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ABSTRACT

Fang, Shaobo. Ph.D., Purdue University, May 2019. Single View Reconstruction for
Food Portion Estimation. Major Professor: Edward J. Delp, Fengqing Zhu.

3D scene reconstruction based on single-view images is an ill-posed problem since

most 3D information has been lost during the projection process from the 3D world

coordinates to the 2D pixel coordinates. To estimate the portion of an object from a

single-view requires either the use of priori information such as the geometric shape

of the object, or training based techniques that learn from existing portion sizes

distribution. In this thesis, we present a single-view based technique for food portion

size estimation.

Dietary assessment, the process of determining what someone eats during the

course of a day, provides valuable insights for mounting intervention programs for

prevention of many chronic diseases such as cancer, diabetes and heart diseases. Mea-

suring accurate dietary intake is considered to be an open research problem in the

nutrition and health fields. We have developed a mobile dietary assessment system,

the Technology Assisted Dietary AssessmentTM (TADATM) system to automatically

determine the food types and energy consumed by a user using image analysis tech-

niques.

In this thesis we focus on the use of a single image for food portion size estima-

tion to reduce a user’s burden from having to take multiple images of their meal.

We define portion size estimation as the process of determining how much food (or

food energy/nutrient) is present in the food image. In addition to estimating food en-

ergy/nutrient, food portion estimation could also be estimating food volumes (in cm3)

or weights (in grams), as they are directly related to food energy/nutrient. Food por-
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tion estimation is a challenging problem as food preparation and consumption process

can pose large variations in food shapes and appearances.

As single-view based 3D reconstruction is in general an ill-posed problem, we

investigate the use of geometric models such as the shape of a container that can

help to partially recover 3D parameters of food items in the scene. We compare

the performance of portion estimation technique based on 3D geometric models to

techniques using depth maps. We have shown that more accurate estimation can be

obtained by using geometric models for objects whose 3D shape are well defined. To

further improve the food estimation accuracy we investigate the use of food portions

co-occurrence patterns. The food portion co-occurrence patterns can be estimated

from food image dataset we collected from dietary studies using the mobile Food

RecordTM (mFRTM) system we developed. Co-occurrence patterns is used as prior

knowledge to refine portion estimation results. We have been shown that the por-

tion estimation accuracy has been improved when incorporating the co-occurrence

patterns as contextual information.

In addition to food portion estimation techniques that are based on geometric

models, we also investigate the use deep learning approach. In the geometric model

based approach, we have focused on estimation food volumes. However, food volumes

are not the final results that directly show food energy/nutrient consumed. Therefore,

instead of developing food portion estimation techniques that lead to an intermedi-

ate results (food volumes), we present a food portion estimation method to directly

estimate food energy (kilocalories) from food images using Generative Adversarial

Networks (GANs). We introduce the concept of an “energy distribution” for each

food image. To train the GAN, we design a food image dataset based on ground

truth food labels and segmentation masks for each food image as well as energy in-

formation associated with the food image. Our goal is to learn the mapping of the

food image to the food energy. We then estimate food energy based on the estimated

energy distribution image. Based on the estimated energy distribution image, we
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use a Convolutional Neural Networks (CNN) to estimate the numeric values of food

energy presented in the eating scene.
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1. INTRODUCTION

1.1 Problem Formulation and Challenges

Due to the growing concern of chronic diseases and other health problems related

to diet, there is a need to develop accurate methods to estimate an individual’s food

and energy intake. Dietary assessment, the process of determining what someone

eats during the course of a day, provides valuable insights for mounting intervention

programs for prevention of many of the chronic diseases. Measuring accurate dietary

intake is considered to be an open research problem in the nutrition and health fields.

Traditional dietary assessment technique, for example the written dietary record, is

a time consuming and tedious process, which requires individuals to keep detailed

written reports for 3-7 days of all food or drinks consumed [1, 2].

By February 2016, 72% of American adults were smartphone owners and there has

been a noticeable rise in mobile phone and the Internet usage in the past few years in

the emerging and developing nations [3]. Smartphones provide a unique mechanism

for collecting dietary information and monitoring personal health. With smartphones’

capabilities of capturing images, connecting to the Internet and on-device computa-

tion ability, a user’s burden to keep dietary record could be significantly reduced by

using image-based dietary assessment techniques. For example, instead of keeping

a detailed written record, a user can capture an eating occasion image using their

mobile phones. Then, food types and food energy/nutrient amounts consumed can

be estimated based on the captured eating occasion image. The importance of us-

ing eating occasion images to record and estimate dietary intake versus traditional

approaches has been highlighted in [4, 5].

In recent years, several image-based dietary assessment systems that use food

images acquired by mobile phones during eating occasions, have been developed to
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automatically determine the food types and energy consumed using image analysis

and computer vision techniques. Such systems include the TADATM system [6, 7],

FoodLog [8], FoodCam [9], DietCam [10], and Im2Calories [11].

There are two important tasks in image-based automatic dietary assessment, one

is food recognition/classification and the other is food portion estimation. Food recog-

nition/classification determines food types. Food portion estimation determines how

much energy/nutrient a user consumes. For food recognition/classification task, re-

cent works focused on the use of Convolutional Neural Networks (CNN) have shown

impressive results on benchmark food datasets [12]. Although CNN has become

a common architecture for food classification, to date, food portion estimation tech-

niques developed by different groups are based on fundamentally different approaches.

To obtain the food portions of energy/nutrients, food volumes could be useful

intermediate results. Existing works in food volume estimation focused on inves-

tigating the geometric features of food objects. Based on the estimated food vol-

umes, food weights (using food density) and food energy/nutrients are then obtained.

Food volumes are not the necessary intermediate results for estimation of food en-

ergy/nutrients. Therefore, it is possible to skip the food volumes estimation step and

directly estimate food energy/nutrients.

Furthermore, different dietary assessment systems may capture the eating scenes

differently (for example, single-view versus multi-view, using RGB sensors versus us-

ing RGB-D sensors). Therefore, different food portion estimation techniques may

have different requirements on input images. As a result, food portion estimation

remains an open research problem. In this thesis we focus on addressing the chal-

lenge of estimating food portions in the Technology Assisted Dietary AssessmentTM

(TADATM) system that we developed.

We have been developing the Technology Assisted Dietary AssessmentTM (TADATM)

system as shown in Figure 1.1, to acquire and process food images [4, 6, 7]. The

TADATM system and the associated mobile Food RecordTM (mFRTM) application

allows users to acquire food image using a mobile telephone. Our goal is to determine
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Fig. 1.1.: The Technology Assisted Dietary AssessmentTM (TADATM) system.



4

Fig. 1.2.: Examples of eating scene images.

what types of food and how much energy is consumed by a user during the course of

a day. Image processing and computer vision analysis techniques have been used to

determine the food type, portion size, the energy (kilocalories) and nutrients of the

food [7,13,14]. As using the single image reduce a user burden capturing the eating

scene, the food portion estimation technique we are developing is focused on the use

of a single-view eating occasion image captured by using the mFRTM on a consumer

mobile device (for example, iPhones and Android phones). To date the eating scenes

are captured in RGB digital images.

Food portion estimation based on a single-view image is an ill-posed problem since

most 3D information has been lost during the projection process from the 3D world

coordinates onto the 2D pixel coordinates. To date, there is no 3D reconstruction

techniques in computer vision that fully reconstruct the 3D structures of objects based

on a single-view RGB image. Complete 3D reconstruction of the eating scene based

on a single RGB image is not possible. For example, the food regions that are not

visible from the viewing angle of the eating scene image can not be reconstructed.

Furthermore, different food preparation and consumption processes impose large vari-

ations on food shapes and appearances that also add to challenges for food portion

estimation. For example, as shown in Figure 1.2 spaghetti has different shapes and

garlic bread has different cooking conditions.
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Fig. 1.3.: TADATM mFRTM user interface.

To conclude, the 3D structure information of food objects is always limited and

incomplete in the single-view eating scene image. The challenge of single-view food

portion estimation is essentially obtaining an accurate food energy/nutrient estimate

given that complete 3D food objects reconstruction is not possible. To obtain accu-

rate estimates of food portions, the use of prior information is required. The prior

information includes calibration object used as a reference in the eating scene, the

food shapes, the food combination patterns and food portion distributions estimated

from existing food image dataset.

1.2 Overview of the Technology Assisted Dietary AssessmentTM System

We have developed a mobile dietary assessment system, the Technology Assisted

Dietary AssessmentTM (TADA)TM system [1,6,15] as shown in Figure 1.1 to automat-

ically determine the food types and energy consumed by a user using image analysis

techniques [7, 13, 14].

The TADATM system consists of two main parts: a mobile application that runs on

a mobile device, also know as the mobile food recordTM (mFRTM), and the “backend”

cloud-like system consisting of the database servers which includes the food image

database and food nutrients database system, and the computational server for food-

image analysis techniques [16].
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Fig. 1.4.: The fiducial marker pattern (left) and a cropped out fiducial marker (right)

from the eating scene image captured using the TADATM app.

The TADATM mobile app is available for iOS 8 (iPhone, iPod and iPad) and

above, and Android 4.3 and above at this moment. The user interface of TADATM

system is shown in Figure 1.3. User can use the TADATM app to acquire before

and after eating scenes images. The food images captured using TADATM mFRTM

are then uploaded to our server for processing. We implement image analysis and

computer vision techniques for food segmentation, food classification and food portion

estimation tasks on our servers.

We use a checkerboard pattern color fiducial marker (FM) shown in Figure 1.4, to

provide essential information for color correction [17] and food portion estimation [14].

As most of the 3D information has been lost projecting food objects from 3D world

coordinates onto the 2D image coordinates, the known size FM provides world scale

reference and can also be used as a calibration target for camera calibration during

food portion estimation using geometric models. To ensure that fiducial marker can

be detected in the food image, we implement fiducial marker detection and blur

detection on mobile app as shown in Figure 1.5.

In addition to the food images, metadata of the user can also be acquired. The

metadata that will be sent to our server together with the before and after eating

scene images include a user’s ID (each participant has been assigned a unique user ID
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Fig. 1.5.: Fiducial marker detection on TADATM app.
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Fig. 1.6.: A valid user ID must be entered prior to the first use of the mobile app.

in a dietary study), the time stamp of the food images taken and the GPS coordinates

of the food images where they were taken (location information is optional and user

can choose not to include GPS coordinates in the metadata).

The user ID is important for identifying which user has sent a specific eating scene

images. To make sure that a user enter the assigned user ID before capturing food

images, the first time a user downloads and uses the mFRTM, a notification will be

popped up as a reminder as shown in Figure 1.6. A user will not be able to proceed

using the mFRTM unless the user ID has been entered.



9

To assist the users using the mobile app, we have implemented the “Ate It All”

function and the “Send Unsent Data” function. The system implementation for the

above two functions is also part of the contribution for this thesis.

Sometimes a user consumes all food items that have been presented in the before

eating image. Therefore, we have implemented the feature “Ate It All” button as

shown in 1.7 to further simplify the process for users who consume all food presented.

By clicking the “Ate It All” button, a user will no longer need to capture another

image for the after eating scene for the estimation of food residue. The use of “Ate

It All” button further reduce a user’s burden capturing the eating scenes.

As users will use the TADATM mobile app in a free living condition, it is inevitable

that occasionally the captured eating scene images could not be immediately sent to

our server for image analysis due to no connection or weak signal. For the food images

that are captured but not sent successfully, we will have the food images stored on

a user’s mobile device and send the eating scenes images later when stable Internet

connection becomes available. We have implemented the “Send Unsent Data” button

as shown in Figure 1.8b so that a user can attempt to send captured images to our

server. In addition, the “Send Unsent Data” button could also be used as a reminder

to inform users of unsent data currently saved on their device. With all eating scene

images have been successfully sent to our server, the “Send Unsent Data” button will

be disabled and show “No Unsent Data” as shown in Figure 3.4.

The backend server processes food images captured using mFRTM and hosts a web

interface for researchers in dietary study to examine eating occasion images captured

by the participants. The main page of internal website (where only researchers can

access using correct credentials) is shown as in Figure 1.9. The eating occasion images

are organized in “before” and “after” image pairs as shown in Figure 1.10.

To date we have collected food images from different dietary studies. To organize

the captured eating occasion images in different dietary studies, “Image Archive (I-

TADA)” has been implemented. Researchers can examine eating occasion images

based on dietary study tags through “I-TADA” as shown in Figure 1.11.



10

Fig. 1.7.: A user can choose to skip capturing the after eating image using “Ate It

All” button.
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(a) No unsent eating scene images. The “Send

Unsent Data” button is disabled and shows the

message: “No Unsent Data”.

(b) Unsent eating scene images saved in

mFRTM.

Fig. 1.8.: The “Send Unsent Data” button will be enabled and a user can click the

button to send food images when stable Internet connectivity becomes available.
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Fig. 1.9.: The internal access user interface for researchers of dietary studies.
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Fig. 1.10.: Eating occasion images displayed in “before” and “after” image pairs.
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Fig. 1.11.: Eating occasion images indexed by dietary study tag through “I-TADA”.
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Fig. 1.12.: User IDs indexed by dietary study tag through “E-TADA”.

In addition to searching food images indexed by dietary studies, researchers can

also search user IDs associated with a specific dietary study through “E-TADA” as

shown in Figure 1.12.

Researchers can then examine all food images captured by a participant indexed

by the user ID as shown in Figure 1.13.

The image analysis technique we implemented on the server include food region

segmentation, food classification and food portion estimation as shown in Figure

1.1. In this thesis we focus on the food portion estimation of the TADATM system.

We define portion size estimation as the process of determining how much food en-

ergy/nutrient is present in the food image. Food volumes or food weights (in cm3 or

grams) are useful intermediate results for food energy/nutrient estimation, therefore

food volumes or food weights estimation can also be considered as food portion esti-

mation. For example, after obtaining the volume of each food, we can estimate the

weight using the food density (measured in grams/cubic centimeter [18]). The food

energy (in kilocalories) can then be obtained from the United States Department of

Agriculture (USDA) Food and Nutrient Database for Dietary Studies (FNDDS) [19].

1.3 Contributions of This Thesis

In this thesis we first investigate the use of geometric models for food portion

estimation based on single-view eating occasion images. We focused primarily on
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Fig. 1.13.: Eating occasion images indexed by a user’s ID.
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cylinder model and prism model. The food portions are estimated in volumes (cm3)

using geometric models. We were able to obtain accurate estimates of food portions

based on well-defined 3D models, camera calibration objects, correct food labels and

correct food segmentation masks. We compared the accuracy between food portion

estimation techniques using geometric models and using depth image. We show that

portion estimation based on geometric models is more accurate for objects with well-

defined 3D shapes compared to estimation using depth images. To further improve

food portion estimation accuracy, we use co-occurrence patterns as prior knowledge

to refine portion estimation results. In addition to food portion estimation using

geometric models, we developed another approach based on the use of Generative

Adversarial Networks (GAN). We introduce the concept of an “energy distribution”

for each food image. We then estimate food energy based on the energy distribution.

Other than food portion estimation, we present a systematic design for a crowd-

sourcing tool aiming specifically for the task of online food image collection and

annotations. Our goal is to fast expand food image dataset and to incorporate on-

line food images into our dataset for training-based food classification techniques. In

addition, we have developed a printer indexing system for color calibration with an

application in image-based dietary assessment.

The main contributions of this thesis are listed as followed:

• Single-View Food Portion Estimation Based on Geometric Models

We have developed a food portion estimation technique based on a single-view

food image used for the estimation of the amount of energy (in kilocalories) con-

sumed in a meal. Although single-view 3D scene reconstruction is in general an

ill-posed problem, the use of geometric models such as the shape of a container

can help to partially recover 3D parameters of food items in the scene. We are

interested in 3D parameters that are essential determining food portions. Based

on the estimated 3D parameters of each food item and a reference object in the

scene, the volume of each food item in the image can be determined. We focused

primarily on the use of cylinder model and prism model. The food portions are
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estimated in volumes (cm3). Unlike previous methods, our technique is capable

of estimating food portion without manual tuning of parameters. The weight

of each food can then be estimated using the density of the food item. We were

able to achieve an error of less than 6% for energy estimation of an image of a

meal assuming accurate segmentation and food classification.

• A Comparison of Food Portion Estimation Using Geometric Models and Depth

Images

We compare two food portion estimation techniques. The two techniques are

namely the geometric models based technique, and depth images based tech-

nique. An expectation-maximization based technique has been developed to

detect the reference plane in depth images, which is essential for portion size

estimation using depth images. We compare the accuracy of food portion es-

timation based on geometric models, to the accuracy based on high quality

depth image. The depth image is obtained using structured light techniques.

Our experimental results indicate that volume estimation based on geometric

models is more accurate for objects with well-defined 3D shapes compared to

estimation using depth images.

• The Use of Co-occurrence Patterns in Single Image Based Food Portion Esti-

mation

We use contextual information to further improve food portion estimation ac-

curacy of geometric models based approach. We define contextual dietary in-

formation as the data that is not directly produced by the visual appearance of

an object in the image, but provides information about a user’s diet or can be

used for diet planning. Food portion co-occurrence pattern is one type of con-

textual information. We estimate the patterns from food images we collected

for dietary studies. We estimate the food portion co-occurrence patterns from

food images we collected from dietary studies using the mobile Food RecordTM

(mFRTM) system we developed. Co-occurrence patterns is used as prior knowl-
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edge to refine portion estimation results. We were able to improve the food

portion estimation accuracy incorporating the co-occurrence patterns as con-

textual information.

• Learning Image-to-Energy Mappings Using Generative Adversarial Networks

Accurate food portion estimation is challenging since the process of food prepa-

ration and consumption impose large variations on food shapes and appear-

ances. In addition to our previous approach of geometric models based food

portion estimation, we present a food portion estimation method to estimate

food energy (kilocalories) from food images using Generative Adversarial Net-

works (GAN). We introduce the concept of an “energy distribution” for each

food image. To train the GAN, we design a food image dataset based on ground

truth food labels and segmentation masks for each food image as well as energy

information associated with the food image. Our goal is to learn the mapping

from the food image to the food energy. We can then estimate food energy

based on the estimated energy distribution image.

• An End-to-end Image-Based Automatic Food Energy Estimation Technique

Based on Learned Energy Distribution Images

We proposed a novel end-to-end system to directly estimate food energy from

a captured eating occasion image. Our system first estimated the image to

energy mappings using a Generative Adversarial Networks (GAN) structure.

Based on the estimated energy distribution images, we learned the food energy

of the eating occasion image by training CNN based regression model. We are

able to obtain accurate food energy estimation with an average error of 209.41

kilocalories for eating occasion images collected from a free-living dietary study.

The training based technique for end-to-end food energy estimation no longer

requires fitting geometric models onto the food objects that may have issues

scaling up as we need a large amounts of geometric models to fit different food

types in many food images.
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• cTADATM: The Design of a Crowdsourcing Tool for Online Food Image Iden-

tification and Segmentation

Training-based techniques have been widely used in recent years for developing

automatic dietary assessment systems. For training-based techniques, increas-

ing the training data size would in general improve the accuracy of the system,

thus a larger image dataset is always preferred. Online image sharing is quickly

gaining popularity in recent years (for example, through social networks such as

Facebook and review orientated websites such as Yelp), and there are thousands

of food images uploaded by smartphone users everyday. We believe online food

images can be used as part of our training data developing automatic dietary as-

sessment techniques and provide valuable contextual information such as users’

dietary patterns and food co-occurrence patterns. We present a systematic de-

sign with a detailed description for a crowdsourcing tool aiming specifically for

the task of online food image collection and annotations. This tool can be used

to locate food items and obtaining groundtruth segmentation masks associated

with all food objects presented in an image. The crowdsoucing tool we designed

is tailored to meet the needs of building a large image dataset for developing

automatic dietary assessment tools in the nutrition and health fields.

• A Printer Indexing System for Color Calibration

In image based dietary assessment, color is a very important feature in food

classification. One issue with using color in image analysis is the calibration of

the color imaging system. We have implemented a color calibration system for

food images using printed color checkerboards also known as fiducial markers

(FMs). To use the FM for color calibration one must know which printer was

used to print the FM so that the correct color calibration matrix can be used for

calibration. We have designed an indexing scheme that allows one to determine

which printer was used to print the FM based on a unique arrangement of

color squares and binarized marks (used for error control) on the FM. Using
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normalized cross correlation and pattern detection, the index corresponding to

the printer for a particular FM can be determined. We show the printer indexing

scheme we developed is robust against most types of lighting conditions.
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2. SINGLE-VIEW FOOD PORTION ESTIMATION

BASED ON GEOMETRIC MODELS

2.1 Overview of Image-Based Food Portion Estimation

Dietary assessment, the process of determining what someone eats during the

course of a day, provides valuable insights for mounting intervention programs for

prevention of many chronic diseases. Traditional dietary assessment techniques, such

as dietary record, requires individuals to keep detailed written reports for 3-7 days of

all foods or drink consumed [1] and is a time consuming and tedious process. Smart-

phones provide a unique mechanism for collecting dietary information and moni-

toring personal health. Several mobile dietary assessment systems, that use food

images acquired during eating occasions, have been developed such as the TADATM

system [6, 7], FoodLog [8], FoodCam [9], DietCam [10], and Im2Calories [11] to au-

tomatically determine the food types and energy consumed using image analysis and

computer vision techniques. Estimating food portion size/energy (kilocalories) is a

challenging task since the process of food preparation and consumption impose large

variations on food shapes and appearances. To date, several image-based food por-

tion estimation techniques have been developed based on fundamentally different

computer vision techniques.

2.1.1 Image-Based 3D Reconstruction

A camera provides the mapping from the 3D world coordinates onto the 2D pixel

coordinates, as shown in Figure 2.1 where C is the camera center and p the principal

point [20]. Understanding the 3D structure from images is a fundamental problem

in computer vision [21].
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Fig. 2.1.: Pinhole camera geometry [20].
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Fig. 2.2.: The epipolar geometry [20].

For 3D reconstruction, most existing works have been developed on multiple views

of the scene using stereo vision techniques [20, 22]. Stereo correspondence has tra-

ditionally been and continues to be, one of the most heavily investigated topics in

computer vision [23–25]. Based on the corresponded points from different views of

the same scene, 3D structures can be reconstructed [20]. The epipolar geometry as

shown in Figure 2.2 provides the intrinsic projective geometry between two views

[20]. The epipoles e and e′ are the intersection of camera baseline with each 2D image

plane [20]. As stated in [20], any plane π containing the baseline is an epipolar plane,

and intersects the image planes in corresponding epipolar lines l and l′. Therefore, as

the position of the point X varies in 3D world coordinates, the epipolar planes rotate

about the baseline [20]. With points correspondences, the scene can be reconstructed

using epipolar geometry [20, 22, 26] as shown in Figure 2.2. Similarly, the recovery

of scene structure can also be done using multiple images such as with sequence of

motion images [27].

Epipolar geometry based techniques require at least two images of the same scene.

For example, in dietary assessment applications, stereo vision techniques require users

to take at least two images of the same eating scene from different angles. Therefore,

stereo vision technique increases a user’s burden [28] and is not desired for dietary

assessment application.
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Fig. 2.3.: Example of automatically generated 3D model. (left: original image taken

from similar work that requires manual specifying [31], middle, right: two novel views

from the reconstructed 3D model).

Other commonly used multi-view 3D reconstruction techniques include shape

carving [29] and structured light [30]. Shape carving requires multiple images

to be captured that cover 360 degrees of the same object. Therefore, shape carving

technique increases a user’s burden even more comparing to epipolar geometry based

approach. Structured light based technique requires a light projector to be built in a

user’s mobile device, that projects pre-defined light patterns onto the scene. To date,

most mobile devices are not equipped with a structured light projector and sensor.

We focus on the use of a single-view RGB image for 3D reconstruction. The 3D

scene reconstruction based on single-view images is in general an ill-posed problem

since most 3D information has been lost during the projection process from 3D world

coordinates to the 2D pixel coordinates. In [31], 3D scenes are reconstructed based on

pre-defined features such as lines, planes, parallelism and orthogonality. However, the

technique in [31] is based on visual cues and requires manual selections of vanishing

points and lines, planar surfaces and occluding boundaries. Therefore, scenes where

3D structures are difficult to define or the 3D structure visual cues are not present (for

example, no obvious lines, planes, parallelism and orthogonality present) are difficult

to reconstruct. In addition, as manual selection of features is required, the technique

in [31] is not automatic 3D reconstruction.

3D reconstruction based on hand-crafted features often assume constraints, char-

acteristics, features and structures. A hand-crafted technique may work particularly



28

well on one dataset, but failed another. To understand the scene from single monoc-

ular image, a multiple-hypothesis framework is developed for robustly estimating

scene structure from a single image and obtaining confidences for each geometric la-

bel [32]. The geometric labels are the orientations of objects present in the scene.

The technique presented in [32] is a learning-based technique learning the statistical

distribution of 3D structure, where image was first converted to superpixels. Super-

pixels are then grouped into constellations (constellations are superpixels that likely

share a common geometric label). Each superpixels label is then inferred from the

likelihoods of the constellations that contain that superpixel [32]. However, the geo-

metric labels in [32,33] are still manually defined, thereofore scaling with scenes that

have ambiguous 3D structures is an issue. In [34] a dynamic Bayesian network model

has been used for autonomous 3D reconstruction to infer 3D information of indoor

scenes. The dynamic Bayesian network model was used to approximate a distribution

over the possible structures of the scene.

The depth of the scenes does not represent the entire 3D structures of the scene

(due to occulusion). However depth provides essential information and details for

many tasks such as autonomous drive, 3D object modeling and augmented reality.

Depth estimation from a single-view image is a difficult task and requires the use of

prior knowledge of the scene. Depth prediction task is essentially learning the map-

ping of a RGB image to a depth image. In the work Make3D [21,35–37], monocular

cues have been exploited to obtain 3D information such as predicting depths from

single-view image. Markov Random Field (MRF) is used to infer a set of “plane

parameters” that captures both the 3D location and 3D orientation of small homo-

geneous patch in the image [21]. The MRF is trained via supervised learning on

ground truth depth dataset that is collected using a laser 3D scanner. Unlike previ-

ous techniques for 3D reconstruction based on a single-view RGB image, the model

in [21,35–37] makes no explicit assumptions about the structure of the scene. Similar

works in depth estimation from single monocular image include estimating depth us-
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ing gradient-domain learning framework of visual-depth words [38] and by parameter

transfer [39].

Convolutional Neural Networks (CNN) has achieved impressive results in many

tasks such as object detection and image segmentation. CNN can assemble building

blocks of very complex features, where the complex features could be very difficult

for human to craft or design. Therefore, instead of defining statistical models to

approximate 3D structures of the scenes, deep convolutional features can be learned

to predict the depth of the scene from the RGB image [40, 41]. In [42], a single

multiscale (coarse to fine) convolutional network architecture has been used for depth

prediction based on a monocular image. In [43] the joint learning of depth and

other image features (surface normal) has been used and shows improvement over the

original architecture [42].

Image-based 3D reconstruction remains to be a challenging problems. Different

3D reconstruction techniques have been developed based on fundamentally different

approaches. Similarly, as food portion estimation requires to understand the 3D

information of eating scenes, it is a challenging problem. To date several food portion

estimation techniques have been developed that based on fundamentally different

approaches.

2.1.2 Multi-View Food Portion Estimation

Several image-based food portion estimation techniques are developed based on

multi-view 3D reconstruction. Those techniques either require users to take multiple

images/videos or modify the mobile device such as using multiple images [10,44,45],

video [46] or 3D range finding [47].

In [47] a structured light based technique has been used to capture the 3D repre-

sentation of a food item. However, a regular mobile phone is not equipped with the

light projector that projects the pre-defined light patterns onto the scenes. Modifying

a user’s mobile phone is not feasible for a free living condition with many participants.
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In [10,48–50] a technique based on multi-view images of the same eating scene has

been used for food analysis. Although the 3D scene can be reconstructed based on

multi-view images, the food portion/volume estimation result has not been reported.

The features of foods from different views have only been used for food classification

in [49,50] instead of food portion estimation.

In [44, 45] stereo vision reconstruction based on points correspondences from

different views have been used for food portion estimation. Multiple images are

captured of the same eating occasion. A point clouds representing the eating scenes

have been reconstructed based on the feature points correspondences from multiple

views [44,45].

Although a dense point cloud can represent the 3D structure of the easting scene,

accurate dense feature points correspondences are often difficult to obtain. To ensure

the feature point correspondences are accurate for point cloud reconstruction, the

eating scenes must remain same for different views. In addition, when using stereo

vision techniques, it is often required that the view angles do not change significantly

between different views. Therefore, the hidden requirements in geometric computer

vision could significantly add to a regular user’s burden to successfully capture the

eating scene for point clouds reconstruction.

2.1.3 Single-View Food Portion Estimation

Estimating food portion size from a single-view RGB image is an ill-posed inverse

problem. Most of the 3D information has been lost during the projection process from

3D world coordinates onto 2D camera sensor plane. Various approaches have been

developed to estimate food portion size and energy information from a single-view

food image based on fundamentally different approach.

In [51], a 3D model is manually fitted to a 2D food image to estimate the portion

size. This approach is not feasible for automatic food portion analysis. The 3D

models in [51] are pre-defined by researchers. Based on the eating scene image
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captures, researchers need to manually find the angle and volume size to best fit the

3D food model onto the food image. This approach is not feasible when there are

many food images to be processed.

In [52], food image areas are used for portion size estimation based on user’s

thumbnail as a size reference. Therefore, the size of a user’s thumbnail must be known

in order to obtain accurate estimates of food portions. Different sizes of thumbnails

cause errors when processing food images captured by different users.

In [53], the pixels in each corresponding food segment are counted to determine

the portion sizes. The same food item captured from different angles or different

distances have different counts of pixels of the food item. Therefore, the 3D structure

of the food item has not been fully exploited in [53].

In [54], food image is divided into sub-regions and food portion estimation is done

via pre-determined serving size classification.

Another approach for portion estimation is to utilize the depth information, where

depth value is determined with respect to the camera sensor plane. The depth image

is first converted to a voxel representation, then the volume for each object can be

obtained by summing the voxels that belong to the same object [55]. The reference

plane is critical for estimating volume using voxel representation since the height of

each voxel cannot be determined without a reference plane. RANSAC [56] is used

for reference plane detection in [55]. The supervised learning based depth prediction

techniques require sufficient training data. In [55] the Convolutional Neural Network

(CNN) architecture in [43] has been applied to food volume estimation and is trained

on NYUv2 RGBD dataset [57] of indoor scenes obtained using Microsoft Kinect, and

then fine tuned on a new 3D food dataset, GFood3d dataset, collected using Intel

RealSense F200 depth sensor shown in Figure 2.4.

Depth prediction based on supervised learning techniques requires sufficient train-

ing data. Depth sensor is not available on most of the mobile telephones till this date,

other than a few developer kit such as Google Project Tango.
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Fig. 2.4.: The Intel RealSense F200 3D Camera.
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We have developed a food portion estimation technique based on single-view food

image used for the estimation of the amount energy (in kilocalories) consumed at a

meal. Our technique is capable of estimating food portion without manual tuning of

parameters. Although single-view 3D scene reconstruction is in general an ill-posed

problem, the use of geometric models such as the shape of a container can help to

partially recover 3D parameters of food items in the scene. Based on the estimated

3D parameters of each food item and a reference object (a fiducial marker, as shown

in Figure 1.4) in the scene, the volume of each food can then be estimated using the

density of the food item.

The correct food classification label and segmentation mask in the image is alone

insufficient for 3D reconstruction of a food item, hence the use of geometric models

will allow for volume estimation where we can use the food label to index into a

class of geometric models for single view volume estimation. The task then becomes

finding the correct parameters for the selected geometric model.

2.2 Food Portion Estimation Using Geometric Models

3D reconstruction from a single image is an ill-posed problem and 3D objects in

general can not be fully reconstructed from a single-view. However, since our goal is to

estimate the volumes of foods in an image, it is not necessary to fully reconstruct the

complete scene. Food volumes are an important intermediate results for estimations

of food energy/nutrient. The use of geometric models will allow for volume estimation

where we can use the food label to index into a class of geometric models for single

view volume estimation. The 3D model for a food type (e.g. a banana) can be

reconstructed based on multiple-views using shape from silhouettes [58]. We denote

the 3D graphical model that is reconstructed from multiple-views as a pre-built 3D

model [59]. In addition to pre-built 3D models we have added pre-defined 3D models

for conventional shapes [60]. Using the camera parameters we can project both the

pre-built and pre-defined 3D models of each food item back onto the image plane then
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(a) Points of interest esti-

mated from the segmentation

mask in pixel coordinates.

(b) Front view of selected

points of interest in world co-

ordinates.

(c) Side view of selected points of

interest in world coordinates.

Fig. 2.5.: Points of interest viewing from world coordinates and partial correspon-

dences estimated in pixel coordinates.
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the food volume can be estimated based on a similarity measure of the back-projected

region overlaid on the food image segmentation mask. We have also examined the use

of prism models (an area-based volume model) that either have non-rigid shapes or do

not have significant 3D structures (e.g. scrambled eggs) [60,61]. Our previous portion

estimation technique requires manual initialization of the parameters for different food

types prior to use [60,62]. Although this approach has yielded reasonable results, the

manual initialization can pose issues in scaling with many foods.

We develop a volume estimation technique that uses prior knowledge of the “con-

tainer shape” as geometric contextual information. For example, the most commonly

used containers that have significant 3D structures either can be modeled as cylinders

or can be approximated to be cylinders. Knowing that a specific food is likely to be

served in a cylindrical shaped container (e.g. milk served in a glass or lettuce in a

bowl), using the estimated radius and height of the cylinder, the volume of the food

can be obtained. Glasses, cups or even bowls can all be approximated as cylinders.

More specifically we focus on estimating the locations of points of interest in 3D world

coordinates of the container based on the projection of 3D containers onto a 2D im-

age plane. The points of interest are selected so that they have sufficient information

with respect to the radius and height of the food item as shown in Figure 2.5a. We

use the prism model which is an area-based volume estimation method for food items

that do not have significant 3D structure, such as scrambled egg on a plate with the

plate size serving as a reference [62]. After obtaining the volume of each food, we

can estimate the weight using the food density (measured in grams/cubic centime-

ter [18]). The food energy (in kilocalories) can then be obtained from the United

States Department of Agriculture (USDA) Food and Nutrient Database for Dietary

Studies (FNDDS) [19].

Since foods can have large variation in shapes, there does not exist a single geomet-

ric model that would be suitable for all types of foods. The correct food classification

label and segmentation mask in the image is alone insufficient for 3D reconstruction

of a food item, hence the use of geometric models will allow for volume estimation
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Fig. 2.6.: Portion estimation using geometric models.

where we can use the food label to index into a class of geometric models for single

view volume estimation as shown in Figure 2.6.

2.2.1 The Cylinder Model

If we assume the food item is “cylinder-like” such as liquid in a glass or a bowl of

lettuce then we know that the cylinder can be defined by its radius and height. We

cannot estimate the radius and height of this cylinder solely based on the segmenta-

tion mask which is essentially a projection of a cylinder in world coordinates onto the

camera sensor. Three coordinates systems are involved in the estimation of parame-

ters for a cylinder model: the 3D world coordinates, the 2D pixel coordinates which

is the original 2D image, and the 2D rectified image coordinates. The 2D rectified

image coordinates have the projective distortion removed from the original image.

Camera Parameters and Coordinates Systems: Since the camera parameters
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are essential for both image rectification and 3D to 2D projection, the intrinsic pa-

rameters of the camera and the extrinsic parameters for a specific image must be

known. This requires that we have some known structure in the scene. To provide

essential reference information, we have designed a checkerboard pattern or fiducial

marker (FM) in the TADATM system. The fiducial marker is printed and is included

in the scene by the user to serve as a reference for the estimation of scale and pose

of the objects in the scene [17]. The FM is also used to estimate the camera param-

eters. Based on the detected corners on the checkerboard and their correspondences

in world coordinates, the intrinsic and extrinsic parameters can be obtained [60, 63].

The intrinsic parameter K for a specific camera is in the following form:

K =




α γ x0

0 β y0

0 0 1


 (2.1)

Based on the intrinsic camera parameters obtained for a specific camera the extrinsic

camera parameters which include the rotational matrix ~R and displacement vector ~t

can then be estimated accordingly for a specific image where we denote:

R =




r11 r12 r13

r21 r22 r23

r31 r32 r33


 (2.2)

and

~t =




t1

t2

t3


 (2.3)

Using the intrinsic parameter K, extrinsic parameters of rotation matrix R and

displacement vector ~t, the 3D to 2D projection process for a given point in 3D world
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coordinates X : (xw, yw, zw, 1)
T to the corresponding point X̃ : (x̃, ỹ, 1)T in the pixel

coordinates in an image can be described as:

s




x̃

ỹ

1


 = K[R ~t]




xw

yw

zw

1




(2.4)

more specifically:

s




x̃

ỹ

1


 =




α γ x0

0 β y0

0 0 1







r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3







xw

yw

zw

1




(2.5)

where (x0, y0) is the coordinates of the principal points, α, β are the scale factors

of x and y axes and γ describes the skew between two image axes. (x̃, ỹ, 1)T is

homogeneous, and s is a scale factor. Based on the projection described above,

although there is a unique projection in pixel coordinate X̃ : (x̃, ỹ, 1)T for any point

in 3D world coordinates X : (xw, yw, zw, 1)
T , the converse is false.

A correspondence point that provides the reference location of the same object

in the different coordinates must be defined in the segmentation mask. We denote

such a reference point as locator M , as illustrated in Figure 2.5(b)(c). In world

coordinates we define the locator M to be the closest point to the camera on the

bottom surface of the cylinder, which has direct contact with the table. Furthermore,

we define zw = 0 for all the points in 3D world coordinates that are contacting the

table directly or on the same elevation level. The locator M would be on the zw = 0

surface accordingly. In order to detect the corresponding locator point M̃ in pixel

coordinates, we approximated it to be the lowest point in the column of pixels that

is along the centroid of the segmentation mask as illustrated in Figure 2.5a. With
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Fig. 2.7.: Examples of the estimated H̃ (cyan ⋄) in rectified image coordinates.

the assumption that zw = 0, the corresponding point M in world coordinates can be

determined based on M̃ using back projection from 2D to 3D as:

s




x̃

ỹ

1


 = K[R ~t]




xw

yw

zw = 0

1



= K[~r1 ~r2 ~t]︸ ︷︷ ︸

3 by 3 matrix




xw

yw

1


 (2.6)

where ~r1 and ~r2 are the first and second column vectors of the rotation matrix R.

Back projection from 2D to 3D is only valid under the constraint where zw = 0.

Height and Radius Estimation for Cylinder Model:

Knowing the locations of the locator alone is insufficient to estimate the radius

and the height of the cylinder. Hence more points of interest must be selected and

estimated on the segmentation mask in the pixel coordinates. Based the assumption

that the food item is “cylinder-like” model, the points of interest are selected such that

the line connecting D1 and D2 would represent the diameter and the line connecting

H and locator M would represent the height in world coordinates as shown as in

Figure 2.5(b)(c). D1 and D2 are defined to be on the same elevation level of cylinder’s

centroid.

Similar to the way we obtained the locator M , we estimate the diameter of the

cylinder using the number of row pixels along the centroid of the segmentation mask
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in the pixel coordinates. The diameter can be determined based on the estimated

D̃1 and D̃2 as shown in Figure 2.5a. However the point of interest H̃ is lost in the

2D pixel coordinates. Instead of estimating H̃ directly in the pixel coordinates, P̃

can be estimated by assigning the highest point (away from M) in the column of

pixels along the centroid in the segmentation mask (Figure 2.5a). We can infer the

location of H̃ by subtracting the diameter in the P̃ → M̃ direction from P̃ . The

estimation of interest point P̃ would be performed in the rectified image coordinates

as illustrated in Figure 2.7, where the top of the cylinder is a circle with projective

distortion removed.

The rectified image coordinates can be obtained by projecting the original image

back to 3D world coordinates, under the assumption of zw = 0, using the inverse

projection operation of (2.6). All the points of interest estimated directly from the

segmentation mask in 2D pixel coordinates can be projected onto rectified image

coordinates. With the locations of the points of interest in both pixel coordinates

and rectified image coordinates estimated, a points search process can be used in 3D

world coordinates based on locator M to estimate the radius and height as shown in

Figure 2.9.

The process of searching for points in 3D world coordinates whose projections are

in 2D coordinates would correspondingly find the best match of D̃1, D̃2 and H̃ in the

segmentation mask (Figure 2.8).

Candidates sets are generated for the purpose of radius and height estimation in

3D world coordinates based on (2.4). A set of candidate points H can be obtained in

3D world coordinates by an incremental search along the vertical direction starting

from M where each candidate point Hh ∈ H is associated with a specific height

increment h. The candidates set H becomes H̃h ∈ H̃ when projected from 3D to 2D

as shown in Figure 2.10(a). The estimated height is obtained by:

ĥ = argmin
Hh∈H

||H̃h − H̃|| (2.7)

Similarly, two sets of candidate points D′
1 and D′

2 that represent the vertical projec-

tions of points D1 and D2 onto Zw = 0 plane can be obtained by incremental search
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Fig. 2.8.: The point of interest search process for radius and height estimation.

along horizontal direction ofM (Figure 2.5), where D′
1r ∈ D′

1 and D′
2r ∈ D′

2 are points

associated with a specific candidate radius r. The projected candidates sets in 2D

pixel coordinates are denoted as D̃′
1, D̃

′
2 and are shown in Figure 2.10(a). Therefore,

the radius can be estimated based on the following:

r̂ = argmin
D′

1r
∈D′

1,D
′

2r
∈D′

2

{
1

2
||D̃′

1r − D̃1||+
1

2
||D̃′

2r − D̃2||} (2.8)

The errors in the estimated radius will be reflected in the estimating volume signifi-

cantly, we propose a refinement method estimated radius. As shown in Figure 2.10(a),
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Fig. 2.9.: The iterative point of interest search for cylinder model.
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(a) Initial search region for radius and height in

rectified image coordinates.

(b) Refined search region for radius in rectified

image coordinates.

Fig. 2.10.: The projections of candidates sets from 3D world coordinates to rectified

2D coordinates.

the searching regions are the vertical projection of D1 and D2 onto zw = 0 plane: D′
1

and D′
2. With the initial estimate of the radius r̂ and height ĥ, we can refine our

search region so the candidates sets match D1 and D2 in Figure 2.10(b).

2.2.2 The Prism Model

The prism model is an area-based volume estimation method that can be used

for food types that do not have significant 3D structures such as scrambled eggs

on a plate or toast. For the prism model we assume that the height is the same

for the entire horizontal cross-section [62]. In order to accurately estimate the food

areas, the original 2D image should be rectified so that the projective distortion can be

removed. The fiducial marker can serve as a reference to obtain the 3×3 homography

matrixH used for projective distortion removal. Denote the homogeneous coordinates

of a corner ~pi detected from fiducial marker is homogeneous: (x̃, ỹ, 1)T and denote

the corresponding world coordinates: ~pw: (x, y, 1)T . The projective transformation
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matrix can be estimated using the Direct Linear Transform (DLT) method based on

the estimated corners and correspondence pattern [20].


0T −~pTw ỹ · ~pTw

~pTw 0T −x̃ · ~pTw







~h1

~h2

~h3


 = 0 (2.9)

The segmentation mask can be projected from the pixel coordinates of the original

2D image to the coordinates of rectified image as shown in Figure 2.11.

The area of segmentation mask Ŝ can be estimated in the rectified image. In order

to have a better estimation of area of the food, we utilize the area of the plate. If the

plate size is consistent across images, we choose the median of the estimated plate size

P̂ and use it as a scale reference in addition to fiducial marker. In our experimental

data used here, the plate size is consistent and is estimated to be 441cm2 in world

coordinates. The refined area estimation results demonstrated improvement with the

estimated plate size serving as a reference:

Refined Ŝ = Ŝ ÷ P̂ × 441cm2. (2.10)

The median height for each food item can be estimated based on the ground truth

volume and median area estimated for the same type of food:

Median Height =
Ground Truth Volume

Median Area
. (2.11)

2.3 Experimental Results

We used food images from various user studies we conducted as part of the

TADATM system to test our portion size estimation methods [28]. For these images

we had ground truth information for the food types and portion sizes. We assume

we have accurate segmentation and food classification. We used 19 food types in our

experiments. We used the cylinder model for 9 types of food and the prism model
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Table 2.1.: The estimated food weight (in grams ± standard deviation) using the

cylinder and prism models.

Food Name1 n2 Estimated radius: r̂ Estimated height: ĥ Estimated weight: Ŵ Ground truth weight: W Ratio of estimates Ŵ

(mm ± SD) (mm ± SD) (g ± SD) (g ± SD) to ground truth W 3

Milk(C) 45 34.1 ± 1.6 66.0 ± 5.0 235.9 ± 26.8 220.0 ± 0.0 1.07

Orange Juice(C) 15 31.1 ± 1.3 40.1 ± 2.5 122.0 ± 10.6 124.0 ± 0.0 0.98

Strawberry Jam(C) 15 17.9 ± 0.8 18.2 ± 11.8 22.1 ± 15.3 21.1 ± 1.1 1.05

Margarine(C) 15 18.8 ± 2.2 29.4 ± 10.4 32.0 ± 13.1 27.8 ± 0.6 1.15

Lettuce(C) 15 51.1 ± 3.5 24.3 ± 13.0 61.1 ± 34.0 48.3 ± 4.8 1.26

Coke(C) 30 39.8 ± 2.5 64.8 ± 9.8 225.9 ± 43.5 227.2 ± 2.3 0.99

Chocolate Cake(C) 15 36.7 ± 4.3 28.3 ± 16.7 77.0 ± 41.1 81.5 ± 12.5 0.95

French Dressing(C) 15 22.6 ± 1.5 12.6 ± 4.7 22.1 ± 7.7 35.7 ± 1.0 0.62

Ketchup(C) 15 17.7 ± 1.1 9.6 ± 2.6 10.9 ± 3.7 15.5 ± 0.4 0.70

Food Name n Estimated area: Ŝ Median height: ĥ Estimated weight: Ŵ Ground truth weight: W Ratio of estimates Ŵ

(cm2 ± SD) (mm) (g ± SD) (g ± SD) to ground truth W

Sausage(P) 15 32.5 ± 2.5 17.0 47.8 ± 3.6 41.5 ± 2.8 1.03

Scrambled Egg(P) 15 50.5 ± 4.5 10.8 61.3 ± 5.5 61.5 ± 0.7 1.00

White Toast(P) 15 141.2 ± 16.2 13.0 50.5 ± 5.8 47.7 ± 3.4 1.06

Garlic Bread(P) 15 79.8 ± 12.2 9.3 42.1 ± 6.4 41.1 ± 3.0 1.02

Sugar Cookie(P) 15 44.2 ± 5.4 7.1 26.8 ± 3.3 27.8 ± 1.9 0.97

Spaghetti(P) 15 137.0 ± 10.6 26.0 237.8 ± 18.4 240.3 ± 2.6 0.99

French Fries(P) 15 79.6 ± 6.6 37.8 72.5 ± 6.0 70.5 ± 4.3 1.03

Peaches(P) 15 62.2 ± 14.9 12.3 73.0 ± 17.5 69.3 ± 9.9 1.05

Pear Halves(P) 15 52.8 ± 11.5 13.5 74.5 ± 16.2 75.6 ± 4.9 0.99

Cheeseburger(P) 15 122.6 ± 16.9 26.1 191.7 ± 26.4 198.8 ± 11.5 0.96
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(a) Original food image. (b) Segmentation mask of a food item.

(c) Rectified food image. (d) Rectified segmentation mask of food item.

Fig. 2.11.: Removing projective distortion from original image.

for the rest of the 10 types of food. For the cylinder model with estimated radius r̂

and height ĥ, the volumes V̂ can be obtained by

V̂ = π × r̂2 × ĥ. (2.12)

Although a glass containing a soft drink is more of a semi-cone in a single view than

a cylinder, we use the radius and height to estimate the volume of the semi-cone. As
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Fig. 2.12.: Ratio of estimated food weights to ground truth.

another example, chocolate cake is not a cylinder, however since it has significant 3D

structures we can approximately use the width and height of the cake to estimate the

volume. For the prism model, the volume is the estimated area Ŝ of segmentation

mask in the rectified image multiplied by the estimated median height ĥ for the same

type of food.

With the food density ρ (in grams/cubic centimeter), the food weight can be

computed based on the volume as: Ŵ = ρ × V̂ [18]. For our test data the same

type of food has approximately the same ground truth weight [62]. We compare

the estimated average weight for each type of food to the ground truth weight as
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shown in Table 2.1. The ratio of estimate food weight to ground truth food weight is

used as an indicator to determine the accuracy of the estimates as shown in Figure

2.12. The ratios are obtained by dividing the mean of the estimated weight Ŵ to the

mean of the ground truth weight W . We have compared our results here to those we

previously reported [60,62]. We discussed in [62] that a 15% error or less (i.e. the ratio

shown in Table 2.1 being from 0.85 to 1.15) would be considered to be an acceptable

range for most foods. Out of the 19 food types, only 3 types of food: lettuce, French

dressing and ketchup have estimated errors larger than 15%. Although lettuce has

a ratio of 1.26 (26% error), it is an improvement compared to the results of 4.61

we presented in [62] and 1.70 we presented in [60]. Given the low energy density of

lettuce, the error represents approximately 2 additional kilocalories. For the ketchup

and French dressing, the errors generated are due to the height estimates using the

cylinder model. Since one would not consume a large amount of ketchup or French

dressing in a typical meal, the large errors would not result in a significant impact on

the estimate of energy consumed for the entire meal.

We also estimated the energy for each meal as captured by the food images. There

are a total of 45 images corresponding to 45 different individual eating occasions

reported by participants. More specifically, for this particular dataset we only have

3 different combinations of food, with each combination having approximately the

same energy for different images. Examples of each combination of food items are

illustrated in Figure 2.13. For each image the total energy (kilocalories) can be

obtained by summing the energy for each food item based on the estimated weight

using the FNDDS database [19]. We compare the estimated energy to the ground

truth energy (in kilocalories) and then determine the ratio of estimates to the ground

truth, for each type of combination as shown by Figure 2.13. We were able to achieve

an error of less than 6%. Therefore our method appears to be very promising for

estimating the energy for a meal based on using a single image.
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(a) Combination type A: ground truth energy:

834.9 kcal, average estimated energy: 843.2

kcal, ratio of estimate to ground truth: 1.01.

(b) Combination type B: ground truth energy:

1142.8 kcal, average estimated energy: 1107.6

kcal, ratio of estimate to ground truth: 0.97.

(c) Combination type C: ground truth energy:

745.9 kcal, average estimated energy: 788.3

kcal, ratio of estimates to ground truth: 1.06.

Fig. 2.13.: Examples of three combinations of food items. Ground truth energy is

based on a single serve.
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2.4 Conclusion and Future Work

We propose a method to estimate food portion size from a single-view image.

Instead of relying on manual initialization of estimation parameters, our method

can automatically do volume estimation using the geometric contextual information

from the scene. We no longer have issues in scaling with many foods due to manual

initialization of parameters. We plan to use more contextual information for volume

estimation. We are also interested in developing a more robust scheme for energy

estimation so that the impact of segmentation and food classification errors (or food

portion estimation) can be minimized.
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3. A COMPARISON OF FOOD PORTION ESTIMATION

USING GEOMETRIC MODELS AND DEPTH IMAGES

3.1 A Comparison of Food Portion Estimation Using Geometric Models

and Depth Images

Several image analysis based techniques have been developed for food portion

estimation. 3D features are not fully exploited in some of the existing works. In [54]

food portion estimation is done via pre-determined serving size classification. In [52]

the food image area and the user’s thumb are used as reference for estimation the

portion size and in [53] the pixels in each corresponding food segment are counted

to determine the portion. To better analyze the food eating scene, other methods

attempt to recover 3D parameters of the scene including the use of mobile 3D range

finding [47] and stereo vision techniques using multiple images [10, 44, 45].

We feel that either modifying the mobile device or acquiring multiple images of the

eating scene is not desirable for users trying to collect information about their diets.

Furthermore, a point cloud obtained from a few images using feature based stereo

matching is sparse that cannot represent fine details on surfaces that are necessary

with food images. We have investigated using stereo vision technique in TADATM sys-

tem [64]. With points correspondences the scene can be reconstructed using epipolar

geometry [20, 22, 26] as shown in Figure 2.2. We use Scale-Invariant Feature Trans-

form (SIFT) [65] keypoints for feature matching of different views [64]. To match

the feature points we compare the Euclidean distances of feature vectors and find a

pair of keypoints from each frame that are nearest measured in Euclidean distance.

Epipolar constraint states that the correct match must lie on the epipolar line and we

use the epipolar constraint to remove the false matching. We have shown in [64] that

by removing the false matching we reduce the number of matched pairs as shown in
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Fig. 3.1.: Feature matching using epipolar constraint. The corresponding points in

left and right images are connected by green line. (a) shows all corresponding points,

(b) shows matched pairs that satisfy epipolar constraint, (c) shows matched pairs

that fail epipolar constraint.
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Fig. 3.2.: Food portion size estimation using geometric models and depth images.

Figure 3.1. With limited number of matched pairs it is challenging to reconstruct

dense 3D shapes from stereo images. We have focused in our work on techniques that

use single images for food portion size estimation [14].

Estimating the volume of an object from a single view is an ill-posed inverse prob-

lem that requires the use of a priori information. The existing work using single images

include the use of pre-defined 3D template matching [51,60], using prior knowledge of

the geometric model [14] and depth map prediction based using a Convolutional Neu-

ral Network (CNN) [43,55]. Template matching using pre-defined 3D models involves

manual tuning of model parameters which can cause scaling problems [51, 60]. The

points search technique in 3D coordinates does not require manual tuning of param-

eters [14] hence scaling with many foods will not be an issue. Depth map prediction
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(a) (b)

(c) (d)

Fig. 3.3.: The RGB image (a) of the scene and depth images (b)(c)(d) of the same

scene acquired with different angle, using Intel RealSense F200 3D camera.

using CNN requires sufficient images as training data and depth sensors that provide

sufficient details. In [55] the Convolutional Neural Network (CNN) architecture in

[43] is initially trained on NYUv2 RGBD dataset [57] of indoor scenes obtained using

Microsoft Kinect, and then fine tuned on a new 3D food dataset, GFood3d dataset,

collected using Intel RealSense F200 depth sensor shown in Figure 2.4.

In this work we examine food portion size estimation accuracy using geometric

models and depth images as shown in Figure 3.2. The use of geometric models

allow for volume estimation where we can use the food label to index into a class

of pre-defined geometric models for single view portion size estimation. We have

acquired sample depth images of food scene using Intel RealSense F200 depth sensor
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and decide the depth detail is not the finest quality shown in Figure 3.3. To acquire

high quality depth maps, instead of using Intel RealSense F200 depth sensor, we

use a structured light technique known as digital fringe projection [66]. Fine depth

details are available in the depth image we collected shown in Figure 3.4b using the

structured light system at Purdue University. The digital fringe projection technique

is a special type of triangulation-based structured light method where variations in

pattern intensity are sinusoidal. We adopt the binary defocusing method and phase-

shifting-based fringe analysis technique for 3D shape measurement because of their

high speed, high resolution, and high accuracy. In a phase-shifting technique, the

sinusoidal fringe patterns are shifted spatially from frame to frame with a known

phase shift. Analyzing a set of phase-shifted fringe images yields the wrapped phase,

a distortion measurement, usually containing 2π discontinuities that are removed by

employing a temporal phase-unwrapping algorithm [67]. The (x, y, z) coordinates are

recovered from the unwrapped phase using the system parameters estimated from

system calibration [68]. We were able to obtain the depth map based on the (x, y, z)

coordinates recovered.

To best represent the 3D scene, we used an over-head view when acquiring the

depth images. To estimate the volume for each food object from a depth image a

reference plane is required such as the table surface. To detect the table surface, we

developed an expectation-maximization (EM) [69, 70] based technique so that intra-

class variations (such as different textures shown in Figure 3.4(a)) on the reference

plane can be incorporated. To validate the two approaches we compared the estimated

volumes of the same objects using the two methods to the ground-truth information.

3.2 Portion Size Estimation Using Depth Images

The depth maps, along with the grayscale images, are captured using a 3D sensor

system designed by [67]. The depth map contains the distances of points on object’s

surfaces to the camera sensor. The depth map is converted to voxel representation.
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We denote V the set of all voxels where for each voxel: vp ∈ V. For a known food

image segmentation mask from the grayscale image, each voxel vp can be associated

with an object label: lq for lq ∈ L, where L is the set of all object labels in the depth

image. We use the mapping process: L(vp) = lq to determine which label lq is the

voxel vp associated with. Assume widthp and lengthp are the size of the base area

of voxel vp, if the heightp is known, then the voxel volume can be determined. The

volume Vlq associated with each label lq can than be obtained:

Vlq =
∑

vp∈V,L(vp)=lq

widthp × lengthp × heightp (3.1)

The above estimation is based on the assumption we can align the voxel grid on

the reference plane (e.g., table surface). If the reference surface cannot be correctly

detected, we would not be able to obtain the volume for each voxel (the height for

each voxel will be unknown).

3.3 Reference Plane Detection In Depth Images

Detecting the reference plane can be viewed as a clustering task. The goal is

to cluster all pixels P into two subsets: Ssurf which is associated with the reference

plane, and Snon−surf which contains the rest. A Gaussian distribution is assumed for

modeling the distribution of samples in Ssurf and Snon−surf . Such an assumption is

made upon the characteristics of distribution of pixel and depth values. If the pa-

rameters for the Gaussian mixtures are known, we can cluster the pixels into different

subsets.

Expectation-maximization (EM) can be used to estimate the above GMM pa-

rameters [69, 70]. EM has been used for image segmentation using multiple image

features [71]. Our image features are the depth map and the grayscale pixels. An

example of grayscale image of the scene is shown in Figure 3.4(a). The corresponding

depth map associated with the grayscale image is shown in Figure 3.4(b). We have

noticed that for a small portion of regions, valid depth values cannot be obtained due

to the shadows generated by the structured light pattern projector.
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(a) Gray scale image. (b) Depth map (shadows do not have valid

depths.

Fig. 3.4.: Gray scale image and the corresponding depth map.
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We combine pixel and depth feature for surface detection. We denote di,j ∈ D the

depth at image coordinates (i, j) where D is the set contains all valid depths. The

size of the set D is N . Denote the ~d ∈ R
1×N as the vectorized representation of D.

We construct a vector ~p ∈ R
1×N consists of pixel values:

∀i, j s.t. di,j ∈ D : pi,j ∈ ~p (3.2)

where ~p ∈ R
1×N is of the same size as ~d. Both the ~d and ~p are constructed using

raster scan order. The set of all observations could then be obtained as:

Y =



~d

~p


 (3.3)

where each observation is denoted as: yn ∈ Y , n = {1, · · · , N}.

As assumed Gaussian mixture the parameter θk = {πk, ~µk,Σk} for each component

k ∈ {1, · · · , K} would then be:

πk : The fraction of kth component in Y

~µk : The mean vector of kth component

Σk : The covariance matrix of kth component

If parameter θk is known then the component’s label xn ∈ {1, · · · , K} corresponding

to the observation yn can then be determined:

xn = argmax
k∈{1,··· ,K}

f(yn|xn = k)

= argmax
k∈{1,··· ,K}

1

2π|Σk|
1
2

e−
1
2
(yn−~µk)

′Σ−1
k

(yn−~µk)

We assume the observations are sampled from multivariate Gaussian mixtures which

consist of K components where the parameters θk for each component is unknown,

k ∈ {1, · · · , K}. The task would then be to estimate the parameters Θ = {θ1, · · · , θK}

based on observations yn ∈ Y . The missing data would be the label xn ∈ X for each

observation. Θ can be estimated recursively using the EM [70]. We denote the θ[m] is

the parameters estimated from mth iteration and the Expectation-step is defined as:

E-step: Q(θ|θ[m]) = E[log f(x|θ)|y, θ[m]] (3.4)
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(a) Initially over clustered to incorporate intra-

class variations, with K = 5.
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(b) Clusters merged and reference surface de-

tected (red area).

Fig. 3.5.: Reference plane detection with combined features using EM.

where x is the missing label associated with observation y, and θ[m+1] is the updated

values of θ which maximizes Q(θ|θ[m]). The Maximization-step is then [70]:

M-step: θ[m+1] = argmax
θ

Q(θ|θ[m]) (3.5)

To better incorporate the intra-class variations we use K > 2 for table surface

detection. We set K = 5 to over cluster the pixels initially, as shown in Figure 3.5(a).

We then merge the clusters based on the Euclidean distance of θk using k-means.

The reference plane can be detected based on the mean and variance of depth in a

segment, as shown in Figure 3.5(b). Given the reference plane we can now estimate

the height for each voxel, and the object’s volume.

3.4 Experimental Results

We compare the estimated volumes of the same objects using the two methods to

the ground-truth information. The ground truth volume for each object is obtained
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using water displacement [72]. We use 10 objects for testing, as listed in Table 3.1.

Except for the paper cup, these objects are selected from NASCO food replicas made

with plastic/rubber. The 9 plastic food replicas are selected to represent different

shapes and features.

For the geometric models, we acquire test images using the TADATM system [6]

on an mobile device (an iPhone 6) as shown in Figure 3.7. Each test images contains

5 – 7 objects from the objects listed in Table 3.1. We vary the layouts of the objects

in the scene and the angles used to capture the images. A total of 36 test images with

different combinations are captured. To avoid the errors propagated from automatic

segmentation and classification, we use ground-truth segmentation masks and food

labels shown in Figure 3.6, then compute the volume V̂g for each object as shown in

Table 3.1 using the appropriate geometric model.

For food portion size estimation using depth maps, we were able to acquire the

depth images using a structured light system at Purdue University, more specifically

using the digital fringe projection technique. Digital fringe projection (DFP) tech-

niques have been extensively used for high-quality 3D shape measurement due to

their speed, accuracy, and flexibility [30, 66]. The system we used is able to obtain a

root-mean-square error of about 73 µm with a calibration volume of 150 mm (height)

× 250 mm (width) × 200 mm (depth) [68]. Since a grayscale image associated with

depth map is available, we can obtain the pixel-wise alignment of the image with the

depth map. For our system, we were able to obtain grayscale images and depth map

at the resolution of 640×480 pixels. It is challenging to use structured light to recon-

struct the 3D shape of an object with a large range of reflectivity. For our dataset we

avoid using NASCO food replicas whose surfaces cannot be properly reconstructed

due to issue cause by reflectivity. We converted the depth map into voxel representa-

tions based on the detection of the table surface. Similar to the test images acquired

using mobile device, we use different layouts and combinations of objects. Each im-

age contains 1–3 objects. We use ground truth label for each segment. The volume

estimated using the depth map: V̂d can than be obtained as shown in Table 3.1.
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(a) Original food image (b) Coke (c) Frenchfries

(d) Sugar coockie (e) Ketchup (f) Milk

(g) Hamburger (h) Peach

Fig. 3.6.: Original food image (a) and ground truth segmentation masks (b)-(h) and

food labels.

Fig. 3.7.: Sample test images captured using mobile device for geometric models-based

portion estimation.
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Based on our experimental results, we observed that the volume estimation using

a depth map has a tendency to over estimate the food portion size. We observed that

9 out of 10 test objects are over-estimated, the coffee cup has a ratio of estimate to

ground truth of 2.34 on average. The single image approach cannot fully represent the

3D shape since parameters on the surfaces that are not visible cannot be recovered.

Hence there exists shape ambiguity in 3D coordinates. However, if we use the prior

knowledge of the 3D shape, such as the cylinder model, we can obtain significantly

better estimation for objects such as “cup”. Similarly, for “apple”, if we use a sphere

model the volume estimates are better than those estimated using depth maps. We

used the prism model for the other objects. As shown in Figure 3.8, we were able to

obtain more accurate estimates using geometric models with well-defined 3D shapes

compared to estimation using depth images. The number 1 – 10 on the horizontal

axis in Figure 3.8 represents foods listed in Table 3.1.

3.5 Conclusions

We conduct a comparison of food portion estimation using two techniques: geo-

metric models and depth images. We obtain more accurate volume estimation using

geometric models for objects whose 3D shape are well-defined. We have noticed a

tendency of over estimation using depth map.
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Table 3.1.: Comparison of volume estimation using geometric models and depth maps.

Food Tag Va(ml) Nd
b V̂d(ml): µ ± SD Ng

c V̂g(ml): µ ± SD

1 – Apple 275 11 332±29 36 252±57

2 – Banana 200 11 183±29 19 197±26

3 – Cake 125 11 160±28 17 127±20

4 – Bean 100 11 124±16 19 98±10

5 – Pea 50 10 64±29 17 50±6

6 – Sausage 75 10 108±14 17 77±8

7 – Pear 180 11 241±20 17 186±51

8 – Chicken 80 9 95±13 17 83±13

9 – Bread 100 10 111±40 19 101±11

10 – Cup 450 23 1056±80 36 553±115

aWater displacement
bNd is the number of images used for depth-based estimation
cNg is the number of images used for geometric model-based estimation
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Fig. 3.8.: Comparison of the ratios of the estimate to ground truth. 1 – 10 on the

horizontal axis represents foods listed in Table 3.1. A value ‘> 1’ indicates the volume

is overestimated, where a value ‘< 1’ indicates the volume is underestimated.
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4. THE USE OF CO-OCCURRENCE PATTERNS IN

SINGLE IMAGE BASED FOOD PORTION ESTIMATION

4.1 Introduction

Estimating the portion of an object from a single-view image is an ill-posed prob-

lem. Most of the 3D information has been lost during the projection process from

3D world coordinates onto the 2D camera sensor plane. The use of the priori infor-

mation is required to estimate the food portions. In [54] food portion estimation was

converted into pre-determined serving size classification hence the technique could

not be generalized. In [51, 60] pre-defined 3D template matching was used however

it required manual tuning hence scaling with many foods became a problem. Food

portion estimation using geometric models [14] and the approach based on predicted

depth map using a Convolutional Neural Network (CNN) [11, 43] overcame the scal-

ing issue with many foods. We compared the food portion size estimation accuracy

using both geometric models and depth images [73]. We showed that geometric model

based approach achieved higher accuracy compared to that using high quality depth

images obtained by structured light technique [66]. In addition, the quality of depth

map obtained using consumer level portable devices lead to even worse performance.

We have achieved accurate food portion estimation using geometric models, with

ground truth food labels, segmentation masks been used for the experiments. In

addition, accurate camera calibration that based on the fiducial marker included in

the scene is critical for food portion estimation. As the fiducial marker included in

the eating scene only occupy a small portion of the image area, the extrinsic camera

parameters or the homography matrix to remove projective distortion of the scene

may not be estimated accurately. We show a geometrically rectified image with

projective distortion removed, and one that is not correctly rectified in Figure 4.1.



66

(a) A food image that is properly

rectified to remove projective dis-

tortion

(b) A food image that is not properly rectified

to remove projective distortion

Fig. 4.1.: Examples of food images that are properly rectified and food images that

are not properly rectified.
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The prism model estimate food areas based on the rectified food image [14, 60].

The inaccurate camera calibration could introduce errors for food portion estimation.

To increase the portion estimation accuracy, we plan to incorporate contextual infor-

mation of the scene such as food co-occurrence patterns for portion estimation. More

specifically, food co-occurrence pattern may provide valuable insights for portion es-

timation.

4.2 The Use of Contextual Dietary Information

We use contextual information to further improve food portion estimation ac-

curacy using geometric models based approach [14]. We define contextual dietary

information as the data that is not directly produced by the visual appearance of

an object in the image, but yields information about a user’s diet or can be used

for diet planning [74]. Food portion co-occurrence pattern is one type of contextual

information. Other contextual information include the GPS coordinates associated

with the food images, the temporal eating pattern and individual’s eating pattern.

Such contextual information can not be determined by examining a single food im-

age alone. In this work we develop a method to model the food portion co-occurrence

patterns. We estimate the patterns from food images we collected for dietary studies.

The patterns we estimated provide valuable insights about a user’s eating behavior.

We use the co-occurrence models to further refine the portion estimation results. We

are able to obtain more accurate estimates of food portion sizes.

4.3 Estimating Food Portion Co-Occurrence Patterns for Portion Esti-

mation Refinement

Food portion estimation based on a single-view image is an ill-posed problem

and the 3D structure of the scene can not be fully reconstructed. The correct food

classification label and segmentation mask in the image alone is insufficient for 3D

reconstruction of a food item. The use of geometric models will allow for portion
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Fig. 4.2.: Sample food images collected by users using mFR with fiducial markers

placed in the scenes.
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estimation where food label is used to index into a proper class of a food type [14].

In this work we focus on the food classes that have varying shapes and appearances.

We use prism model [14] to the food classes as the prism model is designed for

food classes with varying shapes and appearances. We have designed a checkerboard

pattern fiducial marker to be placed in the eating scene shown in Figure 4.2. The

fiducial marker serves as a reference for both image rectification and food area sizes

in world coordinates (in cm2). We designed the fiducial marker to a credit card size

for users to conveniently carry. The small size of the fiducial marker causes errors

in the rectified image using computer vision techniques [20]. For example, if a food

item is placed far away from the fiducial marker in the eating scene, the estimated

portion (in cm2) for such food item may be less accurate. To improve the accuracy

of portion size estimation, we rely on a user’s eating behavior modeled from food

images of dietary studies. By proper modeling and incorporating the food portion

co-occurrence patterns into portion estimation, we are able to improve the accuracy of

portion estimation. Food portion co-occurrence patterns consist of the distributions

of portion sizes and the associated weighting factor. We use Gaussian distributions

as they best represent the characteristics of portion sizes distributions. We then

refine the food portion estimates based on the models of food portion co-occurrence

patterns.

4.3.1 Food Portion Estimation Using Prism Model

The prism model is an area-based food portion estimation technique based on the

assumption that the height is the same for the entire horizontal cross-section of the

food item. The 5 × 4 blocks color cherkerboard pattern fiducial marker is used as a

reference for corner correspondences and the absolute size in world coordinates. The

corners on the checkerboard pattern marker can be estimated using [75]. We obtain

the 3×3 homography matrix H using Direct Linear Transform (DLT) [20]. Assume I

is the original food image (as in Figure 4.2), the rectified image Î can then be obtained
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by: Î = H−1I. The segmentation mask Sj associated with food j in the original image

can be projected from the pixel coordinates to rectified image coordinates. The area

of segmentation mask Ŝj from the rectified image can then be estimated. We assume

the height hj for the entire horizontal cross-section. We use median height as the

height of the same food class in our food image dataset. The portion of a food item

Vj associated with segmentation mask Sj is then estimated: Vj = Ŝj × hj.

4.3.2 Food Combination Patterns

Food combination pattern describes the frequencies of various food pairs present in

the eating scenes. We use conditional probability of food items appearing in the same

eating scene as the food combination patterns [74]. We estimate the food combination

patterns from our food images collected from dietary studies. We define cj,k as the

conditional probability of food category j appeared given that food category k is

present as:

cj,k =
p(j, k)

p(k)
= p(j|k) (4.1)

The estimated food combination patterns represented by conditional probabilities is

shown in Figure 4.3.

The food combination patterns only indicate whether two food items are likely to

present in the same food image, hence it is insufficient to refine portion size estimation.

We need to develop a technique to model the food portion co-occurrence patterns to

refine portion estimation.

4.3.3 The Use of Food Portion Co-occurrence Patterns for Portion Esti-

mation Refinement

The food portion co-occurrence patterns can help refining the portion estimates

as they represent the insights reflected by the entire food image dataset rather than a

single image. For example, if we know that food items j and k (e.g. fries and ketchup)
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Fig. 4.3.: Food combination patterns represented by conditional probabilities.
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usually appear in the same eating scene and the distribution of food portions j and

k, we are able to refine the portion estimates based on such prior knowledge.

We use xj
i , x

k
i to denote the food portions for food classes j, k estimated from

food image with index i, where i ∈ {1, 2, 3, · · · , N}. N is the size of our food image

dataset, and j, k ∈ {1, 2, 3, · · · ,M} where M is the number of the food classes we

use. Cj,k is a combination pair that represents food items j and k are present in the

same image. For the combination Cj,j, the associated conditional probability is always

cj,j = 1. We denote Si as the set containing all the combination pairs Cj,k exist in

food image i. We use 2D Gaussian to model the distributions of portion sizes {xj
i , x

k
i }

from our user food image data:

gj,k(x
j
i , x

k
i ) ∼ N(µj,k, σj,k) (4.2)

Similarly, we use 1D Gaussian to model the distribution of portions xj
i estimated for

food class j:

gj,j(x
j
i , x

j
i ) = gj(x

j
i ) ∼ N(µj, σj) (4.3)

where µj,k, µj are the means and σj,k, σj are the standard deviations of the food

estimates we obtained from our user food image data.

As the frequency of combination Cj,k appearing in our user food image data is

different, we assign different weighting factors. For example, for the combination Cj,k

that appears often across in food image dataset, we assign a heavier weight as it

contributes more to the refinement of the portion estimates. Otherwise, we assign a

lighter weight for combination Cj,k. Furthermore, as the Si is different for each food

image i, the same Cj,k can carry different weight in different food image. We define

the weighting factor wj,k
i of the combination Cj,k in image i as:

wj,k
i =

cj,k∑
∀Cj,k∈Si

cj,k
(4.4)

Note that for each image i the weighting factor wj,k
i is different depending on the

food combinations present. The food portion co-occurrence patterns consist of both

the weighting factor wj,k
i and the distribution of the portion size estimates as shown
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Fig. 4.4.: Average original errors vs. refined errors for portion estimates by food class.

in Equation 4.2 and 4.3. To refine the portion estimation results obtained using

geometric models, we introduce a cost function in which we weight the probability of

portion estimates: (xj
i , x

k
i ) in the image i based on co-occurrence patterns. The cost

function is defined as:

f(xj
i ) = 1−

∑

∀Cj,k∈Si

wj,k
i · gj,k(x

j
i , x

k
i ) (4.5)

Our goal is to minimize the cost such that the refined portion size best reflect the

co-occurrence patterns we estimate from our food images collected in dietary studies.

The refined food portion x̂j
i in the eating scene can then be obtained by:

x̂j
i = argmin

x
j
i

{f(xj
i )} (4.6)

4.4 Experimental Results

We divide our food image data into testing and training subsets. We tested

on a total of 40 food classes. To reduce the errors propagate from the automatic

classification and segmentation, we use ground truth food labels and segmentations

masks. We use a subset of our food images for testing and leave the rest food images
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for training. Geometric model-based technique [14] is used to estimate the portion

sizes from our food images. The median height of each food class is estimated from

the training dataset. We model the food portion co-occurrence patterns based on the

training subset for portion estimation refinement.

We refine the portion estimation results using food portion co-occurrence patterns.

We compare the refined portion estimation error of each food class obtained using

geometric models to the portion size errors without refinement. The errors in portion

size estimation in Figure 4.4 are defined as:

Error =
|Estimated Portion Size−Ground Truth Portion Size|

Ground Truth Portion Size
(4.7)

The ground truth portion sizes for each food item are provided by nutrient profes-

sionals.

The average errors per food class are obtained based on average error of 20 trials.

In each trial we randomly sample 5% of our food images as testing subset. We use

sampling with replacement technique so that the sizes of the training and testing

subsets are the same for each trial. The original error in Figure 4.4 is the error of

food portion estimates obtained using geometric model based [14] approach where the

refined error is obtained by incorporating food portion co-occurrence patterns. For

most food classes, we are able to improve portion estimation accuracy significantly

using refinement technique, such as turkey meal. For some food classes the refinement

technique was not sufficient to improve the estimation accuracy significantly (such as

grapes). For a few food classes (garlic bread and rice krispy bar) the portion estimates

become less accurate with refinement. This is due to the co-occurrence patterns we

estimated from training dataset do not generalize well for these specific food classes.

Such issue can be addressed by increasing the size of the food image dataset collected

from future dietary studies as refinement is fundamentally adding biasness to our

system based on past observations. If the past observations include variety of scenarios

for most user behavior patterns, we can further improve the estimation accuracy. Our

geometric model based portion estimation technique becomes less sensitive to noise

by incorporating co-occurrence patterns. It has been shown in Figure 4.4 that the
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co-occurrence patterns we estimated generalize well for most of the food classes in

our dietary studies. We define the improvement rate as:

Improvement =
Original Error− Refined Error

Ground Truth Portion Size
(4.8)

The overall improvement rate for our dataset is 36.9%.

4.5 Conclusion

We model the food portion co-occurrence patterns based on the food images we

collected in dietary studies. The food portion estimation is refined by incorporating

the portion co-occurrence patterns. We have shown that with the refinement we

significantly improve the estimation accuracy for most of the food classes.

Single view food portion estimation technique requires the correct food label as

we use food label to index into the correct class of geometric model. Although we

have achieved accurate food portion estimation using geometric models, ground truth

food labels, segmentation masks have been used for the experiments. Inaccurate

segmentation mask leads to errors estimating the food portion sizes.

As our goal is to automatically analyze food images, ground truth food segmenta-

tion masks and food labels are not available in the automatic image analysis. There-

fore, errors generated in automatic food region segmentation and food type classi-

fication shown in Figure 4.5 will propagate into portion estimation. It remains a

challenge estimating food portion sizes with inaccurate food labels and segmentation

masks.
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(a) Original food image (b) Apple, sausage, muffin,

milk

(c) Fruit cocktail, muffin,

apple, snickerdoodle

(d) Grapes, milk, apple,

muffin

(e) Muffin, bagel, ham sand-

wich, garlic toast

(f) Muffin, bagel, ham sand-

wich, garlic toast

(g) Pizza, apple, turkey, car-

rots

Fig. 4.5.: Original food image (a) and automatic segmentation masks (b)-(g) and top

4 candidate food labels associated with segmentation mask.
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5. LEARNING IMAGE-TO-ENERGY MAPPINGS USING

GENERATIVE ADVERSARIAL NETWORKS

5.1 Introduction

We have previously developed a 3D geometric-model based technique for portion

estimation [14, 76] which incorporates the 3D structure of the eating scene and use

geometric models for food objects. We showed that more accurate food portion

estimates could be obtained using geometric models for food objects whose 3D shape

can be well-defined compared to a high resolution RGB-D images [73]. Geometric-

model based techniques require accurate food labels and segmentation masks. Errors

from these steps can propagate into food portion estimation.

More recently, several groups have developed food portion estimation methods

using deep learning [77] techniques, in particular, Convolutional Neural Networks

(CNN) [78]. In [11], a food portion estimation method is proposed based on the

prediction of depth maps [57] of the eating scene. However, we have shown that

the depth based technique is not guaranteed to produce accurate estimation of food

portion [73]. In addition, energy/nutrient estimation accuracy was not reported in

[11]. In [79], a multi-task CNN [80] architecture was used for simultaneous tasks of

energy estimation, food identification, ingredient estimation and cooking direction

estimation. Food calorie estimation is treated as a single value regression task [79]

and only one unit in the last fully-connected layer (FC) in the VGG-16 [81] is used

for calorie estimation.

Although CNN techniques have achieved impressive results for many computer

vision tasks, they depend heavily on well-constructed training datasets and proper

selection of the CNN architecture. We propose in this work to use generative models

to estimate the food energy distribution from a single food image. We construct a
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Fig. 5.1.: Learning image-to-energy mappings using Generative Adversarial Nets.

food energy distribution image that has a one-to-one pixel correspondence with the

food image. Each pixel in the energy distribution image represents the relative spatial

amount (or weight) of food energy at the corresponding pixel location. Therefore, a

food energy distribution image provides insight not only on where the food items are

located in the scene, but also reflects the weights of energy in different food regions

(for example, regions of the image containing broccoli should have smaller weights

due to lower energy (kilocalories) compared to regions of the image containing steak).

The energy distribution image is one way that we can visualize these relationships.

More specifically, the generative model is trained on paired images [82] mapping

a food image to its corresponding energy distribution image. Our goal is to learn

the mapping of the food image to the food energy distribution image so that we

can construct an energy distribution image for any eating occasion and then use this

energy distribution to estimate portion size as shown in Figure 5.1.

The weights in food energy distribution image for the training data are assigned

based on ground truth energy using a linear transform described in Section 5.2.1. We

use a Generative Adversarial Networks (GAN) architecture [83] as GAN has shown

impressive success in training generative models [82,84–87] in recent years. Currently,

no publicly available food image dataset meets all of the requirements for training

our generative model that learns the “image-to-energy mapping.” We constructed

our own dataset based on ground truth food labels, segmentation masks and energy

information for training the generative model. In this section, we first show that the
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proposed method can obtain accurate estimates of food energy from a single food

image. Secondly, we introduce a method for modeling the characteristics of energy

distribution in an eating scene.

5.2 Learning Image-to-Energy Mappings

Here we will initially discuss the requirements of the training dataset and then

we will describe in more details how we construct the energy distribution image from

the training data. Image pairs consisting of the food image and corresponding en-

ergy distribution image are required to train the GAN. There are a several publicly

available food image datasets such as the PFID [88], UEC-Food 100/256 [89] and

Food-101 [90]. However, none of these dataset contains sufficient information re-

quired for training a generative model that we can use to learn the “image-to-energy

mapping”. We created our own paired image dataset for training the GAN with

ground truth food labels, segmentation masks and energy/nutrient information from

a food image dataset we have collected from dietary studies. This is described in more

details in Section 5.2.1. We use the conditional GAN architecture [82] for training

our generative model.

5.2.1 The Image-to-Energy Dataset

The generative model is designed to best capture the characteristics of the energy

distribution associated with food items in an eating scene. For food types that have

different energy distribution (such as broccoli versus steak), the differences should

be reflected in the energy distribution image. For constructing the image-to-energy

training dataset, we use food images collected from a free-living dietary TADATM

study [91]. We manually generated the ground truth food label and segmentation

mask associated with each food item in the user food image dataset. The ground truth

energy information (in kilocalories) for each food item was provided by registered

dietitians. For these food images we have a fiducial marker with known dimension
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that is located in each eating scene to provide references for worlds coordinates,

camera pose, and color calibration. The fiducial marker is a 5 × 4 color checkerboard

pattern as shown in Figure 5.2a. The food energy distribution image we construct

from the above ground truth information needs to reflect the differences in spatial

energy distribution for food regions in the scene. For example, for French fries stacked

in pyramid shape, the center region of French fries should have more relative energy

weight compared to the edge regions in the energy distribution image.

To construct the energy distribution image we first detect the location of the

fiducial marker using [63]. We then obtain the 3 × 3 homography matrix H using

the Direct Linear Transform (DLT) [20] to rectify the image and remove projective

distortion. Assume I is the original food image, the rectified image Î can then be

obtained by: Î = H−1I. The segmentation mask Sk associated with food k can then

be projected from the original pixel coordinates to the rectified image coordinates as

Ŝk = H−1Sk. At each pixel location (̂i, ĵ) ∈ Ŝk, we assign a scale factor ŵî,ĵ reflecting

the distance of the pixel location (̂i, ĵ) to the centroid of the segmentation mask Ŝk.

The scale factor ŵî,ĵ is defined as:

ŵî,ĵ =
1√

(̂i− îc)2 + (ĵ − ĵc)2 + φ0.5
Ŝk

, ∀(̂i, ĵ) ∈ Ŝk, (5.1)

where (̂ic, ĵc) is the centroid of Ŝk and the regularization term, φŜk
, is defined as:

φŜk
= (

∑

∀(̂i,ĵ)∈Ŝk

1). (5.2)

If the pixel location (̂i, ĵ) is outside of the segmentation mask Ŝk, then ŵî,ĵ =

0, ∀(̂i, ĵ) /∈ Ŝk. With the scale factor ŵî,ĵ assigned to each pixel location in Ŝk, we can

project the weighted segmentation masks Ŝk back to the original pixel coordinates as

S̄k = HŜk, and learn the parameter ρk such that:

ck = ρk
∑

∀(̄i,j̄)∈S̄k

w̄ī,j̄ , (5.3)

where ck is the ground truth energy associated with food k, ρk is the energy mapping

coefficient for S̄k and w̄ī,j̄ is the energy weight factor at each pixel that makes up the
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ground truth energy distribution image. We then update the energy weight factors

in S̄k as:

w̄ī,j̄ = ρk · w̄ī,j̄ , ∀(̄i, j̄) ∈ S̄k. (5.4)

We repeat the process following Equation 5.1 and 5.3 for all k ∈ {1, . . . ,M} where

M is the number of food items in the eating scene image. We can then construct a

ground truth energy distribution image W̄ of the same size as Ī: Ī = HÎ, by overlaying

all segments S̄k, k ∈ {1, . . . ,M} onto W̄ . Thus, we obtain the paired images of an

eating scene: the image Ī and the energy distribution image W̄ with one-to-one pixel

correspondence as shown in Figure 5.2a and 5.2b.

5.2.2 Generative Adversarial Nets

In GANs, two models are trained simultaneously: a generative model G that

captures the data distribution, and a discriminative model D that determines the

probability that a sample came from the training data rather than G [83]. The

common analogy for the GANs architecture is a game between producing counterfeits

(generative models) and detecting counterfeits (discriminative model) [83].

To formulate the GANs, we specify the cost functions. We use θ(G) to denote the

parameters of generative model G and θ(D) to denote the parameters of discriminative

model D. The generative model G attempts to minimize the cost function:

J (G)(θ(D), θ(G)) (5.5)

where the discriminative model D attempts to minimize the cost function:

J (D)(θ(D), θ(G)) (5.6)

In a zero-sum game, we have:

J (G)(θ(D), θ(G)) = −J (D)(θ(D), θ(G)) (5.7)

Therefore, the overall cost can be formulated as:

J (D)(θ(D), θ(G)) = −
1

2
Ex∼pdata(x)[logD(x)]−

1

2
Ez∼pz(z)[logD(1− (G(z)))] (5.8)
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(a) Eating occasion image Ī. (b) Ground truth energy dis-

tribution image W̄.

(c) Estimated energy distribu-

tion image W̃ .

Fig. 5.2.: Learning image-to-energy translation using generative models.

where x is sampled from the true data pdata and z is random noise generated by

distribution pz. The generative model takes z and generate fake sample G(z). The

goal of the minimax game would then be:

min
θ(G)

max
θ(D)

−J (D)(θ(D), θ(G)) (5.9)

During each update on the generative model G, the generated fake sample G(z)

will become more like the true sample x. Therefore, eventually after sufficient epochs

of training, the discriminatorD is unable to differentiate between the two distributions

x and G(z) [83].

The GANs takes adversarial training samples by its nature therefore could hugely

reduce the adversarial space for the generative models to make mistakes. Therefore,

the use of GANs architecture can greatly reduce the training samples needed and

model the statistical insights of the true data.

5.2.3 Learning The Image-to-Energy Mappings

We use a Conditional GAN (cGAN) [82] that learns a generative model under

conditional setting based on an input image. A cGAN is a natural fit for our “image-

to-energy mapping” task since we want to predict the energy distribution image based

on a food image.



83

More specifically, the cGAN attempts to learn the mapping from a random noise

vector z to a target image y conditioned on the observed image x: G(x, z) → y. The

objective function of a conditional GAN is expressed as:

LcGAN(G,D) = Ex,y∼pdata(x,y)[logD(x,y)]+

Ex∼pdata(x),z∼pz(z)[log(1−D(x, G(x, z))].
(5.10)

An additional conditional loss Lconditional(G) is added [82] that further improves the

generative model’s mapping G(x, z) → y:

Lconditional(G) = Ex,y∼pdata(x,y),z∼pz(z)[D(y, G(x, z))], (5.11)

where D(y, G(x, z)) measure the distance between y and G(x, z). Commonly used

criteria for D(·) are the L2 distance [92]:

D(y, G(x, z)) =
1

n

n∑

i=1

(yi −G(xi, zi))
2, (5.12)

the L1 distance [82]:

D(y, G(x, z)) =
1

n

n∑

i=1

|yi −G(xi, zi)|, (5.13)

and a smooth version of the L1 distance:

D(y, G(x, z)) =
1

n

n∑

i=1





(yi−G(xi,zi))
2

2
if |yi −G(xi, zi)| < 1

|yi −G(xi, zi)| otherwise.

(5.14)

The final objective for both the cGAN and the conditional terms is defined as [82,83]:

G∗ = argmin
G

max
D

LcGAN(G,D) + λLconditional(G). (5.15)

The generative model G∗ obtained from Equation 5.15 is then used to predict the

energy distribution image W̃ (Figure 5.2c) based on the food image (Figure 5.2a).
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5.2.4 Experimental Results

We have 202 food images that have been manually annotated with ground truth

segmentation masks and labels as training samples. All the food images are collected

from a free-living (in the wild) TADATM dietary study [91]. Registered dietitians

provided the ground truth energy information for each food item in the images. We

constructed a dataset of paired images based on the 202 food images. Data augmen-

tation techniques such as rotating, cropping and flipping were used to further expand

our training dataset so that a total of 1875 paired images were used to train the

cGAN. We used 220 paired images for testing.

We believe the training dataset size is sufficient for our task of predicting the en-

ergy distribution image because the cGAN is a mapping of a higher dimensional food

image to a lower dimensional energy distribution image. In addition, since all food

images are captured by users sitting naturally at a table, there is no drastic changes

in viewing angles (for example, from wide angle to close up). In other image-to-image

mapping tasks, a training dataset size of 400 has been used [82] for architectural labels

(simple features) to photo translation (complex features) [93].

In testing, once the cGAN estimates the energy distribution image W̃ , we can

then determine the energy for a food image (portion size estimation) as:

Estimated energy =
∑

∀(i,j)∈Ī

(w̃i,j). (5.16)

We compared the estimated energy image W̃ (Figure 5.2c) to the ground truth energy

image W̄ (Figure 5.2b), and define the error between W̄ and W̃ as:

Energy Estimation Error Rate =

∑
∀(i,j)∈Ī(w̃i,j − w̄i,j)∑

∀(i,j)∈Ī(w̄i,j)
(5.17)

To compare different cGAN models, we used the encoder-decoder architecture [94]

as shown in Figure 5.3 and the U-Net architecture [95] as shown in Figure 5.4. We

compared the energy estimation error rates at different epochs for both architectures.

We observed that the U-Net architecture (Figure 5.5b) is more accurate in energy esti-

mation and more stable compared to the encoder-decoder architecture (Figure 5.5a).
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Fig. 5.3.: The convolutional encoder-decoder architecture.

Fig. 5.4.: The U-Net architecture.
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Fig. 5.5.: Comparison of error rates of different generative models: encoder-decoder

versus U-Net.

This is due to the fact that the U-Net can copy information from the “encoder” layers

directly to the “decoder” layers to provide precise locations [95], an idea similar to

ResNet [96].

We also compared the energy estimation error rates under different conditional

loss settings: Lconditional(G) using U-Net. We used the batch size of 16 with λ = 100

in Equation 5.15, the Adam [97] solver with initial learning rate α = 0.0002, and

momentum parameters β1 = 0.5, β2 = 0.999 as in [82]. Based on our experiments,

distance measure D(·) using the L1 or L2 norms is better than using smoothed L1

norm. At epoch 200, the energy estimation error rates are 10.89% (using L1 criterion)

and 12.67% (using L2 criterion), respectively. Using geometric-models [14] techniques,

the energy estimation error was 35.58%. In the experiments, we included food types

whose shapes are difficult to define (for example, fries). Estimating those food types

is very challenging using geometric-model based approach [14].
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5.3 Food Energy Estimation Based on Energy Distribution Mappings 1

Single-view based food portion estimation is a challenging problem. To estimate

food portions (in energy), we introduce the energy distribution image. Energy dis-

tribution image is a way we visualize where foods are in the image and how much

relative energy is presented at different food regions. We use the GAN architecture

to train the generative model that predicts the food energy distribution images based

on eating occasion images. We have built a food image dataset with paired images

[98] for the training of the GAN. To complete the end-to-end task of estimating food

energy value based on a single-view eating occasion image, we use a CNN based re-

gression model to estimate the numeric food energy value using the learned energy

distribution mappings.

5.3.1 System Architecture for Food Energy Estimation Based on Energy

Distribution Mappings

We are able to obtain the energy distribution image [98] for each RGB eating

occasion image using generative model G trained by GAN. An example original food

image and estimated energy distribution image are shown in Figure 5.2a and Fig-

ure 5.2c. Energy distribution images represents how food energy is distributed in the

eating scene. Our goal is to estimate food energy (a numerical value), based on the

estimated energy distribution image. This is essentially a regression task as shown in

Figure 5.6. We use a Convolutional Neural Networks (CNN) based regression model

to conduct the task of estimating energy from energy distribution image. For the re-

gression model, we use a VGG-16 [81] based architecture as shown in Figure 5.7. As

VGG-16 has shown impressive results on object detection tasks, VGG-16 is sufficient

for learning complex image features. We modified the original VGG-16 architecture

and added an additional linear layer as shown in Figure 5.7 so that the CNN based

architecture is suitable for energy value regression task. Instead of using random

1This section is in joint work with Mr. Zeman Shao
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Fig. 5.6.: Estimating food energy of a meal based on predicted energy distribution

image.

initialization for VGG-16 and training from scratch, we use pre-trained weights of

VGG-16 architecture on ImageNet [99]. The pre-trained weights are indicated in the

dash bounding box in Figure 5.7. We use random initialization for the linear layer.

We then fine tune the pre-trained weights of VGG-16 network for energy value pre-

diction task based on the building blocks of complex features originally learned from

ImageNet [99]. With the regression model, we can predict the energy of the foods in

a single-view eating occasion image.

5.3.2 Experimental Results for Food Energy Estimation Based on Energy

Distribution Mappings

We predict the food energy of each eating occasion image based on its energy

distribution generated by generative model. We then compare the food energy es-

timation to the ground truth food energy provided by the registered dietitians. We
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Fig. 5.7.: Using pre-trained weights to further fine tune for food energy estimation .
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use 1390 eating occasion images collected from a free living dietary study [91], with

ground truth food energy (kilocalories) for each food item in the eating occasion im-

age provided by registered dietitians. We use 1043 of these eating occasion images

for training and 347 of them for testing. All of eating occasion images are captured

by the users sitting naturally at a table. There is no drastic changes in viewing angle.

The errors for estimated food energy in Figure 5.9 are defined as:

Error = Estimated Food Energy−Ground Truth Food Energy (5.18)

Figure 5.8 shows the relationship between the ground truth food energy and the

food energy estimation of the eating occasion images in the testing dataset. The

dash line in Figure 5.8 indicates the ground truth and estimated energy are the

same, i.e., estimation error is equal to zero. Therefore, the points above this line are

over estimated, and the points below this line are under estimated. Figure 5.10 and

Figure 5.11 show examples of food energies have been over and under estimated, we

use “+” and “-” to indicate over and under estimation, respectively. The average

ground truth of eating occasion image in the testing dataset is 538.56 kilocalories.

We observed that the estimation is more accurate for the eating occasion image with

ground truth energy around average, compared to those with extremely high or low

ground truth energy such as zero kilocalories. This is due to the fact that there are

not sufficient eating occasion images in our dataset with very high or low ground

truth energy provided to the neural networks for training.

The error distribution of estimated food energies for 347 eating occasion images

is shown in Figure 5.9. We found that the average energy estimation error is 209.41

kilocalories.

5.3.3 Incorporating Depth Features for Energy Distribution Mappings

Previously, we directly train the food image to energy distribution mappings using

generative models with random initialization. As food objects have 3D structures,

the “energy distribution image” should incorporate how food energy is distributed
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Fig. 5.8.: Relationship between the ground truth food energy and the food energy

estimation.

Fig. 5.9.: Error of food energy for each eating occasion images.
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(a) Ground truth energy: 287.51

kCal

Estimated energy: 314.99 kCal

Energy error: +27.48 kCal

(b) Ground truth energy: 520.49

kCal

Estimated energy: 621.92 kCal

Energy error: +101.43 kCal

(c) Ground truth energy: 653.31

kCal

Estimated energy: 875.11 kCal

Energy error: +221.80 kCal

(d) Ground truth energy: 498.92

kCal

Estimated energy: 579.65 kCal

Energy error: +80.72 kCal

(e) Ground truth energy: 705.04

kCal

Estimated energy: 893.22 kCal

Energy error: +188.18 kCal

(f) Ground truth energy: 354.14

kCal

Estimated energy: 425.75 kCal

Energy error: +71.61 kCal

Fig. 5.10.: Examples of food energies been over estimated.
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(a) Ground truth energy: 542.51

kCal

Estimated energy: 472.43 kCal

Energy error: -258.94 kCal

(b) Ground truth energy: 990.98

kCal

Estimated energy: 732.04 kCal

Energy error: -258.94 kCal

(c) Ground truth energy: 508.96

kCal

Estimated energy: 504.64 kCal

Energy error: -4.32 kCal

(d) Ground truth energy: 508.96

kCal

Estimated energy: 474.06 kCal

Energy error: -34.90 kCal

(e) Ground truth energy: 749.17

kCal

Estimated energy: 629.01 kCal

Energy error: -120.16 kCal

(f) Ground truth energy: 1084.61

kCal

Estimated energy: 708.83 kCal

Energy error: -375.78 kCal

Fig. 5.11.: Examples of food energies been under estimated.
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Fig. 5.12.: Incorporating depth features for energy distribution prediction.

spatially in the eating scene. Using the depth image of the scene is one way we

can model the 3D structures of the scene. In addition, the depth images have more

details/features for objects’ structures and surfaces. Therfore, to better incorporate

the 3D structure of food objects, instead of directly training on food image - energy

distribution image pairs, we propose to first train the generative model using RGB-

depth images pairs in [57]. Furthermore, mapping the RGB image to the depth

images is a more complex task than mapping the RGB to energy distribution as

there are more object categories, surfaces, normals and 3D structures.

With the trained generative model using GAN architecture that accurately esti-

mate depth images on monocular RGB image [57], the complex features that map

RGB to the depth have been learned by the generative model. We then train the same

GAN architecture using learned weights for the generative model and discriminative
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Fig. 5.13.: Error of food energy for each eating occasion images.

model for the task of image-to-energy mappings We show in Figure 5.12 that the

use of pre-trained generative model on RGB-depth mappings increase the accuracy

of the energy distribution mappings.

We use 9 layers of the networks block of ResNet [96] on [57] dataset. We use the

weights of generative model trained for 200 epochs on depth prediction and fine tune

on the task of energy estimation. We show that by incorporating depth information

and using transfer learning, we have achieved more accurate energy distribution esti-

mates using ResNet blocks as generative model shown in Figure 5.12 comparing to

the previous approach using U-Net [95] and Encoder-Decoder architecture [94]. As

the weights for the generative models was learned on RGB-D dataset, as early epochs

the error increases as shown in Figure 5.12 but the error is consistently smaller than

the previous approach [98] directly training on image-to-energy mappings in the later

epochs.

We then estimate the food energy numeric value following the approach as shown

in Section 5.3.1. Similarly to Section 5.3.1, we show the error distribution of esti-

mated food energies for 347 eating occasion images in Figure 5.13 and the relationship
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Fig. 5.14.: Relationship between the ground truth food energy and the food energy

estimation.

between the ground truth food energy and the food energy estimation in Figure 5.14

using generative models pre-trained on depth. We found that the average energy esti-

mation error is 191 kilocalories (comparing to 209.41 kilocalories without pre-trained

on depth in Section 5.3.1).

5.4 Conclusion

We proposed a novel end-to-end system to directly estimate food energy from

a captured eating occasion image. Our system first estimated the image to energy

mappings using a Generative Adversarial Networks (GAN) structure. Based on the

estimated energy distribution images, we learned the food energy of the eating occa-
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sion image by training CNN based regression model. We are able to obtain accurate

food energy estimation with an average error of 209.41 kilocalories for eating occasion

images collected from a free-living dietary study. The training based technique for

end-to-end food energy estimation no longer requires fitting geometric models onto

the food objects that may have issues scaling up as we need a large amounts of geomet-

ric models to fit different food types in many food images. In the future, combining

automatically detected food labels, segmentation masks, and contextual dietary in-

formation has the potential to further improve the accuracy of such end-to-end food

portion estimation system.
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6. THE DESIGN OF A CROWDSOURCING TOOL FOR

ONLINE FOOD IMAGE IDENTIFICATION AND

SEGEMENTATION

6.1 Introduction

Training-based techniques have been widely used in recent years for developing

automatic dietary assessment systems [7, 55, 100]. For training-based techniques,

increasing the training data size would in general improve the accuracy of the system,

thus a larger image dataset is always preferred. To date we have a food image dataset

with more than 60,000 food images all collected from scientific studies that can be

possibly used as training data for our system. The food images are collected using

mFRTM we developed from more than 14 scientifically implemented user studies,

including environments in the wild, by more than 800 users. We have groundtruth

food labels, segmentation masks and portion sizes information for thousands of the

food images. In addition to the food images we have collected, a few other food image

datasets are available, namely the PFID: Pittsburgh fast-food image dataset [88],

UEC-Food 100/256 [89] and Food-101 [90]. The images in [88] are collected under

laboratory set-up and only with fast food. Thus the categories and the appearances

of the eating scenes do not best suit our use to examine realistic, diverse eating

occasions. Furthermore, although both [90] and [89] contain a large amount of food

images and a decent range of food types, we feel a detailed description for systematic

design of food images collection and annotation is not revealed.

Without a well-designed user interface, removing the noisy images from candi-

date sets and generating the groundtruth segmentation masks are inefficient and not

feasible. In addition, many food tags in [90] and [89] are dish names instead of

individual foods (in [89] many are Asian style cuisine), we feel the datasets do not
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meet all of our needs. As our goal is not only to identify the food items but also to

estimate the energy/nutrient information from the food images, we are interested in

food items that have nutrient information made available by standard food nutrient

databases, such as the United States Department of Agriculture (USDA) Food and

Nutrient Database for Dietary Studies (FNDDS) [101].

Online image sharing is quickly gaining popularity in recent years (for exam-

ple, through social networks such as Facebook and review orientated websites such

as Yelp), and there are hundred-thousands of food images uploaded by smartphone

users. We believe online food images can be used as part of our training data de-

veloping automatic dietary assessment techniques and provide valuable contextual

information such as users’ dietary patterns and food co-occurrence patterns. We

define the contextual information as the data that is not directly produced by the

visual appearance of an object in the image, but yields information about users’ diet

pattern or can be used for diet planning [100]. Collecting food images with proper

annotations in a systematic way is a challenging task and requires systematic de-

signs [99]. “Crowdsourcing”, as defined in [102], also referred to as the collective

intelligence, the wisdom of the crowd or human computation, is often considered as

an effective solution to problems that involve cognitive tasks. Amazon Mechanical

Turk (AMT) has been used in the past for food image collection and annotation tasks

[89,103] however the AMT is not tailored for the needs emerged from our research of

building a large food image dataset efficiently with food items labeled, localized, and

segmented.

We present a crowdsourcing tool, namely the crowdsourcing TADATM (cTADATM),

that is tailored to address our needs of online food image collection and annotation.

In addition to label and localize the target objects in the images [99], the cTADATM

is also capable of generating accurate segmentation masks for food objects based on

users’ input. To generate the segmentation masks, both the user input and automatic

segmentation technique [104] are required. We used a programming interface to col-

lect a large amount of online food images. We designed criteria for the removal of
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noise from images. Similar to [99], we are able to label and localize the food objects

in images. In addition, the cTADATM tool allows us to identify all the food items in

an image (located by bounding boxes) and generate associated segmentation masks

for each food item.

6.2 The Design of the Food Image Crowdsourcing Tool 1

Various food websites (such as foodspotting.com, foodgawker.com) contain

large amounts of food images. Many food images are uploaded by users on reviews-

oriented websites (such as Yelp) and image sharing/social networks (such as Flickr,

Instagram, Pinterest, Facebook). We believe many of those food images can be used

as the training data in our TADATM image analysis system. We define a set of cri-

teria for a food image to be included in our dataset. In addition, the crowdsourcing

tool must be efficient and effective as each of the crowd members will go through

thousands of food images.

6.2.1 Obtaining Online Food Images

Manually downloading thousands of online food images is not feasible. We use

Application Programming Interface (API) made available by image website or the

search engine for image collection. The APIs we used were Flickr API [105] and

Google Custom Search Engine (CSE) API [106]. The APIs allow us to obtain the

food images based on the search terms (food tags) we are interested in. Existing

datasets frequently use dish names as food tags. The disadvantage of using dish

name is that the same type of dish posts very large variation by the look, ingredients

and layouts as they were prepared by different people/restaurants. We use the food

categories that are frequently present in our existing food image dataset collected

from users in nutrition/health studies. The advantage of using such food categories is

the energy and nutrient information is made available by the FNDDS database [101].

1This section is partially in joint work with Ms. Chang Liu
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Fig. 6.1.: Examples of food images we collected for the nutrition scientific studies

(left) v.s. food images collected online with aesthetic appearances (right).

The food images obtained based on the tags will inevitably contain noisy images

that we can not use. We define the noisy images as those that either contain ir-

relevant content, or have significant different appearances compared to our existing

food images collected from scientific studies. A crowdsourcing process is required to

remove the noisy images from the candidate food images collected.

6.2.2 Noisy Image Removal Using Crowdsourcing

We first remove images that contain irrelevant contents. The irrelevant content

means no food item in the image, images with logos/watermarks/texts and images

containing faces. As our goal is to incorporate the online food images collected as part

of the training dataset, we want to only include the images that are taken by actual

users and exclude those images with aesthetic appearances (a comparison as shown

in Figure 6.1). Food images with aesthetic appearances are likely captured and/or

retouched by professional photographers and have fundamental differences compared

to the images taken by average users regarding textures, colors, angles and layouts.

To guide the crowds to successfully remove images with such aesthetic appearances,
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we define clear criteria for crowd members with image examples that show different

lightings (e.g. professional lighting versus environment light), colors (e.g. vivid and

saturated color versus natural color), textures (e.g. very smooth and reflective surface

versus regular surface), angles (e.g. close-up or other creative angles versus common

camera poses).

We do not exclude the food images that contain multiple food items. In fact, we

believe food images that contains multiple food items will help us better understand

the users’ diet patterns and food co-occurrence patterns. Such patterns can provides

us with important insights that can help dietary assessment.

6.2.3 Food Item Localization and Segmentation

In addition to removing noisy images, we also want to be able to efficiently have

crowds locating and obtaining the segmentation masks associated with the food items

in an image. We only assign food images that passed the noisy image removal step

to crowds for food item localization and segmentation. Users can still discard noisy

images as shown in Figure 6.2 in case of a false positive (where the image should be

neglected in a noisy image removal step).

To locate the food item, we ask the users to first draw a bounding box around one

food item. This task can be performed easily and efficiently by click-and-drag using

a computer mouse on our web interface. The bounding box drawn is then cropped

out of the original image as preparation for generating the segmentation mask. Users

can then select a food tag associated with the bounding box from the hierarchical

drop-down food list. The hierarchical drop-down list is designed to best incorporate

users’ intuitions, for example, we use “meats”, “beverages”, “green vegetables”, “red

and orange vegetables” as top level entries where more food categories are available

once a top level entry is selected.

The hierarchical drop-down list for food category selection is shown in Figure 6.3.
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Fig. 6.2.: Image can still be discarded in food item localization and segmentation

step.
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Fig. 6.3.: Hierarchical food tag selection user interface.
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Fig. 6.4.: Defining the foreground (green) and background (red).

To segment the food items, we implemented a stroke tool for users to define

foreground and background. Foreground is the area that is associated with the food

item, otherwise it will be defined as background. Users do not need to cover all areas

of foreground nor background. Drawing lines (the traces of the stroke) across the

foreground and background (shown in Figure 6.4) is sufficient.

Similar to many drawing softwares, users can select the linewidth of the stroke

tool. With foregrounds and backgrounds defined within the bounding boxes, we

use automatic segmentation technique to generate the segmentation mask within

the bounding box using the grab cut technique [75, 104]. For the food images that

contains multiple food items (shown in Figure 6.5), the above procedures are repeated

till bounding boxes associated with all food tags are located and a segmentation mask

is generated for each food item in the images as shown in Figure 6.6.

6.3 Experimental Results for cTADATM Crowdsourcing Tool

For the initial crowdsourcing experiment we recruited the crowds from graduate

school students pool all with engineering background in the field of image processing
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Fig. 6.5.: An example of online food image that contains multiple food items.
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Fig. 6.6.: Localizing multiple food objects in the same image.
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and computer vision. Our crowds are able to give valuable feedback on improving

the cTADATM crowdsourcing tool at initial design stage. The crowd users can only

use our web interface, and were not involved in any of the programming tasks.

For noisy image removal, we implemented a one-click confirmation and short-cut

keys on the keyboard, so users can even skip the point-and-click using the computer

mouse. The confirmation is then saved in our database and the next image will be

automatically present to users to minimize a user’s effort. We provide a tutorial on

the criteria of noisy image removal to the users. In tutorials, we provide side-to-side

comparisons of images and a descriptions for the criteria we designed. We found

that users can easily adapt to our set of noisy image removal criteria. With the

tutorials, identifying aesthetic appearances is no longer a challenging task even for

the crowd members lacking experiences in photography. Based on our observation, we

find examining one image takes one second on average for the user, and a maximum

of a few seconds. The cTADATM system has shown great efficiency in the task of

noise image removal and we were able to obtain almost 40,000 food images that can

be added to our dataset.

The process of localizing and obtaining the segmentation masks associated with

all the food items in an image is shown in Figure 6.7. Users work on one food item

at a time. For example, a user will first obtain the bounding box associated with

one food item, then identify the food type and define the foreground and background

using a ‘stroke’ tool and ‘save’ the action performed using the user interface. If

there is more than one food item present, an ‘add’ button can be clicked to repeat

the above procedures till all food items are done. The procedure is straight forward

and minimizes users’ efforts. We do not require users to manually crop out the

segmentation masks as it is time consuming and not feasible when working with a large

image dataset. Instead, the automatic segmentation tool [75, 104] we implemented

on our server will generated very accurate segmentation masks from the bounding

boxes and foregrounds and backgrounds defined, as shown in Figure 6.7.
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Fig. 6.7.: Locating the food items and obtaining the segmentation masks.
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Fig. 6.8.: The images downloaded from the Internet contains many noises.

6.4 Automated Noisy Image Removal For Online Food Image Collection

6.4.1 Motivation for Automated Noisy Image Removal

We have developed learning-based methods for automatic dietary assessment, that

require sufficient training data to achieve high accuracy. We incorporate the online

food images into our existing food image dataset, to increase the size of training data.

However, many food images retrieved from the Internet are considered noisy to us as

they may either have no food item presents the image, or contain irrelevant content

such as logos/watermarks/texts and images with human faces as shown in Figure 6.8.

In the original cTADATM design, we have used crowdsourcing tools that com-

pletely rely on human annotators to verify each downloaded image. Although we

have developed efficient tools for crowdsoucing task, it is always preferred that fewer

noisy images would be passed to the crowds to speed up the process of image anno-

tation. Therefore, we propose a technique to automatically remove non-food images

instead of relying on human annotators which are expensive and time consuming. By

removing many noisy images automatically, we can speed up and improve the quality

of subsequent crowdsourcing tasks.

Object detection is one of common tasks in computer vision research and recent

techniques based on Convolutional Neural Networks (CNNs) have shown impressive
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Fig. 6.9.: Region proposal networks.

results in object detection task [107–111]. In order to automatically remove noisy

images, we need a system that can accurately propose food regions. Then, based on

the proposed food regions and their associated confidence scores, we can decide either

to keep or discard the food image.

We train a neural network based on the Faster R-CNN [109] architecture for food

region proposal as shown in Figure 6.9.

For each proposed food region, a confidence score has been assigned [109]. We

denote the confidence score associated with each proposed food region as the “food-

ness” score shown in Figure 6.10a and Figure 6.10b. The “foodness” score has the

range of [0, 1]. The higher the confidence score is, the more likely the region proposal

network believe there is food present in the proposed region. Based on the highest

“foodness” score in an image, we then decide whether or not to keep the food image

for the subsequent crowdsourcing tasks.

Therefore, we need to determine the threshold value for the “foodness” score

for the decision of “keep/discard” for each image. We want to discard as many

noisy images as possible to speed up the subsequent crowdsourcing task, while not

discarding too many real food images that are good to be used later for training
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(a) Real food object associated with high

“foodness” score.

(b) Non-food object associated with low “foodness” score.

Fig. 6.10.: Comparison of “foodness” scores scores associated with food and non-food

regions.
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food classification networks. The best “foodness” score threshold should be obtained

based on the characteristics of “foodness” scores’ distribution.

6.4.2 Experimental Results for Automated Noisy Image Removal 2

To obtain the most suitable threshold for the “foodness” score, we first build a

dataset that contains both food images and non-food images downloaded from the

Internet. We use 1,000 food images from 50 food categories and 1,000 non-food images

in our experiment. We have manually verified all 2,000 images used in our experiment.

In each food image there may be multiple regions proposed as food regions. We keep

the detected food bounding box that has the highest “foodness” score in each image

for the decision of “keep/discard”.

It is unknown what is the ratio of non-food vs. food images (for example, 40%

food and 60% non-food, or 50% food and 50% non-food) in the downloaded images.

Therefore, we tested image mixtures which have 50 90% food images with our trained

networks. For each mixture ratio, we sampled 1000 images and repeat the process for

1000 trials.

As we later will make the “keep/discard” decision based on the “foodness” score,

we require the region proposal network to achieve high statistical accuracy. We exam-

ine the the Precision-Recall (PR) curve as shown in Figure 6.12, Receiver Operation

Characteristics (ROC) curve as shown in Figure 6.11 and Average Precision as shown

in Table 6.1.

Based on the results shown in Figure 6.12, Figure 6.11, and Table 6.1 we show

that the trained region proposal network is accurate for food region proposal.

We obtain the most suitable “foodness” score threshold based on the trade-off

between precision and recall [112] for different mixture ratios. A good “foodness”

score threshold should result in both high precision and high recall. Based on the

work [113], the minimum values we aim to achieve for both precision and recall

2This section is in joint work with Mr. Runyu Mao
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Fig. 6.11.: The Receiver Operating Characteristics (ROC) for different mixtures.
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Table 6.1.: Average precision for each food image mixture ratio

Food Image Portion Average Precision (AP)

50% 0.9473

60% 0.9625

70% 0.9746

80% 0.9843

90% 0.9923
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Fig. 6.12.: The Precision-Recall for different mixtures.
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Table 6.2.: Acceptable Threshold Ranges and Discarded Images Portions for Different

Food/Nonfood Mixtures

Food Images

Portions

50% 60% 70% 80% 90%

Acceptable

Threshold

Ranges

[0.57, 0.77] [0.45, 0.77] [0.32, 0.77] [0.07, 0.77] [0.00, 0.77]

Discarded

Images

Portions

[42.6%, 55.3%] [28.5%, 48.1%] [14.3%, 41.1%] [1.3%, 34.0%] [0.0%, 26.8%]

are set to be 0.8. Since we want to build a large food image dataset, the networks

may falsely discard no more than 20% correct images (recall ≥ 0.8). To improve the

quality of subsequent crowdsourcing tasks, the remaining images should contain more

than 80% correct images (precision ≥ 0.8).

“Foodness” score threshold values that meet our criteria of achieving high precision

and high recall are considered to be within the acceptable range. A preliminary result

of the acceptable ranges for different food/non-food image mixtures is shown in the

Table 6.2, where a “keep/discard” action threshold within the range [0.57, 0.77] can

guarantee high precision and high recall while discarding a large portion of noisy

images to improve the quality of the data collection.

More specifically, we highlight the acceptable range for each of the food mixtures

as shown in Figure 6.13, Figure 6.14, Figure 6.15, Figure 6.16 and Figure 6.17.

6.5 Summary and Discussion

We have designed and implemented the cTADATM crowdsourcing tool tailored

for the task of incorporating online food images into our food image dataset. We
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Fig. 6.13.: Acceptable range (highlighted in yellow) for mixture of 50% food images.

Fig. 6.14.: Acceptable range (highlighted in yellow) for mixture of 60% food images.
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Fig. 6.15.: Acceptable range (highlighted in yellow) for mixture of 70% food images.

Fig. 6.16.: Acceptable range (highlighted in yellow) for mixture of 80% food images.
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Fig. 6.17.: Acceptable range (highlighted in yellow) for mixture of 90% food images.
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show that cTADATM is efficient and effective in removing noisy images, locating

the bounding boxes containing the food items and obtaining segmentation masks

associated with all the food items in the image. However, we have noticed some

mistakes are made unwillingly by the users, especially for the noisy image removal

step as each task is done on the scale of a few seconds. In order to minimize or avoid

mistakes made unwillingly by the users in noisy image removal step, we developed a

technique that automatically remove some of the noisy images.

We have gained valuable insights from our experiments on the design of cTADATM

crowdsourcing tool for online food image collection. For example, which food tags

to use as search entries and common appearances of food images taken by the users.

Online food images introduce new perspectives as how we can collect and work on food

images that are captured by users with no specific instructions. With the cTADATM

tool, we are capable of expanding our food image dataset with online food images

based on the food tags. We no longer have the issue of lacking training images for

new food categories in our TADATM image analysis system.

In the future we are also interested in relating texts (e.g. recipes/comments on

the same webpage) to food images as more nutrient or contextual information can

be revealed and used. It still remains a challenging task to estimate valuable infor-

mation from the large amount of image data generated by numerous users which can

potentially contribute to research in the health and nutrient fields.
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7. A PRINTER INDEXING SYSTEM FOR COLOR

CALIBRATION WITH APPLICATIONS IN DIETARY

ASSESSMENT

7.1 Introduction

Color is an important feature for identifying food types in current system, therefore

it is crucial to maintain the consistency of color for accurate food classification [7].

A color calibration process based on reference information is required prior to food

classification to eliminate the influences of varying lighting conditions and mitigate

variations in camera sensor response.

To provide reference information, we have designed a color checkerboard pattern or

a fiducial marker (FM) as illustrated in Figure 1.4. This color checkerboard consists

of M colors where M = 11 including background “white” for our current version

of the FM. The fiducial marker is included in the scene by the user to serve as a

reference for the estimation of scale and pose of the objects in the scene and to provide

reference information for color calibration [17]. Our research group has generated

and distributed all the FMs used in our previous studies by printing the FMs on the

same printer (a Canon i9900). As the number of users in our studies increases, we

need to develop a method for the users to generate the FM themselves.

The issue of reproducing colors is a fundamentally difficult problem [114]. We

have tested printing the FMs using various printers and significant color mismatch

can be observed based on both the perception of a human observer (see Figure 7.3)

and our estimates of the sRGB values [115]. Therefore we must design a system that

allows us to know which printer was used to print the FM so that we can properly

color calibrate the images. Our goal is to design the FM so that we can determine

the printer by extracting the printer index from an image of the FM. Note that by
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(a) Canon i9900 (b) Canon PIXMA Pro-100

(c) HP Color LaserJet 4700 (d) HP LaserJet M551

Fig. 7.1.: Food images from our TADATM system with the fiducial marker (FM)

present.

Fig. 7.2.: Magnified FM in Figure 7.1(d).
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Fig. 7.3.: FM color differences using two printers.

“printer index” we mean a number that we can use to associate to a particular printer

used to print the FM. We assume for this work that we know the color calibration

matrix for the printer. We are in the process of planning a large study whereby the

number of simultaneous users of the mFRTM will be in the 100s. For this study we

are designing a process where a user will be sent an FM as a digital file (e.g. a pdf

file) with the indexing described in this work that assigns that FM to the particular

user. They will be asked to print the FM and send the printed FM back to us for

extraction of the color calibration matrix. In this work we are describing the FM

indexing scheme and its relative robustness. One approach for printer indexing is

to add a QR code containing the printer index in addition to the FM. However, this

would require an additional step for the user to scan the QR code, thus increasing user

burden [28]. Another approach we have used in the past for printer identification is

based on texture features [116]. Unfortunately a texture-based printer identification

technique will have issues with insufficient texture details in the FMs we use. We are

interested in developing a method that will embed the index information in the fiducial

marker without interfering with the color calibration and image analysis processes.
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7.2 Color Correction and Printer Indexing

7.2.1 Color Correction

Color is one of the key variables in imaging [114, 115]. It is difficult to main-

tain color consistency due to illumination of the scene and camera settings such as

auto exposure and auto white balance. Existing approaches attempt to increase the

robustness of color descriptors based on features such as the RGB histogram, color

moments and C-SIFT [117, 118]. Our approach for color correction is a linear RGB

mapping based on the von-Kries model [119]. Before we can calibrate the colors in

an image acquired with our mobile food recordTM system (mFRTM) one needs to

calibrate the printer and determine its calibration matrix. This is done for a specific

printer by printing the FM assigned to that printer and using a spectral radiometer

to determine the sRGB estimates under CIE standard illuminant D65 [120].

A M × 3 color reference matrix, where M is the number of checkerboard colors,

is constructed and denoted as Cref .

Cref is constructed by assigning color sRGB estimates to the rows of Cref based

on the appearances of colors using a raster scan order, with the background color

“white” last. The location associated with “red” square on the fiducial marker as

indicated in Figure 7.3 will always be used as the starting point for raster scan order.

For color calibration, both the presence of the FM and the pixel coordinates of

vertices for each color square in the FM need to be detected in the image we want to

color correct.

In our system, the detection is done on a gray scale version of the image [121].

Once the pixel coordinates of the vertices of the color squares are obtained, the sRGB

values for each of the M colors in FMs are then estimated by examining the pixels in

each color square.

A color matrix for the image to be color corrected, denoted as Ctest, is then con-

structed similarly to Cref . Note that Ctest is constructed using the lighting conditions

in the scene and not the CIE standard illuminant D65.
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Color calibration is conducted using Cref based on linear least squares [17]. The

color correction matrix D ∈ R
3×3 is:

D̂ = argmin
D∈R3×3

M∑

j=1

||( ~Crefj)
t −D( ~Ctestj)

t||2 (7.1)

where D̂ is the estimated color correction matrix, and ~Crefj ,
~Ctestj ∈ R

1×3 are the

jth color, j ∈ {1, · · · ,M}. The image can be color corrected pixel by pixel as:

~Ct
corrected = D̂ ~Ct

original (7.2)

where ~Coriginal ∈ R
1×3 is the original uncorrected sRGB values at any pixel location

and ~Ccorrected ∈ R
1×3 is the color corrected result. Thus, equivalently for red, green

and blue channels: 


Rcorrected

Gcorrected

Bcorrected


 = D̂




Roriginal

Goriginal

Boriginal


 (7.3)

7.2.2 Printer Indexing System

We are interested in constructing an indexing system that allows us to identify

from an image containing an FM which printer is used to print the FM. We designed

the indexing system by associating each printer with a unique FM with different

color squares arrangement. Rearranging the color squares on the checkerboard with

no constraint yields a theoretical maximum of Nmax permutations (or printers) where

Nmax = 10! = 3, 628, 000 and it is sufficient to address our needs. Denote i as the

index for the ith FM (or the ith printer) and its corresponding color reference matrix

is C
(i)
ref ∈ R

M×3.

Ctest is the color matrix estimated from an image to be color corrected, we shall

refer to this image as the test image. Denote the lighting condition as I, the condi-

tional probability that the FM with assigned index i is in the test image is defined

as:

p(Ctest|C
(i)
ref , I) (7.4)
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We want to estimate the index î based on (7.4) such that:

î = argmax
i∈{1,...,N}

{p(Ctest|C
(i)
ref , I)} (7.5)

We will find î using normalized cross correlation (NCC).

Normalized cross correlation is a method for template or image matching [122,

123]. Our experimental results indicate that NCC can minimize the impact of the

external lighting condition when estimating the printer index. The printer index

is estimated using the NCC score between Ctest and C
(i)
ref where the NCC score,

f(Ctest, C
(i)
ref ), is defined as:

f(Ctest, C
(i)
ref ) =

1

3 ·M − 1

∑3·M
k=1{(

~Ctest(k)− µ ~Ctest
)( ~C

(i)
ref (k)− µ ~C

(i)
ref

)}

σ ~Ctest
σ ~C

(i)
ref

(7.6)

where Ctest and C
(i)
ref are vectorized as ~Ctest, ~C

(i)
ref ∈ R

1×3·M , M = 11, µ and σ2 are

mean and sample standard deviation, respectively. Based on the above definition, we

have the estimated index as:

î = argmax
i∈{1,...,N}

{f(Ctest, C
(i)
ref )} (7.7)

After we obtain the estimate î, we use the reference information associated with this

specific FM for color calibration as described in Section 7.2.1.

7.2.3 Error Control Using Binarized Marks

From our experiments, we observed that similar FM colors (such as red, orange

and brown) may be very difficult to differentiate under certain lighting conditions (e.g.

a dim restaurant) or due to poor printing quality. For these similar colors that are

likely to cause incorrect index decisions using NCC, we define “similar colors” sets.

For example, red, orange and brown can form a “similar colors” set. If similar colors

can not be differentiated, the assumption that each FM has a unique arrangement of

color squares can no longer hold true. To address this issue, we propose the use of a
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“binarized mark” that we can add to the FM to serve as an error control method in

addition to NCC. Binarized marks are combinations of small black squares placed at

the center of one or more white squares as illustrated in Figure 7.2.

A numeric value can be generated from the binarized mark based on the detection

of the black square. Following raster scan order begins at the second white square

in the FM, each subsequent white square represents a “bit” in the binary sequence

starting from the least significant bit. A bit is assigned a “1” when a black square

is present and “0” otherwise. The corresponding numeric value in decimal can be

obtained by converting the binary sequence. For the FM shown in Figure 7.2, the

binary sequence is “000000011” and accordingly the numeric value in decimal is “3”.

Since the length of the binary sequence is 9, only 29 = 512 binarized marks can be

generated. However, the theoretical maximum number of printers we can index is

Nmax = 3, 628, 800. Since we “assign” a binarized mark to every FM, we will quickly

run out of binarized marks without having identical binarized marks assigned to each

FM. Since we cannot assign a unique binarized mark to each FM, we need to define

a criteria for assigning binarized marks to the FMs.

We define a threshold T to activate the error control. For a given printer index î

obtained from (7.7), if there is no other i ∈ {1, · · · , N} and i 6= î such that the NCC

score defined in (7.6) satisfies the following:

f(Ctest, C
(̂i)
ref )− f(Ctest, C

(i)
ref ) < T (7.8)

we can safely assume that using the NCC score is sufficient for indexing the printer,

hence no binarized marks are needed in this case. We set T = 0.01 based on our

experimental results. Otherwise, error control method is activated and printer index

can be corrected based on the detection of the binarized mark. As a result, we only

need to assign a unique binarized mark to each FM that meets the criteria of (7.8).

Based on our experimental results, we have observed that the number of FMs with

“similar colors” swapped generally do not exceed the maximum number of binarized

marks that can be generated, which is 512. For example, in the case where similar
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FM colors such as red, orange and brown are swapped, we only need 3! = 6 binarized

marks to guarantee the correct printer indexing.

7.3 Experimental Results

The initial evaluation of our printer indexing system is based on FMs we printed

using several printers. Our test images contain various foods images with different

FMs taken under several lighting conditions. There is no other information in the test

images that can indicate which FM is used in a specific test image. After extracting

the color information from the FMs and the binarized marks, we estimated the index

i using the methods described in Section 7.2.2. The indexing is estimated primarily

using the NCC score. Binarzied marks will be used only when error control is activated

as described in (7.8). The ground truth is obtained by a human observer examining

the arrangement of color squares. The accuracy of indexing decisions can then be

obtained by comparing to the ground truth.

We are interested in testing the NCC-based method for a variety of FMs. To

conduct such a test we generated 9 FMs, where 1 had no color swapped (original

FM with the following colors in raster scan order: red, green, blue, black, brown,

cyan, magenta, yellow, dark green and orange), 7 had two colors swapped compared

to the original one (red and brown, green and dark green, green and yellow, red and

magenta, yellow and orange, blue and cyan, red and orange), and 1 had three colors

swapped compared to the original one (green, yellow and dark green). Figure 7.1(b)

and (c) show examples of images with FMs that have color swapped and binarized

marks.

We have obtained 579 test images with different lighting conditions using 9 mod-

els of laser and inkjet printers. These lighting conditions include incandescent and

fluorescent lightings with various luminance, sunlight, shadows and more complex

lighting conditions in the restaurants. The index decisions can be made accurately

as reflected by the average NCC scores illustrated in Figure 7.4. The average NCC
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Fig. 7.4.: Accuracy of estimated printer index based on average NCC scores from 9

printers, with each printer associated with a unique FM as listed below: (A) Canon

i9900 (original FM), (B) Canon PIXMA Pro-100 (red and brown swapped), (C*) HP

LaserJet M551 (green and dark green swapped), (D) Canon PIXMA Pro-10 (green

and yellow swapped), (E*) HP Color LaserJet 4700 (red and magenta swapped), (F*)

Ricoh Aficio MP C6501 (yellow and orange swapped), (G*) TOSHIBA e-STUDIO

3530c (blue and cyan swapped), (H) Epson WF3540 (green, yellow and dark green

swapped), (I) HP D110a (red and orange swapped)
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Fig. 7.5.: A test set of 40 images from 9 printers. The two lines inside the red

rectangular area show an example where a wrong printer indexing decision is made

based on NCC scores alone.

scores for each FM are obtained from test images containing the same FM. Note that

printers with “*” in Figure 7.4 are laser printers.

We also test the accuracy of printer indexing based on NCC scores for each test

image from a subset of the 579 test images used above. This subset of test images

contains 40 images with the same FM printed from a HP LaserJet M551 printer. For

this particular example, color squares green and dark green are swapped compared

to the original FM (no color swapped). A wrong indexing decision is made based on

NCC scores alone as shown in the zoomed in red rectangular area of Figure 7.5. The

printer is indexed to HP Color LaserJet 4700 instead of HP LaserJet M551 without

activating error control for one of the test images. The test image that generates

the wrong indexing decision is shown in Figure 7.1(c), with a zoomed in image of

the fiducial marker shown in Figure 7.2. However, the criteria for activating the

error control method as defined in (7.8) is satisfied for this test image. Therefore, by

detecting the binarized marks, the correct indexing decision can be made.
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7.4 Summary and Discussion

We have described a printer indexing system for use in color image correction. We

show that the printer index can be accurately estimated. Our experimental results

show this scheme is robust against most types of lighting conditions.
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8. SUMMARY AND FUTURE WORK

8.1 Summary

In this thesis we first investigate the use of geometric models for food portion

estimation based on single-view eating occasion images. We focused primarily on

cylinder model and prism model. The food portions are estimated in volumes (cm3).

We were able to obtain accurate estimates of food portions based on well-defined

3D models, camera calibration objects, correct food labels and correct food segmen-

tation masks. We then compared the accuracy of different food portion estimation

techniques using geometric models and using depth image. We show that portion

estimation based on geometric models is more accurate for objects with well-defined

3D shapes compared to estimation using depth images. To further improve food por-

tion estimation accuracy, we use co-occurrence patterns as prior knowledge to refine

portion estimation results. In addition to food portion estimation approaches based

on geometry computer vision, we developed another approach based on the use of

Generative Adversarial Networks (GAN). We introduce the concept of an “energy

distribution” for each food image. We can then estimate food energy based on the

energy distribution.

Other than food portion estimation, we have also present a systematic design for

a crowdsourcing tool aiming specifically for the task of online food image collection

and annotations. Our goal is to fast expand food image dataset and incorporate

online food image into our dataset for training-based food classification techniques.

IN addition, we have also developed a printer indexing system for color calibration

with an application in image-based dietary assessment.

The main contributions of this thesis are listed as follows:

• Single-View Food Portion Estimation Based on Geometric Models
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We developed a food portion estimation technique based on a single-view food

image used for the estimation of the amount of energy (in kilocalories) consumed

at a meal. Although single-view 3D scene reconstruction is in general an ill-

posed problem, the use of geometric models such as the shape of a container

can help to partially recover 3D parameters of food items in the scene. Based

on the estimated 3D parameters of each food item and a reference object in the

scene, the volume of each food item in the image can be determined. We focused

primarily on the use of cylinder model and prism model. The food portions are

estimated in volumes (cm3). Unlike previous methods, our technique is capable

of estimating food portion without manual tuning of parameters. The weight

of each food can then be estimated using the density of the food item. We were

able to achieve an error of less than 6% for energy estimation of an image of a

meal assuming accurate segmentation and food classification.

• A Comparison of Food Portion Estimation Using Geometric Models and Depth

Images

We compare two techniques of estimating food portion size from images of

food. The techniques are based on 3D geometric models and depth images.

An expectation-maximization based technique is developed to detect the refer-

ence plane in depth images, which is essential for portion size estimation using

depth images. We compare the accuracy of food portion estimation based on

geometric-model, to the accuracy estimated based on high quality depth map

obtained using structured light techniques. Our experimental results indicate

that volume estimation based on geometric models is more accurate for objects

with well-defined 3D shapes compared to estimation using depth images.

• The Use of Co-occurrence Patterns in Single Image Based Food Portion Esti-

mation

We use contextual information to further improve food portion estimation ac-

curacy using geometric models based approach. We define contextual dietary
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information as the data that is not directly produced by the visual appearance

of an object in the image, but yields information about a user’s diet or can be

used for diet planning. Therefore, food portion co-occurrence pattern is one

type of contextual information. We estimate the patterns from food images we

collected for dietary studies. We estimate the food portion co-occurrence pat-

terns from food images we collected from dietary studies using the mobile Food

RecordTM (mFRTM) system we developed. Co-occurrence patterns is used as

prior knowledge to refine portion estimation results. We were able to improve

the food portion estimation accuracy incorporating the co-occurrence patterns

as contextual information.

• Learning Image-to-Energy Mappings Using Generative Adversarial Networks

Accurate food portion estimation is challenging since the process of food prepa-

ration and consumption impose large variations on food shapes and appear-

ances. In addition to our previous approach of geometric models based food

portion estimation, we present a food portion estimation method to estimate

food energy (kilocalories) from food images using Generative Adversarial Net-

works (GAN). We introduce the concept of an “energy distribution” for each

food image. To train the GAN, we design a food image dataset based on ground

truth food labels and segmentation masks for each food image as well as energy

information associated with the food image. Our goal is to learn the mapping

from the food image to the food energy. We can then estimate food energy

based on the estimated energy distribution image.

• An End-to-end Image-Based Automatic Food Energy Estimation Technique

Based on Learned Energy Distribution Images

We proposed a novel end-to-end system to directly estimate food energy from

a captured eating occasion image. Our system first estimated the image to

energy mappings using a Generative Adversarial Networks (GAN) structure.

Based on the estimated energy distribution images, we learned the food energy
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of the eating occasion image by training CNN based regression model. We are

able to obtain accurate food energy estimation with an average error of 209.41

kilocalories for eating occasion images collected from a free-living dietary study.

The training based technique for end-to-end food energy estimation no longer

requires fitting geometric models onto the food objects that may have issues

scaling up as we need a large amounts of geometric models to fit different food

types in many food images.

• cTADATM: The Design of a Crowdsourcing Tool for Online Food Image Iden-

tification and Segmentation

Training-based techniques have been widely used in recent years for developing

automatic dietary assessment systems. For training-based techniques, increas-

ing the training data size would in general improve the accuracy of the system,

thus a larger image dataset is always preferred. Online image sharing is quickly

gaining popularity in recent years (for example, through social networks such as

Facebook and review orientated websites such as Yelp), and there are hundred-

thousands of food images uploaded by smartphone users. We believe online food

images can be used as part of our training data developing automatic dietary as-

sessment techniques and provide valuable contextual information such as users’

dietary patterns and food co-occurrence patterns. We present a systematic de-

sign for a crowdsourcing tool aiming specifically for the task of online food image

collection and annotations with a detailed description. This tool can be used

to locate food items and obtaining groundtruth segmentation masks associated

with all the foods presented in an image. The crowdsoucing tool we designed

is tailored to meet the needs of building a large image dataset for developing

automatic dietary assessment tools in the nutrition and health fields.

• A Printer Indexing System for Color Calibration

In image based dietary assessment, color is a very important feature in food

identification. One issue with using color in image analysis is the calibration of
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the color imaging capture system. We have designed a reference indexing system

for color camera calibration using printed color checkerboards also known as

fiducial markers (FMs). To use the FM for color calibration one must know

which printer was used to print the FM so that the correct color calibration

matrix can be used for calibration. We have designed an indexing scheme

that allows one to determine which printer was used to print the FM based

on a unique arrangement of color squares and binarized marks (used for error

control) on the FM. Using normalized cross correlation and pattern detection,

the index corresponding to the printer for a particular FM can be determined.

We show the printer indexing scheme we developed is robust against most types

of lighting conditions.

8.2 Future Work

We are able to estimate the food energy value using a single-view food image

as input. Currently we do not have models in the energy estimation system that

classify food types and segment food areas. With models that can accurately classify

food types and segment food regions, the food label and region information could

potentially be combined with the food energy distribution estimation. In addition,

with the development of camera sensors on mobile, additional image information (for

example, depth) may become available without increasing a user’s burden capturing

the eating scene. The future work is as followed:

• Depth sensor and dual camera configuration are quickly gaining popularity on

consumer mobile devices. More 3D information can be collected without sig-

nificantly adding to a user’s burden capturing the eating scene. For example,

if a mobile phone is equipped with a depth sensor then the depth image along

with the RGB image can be capture simultaneously. For dual camera systems,

at least two images are captured from slightly different angles and therefore

enables multi-view 3D reconstruction techniques such as stereo vision. The ad-
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ditional information captured by the mobile devices could potentially improve

the accuracy of food portion estimation by providing additional 3D information

on food objects.

• Currently, we use synthetic energy distribution images for the training of energy

distribution mappings. We crafted the synthetic energy distribution images

with self-defined functions. In the future, we would like to incorporate real

3D features in the synthetic energy distribution image. For example if depth

image could be available for the eating scene, food objects’ 3D models can

be reconstructed. By incorporating more 3D information the accuracy of the

synthetic energy distribution image will increase. Therefore, a more accurate

mappings of image to energy distribution can be subsequently learned.

• We are interested in developing accurate techniques for food type classifica-

tion. Existing techniques based on Convolutional Neural Networks (CNN) have

shown impressive tasks on object detection and classification tasks. However,

the lack of training data for food categories has become the bottle neck for

object detection/classification task where a large public available dataset is not

available. In the past we rely on dietary studies to obtain food images used for

training. In this thesis we have developed the crowdsourcing tool that enabled

us to quickly obtain online food images. With the crowdsouring tool, we no

longer have the issue of expanding food image dataset. However, even with the

online food images added to the training dataset, the size of training dataset

may still not be sufficient for certain food classes using flat structure classifier

(classify all categories all at once). Therefore, we are also interested in the use

of a hierarchical structure for food classification.
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