGT , we can

create the corresponding ISM by assigning intensities on foreground (nuclei) and back-

ground, blurring the volume, and adding noise to make synthetic microscopy volumes

more realistic.

To generate ISGT , ellipsoidal model is used:

ISGT (v) =











1, if x̃2

a2x
+ ỹ2

a2y
+ z̃2

a2z
< 1

0, otherwise

(5.3)

Here, (x̃, ỹ, z̃) is the translated and rotated coordinates from the original coordinates,

v = (x, y, z), with tx, ty, tz, the translations in x, y, and z-direction, respectively, and

rx, ry, rz, the rotations around x, y, and z-axes, respectively. Since synthetic nuclei

would locate at the center of a volume with size of 16×16×16, we set tx = 8, ty = 8,

and tz = 8, and rx, ry, and rz are randomly chosen between 0 to 360. Also, we define

(ax, ay, az) to be a vector of semi-axes length of synthetic nuclei. ax, ay, and az are
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randomly selected between amin and amax, where amin is the minimum semi-axis of

nuclei and amax is the maximum semi-axis of nuclei based on the semi-axes of nuclei

in Iorig.

The synthetic microscopy volumes, ISM , can be generated based on synthetic

ground truth volumes, ISGT . First, voxel intensities on foreground are set to be if and

voxel intensities on background to be ib. We set if to be randomly selected between

128 and 255 and set ib =
if
3

by observing real fluorescence microscopy volumes.

Next, the synthetic volumes are degraded by blurring and noise to model degradation

seen in microscopy volumes. During the data acquisition, the point spread function

(PSF) of the microscope blurs fluorescence microscopy volumes [17]. So we blur the

volume using a 3D Gaussian filter with standard deviation of 1. Additionally, both

Gaussian noise and Poisson noise are added to the volumes [28]. The noise model is

ISM(v) = αX + Y where X ∼ P(λ) and Y ∼ N (µ, σ2). We set α = 1, µ = 0, σ = 5,

and λ be if if v belongs to foreground and ib if v belongs to background. During

synthetic volume generation, the size of the nuclei, the intensity of the nuclei, and the

background noise of synthetic microscopy volumes are close to original image volumes.

Figure 5.5 shows an example of synthetic microscopy volume and its synthetic ground

truth volume.

(a) Real microscopy volume (b) Synthetic microscopy vol-

ume

(c) Synthetic ground truth vol-

ume

Fig. 5.5.: Examples of a real microscopy volume, a synthetic microscopy volume and

synthetic ground truth volume
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A 3D Convolutional Neural Networks for Segmentation

Fig. 5.6.: Architecture of the proposed 3D CNN for Segmentation

Figure 5.6 shows our architecture of a 3D CNN for segmentation. The architecture

of the encoder part is identical to M cls in Figure 5.3 until the first fully connected

layer. In the decoder, 3D max-unpooling layers with 3D convolutional layers are used

to reconstruct the output volume as the same size as the input volume. To train our

model, M seg, stochastic gradient descent (SGD) with a fixed learning rate of 10−6 and

a momentum of 0.9 is used. An input volume to the network is a subvolume of Iorig

with size of 16× 16× 16 centered at a seed and an output volume is a binary volume

with size of 16× 16× 16. One hundred pairs of synthetic microscopy volumes, ISM ,

and synthetic ground truth volumes, ISGT , automatically generated in the previous

step are used to train the model. The training of our 3D segmentation CNN took

less than a day and the inference took approximately 10−2 second using NVIDIA’s

GeForce GTX Titan X.

5.2 Experimental Results

We tested our method on three different rat kidney data sets: Data-N1, Data-N5,

and Data-N6. Figure 5.7 shows the images obtained at each step for Iz23 in Data-N1,

with t = 192, amin = 3, and amax = 5. A classification CNN was trained by Data-N1.

In Figure 5.7 (f), nuclei segmented on various seeds are labeled to different color.

Figure 5.8 shows segmentation results in various depth.
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(a) Original image, Iorigz23
(b) Adaptive histogram equal-

ized image, IAHE
z23

(c) Binary image, IBW
z23

(d) Distance transformed im-

age, IDT
z23

(scaled by a factor of

50)

(e) Segmented image, Isegz23
(f) Color-coded image

Fig. 5.7.: Original, intermediate, and segmented images in Data-N1

Our method was compared to other 3D segmentation methods used in microscopy

images including 3D active surface with inhomogeneity correction (3DacIC) [34], 3D

Squassh [67,68], and 3D CNN we described in [192]. We evaluated our method using

three subvolumes of Data-N1 by 3D real ground truth volumes. The real ground

truth volumes for evaluation are manually generated from a real microscopy data

set. We refer vol-1 as I(241:272,241:272,31:62), vol-2 as I(241:272,241:272,131:162), and vol-3 as

I(241:272,241:272,231:262). Figure 5.9, Figure 5.10, and Figure 5.11 are the 3D visualization

of various segmentation method results on different subvolumes, helped by Voxx [185].

It was observed that 3D active surface with inhomogeneity correction [34], 3D Squassh
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(a) I
orig
z23

(b) I
color
z23

(c) I
orig
z93

(d) I
color
z93

(e) I
orig
z153

(f) I
color
z153

Fig. 5.8.: Original and segmented images of Data-N1
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[67, 68], and our 3D CNN described in [192] cannot distinguish between nuclei and

other subcellular structures. However, our method can distinguish between nuclei

and other subcellular structures due to the suppression process and 3D classification

CNN.

(a) Original volume (b) 3D ground truth volume (c) 3D active surface with inho-

mogeneity correction

(d) 3D Squassh (e) 3D CNN (f) Proposed method

Fig. 5.9.: 3D visualization comparison of other segmentation methods and our pro-

posed method of I(241:272,241:272,31:62) of Data-N1

All segmentation results were evaluated based on the following metrics:

accuracy =
nTP + nTN

ntotal

(5.4)

Type-I error =
nFP

ntotal

(5.5)

Type-II error =
nFN

ntotal

(5.6)
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(a) Original volume (b) 3D ground truth volume (c) 3D active surface with inho-

mogeneity correction

(d) 3D Squassh (e) 3D CNN (f) Proposed method

Fig. 5.10.: 3D visualization comparison of other segmentation methods and our pro-

posed method of I(241:272,241:272,131:162) of Data-N1

where nTP, nTN, nFP, nFN, ntotal are defined to be the number of true-positives

(voxels correctly labeled as nuclei), true-negatives (voxels correctly labeled as back-

ground), false-positives (voxels wrongly labeled as nuclei), false-negatives (voxels

wrongly labeled as background), and the total number of voxels in a volume, respec-

tively [186, 187]. Table 5.1, Table 5.2, and Table 5.3 show the accuracy for various

3D segmentation methods and our method on three subvolumes on Data-N1.

Figure 5.12 and Figure 5.13 show that our method can successfully detect and

segment nuclei from Data-N5 and Data-N6, respectively. Note that (1) Data-N5 and

Data-N6 have uniform intensities so the 3D adaptive histogram equalization was not

used (2) the suppression process was successful so the 3D classification CNN was not
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(a) Original volume (b) 3D ground truth volume (c) 3D active surface with inho-

mogeneity correction

(d) 3D Squassh (e) 3D CNN (f) Proposed method

Fig. 5.11.: 3D visualization comparison of other segmentation methods and our pro-

posed method of I(241:272,241:272,231:262) of Data-N1

Table 5.1.: Accuracy, Type-I and Type-II errors for various methods on

I(241:272,241:272,31:62) of Data-N1

Accuracy Type-I error Type-II error

3DacIC [34] 87.36% 12.44% 0.20%

3D Squassh [67,68] 90.14% 9.07% 0.79%

3D CNN [192] 92.20% 5.38% 2.42%

Proposed Method 93.30% 1.65% 5.05%
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Table 5.2.: Accuracy, Type-I and Type-II errors for various methods on

I(241:272,241:272,131:162) of Data-N1

Accuracy Type-I error Type-II error

3DacIC [34] 86.78% 13.12% 0.10%

3D Squassh [67,68] 88.26% 11.67% 0.07%

3D CNN [192] 92.32% 6.81% 0.87%

Proposed Method 93.48% 1.74% 4.78%

Table 5.3.: Accuracy, Type-I and Type-II errors for various methods on

I(241:272,241:272,231:262) of Data-N1

Accuracy Type-I error Type-II error

3DacIC [34] 83.47% 16.53% 0.00%

3D Squassh [67,68] 87.29% 12.61% 0.10%

3D CNN [192] 94.26% 5.19% 0.55%

Proposed Method 94.67% 1.56% 3.77%

used (3) we set t = 64 for Data-N5 and t = 25 for Data-N6 according to the intensity

of nuclei (4) we set amin = 6 and amax = 8 for Data-N5 and Data-N6 according to

the size of nuclei .
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(a) I
orig
z16

of Data-N5 (b) I
seg
z16

of Data-N5

(c) I
orig
z27

of Data-N5 (d) I
seg
z27

of Data-N5

Fig. 5.12.: Original and segmented images of Data-N5
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(a) I
orig
z9

of Data-N6 (b) I
seg
z9

of Data-N6

Fig. 5.13.: Original and segmented images of Data-N6
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6. CENTER-EXTRACTION-BASED

NUCLEI INSTANCE SEGMENTATION

In this chapter we describe a nuclei instance segmentation method. We define “in-

stance segmentation” as a segmentation process that each nucleus is segmented with

distinct labels. To compare to instance segmentation, we define “binary segmen-

tation” as a segmentation process that each voxel is classified in binary whether it

belongs to nuclei or not. Nuclei instance segmentation is more challenging than nu-

clei binary segmentation because touching or overlapping nuclei are required to be

separated. We describe a two-stage method for nuclei instance segmentation. The

CNN in the first stage detects a set of coordinates for centroids of nuclei by extract-

ing the central region of nuclei and produces a binary segmentation mask. Using the

set of coordinates and the binary segmentation mask the CNN in the second stage

segments each nucleus in distinct labels. To train our CNNs we use a set of synthetic

microscopy images generated by a spatially-constrained cycle-consistent generative

adversarial networks (SpCycleGAN) described in [39]. The method described in this

chapter outperforms our previous technique in Chapter 5 which detects the location

of nuclei using a 3D distance transform and segments nuclei using a 3D CNN trained

by a set of blurred and noisy synthetic volumes.

6.1 Proposed Method

Figure 6.1 is a block diagram of our proposed method for 3D nuclei instance seg-

mentation. Our method consists of two CNNs as shown in Figure 6.1. The first CNN

is used for nuclei detection and binary segmentation and has two outputs, a set of

coordinates of the nuclei center location denoted as Cdet and a nuclei mask volume de-

noted as Imask. These two outputs are generated from an original microscopy volume,
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Fig. 6.1.: Block diagram of the proposed method

Iorig. Cdet is selected by finding centroid coordinates of components in a detection

volume, Idet. To accurately select Cdet at the nuclei center locations, especially when

multiple nuclei are touching, the components in Idet are designed to have no touching

or overlapping regions for distinct nuclei. Therefore, Idet contains components around

the nuclei center locations.

The second CNN is used for nuclei instance segmentation where an individual nu-

cleus is segmented in a 3D patch from Imask centered at Cdet and is color-coded. After

color-coding individual nucleus, the final segmentation volume, I iseg, is produced. To

train the two CNNs a SpCycleGAN described in [39] is used to generate synthetic

microscopy volumes, Isyn. Our implementation is done using PyTorch [104].

6.1.1 Synthetic Volume Generation

As we indicated above creating labeled ground truth 3D volumes is tedious. We

use the SpCycleGAN we described in [39] to produce synthetic microscopy 3D volumes

that we use for training. Note we do not need any actual ground truth volumes to use

the approach described in this section. Synthetic microscopy volumes, Isyn, nuclei

mask ground truth volumes, Imask,gt, and detection ground truth volumes, Idet,gt,

need to be generated. We start by generating a random nuclei mask 3D volume and
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then use it to generate the synthetic volume. In our approach synthetic nuclei can

be generated with either spherical or elliptical based nuclei shapes in Iorig with N

synthetic nuclei. For spherical shapes the ith synthetic nuclei, Imask,i, is generated as

a sphere with randomly selected radius, ri, between rmin and rmax, and centered at a

randomly selected coordinate, Cdet,i, where 1 ≤ i ≤ N .

Imask,i(v) =











1, if ||v− Cdet,i||22 < r2i

0, otherwise

(6.1)

where v is denoted as a voxel. Simultaneously, the ith central region, Idet,i, is gener-

ated. We define a central region of a nucleus as a sub-region inside the nucleus where

the centroid of the sub-region matches to the centroid of the nucleus.

Idet,i(v) =











1, if ||v− Cdet,i||22 <
(

ri
2

)2

0, otherwise

(6.2)

We intentionally set the radius of Idet,i to be ri
2
to avoid multiple connected central

regions although their corresponding synthetic nuclei may be touching. Once N

synthetic nuclei and their central regions are produced, they are added to Imask,gt

and Idet,gt sequentially where Imask,gt and Idet,gt are initialized to zero. If Imask,i

overlaps with any previous synthetic nuclei in Imask,gt, then Imask,i and Idet,i are not

added to Imask,gt and Idet,gt, respectively.

For elliptical nuclei Imask,i is generated as an ellipsoid with randomly and indepen-

dently selected three semi-axes between rmin and rmax, randomly rotated in x, y, and

z-axes, and centered at a randomly selected coordinate, Cdet,i. In our experiments we

used both shape types for generating synthetic images.

Once the nuclei mask ground truth volume, Imask,gt, and the detection ground

truth volume, Idet,gt, are generated, we use the SpCycleGAN to generate the cor-

responding synthetic volume, Isyn. For our experiments we generated 20 sets of

synthetic volumes with a size of 128 × 128 × 128. Figure 6.2 shows examples of a

real microscopy volume, a synthetic microscopy volume, and synthetic ground truth

volumes visualized by Voxx [185].
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(a) real microscopy volume (b) synthetic microscopy vol-

ume

(c) nuclei mask ground truth

volume

(d) detection ground truth vol-

ume

Fig. 6.2.: Examples of a real microscopy volume, a synthetic microscopy volume and

synthetic ground truth volumes

6.1.2 Nuclei Detection and Binary Segmentation

Our first CNN used for nuclei detection and binary segmentation outputs nuclei

center locations, Cdet, and a nuclei mask volume, Imask (Figure 6.1). This CNN is

shown in more detail in Figure 6.3 and has an encoder-decoder architecture which is

modified from 3D U-Net [168]. Cdet can be selected by finding centroids for compo-

nents in Idet. To avoid false-detection, labels in Idet are labeled as background if Imask

at the same voxel locations are labeled as background. Also, components with the

number of voxels less than T are not considered. A 3D convolutional layer consists
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Fig. 6.3.: Our first CNN architecture (see Figure 6.1)

of a convolutional operation with a 3× 3× 3 kernel with 1 voxel padding, 3D batch

normalization [191], and a rectified-linear unit (ReLU) activation function. Note that

the Sigmoid function is used as an activation function for the last convolutional lay-

ers. In the encoder, 3D max-pooling layer uses 2 × 2 × 2 window with a stride of 2.

In the decoder, a 3D transposed convolutional layer followed by 3D batch normaliza-

tion [191] and ReLU activation function is used. In addition, concatenation transfers

feature maps from the encoder to the decoder. The size of input/output volumes are

64× 64× 64. If the size of Iorig is larger than 64× 64× 64, then a 3D window with

size of 64 × 64 × 64 is moved in the x, y, and z-directions until the entire Iorig is

processed [192]. During training, the Adam optimizer [100] is used with a learning

rate of 0.001. The training loss function is a sum of the Binary Cross Entropy (BCE)
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loss of the detection volume and the BCE loss of the nuclei mask volume. The BCE

loss, LBCE, is defined as

LBCE(Iout, Igt) = −
1

V

V
∑

v=1

(

Igt(v) log Iout(v) + (1− Igt(v)) log(1− Iout(v))
)

(6.3)

where Iout is the output volume, Igt is the ground truth volume, and V is the total

number of voxels in the volume. For the training set, we used 160 synthetic volumes

with a size of 64 × 64 × 64. Each synthetic volume with a size of 128 × 128 × 128

generated in the synthetic volume generation stage is divided into 8 volumes with a

size of 64× 64× 64. The training of our first CNN took approximately a day and the

inference on a volume with size of 512×512×512 took 2∼3 minutes using NVIDIA’s

GeForce GTX Titan X.

6.1.3 Nuclei Instance Segmentation

Fig. 6.4.: Our second CNN architecture (see Figure 6.1)

The goal of our method is nuclei instance segmentation which is segmenting indi-

vidual detected nuclei with distinct labels. Therefore, the last step is to segment each

nucleus in Imask at a detected coordinate, Cdet, using our second CNN shown in Fig-

ure 6.4. First, the jth nucleus is cropped in a 3D patch with a size of 32×32×32 from

Imask centered at Cdet,j , denoted as Imask,pat,j. Then the second CNN segments only

the jth nucleus in Imask,pat,j and removes other nuclei structures partially included in

the patch. Here, we denote the segmented nucleus as I iseg,pat,j. Once the jth nucleus is

segmented, it is color-coded and inserted in I iseg where the center location of I iseg,pat,j

lies at Cdet,j .



95

The second CNN in Figure 6.1, M iseg, consists of a series of 3D convolutional

layers. We use dilated convolutions [126] to have receptive field larger than the size

of the patch. From the kth feature map, Ik, with a convolution filter, h, the (k+1)th

feature map, Ik+1, is generated using a d-dilated convolution at a voxel v as

Ik+1(v) =
∑

u

Ik(v− du)h(u) (6.4)

where d is known as the dilation factor. Dilated convolutions are used to exponentially

increase the receptive fields. Table 6.1 shows the dilation factors for the convolutional

layers such that the final receptive field is larger than 32× 32× 32. During training,

the Adam optimizer [100] is used with a learning rate of 0.001. The BCE loss is used

as the training loss function. 300 patches from Imask,gt centered at Cdet,gt are used for

the training. The training of our second CNN took less than a day and the inference

took approximately 10−2 second using NVIDIA’s GeForce GTX Titan X.

Table 6.1.: Dilation factors for the convolutional layers and their corresponding re-

ceptive fields

Conv. Layer Filter Size Dilation Factor Receptive Field

1st layer 3× 3× 3 1 3× 3× 3

2nd layer 3× 3× 3 2 7× 7× 7

3rd layer 3× 3× 3 4 15× 15× 15

4th layer 3× 3× 3 8 31× 31× 31

5th layer 3× 3× 3 1 33× 33× 33

6th layer 1× 1× 1 1 33× 33× 33

6.2 Experimental Results

Our method is tested on three rat kidney data sets: Data-N1, Data-N7, and Data-

N5. To match resolution in z-direction to resolution in x and y-directions, Data-N7
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is downsampled in z-direction by a factor of 2 and Data-N5 is linearly interpolated

in z-direction by a factor of 2. rmin = 4, rmax = 6, and N = 1000 with a spherical

model and T = 10 for Data-N1, rmin = 6, rmax = 9, and N = 200 with an ellipsoidal

model and T = 20 for Data-N7, and rmin = 6, rmax = 9, and N = 50 with a spherical

model and T = 30 for Data-N5 are used, respectively. Note that the size of synthetic

nuclei for Data-N1 is small, so the size of patches during nuclei instance segmentation

is reduced to 16 × 16 × 16 and the fourth convolutional layer in M iseg is removed.

Figure 6.5, Figure 6.6, Figure 6.7 show original images and segmented images for

Data-N1, Data-N7, and Data-N5, respectively.

Our method was compared to other segmentation methods using voxel-wise and

object-wise evaluation criteria [186, 187]. The other segmentation methods include

watershed [36], Squassh [67, 68], our previous detection and segmentation method

[193] that we will denote as Det-Seg, and our previous segmentation method using a

SpCycleGAN [39] that we will denote as Seg-Morph. For the voxel-wise evaluation,

we define

accuracy =
nTP + nTN

ntotal

(6.5)

Type-I error =
nFP

ntotal

(6.6)

Type-II error =
nFN

ntotal

(6.7)

where nTP, nTN, nFP, nFN, ntotal are the number of true positive voxels (voxels cor-

rectly labeled as nuclei), true negative voxels (voxels correctly labeled as background),

false positive voxels (voxels wrongly labeled as nuclei), false negative voxels (voxels

wrongly labeled as background), and the total number of voxels in a volume, respec-

tively. For the object-wise evaluation, Precision (P ), Recall (R), and F1 score (F1)

are defined as

P =
NTP

NTP +NFP

(6.8)

R =
NTP

NTP +NFN

(6.9)

F1 =
2PR

P +R
(6.10)
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(a) I
orig
z36

for Data-N1 (b) I
iseg
z36

for Data-N1

(c) I
orig
z97

for Data-N1 (d) I
iseg
z97

for Data-N1

(e) I
orig
z159

for Data-N1 (f) I
iseg
z159

for Data-N1

Fig. 6.5.: Original and segmented images of Data-N1
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(a) I
orig
z185

for Data-N7 (b) I
iseg
z185

for Data-N7

(c) I
orig
z403

for Data-N7 (d) I
iseg
z403

for Data-N7

Fig. 6.6.: Original and segmented images of Data-N7

where NTP , NFP , and NFN are the number of true positive objects, the number

of false positive objects, and the number of false negative objects, respectively. A

segmented nucleus is defined as a true positive object if it intersects at least 50% of

the corresponding ground truth nucleus. Otherwise, it is defined as a false positive

object. A ground truth nucleus is defined as a false negative object if it intersects

less than 50% of the corresponding segmented nucleus or there is no corresponding

segmented nucleus. In our evaluation, we generated a 3D ground truth volume,

I
gt

(193:320,193:320,31:94), using ITK-SNAP [194] from Data-N1 with size of 128× 128× 64

containing 283 nuclei. Note that any components whose number of voxels is less
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(a) I
orig
z8

for Data-N5 (b) I
iseg
z8

for Data-N5

(c) I
orig
z14

for Data-N5 (d) I
iseg
z14

for Data-N5

Fig. 6.7.: Original and segmented images of Data-N5

than 50 are removed on I
iseg

(193:320,193:320,31:94) and I
gt

(193:320,193:320,31:94) to remove partially

included nuclei on the boundary of the subvolume.

Table 6.2 and Table 6.3 show the voxel-based evaluation and the object-based

evaluation, respectively. Figure 6.8 shows the segmentation results of other methods

and our new proposed method for Iz97 of Data-N1. Figure 6.9 shows the segmentation

results of other methods and our new proposed method for Data-N1, visualized by

Voxx [185]. For watershed [36], Iorig is first binarized by a manually-selected thresh-

old value of 64. Thresholding cannot distinguish nuclei and non-nuclei structures

and watershed technique over-segments foreground region. Squassh [67, 68] cannot
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distinguish nuclei and non-nuclei structures and cannot separate touching nuclei suc-

cessfully. Det-Seg [193] has a low Type-I error by rejecting non-nuclei structures but

still have a poor F1 score. Seg-Morph [39] can generate an accurate binary segmen-

tation mask. To separate touching nuclei, we used morphological operations with a

3D erosion, a 3D connected component for color-coding, and a 3D dilation with a

sphere of radius of 1 used as the structuring element. We observe that morphologi-

cal operations cannot separate all touching nuclei. Our proposed method, detecting

the locations of nuclei and individually segmenting nuclei in 3D patches using the

SpCycleGAN, can successfully segment and separate nuclei.

Table 6.2.: Accuracy, Type-I and Type-II errors for various methods on

I(193:320,193:320,31:94) of Data-N1

Accuracy Type-I error Type-II error

Watershed [36] 59.25% 40.75% 0.00%

Squassh [67,68] 80.45% 19.54% 0.01%

Det-Seg [193] 93.65% 1.71% 4.64%

Seg-Morph [39] 95.99% 2.32% 1.69%

Proposed Method 94.73% 3.85% 1.42%

Table 6.3.: Precision, Recall, and F1 score for various methods on I(193:320,193:320,31:94)

of Data-N1

Precision Recall F1 score

Watershed [36] 51.14% 92.13% 65.78%

Squassh [67,68] 85.07% 20.14% 32.57%

Det-Seg [193] 68.35% 90.22% 77.78%

Seg-Morph [39] 91.20% 82.01% 86.36%

Proposed Method 93.47% 96.80% 95.10%
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(a) original volume (b) Watershed (c) Squassh

(d) Det-Seg (e) Seg-Morph (f) our proposed method

Fig. 6.8.: Comparison of other segmentation methods and our proposed method of

the 97th image of Data-N1
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(a) original volume (b) ground truth volume (c) Watershed

(d) Squassh (e) Det-Seg

(f) Seg-Morph (g) our proposed method

Fig. 6.9.: 3D visualization comparison of other segmentation methods and our pro-

posed method of I(193:320,193:320,31:94) of Data-N1
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7. NUCLEI DETECTION USING

SPHERE ESTIMATION NETWORKS

In this chapter we describe a nuclei detection method. We define “nuclei detection”

as a task to find not only locations but also characteristics of nuclei in real fluores-

cence microscopy volumes. To perform nuclei detection we design a three dimensional

convolutional neural network known as Sphere Estimation Network (SphEsNet). Sph-

EsNet can find both the locations of nuclei and the size of nuclei (in radii) assuming

nuclei are in sphere. SphEsNet is composed of a modified 3D U-Net [168] followed

by two branches for finding the center locations of nuclei and for estimating the radii

of nuclei. To train our 3D CNN, a set of synthetic microscopy volumes are produced

using a spatially-constrained cycle-consistent generative adversarial networks (SpCy-

cleGAN) we described in [39] and in Section 2.2.3. SphEsNet can accurately detect

nuclei in multiple real microscopy data sets.

7.1 Proposed Method

Fig. 7.1.: Block diagram of SphEsNet
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Figure 7.1 is a block diagram of the proposed method to detect nuclei in 3D.

The goal is to estimate the location and size of nuclei presented in real fluorescence

microscopy 3D volumes using our Sphere Estimation Network (SphEsNet). To train

SphEsNet, we produce nuclei center volumes, Ictr, to estimate the location of nuclei,

nuclei radius volumes, Irad, to estimate the size of nuclei, and nuclei mask volumes,

Imask, to generate synthetic microscopy volumes, Isyn, using a SpCycleGAN we de-

scribed in [39]. Note Imask is composed of multiple spherical masks. The location

and size of synthetic nuclei in Isyn match to the location and size of spherical masks

in Imask. Once the SphEsNet model, M , is trained by Isyn, Ictr, and Irad, it can

be used on a real microscopy volume, Iorig, to detect nuclei. A pre-processing step

on Iorig can be used to achieve a better result, where a pre-processed volume is de-

noted as Ipre. After processing Ipre using SphEsNet, the final detection volume, Idet,

contains color-coded estimated spheres representing nuclei in the microscopy volume.

SphEsNet is implemented in PyTorch [104].

7.1.1 Synthetic Volume Generation

The process of labeling ground truth for microscopy volumes in 3D is tedious. A

method of generating synthetic volumes to train the SphEsNet is required. In this

section we use a SpCycleGAN we described in [39] and in Section 2.2.3 to generate

synthetic volumes for training. Note no real ground truth volumes are required in

this technique. The Synthetic Volume Generation stage is composed of two steps:

the Synthetic Groundtruth Volume Generation step and the Synthetic Microscopy

Volume Generation step. The Synthetic Groundtruth Volume Generation step gen-

erates a set of nuclei center volumes, Ictr, a set of nuclei radius volumes, Irad, and

a set of nuclei mask volumes, Imask. The Synthetic Microscopy Volume Generation

step generates a set of synthetic microscopy volume, Isyn, using the SpCycleGAN

we described in [39]. Three sets of volumes, Isyn, Ictr, and Irad, are then used to
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train SphEsNet. In this stage, 20 synthetic volumes with size of 128× 128× 128 are

generated.

Synthetic Groundtruth Volume Generation

During the Synthetic Groundtruth Volume Generation step, Imask is first gener-

ated. Note Imask is used in the Synthetic Microscopy Volume Generation step to

generate the corresponding Isyn where each mask matches to a synthetic nucleus.

To produce Imask with multiple masks, N mask candidate volumes are generated.

Each mask candidate volume contains one spherical mask which can be potentially

included in Imask. The ith mask candidate volume, Imask,i, is a binary volume where

a mask is centered at a random location ci = (xi, yi, zi) with a random radius, ri:

Imask,i(v) =











1, if ||v− ci||
2
2 ≤ r2i

0, otherwise

(7.1)

where 1 ≤ i ≤ N , 1 ≤ xi ≤ X, 1 ≤ yi ≤ Y , 1 ≤ zi ≤ Z, and rmin ≤ ri ≤ rmax,

and v denotes a voxel location. rmin and rmax are the minimum possible radius of a

synthetic nucleus in a volume and the maximum possible radius of a synthetic nucleus

in a volume, respectively. N can be selected based on the density of nuclei in Iorig,

and rmax and rmin can be selected based on the size of nuclei in Iorig.

After mask candidate volumes are generated, Imask is generated by adding Imask,i

in a sequential order. First, Imask is initialized to zeros. Note nuclei cannot be

overlapped physically in a biological structure. For 1 ≤ i ≤ N , the Imask,i is added to

Imask if Imask,i has no overlap with other masks already added in Imask. If Imask,i is

overlapped with one of the masks in Imask, Imask,i is not included in Imask. Once this

process is done, then Imask contains Nmask number of nuclei where Nmask ≤ N . This

approach is similar to the synthetic binary volume generation we presented in [192].

To generate Ictr and Irad, we first define a “central region”. For the jth nucleus

where 1 ≤ j ≤ Nmask whose center location is located at cj = (xj, yj , zj) and radius is

rj, the j
th central region is defined within a sphere centered at the cj with a radius of
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arj. a is a parameter determining the range of the central region where 0 ≤ a ≤ 1. In

this work, we set a = 0.5. Within the jth central region, Ictr,j contains information of

the location of the jth nucleus in Imask and Irad,j contains information of the radius

of the jth nucleus in Imask. Voxel values within the central region of Ictr,j become 1

and of Irad,j become rj whereas other voxel values not in the central region of both

Ictr,j and Irad,j become 0.

Ictr,j(v) =











1, if ||v− cj||
2
2 ≤ (arj)

2

0, otherwise

(7.2)

Irad,j(v) =











rj , if ||v− cj||
2
2 ≤ (arj)

2

0, otherwise

(7.3)

Then Ictr and Irad are the sum of Ictr,j and Irad,j for all j, respectively.

Ictr =

Nmask
∑

j=1

Ictr,j (7.4)

Irad =

Nmask
∑

j=1

Irad,j (7.5)

Synthetic Microscopy Volume Generation

In the Synthetic Microscopy Volume Generation step, Imask is used to generate

the corresponding Isyn using the SpCycleGAN we described in [39]. Figure 7.2 shows

an example of Imask, Isyn, Ictr, and Irad.

7.1.2 Pre-Processing Steps

A pre-processing step can be used to Iorig before a SphEsNet-inference step as

optional to improve detection result. We introduce three pre-processing steps: (1)

z-directional interpolation, (2) 3D smoothing, and (3) clipping.
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(a) a slice of Imask (b) the corresponding slice of

I
syn

(c) the corresponding slice of

I
ctr

(d) the corresponding slice of

I
rad (scaled by a factor of 40)

Fig. 7.2.: Examples of Imask, Isyn, Ictr, and Irad

z-directional Interpolation

In this thesis, it is assumed that nuclei are spherical shape. If the resolution in

z-direction is different with the resolutions in x and y-directions, nuclei may not look

spherical. In order to make nuclei in spherical shape, z-directional interpolation needs

to be done as a pre-processing step with the interpolation rate, r. If the number of

images of the original volume, Iorig, in z-direction is Z, then the number of images

after z-directional interpolation, Ipre, will be r × (Z − 1) + 1. Iorigzp
is the same as

Iprezr×(p−1)+1
. Images are interpolated linearly between Iprezr×(p−1)+1

and Iprezr×p+1
.
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3D Smoothing

Fluorescence microscopy images are generally noisy which can cause some false

nuclei detection. To remove noise, 3D smoothing is used as a pre-processing step with

a 3D Gaussian filter with standard deviation of σ.

Clipping

To remove noise in background, clipping can be used as a pre-processing step.

Clipping can be done with a thresholding value, τ :

Ipre(v) =











Iorig(v), if Iorig(v) > τ

0, otherwise

(7.6)

7.1.3 A 3D Convolutional Neural Network

Fig. 7.3.: Architecture of the Sphere Estimation Network

Figure 7.3 shows the architecture of our Sphere Estimation Network. Our archi-

tecture consists of a backbone network and two branches. The first branch estimates

center locations of nuclei and the second branch estimates radii of nuclei. We de-

note the first branch as the CTR branch and the second branch as the RAD branch.

For the backbone network, we employ a modified 3D U-Net architecture [168]. Our
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architecture uses the same number of convolutional layers, max-pooling layers, and

transposed convolution layers in 3D U-Net, but the number of channels are reduced.

A 3D convolutional layer consist of a convolutional operation with a 3 × 3 × 3 ker-

nel with 1 voxel padding to maintain the same volume size, followed by 3D batch

normalization [191] and a rectified-linear unit (ReLU) activation function. In the

encoder part, a 3D max-pooling layer uses 2 × 2 × 2 window with a stride of 2. In

the decoder part, a 3D transposed convolution layer is used in the upsampling path.

Between the encoder part and the decoder part, shortcut connections transfer feature

maps to preserve spatial information. For the CTR branch, one convolutional layer

is used. The feature map intensities are between 0 and 1 to classify each voxel to

center location or not, so the Sigmoid function is used as an activation function. For

the RAD branch, two convolutional layers are used. The feature map intensities are

greater than 0 so the ReLU function is used as an activation function. More details

on train and inference are provided below.

Training

During training, Isyn, Ictr, and Irad generated from the Synthetic Volume Gener-

ation stage are used as an input volume, a ground truth volume in the CTR branch,

and a ground truth volume in the RAD branch, respectively. Note that 20 sets of

volumes with size of 128× 128× 128 are generated in the Synthetic Volume Genera-

tion stage. We divide each volume to 8 volumes with size of 64× 64× 64, so 160 sets

of volumes are used to train the model, M . Our training loss function, L, is a linear

combination of the Binary Cross Entropy (BCE) loss, LBCE, at the CTR branch and

the Mean Squared Error (MSE) loss, LMSE, at the RAD branch.

L(Ictr, Irad, Ictr,out, Irad,out) = LBCE(Ictr, Ictr,out) + λLMSE(Irad, Irad,out) (7.7)

where Ictr is the ground truth volume in the CTR branch, Irad is the ground truth

volume in the RAD branch, Ictr,out is the output volume in the CTR branch, and

Irad,out is the output volume in the RAD branch, respectively. λ is a weight coefficient
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which can emphasize one loss term over the other loss term. For example, if λ is small,

then the BCE loss will be more emphasized. Also, if λ is big, then the MSE loss will

be more emphasized. In this work, we set λ = 1 unless specified. More specifically,

the BCE loss is defined as

LBCE(Ictr, Ictr,out) = −
1

V

V
∑

v=1

(

Ictr(v) log Ictr,out(v) + (1− Ictr(v)) log(1− Ictr,out(v))
)

(7.8)

and the MSE loss is defined as

LMSE(Irad, Irad,out) =
1

V

V
∑

v=1

(

Irad(v)− Irad,out(v)
)2

(7.9)

where V is the number of voxels in a volume. To train our model, the Adam opti-

mizer [100] is used with a learning rate of 0.001. The training of our SphEsNet took

approximately 2 days using NVIDIA’s GeForce GTX Titan X.

Inference

SphEsNet is trained on volumes with size of 64 × 64 × 64 so an input volume

to the model should be 64 × 64 × 64. If an input microscopy volume is bigger than

64× 64× 64 then our model can only process a subvolume with size of 64× 64× 64.

To process the entire Iorig, a 3D window is slided with size of 64× 64× 64, similarly

done as [192]. First, the input microscopy volume is reflection-padded by 16 voxels.

Then we slide the 3D window to x, y, and z-direction by 32. Note that nuclei which

are partially included on the boundary of the 3D window may generate inaccurate

result. Therefore, only the central volume with size of 32 × 32 × 32 are used. We

repeat this until the entire input microscopy volume is processed.

Once the process is done, then we have two output volumes, Ictr,out and Irad,out.

Note Ictr,out is the output volume from the CTR branch and Irad,out is the output

volume from the RAD branch. First of all, local maxima of Ictr,out, ck, are selected as

the final center coordinate of the kth nucleus. We avoid selecting more than two center

coordinates within a cube with length of rmin because we set the smallest radius of
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nuclei in a volume is rmin. Sometimes we observe that multiple local maxima with the

same intensity are connected as a 3D region. In this case, a centroid of the 3D region

is selected as the final center coordinate. After selecting center coordinates of nuclei,

the radius for the kth nucleus is estimated as Irad,out(ck) + 1 to generate a sphere

centered at ck. We observed that the real nuclei in Iorig are not perfectly spherical

and the radius is estimated to the shortest distance from the estimated center to

the boundary of nuclei. So we increment the estimated radius, Irad,out(ck), by 1 to

increase the overlapping region between the estimated sphere and the nucleus. As a

final step, any other center locations within a sphere are removed because a center

location of a nucleus cannot physically be in another nucleus. The final detection

volume, Idet, is generated after color-labeling the spheres. The inference of SphEsNet

on a volume with size of 512 × 512 × 512 took approximately 3∼5 minutes using

NVIDIA’s GeForce GTX Titan X.

7.2 Experimental Results

We tested our method on five different real fluorescence microscopy data sets:

Data-N1, Data-N5, Data-N8, Data-N4, and Data-N9. In this work, we trained three

models, MData−N1, MData−N5, and MData−N8. MData−N1 was trained by synthetic

Data-N1 generated with rmin = 4, rmax = 6, and N = 1000. MData−N5 was trained

by synthetic Data-N5 generated with rmin = 8, rmax = 10, and N = 50. MData−N8

was trained by synthetic Data-N8 generated with rmin = 8, rmax = 12, and N = 200.

rmin, rmax, and N are selected based on the characteristics of the data sets. We

observed that Data-N8 contains heavy noise so we selected λ = 0.1 to emphasize

more on nuclei location to avoid false detection. Data-N1 was tested on MData−N1,

Data-N5 on MData−N5, and Data-N8 on MData−N8, respectively. In addition, Data-

N4 was tested on MData−N1 and Data-N9 was tested on MData−N5 because the size of

nuclei in Data-N4 is similar to the size of nuclei in Data-N1 and the size of nuclei in

Data-N9 is similar to the size of nuclei in Data-N5. Pre-processing steps are used on
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some data sets to improve detection results. z-directional interpolation with r = 2 was

used on Data-N5 to make nuclei in Data-N5 in spherical shapes. A 3D smoothing

with σ = 2 was used on Data-N8 because Data-N8 contains heavy noise. Lastly,

clipping with τ = 5 was used on Data-N9 to remove noise in the background region.

Figure 7.4, Figure 7.5, Figure 7.6, Figure 7.7, and Figure 7.8 show that our method

can successfully detect nuclei on various data sets.

Our method was compared to other detection methods. To evaluate detection

results, we use an object-level quantification. A detected nucleus is counted as true

positive (TP) if it intersects at least 50% of the corresponding ground truth nucleus.

Otherwise, it is counted as false positive (FP). A ground truth nucleus is counted as

false negative (FN) if it intersects less than 50% of the corresponding detected nucleus

or there is no corresponding detected nucleus. NTP , NFP , and NFN are denoted as

the number of true positive, the number of false positive, and the number of false

negative, respectively. Then Precision (P ), Recall (R), and F1 score (F1) are defined

as the followings [186,187]:

P =
NTP

NTP +NFP

(7.10)

R =
NTP

NTP +NFN

(7.11)

F1 =
2PR

P +R
(7.12)

In our evaluation, we generated a 3D ground truth volume, Igt(193:320,193:320,31:94), us-

ing ITK-SNAP [194] from Data-I with size of 128 × 128 × 64 containing 283 nu-

clei. Note any components whose number of voxels is less than 50 are removed on

Idet(193:320,193:320,31:94) and I
gt

(193:320,193:320,31:94) to remove partially included nuclei on the

boundary of the subvolume during the evaluation.

Watershed [36] is generally used to separate touching nuclei in microscopy volumes.

We used watershed on an original volume binarized by a manually-selected threshold

value of 64. Due to inhomogeneous intensity presented in microscopy volumes, we

observe that noise in the central region is detected, causing low precision. To correct

inhomogeneity, a 3D adaptive histogram equalization [38] followed by binarization
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(a) I
orig
z50

(b) I
det
z50

(c) I
orig
z104

(d) I
det
z104

(e) I
orig
z172

(f) I
det
z172

Fig. 7.4.: Original and detected images of Data-N1
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(a) I
orig
z10

(b) I
det
z10

(c) I
orig
z16

(d) I
det
z16

Fig. 7.5.: Original and detected images of Data-N5

with a manually-selected threshold value of 192 is used as a pre-processing step before

watershed technique. We will denote the method of using a 3D adaptive histogram

equalization and watershed technique as Watershed+. The 3D adaptive histogram

equalization help removing noise in the microscopy volume but non-nuclei subcellular

structures are still captured. Over-detection from the watershed reduces precision. A

mask R-CNN [136] is a 2D segmentation method which can both detect and segment

objects in distinct labels. A pre-trained Mask R-CNN with ResNet-50 [109] and a

Feature Pyramid Network (FPN) [129] is fine-tuned using the same training images

used for the SphEsNet. To combine 2D segmentation results into 3D, we use a



115

(a) I
orig
z14

(b) I
det
z14

Fig. 7.6.: Original and detected images of Data-N8

(a) I
orig
z8

(b) I
det
z8

Fig. 7.7.: Original and detected images of Data-N4

z-directional combination as a post-processing step. The mth mask on Izp whose

centroid located at (xm,p, ym,p) and the nth mask on Izp+1 whose centroid located at

(xn,p+1, yn,p+1) are combined as the same nucleus if the distance between (xm,p, ym,p)

and (xn,p+1, yn,p+1) is less than
rmax

2
. We will denote this method as Mask R-CNNz. A

2D Mask R-CNN cannot utilize depth information, so it performs poor segmentation.

In addition, we observed the Mask R-CNN was overfitted. Alternatively, we developed
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a two-stage method for 3D nuclei detection-segmentation [193]. We will denote this

method as Det-Seg. The 3D segmentation CNN was trained by a set of synthetic

volumes generated by blurring and noise operations. The synthetic volumes used in

[193] were not realistic so segmentation masks were not accurate causing low precision.

More recently, we generated an accurate binary segmentation mask using a 3D CNN

trained by a set of synthetic volumes generated by a SpCycleGAN we described

in [39]. To separate touching nuclei in the binary segmentation mask, morphological

operations are used as a post-processing step. We used a 3D erosion, a 3D connected

component (for color-coding), and a 3D dilation to separate touching nuclei. A ball

with radius of 1 is used as a structuring element for the 3D erosion and the 3D

dilation. We will denote this method as Seg-Morph. We observe that some nuclei are

still not separated by morphological operations leading to low recall. Our method

detects the locations of nuclei with their radii accurately so over-detection issues

or touching nuclei issues can be avoided. Table 7.1 shows our method outperforms

numerically. Figure 7.9 shows the original image and the segmentation results. The

original volume, the ground truth volume, and 3D results are visualized using Voxx

[185] shown in Figure 7.10.

Table 7.1.: Precision, Recall, and F1 score for various methods on I(193:320,193:320,31:94)

of Data-N1

Precision Recall F1 score

Watershed [36] 51.14% 92.13% 65.78%

Watershed+ [36, 38] 41.31% 97.17% 57.97%

Mask R-CNNz [136] 20.85% 39.20% 27.22%

Det-Seg [193] 68.35% 90.22% 77.78%

Seg-Morph [39] 91.20% 82.01% 86.36%

Proposed Method 84.04% 96.63% 89.90%
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(a) I
orig
z31

(b) I
det
z31

(c) I
orig
z137

(d) I
det
z137

Fig. 7.8.: Original and detected images of Data-N9
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(a) original image (b) Watershed (c) Watershed+

(d) Mask R-CNNz (e) Det-Seg

(f) Seg-Morph (g) our proposed method

Fig. 7.9.: Comparison of other detection methods and our proposed method of Iz50

of Data-N1
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(a) original volume (b) ground truth volume (c) Watershed

(d) Watershed+ (e) Mask R-CNNz (f) Det-Seg

(g) Seg-Morph (h) our proposed method

Fig. 7.10.: 3D visualization comparison of other detection methods and our proposed

method of I(193:320,193:320,31:94) of Data-N1
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8. COLOR LABELING

We want to distinctly label nuclei with different colors for visualizing the segmentation

results. Therefore, selecting proper colors for each nucleus is important. For example,

we do not want to label adjacent nuclei using the same color or colors that human

eye cannot distinguish immediately. In this chapter, we describe the color labeling

method we developed.

8.1 Proposed Color Labeling Method

Fig. 8.1.: Block diagram of our color labeling method

Figure 8.1 is a block diagram of our color labeling method. The input is a binary

image/mask after segmentation, IBW , and the output is a color labeled image, ICL.

Nuclei in IBW are labeled distinctly using 3D connected component with morpholog-

ical operations [40] to separate touching nuclei. Also, we generate a colormap we use

in color labeling. Lastly, colors are assigned to the labels on nuclei to produce ICL.

The details are described below.
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8.1.1 Labeling

The goal of this step is to label nuclei distinctly in a binary image, IBW . A

simple 3D connected component [40] may not label successfully especially when two

or more nuclei are touching. 3D watershed technique [36] tends to over-segment

when nuclei are in irregular shapes. Therefore, we use 3D connected component

with morphological operations [40] to label nuclei distinctly with separating touching

nuclei.

To separate touching nuclei, we first use a 3D morphological erosion with a sphere

of radius 1 as the structuring element. For the structuring element of the 3D erosion,

we select the radius of a sphere to be 1 because we observe that the nuclei structures

are not preserved or disappeared when the radius becomes too big. After the erosion,

we use a 3D connected component with 6 point neighborhood to label each component

distinctly. Finally, we want to recover nuclei structures by using a 3D morphological

dilation with a sphere of radius 1 as the structuring element. Using this labeling

technique, we can label nuclei distinctly even when some of them are touching.

8.1.2 Colormap Generation

Fig. 8.2.: The first 100 colors of our colormap

As mentioned above, we do not want to label adjacent nuclei using similar colors.

To achieve this, we generate a colormap which is used in the color assignment step.

We denote ci to be an RGB coordinate for the ith color. The first color is set to

be blue where c1 = (0, 0, 255). For i ≥ 2, ci is selected as the farthest distance

from all previous colors in the Lab color space which is known to match human

vision closely [195]. Note the background color, cb, of I
CL is set to be black where
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cb = (0, 0, 0). To avoid selecting a color close to black, we remove any colors from the

colormap whose R, G, or B value is less than tc where tc is set to be 50 in our work.

Figure 8.2 shows the first 100 colors of our colormap.

8.1.3 Color Assignment

Fig. 8.3.: 3D window used for color assignment

The last step is to assign colors using our colormap to the labeled image. As

mentioned above, we do not want to use the same color for adjacent nuclei. To make

sure that the same color is not assigned to two or more nuclei within a certain distance,

we use a 3D window. For each nucleus, we first find a 3D bounding box fitting the

nucleus. Then we find a 3D window from the 3D bounding box with a margin of

m as shown in Figure 8.3. If the 3D bounding box is I(x1:x2,y1:y2,z1:z2), then the 3D

window becomes I(x1−m:x2+m,y1−m:y2+m,z1−m:z2+m). We set m to be 40 voxels. Lastly,

we find the smallest j where cj is not presented within the 3D window. The color of

the nucleus is selected to be cj. This procedure is repeated until color is assigned to

all nuclei in the volume. Using this color assigning method, we can guarantee that

the same color is used at least m voxels away.
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8.2 Experimental Results

Figure 8.4 shows our color labeling result. The binary segmentation image is gen-

erated using our method described in [39]. Our color labeling method can successfully

separate touching nuclei in 3D and label nuclei in distinguishable colors visually.

(a) Original image (b) Binary image (c) Color-coded image

Fig. 8.4.: Color-Labeling result
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9. CONCLUSIONS

9.1 Summary

In this thesis we describe multiple methods to analyze fluorescence microscopy

images. Especially, this thesis focuses on segmentation and detection of subcellular

structures presented in three dimensional fluorescence microscopy images. The main

contributions of this thesis are listed as follows:

• Boundary Segmentation Using Steerable Filters

We describe a method to segment tubular boundary of biological structures.

To segment foreground in fluorescence microscopy images having non-uniform

intensity a 3D adaptive histogram equalization is used to correct inhomogeneity.

The main challenge of this work is to segment only tubule structures while

other structures such as lumen are presented in fluorescence microscopy images.

To distinguish tubule in foreground from lumen, steerable filters [37] are used

because steerable filters can capture strong directional tendencies on tubule.

Our method can successfully segment tubule boundaries in various data sets

from rat kidney and liver.

• Nuclei Segmentation Using Convolutional Neural Networks

We present a nuclei segmentation method of fluorescence microscopy images.

We design and train three dimensional convolutional neural networks (CNNs).

A large set of labeled training volumes is necessary to train CNNs. The la-

beling process especially in 3D is tedious. In this work we generate synthetic

microscopy volumes to train our CNNs. We assume nuclei are in ellipsoidal

shapes and we add a blurring operation modeled from a PSF and a noise op-

eration which is a mixture of a Poisson noise and a Gaussian noise. Our 3D
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CNNs trained by synthetic microscopy volumes can successfully segment nuclei

in real microscopy volumes without using any real ground truth volumes.

• Nuclei Detection and Segmentation Using Convolutional Neural Networks

We introduce a nuclei detection and segmentation method to label nuclei dis-

tinctly. To detect center locations of nuclei a 3D adaptive histogram equaliza-

tion [38], a 3D distance transform, and a 3D classification CNN are used. After

the detection stage, each nucleus is distinctly segmented using a segmentation

CNN in a 3D patch surrounding the nucleus. The segmentation CNN is trained

by a set of synthetic microscopy volumes. Due to the detection stage, non-nuclei

structures presented in real fluorescence microscopy volumes are rejected which

improves our segmentation accuracy.

• Center-Extraction-Based Nuclei Instance Segmentation

We describe a two-stage method of segmenting nuclei in distinct labels. Our

first CNN detects the center locations of nuclei and generates a binary segmen-

tation mask. Using the nuclei center locations and the binary segmentation

mask from the first CNN, our second CNN individually segments nuclei in 3D

patches surrounding each nucleus. To train our CNNs, realistic synthetic vol-

umes generated by a spatially constrained cycle-consistent adversarial network

(SpCycleGAN) [39] are used without using any real ground truth volumes. Our

method can detect and segment nuclei in real microscopy volumes accurately.

• Nuclei Detection Using Sphere Estimation Network

We develop a Sphere Estimation Network (SphEsNet) which can detect nuclei

in fluorescence microscopy volumes. Our network is a fully three dimensional

CNN. In this work we assume nuclei presented in fluorescence microscopy vol-

umes are spherical. Our network not only finds the locations of nuclei but also

estimates the radii of nuclei. The SphEsNet is trained by realistic synthetic

microscopy volumes using the SpCycleGAN [39] without using any real ground
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truth volumes. Our evaluation shows that the spheres at the estimated loca-

tions with the estimated radii generated by the SphEsNet highly overlap with

nuclei presented in multiple real microscopy data sets.

9.2 Future Work

Our methods can be improved and extended in the following ways:

• Tubule Segmentation

In our work we segmented tubular boundary of biological structures such as a

nephron in rat kidney or blood vessels in liver. We were able to successfully

distinguish tubular structures from other subcellular structures presented in

fluorescence microscopy volumes. Tubule segmentation is a prerequisite step

to quantify the biological structures. Using our segmentation results we can

characterize the biological structures such as volumes.

• Nuclei Segmentation

In our work we initially segmented nuclei and rejected other non-nuclei struc-

tures. Additionally, we labeled nuclei distinctly. To train our CNNs, the Sp-

CycleGAN [39] produces realistic synthetic microscopy volumes without using

any real ground truth volumes. We plan to improve the SpCycleGAN to pro-

duce multiple types of synthetic nuclei in various sizes and shapes. We expect

the improvement of the SpCycleGAN can enable segmenting multiple types of

nuclei presented in real microscopy volumes.

• Nuclei Detection

Nuclei detection is an important for analyzing nuclei in fluorescence microscopy

images. In our work we not only find locations of nuclei but also estimate radii

of nuclei using a CNN with two branches. We plan to design a multi-branch

CNN which can obtain more information of nuclei such as types or textures.
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9.3 Publications Results From The Thesis

Journal Papers

1. D. J. Ho, C. Fu, D. Mas Montserrat, P. Salama, K. W. Dunn and E. J.

Delp, “Sphere Estimation Network: Three Dimensional Nuclei Detection of

Fluorescence Microscopy Images”, To be submitted to the IEEE Transactions

on Medical Imaging.

2. C. Fu, S. Han, S. Lee, D. J. Ho, P. Salama, K. W. Dunn and E. J. Delp, “Three

Dimensional Nuclei Synthesis and Instance Segmentation”, To be submitted to

the IEEE Transactions on Medical Imaging.

Conference Papers

1. D. J. Ho, S. Han, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, “Center-

Extraction-Based Three Dimensional Nuclei Instance Segmentation of Fluores-

cence Microscopy Images”, Submitted to Proceedings of the IEEE-EMBS Inter-

national Conference on Biomedical and Health Informatics, May 2019, Chicago,

IL.

2. C. Fu, S. Lee, D. J. Ho, S. Han, P. Salama, K. W. Dunn, and E. J. Delp,

“Three Dimensional Fluorescence Microscopy Image Synthesis and Segmenta-

tion,” Proceedings of the Computer Vision for Microscopy Image Analysis work-

shop at Computer Vision and Pattern Recognition, pp. 2302-2310, June 2018,

Salt Lake City, UT.

3. D. J. Ho, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, “Nuclei Detection

and Segmentation of Fluorescence Microscopy Images Using Three Dimensional

Convolutional Neural Networks,” Proceedings of the IEEE International Sym-

posium on Biomedical Imaging, pp. 418-422, April 2018, Washington D.C.

4. D. J. Ho, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, “Nuclei Segmenta-

tion of Fluorescence Microscopy Images Using Three Dimensional Convolutional
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Neural Networks,” Proceedings of the Computer Vision for Microscopy Image

Analysis workshop at Computer Vision and Pattern Recognition, pp. 834-842,

July 2017, Honolulu, HI.

5. C. Fu, D. J. Ho, S. Han, P. Salama, K. W. Dunn, and E. J. Delp, “Nuclei

Segmentation of Fluorescence Microscopy Images Using Convolutional Neural

Networks,” Proceedings of the IEEE International Symposium on Biomedical

Imaging, pp. 704-708, April 2017, Melbourne, Australia.

6. D. J. Ho, P. Salama, K. W. Dunn, and E. J. Delp, “Boundary Segmentation

for Fluorescence Microscopy Using Steerable Filters,” Proceedings of the SPIE
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