
STATISTICAL LEARNING OF PROTEOMICS DATA AND

GLOBAL TESTING FOR DATA WITH CORRELATIONS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Donglai Chen

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2019

Purdue University

West Lafayette, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Jun Xie, Chair

Department of Statistics

Dr. Hyonho Chun

Department of Mathematics and Statistics, Boston University

Dr. Lingsong Zhang

Department of Statistics

Dr. Anindya Bhadra

Department of Statistics

Approved by:

Dr. Jun Xie

Graduate Chair, Department of Statistics



iii

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to Professor Jun Xie. She spent

much time and efforts on deciding research directions, and guided me on literature

review, proving theorems, thesis writing. She also gave advice on taking courses,

writing emails, presentation and job searching. I am thankful for my committee

members, Lingsong Zhang, Hyonho Chun, Anindya Bhadra, for helpful advice and

comments.

I am supported by and NIH Grant R21 GM101504 and NSF Grant Award IOS-

1127027, PRF fellowship. Part of my work is collaborative work with Daniel Szyman-

ski’s group. I appreciate their explanation of biological background. Their biological

research problems make room for new data mining methods. Yaowu Liu is an expert

on hypothesis testing. He provided insights on powers of global testing. I am grateful

to his valuable comments and suggestions. I am indebted to Douglas Crabill for helps

on large scale computing.

I appreciate my supervisors during consulting, research assistantship and intern-

ship. I would like to thank Bruce Craig, Ce-Ce Furtner and Arman Sabbaghi at

statistical consulting service. Dr. Craig is helpful on design of experiments and ran-

dom effect models. Dr. Sabbaghi is helpful on propensity score matching. I thank

Upatising Benjavan, Kenneth Musselman at Regenstrief. I learned analysis of pa-

tients’ health record data, writing reports from them. I am grateful to Robert Kill

and Erica Romohr at Oriental Trading. I learned analysis of customers’ order data

and presenting to nontechnical people from them.

I am grateful to Hong Qu and Beihai Jiang for introducing me to bioinformatics

research and the analysis of survival data. I remember the time when I studied,

played and had dinners with my friends and colleagues at Purdue including Yaowu

Liu, Min Ren, Zhou Shen, Xinlin Tao, Feng Wu, Botao Hao, Yuying Song, Hui Sun,



iv

Yunfan Li. I miss my friends I met in Shenzhen middle school including Chenrui Fan,

Hongfei Li and Ruinan Du. They are working in different cities, but we keep contact.

Last but not the least, I love my parents who always stand by me and support

me to pursue a PhD at Purdue.



v

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 STATISTICAL LEARNING OF PROTEOMICS DATA . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Experiment workflow and data format . . . . . . . . . . . . . . . . . . 2
1.3 Data processing through Gaussian curve fitting . . . . . . . . . . . . . 9

1.3.1 Existing methods to find peaks in protein profiles . . . . . . . . 11
1.3.2 Constrained Gaussian peak fitting for multiple peak protein profiles12
1.3.3 Use of Gaussian peak fitting for reproducible proteins . . . . . . 13
1.3.4 Standardization of protein profiles . . . . . . . . . . . . . . . . . 14

1.4 Protein complex prediction through cluster analysis . . . . . . . . . . . 15
1.4.1 Review of hierarchical clustering . . . . . . . . . . . . . . . . . 17
1.4.2 Two round clustering for integrative analysis . . . . . . . . . . . 18
1.4.3 Fitted split profiles clustering for multiple peak profiles . . . . 21

1.5 Cluster validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Tree mining and prediction of protein complexes . . . . . . . . . . . . . 28
1.7 List of files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 OPTIMAL TESTS UNDER SPARSE ALTERNATIVE WITH COVARI-
ANCE DEPENDENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Global testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.2 The Motivating example of GWAS . . . . . . . . . . . . . . . . 35
2.1.3 Existing tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.4 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Challenges of optimal tests under dependency . . . . . . . . . . . . . . 45
2.2.1 MinP is not accurate under dependency . . . . . . . . . . . . . 45
2.2.2 Existing methods to correct for dependence: methods that cal-

culate p-values under correlation . . . . . . . . . . . . . . . . . 48
2.2.3 Existing methods to correct for dependence: methods that trans-

form the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



vi

Page

2.2.4 Existing methods to correct for dependence: factor models . . . 51
2.3 Adjusted MinP test for arbitrary dependence structures . . . . . . . . . 54

2.3.1 Factor modeling of dependence with an inverse regression model
(IRM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.2 Type I error under IRM . . . . . . . . . . . . . . . . . . . . . . 58
2.3.3 Factor modeling of dependence with a regression model (RM) . 60
2.3.4 Type I error under RM . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.5 Type I error simulation studies . . . . . . . . . . . . . . . . . . 67

2.4 Power theory of the factor-adjusted global test statistic . . . . . . . . . 71
2.4.1 Power theory under IRM . . . . . . . . . . . . . . . . . . . . . . 73
2.4.2 Power simulation studies . . . . . . . . . . . . . . . . . . . . . . 77

2.5 Combination of multiple tests . . . . . . . . . . . . . . . . . . . . . . . 82
2.5.1 The combination strategy . . . . . . . . . . . . . . . . . . . . . 82
2.5.2 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



vii

LIST OF TABLES

Table Page

1.1 Cluster IDs in four datasets for proteins in two round cluster 42 . . . . . . 20

1.2 Table of cluster 19 and refined clusters . . . . . . . . . . . . . . . . . . . . 31

2.1 Type I error of tests under exponential decay . . . . . . . . . . . . . . . . 69

2.2 Type I error of tests under exponential decay and equal correlation . . . . 69

2.3 Type I error of tests under polynomial correlation . . . . . . . . . . . . . . 70

2.4 Type I error of tests under banded correlation . . . . . . . . . . . . . . . . 70



viii

LIST OF FIGURES

Figure Page

1.1 Experiment workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Schematic of SEC (Figure reprint with permission from Y. Lee, 2016) . . . 4

1.3 Schematic of IEX (Figure reprint with permission from Y. Lee, 2016) . . . 5

1.4 Schematic of mass spectrometry (Figure reprint from Wikipedia; Revez,
Landwehr, & Keybl, 2001) . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Schematic of MS/MS (Figure reprint from Wikipedia; Murray, 2006) . . . 7

1.6 XIC (Figure reprint with permission from Y. Lee, 2016) . . . . . . . . . . 8

1.7 3D plot of protein SEC profiles . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8 Gaussian peak fitting and reproducible peaks . . . . . . . . . . . . . . . . 14

1.9 Heat map of two round cluster 42 . . . . . . . . . . . . . . . . . . . . . . . 19

1.10 Example of split profile clustering . . . . . . . . . . . . . . . . . . . . . . . 23

1.11 Purity, intactness, compactness of 2 round clusters. . . . . . . . . . . . . . 28

1.12 Example of tree mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 Example GWAS Manhattan plot of single SNP P-value. . . . . . . . . . . 37

2.2 Correlation matrix of NIPA1 . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Actual type I error under equal correlation . . . . . . . . . . . . . . . . . . 47

2.4 Power of tests under four types of correlation and theta sparse with spar-
sity 1/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.5 Power of tests under four types of correlation and theta sparse with spar-
sity 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.6 Power of tests under four types of correlation and beta-sparsity with spar-
sity 1/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.7 Power of tests under four types of correlation and beta-sparsity with spar-
sity 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.8 Top 30 F p-values of RA challenge data . . . . . . . . . . . . . . . . . . . 85

2.9 Top 30 unadjusted MinP p-values of RA challenge data . . . . . . . . . . . 86



ix

Figure Page

2.10 Top 30 SVA adjusted MinP p-values of RA challenge data . . . . . . . . . 87

2.11 Top 30 SKAT p-values of RA challenge data . . . . . . . . . . . . . . . . . 88

2.12 Top 30 combined test p-values of RA challenge data . . . . . . . . . . . . . 89

2.13 Absolute correlation of latent variables and genes in NIPA1 . . . . . . . . 91

2.14 Correlation of genes after adjustment . . . . . . . . . . . . . . . . . . . . . 92



x

ABBREVIATIONS

SEC Size Exclusion Chromatography

IEX Ion Exchange Chromatography

BIC Bayesian Information Criterion

XIC Extracted Ion Chromatogram

RSS Residual Sum of Squares

TAIR The Arabidopsis Information Resource

SNP Single Nucleotide Polymorphism

GWAS Genome-wide Association Study

PCA Principal component analysis

SVD Singular Value Decomposition

SVA Surrogate variable analysis

LEAPP Latent effect adjustment after primary projection

LC-MS/MS Liquid chromatography tandem mass spectrometry

EIGENSTRAT Literally it means eigenvector stratification. The method that

uses PCA to detect and correct for population stratification.

GMinP MinP under correlation

HC Higher criticism

HC-corr Higher criticism under correlation

GHC Generalized higher criticism

MinP Minimum p-value test

SKAT Sequence kernel association test



xi

ABSTRACT

Chen, Donglai Ph.D., Purdue University, May 2019. Statistical Learning of Pro-
teomics Data and Global Testing for Data with Correlations. Major Professor: Jun
Xie.

This dissertation consists of two parts. The first part is a collaborative project

with Dr. Szymanski’s group in Agronomy at Purdue, to predict protein complex

assemblies and interactions. Proteins in the leaf cytosol of Arabidopsis were frac-

tionated using Size Exclusion Chromatography (SEC) and mixed-bed Ion Exchange

Chromatography (IEX). Protein mass spectrometry data were obtained for the two

platforms of separation and two replicates of each. We combine the four data sets and

conduct a series of statistical learning, including 1) data filtering, 2) a two-round hi-

erarchical clustering to integrate multiple data types, 3) validation of clustering based

on known protein complexes, 4) mining dendrogram trees for prediction of protein

complexes. Our method is developed for integrative analysis of different data types

and it eliminates the difficulty of choosing an appropriate cluster number in clustering

analysis. It provides a statistical learning tool to globally analyze the oligomerization

state of a system of protein complexes.

The second part examines global hypothesis testing under sparse alternatives and

arbitrarily strong dependence. Global tests are used to aggregate information and

reduce the burden of multiple testing. A common situation in modern data analysis

is that variables with nonzero effects are sparse. The minimum p-value and higher

criticism tests are particularly effective and more powerful than the F test under

sparse alternatives. This is the common setting in genome-wide association study

(GWAS) data. However, arbitrarily strong dependence among variables poses a great

challenge towards the p-value calculation of these optimal tests. We develop a latent

variable adjusted method to correct minimum p-value test. After adjustment, test
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statistics become weakly dependent and the corresponding null distributions are valid.

We show that if the latent variable is not related to the response variable, power can

be improved. Simulation studies show that our method is more powerful than other

methods in highly sparse signal and correlated marginal tests setting. We also show

its application in a real dataset.
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1. STATISTICAL LEARNING OF PROTEOMICS DATA

1.1 Introduction

The data analysis presented in this chapter is based on a collaborative project with

Dr. Szymanski’s group in Agronomy at Purdue to predict protein complex assemblies

and interactions. A protein complex is a group of peptide chains. Proteins seldom

act alone. Information from the prediction of protein complexes will give implication

about protein functions. In biology, traditional methods study protein complexes one

at a time, which is labor intensive and slow. High throughput techniques, such as the

yeast two-hybrid system (Fields & Sternglanz, 1994; Jansen et al., 2003) and tandem

affinity purification (Rigaut et al., 1999) have been developed to examine hundreds

of protein complexes simultaneously. The high throughput techniques produce large

data sets and demand advanced data analysis methods.

In this collaborative project, we develop new protein complex prediction methods

based on gel-free protein separation and quantitative mass spectrometry. More specif-

ically, size exclusion chromatography (SEC; Mori & Barth, 2013) and ion exchange

chromatography (IEX; Jungbauer & Hahn, 2009) are used to characterize thousands

of proteins and their complexes in native states. SEC separates molecules by their

sizes, and IEX separates molecules by charges. The two technologies increase the

number of detected proteins in complex samples, resulting in a large-scale protein

data set with composition information of complexes. On the other hand, analysis of

this high throughput data is challenging, requiring meaningful data representation

and integration of multiple data types, i.e., SEC and IEX data. We have developed a

series of methods for statistical learning of these proteomic data, including an integra-

tive analysis of different data types and a data mining approach that eliminates the
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difficulty of choosing cluster number in clustering analysis. It provides a statistical

learning tool to analyze the composition of protein complexes globally.

The focus of this chapter is on data analysis and statistical learning for the specific

proteomic data. Section 1.2 describes the experiment workflow and data representa-

tion. In Section 1.3 we explain data cleaning and preprocessing and Gaussian curves

and their uses in representing biologically reproducible data. In Section 1.4 we de-

scribe data mining procedures through cluster analysis, propose two-round clustering

to combine clustering results of two different data types, and develop a procedure that

deals with multiple peak proteins and assign them to multiple clusters. Section 1.5

describes cluster validation methods to decide the number of clusters and evaluate

cluster results. We develop a statistical learning approach for mining dendrogram

trees that relaxes the need of deciding the number of clusters in Section 1.6.

1.2 Experiment workflow and data format

We use Arabidopsis, a model plant, to develop a data analysis system for auto-

matic prediction of protein complexes. The data analysis methods can be applied

to rice, cotton, soy, and other plants, and have been applied to predict cytosol or

membrane-associated protein complexes as well as chloroplast protein complexes.

Here we use the analysis of cytosolic proteins as an example. Cytosol is the fluid

in a cell. It plays essential roles in metabolism, signaling, protein translation, and re-

cycling. Proteins in cytosol seldom function alone. Understanding protein complexes

in the cytosol can help us understand their functions.

Figure 1.1 shows the experiment workflow (McBride et al., 2018). Arabidopsis

plants are grown, and their intact leaves are collected. Cytosols are extracted by

grinding leaves and centrifugation. Soluble protein samples are generated. Sam-

ples are analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS;

Ferrer & Thurman, 2003), which identifies and quantifies proteins. The LC-MS/MS
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technique is based on the principle that proteins forming a complex should have the

same molecular property, e.g., with similar molecular sizes or charges.

Figure 1.1. Experiment workflow. Proteins are separated by sizes and
charges. Then MS/MS identifies peptides and creates protein profiles.
Only reproducible protein profiles are used for cluster analysis. Clus-
ter analysis is conducted to make complex predictions (McBride et
al., 2018).

LC-MS/MS is the combination of liquid chromatography (LC) and tandem mass

spectrometry (MS/MS). It separates soluble proteins, identifies peptides of these pro-

teins and measures peptides intensities (Ferrer & Thurman, 2003). In the LC step,

size exclusion chromatography (SEC) and ion exchange chromatography (IEX) are
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Figure 1.2. Schematic of SEC (Figure reprint with permission from Y. Lee, 2016)

two methods used to separate soluble proteins. Both SEC and IEX are methods of

chromatography (Coskun, 2016). Chromatography is a type of technique to separate

a mixture that is soluble in liquid or gas, which is called a mobile phase. In the

process, a sample passes through a tube that holds solid material. The solid material

causes a difference of speed of the mobile phase that moves in the structure, which

in turn causes the mobile phase to separate. The action of one component exiting

the structure and being collected is called elution. Co-elution means two or more

proteins elute together. The time one component passing through the structure is

called retention time. During the chromatography process, separated samples, called

fractions, elute in time order. We assume protein complexes remain stable and pro-

teins in the same complex coelute. Then results of chromatography provide useful

information to predict protein complex. The data that we observe is presented a table

for the number of molecules at different fractions.
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Figure 1.3. Schematic of IEX (Figure reprint with permission from Y. Lee, 2016)

Figure 1.2 (Y. Lee, 2016) shows the SEC process. SEC separates molecules by

their sizes. Porous beads are spherical polymers with sponge-like structure. Porous

polymer beads are filled in a long and hollow tube. Beads have different sizes of

pores, and they can trap different sizes of molecules. Molecules of different sizes have

different speeds to travel through porous materials. Larger molecules travel faster,

and small molecules travel slower. Proteins of different sizes are thus separated by

different speeds.

Figure 1.3 (Y. Lee, 2016) shows the IEX process. IEX separates charged molecules.

In the beginning, proteins are injected into a tube. The tube is set to have specific

pH so that proteins have charges. Proteins with positive charges bind with cation

exchanger (ions with negative charges), and proteins with negative charges bind with

anion exchanger (ions with positive charges). By adding salt, pH changes and ions

in the salt bind with exchangers and in turn proteins that bind with exchangers

elute, and weakly charged proteins elute faster. Again, separated protein samples are
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collected. IEX has higher resolution than SEC in terms of the number of fractions

for molecule separation.

Figure 1.4. Schematic of mass spectrometry (Figure reprint from
Wikipedia; Revez et al., 2001)

Separated proteins are digested into peptides using an enzyme called trypsin be-

cause mass spectrometry (MS) is better at identifying peptides than proteins. Sepa-

rated samples, or fractions, are then analyzed by MS/MS (Gross, 2017). Figure 1.4

shows the process of mass spectrometry (Revez et al., 2001). Samples enter the MS
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Figure 1.5. Schematic of MS/MS (Figure reprint from Wikipedia; Murray, 2006)

machine in the gas phase and are charged into ions, which is called ionization. MS

manipulates the motion of ions by changing electric or magnetic fields to measure

their mass to charge ratio, denoted as m/z, where m refers to the atomic mass unit

and z refers to the number of charges per ion. Particles are accelerated in electric

fields and deflected (change direction) in magnetic fields. Particles with less m/z have

a larger change of direction due to magnetic fields. Ions are amplified. That means

when ions are received, additional electrons are released to increase signal. Intensities

of amplified ions are measured. The intensity is proportional to the number of ions

detected. The intensities may not represent the actual number of ions due to vari-

ability in counting of ions, amplification, ionization, so intensities are usually labeled

as arbitrary units. Two stages of MS work together to effectively identify peptide

sequences and their intensities. Figure 1.5 shows the MS/MS procedure (Murray,

2006). At the first stage, peptides that enter the MS/MS machine are called precur-

sor ions and their intensities are measured. At the second stage, peptides collide with

molecules in the gas and break into pieces called product ions. This process is called

fragmentation. Their m/z’s are measured, and peptide sequences are identified.
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There are two types of quantification of peptides, namely spectral counts and peak

intensities. Figure 1.6 (Y. Lee, 2016) shows MS scans and intensities at each scan,

where the term scan is referred to detection of ions. The number of scans per second

is called frequency. The upper left of Figure 1.6 is the mass spectrum at one time.

The upper right of Figure 1.6 shows MS scans at a certain frequency. Spectral count

means the number of times that the specific peptides that belong to certain proteins

are detected, which refers to the number of red vertical lines in the upper right panel

of Figure 1.6. Extracted ion chromatograms (XIC; Koulman et al., 2009) refers to the

lower part of Figure 1.6, which is the plot of time and intensity. The total intensities

of peptides are the areas under the curves of intensities over time for peptides with

specific m/z’s. In this project, XIC is used because it has a larger dynamic range

than spectral counts. That means it can better distinguish ions of low abundance

and high abundance.

Figure 1.6. XIC (Figure reprint with permission from Y. Lee, 2016)

Data generated from MS is analyzed by MaxQuant software (Cox & Mann, 2008,

2011; Cox et al., 2014). It identifies peptides and matches peptides to proteins by

searching amino acid sequences in the Arabidopsis Information Resource (Lamesch et
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al., 2011) protein sequence database. False discovery rate (FDR), the percentage of

wrong identification of proteins, is set to be 1%. Peptide profiles are the intensities of

peptides at each fraction. Protein profiles are defined as the sum of their component

peptide profiles.

After LC-MS/MS and the MaxQuant process, we obtain a data table of all pro-

teins of the organism under study, where the rows represent proteins, the columns

represent fractions as explained next, and the entry is the intensity of the correspond-

ing protein at the corresponding fraction. Each column in the SEC data represents

one apparent mass in kDa (kilodalton is a unit of mass. One dalton is 1/12 of the

mass of carbon-12). Apparent masses are in decreasing order. Each column in the

IEX data corresponds to a charge amount that represents elution time of proteins. It

does not have a specific unit. There are 38 fractions in the SEC data and 65 fractions

in the IEX data. The number of fractions is decided by the resolution of each separa-

tion technique. IEX has higher resolution than SEC and therefore has more fractions.

Values in the data table are the proteins’ relative intensity or abundance. After the

protein database search through MaxQuant, 898 cytosolic proteins are identified by

SEC and 1771 cytosolic proteins are identified by IEX. Two biological replicates of

SEC and IEX are collected in our study.

1.3 Data processing through Gaussian curve fitting

Figure 1.7 shows the SEC profiles of a small group of proteins. The three dimen-

sions represent protein IDs, fractions, and standardized abundance, respectively. For

any protein, its standardized abundance across fractions is obtained as the observed

abundance dividing the maximum abundance among all fractions. The standardized

abundance is between 0 and 1. The standardization of protein profiles will be further

discussed in Section 1.3.4. As Figure 1.7 shows, we observe bell-shaped curves in

protein profiles due to the resolution of SEC and IEX. In other words, we observe a

peak and non-zero intensities across several adjacent fractions. Information of peaks,



10

Figure 1.7. 3D plot of protein SEC profiles
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like peak width, height, and location, characterizes protein profiles. Peak location is

the most informative feature among the three parameters because it represents mass

in the SEC data and charge in the IEX data. A peak in a protein profile indicates

that the protein may belong to one protein complex with specific mass or charge that

corresponds to the peak fraction. Typically, we expect a protein profile contains one

peak, corresponding to the specific molecule mass or charge characteristic. However,

a small number of proteins contains multiple peaks. A multiple-peak protein profile

indicates that the protein is detected at multiple fractions. We infer that the proteins

may belong to multiple complexes. In Section 1.4.3, we introduce a method to handle

multiple peak proteins in protein complex prediction.

1.3.1 Existing methods to find peaks in protein profiles

Peakfinder (Yoder, 2011) is a simple algorithm that identifies peaks as local max-

ima in a protein profile. It returns a peak location if the peak is higher than its

surrounding neighbor observations and the peak is at least 1/4 of the range of the

data (maximum height minus minimum height). This algorithm performs better than

other methods that use derivatives for local maximum, especially when data is very

noisy. It is also very efficient and can identify peaks in millions of observations in sec-

onds. However, it does not restrict the distance between peaks and does not smooth

the profiles.

Another approach of finding peaks uses Matlab Curve Fitting Toolbox to de-

convolve protein profiles into component Gaussian curves (Kristensen, Gsponer, &

Foster, 2012). Fitting a Gaussian curve can be done by minimizing the squared error.

A more challenging task is to determine the number of Gaussian peaks. The Matlab

toolbox used leave-one-out cross-validation to decide the number of Gaussian peaks.

At each iteration, the method drops one point from the profile and fits Gaussian

curves. Then it calculates the squared error of the dropped point and the fitted value

from the Gaussian curve and calculates means of those squared errors across itera-



12

tions. The fitted curve with the smallest sum of squares of errors gives the number

of Gaussian peaks. However, the algorithm does not restrict the Gaussian curve to

have a minimum distance between peaks.

1.3.2 Constrained Gaussian peak fitting for multiple peak protein profiles

The Gaussian curve fitting algorithm of our analysis is based on Kristensen et al.

(2012) but adds constraints on Gaussian peaks, requiring two peaks to be separated by

at least four fractions. The reason for adding constraints is that due to the resolution

of chromatography, peaks that are within four fractions are not separable and hence

cannot be used to indicate distinct peak locations.

A Gaussian curve function can be expressed in the following form,

f(x) = a exp(−(x− b)2/c2) (1.1)

where f(x) represents the protein profile, or intensity, at fraction x, a is the peak

height, b is the peak location, and c is the peak width. We generalize the single peak

function to multiple peaks.

f(x) =
m∑
i=1

ai exp(−(x− bi)2/c2i ) (1.2)

where ai bi, ci are the height, location, and width of the ith peak, m is the number

of peaks with a value from 1 to 4, and |bi − bj| > 4 for any i 6= j. The differences

between bi’s must be at least 4 due to the resolution issue mentioned above.

It is not necessary to fit Gaussian curves if most fractions have zero intensities. We

fit Gaussian curves if a protein profile has at least two non-zero intensities in adjacent

fractions. We fit one Gaussian peak with two to five non-zero fractions, up to two

Gaussian peaks with six to eight non-zero fractions, up to three Gaussian peaks with

nine to eleven non-zero fractions, and up to four Gaussian peaks with twelve or more

non-zero fractions. Since the nonlinear curve fitting in Matlab is sensitive to starting

values, a carefully chosen initial value set can improve curve fitting results and avoid

local optimal solutions. We choose the initial value of the first peak location at the
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maximum of the profile and then remove this point plus the neighboring 3 points and

find the maximum of the rest points. Repeating this step, we define all starting points

for the curve fitting. We use the Bayesian Information Criterion (BIC; Schwarz, 1978)

to decide the number of Gaussian peaks. The definition of BIC is:

BIC = n log(RSS/n) + k log(n), (1.3)

where n is the number of observations, k is the number of parameters, RSS is the

residual sum of squares of the fitted curve. The number of peaks with the lowest BIC

is selected. Among selected peaks, we removed peaks with heights less than 1/5 of

the highest peak. Those small peaks are considered as noises and will not be used in

the following analysis.

The constrained Gaussian fitting is more robust than the standard peak finding

methods in the analysis of noisy data. Besides, the use of the BIC penalty prevents

over-fitting and makes the algorithm efficient for a large number of proteins.

1.3.3 Use of Gaussian peak fitting for reproducible proteins

Note that we have two biological replicates for each separation approach, SEC or

IEX. Peaks that only appear in one biological replicate are not reproducible, implying

that the corresponding protein would not have a reliable complex conformation. We

will not consider these proteins in our complex prediction. We use Gaussian curve

fitting to identify peaks and determine reproducible protein profiles. Figure 1.8 shows

an example of Gaussian peak fitting and reproducible peaks. We can see that there are

two peaks in the first biological replicate (bio 1) at fractions 13 and 20 and these two

peaks are within two fractions from the corresponding peaks in the second biological

replicate (bio 2). Both two peaks are reproducible peaks and will be used for cluster

analysis.

We use Gaussian curve fitting to remove inconsistent protein profiles. Repro-

ducible peaks are defined as the peaks whose locations from biological replicates are

close to each other. More specifically, we consider a peak is reproducible if its lo-
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Figure 1.8. Gaussian peak fitting and reproducible peaks

cations in the two biological replicates are within four fractions for the IEX data

and two fractions for the SEC data. If there is no Gaussian fitting for a protein, we

use its maximum intensity location as the peak location. Proteins with at least one

reproducible peak are considered reproducible proteins and will be included in the

prediction of protein complexes. With this quality filtering criterion, we obtain 663

proteins as reproducible in both SEC and IEX data. We will conduct a clustering

analysis of these proteins for complex prediction.

1.3.4 Standardization of protein profiles

A protein profile shows an elution pattern of the protein across separation frac-

tions, where the protein’s abundance amount is observed at each fraction. Profiles

have peak intensities ranging from 105 to 109. (The value is the number of ions de-

tected by the MS machine, which does not have a specific unit. See the discussion of
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MS in the previous section.) Intensities represent ions detected by the MS machine,

and it is loosely related to the number of peptides or proteins in the sample. We

cannot directly cluster raw profiles when the intensities vary with such a large range.

Peak locations provide more important information than peak intensities in the pro-

tein profile representation. The peak location of a protein implies that the protein

is likely to have a specific molecular size or charge, which is a major characteristic

of the protein. Intensities across all fractions are proportional to the protein amount

observed in the sample, which does not correspond to a protein complex feature and

may vary widely. Standardization of the raw profiles is needed to remove the effect

of the large variation from the peak intensities. We standardize protein profiles by

dividing each profile by its maximum intensity so that profiles of different proteins

are comparable regardless of the absolute values of intensities.

1.4 Protein complex prediction through cluster analysis

Peak locations have been used to predict whether a protein belongs to a complex

in our published papers McBride, Chen, Reick, Xie, and Szymanski (2017) and Aryal

et al. (2014). A peak location in the SEC data corresponds to a molecular mass value,

which we termed apparent mass and denoted Mapp. It represents the overall protein

complex mass. Another mass value termed monomer mass, and denoted as Mmono, is

obtained from the protein amino acid composition. Mmono corresponds to the mass of

the single protein alone. The ratio of Mapp and Mmono is calculated for each protein,

denotes as Rapp. We also used two replicates of SEC in our previous work. If Rapp of

a protein is larger than 2 in both replicates, we predict this protein forms a complex.

However, we do not know the composition of the complex. Our development here is

to find the composition of the complex.

Cluster analysis, or clustering, groups observations based on their similarity (Friedman,

Hastie, & Tibshirani, 2001). As a result, an observation is more closely related to

another member in the same cluster than those in different clusters. It can be used in
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an exploratory analysis to discover groups, where each group has a distinct property.

We can then select some interesting groups for further analysis. The application of

cluster analysis includes identifying groups of consumers (Rajagopal, 2011), identify-

ing communities of a social network (Fortunato, 2010), extracting topics by clustering

documents (Steinbach, Karypis, & Kumar, 2000), studying population structure by

clustering human genes (Thalamuthu, Mukhopadhyay, Zheng, & Tseng, 2006) and

many more.

Clustering algorithms can be categorized into connectivity-based clustering such

as hierarchical clustering (Johnson, 1967), centroid-based clustering such as k-means

(Ball & Hall, 1965), self-organizing maps (Kohonen, 1990), distribution-based clus-

tering such as Gaussian mixture model (Banfield & Raftery, 1993), density-based

clustering such as DBSCAN (Density-based spatial clustering of applications with

noise; Ester, Kriegel, Sander, & Xu, 1996). Each type of these clustering methods

makes their specific assumptions. Hierarchical clustering assumes objects in the same

cluster are connected. K-means assumes spherical clusters and keeps variance small

within a cluster. Gaussian mixture model assumes data follows multivariate normal

distributions. DBSCAN assumes that if the number of neighbors of a data point is

less than a certain value, that point falls at the boundary of a cluster. Each algorithm

can detect certain types of clusters and may fail for other cluster types. The choice

of clustering methods depends on the dataset and the definition of clusters.

In this project, cluster analysis is used to predict the composition of a protein

complex. The rationale is that proteins with the same peak locations may belong to

the same complex. In the following subsections, we describe our clustering algorithm.

Our developments include a two-round clustering method, clustering with split protein

profiles, and tree mining for sub-clusters.
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1.4.1 Review of hierarchical clustering

Hierarchical clustering is done by growing a binary tree, whose leaves are the

individual data, i.e., protein profiles in our problem. It repeatedly combines two

nearest clusters into a larger cluster. A hierarchical tree, called dendrogram, is built.

Figure 1.10(b) shows an example of a dendrogram. The height of a node represents the

distance of two clusters or objects when they are merged. We can cut the dendrogram

at a given height and correspondingly obtain a clustering result with a respective

number of clusters.

We briefly describe the hierarchical clustering algorithm used in our analysis. The

algorithm starts with the individual data observations, which is the individual protein

profiles in our problem. At the first step, each observation belongs to a distinct

cluster. Then two clusters with the smallest distance are merged and form a new

cluster. Repeat this process until all observations are in one cluster. As an example,

in Figure 1.10(b), AT4G33010 and AT3G24503 merge at height 1.21. Subsequently,

these two proteins and AT2G364602 2 merge at height 1.71.

The hierarchical clustering algorithm relies on a measure of similarity, or in other

words, a distance matrix between two data observations. The choice of similarity mea-

sure is typically based on data type and research question and it will affect clustering

results. We use the squared Euclidean distance for any pair of protein profiles:

‖a− b‖22 =
∑
i

(ai − bi)2 (1.4)

where a and b are two vectors representing protein profiles and ai, bi are the ith

elements of a and b. In our datasets, protein profiles have been standardized. If

two proteins have the same peak location, their peak heights should be close to each

other. Therefore, with the Euclidean distance, the two proteins with similar peak

locations have distance close to 0. For clustering of similar datasets, simple peak

location distance can also be used as the similarity measure (Kristensen et al., 2012).

The Euclidean distance defines a distance matrix of proteins at the first step of

the hierarchical clustering. To merge two clusters, we need an updated similarity
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measure for the distance between two clusters. We use Ward’s method that defines

the distance of cluster A and B as:

d(A,B) =
∑
i∈A∪B

||xi−mA∪B||2−
∑
i∈A

||xi−mA||2−
∑
i∈B

||xi−mB||2 =
nAnB
nA + nB

||mA−mB||2

(1.5)

where xi is the i th observation, || · || is Euclidean distance, mj is the center of the

cluster j, and nj is the number of points in it. The distance of two clusters can be

viewed as the weighted squared Euclidean distance of the two cluster centers. We

choose hierarchical clustering among available clustering methods. First, its dendro-

gram visualizes the similarity of one object to other clusters or other objects. Second,

it has a stable cluster assignment, unlike k-means, whose results are affected by the

choice of the initial centroids of clusters, which are randomly chosen. Third, it only

needs to run once and the cluster IDs at different numbers of clusters can be done by

cutting dendrogram at different heights. We choose Ward’s distance because it has

tree heights increase as the number of clusters decreases, which is not the case for

average or centroid linkage function. Besides, Ward’s method penalizes large clusters

so that the distribution of cluster sizes is roughly uniform.

1.4.2 Two round clustering for integrative analysis

A challenge of conducting cluster analysis for our protein data is the presence

of multiple data types, i.e., SEC and IEX, and two replicates of each. In other

words, we need to consider integrative analysis combining four datasets. Integrative

analysis is popular in biological studies, as it can remove noises and improve analysis

results. There are multiple ways of integrating the two different types of data, i.e.,

SEC and IEX. One straightforward method is to concatenate multiple datasets. The

concatenated profile of one protein combines four profiles from four datasets and uses

the combined long profile for clustering. It will be discussed in the next subsection.

Another method is to combine cluster results from four datasets. We propose a two-

round clustering algorithm to combine clustering results from SEC and IEX data. The
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Figure 1.9. Heat map of two round cluster 42. Red tiles represent 1
and white ones represent 0.

basic idea is that proteins that fall into the same clusters in at least three datasets are

likely to belong to the same group and form a true complex. Our method does not

require proteins to be exactly in the same clusters in different datasets. Proteins in

different clusters but with nearby peak locations will be clustered together using our

method. More specifically, in the first round, we conduct standard cluster analysis

and choose 300 clusters in each dataset. The cluster IDs are ordered according to

the peak locations, that is, a low value cluster ID corresponds to peaks on the left

of the separation fraction. The reordering assigns cluster IDs according to protein

peak locations. The cluster number of 300 in the first round can be changed to an

even larger number because it does not correspond to the cluster number of the final

clustering result.

In the second round, we cluster proteins using their cluster IDs from the first

round as the input data points. The number of clusters can vary and we select 300 as

the final number of clusters based on cluster validation measures. In Section 1.6, we

propose a tree mining method to refine clustering results and relax the need to decide

the number of clusters. Figure 1.9 demonstrates an example of two-round clustering

result through the heat map of protein profiles. It shows that all proteins in the
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obtained cluster, except one, have the similar peak locations in the four datasets.

Table 1.1 shows the cluster IDs of the group of proteins assigned by the first round

of clustering in the four datasets. They do not have the same cluster IDs in all four

datasets, but cluster IDs are very similar, which means that they have similar peak

locations.

Table 1.1.
Cluster IDs in four datasets for proteins in two round cluster 42. Last
four columns are cluster IDs for protein profiles in four datasets.

Two round cluster ID Protein IDs IEX1 IEX2 SEC1 SEC2

42 AT1G13060 277 226 140 127

42 AT1G16470 276 226 144 129

42 AT1G53850 277 225 141 129

42 AT1G56450 277 225 147 131

42 AT1G79210 277 226 147 127

42 AT2G05840 277 226 147 131

42 AT2G27020 277 226 149 131

42 AT2G37690 286 230 141 129

42 AT3G14290 276 225 149 131

42 AT3G22110 277 226 149 131

42 AT3G51260 277 226 147 131

42 AT3G60820 277 226 149 131

42 AT4G31300 276 226 148 131

42 AT5G35590 276 225 149 131

42 AT5G66140 276 224 141 129

42 AT5G42790 277 226 141 131
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1.4.3 Fitted split profiles clustering for multiple peak profiles

From Section 1.2 we know that a protein with multiple peaks may indicate that

the protein belongs to multiple complexes. Evidence shows that a protein can be-

long to multiple complexes and perform different functions (Regev-Rudzki, Karniely,

Ben-Haim, & Pines, 2005). However, existing clustering methods do not allow one

observation to be assigned to multiple groups. We propose to split a multiple-peak

protein profile then run clustering. As a consequence, a multiple-peak protein will

be predicted to participate in multiple complexes. We only consider one peak in the

SEC data and combine it with each of the multiple peaks in the IEX data. Besides,

we use fitted Gaussian curves instead of the original profile data for clustering, as

the smooth Gaussian curves can reduce noises in the original data. For proteins that

Gaussian curve fitting cannot be done, their standardized profiles are used. More

specifically, we first fit Gaussian curves on protein profiles and only keep reproducible

peaks. All peaks are standardized to have the same height of 1. Then for each pro-

tein, we combine the peak in the SEC data with the largest molecular mass (that is

the one on the left) with each of the peaks in the IEX data. We only consider the

peak corresponding to large mass in the SEC data, because protein profiles showing

large molecular mass are more likely to form a complex. We only use one peak in the

SEC data to simplify the problem, when a protein has multiple peaks in both SEC

and IEX data. Moreover, since SEC has lower resolution than IEX, SEC produces

fewer multiple peak proteins. In other words, only using one peak in the SEC data

would not lose much information. We then create multiple profiles for a multiple-peak

protein and name each with the original protein ATG number plus a suffix, e.g., “ 1”,

“ 2”. By splitting profiles, multiple peak proteins can have multiple entries and may

have multiple complexes prediction.

Figure 1.10 shows an example of split profile clustering. Protein AT2G36460 has

two peaks and becomes two entries AT2G36460 1 and AT2G36460 2, which is also

shown in Figure 1.8. Figure 1.10(a) and 1.10(c) show the concatenated profiles of two



22

protein groups with two replicates of IEX and two replicates of SEC. The first group

corresponds to Cluster 131 in our clustering result and contains the first split entry of

AT2G36460 1. The second group corresponds to Cluster 142 and contains the second

split entry of AT2G36460 2. AT2G36460 1 has the IEX peak location at fraction

number 13, which corresponds to peaks at x-axis value 13 and 78 in Figure 1.10(c).

AT2G36460 2 has the IEX peak location at fraction number 20, which corresponds

to peaks at x-axis value 20 and 85 in Figure 1.10(a). We can see that proteins that

are clustered together have the same peak locations in all four datasets respectively.

Figure 1.10(b) and 1.10(d) shows the relatedness of AT2G36460 1 and AT2G36460 2

with other members in the cluster, respectively.

1.5 Cluster validation

We want to decide the number of clusters and evaluate the cluster results. These

are well-known difficult tasks and open problems in cluster analysis. Cluster analy-

sis is unsupervised learning with no clear reference of goodness. Unlike supervised

learning, there is no ground truth solution for clustering. In this subsection, we de-

scribe several clustering validation methods and use them for our specific situation.

More details of cluster validation measures can be found in Handl, Knowles, and Kell

(2005).

There are internal measures and external measures for cluster validation. Internal

measures only use the information from the clustering results. There are multiple in-

ternal measures based on different features of clusters. One type of measures assesses

cluster compactness, which is calculated from the average or maximum within-cluster

variance. Another type of measures quantifies separation between clusters, for ex-

ample, calculating the average or minimum distance between cluster centroids. The

third type of measures is a combination of the first two measures. One well-known

measure is the Dunn index (Dunn, 1974), as specified below

D =
minCk∈C,Cl∈C dist(Ck, Cl)

maxCm∈C diam(Cm)
(1.6)
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(a) Plot of concatenated protein profiles in

cluster 131. The first two peaks represent

peaks in two IEX datasets and the last two

peaks represent peaks in two SEC datasets.

Different lines represent different protein pro-

files.
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(c) Plot of protein profiles in cluster 142. See

Figure 1.10(a) for descriptions.
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Figure 1.10. Example of split profile clustering
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where C is the clustering result, Ck is the kth cluster, dist(Ck, Cl) is the distance

of cluster Ck and Cl, and diam(Cm) is the within-cluster distance of cluster Cm.

There are many definitions of within-cluster distance, for example, the maximum

distance of all pairs within a cluster, the average distance of pairs within a cluster,

or the maximum distance of objects to cluster centroid. Similarly, there are many

definitions of between-cluster distance, for example, the minimum distance of all pairs

of objects from two clusters, the average distance of pairs from two clusters, or the

distance of two cluster centroids. Larger the Dunn index, better a clustering result.

However, using only one number to represent a clustering result is imperfect and

may have information loss. Besides, the limitation of internal validation measures is

that they are biased toward certain types of clusters, for instance, spherical clusters.

Measures based on the minimum or maximum distance may be biased when there

are outliers. The first type of measures based on compactness is biased toward small

clusters, while the second type based on separation is biased toward large clusters.

External measures require reference group information from additional sources.

In other words, an external measure compares the clustering results with true labels

or the “golden standard”. Intactness and purity are two external validity measures.

Intactness and purity are a pair of measures and they are comparable to precision

and recall in classification problems. If we consider belonging to a certain cluster

as a positive prediction result, intactness is comparable to precision and purity is

comparable to recall. The F measure (Rijsbergen, 1979) is a weighted average of

intactness and purity. Other measures like the Rand Index (Rand, 1971) and the

Jaccard coefficient (Jaccard, 1908) are based on the contingency table of clustering

results and the golden standard. They can also be interpreted as the percentage

of correctly clustered objects in all objects. The limitation of external validation

measures is that the number of known examples is usually very small and may not

represent the whole population. External measures can be biased with respect to the

number of clusters. Intactness favors larger clusters and purity favors small clusters.
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Since each internal or external validation measure only reflects part of the properties

of good clusters, it is recommended to compare multiple validation measures.

Finding the number of clusters is another challenge in clustering. For algorithms

like k-means, the number of clusters needs to be decided before clustering is con-

ducted. Hierarchical clustering alleviates the need of deciding the number of clusters

by using dendrograms, but the dendrogram still needs to be cut at a certain number

of clusters to report the final clustering result. Existing literature selects the number

of clusters based on a sudden change of measures which is called a kink, a knee or

an elbow. One well-known decision criterion is gap statistics (Tibshirani, Walther,

& Hastie, 2001). Internal or external validation measures mentioned above can be

used to find the number of clusters. Again, those criteria may work well with certain

types of clusters like spherical clusters but fail at other types. It is recommended

to compare multiple validation measures to get a range of reasonable numbers of

clusters.

We use the following measures to decide the number of clusters and to validate the

results in this project. We consider two internal measures here, namely compactness

and tree height of the dendrogram. We also consider two external measures, intactness

and purity. We choose those criteria because they are straightforward and reflect the

principle of clustering, that is to maximize between-cluster distance and minimize

within-cluster distance. These measures are described below.

Intactness

Intactness is defined as the maximum number of known proteins that belong to

one cluster dividing the total number of proteins in the complex. When the number of

clusters is 1, intactness is 1. Intactness decreases as the number of clusters increases.

It is biased toward large clusters. We will use intactness as one guideline in our choice

of the cluster number.
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Specifically, assume there are two partitions of the dataset, denoted as {C1, . . . , Cm}

and {C ′1, . . . , C ′p}. The first one is from a “golden standard”, i.e., either known protein

complexes or known information of true groups, and the second one is a clustering

result. Intactness is used to measure the consensus of the two. The intactness value

is defined for each of the golden standard clusters Ci,

maxj |Ci ∩ C ′j|
|Ci|

(1.7)

Purity

Purity is defined as the maximum number of known proteins that belong to one

cluster dividing the total number of proteins in that cluster. It is also used to measure

the consensus of two partitions. Purity can be represented as

maxj |Ci ∩ C ′j|
|C ′j| where |Ci ∩ C ′j| gets its maximum

(1.8)

Purity typically increases as the number of clusters increases but can fluctuate because

the denominator may change. In contrast to intactness, purity is biased toward small

clusters. To get a reasonable number of clusters, we examine purity and intactness

together. We select a range of reasonable numbers of clusters such that both measures

take reasonably high values.

Compactness

Compactness is defined as mean squared Euclidean distance from its center. De-

ciding the number of clusters is based on the “elbow” principle, that is, the number

of clusters is decided at the value when there is a great change in this measure.

Specifically, compactness of cluster A is:

1

nA

∑
i∈A

||xi −mA||2 (1.9)
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where xi is the i th observation, || · || is a distance measure, typically Euclidean

distance, mj is the center of the cluster j, nj is the number of points in it. Similarly,

we can also use it for a compactness of a subset of a cluster.

Tree Height

Tree height is the minimum pairwise Ward’s distance between clusters at a given

number of clusters. Ward’s distance is defined in Formula (1.5). Deciding the number

of clusters is based on the “elbow” principle. We choose the number of clusters when

there is a great change in this measure.

Figure 1.11 is the plot of purity, intactness, negative compactness from the two-

round clustering for five known complexes with 300 clusters in the first round and

varying numbers of clusters in the second round. In Figure 1.11(a), intactness is

decreasing, as the number of clusters increases in the second round, but most known

complexes have intactness 1 for up to 300 clusters in the second round, which means

most known complexes form tight clusters. In Figure 1.11(b), purity is increasing

as the number of clusters increases in the second round. We want to choose the

number of clusters such that purity is not too low. No purity reaches 1 except when

the number of clusters reaches 600, which means there exist proteins that are falsely

clustered together. The reasonable number of clusters would be between 200 and 300.

Figure 1.11(c) shows that negative compactness of known proteins in a cluster does not

increase much, which shows that clustering results for known complex proteins do not

change much. The compactness is plotted on the negative scale, so that larger values

correspond to better clustering results Figure 1.11(d) shows the negative compactness

of clusters that contain known complex proteins. There is a rapid increase in this

measure from cluster number 100 to 250. We choose the cluster number of 300 based

on these validation measure plots.
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Figure 1.11. Purity, intactness, compactness of 2 round clusters at
different cluster numbers. Each line represent one known complex.

1.6 Tree mining and prediction of protein complexes

Given a specific cluster number, we predict protein complexes based on the clus-

tering results, as described in the previous sections. We improve the prediction results
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by a data mining approach that does not require a choice of the number of clusters.

The basic idea is to refine a cluster based on a sudden drop in tree heights. In each

second-round cluster, we trace the dendrogram and cut the tree to obtain subset

clusters. The tree will be cut at the biggest drop in tree height from a top level node

to a low level node. This method finds the biggest drops from all drops whose lower

level nodes have height less than 2.2. Then it cuts the tree at the lower node of the

biggest drop. The value of 2.2 is chosen based on the observation that two protein

profiles with a distance larger than 2.2 have different peak locations. This tree min-

ing procedure does not require an exact choice of the number of clusters. Instead,

clusters are obtained by tracing the dendrogram trees. Note that cutting the den-

drogram tree into refined clusters generates protein complex prediction with strong

confidence. Figure 1.12 shows an example of tree mining. The upper left panel shows

the dendrogram of one cluster. The blue line represents the height of 2.2 and the red

line shows the biggest drop in heights below 2.2. The lower right panel of Figure 1.12

shows the heights of each node of the dendrogram. This cluster is further partitioned

into two subgroups by the red line. The lower right panel of Figure 1.12 shows that

this subgroup for refined prediction of protein complex is more reliable than the pre-

diction based on the original cluster, as the protein profiles in the predicted complex

are very similar to each other.

We provide a table of the predicted complexes, including conservative predictions

based on the refined clusters from tree mining Table 1.2 lists proteins in Cluster 19

and the cluster compactness value, which is the same cluster shown in Figure 1.12.

We can see that Cluster 19 is further divided into two subgroups. Compactness in

the refined clusters is smaller, which means proteins form tighter clusters and the

corresponding complex predictions are more reliable.
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Table 1.2.
Table of cluster 19 and refined clusters

Protein ID
Cluster

ID

Compactness

of Cluster

Cluster

ID

Refined

Compactness

Refined

Cluster

AT5G65430 19 1.095187352 191 0.8796217

AT5G10450 19 1.095187352 191 0.8796217

AT4G09000 19 1.095187352 191 0.8796217

AT2G42590 19 1.095187352 191 0.8796217

AT5G38480 19 1.095187352 192 0.695576283

AT5G16050 19 1.095187352 192 0.695576283

AT3G02520 19 1.095187352 192 0.695576283

AT1G78300 19 1.095187352 192 0.695576283

AT1G22300 19 1.095187352 192 0.695576283

AT1G17290 19 1.095187352 192 0.695576283

1.7 List of files

Here is the list of input files, output files, and R codes that can be used to

reproduce the analysis results. The Matlab code is at Github https://github

.com/dlchenstat/Gaussian-fitting as a supplementary file of a published paper

McBride et al. (2017). The R code is at Github https://github.com/dlchenstat/

ProteinComplexPredict as a supplementary file of a submitted manuscript McBride

et al. (2018). Users can repeat the analysis results in this chapter using the codes.

1. The IEX input file

(a) IEX bio1 common cytosol.csv

(b) IEX bio2 common cytosol.csv

(c) CytoContaminents.csv (remove some IEX proteins)
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2. The IEX peak detection file (generated from Gaussian fitting Matlab code)

(a) peakloc-iex-bio1-uma-2015aug.csv

(b) peakloc-iex-bio2-uma-2015aug.csv

3. The IEX reproducible peak file (obtained from the peak detection file)

(a) IEX reproducible peaks.csv

4. The SEC input file

(a) SEC Bio1 nov.csv

(b) SEC Bio2 nov.csv

(c) SEC Bio1 Bio2 cytosol list.csv (select cytosolic proteins in SEC)

5. The SEC peak detection file (generated from Gaussian fitting Matlab code)

(a) peakloc-sec1-uma-2015nov.csv

(b) peakloc-sec2-uma-2015nov.csv

6. The SEC reproducible peak file (from the peak detection file)

(a) SEC reproducible peaks.csv

7. The clustering analysis result with 300 clusters

(a) Cluster ID SEC+IEX split fitted 300 clusters180131.csv

8. R code for data processing and clustering

(a) ProteinComplexPredictFunctions.r

(b) ProteinComplexPredictMain.r

9. The list of known proteins

(a) Knowns2.0.csv
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1.8 Conclusion

We have conducted a data science project that requires meaningful data represen-

tation and integration of multiple data types. We applied Gaussian fitting as data

quality control for reproducible proteins, deconvoluted multiple peak proteins, and

conducted two-round clustering to integrate different data types. We also developed

tree mining to refine cluster results and relax the need to decide the number of clus-

ters. We have created computer code for the analysis, which is accessible to broad

users. Our collaborator, Dr. Szymanski’s group, has been applying this method to

other experiment data, such as rice, cotton, and soybean MS data.
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2. OPTIMAL TESTS UNDER SPARSE ALTERNATIVE WITH

COVARIANCE DEPENDENCE

2.1 Introduction

2.1.1 Global testing

Global hypothesis testing is a fundamental research problem in statistics. It tests

whether the global null hypothesis, the intersect of multiple individual null hypothe-

ses, is true. For example, a traditional problem of statistical analysis is to test whether

a group of covariates (also called explanatory variables, features, independent vari-

ables or predictor variables in different contexts) has any linear relationship with a

response variable (also called predicted variable, explained variable, outcome variable

or dependent variable), the variable of interest. The application of global testing is

widely utilized with the fast development of technology in genomics, neuroscience,

finance, engineering, etc., where massive data are collected. For instance, in genome-

wide association studies, genetic markers are grouped and are tested if they are as-

sociated with the traits, such as drug response or disease status. If the global null

hypothesis is rejected, we conclude that at least one individual null hypothesis is false.

Multiple testing (also called multiple comparisons or multiplicity problem) occurs

when a large number of tests are conducted simultaneously. It is related to global

testing but has different testing criteria. Instead of the type I error, multiple testing

controls the false discovery rate (FDR; Benjamini & Hochberg, 1995) or the family-

wise error rate (FWER) among the multiple tests. FDR is the expected value of the

number of false rejections divided by the number of total rejections. FWER is the

probability of having at least one false rejection. Usually, global testing serves as the

first step before multiple testing. For example, in comparison of means, the global
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ANOVA test is done to determine whether there are any mean differences. If so,

multiple testing of pairwise comparisons of means is conducted to determine which

pairs have different means. On the other hand, FWER in multiple testing corresponds

to the type I error probability of the respective global test. Therefore, the two types

of analysis are related. We focus on global testing in this chapter.

Specifically, in this chapter, we study global testing to identify the association of a

group of variables with another primary variable. Global tests aggregate information

and reduce the burden of multiple testing, as one test instead of multiple tests is

conducted. There are two ways to construct a global test. One is based on a joint

model, e.g., a linear regression model, with all variables. The well-known F-test is

a typical example of a global test. The other approaches combine individual test

statistics of the corresponding individual hypotheses. For example, the minimum

p-value test (MinP; Tippett, 1931) and higher criticism test (HC; Donoho & Jin,

2008). MinP and HC are particularly optimal and more powerful than the F-test

under sparse alternatives, a common situation in modern data analysis. However,

arbitrarily strong dependence among variables poses a great challenge towards the

p-value calculation of these optimal tests. We will develop a latent variable adjusted

method to correct the MinP test under dependence.

2.1.2 The Motivating example of GWAS

In this subsection, we discuss the application of global tests in genome-wide asso-

ciation studies (GWAS) and specifically the need for optimal global tests for sparse

effects and correlated variables. GWAS aims to identify single nucleotide polymor-

phisms (SNP) or genes in an entire genome that are associated with a trait of interest

such as disease status or response to treatment (Manolio et al., 2009). SNP is a

single base-pair change in a certain location of a genome. SNPs are coded as 0, 1, 2,

which represents the copy number of minor alleles. A typical data set contains several

hundred thousand to one million SNP variables and one to two thousand subjects.
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The most commonly used statistical method in genome-wide data analysis is the

single-SNP method that analyzes individual SNPs’ effects on the response, for exam-

ple, using the t-test or the Armitage trend test (Armitage, 1955) for the association

of an individual SNP with the response variable. The result is typically demonstrated

in a Manhattan plot, as shown in Figure 2.1 below. It displays p-values on − log10

scale of individual SNPs along the whole genome. This simple approach has success-

fully identified thousands of SNPs that are associated with diseases in the past 20

years. However, the power of individual tests is limited. Since there are hundreds of

thousands of SNPs, Bonferroni correction is usually used to adjust multiple p-values

to reduce false positive results. SNPs need to have sufficiently strong effects to pass

a stringent Bonferroni correction threshold. For example, to test one million SNPs

in a dataset, the p-value threshold would be 5 × 10−8. Figure 2.1 is the Manhattan

plot of Crohn’s disease (Duerr et al., 2006). There are about 300,000 SNPs, and the

p-value threshold is set at 1.67 × 10−7 = 0.05/300000. Only a few SNPs from two

genes are significant at this level, namely IL23R, NOD2. In other words, only a few

SNPs have sufficient effects to be identified. Due to the nature of complex diseases,

most SNPs may have moderate or small effects and thus cannot be detected. This is

related to the problem of “missing heritability” (Manolio et al., 2009) that identified

SNPs only contribute a little fraction of the total heritability. Another limitation is

that single SNP analysis cannot detect interactions between SNPs.

An improved approach is a SNP-set analysis which analyzes SNPs by sets. SNPs

can be grouped by physical locations, such as gene locations, intergenic regions, link-

age disequilibrium (LD) blocks or pathways. The SNP-set analysis reduces multiple

testing burden from millions of tests to tens of thousands of tests. Another advantage

is that global testing of a whole group aggregates sparse and weak effects to improve

power. Besides, global testing makes more meaningful interpretations as functions of

genes or pathways.

To develop a powerful test in GWAS, we need to consider two issues that can

affect type I error and power of global tests. One issue is sparsity. That is, only a few
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in Crohn’s disease dataset (Duerr et al., 2006). The y-axis is on
− log10(P-values) scale, and the x-axis reflects the physical position
of the SNPs by chromosome. Darker tiles represent more SNPs at a
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reordered so that highly correlated SNPs are together. Tree shaped
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SNPs are effective among a large number of SNPs in the data. As shown in Figure

2.1, the Manhattan plot displays that only SNPs in two genes pass the stringent

Bonferroni p-value cutoff, implying that most SNPs have no effects or weak effects.

Sparse effects can make F-test less powerful. Tests that would work for sparse effects

have been studied, e.g., MinP test and HC (Arias-Castro, Candès, & Plan, 2011). We

will review those tests in detail in Section 2.2.2.



39

Another issue is widespread linkage disequilibrium (LD). LD causes high correla-

tions among genetic markers. It occurs because when a mutation happens, nearby

genetic markers are affected together. Figure 2.2 shows an LD pattern in a gene

named NIPA1 from the Rheumatoid Arthritis Responder Challenge dataset (Cui et

al., 2013). The figure demonstrates that 10 SNPs are highly correlated with each

other. This common situation in GWAS data indicates that marginal test statis-

tics from the individual SNPs are also highly correlated. Statistical analysis with

correlated variables is a challenging problem. For instance, when we consider a com-

bination test such as MinP and HC, under dependence, there is no guarantee that the

null distribution of the test statistics derived under the independence assumptions is

still valid.

2.1.3 Existing tests

We review some of the existing global testing methods. Let us first consider a

linear regression model

Y = β0 + X1β1 + X2β2 + · · ·+ Xdβd + ε, (2.1)

where Y = (Y1, . . . , Yn)T is the response of n samples, Xi = (Xi1, . . . , Xin)T , is the

ith variable, i = 1, . . . , d, β0, β1, . . . , βd are unknown regression coefficients, and ε

denotes the error term and is assumed to follow N(0, σ2I). If Y is categorical, e.g., a

dichotomous variable representing disease or control in a GWAS, a transformation is

often used before applying the regression model.

Denote β = (β1, . . . , βd)
T . We test whether variables are associated with the

response:

H0 : β = 0 against H1 : β 6= 0.

The F-test statistic is defined as:

F =
(SSE(R)− SSE(F ))/(dfR − dfF )

SSE(F )/dfF
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where SSE(R) = Y′(I − 11′/n)Y is the error sum of squares of the null model,

e.g., the model only including β0, 1 = (1, . . . , 1)′ is a vector of n 1’s, SSE(F ) =

Y′(I − X(X′X)−1X′)Y is the error sum of squares of the model including all Xi,

with X = (X1,X2, . . . ,Xd) denoting the design matrix, dfR = n − 1 and dfF =

n− d− 1 are degrees of freedom of the reduced and full model error sum of squares.

The F-test statistic follows an F distribution under the null hypothesis H0, and we

reject the global null hypothesis when the F statistic is larger than the critical value.

The analysis based on the regression model can accommodate other covariates and

confounding variables. For example, in a GWAS, we can add clinical covariates, such

as age, gender, and baseline variables, in the regression model and then test the effect

of X conditional on the other covariates.

Another global testing approach is to consider the joint hypotheses of individual

correlations between Y and Xi. That is,

H0 : E(X′iY) = 0 against H1 : E(X′iY) 6= 0, i = 1, . . . , d

The global hypothesis is the intersect of all individual hypotheses. Suppose for each in-

dividual hypothesis we have calculated a test statistic with a p-value pi, i = 1, 2, . . . , d.

Under the global null hypothesis that none of the variables Xi is associated with the

response Y and the individual test statistics are independent, pi’s are iid and follow

the uniform distribution U [0, 1]. Assume the alternative hypotheses have dγ non-

zeros, where 0 ≤ γ ≤ 1 is a sparsity parameter. When the alternative hypotheses are

sparse, with a small number of non-zero, the F-test will lose power. The F-test statis-

tic can be interpreted as a sum of squares of the marginal test statistics. When the

true effects are sparse, the sum of squares may contain too many noises and becomes

less powerful.

The Minimum p-value test (MinP; Tippett, 1931) uses the maximum of the in-

dividual test statistics or the minimum of pi’s. More specifically, assume each Xi is

standardized and divided by
√
n so that X′iXi = 1. The marginal test statistic is

ri = X′iY/sy, (2.2)
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where sy is the standard deviation of Y. This is the sample correlation coefficient of

Xi and Y multiplied by
√
n. The null distribution of this test statistic is available,

e.g., as a t-distribution or a normal distribution. In fact, based on the central limit

theorem, the test statistic can be well approximated by a normal distribution as long

as the distribution of Xi and Y has bounded second moments and the sample size

n is moderately large. MinP uses max1≤i≤d |ri| as the test statistic. Equivalently,

we consider the minimum p-value of the marginal test statistics p(1) = min1≤i≤d pi,

which follows the beta distribution Beta(1, d) under the null hypothesis and when all

marginal test statistics are pairwise independent. The p-value for the global hypoth-

esis is 1− (1− p(1))d. We reject the global null hypothesis when p(1) is small. It has

been proved that under some regularity conditions, MinP is asymptotically powerful

with the sparsity level 0 ≤ γ ≤ 1/4 (Arias-Castro et al., 2011).

The Fisher’s combination test statistic (Fisher, 1934) is defined as−2
∑d

i=1 log(pi).

Under H0 and when marginal test statistics are independent, the test statistic is

distributed as χ2
2d. This test is powerful when there is a large proportion of non-zero

values in the alternative hypotheses (Koziol & Perlman, 1978). By intuition, its test

statistic may include too many noises when the alternatives are sparse. Therefore, the

Fisher’s combination test loses power under sparse alternatives. An adaptive Fisher’s

combination test (Liang, Wang, Sha, & Zhang, 2016) that combines a few top p-values

was developed to adapt different sparsity scenarios. Other combination of marginal p-

values are available as follows: −
∑d

i=1 log(1−pi) (Pearson, 1933),
∑d

i=1 log pi/(1−pi)

(Mudholkar & George, 1977),
∑d

i=1 pi (Edgington, 1972),
∑d

i=1 Φ−1(pi) (Stouffer,

Suchman, DeVinney, Star, & Williams Jr, 1949). Heard and Rubin-Delanchy (2018)

compares the power of each combination methods and provides guidance about the

choice of combination in practice. The Cauchy combination test (Y. Liu & Xie,

2018b) uses
∑d

i=1 ωi tan((0.5 − pi)π) as the test statistic, where ωi are non-negative

weights and
∑d

i=1 ωi = 1. This test statistic’s null distribution can be approximated

by a Cauchy distribution regardless of the dependence structure of marginal test

statistics. It is powerful under strong sparsity.
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The Higher Criticism (HC; Donoho & Jin, 2015) test statistic summarizes d

marginal p-values pi for i = 1, . . . , d and investigates any significance in the whole

set. It examines whether the sorted p-values p(i) is close to its expectation i/d. We

first sort p-values pi’s in the increasing order p(i) then calculate the HC test statistic

as:

HC = max
1≤i≤d

√
d

(i/d)− p(i)√
p(i)(1− p(i))

(2.3)

Under H0 and when the individual marginal statistics, or pi’s, are independent, HC

has a defined asymptotic distribution as d→∞. However, for small d, the asymptotic

distribution is not accurate. It has been proved that HC is asymptotically powerful

under the sparse level 0 ≤ γ ≤ 1/2 (Arias-Castro et al., 2011). Though it seems

to be powerful under a larger range of sparsity than MinP, the result is asymptotic,

which means the results only apply for large d. Tests that combine marginal p-values

can be used when the raw data is not available or difficult to integrate, especially in

meta-analysis.

Sequence kernel association test (SKAT) was proposed by Wu et al. (2011) for test-

ing rare genetic variants in GWAS. SKAT uses a multiple regression model to regress

the phenotype on genetic variants. The regression model can be semi-parametric with

different kernel functions. By using the linear kernel, SKAT considers the same linear

model as in (2.1). On the other hand, SKAT assumes β is random and follows an

arbitrary distribution. It tests whether the variance of β is 0. Its test statistic is

Q = (Y − µ̂)′K(Y − µ̂) (2.4)

where K = XWX′, µ̂ is the fitted response under the null model with only the

intercept and W is a diagonal matrix of weights of each variable in X. Different

choices of weights can have an impact on the power of the test. Wu et al. (2011)

suggested using the function of minor-allele frequency as weights. The test statistic

Q follows a mixture of chi-square distributions. Moment matching is used to calculate

its null distribution. It can be viewed as a weighted sum of squares of marginal test

statistics. The test can be further interpreted as a weighted sum of independent chi-
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squares with eigenvalues as their weights. We can decompose K as VDV′, where

V is a n × d orthonormal matrix of eigenvectors, D is the diagonal matrix with d

non-zero eigenvalues λ1, . . . , λd. Then we can write Q as

Q = (Y − µ̂)′VDV′(Y − µ̂). (2.5)

Under the null hypothesis, Q has the same distribution as
∑d

i λiχ
2
1,i, the weighted

sum of d chi-square of one degree of freedom. An exact method is used to calculate

the null distribution (Davies, 1980). From (2.5), if the top eigenvectors, i.e., the first

few columns of V are related to Y, SKAT is powerful. As it is a sum of squares type

of tests, it is powerful when effects are dense. Another benefit is that, if X is not full

rank, it can adjust its null distribution with the correct degrees of freedom, so that

the test is still valid.

The Neyman Pearson lemma can give a hint on powerful tests for global hypoth-

esis testing. Assume Z ∼ N(θ,Σ) is a vector of marginal test statistics and Σ is

known. A uniformly most powerful (UMP) test is available for simple alternative

hypothesis H0 : θ = 0 vs H1 : θ = θ̃, where the alternative hypothesis is at a specific

vector value. From the Neyman Pearson lemma, the UMP test is θ̃
′
Σ−1Z, which

is a linear combination of Z (Bittman, Romano, Vallarino, & Wolf, 2009). In gen-

eral, the alternative hypothesis H1 : θ 6= 0 is more complicated and we do not have

information about the true value of θ. There is no UMP test for this alternative.

The tests mentioned in this section make assumptions on the alternative values θ̃, for

instance, the sparsity assumption for the MinP and HC, so that they can be powerful

for certain types of alternative. The UMP test typically cannot be obtained for real

data analysis, but the idea of optimal tests is very useful to compare different tests.

We can view different kinds of tests as a certain choice of θ̃. If the choice of θ̃ is

close to the actual one, the test is powerful. For example, the F-test uses Z′Σ−1Z as

the test statistic and makes Z as the estimate of θ̃. On the other hand, if we assume

effects have the same strength and the same direction, then the UMP test is 1′Σ−1Z,

which is analogous to Fisher’s combination test when Σ = I.
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2.1.4 Main contributions

Our first contribution is to examine optimal global tests under arbitrary variable

dependence structures. We propose a latent factor adjusted MinP test to accom-

modate arbitrary dependence among variables and obtain accurate p-values for the

adjusted MinP. The estimate of the latent variables is from the iterative reweighted

surrogate variable analysis, which is an algorithm from a series of surrogate variable

analysis (SVA) papers (Leek & Storey, 2008; Leek et al., 2010; Leek, 2014). Our pro-

posed test is to adjust MinP by latent factors, which removes or reduces correlations

among the original test statistics. In Section 2.3 we show the correct type I error

probability. In Section 2.4 we show that under certain conditions, which assume that

the latent variables do not affect the response, our test is more powerful than the

original MinP.

Our second contribution is to examine data for appropriate uses of different tests.

We characterize the conditions when a testing method is optimal then choose the

most powerful method based on the data structure, for example, the sparsity level

and correlation structure. As a special demonstration, we consider three tests, the

F-test, the original MinP test, and the adjusted MinP test. We explore the data

structure using fast and simple summaries then let the data guide the choice of the

optimal testing method.

The rest of this chapter is organized as follows: In Section 2.2, we review existing

global tests and methods to correct for correlation. We propose a latent variable

adjusted MinP in Section 2.3. We provide two versions of proofs of type I error in

Section 2.3.2 and 2.3.4. In Section 2.4, we show that under the factor model setting,

the power can be improved. Simulation results of type I error and power are in Section

2.3 and Section 2.4, respectively. We propose a test combination strategy in Section

2.5 and report results of a real data analysis.
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2.2 Challenges of optimal tests under dependency

2.2.1 MinP is not accurate under dependency

The dependence of marginal test statistics causes problems when calculating p-

values for MinP. The issue here is analogous to that of the Bonferroni correction, or

more precisely, the Sidak correction (Šidák, 1967). Specifically, Bonferroni uses dp(1)

for the smallest adjusted marginal p-value, while Sidak uses 1 − (1 − p(1))d. Those

two are similar when p(1) is small and d is large. However, the correction is too

conservative when there are high correlations among the marginal test statistics.

The example below shows that when the marginal test statistics are correlated

the distribution of the MinP test statistic is much different from the case when the

marginal test statistics are pairwise independent. Assume the marginal test statistics

under the null hypothesis have a pairwise correlation ρ. Specifically, we express the

test statistic as

Zi =
√
ρW +

√
1− ρKi, i = 1, . . . , d (2.6)

where W and Ki, i = 1, . . . , d, are iid standard normal, and W can be viewed as

the common factor shared by Zi’s. We consider a variety of levels of pairwise cor-

relations among Zi’s, i.e., ρ = 0, 0.1, . . . , 0.9. Let zt/2 be the critical value such that

P (max|Zi| < zt/2) = 0.05, when Zi’s are iid standard normal variables. It is easy to

show that t = 1− 0.951/d and zt/2 = Φ−1((1− 0.951/d)/2), which gives a type I error

probability of 0.05. Figure 2.3 shows the actual type I error P (max|Zi| < zt/2) when

Zi’s are correlated at different levels of ρ. We also vary the number of variables d.

Note that only when ρ = 0, the type I error is controlled at the correct level of 0.05,

i.e., P (max|Zi| < zt/2) = (1− t)d = 0.05.
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More specifically, we derive the distribution of the MinP test statistics when all test

statistics are equally correlated. The tail probability of each marginal test statistic

given the common factor W is:

P (|Zi| > −zt/2|W )

=P (Zi > −zt/2|W ) + P (Zi < zt/2|W )

=P (
√
ρW +

√
1− ρKi > −zt/2|W ) + P (

√
ρW +

√
1− ρKi < zt/2|W )

=P (Ki > (−zt/2 −
√
ρW )/

√
1− ρ|W ) + P (Ki < (zt/2 −

√
ρW )/

√
1− ρ|W )

=Φ((zt/2 +
√
ρW )/

√
1− ρ|W ) + Φ((zt/2 −

√
ρW )/

√
1− ρ|W )

The tail probability of the MinP test statistics given the common factor W is:

P (max|Zi| < −zt/2|W )

=P (|Zi| < −zt/2, i = 1, . . . , p|W )

=(1− Φ((zt/2 +
√
ρW )/

√
1− ρ)− Φ((zt/2 −

√
ρW )/

√
1− ρ))d

The tail probability of MinP is:

P (max|Zi| < −zt/2) =∫ (
1− Φ

(
zt/2 +

√
ρw

√
1− ρ

)
− Φ

(
zt/2 −

√
ρw

√
1− ρ

))d
/
√

2π exp(−w2/2)dw

In this example, we have an analytical distribution of the MinP test statistic

although it is only a special case. Figure 2.3 shows that the actual type I error

decreases and is much lower than 0.05 as ρ increases and d increases. When the

actual type I error probability is less than 0.04, it is considered as a serious bias of

the null distribution. When ρ ≥ 0.4 we observe that the null distribution of the

original MinP test is not correct anymore and it cannot be used for the appropriate

type I error control.
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Figure 2.3. Type I error probability of the MinP test under the in-
dependence assumption and with equal correlation among any pair
of variables. Each decreasing line corresponds to a different num-
ber of variables d = 10, 20, . . . , 100 and ρ is the pairwise correlation
coefficient.
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2.2.2 Existing methods to correct for dependence: methods that calcu-

late p-values under correlation

To correct the null distribution of MinP under dependence, two types of methods

were proposed. One calculates p-values under correlation by Monte Carlo sampling,

for example, the permutation method used in GWAS. In permutation sampling, the

response variable in the sample is shuffled to obtain an empirical distribution of

the test statistics under the null hypothesis. Versatile gene-based association study

(VEGAS; J. Z. Liu et al., 2010) uses permutation to compute MinP p-values for genes

under correlation. However, permutation is very time-consuming. To get a p-value

that is accurate at 10−6, we need at least 108 permutation samples. To alleviate

the computation burden, Barnett, Mukherjee, and Lin (2017) proposed an adaptive

permutation. The permutation stops early if the empirical p-value is not significant.

One thousand permutation samples are simulated in the first step. If the empirical

p-value is greater than 0.1, the simulation stops. Otherwise, we continue to conduct

10,000 simulations. If the empirical p-value is greater than 0.01, the simulation stops.

Otherwise, we continue the simulations, etc.

Lamparter, Marbach, Rueedi, Kutalik, and Bergmann (2016) proposed Pathway

scoring algorithm (Pascal) to significantly reduce permutation burden using differ-

ent p-value calculation approaches for different occasions. Pascal uses permutation

if none of the marginal p-values is significant. It uses integral over multivariate nor-

mal probability density function (Genz, 1992) if any marginal p-value is lower than

10−5 and the dimension is less than 1000. If the dimension is larger than 1000 and

any marginal p-value is less than 10−15, it uses Bonferroni adjustment with the ef-

fective number of tests (Gao, Starmer, & Martin, 2008) to calculate the MinP test

under dependence. Using integral of multivariate normal density to calculate MinP

p-values is based on the fact that the vector of all test statistics asymptotically fol-

lows a multivariate normal distribution (Conneely & Boehnke, 2007). The R package

mvtnorm (Genz et al., 2012) uses an efficient multivariate normal integral algorithm.
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It calculates the probability of correlated multivariate normal that falls in a high

dimension cube with a dimension less than 1000 in less than 1 minute. Its limitation

is that the multivariate normal assumption is too strong, and it may not be correct

for a small sample size though this assumption holds asymptotically (Conneely &

Boehnke, 2007). The effective number of tests is defined as the number of principal

components that explain 99.5% of the total variance. Gao et al. (2008) shows it can

approximate the results of permutation accurately and efficiently. Pascal can compute

about 18,000 gene test statistics in 34 minutes (Lamparter et al., 2016). Conneely

and Boehnke (2007) calculates MinP p-values using a random sample of correlated

multivariate normal, which is much faster than permutation. Y. Liu and Xie (2018a)

proposed Gaussian approximation, which is an accurate and efficient method to cal-

culate MinP p-values under dependence. In each round, it generates a random vector

of length d rather than n in the permutation, so it is efficient when d < n.

Another type of method for calculation of p-value of MinP under dependence

was proposed by R. Sun and Lin (2017). They used an extended beta-binomial

distribution to approximate distribution of the number of test statistics that are

larger than certain values, to analytically calculate p-values. The method defines

S(t) as

S(t) =
d∑
i=1

I{|Zi| > t}, (2.7)

where Zi’s are marginal test statistics and S(t) is the number of marginal tests that

are larger than the threshold t. The method approximates the distribution of S(t)

using an extended beta-binomial distribution, whose variance can be larger than the

ordinary binomial distribution. The MinP p-value is

P (|Zi| < max(zi), i = 1, . . . , d|Z ∼ N(0,Σ)) = P (S(max |zi|) = 0|Z ∼ N(0,Σ)),

(2.8)

where zi is the observed marginal test statistic. However, in the highly correlated

case, like equal correlation, the type I error is not reliable since the extended beta-

binomial distribution approximation may not be accurate. The p-value is also not
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accurate for very small p-values, which are the significant testing results of interest.

Another disadvantage is that computation time is O(d3), which takes much more time

for larger SNP groups.

2.2.3 Existing methods to correct for dependence: methods that trans-

form the data

Transforming the marginal test statistics or variables is another approach to cor-

rect for dependence. Innovated higher criticism (Hall & Jin, 2010) transforms test

statistics to independent test statistics using the inverse of Cholesky decomposition

of the correlation matrix and then apply HC for the transformed test statistics.

Specifically, assume the test statistics Z ∼ N(µ,Σ). The Cholesky method de-

composes Σ = AA′, where Σ is a symmetric and positive definite matrix and A is

a lower triangle matrix. We denote Σ−1/2 = A−1. The transformed test statistics

are Σ−1/2Z ∼ N(Σ−1/2µ, I), which are then mutually independent. The method

calculates the HC test statistics from the transformed marginal test statistics. How-

ever, the transformation can be unstable. There is no unique solution of Σ−1/2, and

Cholesky decomposition is only one of those. In addition, after the transformation,

signals from the transformed test statistics may be diluted (Barnett et al., 2017). It

is possible that Σ−1/2µ is not sparse and MinP is not powerful for the transformed

marginal test statistics. Besides, the method does not work when the correlation

matrix is not full rank.

Transformation through principal component analysis has also been proposed.

Those methods use the correlations between principal components (PC) and the re-

sponse as marginal test statistics. Because PCs are orthogonal to each other, marginal

test statistics are independent. MinP can be applied to the marginal test statistics,

and its type I error is correct. Aschard et al. (2014) proposed to use principal com-

ponents to test the relation of multiple traits vs SNPs. They found that the marginal

test of the top PC is not the most significant, which is contrary to what most people
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think. They proposed combining tests of PCs to increase power. Z. Liu and Lin

(2018) studied the power of using MinP of marginal tests with PCs. They found that

when the principal angle is 0, the PC is the most powerful and if the principal angle is

90, the PC is powerless. The limitation of the methods that transform the variables

is that they do not report the significance of individual variables. The significance of

combined variables may be hard to interpret.

2.2.4 Existing methods to correct for dependence: factor models

The following three methods estimate the latent structure of the data. In different

papers, it is referred to as “surrogate variables” (Leek & Storey, 2008), “latent fac-

tors” (Friguet, Kloareg, & Causeur, 2009), “unwanted variation” (Gagnon-Bartsch &

Speed, 2012), or “latent effects” (Y. Sun, Zhang, & Owen, 2012). Different names re-

fer to the same idea that some unobserved variables can explain most structure of the

test statistics. Another similar concept is “confounding variables”, which are referred

to variables that affect both covariates and the response variable (Price et al., 2006).

Ignoring confounding variables may cause a spurious association. We use the term

of latent variables in our development. In the literature, latent variable methods are

used to correct for multiple testing dependence, to provide an accurate estimate of

false discovery proportion (Fan, Han, & Gu, 2012), to control FDR (Leek & Storey,

2008), to correct population structure in GWAS (Price et al., 2006), and to correct

batch effect (Leek et al., 2010) in gene expression data. We will use latent factor

modeling to remove dependence among test statistics and develop an adjusted MinP

test. With the latent factor modeling, the adjusted test statistics are weakly depen-

dent. It becomes valid to apply the null distribution of MinP for accurate calculation

of p-values.

Singular value decomposition (SVD) and spectral decomposition are important

techniques used in the estimation of latent factors. We briefly review them first.

Singular value decomposition decomposes a matrix into a product of three matrices,
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i.e., A = UDV′, where columns of U and V are orthogonal and have norms of 1.

Matrix D is a diagonal matrix with positive real numbers called singular values, and

its diagonals are in decreasing order. Spectral decomposition is like SVD but considers

a square matrix. More specifically, the decomposition is A = QΛQ′, where columns

of Q are eigenvectors, and they are orthogonal and normalized. A diagonal matrix Λ

is the matrix of the corresponding eigenvalues with its diagonals sorted in decreasing

order.

Fan et al. (2012) proposed a method called principal factor approximation (PFA)

to subtract the dependence among test statistics and weaken the correlation structure.

However, it was designed for estimation of false discovery proportion in the problem

of multiple testing. It was later proved to have good properties under unknown

dependence, i.e., when X is a random sample, and its covariance matrix Σ is unknown

(Fan & Han, 2017). Assume the test statistics have a joint Gaussian distribution

(Z1, . . . , Zd)
T ∼ N((µ1, . . . , µd)

T ,Σ) (2.9)

Using principal component analysis, we rewrite Σ as

Σ =
d∑
i=1

λiγiγ
′
i (2.10)

where γi’s are eigenvectors and λi’s are their eigenvalues arranged in decreasing order.

We consider the top k eigenvalues and the corresponding eigenvectors and write in a

matrix

Σ = LL′ + A (2.11)

where L, a d× k matrix with L = (
√
λ1γ1, . . . ,

√
λkγk), represents the matrix of the

top k eigenvectors, and A =
∑d

i=k+1 λiγiγ
′
i is the remaining matrix. Diagonals of A

are (a−21 , . . . , a−2d ), where a−2i < 1, since diagonals of Σ are 1 and diagonals of LL′

are positive. We can write (Z1, . . . , Zd)
T as

Zi = µi + b′iW +Ki (2.12)

where bi is the ith row of L, W = (W1, . . . ,Wk) is a k dimensional latent factors,

and K = (K1, . . . , Kd) follows N(0,A). The common factor W is unknown but can
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be estimated. Fan et al. (2012) used L1 regression to estimate W because it is robust

against outliers. PFA used 90% of the smallest |zi|’s for the regression model (2.12)

so that µi’s were approximately zero.

The adjusted test statistics are:

ai(Zi − b′iŴ) (2.13)

where Ŵ is a good estimator of the common factor W and ai is a constant greater

than 1 (Fan et al., 2012). The adjusted marginal test statistic has a larger mean than

the original test statistic Zi by multiplying ai and ai > 1. The simulation in Fan et

al. (2012) showed the dependence-adjusted test statistics are improved in terms of

reducing false non-discovery rate which is referred to as the number of not rejected

false null divided by the number of negatives.

EIGENSTRAT (Price et al., 2006) was proposed to control population structure

in GWAS. It uses the first few left singular vectors of X as the latent variables.

The method tests the effect of a SNP conditional on the latent variables. However,

EIGENSTRAT would lose power when SNP variables are strongly correlated to the

response. In this case, removing latent variables leads to removing effects as well.

It happens when the effects are strong. On the other hand, in a typical GWAS

where effects are weak, this method would work fine. EIGENSTRAT will be used to

reduce the correlation structure in one of our factor models in Section 2.3.3. Assume

the design matrix X can be decomposed as X = UDV′. Let U = (U1,U2) and

V = (V1,V2), where U1 is the first k columns of U and V1 is the first k columns of

V. EIGENSTRAT uses the correlation of (I −U1U
′
1)X and (I −U1U

′
1)Y, that is,

the residual regressing on U1, as the adjusted marginal test statistics.

Surrogate variable analysis (SVA; Leek & Storey, 2008) conducts iterative weighted

SVD on the design matrix to estimate latent variables and remove dependence among

marginal test statistics. The method is analogous to the usual SVD on the design

matrix, but it assigns less weights on variables correlated with the response variable.

Conditional on the latent variables, it can be proved that the test statistics become

independent and the standard multiple testing criterion can be appropriately applied.
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An R package of implementing SVA (Leek, Johnson, Parker, Jaffe, & Storey, 2012)

is available at Bioconductor. A limitation is that it is computationally intensive,

and it does not always converge. Chen et al. (2017) developed an R package named

SmartSVA, which implements efficient estimate algorithm of the number of latent

variables, SVD, and F-test in C++ to speed up the computation and make SVA ten

times faster. Several variants of SVA were proposed after Leek and Storey (2008).

Direct SVA (S. Lee, Sun, Wright, & Zou, 2017) is claimed to improve SVA latent vari-

able estimates when hidden factors are strongly correlated with the primary variables

and it does not need iterations. Frozen SVA is used for prediction (Parker, Bravo, &

Leek, 2014). Independent SVA uses independent component analysis instead of SVD

to better model non-linear independence among variables (Teschendorff, Zhuang, &

Widschwendter, 2011). Svaseq (SVA for sequencing data; Leek, 2014) was proposed

to use the log transformation to model counts data. We will use SVA in one of our

factor models. The detail development is described in Section 2.3.1.

Other latent variable methods include LEAPP (latent effect adjustment after pri-

mary projection; Y. Sun et al., 2012), FAMT (factor-analysis-based multiple testing,

Friguet et al., 2009), robust FARM test (Fan, Ke, Sun, & Zhou, 2017), which is ro-

bust under non-Gaussian data, RUV-2, which uses control probes to estimate latent

variables (Gagnon-Bartsch & Speed, 2012). We will show the performance of two

adjustment methods in Section 2.3 and 2.4, namely SVA adjusted MinP and EIGEN-

STRAT adjusted MinP. Overall, the adjusted method through SVA outperforms the

original MinP and many other testing methods.

2.3 Adjusted MinP test for arbitrary dependence structures

We have two versions of the proposed tests based on two model settings, namely

the inverse regression model (IRM) and regression model (RM). The two models

have different assumptions, but both can be used to answer the same question, that

is, whether there is any relationship between a group of covariates and the response
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variable. IRM regresses covariates on the response variable. Although the idea of

inverse regression is less common than the classical regression model, it has certain

advantages and has been well studied for multiple testing dependence. A favorable

feature of inverse regression is that it is convenient to decompose the design matrix

of the covariates as the sum of effects, common factors, and random noises (Leek

& Storey, 2008; Y. Sun et al., 2012; Wang, Zhao, Hastie, & Owen, 2015; Friguet

et al., 2009). RM is the classical model that regresses the response variable on the

covariates. Latent factor modeling under RM has been studied by Fan et al. (2012)

for estimating false discovery proportion.

2.3.1 Factor modeling of dependence with an inverse regression model

(IRM)

Consider the inverse regression model:

X = YB + E, (2.14)

where Y is n× 1 as the vector of the primary variable observed in n subject, n is the

sample size, X is n× d as the matrix of the covariates, d is the number of covariates,

B is 1× d, a vector of coefficients representing the relationship between X and Y, E

is the n× d residual matrix with means of 0. For example, Y represents the disease

status or drug response and X is the matrix of SNPs. Let Xi be the vector of the ith

covariate. There is arbitrary dependence among the covariates, or equivalently, the

columns of E can be highly correlated. Our objective is to examine the relationship

between Y and X. This can be done through global hypothesis testing of

H0 : B = 0 against H1 : B 6= 0.

To accommodate the dependence among the columns of E, we decompose it and

express model (2.14) as

X = YB + GΓ + U. (2.15)

where G is n× k, as the matrix of k latent variables, Γ is k × d as the coefficient of

G, U is n × d as the random noise. We use the latent variables to characterize the
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dependence structure of the covariates. The latent variables can be interpreted as the

common factors that the covariates share. We assume the latent variables, or columns

of G, are iid. Leek and Storey (2008) used this same model for addressing arbitrarily

strong multiple testing dependence. It has been proven that under a reasonable

condition, there exist matrices G, Γ, and U such that the columns of U are jointly

independent random vectors.

We can write the inverse regression model for the ith column of X as:

Xi = YBi + GΓi + Ui, (2.16)

where Bi is ith element of B, Γi is ith column of Γ, Ui is ith column of U. To assess

the association between X and Y, we aim to test d hypotheses of the form:

H0 : Bi = 0, against H1 : Bi 6= 0, i = 1, . . . , d.

The hypothesis is now on the coefficient Bi given the common latent factors G.

The global hypothesis testing is to answer the question that whether there is any

relationship between the covariates X and the primary variable Y. Suppose we have

obtained d p-values for the individual hypotheses. We can then conduct the global

test by combining p-values using MinP, Fisher’s combination, or HC.

We present details of estimating the latent variables using SVA here. SVA first

calculates the residual matrix of X regressing on Y, denoted as R. There are multiple

methods to determine the number of latent variables k. The algorithm by Buja and

Eyuboglu (1992) is used to determine the number of latent variables, k. It permutes

each column independently and gets a null distribution of the matrix’s singular values.

The first k singular values that are larger than a certain cutoff of the null distribution

of the singular values are selected. On the other hand, in SmartSVA, the random

matrix theory (Marčenko & Pastur, 1967) is used. It compares the distribution of

eigenvalues of a covariance matrix of iid standard normal. Again, it selects k singular

values if they are larger than the cutoff of the null distribution of eigenvalues. The

latter method does not require permutation and is faster than the first one, although,

the latter method has more assumptions on the distribution of X. We adopt the

latter method to select the number of latent variables k.
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In the first step of SVA, it uses the first k columns of the right decomposition

matrix from the SVD of R as the estimate of G. Let us denote it as Ĝ(0). An

iterative procedure is conducted to improve the estimation of G. At each iteration

b, weights for SVD of X are calculated using empirical Bayes. SVA examines the

hypothesis of Bi 6= 0 in the model Xi = BiY + ΓiĜ(b) + Ei and the hypothesis of

Γi 6= 0 in Xi = ΓiĜ(b) + Ei. A Bayesian probability is calculated as

P (Bi = 0|Γi 6= 0,X,Y, Ĝ(b)) = π0g0(Fi)/g1(Fi) (2.17)

and similarly for

P (Γi = 0|X,Y, Ĝ(b)) (2.18)

where π0 is the prior proportion of the null hypothesis, Fi is the F-test statistic of

the hypothesis that Bi = 0 in (2.17), g0 is the uniform distribution density function

as the distribution of p-values under the null hypothesis, and g1 is a mixture of the

density of the p-value under the null and alternative hypotheses. The mixture density

g1 can be estimated by the empirical density of the p-values of the data regardless of

the null or alternative hypothesis. SVA uses

P (Bi = 0,Γi 6= 0|X,Y, Ĝ(b)) = P (Bi = 0|Γi 6= 0,X,Y, Ĝ(b))P (Γi 6= 0|X,Y, Ĝ(b))

as weights in SVD of X (Leek & Storey, 2008). Then we obtain an updated SVD

of X and let us denote the first k columns of the updated SVD right decomposition

matrix as Ĝ(b+1). The procedure iterates many times until differences in weights in

two consecutive iterations are small and the algorithm converges to an estimate of G.

The coefficient estimator of Bi conditioned on G is

B̂
(G)
i = (Y′(I−G(G′G)−1G′)Y)−1(Y′(I−G(G′G)−1G′)Xi)

as the ordinary regression estimator of the effect of Y on Xi conditioned on G. Our

proposed test statistic is the coefficient estimator divided by its standard deviation,

that is

t
(G)
i = B̂

(G)
i /sd(B̂

(G)
i ) (2.19)
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where

sd(B̂
(G)
i ) = σ̂/

√
Y′Y −Y′G(G′G)G′Y (2.20)

as the estimated standard error of sd(B̂
(G)
i ) and

σ̂2 =
X′i(I− (Y,G)((Y,G)′(Y,G))(Y,G)′)Xi

n− (k + 1)
(2.21)

as the error mean square in Xi regressing on Y and G. Let pi denote the p-value of

the test statistics, i = 1, . . . , d. Then the MinP test statistic is min pi or equivalently

max |ti|. Its p-value is calculated as 1−(1−min pi)
d, and we reject the null hypothesis

if 1− (1−min pi)
d < α, where α is the significance level, usually 0.05.

2.3.2 Type I error under IRM

Recall the IRM in Formula (2.14),

X = YB + E.

We can decompose E into a low rank dependent component and an independent

component as shown in Formula (2.15) and also cited below

X = YB + GΓ + U

Note that the decomposition can be obtained for an arbitrary distribution for E and

an arbitrary level of dependence across the columns of E. More specifically, we have

the following two propositions from Leek and Storey (2008).

Proposition 2.3.1 (Proposition 1 of Leek & Storey, 2008) Under Model (2.14),

suppose for each Ei, the ith column of E, there is no Borel measurable function g such

that Ei = g(E1, . . . ,Ei−1,Ei+1, . . . ,Ed) almost surely. Then, there exist matrices Γ,

G such that Model (2.15)

X = YB + GΓ + U

is valid, and the columns of U are jointly independent,

P (U1, . . . ,Ud) = P (U1)× . . .× P (Ud) (2.22)
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Proposition 2.3.2 (Corollary 1 of Leek & Storey, 2008) Under the assumption

of Proposition 2.3.1, all population-level dependence of the variable set X is removed

when conditioning on both Y and G. That is, we have the two equations.

P (X1, . . . ,Xd|Y,G) = P (X1|Y,G)× . . .× P (Xd|Y,G) (2.23)

P (U1, . . . ,Ud|Y,G) = P (U1|Y,G)× . . .× P (Ud|Y,G) (2.24)

Based on these two propositions, we obtain the independence of the marginal test

statistics below.

Proposition 2.3.3 Under Model (2.15), the marginal regression coefficient estima-

tors and the marginal test statistics are independent. That is,

P (B̂
(G)
1 , . . . , B̂

(G)
d |Y,G) = P (B̂

(G)
1 |Y,G)× . . .× P (B̂

(G)
d |Y,G)

and

P (t
(G)
1 , . . . , t

(G)
d |Y,G) = P (t

(G)
1 |Y,G)× . . .× P (t

(G)
d |Y,G)

Proof Note that given Y and G, B̂
(G)
i only depends on Ui and we denote it as

g(Ui):

B̂
(G)
i =(Y′(I−G(G′G)−1G′)Y)−1Y′(I−G(G′G)−1G′)(YBi + GΓi + Ui)

=(Y′(I−G(G′G)−1G′)Y)−1Y′(I−G(G′G)−1G′)(YBi + GΓi)

+ (Y′(I−G(G′G)−1G′)Y)−1Y′(I−G(G′G)−1G′)Ui

=g(Ui)

Therefore, B̂
(G)
i ’s are independent conditional on Y and G.

P (B̂
(G)
1 , . . . , B̂

(G)
d |Y,G) =P (g(U1), . . . , g(Ud)|Y,G)

=P (g(U1)|Y,G)× . . .× P (g(Ud)|Y,G)

=P (B̂
(G)
1 |Y,G)× . . .× P (B̂

(G)
d |Y,G)
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We know the adjusted test statistic is t
(G)
i = B̂

(G)
i /sd(B̂

(G)
i ). The denominator

sd(B̂
(G)
i ) is estimated from the standard linear regression. Since the only random

part of sd(B̂
(G)
i ) is Ui and Ui’s are independent of each other, we have

P (t
(G)
1 , . . . , t

(G)
d |Y,G) = P (t

(G)
1 |Y,G)× . . .× P (t

(G)
d |Y,G)

The factor model as specified in (2.15) partitions E into dependent and indepen-

dent components. Including the latent factors in the modeling removes the depen-

dence of the marginal test statistics. We obtain the following theorem on the correct

type I error control.

Theorem 2.3.4 Under the null hypothesis and the assumption of (2.15), the factor-

adjusted marginal test statistics are independent and their p-values, pi’s, are iid and

follow a uniform distribution. The factor-adjusted MinP test statistic follows a Beta

distribution Beta(1, d) and the factor-adjusted MinP has its type I error correctly

controlled at any given α level.

2.3.3 Factor modeling of dependence with a regression model (RM)

We consider the global testing problem from a different model, where the asso-

ciation of X and Y is modeled by regressing Y on X. For notation convenience, let

us assume Y is the response variable and X is the design matrix of covariates. Let

Y ∼ N(µ(X), σ2I), where µ(X) is the conditional expectation of Y given X. We

assume each Xi is standardized and divided by
√
n so that X′iXi = 1. Assume the

variance of Y, σ2, is known and we use σ2 to replace sy in (2.2) to calculate the

marginal test statistics

Z = X′Y/σ (2.25)

which are the scaled marginal correlations following the distribution

Z ∼ N(X′µ(X)/σ,X′X). (2.26)
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Note that the correlation matrix of the test statistics Z is X′X, which we denote as Σ.

In other words, the correlation structure of the design matrix X gives the correlation

structure of the test statistics Z. Denote θ = EZ = X′µ(X)/σ, the mean vector of the

marginal test statistics. We test the global hypotheses H0 : θ = 0 versus H1 : θ 6= 0.

That is, all components of θ are zero.

Per our discussion before, when there are high correlations among the test statis-

tics Z, existing global testing methods would not work. We propose to decompose the

correlation matrix of the test statistics to weaken the correlation structure. Suppose

the SVD of X is X = UDV′, where the matrix U is n×d with orthonormal columns,

i.e., U′U = I. The diagonal matrix D is d × d with the diagonals arranged in a

decreasing order. The matrix V is d × d with orthonormal columns, i.e., V′V = I.

We partition U, V and D into two parts each, i.e., U = (U1,U2), D = diag(D1,D2),

V = (V1,V2), where U1(n × k) is the matrix containing the first k eigenvectors,

D1(k× k) contains the eigenvalues that correspond to U1, and the matrix V1(d× k)

contains the right singular vectors that correspond to U1. Then we have the decom-

position of the correlation matrix Σ = X′X = VD2V′ = V1D
2
1V
′
1 + V2D

2
2V
′
2.

By conducting SVD, we can partition the correlation matrix of the test statistics

into two components, one explaining the correlation structure and the other being

an independent or weakly dependent matrix. The matrix U1 can be interpreted as

the latent factors that explain the major correlation structure. Following the idea of

EIGENSTRAT, we regress both X and Y on U1 and then examine the association

of the residuals after adjusting U1. The covariance of residuals of X and Y after

regression on U1 is

X′(I−U1U
′
1)Y ∼ N(V2D

2
2U
′
2µ(X),V2D

2
2V
′
2σ

2) (2.27)
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We standardize each element in the vector X′(I−U1U
′
1)Y so that each of them has

a variance of 1. More specifically, the adjusted test statistic, denoted as t̃, is:

t̃ = diag−1/2(V2D
2
2V
′
2)X

′(I−U1U
′
1)Y/σ ∼

N(diag−1/2(V2D
2
2V
′
2)V2D

2
2U
′
2µ(X)/σ, diag−1/2(V2D

2
2V
′
2)V2D

2
2V
′
2diag

−1/2(V2D
2
2V
′
2))

(2.28)

We use max t̃2i as the adjusted MinP test statistic.

Remark: An advantage of this adjustment method is that it can be applied even

if we only have the information of the marginal test statistics and correlation matrix

of X, such as some SNP summary statistics and the LD information among SNPs,

which are often publicly available, while access of individual-level data is limited. For

a review of SNP summary data, see D. J. Liu et al. (2014).

2.3.4 Type I error under RM

Given the definition of the adjusted marginal test statistics in (2.28), their corre-

lation matrix is

Ã = diag−1/2(V2D
2
2V
′
2)V2D

2
2V
′
2diag

−1/2(V2D
2
2V
′
2). (2.29)

Our main theorem in this section shows that when the eigenvalues of (2.29) are close to

each other, the adjusted MinP test statistic, max t̃2i , has the same null distribution as

the standard MinP test statistic. Therefore, the type I error of the adjusted MinP test

is correct. We need two lemmas to prove the main theorem. The proofs of the lemmas

follow Y. Liu and Xie (2018c) but with relaxed conditions. Lemma 2.3.5 is about

the comparison of two multivariate normal distributions with different covariance

matrices. Suppose the difference of two correlation matrices Ã and I are controlled

by a function of d. Then we obtain that the multivariate normal with the correlation

matrix Ã converges to the standard multivariate normal. Lemma 2.3.6 provides the

asymptotic distribution of d iid squares of standard normal random variables. Based
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on these two lemmas, we conclude that max t̃2i has the same asymptotic distribution

as those of the maximum of d iid squares of standard normal random variables. Let

us introduce more notations. The Frobenius norm of any matrix A is ||A||F =√
tr(AA′), which is the square root of the sum of squares of each element in A.

The following lemma compares the cumulative distribution functions of two mul-

tivariate normal distributions with different covariance matrices. Lemma 2.3.5 (i)

comes from Theorem 4.2.1 of Leadbetter, Lindgren, and Rootzén (2012). Lemma

2.3.5 (ii) and (iii) are from Lemma 2 (ii) and (iii) of Y. Liu and Xie (2018c) with

relaxed conditions.

Lemma 2.3.5 Suppose U1, . . . , Ud are standard normal variables with covariance

matrix Γ1 = (γ1ij), and similarly V1, . . . , Vd with covariance matrix Γ0 = (γ0ij) and let

bij = max{|γ1ij|, |γ0ij|}. Further, let x1, . . . , xd be real numbers. Then we have

(i)

|P (∩dj=1{Uj ≤ xj})− P (∩dj=1{Vj ≤ xj})|

≤ (2π)−1
∑

1≤i≤j≤d

|γ1ij − γ0ij|(1− b2ij)−1/2 exp

(
−

x2i + x2j
2(1 + bij)

)
(2.30)

(ii) If x1, . . . , xd are positive then

|P (∩dj=1{|Uj| ≤ xj})− P (∩dj=1{|Vj| ≤ xj})|

≤ 4 · (2π)−1
∑

1≤i≤j≤d

|γ1ij − γ0ij|(1− b2ij)−1/2 exp

(
−

x2i + x2j
2(1 + bij)

)
(2.31)

(iii) Assume that ||Γ1 − Γ2||2F = O(d). If maxi 6=j bij = c0 < 1 and min1≤i≤d xi ≥
√

2a log d for some constant a > (1 + c0)/2, then

lim
d→∞
|P (∩dj=1{Uj ≤ xj})− P (∩dj=1{Vj ≤ xj})| = 0 (2.32)

and

lim
d→∞
|P (∩dj=1{|Uj| ≤ xj})− P (∩dj=1{|Vj| ≤ xj})| = 0 (2.33)

Proof (i) See Theorem 4.2.1 in Leadbetter et al. (2012).
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(ii) This is true if Γ1, Γ2 are positive semidefinite.

Let ε = (ε1, · · · , εd), ε ∼ N(0, σ2I). The covariance matrices of U + ε and V + ε

are Γ1 + σ2I and Γ2 + σ2I. Both are positive definite. From Lemma 2 (ii) in Y. Liu

and Xie (2018a), we have

|P (∩dj=1{|Uj + εj| ≤ xj})− P (∩dj=1{|Vj + εj| ≤ xj})|

≤ 4·(2π)−1
∑

1≤i≤j≤d

|γ1ij−γ0ij|(1−(bij+I{i = j}σ2)2)−1/2 exp

(
−

x2i + x2j
2(1 + bij + I{i = j}σ2)

)
(2.34)

We want to prove P (∩dj=1{|Uj + εj| ≤ xj}) → P (∩dj=1{|Uj| ≤ xj}), which means

convergence in distribution. Assume the cdf of U , FU(x) is continuous at x =

(±x1, · · · ,±xd). For any δ, there exists r, such that when ||ε|| < r,

|FU(αx)− FU(αx+ ε)| < δ (2.35)

where α = (α1, · · · , αd), αj = ±1, and αx denotes entry wise product.

For ||ε|| < r, we can find σ2 such that ε ∼ N(0, σ2I) and∫
||ε||>r

fε(ε)dε < δ (2.36)

P (∩di=1{|Ui| < xi})

=P (U1 < x1,∩dj=2|Uj| < xj)− P (U1 < −x1,∩dj=2|Uj| < xj)

=P (U1 < x1, U2 < x2,∩dj=3|Uj| < xj)− P (U1 < x1, U2 < −x2 ∩dj=2 |Uj| < xj)

− P (Ui < −x1, U2 < x2,∩dj=3|Uj| < xj) + P (Ui < −x1, U2 < −x2,∩dj=2|Uj| < xj)

= · · ·

=
∑
αj=±1

(−1)
∑
αjFU(αx)
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Therefore,

|P (∩di=1{|Ui| < xi})− P (∩di=1{|Ui + εi| < xi})|

=|P (∩di=1{|Ui| < xi})−
∫
P (∩di=1{|Ui + εi| < xi}|ε)fε(ε)dε|

=|
∫

(
∑
αj=±1

(−1)
∑
αj(FU(αx)− FU(αx− ε)))fε(ε)dε|

< |
∫
||ε||<r

2dδfε(ε)dε|+ |
∫
||ε||>r

2dfε(ε)dε|

< 2d+1δ

Let σ2 → 0, we have

|P (∩dj=1{|Uj| ≤ xj})− P (∩dj=1{|Vj| ≤ xj})|

≤ 4 · (2π)−1
∑

1≤i≤j≤d

|γ1ij − γ0ij|(1− b2ij)−1/2 exp

(
−

x2i + x2j
2(1 + bij)

)
(2.37)

(iii) we would like to prove∑
1≤i≤j≤d

|γ1ij − γ0ij|(1− b2ij)−1/2 exp

(
−

x2i + x2j
2(1 + bij)

)
→ 0 (2.38)

∑
1≤i≤j≤d

|γ1ij − γ0ij|(1− b2ij)−1/2 exp

(
−

x2i + x2j
2(1 + bij)

)
≤(1− c0)−1/2

∑
1≤i≤j≤d

|γ1ij − γ0ij| exp

(
−2a log d

1 + bij

)
We can find the number of entries larger than any given constant c1, say 1/4, is at

most O(d), since ||Γ1 − Γ0||2F = O(d). Let the number of entries larger than c1 is m,

mc21 < O(d), m = O(d). Suppose S is a set of (i, j) that |γ1ij − γ0ij| < 1/4. Using the

Cauchy-Schwarz inequality,
∑
|γ1ij − γ0ij| ≤ d||Γ1 − Γ0||F and ||Γ1 − Γ0||2F = O(d), we

derive
∑
|γ1ij − γ0ij| = O(d3/2).
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∑
1≤i≤j≤d

|γ1ij − γ0ij| exp

(
−2a log d

1 + bij

)
=

∑
i≤j,(i,j)∈S

|γ1ij − γ0ij| exp

(
−2a log d

1 + bij

)
+

∑
i≤j,(i,j)/∈S

|γ1ij − γ0ij| exp

(
−2a log d

1 + bij

)

≤ O(d3/2) exp

(
−2a log d

1 + 1/4

)
+O(d) exp

(
−2a log d

1 + c0

)
=O(d3/2)d−8/5 +O(d)d−2a/(1+c0)

Since 2a/(1 + c0) > 1, the above formula converges to 0.

Lemma 2.3.6 Suppose (U1, . . . , Ud)
T follows a multivariate normal distribution with

mean zero and covariance matrix Σ, where diagonal elements σii = 1 for 1 ≤ i ≤ d.

Assume that the eigenvalues of Σ satisfy λ1/
∑d

i=1 λi = O(d−1) and max1≤i<j≤d |σij| ≤

c0 < 1. Then for any x ∈ R

P (max
1≤i≤d

U2
i − 2 log d+ log log d ≤ x)→ exp(−ex/2/

√
π) (2.39)

Proof Let V1, . . . , Vd be iid standard normal random variables. From Lemma 2.3.5

(iii) we know that

|P (max |Ui| ≥
√
xd)− P (max |Vi| ≥

√
xd)| = o(1). (2.40)

The rest of the proof follows Y. Liu and Xie (2018a). The idea is that since max |Ui|

converges to max |Vi| in distribution, and max |Vi| has the extreme value distribution

2.39, we conclude that max |Ui| also has the same extreme value distribution.

Theorem 2.3.7 X, Y, Σ, U, V, D are defined above. Suppose Σ has eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λd. The number of latent variables is k. Choose the number k such

that λk+1/
∑d

i=k+1 λi = O(d−1) and min(diag(V2D
2
2V
′
2d/tr(D

2
2))) > c as d → ∞.

Then max t̃2i defined at (2.28) converges to the distribution (2.39).
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Remark: The λk+1/
∑d

i=k+1 λi = O(d−1) condition also implies k = O(d). It is

a much relaxed condition and we even do not require λk+1/
∑d

i=k+1 λi converges to

1. In particular, if λ1 = O(1), then k = 0. Not all types of correlation matrices

have that result. The counterexample is that, if the eigenvalues are aqi and q < 1,

then aq/
∑∞

i=1 aq
i = q/(1 − q) and no k can satisfy the condition. The condition of

min(diag(A)) > c means the variances after adjustment cannot be too close to 0.

Proof Suppose the diagonals of D are λ1 ≥ λ2 ≥ · · · ≥ λd. The number of latent

variables is k. We know the adjusted correlation matrix is Ã defined in (2.29) We

introduce A to connect Ã and I. Let

A = V2D
2
2V
′
2d/tr(D

2
2) (2.41)

and the eigenvalues of A are λk+1d/
∑d

i=k+1 λi ≥ · · · ≥ λdd/
∑d

i=k+1 λi.

We have the following inequalities. ||Ã− I||F ≤ ||Ã||F + ||I||F ≤ ||Ã||F +O(d1/2).

||Ã||F = ||diag(A)−1/2Adiag(A)−1/2||F (2.42)

≤ c−1||A||F = c−1d
√
tr(D4

2)/tr(D
2
2) ≤ c−1λk+1d

√
d− k/tr(D2

2) = O(d1/2) (2.43)

Applying Lemma 2.3.5 and Lemma 2.3.6, we obtain the limit distribution of the

adjusted test statistics. More specifically, let t̃i to be Ui in Lemma 2.3.6. We find

max t̃2i has the limit distribution defined in formula 2.39.

2.3.5 Type I error simulation studies

In the simulation studies, we simulate variables X under different correlation set-

tings. The number of variables is d = 50, and the number of observations is n = 500.

We generate X from multivariate normal. We vary the correlation matrix of X to

assess the type I error of our proposed adjusted MinP including EIGENSTRAT ad-

justed MinP (Eig MinP for short), and SVA adjusted MinP (SVA MinP for short),

where EIGENSTRAT and SVA are two methods of estimating the latent factors, and
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they correspond to data modeling of RM and IRM, respectively. We compare the per-

formance with other methods including the original MinP (MinP for short; Tippett,

1931), HC (Donoho & Jin, 2008), correlated MinP (GMinP for short; R. Sun & Lin,

2017), correlated HC (HC-corr for short; R. Sun & Lin, 2017), GHC (generalized HC;

Barnett et al., 2017), PFA (principal factor approximation; Fan et al., 2012), SKAT

(Wu et al., 2011) and the F-test (F for short). Correlated MinP, correlated HC are

methods proposed by R. Sun and Lin (2017) to conduct MinP and HC under arbitrary

correlation structures. GHC is like HC, but its denominator uses variance estimate

of S(t) under dependence (Barnett et al., 2017). We use the R package named GBJ

(R. Sun & Lin, 2017) to implement these methods.

We consider different types of correlation structures, including exponential off-

diagonal decay, equal correlation, polynomial off-diagonal decay, and banded cor-

relation matrices. We denote ρ as the correlation parameter. In an exponential

off-diagonal decay correlation matrix, the element of the ith row and the jth column

is ρ|i−j|, where ρ can be 0.1, . . . , 0.9. In an equal correlation matrix, the element of the

ith row and the jth column is ρ for i 6= j, where ρ can be 0.1, . . . , 0.9. In a polynomial

correlation matrix, the element of the ith row and the jth column is ρ/(1 + |i− j|)1.5

for i 6= j, where ρ can be 0.1, . . . , 1.4. In a banded correlation matrix, the element of

the ith row and the jth column is (1−0.4
√
|i− j|)ρ if 1 ≤ |i−j| ≤ 6 and 0 otherwise,

where ρ takes values ρ = 0.2, 0.3, . . . , 1.2.

For simulation of type I error, we generate Y as n iid normal random variables

with N(0, 1). We compare type I error of different methods at the significant level

α = 0.05, where the correct type I error control should be at the same value of 0.05.

We simulate X and Y 1000 times and show the empirical type I error, which is the

proportion of the test statistic larger than the cutoff from the critical value of the

null distribution. For latent variable adjusted MinP and original MinP, we use the

cutoff under the assumption that marginal p-values are independent.

Table 2.1 and 2.2 show the type I error of tests under exponential decay and equal

correlation. In exponential decay, we find SVA MinP has type I error larger than 0.06
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Table 2.1.
Type I error of tests under exponential decay. Rows represent cor-
relation parameters. Eig MinP: EIGENSTRAT adjusted MinP, SVA
MinP: SVA adjusted MinP: original MinP, GMinP: MinP under cor-
relation by GBJ package, HC-corr: HC under correlation by GBJ
package, F: F-test, PFA: method from Fan et al. (2012). Cells with
larger than 0.06 are highlighted.

Table 2.2.
Type I error of tests under equal correlation. Descriptions see Table 2.1
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Table 2.3.
Type I error of tests under polynomial correlation. See Table 2.1.

Table 2.4.
Type I error of tests under banded correlation. See Table 2.1.
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when ρ ≥ 0.6 and PFA has type I error much larger than 0.06. PFA estimates too

many latent variables when there is no significant latent variable, which is typically

the case for exponential decay correlation structures. All other tests have reasonable

type I errors except that MinP has a conservative type I error of 0.03 when ρ ≥ 0.8.

In the equal correlation setting, GMinP and SVA MinP have type I error above

0.07 when ρ = 0.5, 0.6. The type I error of MinP is less than 0.04 when ρ ≥ 0.6,

which confirms the result derived in Section 2.2.1. The type I error of MinP is much

lower under high correlations. HC and GHC are also too conservative under equal

correlation.

Table 2.3 and 2.4 show the type I error of tests under polynomial and banded

correlation. These two types of correlation matrices are weak, and MinP would work.

We would like to see if the factor-adjusted models have too many latent variables.

PFA does, and its type I error is much larger than 0.06. SVA MinP and GMinP can

be a little sensitive for some correlation parameters. MinP is conservative for banded

correlation when ρ ≥ 0.9.

Overall, Eig MinP, F-test and SKAT would work under arbitrary correlation.

SKAT’s type I error is controlled because the null distribution of the test statistic

under covariance dependence is approximated well. PFA tends to estimate too many

latent variables, and its type I error is much larger than 0.06 if there is no significant

latent variable, which means there is no large drop in the sorted eigenvalues. SVA

MinP can be slightly sensitive.

2.4 Power theory of the factor-adjusted global test statistic

The proposed test not only has the correct type I error, but it can be more powerful

than the original MinP. The following simple example shows that removing latent

variables can improve power, especially for highly correlated marginal tests. Suppose

we have a set of variables Xi =
√
ρW +

√
1− ρWi, i = 1, . . . , d. Random variable

Y = b1W1 + E, where Wi,W,E follow iid N(0, 1). Only the correlation between X1
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and Y is non-zero, and other correlations are zero. This setting corresponds to the

setting of sparse marginal correlation. The correlation between X1 and Y is:

cor(X1, Y ) =
b1
√

1− ρ√
b21 + 1

(2.44)

We consider W as the common latent factor among Xi, i = 1, . . . , d. If we have a

good idea about W , we can remove the latent factor effect and consider the factor-

adjusted variables, namely, X̃i =
√

1− ρWi, Ỹ = Y . The correlation between X̃1 and

Ỹ is:

cor(X̃1, Ỹ ) =
b1√
b21 + 1

(2.45)

The association between Xi and Y is enhanced after adjusting the latent factor.

When we calculate a global test statistic, e.g., using MinP, the factor-adjusted test is

more powerful than the original test. When ρ is larger, the improvement of power is

larger.

On the other hand, we also have examples that removing latent factors reduces

power. Let random variables Xi =
√

0.9W +
√

0.1Ki, i = 1, . . . , d, and the true

relationship of X = (X1, . . . , Xd) and Y is

Y = X1 + ε =
√

0.9W +
√

0.1K1 + ε

where W , Ki, i = 1, . . . , d, and ε follows iid standard normal. The correlation between

Y and X1 is

cor(Y,X1) = 1/
√

2 = 0.707

Again we consider W as the common latent factor among Xi, i = 1, . . . , d. If we

have a good idea about W , we can remove the latent factor effect and consider the

factor-adjusted variables, namely, the residuals of X and Y after regressing on W .

The correlation of the factor-adjusted variables is

cor(Ỹ , X̃1) = 0.1/
√

1.1 ∗ 0.1 = 0.3015

As the calculation shows, after removing the latent factor, the correlation becomes

smaller. Therefore, the power of latent variable adjustment method depends on the

underlying model.
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2.4.1 Power theory under IRM

We now study the power of the proposed test statistic

t
(G)
i = B̂

(G)
i /sd(B̂

(G)
i )

under factor modeling through the inverse regression model (2.14). Without the

latent factor adjustment, the standard regression coefficient estimator from the inverse

regression model is B̂i = (Y′Y)−1Y′Xi. The original test statistic is B̂i divided by

its standard deviation. Conditional on the latent factor G, the adjusted test statistic

is based on B̂
(G)
i = (Y′Y)−1Y′(Xi −GiΓ̂i), where Γ̂i is the coefficient estimator of

G. The following proposition shows that the latent factor adjusted test has potential

to improve power. Denote the variance of each element of G as σ2
g and that of U as

σ2
u

Lemma 2.4.1 For the unadjusted coefficient B̂i, its mean is E(B̂i) = Bi and its

variance is (Y′Y)−1(Γ′iΓiσ
2
g + σ2

u). For latent-factor-adjusted coefficient B̂
(G)
i , its

mean E(B̂
(G)
i ) = Bi and its variance is var(B̂

(G)
i ) = (Y′Y)−1σ2

u(1 + k/(n− k − 2)).

Proof The least square estimate ofBi from the original model is B̂i = (Y′Y)−1Y′Xi.

Its variance is

var(B̂i) = var((Y′Y)−1Y′GΓi) + var((Y′Y)−1Y′Ui)

= (Y′Y)−2(var(Y′GΓi) + var(Y′Ui))

= (Y′Y)−1(Γ′iΓiσ
2
g + σ2

u)

The estimate conditioned on G can be written as: B̂
(G)
i = (Y′Y)−1Y′(Xi − GΓ̂i).

B̂
(G)
i is from the solution of this normal equationY′Y Y′G

G′Y G′G

B̂(G)
i

Γ̂i

 =

Y′Xi

G′Xi

 (2.46)

It is obtained by multiplying (Y′Y)−1 at the first equation of Equation (2.46).
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We define the test statistic as the coefficient divided by its standard deviation.

The result of an inverse of a block matrix isA B

C D

−1 =

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

 (2.47)

Here we let A = Y′Y, B = Y′G, C = G′Y, D = G′G. The coefficient estimator of

G is Γ̂i.

Γ̂i = (G′(I−Y(Y′Y)−1Y′)G)−1G′(I−Y(Y′Y)−1Y′)Xi (2.48)

Then Γ̂i and B̂
(G)
i are unbiased estimates.

E(Γ̂i|G) = Γi (2.49)

E(B̂
(G)
i |G) = E((Y′Y)−1Y′(Xi −GΓ′i)|G) = E((Y′Y)−1Y′(YBi + U′i)|G) = Bi

(2.50)

And

E(B̂
(G)
i ) = Bi (2.51)

Its variance is

var(B̂
(G)
i )

=E(var(B̂
(G)
i |G)) + var(E(B̂

(G)
i |G))

=E(var(B̂
(G)
i |G))

=E(var((Y′Y)−1Y′(YBi +GΓ′i + Ui −GΓ̂
′
i)|G))

=(Y′Y)−2E(var(Y′(GΓ′i −GΓ̂
′
i)|G)) + (Y′Y)−1σ2

u

var(Γ̂i|G)

=var((G′(I−Y(Y′Y)−1Y′)G)−1G′(I−Y(Y′Y)−1Y′)Ui|G)

=(G′(I−Y(Y′Y)−1Y′)G)−1σ2
u

(Y′Y)−2E(var(Y′(GΓi −GΓ̂i)|G))

=(Y′Y)−2Y′E(Gvar(Γ̂i|G)G′)Y

=(Y′Y)−2σ2
uY
′E(G(G′(I−Y(Y′Y)−1Y′)G)−1G′)Y
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Now we study the distribution of Y′G(G′(I − Y(Y′Y)−1Y′)G)−1G′Y. Note

that G′Y ∼ N(0, σ2
g(Y

′Y)I). Therefore, G′(I −Y(Y′Y)−1Y′)G follows a Wishart

distribution. Its mean is

E(G′(I−Y(Y′Y)−1Y′)G) = nσ2
gI − (Y′Y)−1(Y′Y)σ2

gI = (n− 1)σ2
gI (2.52)

Because G′Y(I−Y(Y′Y)−1Y′)G = 0, G′Y and (I−Y(Y′Y)−1Y′)G are indepen-

dent. We have G′(I−Y(Y′Y)−1Y′)G = G′(I−Y(Y′Y)−1Y′)(I−Y(Y′Y)−1Y′)G,

which is a sum of squares of (Y′Y)−1Y′)G. Then G′Y and G′(I−Y(Y′Y)−1Y′)G

are independent.

So by the definition of Hotelling’s T 2 distribution,

(n− 1)(Y′Y)−1Y′GG′(I−Y(Y′Y)−1Y′)G)−1G′Y ∼ T 2(k, n− 1) (2.53)

follows Hotelling’s T 2 distribution. We can use the mean of F distribution to calculate

the mean of it.

E((n− 1)(Y′Y)−1Y′GG′(I−Y(Y′Y)−1Y′)G)−1G′Y)

=k(n− 1)/(n− k − 2)

E(Y′GG′(I−Y(Y′Y)−1Y′)G)−1G′Y)

=(Y′Y)−1k/(n− k − 2)

So

var(B̂
(G)
i ) = (Y′Y)−1σ2

u(1 + k/(n− k − 2)) (2.54)

The means of B̂i and B̂
(G)
i are the same, but the variance of B̂

(G)
i is smaller

than that of B̂i. The original test statistic is the coefficient divided by its standard

deviation. That is

ti = B̂i/
√

(Y′Y)−1(Γ′iΓiσ2
g + σ2

u) (2.55)

On the other hand, the factor-adjusted test statistic is defined as:

t
(G)
i = B̂

(G)
i /

√
(Y′Y)−1σ2

u(n− 2)/(n− k − 2) (2.56)
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Proposition 2.4.2 Assume Γ′iΓiσ
2
g > k/(n − k − 2)σ2

u. The mean of the adjusted

test statistic t
(G)
i is larger than the mean of the original test statistic ti.

Proof EB̂i = EB̂
(G)
i = Bi. The variance of B̂

(G)
i is smaller than var(B̂i) if the

following condition is satisfied:

(Y′Y)−1(Γ′iΓiσ
2
g) > (Y′Y)−1k/(n− k − 2)σ2

u

Γ′iΓiσ
2
g > k/(n− k − 2)σ2

u

When Γi, k, σ2
g , σ

2
u are fixed, and n is sufficiently large, this condition is satisfied,

because the length of Γi is k, and Γ′iΓi does not increase as n increases. We conclude

that

|Bi|/
√

(Y′Y)−1σ2
u(n− 2)/(n− k − 2) < |Bi|/

√
(Y′Y)−1(Γ′iΓiσ2

g + σ2
u) (2.57)

That is, |E(t
(G)
i )| > |E(ti)|

The adjusted test statistic has a larger mean value than the original test statistic,

while both have asymptotic normal distributions. The adjusted MinP is based on the

maximum of the test statistics with larger mean than the original MinP. Therefore,

the power of the factor-adjusted test can be improved.

Remark: This theorem is obtained when the latent factors G are given. Besides

the methods of SVA and Eigenstrat, there are many other approaches to estimate

G in practice. There exist matrix factorization methods other than SVD or spectral

decomposition, for example, independent component analysis (ICA; Comon, 1994)

and non-negative matrix factorization (NMF; D. D. Lee & Seung, 1999). ICA has

been used to model non-linear dependence, while NMF has been applied to non-

negative matrices. For estimating latent variables in a genotype matrix taking values

of 0, 1, 2, Song, Hao, and Storey (2015) proposed to use logistic factor analysis.

Under the regression model of Y on X, we can obtain a similar result when

comparing the adjusted test statistics versus the original unadjusted test statistics.
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The original unadjusted test statistics are t = X′Y/σ. The adjusted test statistics

are t̃ = diag−1/2(V2D
2
2V
′
2)X

′(I−U1U
′
1)Y/σ.

Proposition 2.4.3 If EY = µ(X) is orthogonal to U1, that is U′1µ(X) = 0, the

adjusted test statistics have larger absolute means.

Proof The mean of adjusted test statistics t̃ is

diag−1/2(V2D
2
2V
′
2)X

′(I−U1U
′
1)µ(X)/σ = diag−1/2(V2D

2
2V
′
2)X

′µ(X)/σ (2.58)

Because Σ = V1D
2
1V
′
1 + V2D

2
2V
′
2 all diagonals of Σ are 1 and diagonals of V1D

2
1V
′
1

are positive, we have the diagonals of V2D
2
2V
′
2 less than 1. Compared to EZ =

EX′Y/σ = X′µ(X)/σ, the mean of the unadjusted marginal tests, the adjusted one

has larger means by multiplying a diagonal matrix with elements larger than 1.

2.4.2 Power simulation studies

For the simulation of power, the correlation structure of X is the same as in the

simulation of type I error. We consider the signal strength d0 = (1−√γ)
√

4 log d. We

consider sparsity levels γ = 1/4 and 1/2. Let S denote the set of variables associated

with the response, then the size of S is |S| = dγ and the associated variables start from

the first variable. To simulate Y, we consider two scenarios. Let θ be a coefficient

vector, θi 6= 0 if the ith variable is associated with Y. We draw θi uniformly from

[1/2d0, 3/2d0] for each i ∈ S. In the first scenario named theta-sparsity, we simulate

Y as Y = X(X′X)−1θ+ ε, where ε is a vector of n iid normal random variables with

N(0, 1). In this scenario, θ is a vector of the expectation of marginal test statistics.

In the second scenario name beta-sparsity, we simulate Y as Y = Xθ + ε, where θ

represents the vector of regression coefficients. We simulate X and Y 1000 times. We

calculate the empirical power as the proportion of rejecting the null hypothesis out

of the total number of simulations. Since PFA has inflated type I error, we do not

include PFA in the simulation.
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Figure 2.4. Power of tests under four types of correlation and theta
sparse with sparsity 1/4. The X-axis represents the correlation param-
eter, and the y-axis represents power. Eig MinP: EIGENSTRAT ad-
justed MinP, SVA MinP: SVA adjusted MinP: original MinP, GMinP:
MinP under correlation by GBJ package, HC-corr: HC under correla-
tion by GBJ package, F: F-test, PFA: method from Fan et al. (2012).
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Figure 2.5. Power of tests under four types of correlation and theta
sparse with sparsity 1/2. See Figure 2.4 for legend.

Figure 2.6. Power of tests under four types of correlation and beta-
sparsity with sparsity 1/4. See Figure 2.4 for legend.
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Figure 2.7. Power of tests under four types of correlation and beta-
sparsity with sparsity 1/2. See Figure 2.4 for legend.
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We first report the results for the scenario of theta-sparsity. Figures 2.4 shows

the simulation results under four types of correlation matrices for the theta-sparsity

scenario. The sparsity level is at 1/4. In this setting, the results show that the latent

variable adjusted tests are more powerful than other existing tests. Specifically, SVA

adjusted MinP is the most powerful test in most situations. In the polynomial and

banded correlation structures, the rank according to the power is 1. SVA MinP,

2. GHC, HC-corr, MinP, 3. F and Eig MinP, 4. SKAT. In the exponential decay

correlation structure, Eig MinP and F are less powerful than GMinP, MinP, HC-corr,

GHC when ρ ≤ 0.5 and but more powerful than those four tests when ρ > 0.5.

Figures 2.5 shows power with theta-sparsity under sparsity of 1/2. Overall, F-test

performs the best. The HC method and its relevant approaches, HC-corr and GHC,

performs in the second place, while MinP, adjusted MinP, and SKAT perform worse

with less power. As Arias-Castro et al. (2011) discussed, MinP is powerful when the

sparsity is up to 1/4. It is not surprising that MinP is less powerful when the sparsity

is at 1/2.

We next report the results for the beta-sparsity scenario. Figures 2.6 shows power

with beta-sparsity at the sparsity level 1/4. The rank of power is clearly shown. In

exponential, polynomial, and banded correlation structures, GMinP, GHC, HC-corr,

MinP take the first four places. SVA MinP is the fifth. SKAT and F take the sixth

and seventh, and Eig MinP is powerless. In equal correlation, SKAT and GMinP

take the first two places. GHC, HC-corr, MinP take third to fifth place. SVA MinP

is the sixth followed by F and Eig MinP.

Figures 2.7 shows power with beta-sparsity under sparsity of 1/2, where MinP

is supposed to be less powerful. In exponential, polynomial and banded, GHC and

HC-corr take the first two places, followed by MinP, GMinP. SKAT is more powerful

than F in exponential and polynomial but not in banded. SVA MinP is close to SKAT

in exponential, and it is close to F in polynomial and banded. In equal correlation,

SKAT, GHC, and HC-corr take the first three places, followed by MinP, GMinP. F

takes seventh place.
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In the beta-sparsity scenario and equal correlation, SKAT is the best, and Eig

MinP almost has no power. As the second example in Section 2.4 shows, if the top

latent vector is associated with the response variable, the latent variable adjustment

would lose power. SVA MinP is robust under this situation by avoiding the direction

of the top eigenvectors, but it still loses some power. On the other hand, SKAT would

be powerful because it is a weighted sum of marginal correlation of eigenvectors when

the top eigenvectors are associated.

2.5 Combination of multiple tests

2.5.1 The combination strategy

We propose a combination of multiple tests based on the data structure, i.e.,

sparsity and correlation, to improve the power of tests, since no test is powerful

under all data conditions. The idea of combining different testing approaches to

improve performance has been explored by Barnett et al. (2017) and R. Sun and

Lin (2017). Different tests are conducted, and a combination test strategy is used

to combine the multiple testing results. Simulation results show that the combined

strategy may have a slight loss of power compared to the optimal one, but it is robust

under all data settings. On the other hand, its limitation is that it adds multiple

testing burden as all different testing methods are conducted for the same data set.

As for our combination strategy, our method does not apply multiple global tests but

let data decide which test to use.

Arias-Castro et al. (2011) compared the power of MinP, HC and the F-test under

different sparsity levels. MinP is powerful when the sparsity level is 0 < γ < 1/4.

HC is powerful when the sparsity level is 0 < γ < 1/2. The F-test is powerful

when 1/2 < γ < 1. We use the sparsity level to choose MinP or the F-test. To

estimate the sparsity, we use marginal test statistics ri = X′iY/sy and count the

number of those statistics that are larger than a cutoff, e.g.,
√

2 log d. Another issue

is correlations among the covariates, which decide whether we need an adjusted MinP.
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According to our simulations, if the mean off-diagonal correlation is larger than 0.5,

the p-value of the original MinP is biased. Under this situation, adjusted MinP is

needed. Barnett et al. (2017) used a summary statistic of a correlation matrix to

quantify the bias of the distribution of MinP or HC when variables are correlated.

Let the ith row and jth column of the correlation matrix, denoted as Σ, be Σij.

Define ρ̄r = 2/(d(d− 1))
∑

1≤i<l≤d(Σij)
r as the mean of rth moments of off-diagonal

correlations. The summary statistic is defined as
∑∞

r=1 ρ̄
r/r!. When variables have

equal pairwise correlation ρ, this summary statistic is exp(ρ) − 1. Though it is a

summation of infinite terms, the sum of the first few terms, e.g., the first ten terms

is accurate enough in practice.

We propose the following rules to choose tests: We define the proportion of the

covariates whose marginal test statistics are larger than the cutoff
√

2 log d as the

signal proportion. If the signal proportion is less than 0.1, or the number of covariates

is less than 10, we choose to use F-test. Otherwise, we use MinP. The cutoff of
√

2 log d

is also suggested by Arias-Castro et al. (2011) though it is an asymptotic conclusion.

When we decide to use MinP, if the mean off-diagonal correlation is less than 0.5,

we use the original MinP. Otherwise, we choose to use the SVA adjusted MinP. The

specific cutoff values can be changed for different data and tasks.

2.5.2 Real data analysis

We apply our proposed test strategy to analyze the Rheumatoid Arthritis respon-

der dataset (Cui et al., 2013). The data is from Rheumatoid Arthritis Responder

Challenge organized by DREAM and Sage Bionetworks (https://www.synapse.org/

RA Challenge). The data contains about 2 million SNPs and several clinical covari-

ates for about two thousand RA patients who took three anti-TNF drugs. The re-

sponse variable is the change of disease activity score 3-12 months after taking an anti-

TNF therapy, denoted as ∆DAS28. The clinical covariates include Batch (genotyping

batch), Cohort (Name of the cohort from which the individual was ascertained), Drug
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(One of three drugs received), baselineDAS28 (baseline Disease Activity Score), Gen-

der, Mtx (whether the patient has cotherapy). Genotypes were imputed as dosages,

which mean the expected number of minor allele and they range from 0 to 2.

We do not include a clinical covariate, i.e., age since there are a large number

of missing values. We remove samples if they have at least one missing value of the

above six clinical covariates. There are 1869 samples in our analysis. Regression of

the six clinical covariates shows that all of them are significant with p-values less than

0.05. The baseline DAS28 is strongly significant with a p-value less than 10−16.

We use global testing conditioning on clinical covariates to select genes that may

contribute to drug response. We group SNPs into genes using human genome ref-

erence hg38 (https://genome.ucsc.edu/cgi-bin/hgGateway?db=hg38) and apply

global tests to gene groups. We remove SNPs that are highly correlated with clinical

covariates and other SNPs, i.e., we remove one SNP in each pair of SNPs with larger

than 0.99 absolute correlation. We choose SVA as the estimation method for latent

factors since it performs the best among the adjusted methods in most cases as shown

in the simulation study. We only apply latent factor adjusted methods when there

are more than 10 SNPs in a gene. We have 37543 tests. The significance cut off is

about 1.3× 10−6.

Figure 2.8 to Figure 2.12 show the top 30 p-values of SNP groups (or genes)

conditioning on clinical covariates. Genes with ten or fewer SNPs are all tested by F-

test. The combined test selects 17572 genes for MinP and 19970 genes for F-test, but

only one gene for SVA adjusted MinP. We find that most of the combined tests are

from F-test because the signal proportion is not sparse, or the gene has less than 10

SNPs. Overall, the combined test has comparable performance to MinP and F-test.

The combined test chooses 23rd significant unadjusted MinP gene, CNST at p-value

7.31× 10−4 because there are only 1 SNP that pass the
√

2 log d threshold among 43

SNPs in the gene. The combined test chooses F-test for the fourth significant F-test

gene, ACTR3C at p-value 4.31 × 10−5, with 7 SNPs passing the
√

2 log d threshold

among 22 SNPs in the gene. Only one gene is tested by SVA MinP because very few
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Figure 2.8. Top 30 F p-values of RA challenge data on − log10 scale
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Figure 2.12. Top 30 combined test p-values of RA challenge data on
− log10 scale conditioning on clinical covariates. P-values are sorted
by the combined test. See Figure 2.8 for legend.
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genes are both highly correlated and have more than 10 SNPs. An explanation is

that including clinical variates in the analysis reduces dependence among SNPs. We

find many genes that have more significant latent factor adjusted MinP p-values than

other tests. Since they are below the Bonferroni cutoff, we do not know whether they

truly associate with the response variable.

We also report the global testing results without clinical covariates. In the Dream

challenge, one of the tasks is to build a prediction model of drug response using only

SNP data, so we apply global tests using SNP data alone as this can be the first

step to screen significant SNPs. In the list of top MinP genes, latent factor adjusted

MinP can increase the significance of the third significant MinP gene, NIPA1, from

1.29× 10−6 to 1.23× 10−7.

We further examine the correlation structure of the third significant gene NIPA1.

It has 18 SNPs. SVA finds five latent factors in this gene. Figure 2.13 shows that

the first latent factor has high correlations with ten SNPs. Figure 2.2 shows there is

a correlation block of ten SNPs. Figure 2.14 shows the correlation after adjustment.

We can see the high correlations among SNPs are removed.

In this real data example, most significant genes have either a small number of

SNPs or the correlation of SNPs within a gene is not very high. As a result, factor-

adjusted MinP is not employed for the top significant genes. We consider that the

factor-adjusted test is powerful under certain conditions, but it is the best practice

to use different tests under different conditions.

2.6 Discussion

We develop a latent factor adjusted MinP test for global sparse alternative hy-

potheses, which works in the presence of arbitrarily strong dependence. Simulation

studies show that our method is powerful when effects are sparse, and covariates are

highly correlated. We prove that under certain conditions, its type I error is correct

and the power can be improved. In addition, we propose a method to select optimal
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tests using summary statistics such as marginal correlations and the average pairwise

correlations among variables. This method does not increase the total number of tests

performed but uses simple data information to guide the choice of an appropriate test

method.

Our theorems assume that the latent factors are correctly estimated, but in prac-

tice, many aspects affect the effectiveness of the latent factor adjusted tests, for

instance, the specific data distributions of discrete, non-negative, or heavy tail will

make factor estimation difficult. Another practical issue is that the data matrix is

from a sample and the correlation matrix is estimated. Fan and Han (2017) discussed

the accuracy of factor-adjusted methods under unknown dependence. The distribu-

tions of top eigenvalues affect the estimate of the number of latent variables. The

difficult case would be that there is no clear drop in the ordered eigenvalues. In a

global test, the goal is to have correct type I error and improve power. The dataset

has large n and small d, while in multiple testing, the data has large d and small

n, and there is at least one significant marginal test statistic. The current litera-

ture of factor adjusted testing methods is for the multiple testing problem. Existing

factor-adjusted methods may work well under their original settings but not for global

testing, especially when we consider sparse and weak alternatives. Some of the future

work is to study different factor estimation methods and how they can be combined

with optimal global testing approaches.
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