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ABSTRACT

Camarena, Ernesto Ph.D., Purdue University, May 2019. Multiscale Continuum
Modeling of Piezoelectric Smart Structures. Major Professor: Wenbin Yu.

Among the many active materials in use today, piezoelectric composite patches

have enabled notable advances in emerging technologies such as disturbance sens-

ing, control of flexible structures, and energy harvesting. The macro fiber com-

posite (MFC), in particular, is well known for its outstanding performance. Mul-

tiscale models are typically required for smart-structure design with MFCs. This

is due to the need for predicting the macroscopic response (such as tip deflection

under a transverse load or applied voltage) while accounting for the fact that the

MFC has microscale details. Current multiscale models of the MFC exclusively fo-

cus on predicting the macroscopic response with homogenized material properties.

There are a limited number of homogenized properties available from physical ex-

periments and various aspects of existing homogenization techniques for the MFC

are shown here to be inadequate. Thus, new homogenized models of the MFC are

proposed to improve smart-structure predictions and therefore improve device de-

sign. It is notable that current multiscale modeling efforts for MFCs are incomplete

since, after homogenization, the local fields such as stresses and electric fields have

not been recovered. Existing methods for obtaining local fields are not applicable

since the electrodes of the MFC are embedded among passive layers. Therefore, an-

other objective of this work was to find the local fields of the MFC without having

the computational burden of fully modeling the microscopic features of the MFC

over a macroscale area. This should enable smart-structure designs with improved

reliability because failure studies of MFCs will be enabled. Large-scale 3D finite ele-

ment (FE) models that included microscale features were constructed throughout this
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work to verify the multiscale methodologies. Note that after creating a free account

on cdmhub.org, many files used to create the results in this work can be downloaded

from https://cdmhub.org/projects/ernestocamarena.

First, the Mechanics of Structure Genome (MSG) was extended to provide a

rigorous analytical homogenization method. The MFC was idealized to consist of a

stack of homogeneous layers where some of the layers were homogenized with existing

rules of mixtures. For the analytical model, the electrical behavior caused by the

interdigitated electrodes (IDEs) was approximated with uniform poling and uniform

electrodes. All other assumptions on the field variables were avoided; thus an exact

solution for a stack of homogeneous layers was found with MSG. In doing so, it

was proved that in any such multi-layered composite, the in-plane strains and the

transverse stresses are equal in each layer and the in-plane electric fields and transverse

electric displacement are constant between the electrodes. Using this knowledge, a

hybrid rule of mixtures was developed to homogenize the entire MFC layup so as to

obtain the complete set of effective device properties. Since various assumptions were

avoided and since the property set is now complete, it is expected that greater energy

equivalence between reality and the homogenized model has been made possible. The

derivation clarified what the electrical behavior of a homogenized solid with internal

electrodes should be–an issue that has not been well understood. The behavior was

verified by large-scale FE models of an isolated MFC patch.

Increased geometrical fidelity for homogenization was achieved with an FE-based

RVE analysis that accounted for finite-thickness effects. The presented theory also

rectifies numerous issues in the literature with the use of the periodic boundary con-

ditions. The procedure was first developed without regard to the internal electrodes

(ie a homogenization of the active layer). At this level, the boundary conditions were

shown to satisfy a piezoelectric macrohomogeneity condition. The methodology was

then applied to the full MFC layup, and modifications were implemented so that

both types of MFC electrodes would be accounted for. The IDE case considered

nonuniform poling and electric fields, but fully poled material was assumed. The in-

https://cdmhub.org/projects/ernestocamarena
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herent challenges associated with these nonuniformities are explored, and a solution

is proposed. Based on the homogenization boundary conditions, a dehomogenization

procedure was proposed that enables the recovery of local fields. The RVE anal-

ysis results for the effective properties revealed that the homogenization procedure

yields an unsymmetric constitutive relation; which suggests that the MFC cannot be

homogenized as rigorously as expected. Nonetheless, the obtained properties were

verified to yield favorable results when compared to a large-scale 3D FE model.

As a final test of the obtained effective properties, large-scale 3D FE models of

MFCs acting in a static unimorph configuration were considered. The most critical

case to test was the smallest MFC available. Since none of the homogenized models

account for the passive MFC regions that surround the piezoelectric fiber array, some

of the test models were constructed with and without the passive regions. Studying

the deflection of the host substrate revealed that ignoring the passive area in smaller

MFCs can overpredict the response by up to 20%. Satisfactory agreement between

the homogenized models and a direct numerical simulation were obtained with a

larger MFC (about a 5% difference for the tip deflection). Furthermore, the uniform

polarization assumption (in the analytical model) for the IDE case was found to be

inadequate. Lastly, the recovery of the local fields was found to need improvement.
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1. INTRODUCTION

Multi-physical structures have established a credible presence in science and engineer-

ing. The wonders of shape memory alloys, electrostriction, magnetostriction, piezo-

electricity, pyroelectricity, and piezomagnetism have changed the outlook of what is

possible for many engineering disciplines. Piezoelectricity, in particular, has found

a sizable impact on everyday devices, such as gas igniters, to emerging technologies

such as disturbance sensing, control of flexible structures, and energy harvesting.

A piezoelectric material is often combined with other materials and thus form-

ing a piezoelectric composite (a.k.a piezocomposite). Much like ordinary composites

such as carbon fiber reinforced polymers (CFRP), the major geometric features of

piezocomposites are often microscopic. However, piezocomposite devices and associ-

ated structures are often much larger. Analysis and design of such devices quickly

becomes computationally prohibitive when the microscopic features are explicitly in-

corporated. As such, many micromechanical theories which assume the continuum

hypothesis have been extended from purely elastic to the piezoelectric case.

1.1 Micromechanical Basics

There are two objectives of micromechanics. The first one is to replace the het-

erogeneous body (ie the composite) with a homogeneous body that is equivalent in

some sense [1, 2]. This is known as homogenization. The original boundary value

problem (BVP) of the heterogeneous body is replaced by a simpler one where the

heterogeneity has been replaced by a homogenized model. The second objective of

micromechanics is to recover the local fields in the original heterogeneous body after

solving the new BVP. This recovery of local fields is termed dehomogenization or
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localization. Depending on the scope of the analysis, dehomogenization is not always

required. However, the homogenization step precedes any dehomogenization.

A two-scale micromechanical analysis requires the definition of the microstructure

as well as the targeted homogenized model. For example, this may be a question

of whether an analysis considers fiber and matrix to obtain lamina properties or a

stack of laminas being considered for the laminate behavior. Or the target model

could be for a BVP of a different kind (beam or plate models). As demonstrated by

the newly discovered Mechanics of Structure Genome (MSG) [3], the microstructure

can be utilized to either obtain the effective material properties, the effective beam-

stiffness, or the effective plate properties (ABD matrix). The constitutive information

is then utilized in a solid model (3D elasticity), beam-theory, or plate/shell theory in

the respective case. Finally, note, that it is often necessary to introduce idealizations

into the definition of the microstructure for a given problem. For example, it is often

sufficient to model continuous fiber reinforced composites with perfect square pack

arrays and neglect any regions that are resin-rich.

So long as the separation of scales assumption is valid, more than two scales may

be linked with the successive application of a micromechanics theory. For example,

fiber and matrix can be homogenized to obtain the effective material properties of a

lamina. Then a group of laminas can be homogenized to obtain effective properties

of the group. Or for example, in textile composite, the fiber and matrix may be

homogenized to obtain the effective yarn material properties and then various yarn

configurations may be homogenized to obtain the effective material properties of the

textile. The local fields at the original scale will only be available from a two-step

dehomogenization (applied in the reverse order of the homogenization steps).

The remainder of the chapter presents a review of micromechanical methodologies

for piezocomposites followed by the motivation of this dissertation. But first, a primer

for piezoelectricity and piezoelectric devices is presented.
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1.2 A Primer for Piezoelectrics

The direct piezoelectric effect was discovered by Jacques and Pierre Curie in 1880.

They observed that when certain natural crystals undergo straining, a charge can be

measured on its surface. The converse effect is when a strain is induced from an

electric field and it was established only after defining piezoelectricity with rigorous

tensor notation. These discoveries have been foundational to piezoelectric devices

which provide a coupling between electricity and mechanics.

1.2.1 Polarization of Piezoelectrics

Piezoelectric materials are not usually piezoelectric until it is polarized. These

materials are typically polymeric or ceramic. Polyvinylidene difluoride (PVDF, see [4]

for example) is a common piezopolymer while lead zirconate titanate (PZT) and lead

magnesium niobate-lead titanate (PMN-PT) are typical piezoceramics. Despite the

use of lead, PZT is the most common piezoelectric material utilized for piezoelectric

sensors and actuators [5]. It should be noted that lead-free piezoelectric materials are

an enormously active area of research [6].

PZT is the focus of this dissertation and, therefore, only the polarization process

of this material is described. When PZT wafers are formed (see [5] for an explanation

of the process), they are usually polycrystalline as illustrated in Figure 1.1. Each

single crystal (a.k.a. domain) consists of a local displacement of charges and thus

forms local electrical dipoles. The dipole orientation is apparently random. Although

each single crystal exhibits both piezoelectric effects, the misaligned domains result

in no piezoelectricity when the averaged response of many crystals is considered (ie

no piezoelectric effects at macroscopic scales). Fortunately, the orientation of these

domains are reorientable and is known as poling. Bulk materials can be made piezo-

electric through this process.

Poling for ceramics usually consists of elevating the temperature of the ceramic

along with the application of a strong electric field for a period of time. Hot oil is



4

Polycrystal

Before Poling

Single Crystal

After PolingPolarize with E > E

iE

i c

Figure 1.1: The poling process of polycrystalline ceramics.
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used to raise the temperature and to provide electrical insulation [7,8]. The elevated

temperatures make it easier to reorient the domains by lowering the coercive field [7].

Once the external electric field is removed, the domains lose some of their alignment

but do have a preferential orientation as is also illustrated in Figure 1.1. It should be

noted that depolarization is possible. Electrical depolarization occurs if a sufficiently

high electric field is applied in another direction and mechanical depolarization is

possible if certain strain components are excessive.

The degree to which the material is polarized depends on the electric field strength.

If the applied electric field is lower than the coercive field value of the material, then

poling will not occur. If the applied field is larger than the saturation field value,

then the material will be fully polarized; at which point the piezoelectric effect of the

material will be maximized. The material will be partially polarized if the applied

field is between the coercive and saturation field values. Note that the applied electric

field should be small enough to avoid dielectric breakdown of the material. The

poling direction, which is in the direction of the applied field, is also important to

note because various types of device behavior can be obtained for different poling

directions. One should note that bulk single-crystal material is also available and can

exhibit superior piezoelectric performance compared to polycrystalline material [9].

1.2.2 Piezoelectric Field Variables

Measuring charge or applying electric fields to a piezoelectric is usually facilitated

with electrodes. Electrodes are electrically conductive materials that are typically

nickel, gold, or copper. These materials are usually surface mounted to piezoelectrics

in very thin films (eg via sputtering techniques). These electrodes are then wire-

connected to other parts of a circuit (such as a multimeter) that can read voltage

or charge for the direct effect. It is important to note that piezoelectric materials

are dielectrics so none of their charges are mobile. This is in contrast to conductive

materials (such as metals) where charges are free to move and therefore able to flow
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current. When a conducting electrode is in mechanical contact with a piezoelectric,

the free charge density at the interface (and in the conductor), q, can be found from

q = −Dini (1.1)

where Di is the electric displacement (a.k.a electric flux intensity) at the interface

(and in the piezoelectric) and ni is the interface normal. Here and throughout this

dissertation, index notation is utilized where Latin indices assume 1, 2, and 3 and

Greek indices assume 1 and 2. Electric displacement in the piezoelectric represents

the local flux of bound charges; thus the units are Coulomb/m2 (C/m2). As for the

converse effect, electrical fields can be applied through the piezoelectric either by

specifying a voltage difference between the two electrodes or by specifying positive

free charges on one electrode and negative free charges on the other. Finally, note

that the electric displacement in a piezoelectric is governed by the first of Maxwell’s

equations [10]

Di,i = q = 0 (1.2)

where a comma indicates differentiation with respect to the Cartesian coordinates xi.

This equation is also referred to as Gauss’ Law. Note that there is an absence of free

charges in the piezoelectric so q = 0 everywhere in the piezoelectric domain. Finally,

for purely elastic problems, the Cauchy stress tensor, σij, is still governed by

σij,j + bi = ρüi (1.3)

where bi are body forces, ρ is the mass density, and üi are accelerations. In the

absence of body forces and inertia, one is left with

σij,j = 0. (1.4)

For mechanical displacement-based formulations, it is usual to incorporate the

electrical potential to complete the primal field variables of piezoelectricity. The

electrical potential, here denoted by φ, is a scalar field and Volt (V) is the unit.

Electric fields can be defined as the negative gradient of the electric potential as

Ei = − ∂φ
∂xi

= −φ,i. (1.5)
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With the mechanical displacements denoted by ui, the infinitesimal strain field is

obtained from

εi,j =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
=

1

2
(ui,j + uj,i) = u(i,j) (1.6)

where the parenthesis in the subscripts indicates a symmetric operation. The stress

tensor and the electric displacements can then be obtained from constitutive relations

that utilize the material properties.

1.2.3 Piezoelectric Constitutive Equations

Material properties are often considered to be intrinsic to the material. However,

unlike purely elastic behavior, some of the piezoelectric constitutive properties are

obtained at specific boundary conditions. The material properties for a piezoelec-

tric are defined from elastic, piezoelectric coupling, and dielectric properties. The

elastic properties are obtained with specified electrical boundary conditions while the

dielectric properties are obtained from constant mechanical boundary conditions.

Mechanical Properties at Specified Electrical Conditions

The electrical boundary conditions for the elastic properties are either short-circuit

or open-circuit. These two conditions are illustrated in Figure 1.2. For the short-

circuit condition, a wire connects the electrodes at opposing surfaces. This condition

will have E3 = 0. Eα = 0 could also be obtained if the electrode conditions were also

applied to the other faces. The mechanical properties obtained with short-circuit

conditions should be specified with an E superscript (eg SEijkl). Thus for Ei = 0, the

short-circuit compliance can be obtained from

εij = SEijklσkl + dkij��>
0

Ek (1.7)

⇒ εij = SEijklσkl iff Ek = 0. (1.8)

As for the open-circuit condition, the wire is disconnected and thus the voltages

are unconstrained. This will produce D3=0 [10]. These mechanical properties are
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Figure 1.2: Contrasting electrical boundary conditions.
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specified with a D superscript. When Di = 0, the open-circuit compliance can be

obtained from

εij = SDijklσkl − gkij��>
0

Dk (1.9)

⇒ εij = SDijklσkl iff Dk = 0. (1.10)

Electrical Properties at Specified Mechanical Conditions

The mechanical boundary conditions on the dielectric properties are commonly

referred to as either free or blocked. The dielectric properties can be given in terms

of the permittivity kij (permittivity is often denoted by ε but here ε is reserved for

strain). An illustration is not needed here because free means that the material is free

to deform upon application of the electric field. Blocked refers to constraining any

deformation under an applied electric field. Thus the free permittivity is obtained

when σij = 0 and is denoted by kσij. Thus for σij = 0, the free permittivity can be

obtained from

Di = dikl��*
0

σkl + kσijEj (1.11)

⇒ Di = kσijEj iff σij = 0 (1.12)

The blocked permittivity, kεij, is obtained when εij = 0 and thus

Di = eikl��*
0εkl + kεijEj (1.13)

⇒ Di = kεijEj iff εij = 0. (1.14)

It should be noted that, it is well known that the permittivity has a dependence

on the field frequency and may have a complex value. The work presented herein is

restricted to low frequencies and thus real values. It should also be noted that, in

practice, the permittivities are obtained with capacitance measurements and other

properties are often obtained dynamically with an impedance analyzer.
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Constitutive Relations Summary

In summary, all the relations between Ei, Di, σij, and εij are given by the following

four equivalent constitutive relations.

σij = CE
ijklεkl − ekijEk

Di = eiklεkl + kεikEk (1.15)

εij = SEijklσkl + dkijEk

Di = diklσkl + kσikEk (1.16)

σij = CD
ijklεkl − hkijDk

Ei = −hiklεkl + βεikDk (1.17)

εij = SDijklσkl + gkijDk

Ei = −giklσkl + βσikDk (1.18)

Cijkl denotes the elasticity tensor, Sijkl denotes the compliance tensor, eijk are the

piezoelectric stress coefficients, dijk are the piezoelectric strain coefficients, gijk are

the piezoelectric voltage coefficients, hijk may be called the piezoelectric h-coefficients,

βεik and βσik are the dielectric susceptibilities at constant stain and stress respectively.

It can be noted here that many model the polarization processes by including the

remnant strain, εrij, and the remnant polarization P r [11]. Temperature strains can

also be included with εTij. Eq. (1.19) shows these terms below

σij = CE
ijkl

(
εkl − εTkl − εrkl

)
− ekijEk

Di = eikl
(
εkl − εTkl − εrkl

)
+ kεikEk + P r. (1.19)
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Engineering Notation

It is often convenient to utilize Engineering (Matrix) notation of the constitutive

equations. Below, Eq. (1.20) shows Eq. (1.16) in matrix form



ε11

ε22

ε33

2ε23

2ε13

2ε12

D1

D2

D3



=



SE11 SE12 SE13 SE14 SE15 SE16 d11 d21 d31

SE22 SE23 SE24 SE25 SE26 d12 d22 d32

SE33 SE34 SE35 SE36 d13 d23 d33

SE44 SE45 SE46 d14 d24 d34

SE55 SE56 d15 d25 d35

SE66 d16 d26 d36

Symm. kσ11 kσ12 kσ13

kσ22 kσ23

kσ33





σ11

σ22

σ33

σ23

σ13

σ12

E1

E2

E3



(1.20)

Note that SEij are the components of the 6× 6 compliance matrix at constant electric

field. The kσij are the components of the 3 × 3 dielectric permittivities at constant

stress. dij are the components of the 6×3 piezoelectric strain coefficient matrix. Piezo-

electrics are usually transversely isotropic with the axis of symmetry being aligned

with the poling direction. In piezoelectric literature, the x3-axis is often reserved

for the poling axis. Thus, piezoceramics are typically transversely isotropic with

the x3-axis forming the axis of symmetry. Transverse isotropy along x3 means that
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SE11 = SE22, S
E
13 = SE23, S

E
44 = SE55, d31 = d32, d24 = d15, and kσ11 = kσ22. Eq. (1.20)

reduces to

ε11

ε22

ε33

2ε23

2ε13

2ε12

D1

D2

D3



=



SE11 SE12 SE13 d31

SE11 SE13 d31

SE33 d33

SE44 d24

SE44 d24

SE66

Symm. kσ11

kσ11

kσ33





σ11

σ22

σ33

σ23

σ13

σ12

E1

E2

E3



(1.21)

where empty spaces are null values. It is finally noted that piezoelectric material

cannot be isotropic [12].

Material Property Transformations

Oftentimes, it is often necessary to transform the material properties to another

coordinate system. Only if the material was poled uniformly along x3 and x3 corre-

sponds to the global analysis coordinates, then material transformation would not be

needed. If [J ] is the 3 × 3 direction cosine matrix, then the permittivity, [k] (either

kσ or kε), can be transformed according to the usual transformation law of second

order tensors

[k′] = [J ][k][J ]T (1.22)

where the prime denotes the transformed property. Either elastic compliance (SE or

SD) will transform with

[S ′] = [Rε][S][Rε]
T (1.23)
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where

[Rε] =



J2
11 J2

12 J2
13 J12J13 J11J13 J11J12

J2
21 J2

22 J2
23 J22J23 J21J23 J21J22

J2
31 J2

32 J2
33 J32J33 J31J33 J31J32

2J21J31 2J22J32 2J23J33 (J22J33 + J23J32) (J23J31 + J21J33) (J31J22 + J21J32)

2J11J31 2J12J32 2J13J33 (J13J32 + J12J33) (J11J33 + J13J31) (J11J32 + J12J31)

2J11J21 2J12J22 2J13J23 (J12J23 + J13J22) (J11J23 + J13J21) (J11J22 + J12J21)


Similarly, either elastic stiffness will transform with

[C ′] = [Rσ][C][Rσ]T (1.24)

where [Rσ]T = [Rε]
−1. Finally, the piezoelectric strain and stress coefficients, respec-

tively, will transform according to

[d′] = [Rε][d][J ]T [e′] = [Rσ][e][J ]T (1.25)
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Conversions Between Constitutive Relation Types

It is regularly needed to convert between the four forms of the constitutive equa-

tions from (1.15) to (1.18). The relations are shown below [10]

[SE] = [CE]−1 (1.26)

[e] = [CE][d] (1.27)

[d] = [SE][e] (1.28)

[kσ] = [kε] + [d]T [e] (1.29)

[βσ] = [kσ]−1 (1.30)

[g] = [d][βσ] (1.31)[
SD
]

= [SE]− [g][d]T (1.32)[
CD
]

= [SD]−1 (1.33)

[h] = [CD][g] (1.34)

[βε] = [βσ] + [g]T [CD][g] (1.35)

[kε] = [βε]−1 (1.36)

[e] = [h][kε] (1.37)[
CE
]

= [CD]− [h][e]T (1.38)

where a [•]T indicates matrix transpose and a “−1” superscript indicates matrix

inversion.

Let ε and σ denote 6 × 1 vectors holding the strain and stress components in

Engineering notation (see [2]). Also, let D, and E be 3 × 1 vectors holding the

electric displacement and electric field respectively. In the process of converting from

Eq. (1.15) to Eq. (1.16), the two matrix equations are

σ = [CE]ε− [e]E (1.39)

D = [e]T ε+ [kε]E. (1.40)
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Solving for ε in the first equation gives ε = [CE]−1 (σ + [e]E). Letting [CE]−1 = [SE]

as in Eq. (1.26) and then substituting ε into the second equation results in

D = [e]T [SE]σ + [e]T [SE][e]E + [kε]E

= [e]T [SE]σ +
(
[kε] + [e]T [SE][e]

)
E. (1.41)

Noting that [SE]T = [SE], the term [e]T [SE] is recognized as [d]T where it is equiv-

alently shown in Eq. (1.28). Then
(
[kε] + [e]T [SE][e]

)
is recognized as [kσ] from Eq.

(1.29).

Next we convert from Eq. (1.16) to Eq. (1.18). The two matrix equations are

ε = [SE]σ + [d]E (1.42)

D = [d]Tσ + [kσ]E. (1.43)

Solving for E in the second equation gives E = [kσ]−1
(
D − [d]Tσ

)
. Letting [kσ]−1 =

[βσ] as in Eq. (1.30) and then substituting E into the first equation results in

ε =
(
[SE]− [d] [βσ] [d]T

)
σ + [d] [βσ]D. (1.44)

The term [d] [βσ] is recognized as [g] as in Eq. (1.31). Then
(
[SE]− [d] [βσ] [d]T

)
=(

[SE]− [g][d]T
)

which is recognized as [SD] from Eq. (1.32).

It is now shown how to convert from Eq. (1.18) to Eq. (1.17). This time, the two

matrix equations are

ε = [SD]σ + [g]D (1.45)

E = −[g]Tσ + [βσ] . (1.46)

Solving for σ in the first equation gives σ = [SD]−1 (ε− [g]D). Letting [SD]−1 = [CD]

as in Eq. (1.33) and then substituting σ into the second equation results in

E = −[g]T [CD]ε+ [g]T [CD][g]D + [βσ]D

= −[g]T [CD]ε+
(
[βσ] + [g]T [CD][g]

)
D. (1.47)
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Noting that [CD]T = [CD], the term [g]T [CD] is recognized as [h]T which is equiva-

lently shown in Eq. (1.34). Then
(
[βσ] + [g]T [CD][g]

)
is recognized as [βε] from Eq.

(1.35).

Finally, the conversion from Eq. (1.17) to Eq. (1.15). This time, the two matrix

equations are

σ = [CD]ε− [h]D (1.48)

E = −[h]T ε+ [βε]D. (1.49)

Solving for D in the second equation gives D = [βε]−1
(
E + [h]T ε

)
. Letting [βε]−1 =

[kε] as in Eq. (1.36) and then substituting D into the first equation results in

σ =
(
[CD]− [h] [kε] [h]T

)
ε− [h] [kε]E. (1.50)

The term [h] [kε] is recognized as [e] as in Eq. (1.37). Then
(
[CD]− [h] [kε] [h]T

)
=(

[CD]− [h][e]T
)

which is recognized as [CE] from Eq. (1.38).

1.2.4 Piezoelectric Devices and Piezocomposites

Historically, it was not until the First World War that a technologically important

piezoelectric device was formed; namely, the ultrasonic submarine detector by Paul

Langevin [13]. Since then, many piezoelectric devices have been created such as

sensitive pressure gauges, microphones, audio speakers, internal combustion engine

monitoring, gas-grill igniters, and strain sensors [14] to name a few.

Electrodes: Uniform vs. Interdigitated

Since the electrodes in a device are often utilized to initially polarize the ceramic,

the electrode type drastically affects the response of the device. The two electrode

types that are commonly found are referred to as uniform electrodes and interdigitated

electrodes (IDE). These electrodes are illustrated in Figure 1.3. Other electrode

configurations can be devised (eg [15,16]) but uniform and IDEs are, by far, the most

practical.
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The uniform electrodes are the most basic electrode type. They often resemble

that of a parallel plate capacitor. Neglecting the fringe fields near the edges, a uniform

electric field, E3, is produced; where x3 is usually through the device thickness. If

polarization is performed under these conditions, then the ceramic will be polarized

along x3. Constitutive Eq. (1.21) can then be utilized without transformation because

x3 will be the axis of material symmetry.

Bent et al [17] identified that devices with these conditions will produce isotropic

sensing and actuation in the plane of the device. This is because d31 = d32 and

these link in-plane deformations with the electrical activity in the transverse direc-

tion. Furthermore, they noted that d33 is about 2.4 times higher than d31 for most

piezoceramics. Thus, devices with uniform electrodes have a higher sensitivity for

through-the-thickness effects than they do for in-plane effects. Polarizing piezoceram-

ics with IDEs (as well as using them in service) enables the stronger d33 coefficient

to take effect along, say x1 (in-plane). Devices with these electrodes can produce

comparatively higher actuation strain along x1.

However, recall from Section 1.2.1 that the poling direction and degree of poling

depends on the applied electric field. Thus poling a ceramic with IDEs produces

nonuniform poling. It is nonuniform in both the poling direction and degree. Recall

that piezoelectric material properties are specified with the 3-axis corresponding to the

poling direction. Therefore, a nonuniform poling direction implies that the material

properties may need to be transformed so that the poling axis of symmetry is in the

direction Ek at every point. As for variations in poling degree, there will be regions

of unpoled material, and a possibility partially and fully poled material (see [18]

for optimal electrode spacing studies). The unpolarized regions (and therefore not

piezoelectric) are known as dead-zones (eg see [7, 18, 19]). They exist in regions

near the electrodes. Since the constitutive Eq. (1.21) corresponds to transverse

isotropy with the axis of symmetry corresponding to the polarization axis, and since

the IDE case produces non-uniform electric fields, the material coordinate system for

the material is a function of position.
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Figure 1.3: Common electrode types and associated electrical activity.
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1.2.5 Unit Conversions for Piezoelectricity

Since the smallest heterogeneities (under the continuum hypothesis) of most piezo-

electric devices are on the order of 10−6 meters, FE analyses of these devices need

to properly account for these small scales. This would involve discretizing geometry

at a microscopic scale. However, one should be aware of the limitations that geome-

try engines of commercial FE codes have. For example, the minimum size limit for

AbaqusR© is 10−6 (unitless). This means that the smallest element edge should be

larger than this limit. Therefore it has been recommended that a part-size should

be 10−3 or greater. Otherwise geometrical defects may occur [20]. It then becomes

unlikely that standard unit systems, such as the International System of units (SI),

can obtain reliable results. Since most codes do not accept explicit units, a solution

to this problem is to represent the geometry in millimeters or even in microns. It is

then only necessary to utilize consistent units among all quantities in the analysis.

It is relatively simple to ensure consistent units for purely mechanical analyses. For

example, if the model geometry is in millimeters then, stresses and the elastic moduli

can be converted from Pa to MPa (N/mm2) by multiplying by 10−6. Complications

can arise from the electrical quantities in piezoelectric analyses. For example, the

units of the piezoelectric stress coefficients are C/m2. However, a Coulomb is also a

Nm/V. Thus the piezoelectric stress coefficients have the units of C/m2 or N/(Vm).

A question becomes: how do you scale the piezoelectric stress coefficients so that

they are based in millimeters? Do you multiply piezoelectric stress coefficients by

10−6 to convert from C/m2 to C/mm2; or should you use a factor of 10−3 to convert

from N/(Vm) to N/(Vmm)? The answer to this question comes by converting all

problem variables to consistent units; not just the units that contain length. For

example, Amperes (A) in the problem should be converted to µA. Table 1.1 shows

the resulting unit conversions that are necessary for consistent piezoelectric units.

The table also reveals that a factor of 1 should be used to convert C/m2 to µC/mm2;
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the factor is neither 10−3 or 10−6 as discussed above. Conversions of other quantities

are also found in the table.

Table 1.1: Unit conversion for multiscale piezoelectric analyses. Adapted from [21].

MKS Multiply To New

Parameter Unit Dimension By Obtain Dimension

Length m m 103 mm mm

Force N kg m
s2

103 mN kg mm
s2

Time s s 1 s s

Mass kg kg 1 kg kg

Stress Pa kg
m s2

10−3 kPa kg
mm s2

Elastic Moduli Pa kg
m s2

10−3 kPa kg
mm s2

Current A A 106 µA µA

Voltage V kg m2

A s3
1 V kg mm2

µA s3

Charge C A s 106 µC µA s

Capacitance F A2 s4

kg m2 106 µF (µA)2 s4

kg mm2

Permittivity F/m A2 s4

kg m3 103 µF/mm (µA)2 s4

kg mm3

Electric Field V/m kg m
A s3

10−3 V/mm kg mm
µA s3

Electric Displacement C/m2 A s
m2 1 µC/mm2 µA s

mm2

Stress Coeff. ekij C/m2 A s
m2 1 µC/mm2 µA s

mm2

Strain Coeff. dkij C/N A s3

kg m
103 µC/mN µA s3

kg mm

1.3 Review of the Micromechanics of Piezocomposites.

Since the birth of piezocomposites, numerous piezoelectric homogenization tech-

niques have emerged to enable simplified and efficient device design. It is desirable to

replace the original, heterogeneous body with an equivalent homogeneous body. The

challenge then is to find the effective properties that best resemble reality. The section
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at present surveys existing homogenization techniques for heterogeneous piezoelectric

media. The methods are categorized by various levels of approximation. Assumptions

on the field variables are documented as well as assumptions about the microstructure.

Before proceeding further, it will now be useful to introduce notation that has

been utilized throughout this dissertation. Figure 1.4 shows a 3D periodic structure

and Figure 1.5 shows its Representative Volume Element (RVE). Figure 1.5 also shows

the face labels X+
i and X−i , and edge lengths hi. The plus and minus superscripts

help establish quantities on a positive or negative RVE surface as shown in Figure

1.5.

Figure 1.4: A generic composite that features periodicity in three dimensions.
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Figure 1.5: Periodic RVE face labels and edge lengths for an arbitrary

microstructure.
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During homogenization, we seek constitutive relations of the form

σ̄ij = CE∗
ijklε̄kl − e∗kijĒk

D̄i = e∗iklε̄kl + kε∗ik Ēk (1.51)

where the starred quantities correspond to the homogenized body and an over-bar of

any quantity, f , indicates a volume average over the volume of the microstructure,

Vm. For example,

f̄ = 〈f〉 =
1

Vm

∫∫∫
Vm

fdVm. (1.52)

1.3.1 General Micromechanical Theories

The best three techniques as far as accuracy and microstructural generality are:

• Mechanics of Structure Genome (MSG)

• Mathematical Homogenization Theory (MHT) (a.k.a. Asymptotic Homogeniza-

tion)

• RVE Analysis

MSG [3] is a multipurpose, and yet, unified micromechanics theory powered by the

variational asymptotic method (VAM) [22] (see also [12]). MSG is based on the

principle of minimum information loss (PMIL). This principle states that the ho-

mogenized model can be constructed by minimizing the information loss between the

original heterogeneous body and the homogenized body. There are many brilliant

aspects of MSG. One is that it provides constitutive modeling of composite materi-

als, beams [23], and plates without any ad hoc assumptions on the field variables.

The constitutive properties are guaranteed to be the best possible from the PMIL.

MSG’s piezoelectric capabilities came from its beam [24], plate [25,26], and 3D [27,28]

model precursors. An advantage that MSG has over RVE analysis is that only one

analysis (instead of many BVPs) is required for effective properties. This advantage

grows in significance when the heterogeneous model requires hundreds of thousands
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to millions of FEs. The solution procedure in MHT [29–34] requires the mechanical

displacements and the electrical potential to be constructed from an asymptotic se-

ries. These functions are substituted into the governing equations and various orders

of the solution are obtained. Piezoelectric homogenization with RVE analysis consists

of solving (up to) nine BVPs with the FE method and then finding the averages of

the local fields followed by post-processing.

Any microstructure may be analyzed numerically with these methods. Analytical

solutions for MSG and MHT are possible for simpler microstructures (such as lay-

ered composites). RVE analysis requires the use of finite elements so it limited to

numerical solutions in practice. Despite that limitation, RVE analysis is the most

popular homogenization scheme (see [35–47, 47–54, 54–59]). One of the reasons for

its popularity is that it can be implemented in commercial FE codes. Unfortunately,

the popularity does not mean that every use of RVE analysis is equivalent to the

accuracy of MSG and MHT. Boundary conditions are critically important. Knowing

the best ones to apply can be challenging.

As reported in [1, 60, 61] for purely elastic problems, the PBCs are the most

reasonable BCs for RVE analysis; even for microstructures that are not periodic. The

PBCs were first reported by Berger et al [36] and are

u+i − u−i = ε̄ij(y
+
j − y−j ) (1.53)

and

φ+ − φ− = −Ēi(y+i − y−i ). (1.54)

It was not until later that Schröder [62] showed that these BCs satisfy a piezoelectric

macrohomogeneity condition; the analog to the Hill-Mandel condition. Pettermann

and Suresh [35] were the first to call their BCs the PBCs except these are not known

to satisfy the macrohomogeneity condition.

A problem with many of the alleged applications of the PBCs for piezoelectric

homogenization is that PBCs are not rigorously applied [39,47,51–54,54–58]. A com-

mon problem in many works is that uniform displacements and equipotential BCs are
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often confused for PBCs. For example, in Berger et al [36], periodic equation con-

straints for mechanical loading were only utilized for the shear behavior. Otherwise,

uniform displacement BCs were specified. They described an example and argued

that if u−i = 0 on X−1 , then (1.53) will be independent of u−i . Thus they reasoned

that a uniform, nonzero displacement may be applied on X+
1 . They further argued

that except for ε̄11, every other ε̄ij can be made zero while satisfying the PBC if

the displacement is constrained to zero on the other faces (X−2 , X+
2 , X−3 , and X+

3 ).

Although they show Eq. (1.54) as their electrical BCs, their table of BCs shows that

equipotential BCs were utilized instead. Another common issue is that ε̄ij and Ēi are

not known a priori to an analysis. Often, for example, a component of ε̄ij is assumed

to be nonzero and all other ε̄ij are assumed to be zero. Only then are Eqs. (1.53) and

(1.54) implemented. From articles reviewed in this dissertation, no one checks to see

if ε̄ij and Ēi equals the true volume average in the RVE. Thus the macrohomogeneity

condition is not guaranteed to be satisfied and thus the homogenized material prop-

erties are not guaranteed to be energetically equivalent to the heterogeneous body. A

final issue with most implementations of RVE analysis is that the symmetry of the

obtained constitutive properties is seldom verified. Only Jafari et al [58] proposed a

symmetry check for the PBCs.

1.3.2 Uniform Field Assumption Methods

It is often convenient to assume that, for an arbitrary loading, various fields are

uniform within a microstructure. Such assumptions have led to purely analytical

solutions. Hashimoto and Yarnaguchi [63] looked at layered piezocomposites (2-2

connectivity). From the Floquet theorem and assuming periodicity in the stacking

direction, they deduced that

ε11 = ε̄11 ε22 = ε̄22 σ33 = σ̄33 σ23 = σ̄23 σ13 = σ̄13 ε12 = ε̄12

E1 = Ē1 E2 = Ē2 D3 = D̄3. (1.55)
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where the x3 axis is normal to the layer interface. Eq. (1.55) means that certain local

fields in each constituent are assumed to be equal to the average value in the mi-

crostructure. One may then notice that the in-plane strains, the out-of-plane stresses,

in-plane electric field, and out-of-plane electric flux are all considered to be constant

within the microstructure. Since all of the field variables are constants, they were

able to find the complete set of effective properties for layered composites.

With these assumptions, a Hybrid Rule of Mixtures (HRM) procedure can be

described as follows. Rewrite Eq. (1.20) as

εH = SHσH (1.56)

with εH = bσ11 σ22 ε33 2ε23 2ε13 σ12 D1 D2 E3cT and σH = bε11 ε22 σ33 σ23 σ13

2ε12 E1 E2 D3cT . Then one can compute the average of εH as

ε̄H =
〈
εH
〉

=
〈
SHσH

〉
=
〈
SH
〉
σ̄H = SH∗σ̄H (1.57)

Note that σH = σ̄H due to the assumptions in Eq. (1.55). After rearranging SH∗

back to the original order of the variables (see Eq. (1.20)), one is able to obtain a

complete set of analytical expressions for the effective electromechanical constants.

Note that one should be able to perform this kind of procedure beginning from any

of the Eqs. (1.15) – (1.18) and find the same results. For example, in Engineering

notation, we can write Eq. (1.15) as

σH = CHεH (1.58)

with σH = bσ11 σ22 ε33 2ε23 2ε13 σ12 D1 D2 E3cT and εH = bε11 ε22 σ33 σ23 σ13

2ε12 E1 E2 D3cT . Then one can compute the average of σH as before

σ̄H =
〈
σH
〉

=
〈
CHεH

〉
=
〈
CH
〉
ε̄H = CH∗ε̄H . (1.59)

In general, post processing with the appropriate conversions from (1.26) - (1.38) will

be required.

Piezoelectric media often consist of miniature piezoelectric rods embedded in a

polymeric matrix. This among other possible configurations is classified as 1-3 type
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piezocomposites according to Newnham [64] (see also [65]). Popular 1-3 piezocom-

posites are planar devices that have piezoceramic rods that span one of the in-plane

dimensions [66]. This case is referred to as Case A herein and is shown in Figure

1.6. Another highly successful configuration of 1-3 piezocomposites, has been with

x
1

x

x

2

3

x
1

x

x

2

3

Case A

Case B

Figure 1.6: Usual rod configurations for piezocomposite transducers.

underwater transducers, medical imaging, and later, structural health monitoring.

These smart devices are often thin disk-shaped structures and the piezoelectric rods

are placed vertically as illustrated in Case B of Figure 1.6.

Following the same principle that the in-plane strains, out-of-plane stresses, in-

plane electric field, and out-of-plane electric flux are constants, many other mi-

crostructures have been examined. Deraemaeker et al [47, 48] homogenized the so-

called active layer of the macro-fiber composite (MFC). This corresponds to Case A.

In that work, the layer interfaces are normal to the x2 axis (layered material stacked

horizontally). The assumptions presented in Eq. (1.55) become

ε11 = ε̄11 σ22 = σ̄22 ε33 = ε̄33 σ23 = σ̄23 ε13 = ε̄13 σ12 = σ̄12

E1 = Ē1 D2 = D̄2 E3 = Ē3. (1.60)
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and then one can proceed as before with Eqs. (1.56) – (1.57). Microstructures that

are not strictly layered have been approximated with the layered assumptions in a

series of successive homogenizations; in particular fiber composites (1-3 connectivity)

in [16,42,67], particulate composites (0-3 connectivity) in [68], the full MFC in [9,53–

55,69,70], and the active fiber composite (AFC) in [71]. It is notable that [16] yields

self-conflicting results and [71] is known to violate compatibility and equilibrium [72].

Many [7, 9, 48, 50, 69, 73] have chosen to work with a reduced set of constitutive

equations. For example, in [48], instead of starting with Eq. (1.20), Deraemaeker et

al start with

ε11

ε22

2ε23

2ε13

2ε12

D3


=



SE11 SE12 SE14 SE15 SE16 d31

SE22 SE24 SE25 SE26 d32

SE44 SE45 SE46 d34

SE55 SE56 d35

Symm. SE66 d36

kσ33





σ11

σ22

σ23

σ13

σ12

E3


(1.61)

In search of simpler expressions, they have introduced the following plane-stress-like

(PS) assumption: σ33 = E1 = E2 = 0. In doing so, they also discarded the equations

for ε33, D1, and D2 from Eq. (1.20). They formed εH = bσ11 ε22 2ε23 σ13 2ε12

D3cT and σH = bε11 σ22 σ23 2ε13 σ12 E3cT to obtain

ε̄H = SH∗σ̄H . (1.62)

Finally, it is noted that assumptions similar to Eq. (1.55) have been applied to

piezomagnetic homogenization of layered structures [74].

It is well known how the combination of piezoelectric rods in a soft matrix greatly

enhances the performance of Case B devices [75,76]. For example, dh (dh = d13+d23+d33)

is a common hydrostatic figure of merit. It can be greatly enhanced with a soft matrix

between the rods. As for medical imaging applications, these composites are superior

to monolithic piezoelectric material because the polymer, which is less dense than

typical piezoceramics, enables greater acoustic impedance matching to water and liv-

ing tissues. Therefore Smith and coworkers [77] utilized the uniform field assumptions
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to find the effective stiffness, piezoelectric stress coefficient, and permittivity along

the fiber axis of 1-3 composites. They did so with reduced constitutive equations and

by assuming that the strain and electric field, respectively, are constant in the fiber

direction. In the remaining two directions, the electric field was assumed to be zero

and the normal stresses were equal in both phases. This approach was reported to

yield a good agreement between experimental measures [75,77].

1.3.3 Mean-Field Theories

Various so-called mean-field theories have been extended to the piezoelectric case.

Following the classical Eshelbian solution [78], Dunn and Taya [79] assumed that the

microstructure can be considered to be a single ellipsoidal inclusion in an infinite

matrix. They provided the expressions for the Eshelby tensors. They extended the

Dilute, self-consistent, Mori-Tanaka mean field approach ( [80]), and the differential

scheme. The Mori-Tanaka method has been used to homogenize bone in [81] (bones

are slightly piezoelectric). See [37] for other uses. The Eshelbian approach can be

completely analytical for cylindrical and spherical inclusions. However, numerical

integration is required for more complicated inclusion geometries such as ellipsoidal

inclusions [82].

1.3.4 Other Techniques and Aspects of Homogenization

Analytical Techniques

The so-called series and parallel models from strength of materials ideas were

utilized in some research early on [64, 83, 84]. The effective properties were often

calculated through simple formulas such as

Y ∗ = V fY f + (1− V f )Y m or
1

Y ∗
=
V f

Y f
+

1− V f

Y m
(1.63)

for the elastic modulus. Concentric cylinder models for fiber composites were created

in [85–87]. These models are only able to model loading along the fiber axis since
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they assume an axisymmetric microstructure and local fields. The General Method

of Cells [84, 88] is another homogenization technique. There it is supposed that the

microstructure can be subdivided into rectangular parallelepipeds known as subcells.

The theory is limited by the linear expansion of the displacement and electrical po-

tential. Other approximate techniques include [89,90].

Numerical Techniques

There are but a few other piezoelectric homogenization works that are documented

here. Lenglet et al [72] utilized RVE analysis for the three normal stress cases and

the Wave Propagation method for the three shear cases. The Element-free Galerkin

method was developed by Eynbeygi and Aghdam [91] but a plane strain condition was

assumed as well as E1 = E2 = 0. The Boundary Element Method was implemented

in [92] but they utilized similar assumptions as Eynbeygi and Aghdam did. Multi-

Physics Computational Grains was developed by Bishay et al [93]. It appears to be

limited to microstructures that have a granular resemblance. The Multiple Scattering

technique was utilized in [94], but their first-order theory was limited to low volume

fractions. Some [95,96] have utilized the FE method and Fast Fourier Transforms to

find the effective properties of piezocomposites.

Homogenization of Polycrystalline Piezoelectrics

Some researchers [59, 93, 97] are interested in obtaining the overall piezoelectric

response of polycrystalline ceramics. Although the microstructures they consider are

typically made of the same material, they appear to be a heterogeneous medium

because the local material coordinates can vary from crystal to crystal.
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Piezoelectric Homogenization with Imperfections

Other researchers have examined the effects of various imperfections on the ef-

fective properties. Some have looked at imperfect interfaces are [57, 85, 92, 98] and

others have examined the effect of porosity [79,81,93]. A hysteresis model was devel-

oped from experimental data in [99]. Since most piezoelectric materials are ceramic,

studying the effect of cracks is crucial. See [100, 101] for various cracking effects on

AFCs and MFCs; however, no homogenization was performed. The effect of cracks

on the effective properties is considered in [102]. See also [103] for a crack model for

piezoelectrics.

Piezomagneto Micromechanics

Some materials are not only piezoelectric but also magnetic. Barium Titanate

is the most common example. Since both piezoelectric and piezomagnetic microme-

chanics theories are extensions from ordinary composites theories, the piezomagnetic

theories are very similar to the methods discussed previously (see [74, 104–106]). An

interesting finding from piezomagnetic homogenization is the presence of product

properties. These are only present when certain materials are combined, but not

present in the individual constituents.

1.4 Piezoelectric Smart Structures

As mentioned at the beginning of this chapter, piezoelectric materials have en-

abled numerous advances in smart structure technologies such as disturbance sensing,

control of flexible structures, and energy harvesting. These applications often consist

of piezoelectric material interacting with thin substrates known as host structures.

Since piezoelectric material is often limited to small thicknesses due to voltage lim-

itations, many research articles cover the use of various analytical models [107, 108]

and plate/shell theories [25, 109–115] to predict macroscopic quantities of interest as
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well as the local fields. The vibration of the host, tip deflection, and power generated

are commonly sought.

The piezoelectric material in smart structures is often a ceramic material. Thus

the brittle nature of monolithic piezoceramic layers hiders its application in various

ways. Device handling and placement can be challenging; especially if the host is

curved. Flexure of the host can also be very limited during operation. Thus, in

practice, piezoelectric transducers come in the form of a patch that is adhered to the

host. These patches can be described in terms of protective layers, electrode layers,

and an active layer, where the piezoelectric resides. The protective layers are usually

polyimide films such as Kapton. The electrode layers can either be uniform or IDEs.

If they are uniform, it is possible that they are coated on to be a very thin layer. In

which case, the mechanical effects of the electrode can be safely ignored. The IDE case

consists of copper fibers that are thick enough that their mechanical effects should be

considered. Finally, the active layer can consist of a monolithic piezoceramic layer,

such as the Quick Pack [116].

Although the protective layers add some ductility, more damage tolerance and

structural flexibility are usually required. Thus active layers are more commonly

found to have piezoceramic fibers with epoxy between fibers. In which case, het-

erogeneity is introduced in the active layer and thus it is often homogenized for the

methods mentioned above ( [25,107–115]) to work.

1.5 Multiscale Modeling of Macro Fiber Composites

The MFC has emerged as possibly the most popular piezoelectric patch. This is

likely due to its commercialization, elastic flexibility, damage tolerance, and rectan-

gular fibers (see Section 1.2.4). See Figure 1.7 for an illustration of the MFC and

a demonstration of its structural compliance. The active layer of this patch is not

monolithic but it does consist of fibers and epoxy. This idea was first introduced by

Hagood and Bent [7] where they used round fibers surrounded by epoxy. The elec-
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Figure 1.7: A macro-fiber composite and its structural flexibility. Photograph

courtesy of NASA.
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trodes utilized by Hagood and Bent were uniform; in which case the patch operated

in d31-mode. Later, Bent [71] replaced the uniform electrodes with IDEs and thus,

the well known, AFC was created [17]. As mentioned in Section 1.2.4, the use of IDEs

enabled the use of in-plane electric fields and therefore the more effective d33-mode of

the piezoceramic to be utilized in the plane of the actuator. The MFC was introduced

by Wilki and his coworkers in the year 2000 [117]. It is similar to the AFC except

that the AFC has cylindrical fibers. The use of rectangular fibers in the MFC allows

for better electrical contact between the PZT and the electrodes and thus solving

the problem of permittivity mismatch between the PZT and epoxy. this reduces the

required actuation voltage. The use of rectangular fibers also simplified the handling

and manufacturing of the PZT fibers since they may be cut from a PZT wafer. Thus

the fiber layers in the MFC are the PZT fiber layer and the two electrodes layers.

The electrode layers consist of interdigitated copper fibers that are orthogonal to the

PZT fibers and epoxy. It is notable that the MFC has been commercialized [118] and

is readily available in both d31- or d33-modes and at a variety of planar dimensions.

Here and throughout the dissertation, the d33 mode is referred to as P1 (eg the P1

MFC) and the d31-mode is called P2. This naming convention is adopted from the

manufacturer [118].

Since the piezoelectric fibers do not span the overall length and width of the MFC

patches, it is important to distinguish between what will be called the Active Area and

the Passive Area. The Active Area consists of the length and width of the piezoelectric

fiber array. It is illustrated in Figure 1.8. The Passive Area spans the remainder of the

in-plane patch dimensions. It is important to note that micromechanical treatments

of the MFC do not account for effects introduced by the Passive Area. It can be

expected that the Passive Area will have negligible effects if it is much smaller than

the Active Area. However, for small patches such as the M2503-P1, the effect is not

well understood. In M2503-P1, the 25 refers to the active length being 25 mm, and

the 03 refers to a 3 mm active width.
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Detail View

Figure 1.8: A rendering the MFC highlighting the Active Area and the Active Area

RVE.
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Although the MFC is available in the form of a convenient patch, analysis and

design of structures with MFCs have many challenges to overcome. The principal

challenge is overcoming the difference in length scale from the fibers and layer thick-

nesses to that of the host structures they are bonded to. Detailed modeling of the

fibers is typically not practical and can be computationally prohibitive in most cases.

Therefore, micromechanics should be invoked whereby small scale features are ho-

mogenized so that the macroscopic response of the system can be obtained without

a cumbersome mesh.

Multiscale modeling of the MFC can be categorized into multilayer models and

single layer models. The multilayer model first requires that only the fiber lay-

ers (ie active and electrode layers) be homogenized. These individual layer prop-

erties and thicknesses are usually inputted to a piezoelectric plate/shell analysis

[9, 19, 47, 119–125]. The principal problem with this approach is that, from a mi-

cromechanics standpoint, homogenization is not applicable to the fiber layers, be-

cause doing so violates a fundamental assumption in micromechanics called the scale

separation assumption. The violation occurs because the fiber layer thicknesses are

of the same order of magnitude as the total MFC thickness. Furthermore, homog-

enization of the fiber layers introduces an artificial discontinuity that can adversely

affect the macroscopic response as well as the local fields. Thus all of the constituents

of the MFC must be homogenized simultaneously [2]. Another problem with this

approach is that the plate models rely on various plate kinematics assumptions that

will not give good results for relatively thick plates. It should be noted that piezo-

electric plate models have not been readily accessible by researchers or engineers.

Thus, in practice, thermomechanical plate models with a so-called thermal analogy

can be used instead of a piezoelectric plate model [124–128]. Another approach that

is commonly resorted to is a mechanical plate model with piezoelectric constitutive

relations [123,129,130]. Both of these options model uncoupled piezoelectricity which

can give actuation performance but not the sensing capability.
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Plate kinematics assumptions can be avoided with a solid model of the MFC

where solid elements discretize each fiber layer. Such an approach is not practical

because the microscopic layer thicknesses would require an extraordinary number of

elements. Practical solid models use homogenized properties of the full MFC layup

like in [131–133]; not the homogenized properties of each layer. This approach is

what is referred to as single layer model [123]. Of course, plate and beam models

can also utilize homogenized properties of the full MFC layup but ad hoc kinematics

assumptions are typically introduced [123,128–130,134–136].

The properties for this homogenization have been determined experimentally but

only the most basic properties can be made available. Refer to the MFC manufacturer

[118] and Ref. [137] for experimentally determined effective properties of the full MFC.

Thus many have pursued applications of the micromechanical techniques reviewed

here. It is also notable that both options have only homogenized the RVE of the

Active Area as illustrated in Figure 1.8. Thus the effects of the surrounding Passive

Area have been ignored. Thus, the following sections provide a thorough review

of the micromechanics of MFCs. Attention is focused on finding the “device-level”

properties of the full MFC when modeled as a single layer. Since the operating

frequencies tend to be relatively low (eg 10-100 Hz for energy harvesting [133]), all of

the approaches reviewed here model the electrical behavior with electrostatics. Thus,

only real-valued permittivities are obtained.

1.6 Review: Analytical Homogenization of MFCs

Analytical models are highly attractive due to their low cost and ease of use. How-

ever, they compromise on accuracy. They require a two-step approach in which, like

the aforementioned approaches, the first step violates the separation of scale assump-

tion and introduces an artificial discontinuity. Furthermore, uniform polarization has

been a preferred assumption. Thus further approximation is introduced for the P1
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MFC since it has nonuniform poling. Note, however, that the nonuniform electric

fields from the IDE can be obtained analytically via conformal mapping [138].

Major challenges for analytical methods to overcome are heterogeneity inside the

fiber layers, heterogeneity due to the stacking of multiple dissimilar layers, and or-

thogonal fiber layers. This challenge exists because there is not a way for the analyt-

ical methods to homogenize fiber layers with differing fiber angles. Analyzing lami-

nates with differing angles has been possible with Classical Laminated Plate Theory

(CLPT) for example. Therefore, analytical homogenization of MFCs is performed in

two steps as is illustrated in Figure 1.9. Each step corresponds to a homogenization

of the constituent heterogeneities. Fiber and matrix constituents can be homogenized

to form the fiber layers. The homogenized electrode layers must be rotated in-plane

by 90◦. Then these layers along with the protective layers need to be homogenized for

the full packaged behavior. Of course, this approach is not unique to the MFC but has

also been adapted from ordinary composites to handle more constitutive information

and field variables. The extra information and variables have further complicated

analytical homogenization and have possibly led some to seek simplifications where

possible.

Copper 

fibers

Kapton (top 

and bottom)

PZT Fiber

Epoxy

MFC Microstructure

Figure 1.9: Two-Step homogenization for the Macro Fiber Composite.
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In what follows is a review of the most popular analytical MFC homogenization

approaches. It is separated into the corresponding homogenization steps. The as-

sumptions on the field variables and some of their consequences are also documented.

Here and throughout this dissertation, homogenization at each step occurs in the

problem coordinate system, yi, as shown in Figure 1.10(a). However, the P1 MFC and

P2 MFC have different polarization directions and, therefore, have different material

coordinates. Note that only the active layer is shown in Figure 1.10 and that the

P1 MFC is depicted with the uniform poling approximation. It is also notable that

in this dissertation, Case A from Figure 1.6 always has the y1 axis aligned with

the fiber axis. Figure 1.10(b) and (c) show poling differences with the y
′
i material

coordinate system. Also, note that the y
′
3-direction is the poled direction as is common

with piezoelectric materials. Since the problem and material coordinates for the P1

MFC are not identical, we transform the PZT constitutive properties to the problem

coordinates before homogenization. Finally, take note that for Step-2 homogenization,

the longitudinal axis of the piezoelectric fiber is in the direction of y1.

y
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(a) Problem CS for both

P1 and P2 MFCs.
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(c) Material CS: P1 MFC.

Figure 1.10: Relationship between problem coordinate system (CS) and the local

PZT material CS for the MFC patch. yi are the problem coordinates, y
′
i are the

material coordinates.



40

1.6.1 Step-1: Fiber Layer Homogenization

One must first homogenize the fibrous components of the MFC. That is, the PZT

fiber and the epoxy matrix are homogenized into an equivalent solid to form the so-

called active layer. Likewise, the copper fiber and the epoxy are homogenized to form

the so-called electrode layer.

The HRM presented in Section 1.3.2 (a.k.a. Analytical Mixing Rules) are the

most popular homogenization technique for the active and electrode layers. Recall

that Deraemaeker and coworkers homogenized the active layer with the HRM with

the assumptions in (1.60). They were the first to report Mixing Rules for the P2 MFC

active layer in 2007 [47]. Also recall that, later [48], a PS assumption was utilized

to search for simpler expressions. After performing volume averaging symbolically

they report the following formulas for the effective electromechanical properties of

the active layers

Y ∗1 = V fY f
1 + (1− V f )Y m

1

1

Y ∗2
=
V f

Y f
2

+
1− V f

Y m
2

ν∗12 = V fνf12 + (1− V f )νm12
1

G∗12
=

V f

Gf
12

+
1− V f

Gm
12

G∗13 = V fGf
13 + (1− V f )Gm

13

1

G∗23
=

V f

Gf
23

+
1− V f

Gm
23

(1.64)

d∗31 =
1

Y ∗1
V fdf31Y

f
1 d∗11 =

1

Y ∗1
V fdf11Y

f
1

d∗32 = −d∗31ν∗12 + V fdf31(1 + νf12) d∗12 = −d∗11ν∗12 + V f (df12 + df11ν
f
12)

kσ∗33 = V fkσf33 + (1− V f )kσm33 kσ∗11 = V fkσf11 + (1− V f )kσm11 . (1.65)

where Y , G, ν, and V f denotes Young’s modulus, shear modulus, Poisson’s ratio,

and fiber volume fraction respectively. Also, the superscript f is for the fiber and m

is for the matrix. It is important to note that certain terms that they deemed to be

minor were omitted from the equations for Y ∗2 , kσ∗11 , and kσ∗33 . Due to the orientation

of the PZT relative to the problem coordinate system, the equations d∗33, d
∗
32, and
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kσ∗33 apply to the P2 MFC and d∗11, d
∗
12 and kσ∗11 apply to the P1 MFC. It is also

notable that the plane-stress (PS) assumption led to the absence of the transverse

(through-the-thickness) properties of the homogenized fiber layers.

1.6.2 Step-2: Stack of Homogeneous Layer Methods

Once the homogenized layer properties are found, a low-order plate theory is

often implemented to obtain the effective elastic properties of the MFC patch as in

Ref. [9, 48, 139] and more recently in [123]. This approach treats the fiber layers and

the isotropic Kapton layers as individual lamina. Ref. [9, 48, 139] utilized the CLPT.

In doing so, all three of the Kirchhoff-Love assumptions were invoked and are:

1. The transverse normal is infinitely rigid along its own direction.

2. The transverse normal of the plate remains straight during deformation.

3. The transverse normal remains normal to the reference surface of the plate

during deformation.

Furthermore, plane-stress is also assumed for each layer. Since the MFC can be

considered as a symmetric stack of layers where the fiber layers were homogenized in

Step-1, the overall in-plane MFC properties of the stack can be extracted from S∗e

below

S∗e = hA−1 A =
N∑
i=1

Qiti (1.66)

where h is the total MFC thickness, N is the total number of layers, ti is the thickness

of the ith layer, and Qi is the plane-stress reduced stiffness matrix of the ith layer:

Qi =


SE11 SE12 SE16

SE12 SE22 SE26

SE16 SE26 SE66


−1

i

(1.67)

Even if the transverse effective properties were available from Step-1, here we observe

that using the plane-stress reduced stiffness matrix in Step-2 leads to the absence of
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the traverse effective mechanical properties (ie, Y ∗3 , G∗23, G
∗
13, ν

∗
23, and ν∗13) for the

stack of layers.

Li et al [123] was able to obtain the transverse shear moduli and the in-plane

piezoelectric strain coefficients of the MFC stack of layers. The transverse shear

moduli were obtained by using the First-Order-Shear-Deformation-Theory (FSDT)

and thereby relaxing the third Kirchhoff-Love assumption. They concluded that

G∗23 = 〈G23〉 G∗13 = 〈G13〉 (1.68)

Note for composite laminates, the average through the thickness for any quantify f

can be computed as

〈f〉 =
1

h

∫ h
2

−h
2

fdy3

If f is constant within each layer, we have

〈f〉 =
1

h

N∑
i=1

fti

Also, note that unstarred quantities in Step-2 (eg G23) correspond to the starred quan-

tities obtained in Step-1 (eg G∗23). The in-plane piezoelectric strain coefficients were

found by using piezoelectric constitutive equations in the mechanical plate theory.

This uncoupled approach does not allow for finding any permittivities.

Three problems with these analytical approaches have been identified.

1. The plate theories are not able to obtain the complete set of homogenized

properties of the MFC. For the mechanical properties, all but Y ∗3 , ν∗13, and ν∗23

are available. For the electrical properties, only the in-plane piezoelectric strain

coefficients are available.

2. Using FSDT questionable due to the large variability in the transverse shear

stiffness from layer to layer.

3. Several researchers that have reported homogenized MFC properties from an-

alytical methods [9, 48, 123] seem to have used the PS assumption twice. The
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first instance occurs when using the PS assumption when homogenizing the

electrode and PZT fiber layers. The second instance occurs when CLPT or

FSDT.

A different methodology is given by Biscani et al [69]. They sequentially ap-

plied the uniform field assumption but they utilized the PS assumption, omitted the

electrode layers, and found self-conflicting results.

1.7 Review: Numerical Homogenization of MFCs

To date, only RVE analysis with FEs has made One-Step homogenization of the

MFC possible. Trindade and Benjeddou [51, 52] and Prasath and Arockiarajan [53–

55, 70] are the few that have performed this type of analyses. The mechanical BCs

presented by both groups is shown in Table 1.2 where m is an arbitrary constant.

Table 1.2: Periodic boundary conditions presented in the literature for the MFC.

BVP X−1 /X
+
1 X−2 /X

+
2 X−3 /X

+
3 Relation

1 u+1 − u−1 = m u+2 − u−2 = 0 u+3 − u−3 = 0 CE∗
ij11 = σ̄ij/ε̄11

2 u+1 − u−1 = 0 u+2 − u−2 = m u+3 − u−3 = 0 CE∗
ij22 = σ̄ij/ε̄22

3 u+1 − u−1 = 0 u+2 − u−2 = 0 u+3 − u−3 = m CE∗
ij33 = σ̄ij/ε̄33

4 u+1 − u−1 = 0 u+3 − u−3 = m u+2 − u−2 = m CE∗
2323 = σ̄23/(2ε̄23)

5 u+3 − u−3 = m u+2 − u−2 = 0 u+1 − u−1 = m CE∗
1313 = σ̄13/(2ε̄13)

6 u+2 − u−2 = m u+1 − u−1 = m u+3 − u−3 = 0 CE∗
1212 = σ̄12/(2ε̄12)

7 u+1 − u−1 = 0 u+2 − u−2 = 0 u+3 − u−3 = 0

Although, it appears that the mechanical PBCs have been systematically applied, the

fact is that these are not PBCs by definition (Eq. (1.53)). The first issue is that only

one mechanical degree of freedom (DOF) per boundary node was specified. Leaving

the other two unspecified and it leaves a possibly for destroying periodicity. A second

issue is that in Eq. (1.53), ε̄ij(y
+
j − y−j ) was replaced with arbitrary constants.
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Figure 1.11: Electrode surfaces from [52] for the P2 MFCs.

It appears that only Trindade and Benjeddou have systematically applied the

electrical PBCs (Eq. (1.54)) in all three spacial dimensions. Prasath and Arockiarajan

used Eq. (1.54) sporadically. This destroys periodicity for the electrical potential for

each BVP where it is omitted. The work of Trindade and Benjeddou is distinguished

from methods reviewed in Section 1.3.1 in that, instead of applying Eq. (1.54) on

X3, they accounted for internal electrodes by applying it to Γ3 faces shown in Figure

1.11. Electrical BCs from Trindade and Benjeddou’s work are thus reviewed in Table

1.3. Note that the eighth BVP is for obtaining the free permittivity where all the

Table 1.3: Periodic boundary conditions implemented in Ref. [52] for the P2 MFC.

BVP X−1 /X
+
1 X−2 /X

+
2 X−3 /X

+
3 Γ+

3 /Γ
−
3 Relation

1 φ+ − φ− = 0 φ+ − φ− = 0 − φ+ = 0; φ− = 0 e∗311 = D̄3/ε̄11

2 φ+ − φ− = 0 φ+ − φ− = 0 − φ+ = 0; φ− = 0 e∗322 = D̄3/ε̄22

3 φ+ − φ− = 0 φ+ − φ− = 0 − φ+ = 0; φ− = 0 e∗333 = D̄3/ε̄33

4 φ+ − φ− = 0 φ+ − φ− = 0 − φ+ = 0; φ− = 0

5 φ+ − φ− = 0 φ+ − φ− = 0 − φ+ = 0; φ− = 0

6 φ+ − φ− = 0 φ+ − φ− = 0 − φ+ = 0; φ− = 0

7 φ+ − φ− = 0 φ+ − φ− = 0 − φ+ = m; φ− = 0 kε∗33 = D̄3/Ē3

8 φ+ − φ− = 0 φ+ − φ− = 0 − φ+ = m; φ− = 0 kσ∗33 = D̄3/Ē3
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mechanical PBCs are removed. These BCs are only applicable to the P2 MFC since

the predominant electrical behavior is through the thickness. None of the issues with

their mechanical BCs apply here since the electrical potential is a scalar and since

equipotential conditions were also applied. The issue here is with the post-processing

relations of the piezoelectric stress coefficients. They originate from

D̄i = e∗iklε̄kl + kε∗ik Ēk (1.69)

in Eq. (1.51). However, no mention was made as to whether utilizing

σ̄ij = CE∗
ijklε̄kl − e∗kijĒk (1.70)

provides equivalent results. It is possible that the definition of Γ breaks the uniqueness

of the properties obtained.

Prasath and Arockiarajan modeled both the P1 and P2 MFC full stack of layers.

Nonuniform electric fields were able to be considered. However, since there is no

mention of the polarization direction, it assumed here that uniform polarization was

utilized. Thus, nonuniform polarization and nonuniform electric fields RVE analysis

for the P1 MFC full stack of layers has not been solved. It has, however, been solved

for the active layer alone in [49].

A final issue is that there is disagreement on which volume to utilize in order to

compute the volume averages of the electric field and electric displacement. Trindade

and Benjeddou utilized the full RVE volume whereas, Prasath and Arockiarajan only

utilized the volume of the active layer. It is not clear which one is correct.

Ignoring Protective Films

Numerical techniques have also been applied to the active layer. While assuming

three-dimensional periodicity, Biscani et al [31] homogenized the active layer of the

P2 MFC with MHT. RVE analysis has predominately been used to verify analyti-

cal mixing rules [47–49]. Deraemaeker and Nasser [49] performed an RVE analysis

that respected the aperiodicity through the thickness and the nonuniform electrical
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fields and poling of the P1 MFC. A few shortcomings of their work are discussed

here. The properties obtained with their approach are incomplete since they relied

on the plane stress assumption. They removed the in-plane mechanical PBCs for the

actuator BVP. Instead, they let the displacement DOFs equal zero for the in-plane

RVE boundaries. No comment could be found on the uniqueness of the properties

they obtained. As with all other uses of the PBCs in Eq. (1.53) - (1.54), it appears

that they assumed ε̄ij a priori. Thus there is no guarantee that the piezoelectric

macrohomogeneity is satisfied.

1.8 Dissertation Motivation: Towards Improved Micromechanical Analy-

sis of Piezocomposite Patches with the Mechanics of Structure Genome

A new homogenized model of the MFC is needed to improve smart-structure

predictions and, therefore, improved device design without explicitly modeling the

microscopic details of the MFC. The critical review of current MFC homogenization

revealed that all of the constituents of the MFC should be homogenized simultane-

ously; in a One-Step method. It is noted here that the fully periodic assumption,

common to all One-Step methods reviewed here, should be eliminated to account for

the reality of 2D periodicity of the Active Area. Furthermore, there is a need for

a One-Step method for the P1 MFC that accounts for both nonuniform poling and

nonuniform electric fields. Lastly, since the Active Area is 2D periodic, the PBCs need

to be rectified so that periodicity of the local fields is guaranteed. This should also

guarantee that the effective properties obtained are as realistic as possible. Note that

after creating a free account on cdmhub.org, many scripts used to create the results

in this work can be downloaded from https://cdmhub.org/projects/ernestocamarena.

It is expected that MSG can be utilized to accomplish this and so obtain all of its

advantages. However, like almost all of the techniques reviewed in Section 1.3.1, MSG

was not formulated to treat the internal electrodes of the MFC. So neither an MSG

piezoelectric solid model of the MFC nor an MSG piezoelectric plate model is possible.
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In pursuing this solution, it was deemed necessary to first obtain a piezoelectric solid

model. As such, no plate models were developed here. Instead, some groundwork is

laid with an MSG analytical solution and an RVE analysis for future MSG advances.

1.8.1 MSG Analytical

The research reported here aims to improve analytical homogenization of the MFC

3D solid model by:

• Avoiding any assumptions on the field variables where possible by modifying

MSG to homogenize active material embedded among passive material.

• Providing updated fiber layer properties that avoid the PS assumption.

• Obtaining the complete set of effective electromechanical properties of MFCs

(stack of layers).

Since the approach proposed here does not make use of assumptions on the field vari-

ables, we assess how plate kinematics assumptions from CLPT and FSDT affect the

effective properties they provide. We also examine how using the PS assumptions and

dropping terms in Step-1 affects homogenization in Step-2. To our knowledge, no one

has reported the effect of these assumptions and simplifications. These examinations

are extended to volume fractions other than that of the MFC since no restrictions on

their use were reported. For the sake of an analytical solution, we accept the uniform

poling assumption and violate the separation of scale assumption.

The analytical model was also sought to provide insight on what the electrical

behavior of a homogenized solid with internal electrodes should be. This is recognized

to clarify the conflicting domains used by others [51–55, 70] for volume averages in

MFC RVE analyses. The proposed electrical behavior is verified with a 3D finite

element model of the MFC patch.



48

1.8.2 RVE Analysis for In-plane Periodic Piezocomposite Patches

Of the reviewed literature, the One-Step RVE analyses had periodic boundary

conditions for the mechanical displacement on X3. It is expected that these conditions

best represent the bulk behavior of many MFCs that are stacked together. However,

neither the MFC active layer nor the full MFC is periodic in the thickness direction.

2D periodicity is closer to reality and is illustrated in Figure 1.12.

x
1

x
2

x
3

Figure 1.12: A generic composite that features periodicity in two dimensions.

Therefore this dissertation challenges the idea that the MFC can be correctly

homogenized assuming full periodicity. This challenge is not new because a few

researchers have already studied the effect of device thickness on effective properties.

As already mentioned, Deraemaeker and Nasser [49] realized that the MFC is not

periodic through-the-thickness. In their RVE analysis, they followed Berger et al

[36] but relaxed the associated periodicity requirement and utilized the plane-stress

assumption; leading to incomplete properties. This may not be an issue when these

properties are utilized in plate theories that assume plane stress. However, a failure

analysis will not be possible since some of the local fields will not be available. It is
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also noteworthy that Liu et al [140] has derived the aperiodic capability in MSG, but

only for the mechanical properties.

Aperiodicity has also been considered for the effective piezoelectric properties of

ultrasonics by Li and Sottos [85]. They obtained a series solution by solving an

axisymmetric elasticity problem that considers two concentric cylinders which are

subjected to hydrostatic tractions. Rajapakse and Chen [87] observed that Li and

Sottos decoupled the electroelastic field by assuming constant electric field in the rod.

Rajapakse and Chen improved upon Li and Sottos’ model by relaxing the constant

electric field assumption. An important issue with these models is the hydrostatic

boundary conditions. In applying hydrostatic boundary conditions to the concentric

cylinders, one is assuming that the boundary conditions of the microstructure (ie the

concentric cylinders) are the same as that of the macroscopic body (ie the hydrophone

underwater.) Another issue arises from assuming axisymmetric fields because it can

only correctly describe one of possibly six (three normal and three shear strains)

deformation modes of an axisymmetric microstructure. Qi and Cao [40] have taken a

different approach by utilizing the FE method. An issue with their approach is that

they used “fixed” boundary conditions on the in-plane faces of their unit-cell model.

There is no reason for these boundary conditions to resemble reality.

Not only does this work depart from full periodicity it does so without any of the

previously stated issues for piezoelectric RVE analyses. The common pitfalls that

occur when using the PBCs (Eq. (1.53) and (1.54)) are all circumvented; namely,

using uniform BCs, assuming ε̄ij and Ēi, sporadic implementation, and overlooking

the symmetry of the effective properties. Various proofs are provided for determining

the volume averages of the variables needed for the RVE analysis. The significance of

the proofs is that they are done at a theoretical level which enables the application

to any such RVE.
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1.8.3 Local Fields Recovery

Homogenization is a necessary precursor to recovering the local fields after com-

pleting a macroscopic analysis. Of the reviewed literature, a dehomogenization proce-

dure of piezoelectric composite patches was not found. Some [28,91,141,142] however,

have studied local fields of piezocomposites but their approach is not applicable to

the full MFC patch due to its electrodes. Therefore, an objective of this work was

to find the local fields of the MFC without having the computational burden of fully

discretizing the MFC. This should enable smart-structure designs with improved relia-

bility because the computationally efficient dehomogenization model facilitates failure

studies.

1.8.4 Direct Numerical Simulations

As mentioned in Section 1.1, there are two objectives in micromechanics; homog-

enization and dehomogenization. Here, numerical tests are constructed to verify the

theories presented in this dissertation. While physical experiments would be best

for validation purposes, numerical tests are best for verification since there will be no

differences associated with boundary conditions, uncaptured physics, and microstruc-

tural uncertainty in general. The numerical tests consist of constructing macroscopic

3D FEA models that include microscale features. Needless to say, the models can be

quite large. Furthermore, some of these models were constructed with and without

the Passive Area to evaluate any accuracy loss for different patch sizes. Here these

models are referred to as direct numerical simulations (DNSs). The DNSs considered

herein are static models of a single MFC that is perfectly bonded to a nonpiezoelec-

tric substrate (unimorph). For the P1 cases, nonuniform poling and electric fields are

accounted for in the DNSs. Results from using the effective properties predicted in

Chapters 2 and 4, common MFC modeling strategies, as well as the proposed deho-

mogenization procedure, are all evaluated against the DNSs. Completing these DNSs

is a significant undertaking. According to the best knowledge of the author, no such



51

modeling and simulation have been previously completed. The only other work that

is related in by Kim et al [143]. They showcase the utility of constructing DNSs

with several example cases. One case was the AFC. Although this work recognized

the presence of a passive area (similar to by not the same as the Passive Area used

herein), the constructed DNS relied on some major approximations. Their formula-

tion is apparently an uncoupled piezoelectric analysis. Also, the electric field was not

defined as the negative gradient of the potential. Instead, a uniform field definition

was used. Since poling was not mentioned, uniform poling was likely to have been

assumed. Finally, the IDEs were omitted from the analysis and E-glass substrates

were modeled as isotropic.
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2. ANALYTICAL HOMOGENIZATION OF THE MFC

2.1 Piezoelectric Homogenization with Mechanics of Structure Genome

It is proposed that the newly discovered mechanics of structure genome (MSG)

[1,3], can provide an improvement in the homogenized properties of the MFC. For the

Two-Step approach discussed before, MSG can provide a full set of electromechanical

properties analytically and without the assumptions associated with a low-order plate

theory.

The scope of this research assumes that the starting point is the full, linear,

constitutive relations for each constituent in the MFC microstructure as

σij = CE
ijklεkl − ekijEk

Di = eiklεkl + kεikEk. (2.1)

Here CE
ijkl, eijk, and kεij denote the elasticity (at constant electric field), piezoelectric,

and dielectric permittivity (at constant strain) tensors. The end point considered

herein is the homogenized linear-elastic and piezoelectric properties of the full MFC

package. Here and through the rest of this article, index notation is used with Latin

indices assuming 1, 2, and 3 and repeated indices are summed over their range (except

where explicitly indicated).

First, the homogenized body is described using xi. Since it is expected that the

size of the microstructure is much smaller than the size of the macroscopic structure,

local coordinates yi = xi/ε are introduced to describe the domain occupied by the

microstructure, with ε being a small parameter. The mechanical displacement and

electric potential fields of the original heterogeneous body can be expressed as

ui(xk, yl) = ūi(xk) + εχi(xk, yl)

φ(xk, yl) = φ̄(xk) + εζ(xk, yl) (2.2)
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respectively. Here the over bar is again the average respective field quantity over the

microstructure and χi and ζ are what one commonly calls fluctuating functions in

micromechanics. They are the difference between the corresponding field average and

the exact field. Then, from Eqs. (1.6) and (1.5), we can obtain the strain and electric

field of the heterogeneous body as

εij(x, y) = ε̄ij(x) + χ(i,j) Ei = Ēi − ζ,i (2.3)

respectively. Note that the higher order terms have been neglected according to the

variational asymptotic method [22]. The parenthesis in the subscripts indicates a

symmetric operation and a comma indicates differentiation: χ(i,j) = 1
2

(
∂χi

∂yj
+

∂χj

∂yi

)
,

and ζ,i = ∂ζ
∂yi

.

Since we are constructing the homogenized model out of the original heterogeneous

model, we need to define the variables of the homogenized model in terms of those of

the original model. The natural choice is to define

ūi = 〈ui〉 ε̄ij = 〈εij〉 φ̄ = 〈φ〉 Ēi = 〈Ei〉 . (2.4)

Eq. (2.3) and (2.4) imply the following constraints on the fluctuating functions

〈χi〉 = 0
〈
χ(i,j)

〉
= 0 〈ζ〉 = 0 〈ζ,i〉 = 0. (2.5)

For a linear piezoelectric material, the information loss we want to minimize can

be the electric enthalpy (see [144] for piezoelectric enthalpy definition). Thus we seek

to minimize the difference between the electric enthalpy of the original model and the

homogenized model which is

Π =

〈
1

2
CE
ijklεijεkl − eijkEiεjk −

1

2
kεijEiEj

〉
−
(

1

2
CE∗
ijklε̄ij ε̄kl − e∗ijkĒiε̄jk −

1

2
kε∗ij ĒiĒj

)
. (2.6)

The asterisk denotes the corresponding tensors of the homogenized body. To minimize

Π, we consider the homogenized model as given (ie, CE∗
ijkl, e

∗
ijk, k

ε∗
ij , ε̄ij, and Ēi cannot
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be varied). Substituting Eq. (2.3) into Eq. (2.6), we obtain the following variational

statement to solve for χi and ζ.

min
(χi,ζ)∈Eq.(2.5)

〈
1
2
CE
ijkl

(
ε̄ij + χ(i,j)

) (
ε̄kl + χ(k,l)

)
−eijk

(
Ēi − ζ,i

) (
ε̄jk + χ(j,k)

)
− 1

2
kεij
(
Ēi − ζ,i

) (
Ēj − ζ,j

)〉
(2.7)

Recall that a unique feature of the MFC that makes it a durable and effective trans-

ducer is that the electrodes are located inside the microstructure. This is not the case

for ordinary transducers that have surface mounted electrodes. Thus, the variational

statement that is shown in Eq. (2.7) is split into two integrations through the active

and passive domains respectively as

min
(χi,ζ)∈Eq.(2.5)

〈ΠPassive〉+ 〈ΠActive〉 (2.8)

with

ΠPassive =
1

2
CE
ijkl

(
ε̄ij + χ(i,j)

) (
ε̄kl + χ(k,l)

)
(2.9)

and

ΠActive =
1

2
CE
ijkl

(
ε̄ij + χ(i,j)

) (
ε̄kl + χ(k,l)

)
−eijk

(
Ēi − ζ,i

) (
ε̄jk + χ(j,k)

)
− 1

2
kεij
(
Ēi − ζ,i

) (
Ēj − ζ,j

)
. (2.10)

Here the word active denotes electrically active and not necessarily piezoelectric. For

example, a non-piezoelectric material can be between the electrodes. Likewise, passive

means that electrical effects are not accounted for.

Using the calculus of variations, we can conclude that χi must satisfy the following

three Euler-Lagrange equations in the passive domain(
CE
ijkl (ε̄kl + χk,l)

)
,j

= 0. (2.11)

Next, ζ, as well as χi, must satisfy the following four Euler-Lagrange equations in the

active domain (
CE
ijkl (ε̄kl + χk,l)− ekij

(
Ēk − ζ,k

))
,j

= 0(
eikl (ε̄kl + χk,l) + kεik

(
Ēk − ζ,k

))
,i

= 0 (2.12)



55

along with the constraints in Eq. (2.5). Additional constraints that must be con-

sidered are boundary and interface conditions. For periodic materials that are fully

active, χi and ζ must be periodic on the domain boundaries. At the interface be-

tween adjacent constituents, we require that the displacement and electrical potential

be continuous. This implies that the fluctuating functions are also continuous.

2.2 Stack of Homogeneous Layers

Until now, nothing has been mentioned about what the original heterogeneous

structure is. In this chapter we specialize the application of MSG to consider that

the microstructure is a multi-layer laminate; each layer being homogeneous. Each

layer is linearly elastic and possibly anisotropic. One layer is considered to be linear

piezoelectric. The governing differential equations in Eq. (2.11) – (2.12) can be

solved analytically for this special case. Therefore homogenization of the fiber layers

in a prior step is required. Since an analytical solution is a highly desirable model,

violation of the separation of scale requirement is accepted and uniform polarization

for the P1 MFC is assumed.

Let us use y1 and y2 to denote the in-plane coordinates and y3 to denote the

thickness coordinate. Because the composite laminate is uniform in the y1− y2 plane

and heterogeneous along y3 direction, χi and ζ are functions of y3 only, that is, the

partial derivatives of the fluctuating functions, χi,j and ζ,i, will vanish except χi,3 and

ζ,3. As shown in Figure 2.1, let the laminate be defined from −h3/2 ≤ y3 ≤ h3/2

and let the active layer go from −ha/2 ≤ y3 ≤ ha/2 (with ha ≤ h3). The governing

differential equation in Eq. (2.11) can then be simplified to the following

(
CE
i3kl (ε̄kl + χk,l)

)
,3

= 0 − h3
2
≤ y3 < −

ha
2

and
ha
2
< y3 ≤

h3
2

(2.13)

and Eq. (2.12) becomes(
CE
i3kl (ε̄kl + χk,l)− eki3

(
Ēk − ζ,k

))
,3

= 0(
e3kl (ε̄kl + χk,l) + kε3k

(
Ēk − ζ,k

))
,3

= 0

− ha
2
≤ y3 ≤

ha
2
. (2.14)
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Figure 2.1: The domain of the active region and that of the full laminate.
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We assume that the layers within and MFC are perfectly bonded, thus

[χi] = 0 at every interface (2.15)

where [ ] indicates the jump across an interface. Using the calculus of variations, we

can conclude that

[σi3] = 0 at every interface. (2.16)

Using Eq. (2.5) along with the interface continuity conditions of Eq. (2.15) and

(2.16), we conclude

χk

(
y1, y2,−

h3
2

)
= χk

(
y1, y2,

h3
2

)
(2.17)

σi3

(
y1, y2,−

h3
2

)
= σi3

(
y1, y2,

h3
2

)
. (2.18)

We then integrate Eq. (2.13) – (2.14) through an arbitrary layer in their respective

domains and obtain

CE
i3kl (ε̄kl + χk,l) = mi − h3

2
≤ y3 < −

ha
2

and
ha
2
< y3 ≤

h3
2

CE
i3kl (ε̄kl + χk,l)− eki3

(
Ēk − ζ,k

)
= ci

e3kl (ε̄kl + χk,l) + kε3k
(
Ēk − ζ,k

)
= c4

− ha
2
≤ y3 ≤

ha
2

(2.19)
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where mi are three constants for each layer in the passive region and ci and c4 are

four constants for each layer in the active layer. Explicitly Eq. (2.19) reads

Passive :

CE
1311ε̄11 + CE

1322ε̄22 + 2CE
1312ε̄12 + CE

1333 (ε̄33 + χ3,3)

+CE
1313 (2ε̄13 + χ1,3) + CE

1323 (2ε̄23 + χ2,3) = m1

CE
2311ε̄11 + CE

2322ε̄22 + 2CE
2312ε̄12 + CE

2333 (ε̄33 + χ3,3)

+CE
2313 (2ε̄13 + χ1,3) + CE

2323 (2ε̄23 + χ2,3) = m2

CE
3311ε̄11 + CE

3322ε̄22 + 2CE
3312ε̄12 + CE

3333 (ε̄33 + χ3,3)

+CE
3313 (2ε̄13 + χ1,3) + CE

3323 (2ε̄23 + χ2,3) = m3

Active :

CE
1311ε̄11 + CE

1322ε̄22 + 2CE
1312ε̄12 + CE

1333 (ε̄33 + χ3,3)

+CE
1313 (2ε̄13 + χ1,3) + CE

1323 (2ε̄23 + χ2,3)

−e113Ē1 − e213Ē2 − e313
(
Ē3 − ζ,3

)
= c1

CE
2311ε̄11 + CE

2322ε̄22 + 2CE
2312ε̄12 + CE

2333 (ε̄33 + χ3,3)

+CE
2313 (2ε̄13 + χ1,3) + CE

2323 (2ε̄23 + χ2,3)

−e123Ē1 − e223Ē2 − e323
(
Ē3 − ζ,3

)
= c2

CE
3311ε̄11 + CE

3322ε̄22 + 2CE
3312ε̄12 + CE

3333 (ε̄33 + χ3,3)

+CE
3313 (2ε̄13 + χ1,3) + CE

3323 (2ε̄23 + χ2,3)

−e133Ē1 − e233Ē2 − e333
(
Ē3 − ζ,3

)
= c3

e311ε̄11 + e322ε̄22 + 2e312ε̄12 + e333 (ε̄33 + χ3,3)

+e313 (2ε̄13 + χ1,3) + e323 (2ε̄23 + χ2,3)

+kε31Ē1 + kε32Ē2 + kε33
(
Ē3 − ζ,3

)
= c4.

It is clear that

σi3 =

 CE
i3kl (ε̄kl + χk,l) − h3

2
≤ y3 < −ha

2
and ha

2
< y3 ≤ h3

2

CE
i3kl (ε̄kl + χk,l)− eki3

(
Ēk − ζ,k

)
− ha

2
≤ y3 ≤ ha

2
.

(2.20)
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Thus we can conclude from Eq. (2.16) and (2.18) – (2.20) that the transverse shear

and normal stresses are constant through the thickness. That is, mi = ci and remain

constant for all the layers. It is also clear that

D3 = e3kl (ε̄kl + χk,l) + kε3k
(
Ēk − ζ,k

)
= c4 − ha

2
≤ y3 ≤

ha
2
. (2.21)

Thus the transverse electric displacement is constant in the active layer.

Recall that for a multi-layered laminate the non-vanishing derivatives of the fluctu-

ating functions are χi,3 and ζ,3. Thus from Eq. (2.3) the local strain is fully described

by

ε11 = ε̄11 ε22 = ε̄22 ε12 = ε̄12

ε33 = ε̄33 + χ3,3 ε13 = ε̄13 + χ1,3 ε23 = ε̄23 + χ2,3 (2.22)

and the local electric field is

E1 = Ē1 E2 = Ē2 E3 = Ē3 − ζ,3. (2.23)

Note, here, that average strains are with respect to a volume occupied by the active

and passive domains and the average electric field is with respect to the volume of

the active region. Thus the implications are that the in-plane strains are constant

and the transverse strains are piecewise constant through the thickness if we would

like to approximate a stack of composite laminates as an equivalent homogeneous

solid. In the active region alone we have that the in-plane electric fields are constant

and the transverse electric field is piecewise constant if the active region has multiple

layers. With this conclusion, along with the previous conclusions about the transverse

stresses and electric displacement, we can derive a Step-2 hybrid rule of mixtures for

MFCs. Note that this is similar to Eq. (1.55) from Hashimoto and Yarnaguchi’s [63]

conclusion.

It is noted here that Yu [145] and Rique et al [146] applied a similar approach for

purely mechanical and thermoelastic properties, respectively. Here, however, we have

piezoelectricity and internal electrodes.
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Lemma 1: For Step-1 Homogenization

We can also derive the same conclusions for a stack of homogeneous layers, with

all layers being electrically active; regardless of whether they are piezoelectric or not.

If we let ha = h3, then ΠActive is for the full domain.

Thus we conclude from Eq. (2.19) - (2.21) and Eq. (2.27) that transverse shear

and normal stresses are constant through the entire thickness of the laminate as well

as the transverse electric displacement. When there are no electrodes between each

layer, each interface has an absence of free charges. Thus the electric potential must

be continuous across the interfaces and therefore we have

[ζ] = 0 at every interface. (2.24)

Then following the calculus of variations, we can conclude that

[D3] = 0 at every interface. (2.25)

Using the constraint in Eq. (2.5) along with the interface continuity conditions in

Eq. (2.24) and (2.25), we can conclude

ζ

(
y1, y2,−

h3
2

)
= ζ

(
y1, y2,

h3
2

)
(2.26)

D3

(
y1, y2,−

h3
2

)
= D3

(
y1, y2,

h3
2

)
. (2.27)

In the derivation of Lemma 1, y3 is the thickness direction of a stack of active

layers. If we view y3 as the stacking direction of multilayered material in general,

then the Step-1 assumptions in Eq. (1.60) are proved to be exact by considering the

PZT (or copper) fiber and epoxy as being layered material that is stacked in the y2

direction.
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2.3 Hybrid Rule of Mixtures for MFCs

2.3.1 HRM1: Fiber Layers (Step-1)

We retain the use of Eq. (1.60) but the assumptions are now proved as exact by

MSG. Much like Eq. (1.56), rewrite Eq. (1.20) as

εH = SHσH (2.28)

except this time with εH = bσ11 ε22 σ33 2ε23 σ13 2ε12 D1 E2 D3cT , σH =

bε11 σ22 ε33 σ23 2ε13 σ12 E1 D2 E3cT . Then one can compute the average as

before

ε̄H =
〈
εH
〉

=
〈
SHσH

〉
=
〈
SH
〉
σ̄H = SH∗σ̄H . (2.29)

Note that σH = σ̄H since they are proved to be constant in the microstructure

according to MSG. Then, SE∗, d∗, and kσ∗ are found by solving for ε̄ij and D̄i in terms

of σ̄ij and Ēi. This is the same procedure in Ref. [47] but now their assumptions are

proved (see Lemma 1 ) by MSG. Also, this Step-1 hybrid rule of mixtures is referred

to as HRM1 herein.

Note that Eq. (1.20) is in a compliance form rather than a stiffness form (for

example, Eq. (2.1)). Thus all of the entries are on the order of 10−12 to 10−8.

Therefore no numerical scaling was required. The same rule of mixtures can be

implemented in the form of a stiffness-type constitutive relation. In this case, the

constitutive inputs can vary from 10−12 to 1011. In such a case, it is first necessary to

divide all stiffness terms by a scale-factor (such as 109) and multiply the permittivities

by that same factor. Then a procedure similar to the one presented can be followed

and after un-scaling, the exact same results as the compliance-type equations can be

obtained. These scaling details are also applicable in the following section.

2.3.2 HRM2: Stack of Homogeneous Layers (Step-2)

Since the active layer is embedded among passive layers, Step-2 proceeds with

special treatment. For both MFC types, careful attention is given to the behavior in
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the y3-direction; namely, D3, E3. For the P2 MFC, this direction is the main direction

of electrical activity whereas for the P1 MFC it is a direction of secondary effects.

With the fiber layers homogenized, Step-2 proceeds as in Step-1 but with three

modifications. First, εH = bσ11 σ22 ε33 2ε23 2ε13 σ12 D1 D2 E3cT , σH =

bε11 ε22 σ33 σ23 σ13 2ε12 E1 E2 D3cT . Second, the electrical energy contribution

for material located outside of the active region (ie, for |y3| > ha/2) is ignored. This

requires setting dkij and kσij to null values for the passive layers. Performing averaging

through the whole laminate gives

ε̄H =
〈
εH
〉

=
〈
SHσH

〉
=
〈
SH
〉
σ̄H = SH∗σ̄H . (2.30)

It is important to note that Eα (α = 1 or 2), and D3 were proved to be constant in the

active region. Therefore note the last three terms in σ̄H = bε̄11 ε̄22 σ̄33 σ̄23 σ̄13 2ε̄12 E1

E2 D3cT . They are not averaged quantities through the entire laminate; they are

active layer variables. This is the third difference and concludes what will be called

HRM2. Refer to Appendix A for a sample Mathematica [147] code.

Figure 2.2 illustrates the electrical behavior obtained with the HRM2. Since

the electrode configurations between the heterogeneous model and the homogeneous

model are different, we are free to redefine Ēα, and D̄3. For the in-plane electrical

behavior, note that Ēα = Eα since the electrode spacing between the heterogeneous

model and the homogenized model is considered to be equal. Since the electrode

spacing for the out-of-plane electrical fields differ, D̄3 is redefined from D̄3 = VaD3

to D̄3 = D3, where V a = ha/h3. Therefore σ̄H will hold all variables from the

homogenized model. We then find SE∗, d∗, and kσ∗ by solving Eq. (2.30) for ε̄ij and

D̄i in terms of σ̄ij and Ēi. In this way, it is expected that voltages predicted by the

homogeneous model will be equal to that of the heterogeneous model of both P1 and

P2 MFCs. It has been verified that the HRM1 and HRM2 provide the exact same

results when formulated from Eq. (1.15) rather than from Eq. (1.16) (similar to Eqs.

(1.58) – (1.59)).
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It should be noted that in-plane electric fluxes and the transverse electric field that

are obtained are averaged over all the layers, whereas, the in-plane electric fields and

the through-the-thickness flux will be of the actual active layer. Thus, if all electrical

field quantities in the active layer are required after a macroscopic analysis they may

be recovered by

Eα = Ēα Dα = D̄α/V
a

E3 = Ē3/V
a D3 = D̄3 (2.31)

see Figure 2.2.
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Figure 2.2: Illustration of the electrical behavior of the HRM (Step-2); applicable to

both MFC types.
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2.4 Analysis and Results

2.4.1 Assumed Microstructural Details of the MFC

The microstructural details of the MFC were obtained from references [47, 48].

A fiber volume fraction is defined for each of the fiber layers. The volume fraction

of the PZT in the active layer, V f
PZT , was set to 0.8654 [47]. Similarly, the volume

fraction of the copper in the electrode layer, V f
Cu, was set to 0.2400 [48]. The layer

thicknesses were 40 µm, 18 µm, 180 µm, for the Kapton, electrode, and active layers

respectively [48]. The piezoceramic is SONOX P502. Finally, Tables 2.1 - 2.2 show

the elastic, piezoelectric and dielectric properties of each constituent considered in

the microstructure. Note that the primed notation for the SONOX P502 properties

(eg d′31) indicate that the values are reported in the material coordinate system. In

what follows, unprimed variables indicate that they are in the problem coordinate

system. Also note that the SONOX P502 is transversely isotropic and thus we have

Y E′
1 = Y E′

2 , GE′
13 = GE′

23 , νE
′

13 = νE
′

23 , d
′
31 = d

′
32, d

′
24 = d

′
15, κ

σ′
11/ε0 = κσ

′
22/ε0. Since the

material coordinate system is the same as the problem coordinate system for the P2

MFC, the piezoelectric strain coefficients in the problem coordinates for the P2 MFC

are arranged as
0 0 0 0 d′15 0

0 0 0 d′24 0 0

d′31 d′32 d′33 0 0 0


T

=


0 0 0 0 d15 0

0 0 0 d24 0 0

d31 d32 d33 0 0 0


T

. (2.32)

A coordinate transformation of the P2 MFC piezoelectric strain matrix to the coor-

dinate system shown in Figure 1.10(c) reveals that the P1 piezoelectric strain matrix

is 
d′33 d′32 d′31 0 0 0

0 0 0 0 0 d′24

0 0 0 0 d′15 0


T

=


d11 d12 d13 0 0 0

0 0 0 0 0 d26

0 0 0 0 d35 0


T

. (2.33)

Finally, it is notable that there are uncertainties in some of the microstructural details

of the MFC. Some research articles report and model the presence of an acrylic layer
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in the MFC. Moreover, Ref. [47] introduced the use of the SONOX P502 piezoelectric

fiber when the real material is PZT-5A1. In addition, there may be small uncertainties

on the fiber volume fractions to use. It is also noted here that the SONOX P502

material properties reported in Ref. [47] are not quite transversely isotropic. Thus,

their reported value for GE′
12 was discarded herein and instead, it was computed from

GE′

12 =
Y E′
1

2(1 + νE
′

12 )
. (2.34)

Table 2.1: Mechanical and piezoelectric properties for SONOX P502 in the material

coordinate system (y
′
i). The 3-direction corresponds to the polarization direction.

ε0 =8.854 pF/m.

Y E′
1 Y E′

3 GE′
13 νE

′
12 νE

′
13 d

′
31 d

′
33 d

′
24 κσ

′
11/ε0 κσ

′
33/ε0

(GPa) (pC/N)

54.05 48.30 19.48 0.41 0.44 -185 440 560 1950 1850

Table 2.2: Isotropic MFC constituent material properties. ε0 =8.854 pF/m.

Property Copper Kapton Epoxy

Y (GPa) 117.2 2.8 2.9

ν 0.31 0.3 0.3

κ/ε0 5 3.4 4.25

2.4.2 Comparison of Homogenized Fiber Layer Methods (Step-1 Homog-

enization)

Before the properties of the full MFC are presented, we examine the effects that the

PS assumption and neglected terms have on the fiber layer properties. Tables 2.3 and
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2.4 show the homogenized properties of the MFC fiber layers (Step-1 homogenization).

The properties of each layer are given in the coordinate system of the respective

fiber layer (Figure 1.10(a)). Here and throughout this article, we categorize Step-1

homogenization into three types: Step-1 Hybrid Rule of Mixtures (HRM1) from Eq.

(2.29), Plane-Stress-like Rule of Mixtures (PSRM) without dropping terms [48], and

the Plane-Stress-like Rule of Mixtures with dropped terms (PSRM**)–Eqs. (1.64)

and (1.65). We show our independent calculations if they were different than those

reported from Deraemaeker et al [48] and Li et al [123] (Note: PSRM** has not been

previously reported for the active layers). For the P1 MFC, we have transformed the

results of Deraemaeker et al to the problem coordinate system (see Figure 1.10(a))

by performing a coordinate transformation of the compliance matrix. In general, we

find the relations shown below. Note, that they report in terms of Y
′
L, Y

′
T , G

′
LT , G

′
Tz,

Y1 = Y
′
3 Y2 = Y

′
2 Y3 = Y

′
1

G12 = G
′
23 G13 = G

′
13 G23 = G

′
12

ν12 = ν
′
32 ν13 = ν

′
31 ν23 = ν

′
21

G
′
Lz, and ν

′
LT with L = 3, T = 2, z = 1 (in the material coordinate system: see

Figure 1.10(c)).

It can be seen in Table 2.3 that for each fiber layer, the PS assumption will under-

predict Y ∗2 and is exacerbated by dropping terms. Moreover, the in-plane Poisson’s

ratio ν∗12, is slightly over predicted. For the P2 MFC, Table 2.4 shows excellent

agreement for the piezoelectric strain coefficient along the fiber axis (namely d∗31 and

d∗11 in the respective cases). However, there are some appreciable differences for the

2-direction piezoelectric strain properties (that is, d∗32 and d∗12 in the respective cases).

Our PSRM calculations for the shear moduli in the P1 MFC active layer are

not in agreement with those in Deraemaeker et al [48]. Deraemaeker et al worked

in the material coordinates (see Figure 1.10(c)) so we will show how to compute

G
′∗
LT =

(
V f

Gf
LT

+ 1−V f

Gm
LT

)−1
to give one example of the disagreement. For the P1 MFC,

L = 3 and T = 2 so G
′∗
LT = G

′∗
32 and Gf

LT = Gf
32 = Gf

23. From Table 2.1, we



67

Table 2.3: Effective elastic properties for each MFC fiber layer. All moduli are in

GPa.

Y E∗
1 Y E∗

2 Y E∗
3 GE∗

12 GE∗
13 GE∗

23 νE∗12 νE∗13 νE∗23

P2 MFC

PSRM** 47.17 16.02 - 6.03 17.00 6.06 0.395 - -

PSRM [48,123] 47.17 16.98 - 6.03 17.00 6.06 0.395 - -

HRM1 [47] 47.17 19.12 42.19 6.03 17.01 6.68 0.388 0.439 0.170

P1 MFC

PSRM** 42.19 16.02 - 6.06 17.00 6.03 0.381 - -

PSRM [48,123] 42.18 16.97 - 6.03 6.06 17.00 0.38 - -

PSRM 42.19 16.97 - 6.06 17.01 6.03 0.381 - -

HRM1 42.19 19.12 47.17 6.68 17.01 6.03 0.376 0.392 0.157

Electrode layer

PSRM** [123] 30.33 3.79 - 1.46 11.58 1.46 0.302 - -

PSRM 30.33 4.11 - 1.46 11.58 1.46 0.302 - -

HRM1 30.33 4.88 30.33 1.46 11.58 1.46 0.299 0.309 0.048
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Table 2.4: Effective piezoelectric and dielectric properties for each MFC fiber layer.

Piezoelectric stain constants are in pC/N.

d∗31 d∗32 d∗33 d∗24 d∗15 κσ∗11/ε0 κσ∗22/ε0 κσ∗33/ε0

P2 MFC

PSRM** -183.5 -153.2 - - - - - 1601.5

PSRM [48,123] -183 -153 - - - - - 1600

HRM1 -183.0 -173.5 435.9 7.739 555.1 1682.8 31.1 1593.0

d∗11 d∗12 d∗13 d∗26 d∗35 κσ∗11/ε0 κσ∗22/ε0 κσ∗33/ε0

P1 MFC

PSRM** 435.9 -176.3 - - - 1601.5 - -

PSRM [48,123] 436 -176 - - - 1593 - -

HRM1 435.9 -173.5 -183.0 7.739 555.1 1593.0 31.1 1682.8

κσ∗11/ε0 κσ∗22/ε0 κσ∗33/ε0

Electrode layer

PSRM** - - - - - - - 4.43

PSRM - - - - - - - 4.43

HRM1 - - - - - 4.43 4.41 4.43
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use Gf
32 = 19.48 GPa in

(
V f

Gf
32

+ 1−V f

Gm
32

)−1
to find that G

′∗
32 = 6.06 GPa. Table 2.3

reports properties in the problem coordinates so we recall that G
′
23 = G12 which gives

G∗12 = 6.06 GPa. Contrary to this exposition, note that Ref. [48] reports G
′∗
LT = 6.03

GPa. If L = 3 and T = 2, then G
′∗
32 = 6.03 GPa according to [48]. When transformed

to the problem coordinates as in Table 2.3, the result is G∗12 = 6.03 GPa. Note, Li et

al [123] repeats Deraemaeker’s properties and reports them in the problem coordinate

system as we have shown here. They also include elastic properties for the electrode

layer.

An investigation of the effects that the PS assumption had on the lamina prop-

erties was extended to all fiber volume fractions. Our main findings are that the

PS assumption underpredicts the lateral elastic modulus for most volume fractions as

shown in Figure 2.3(a). There the error on the vertical axes is defined as ((M∗
i |PSRM−

M∗
i |HRM1)/M∗

i |HRM1)×100. M∗
i represents any of the homogenized electromechanical

properties. The dashed curves correspond to the dropped terms (PSRM**). Note

that the P2 MFC active layer was omitted for brevity but had nearly identical curves

as the P1 MFC active layer. Another major finding is shown in Figure 2.3(b). It

shows that the approximation for the d∗32 is unacceptable for the P2 MFC for most

volume fractions.

Other plane-stress errors are reported in Figure 2.4. Each of the properties was

grouped together with similar error magnitudes. It can be observed in Figure 2.4(a)

that large overpredictions are possible for the active layers at low volume fractions;

however, at the volume fractions relevant to MFCs, the error is acceptable. Figure

2.4(b) reveals that the effective properties along the fiber axis, (ie, Y E∗
1 , d∗11, and

kσ∗11 for the P1 MFC) have the smallest error (less than about 0.5%). Again, poorer

results are obtained at lower volume fractions. Figure 2.4(c) shows the error for the

shear behavior (including the shear coupling terms): note that all four curves plot

identically. GE∗
12 and GE∗

13 for the P2 MFC are not plotted in Figures 2.3 and 2.4

because there was no error for those terms. Similarly, GE∗
13 and GE∗

23 for the P1 MFC

were not plotted.
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Figure 2.3: Major errors found for fiber layers due to the plane-stress-like

assumption. The vertical dashed line for fiber volume fractions relevant to MFC

active layer.
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Figure 2.4: Other active layer plane-stress errors.
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2.4.3 HRM2 Device Properties and Verification

It is distinguished here that the proposed model gives device properties rather

than material properties. This is because the proposed properties are only applicable

to the MFC with the assumed layer thicknesses and thus the total thickness. If any

of the layer thicknesses change, then the proposed HRM2 homogenization procedure

needs to be repeated to obtain new properties. The traditional definition of mate-

rial properties is not applicable, because material properties do not allow for such

a dependence on layer thicknesses. The piezoelectric device properties that are ob-

tained after implementing HRM1 followed by HRM2 are tabulated in Table 2.5. Only

nonzero coefficients are reported. The mechanical properties are in Table 2.8.

The HRM2 properties are verified with a DNS in the present section. Since the

purpose of this DNS is to verify the analytical model, the DNS only models the

Active Area (see Figure 1.8 for the Active Area definition) since that is what the

HRM2 would model. Furthermore, nonuniform poling and electric fields in the P1

case are ignored in this DNS (but not ignored elsewhere in this dissertation).

The omission of a host structure and consideration of elementary load types sim-

plifies the use of device properties. Three load cases can be constructed to test the

elastic, piezoelectric, and dielectric properties respectively. Here they will be referred

to as the Short-Circuit Test, Actuator Test, and the Open-Circuit Test. These tests

are illustrated in Figure 2.5(a) for the P1 MFC and 2.5(b) for the P2 MFC. The

mechanical and electrical boundary conditions are illustrated as well. It should be

noted that Figure 2.5 also represents the BCs applied in the DNS. Since uniform

electric fields are being considered, Figure 2.5(a) shows the electrical BCs applied to

the DNS. As for the P2 DNS, Figure 2.5(b) does show a resemblance of the electrical

BCs except, internal electrodes were properly accounted for. Refer to Figures 4.3 and

4.4 for details of the P2 electrode surface definition.
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Table 2.5: The HRM2 effective piezoelectric and dielectric device properties for the

full homogenized MFC in problem coordinates.

HRM1

↓

HRM2

P1 MFC

d∗11 (pC/N) 409.1

d∗12 (pC/N) -129.8

d∗13 (pC/N) -140.1

d∗26 (pC/N) 6.94

d∗35 (pC/N) 555.1

κσ∗11/ε0 934.37

κσ∗22/ε0 18.9

κσ∗33/ε0 2767.3

P2 MFC

d∗31 (pC/N) -297.2

d∗32 (pC/N) -201.9

d∗33 (pC/N) 489.9

d∗24 (pC/N) 4.706

d∗15 (pC/N) 337.5

κσ∗11/ε0 1023.3

κσ∗22/ε0 18.9

κσ∗33/ε0 2568.2
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Figure 2.5: Illustration of the numerical tests performed to verify the HRM2 device

properties.
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The Short-Circuit test results in

ε̄11 = SE∗11 σ̄11 = σ̄11/Y
E∗
1

ε̄22 = SE∗12 σ̄11 = −νE∗12 σ̄11/Y
E∗
1

ε̄33 = SE∗13 σ̄11 = −νE∗13 σ̄11/Y
E∗
1

D̄t = d∗t1σ̄11 (2.35)

where t = 1 for the P1 MFC and t = 3 for the P2 MFC. No summation over t is

implied in Eqs. (2.35) - (2.39). lt is the distance between the electrodes. For the P1

case, the electrodes are supposed to be at the end of the DNS, thus, l1 = 5.2917 mm.

For the P2 case, the electrodes are the top and bottom surfaces of the homogenized

model (see Figure 2.2) thus, l3 = h3 = 0.296 mm. The Actuator Test yields

Ēt = −∆V/lt D̄t = kσ∗tt Ēt

ε̄11 = d∗t1Ēt ε̄22 = d∗t2Ēt ε̄33 = d∗t3Ēt. (2.36)

Finally, the Open-Circuit Tests gives

ε̄11 = SD∗11 σ̄11 ε̄22 = SD∗12 σ̄11 ε̄33 = SD∗13 σ̄11

Ēt = −g∗t1σ̄11 V2 = −Ētlt. (2.37)

Note that with the help of Eq. (1.32) (
[
SD
]

= [SE]− [g][d]T ), the open-circuit elastic

compliance components can be calculated from

SD∗11 =
1

Y E∗
1

− d∗t1d
∗
t1

kσ∗tt
SD∗12 = − ν

E∗
12

Y E∗
1

− d∗t1d
∗
t2

kσ∗tt
SD∗13 = − ν

E∗
13

Y E∗
1

− d∗t1d
∗
t3

kσ∗tt
. (2.38)

Again, no summation on t is implied. Likewise, the piezoelectric voltage coefficient

can be computed with the help of Eq. (1.31) ([g] = [d][βσ])

g∗t1 =
d∗t1
kσ∗tt

. (2.39)

The patch geometry considered is shown in Figure 2.6. It consisted of the repe-

tition of RVEs that are defined in Chapter 4. There were 5 RVEs along x1 and 11

RVEs along x2. A total of six analyses were tested. Each test was solved on a mesh
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1 2

3

Figure 2.6: Perspective view of the MFC patch for numerical tests without a Passive

Area and host substrates.
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of 31,680 C3D20E elements (141,893 nodes). 20 CPUs solved the problem for each

test in about 6 minutes of wallclock time per test. For each load case, the averages

of the local fields in a centrally located RVE were computed from

σ̄ij =

∑N
p=1 σ

(p)
ij V

(p)

Vm
ε̄ij =

∑N
p=1 ε

(p)
ij V

(p)

Vm

D̄i =

∑N
p=1D

(p)
i V (p)

Vm
Ēi =

∑N
p=1E

(p)
i V (p)

Vm
(2.40)

where the superscript (p) on the field variable data corresponds to the integration

point, p, V (p) is the associated integration point volume, and N is the total number of

integration points in the RVE. Note that for the Open Circuit cases, V2 was computed

as the arithmetic mean of the nodal potential for all nodes on the top electrode of the

whole patch. In keeping with the electrical behavior represented in Figure 2.2, note

that D̄3 is not to be compared to the analytical model results. Instead the volume

average of D3 in the active layer alone is computed by

D̄a
3 =

∑Na

p=1D
(p)
3 V (p)

Va
(2.41)

where Na is the total number of integration points in the active layer and Va is the

active layer volume. Figure 2.7 shows both volumes used for volume averaging and

their relative locations.

Tables 2.6 - 2.7 show the comparisons of some macroscopic quantities as computed

from the DNS and that of Eqs. (2.35) – (2.39) used in conjunction with results from

HRM2. The comparison between the DNS and the analytical results for the device

response yields good agreement for both MFCs.

For the P1 actuator case, note that V2 is artificially high due to the in-plane

loading being prescribed on x+1 and x−1 rather than on X+
1 and X−1 . Furthermore, V2

was computed as the arithmetic mean over the entire x+1 face for the Open Circuit

Test. Since there is good agreement between the DNS and the analytical model, the

analytical model is verified along with the electrical behavior in Figure 2.2.

It is notable from Table 2.5 that properties associated to Ē3 (namely d∗31, d
∗
32, d

∗
33,

and κσ∗33/ε0 for the P2 MFC and d∗35, and κσ∗33/ε0 for the P1 MFC) appear to be equal
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(a) Full RVE and volume averaging location.
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(b) Active layer volume and its volume averaging location.

Figure 2.7: Center volumes utilized to compute volume averaged quantities.
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Table 2.6: Macroscopic variable comparison between a DNS of the P1 MFC patch

and the HRM2 effective behavior.

ε̄11 ε̄22 ε̄33 D̄1 × 10−3 Ē1 V1 V2

(µε) (µε) (µε) (µC/mm2) (V/mm) (V) (V)

Short Circuit Test

HRM1 → HRM2 366.1 -109.8 -119.6 4.091 0.0 c c

DNS 347.4 -115.5 -124.1 3.879 -1.0 0.0 0.0

Difference (%) 5.38 -4.93 -3.66 5.46 -100 N/A N/A

Actuator Test

HRM1 → HRM2 818.1 -259.6 -280.2 16.55 2000 0.0 -10583.3

DNS 779.9 -275.2 -291.4 16.15 2002 0.0 -10583.3

Difference (%) 4.91 -5.68 -3.82 2.42 -0.11 0.0 0.0

Open Circuit Test

HRM1 → HRM2 163.8 -45.6 -50.3 0.0 -494.5 0.0 2553.7

DNS 160.0 -49.4 -54.1 0.0 -481.8 0.0 2546.8

Difference (%) 2.40 -7.68 -7.02 0.0 2.62 0 0.27
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Table 2.7: Macroscopic variable comparison between a DNS of the P2 MFC patch

and the HRM2 effective behavior.

ε̄11 ε̄22 ε̄33 D̄a
3 × 10−3 Ē3 V1 V2

(µε) (µε) (µε) (µC/mm2) (V/mm) (V) (V)

Short Circuit Test

HRM1 → HRM2 329.3 -101.6 -116.8 -2.97 0.0 c c

DNS 317.2 -106.6 -122.6 -2.83 0.0 0.0 0.0

Difference (%) 3.82 -4.72 -4.76 4.99 0 N/A N/A

Actuator Test

HRM1 → HRM2 361.5 245.5 -595.9 -27.66 -1216 0.0 360

DNS 344.5 251.7 -589.9 -27.44 -1207 0.0 360

Difference (%) 4.93 -2.45 1.01 0.78 0.77 0 0

Open Circuit Test

HRM1 → HRM2 290.4 -128.0 -52.8 0.0 130.7 0.0 -38.69

DNS 281.6 -132.5 -61.8 0.0 124.1 0.0 -35.8

Difference (%) 3.15 -3.39 -14.61 0 5.3 0 8.10
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to or higher than known active layer properties [47]. Values being higher than the

active layer may be explained by revisiting Figure 2.2 (see Out-of-Plane Electrical

Behavior). Let the electrical potential difference be ∆V = V2 − V1. For a given

∆V , the electrical field in the heterogeneous model will be E3 = −∆V/ha; this is

considered to be the true electric field. However, the electrodes of the present model

are considered to be on the outer surfaces of the full stack of MFC layers. For the

same ∆V , the electric field in the homogenized model will be Ē3 = −∆V/h3. Since

ha < h3 for the MFC, then Ē3 < E3. Therefore, the through-the-thickness electrical

field in the new model will be smaller than the true electrical field and the associated

properties may be larger to preserve the same voltage difference. Nonetheless the

predicted device response will be correct as shown in Table 2.7.

2.4.4 Comparison of Analytical Homogenization Methods for the Full

MFC (Step-2 Homogenization)

Mechanical Properties

Since the definition of the mechanical variables (ie ε̄ij and σ̄ij) in the present

model agree with those of previous models, the effective mechanical properties can be

compared directly. Table 2.8 compares our HRM2 to the common techniques found

in the literature. We also performed homogenization with the “PSRM** + CLPT”

since it is anticipated that it is the simplest and the most commonly used. Since

our HRM2 does not use plate kinematics assumptions, we can assess their effects by

comparing “HRM1 + CLPT” and “PSRM + Eq. (1.68)” to our HRM2. Finally,

note that results in Table 2.8 required an in-plane 90◦ rotation of the electrode layer

properties.

It is clear from Table 2.8 that our HRM2 provides the complete set of elastic

properties for both MFCs. Since the property set is now complete and since various

assumptions were avoided, it is expected that greater energy equivalence between

reality and the homogenized model has been achieved. It is interesting that the HRM1
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with CLPT gives identical results for the in-plane properties as the HRM2. This was

verified for numerous PZT and copper volume fractions. Thus, the Kirchhoff-Love

assumptions are exact for determining the in-plane mechanical properties. This also

means that the PS assumption in Step-2 does not affect the final in-plane mechanical

properties. Another noteworthy observation is that the lateral Young’s Modulus,

Y E∗
2 , is the most adversely affected by the PS assumption. It is underpredicted by

about 8% in both MFCs. This effect is exacerbated by neglecting terms (PSRM**).

Finally, comparing the results from Eq. (1.68) to the HRM2 suggests that FSDT

overestimates G∗13 and G∗23 by about 300% and 100% respectively. Recall in Section

2.4.2 that there was a mistake in the transverse shear moduli from Ref. [48] for the

P1 MFC. It is noted that the Step-2 transverse shear moduli reported in Ref. [123]

seem to have been incorrectly computed for the P1 MFC due to the Step-1 error.

To further characterize the error in Step-2 from using the PSRM in Step-1, we

plot the error for the in-plane mechanical properties at a variety of PZT and cop-

per volume fractions in Figure 2.8. The error on the vertical axes is defined as

((M∗
i |PSRM+CLPT−M∗

i |HRM1+HRM2)/M∗
i |HRM1+HRM2)×100. M∗

i represents the homog-

enized elastic property after Step-2 homogenization for the P1 MFC configuration.

The trends in Figure 2.8 were nearly identical for the P2 MFC configuration so they

are omitted for brevity. The dashed curves show how using the PSRM** exacerbates

the error. Each shade in 2.8(a) - (d) corresponds to a single copper fiber volume frac-

tion as indicated in Figure 2.8(a). By comparing Figure 2.8(a) to 2.8(b), it can be

seen that the PSRM has a greater impact on the overall Y E∗
2 of the transducer than

it does for Y E∗
1 . The Y E∗

2 underprediction is expected since Y E∗
2 of each fiber layer is

underpredicted as was shown in Figures 2.3(a). What was somewhat surprising was

that the PSRM also has an adverse effect for Y E∗
1 of the transducer as shown in Fig-

ure 2.8(a). The error becomes larger at low PZT volume fractions which is in accord

with the Y E∗
1 active layer trends in Figure 2.4(b). One can also observe that the error

is almost zero when the copper volume fraction is zero. This error increases with

increasing copper amounts. Since the electrode layers were rotated 90◦, this suggests,
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Table 2.8: Effective elastic properties for the full MFC in the problem coordinate

system.

HRM1 HRM1 HRM1 PSRM PSRM PSRM**

↓ ↓ ↓ ↓ ↓ ↓

HRM2 CLPT Eq. (1.68) FSDT [123] CLPT CLPT

P1 MFC

Y E∗
1 (GPa) 27.32 27.32 - 27.14 27.23 27.20

Y E∗
2 (GPa) 16.09 16.09 - 14.79 14.80 14.22

Y E∗
3 (GPa) 10.70 - - - - -

GE∗
12 (GPa) 4.53 4.53 - 4.13 4.15 4.15

GE∗
13 (GPa) 2.70 - 10.81 5.39 - -

GE∗
23 (GPa) 2.76 - 5.37 10.50 - -

νE∗12 0.300 0.300 - 0.292 0.295 0.290

νE∗13 0.327 - - - - -

νE∗23 0.228 - - - - -

P2 MFC

Y E∗
1 (GPa) 30.37 30.37 - 30.20 30.29 30.25

Y E∗
2 (GPa) 16.10 16.10 - 14.80 14.81 14.22

Y E∗
3 (GPa) 10.52 - - - - -

GE∗
12 (GPa) 4.13 4.13 - 4.13 4.13 4.13

GE∗
13 (GPa) 2.70 - 10.81 10.50 - -

GE∗
23 (GPa) 2.84 - 5.76 5.39 - -

νE∗12 0.309 0.309 - 0.303 0.305 0.300

νE∗13 0.355 - - - - -

νE∗23 0.237 - - - - -
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that underpredicting Y E∗
2 at the electrode layer will cause underpredictions of Y E∗

1

of the full-stack of layers; especially at higher copper volume fractions. The effect

on the in-plane Poisson’s ratio is smaller but is documented in Figure 2.8(c). Figure

2.8(d) shows that the error in the in-plane shear modulus is largest at higher volume

fractions and that electrode layer is not as influential. Thus, it is recommended to

use fiber layer properties from the HRM1 rather than the PSRM.
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Figure 2.8: The effect of assuming ε33 = E1 = E2 = 0 in Step-1 on the in-plane

Young’s moduli in Step-2 at a variety of PZT and electrode volume fractions. The

dashed curves are when the plane-stress assumption is used with dropped terms

(Eq. (1.64)). The vertical dashed lines are at V f
PZT = 0.8654 [47].
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Next, we evaluate the effect of using Eq. (1.68) presented by Li et al [123] for

the P1 MFC. Again, the trends in Figure 2.9 were nearly identical for the P2 MFC

configuration and thus they are omitted. Figure 2.9 is a plot of the effective transverse

shear moduli of the full MFC stack of layers for a variety of PZT and copper fiber

volume fractions. The dashed curves are Eq. (1.68) and the solid curves are for the

HRM2 presented here. Each fiber layer was homogenized by HRM1. It is apparent

that, for GE∗
23 , both methods are in agreement for low piezoelectric fiber volume

fractions and zero copper fiber volume fraction for the electrode layer. Otherwise,

FSDT will overshoot GE∗
23 . There is little agreement between FSDT and HRM2 for

GE∗
13 . These results suggest that FSDT will vastly overpredict the transverse shear

stiffness for almost all volume fraction combinations.
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Figure 2.9: Overall transverse shear moduli comparison between HRM2 and FSDT

(Eq. (1.68)) at a variety of PZT and electrode volume fractions. The solid curves

are from HRM2 and the dashed curves are Eq. (1.68). The vertical dashed lines are

at V f
PZT = 0.8654 [47].
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Piezoelectric and Dielectric Properties

Note that the permittivities and the piezoelectric coupling coefficients of the

present model cannot be compared to any other work, because the device proper-

ties here have different definitions of the transverse macroscopic electric field in the

active layer (E3). This difference, which is allowable, comes from differing locations

of the electrodes in the homogenized models.

Recall from Section 2.3.2 that the different electrode spacings allowed for a re-

definition of some variables. Recall from Eq. (2.31) that, in the active layer, the

transverse electric field is E3 = Ē3/V
a and the transverse electric displacement is

D3 = D̄3. Prior works let E3 = Ē3 which will result in D3 = D̄3/V
a for the Short-

Circuit Test (Eq. (2.35)) and D3 = D̄3 in the Actuator Test (Eq. (2.36)). This dual

definition of D3 is an artifact of the fact that only part of the domain is electrically

active and yet the induced strain from the actuator test is present in the active and

passive layers. A constitutive relation that is comparable to prior works can be ob-

tained from the HRM2 if the recommended definition of E3 = Ē3/V
a and D3 = D̄3

is replaced with E3 = Ē3 and D3 = D̄3/V
a. The resulting properties obtained with

this transformation appear in Table 2.9. Note that our approach is able to obtain the

full set of piezoelectric and dielectric coefficients of the full MFC stack of layers.

The definition adopted throughout this dissertation (eg, Chapter 4) is E3 = Ē3/V
a

and D3 = D̄3. This is because the transverse electric displacement in the active

layer can be known without post-processing and voltage at the electrodes of the

homogenized model need not be scaled. For RVE analysis, this would mean that

the transverse electric displacement should be averaged in the active layer and the

transverse electric field should be averaged throughout the full RVE domain (this was

also done with the DNS results in Tables 2.6 - 2.7). This clarifies the disagreement

between Trindade and Benjeddou [51, 52] and Prasath and Arockiarajan [53–55, 70]

with regard to which volume to consider when averaging the electrical fields in an

RVE analysis.



87

Table 2.9: Comparison of the modified HRM2 (with E3 = Ē3 and D3 = D̄3/V
a)

effective piezoelectric and dielectric properties to the literature and the active layer

in problem coordinates.

HRM1 PSRM HRM1 PSRM

↓ ↓ ↓ ↓

HRM2 FSDT [123] N/A N/A

P1 MFC

d∗11 (pC/N) 409.1 410.9 435.9 435.9

d∗12 (pC/N) -129.8 -127.9 -173.5 -176.3

d∗13 (pC/N) -140.1 - -183 -

d∗26 (pC/N) 6.94 - 7.739 -

d∗35 (pC/N) 337.5 - 555.1 -

κσ∗11/ε0 934.37 - 1593 1593.1

κσ∗22/ε0 18.9 - 31.1 -

κσ∗33/ε0 1023.3 - 1682.8 -

P2 MFC

d∗31 (pC/N) -180.7 -180.9 -183 -183.5

d∗32 (pC/N) -122.8 -142.5 -173.5 -153.2

d∗33 (pC/N) 297.9 - 435.9 -

d∗24 (pC/N) 4.706 - 7.739 -

d∗15 (pC/N) 337.5 - 555.1 -

κσ∗11/ε0 1023.3 - 1682.8 -

κσ∗22/ε0 18.9 - 31.1 -

κσ∗33/ε0 949.7 - 1593 1600.1
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It was also interesting to consider the constraining effects that other copper volume

fractions have on the P1 device properties in Figure 2.10. These effects are also

plotted for transducers that operate as the P2 MFC in Figure 2.11. These plots have

the recommended HRM2 with D3 = D̄3 and E3 = Ē3/V
a.
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(c) Through-the-thickness piezoelectric property.

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800

1000

V
PZT

f

k 1
1

Σ
*
�Ε

0

(d) Fiber axis dielectric property.

Figure 2.10: PZT and copper fiber volume fraction study with the HRM2 of the P1

MFC. Results with the recommended D3 = D̄3 and E3 = Ē3/V
a are shown. The

vertical dashed lines are at V f
PZT = 0.8654.
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(a) Through-the-thickness piezoelectric property.
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(c) Fiber axis piezoelectric property.
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Figure 2.11: PZT and copper fiber volume fraction study with the HRM2 of the P2

MFC. Results with the recommended D3 = D̄3 and E3 = Ē3/V
a are shown. The

vertical dashed lines are at V f
PZT = 0.8654.
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2.4.5 Discussion

Using the PS assumption in Step-1 led to large underpredictions for both the

elastic modulus and piezoelectric strain coefficients along the lateral direction (y2

direction) of the MFC (see Tables 2.8 and 2.9). Although this is not the principal

direction that such transducers are intended to operate, this may lead to significant

errors when analyzing orientation angles of orthotropic host substrates as in Ref. [121].

Moreover, errors will compound for systems that use distributed transducers such as

in Ref. [122]. Finally, the increases in the elastic modulus along the transducer width

should give better performance for smart-structures that actuate/sense along the

fiber direction but are load bearing along its width (for example morphing compliant

aircraft wings as in Ref. [125]).

2.4.6 Limitations

1. The micromechanics model idealizes the MFC microstructure to be a stack of

homogeneous layers. Thus geometrical considerations of the fibers are not con-

sidered. Furthermore, an artificial discontinuity at the interface is introduced

by modeling the MFC as a stack of homogeneous layers.

2. The method assumes perfect bonding between all constituents of the MFC.

3. Although our approach is general for any layup of piezoelectric layers, it does

not capture any bending behavior of unsymmetric layups. Luckily the MFC

has a symmetric layup.

4. The piezoelectric properties of the PZT are known to be dependent on the

electric field [52]. No consideration about this is given here. The hysteretic

behavior of the MFC is not captured [148].
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5. Uniformly and fully polarized PZT was assumed for both the P1 and P2 MFC.

It is known, however, that the P1 MFC is nonuniformly poled [11] and has small

regions of unpoled and partially poled material.
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3. MIXED BOUNDARY CONDITIONS FOR FINITE

THICKNESS EFFECTS

3.1 Theory Development for Active Layers

This chapter presents new boundary conditions that are a mixture of the Pe-

riodic Boundary Conditions (PBCs) for the in-plane faces and homogeneous stress

boundary conditions (HSBCs) on the out-of-plane faces. This mixture of BCs has

been proposed by Espadas-Escalante et al [149] to determine the effective proper-

ties of woven composites for the purely mechanical case. The proposed boundary

conditions are shown to satisfy a previous piezoelectric extension to the well-known

Hill-Mandel macrohomogeneity condition. In order to carefully examine the symme-

try of the properties that are obtained, a post-processing procedure that provides all

81 effective properties is presented.

3.2 RVE Analysis for In-plane Periodic Piezocomposites

In multiscale modeling, real boundary conditions are imposed on the boundaries of

macroscopic structures. The boundary conditions we impose on an RVE to obtain the

effective properties are fictitious. The Hill-Mandel condition can provide guidelines

as to which boundary conditions to apply. The Hill-Mandel condition was extended

for the non-dissipative piezoelectric case by Schroder [62]. We wish to find under

which conditions we will have

〈σklεkl + EiDi〉 = σ̄klε̄kl + ĒiD̄i. (3.1)

Taking the difference between these two quantities gives

Π = 〈σklεkl + EiDi〉 −
(
σ̄klε̄kl + ĒiD̄i

)
. (3.2)
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Thus the needed conditions are met when Π vanishes. Using the following identity∫∫∫
Vm

εijσ̄ijdVm = σ̄ij

∫∫∫
Vm

εijdVm = σ̄klε̄kl∫∫∫
Vm

EiD̄idVm = D̄i

∫∫∫
Vm

EidVm = D̄iĒi

we have

〈σklεkl + EiDi〉−(
σ̄klε̄kl + ĒiD̄i

)
=

1

Vm

∫∫∫
Vm

(σijui,j − ui,jσ̄ij) dVm

+
1

Vm

∫∫∫
Vm

(
EiDi − ĒiD̄i

)
dVm

=
1

Vm

∫∫∫
Vm

(σijui,j − ui,jσ̄ij) dVm

+
1

Vm

∫∫∫
Vm

(
−Diφ,i + φ,iD̄i

)
dVm

=
1

Vm

∫∫∫
Vm

(σijui,j − σ̄ijui,j − σij ε̄ij + σ̄ij ε̄ij) dVm

+
1

Vm

∫∫∫
Vm

(
D̄iφ,i −Diφ,i −DiĒi + D̄iĒi

)
dVm

=
1

Vm

∫∫∫
Vm

(σij − σ̄ij) (ui,j − ε̄ij) dVm

+
1

Vm

∫∫∫
Vm

(
D̄i −Di

) (
φ,i + Ēi

)
dVm

=
1

Vm

∫∫∫
Vm

(σik − σ̄ik) (ui,k − δjkε̄ij) dVm

+
1

Vm

∫∫∫
Vm

(
D̄k −Dk

) (
φ,k + δikĒi

)
dVm

=
1

Vm

∫∫∫
Vm

(σik − σ̄ik) (ui,k − yj,kε̄ij) dVm

+
1

Vm

∫∫∫
Vm

(
D̄k −Dk

) (
φ,k + yi,kĒi

)
dVm. (3.3)

Note that

(σik − σ̄ik) (ui,k − yj,kε̄ij) = σikui,k − σ̄ikui,k − σikyj,kε̄ij + σ̄ikyj,kε̄ij. (3.4)
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From the definition of the chain rule we have

(σikui),k = ���
�: 0σik,kui + ui,kσik = ui,kσik

(σikyj),k = ���
�: 0σik,kyj + σikyj,k = σikyj,k

(σ̄ikui),k = ���
�: 0σ̄ik,kui + ui,kσ̄ik = ui,kσ̄ik

(σ̄ikyj),k = ���
�: 0σ̄ik,kyj + σ̄ikyj,k = σ̄ikyj,k (3.5)

where σik,k = 0 was used from the equilibrium of linear momentum in the absence of

body forces (cf Eq. (1.4)).

(σik − σ̄ik) (ui,k − yj,kε̄ij) = (σikui),k − (σ̄ikui),k − ε̄ij (σikyj),k + ε̄ij (σ̄ikyj),k

= (σikui),k − (σ̄ikui),k − (ε̄ijσikyj),k + (ε̄ijσ̄ikyj),k

= [(σik − σ̄ik) (ui − yj ε̄ij)],k (3.6)

In like manner from Eq. (3.3)

(
D̄k −Dk

) (
φ,k + yi,kĒi

)
= D̄kφ,k −Dkφ,k + D̄kyi,kĒi −Dkyi,kĒi (3.7)

From the definition of the chain rule we have

(Dkφ),k =
�
��
�* 0

Dk,kφ + φ,kDk = φ,kDk

(Dkyi),k = ���
�: 0

Dk,kyi +Dkyj,k = Dkyi,k(
D̄kφ

)
,k

= ��
��*

0

D̄k,kφ + φ,kD̄k = φ,kD̄k(
D̄kyi

)
,k

=
��

��*
0

D̄k,kyi + D̄kyi,k = D̄kyi,k (3.8)

where Dk,k = 0 was used from Gauss’ Law (cf Eq. (1.2)) when there are zero charges

in Vm.

(
D̄k −Dk

) (
φ,k + yi,kĒi

)
=
(
D̄kφ

)
,k
− (Dkφ),k + Ēi

(
D̄kyi

)
,k
− Ēi (Dkyi),k

=
(
D̄kφ

)
,k
− (Dkφ),k +

(
ĒiD̄kyi

)
,k
−
(
ĒiDkyi

)
,k

=
[(
D̄k −Dk

) (
φ+ yiĒi

)]
,k

(3.9)
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Eq. (3.3) now reads

Π =
1

Vm

∫∫∫
Vm

[(σik − σ̄ik) (ui − yj ε̄ij)],k dVm

+
1

Vm

∫∫∫
Vm

[(
D̄k −Dk

) (
φ+ yiĒi

)]
,k
dVm

=
1

Vm

∫∫
Sm

nk (σik − σ̄ik) (ui − yj ε̄ij) dSm

+
1

Vm

∫∫
Sm

nk
(
D̄k −Dk

) (
φ+ yiĒi

)
dSm

=Πm + Πe (3.10)

where we have let

Πm = 1
Vm

∫∫
Sm
nk (σik − σ̄ik) (ui − yj ε̄ij) dSm

Πe = 1
Vm

∫∫
Sm
nk
(
D̄k −Dk

) (
φ+ yiĒi

)
dSm. (3.11)

Sm is the exterior boundary surfaces of the RVE and nk is the outward pointing unit

normal on Sm. Thus the piezoelectric macrohomogeneity condition is satisfied when

both surface integrals vanish and therefore Π = 0 in Eq. (3.2).

It is noted here that there are infinitely many ways to satisfy the piezoelectric

macrohomogeneity condition. One way to set Π = 0 is by letting (ui − yj ε̄ij)+ =

(ui − yj ε̄ij)− and
(
φ+ yiĒi

)+
=
(
φ+ yiĒi

)−
at every point on the boundary of the

RVE. These are the periodic boundary conditions for a piezoelectric homogenization

problem. In practice, these can be implemented with Eq. (1.53) and (1.54) respec-

tively.

3.2.1 Proposed Boundary Conditions

Here we account for the reality that the RVE is not periodic along the x3 direction.

As mentioned, our approach retains the PBCs only for the in-plane faces of an RVE.

The out-of-plane faces have the HSBCs for the mechanical BCs and equipotential

conditions for the representation of electrodes. To give an overview of the RVE

analysis, nine boundary value problems (BVPs) are created to obtain the complete set
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of piezoelectric properties. Each BVP must satisfy Π = 0 to ensure that piezoelectric

macrohomogeneity condition is satisfied.

The problems can be categorized into sensor and actuator problems. In this

paper, the sensor behavior is for the first six of the nine BVPs. The predominant

behaviors are three in-plane (Problems 1, 2, and 6) deformations and three out-of-

plane deformations (Problems 3, 4, and 5). For these cases, the electrodes on X3

need to be grounded in order to obtain the short-circuit stiffness of the composite.

Problems 7-9 are the actuator BVPs. The three BVPs need to respectively correspond

to three components of the electrical field (Ei) loading.

It is important to note that many of the boundary conditions presented here

(and in prior works [36,47,52]) depend on a volume averaged quantity over the RVE

domain. Since the volume average of a field variable is not generally known before

solving a BVP, we distinguish between an applied quantity and the resulting volume

average of that quantity after the BVP has been solved. Thus, here and throughout

this article, a zero superscript indicates that the quantity is an applied quantity (and

an overbar indicates volume average as already mentioned). Since finite elements are

used here to solve the BVPs, the resulting volume average fields are found from Eq.

(2.40) and is repeated here

σ̄ij =

∑N
p=1 σ

(p)
ij V

(p)

Vm
ε̄ij =

∑N
p=1 ε

(p)
ij V

(p)

Vm

D̄i =

∑N
p=1D

(p)
i V (p)

Vm
Ēi =

∑N
p=1E

(p)
i V (p)

Vm
. (3.12)

3.2.2 Mechanical BCs

To satisfy Πm = 0, from Eq. (3.11), Πm is split as

Πm =
1

Vm

∫∫
S1

nk (σik − σ̄ik) (ui − yj ε̄ij) dS1

+
1

Vm

∫∫
S2

nk (σik − σ̄ik) (ui − yj ε̄ij) dS2

+
1

Vm

∫∫
S3

nk (σik − σ̄ik) (ui − yj ε̄ij) dS3. (3.13)
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Each BC will be shown to vanish each surface integral individually.

Since PBCs will be used in-plane, the notation in Eq. (1.53) is then slightly

modified by substituting the volume average strain by the applied strain, ε0ij. Later

we verify if ε0ij = ε̄ij. It will be useful to expand Eq. (1.53) and in the applied notation

as

u+i − u−i =ε0i1(y
+
1 − y−1 ) + ε0i2(y

+
2 − y−2 )

+ε0i3(y
+
3 − y−3 ). (3.14)

In-plane Faces

Since the Xα surfaces are respectively normal to nα, then, for a periodic mesh, on

X1 we have

For theX1 faces : y+1 − y−1 = h1

y+2 = y−2

y+3 = y−3

For theX2 faces : y+1 = y−1

y+2 − y−2 = h2

y+3 = y−3 . (3.15)

Thus from Eq. (3.14) we are left with

For theX1 faces : u+1 − u−1 = ε011(y
+
1 − y−1 ) = ε011h1

u+2 − u−2 = ε021(y
+
1 − y−1 ) = ε021h1

u+3 − u−3 = ε031(y
+
1 − y−1 ) = ε031h1

For theX2 faces : u+1 − u−1 = ε012(y
+
2 − y−2 ) = ε012h2

u+2 − u−2 = ε022(y
+
2 − y−2 ) = ε022h2

u+3 − u−3 = ε032(y
+
2 − y−2 ) = ε032h2. (3.16)

Note that, in general, ε0ij need not equal ε̄ij.
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Here we show that ε̄αβ can be computed theoretically prior to solving any BVP

on any RVE as follows. First notice that

〈εij〉 =ε̄ij =
1

Vm

∫∫∫
Vm

εijdVm =
1

2Vm

∫∫∫
Vm

(ui,j + uj,i) dVm

=
1

2Vm

∫∫
Sm

(uinj + ujni) dSm. (3.17)

Then ε̄11 can be found by

ε̄11 =
1

2Vm

∫∫
Sm

(
u01n1 + u01n1

)
dSm =

1

Vm

∫∫
Sm

u01n1dSm. (3.18)

Since n1 is nonzero only on the X1 faces, we have

ε̄11 =
1

Vm

∫∫
X1

u01n1dX1 =
1

Vm

∫∫
X1

(
u+1 − u−1

)
dX1

=
1

Vm

∫∫
X1

ε011h1dX1 = ε011 (3.19)

since
∫∫

X1
dX1 = h2h3 and Vm = h1h2h3. Likewise for ε̄22, we have

ε̄22 =
1

Vm

∫∫
Sm

u02n2dSm =
1

Vm

∫∫
X2

u02n2dX2

=
1

Vm

∫∫
X2

(
u+2 − u−2

)
dX2 =

1

Vm

∫∫
X2

ε022h2dX2 = ε022 (3.20)

since
∫∫

X2
dX2 = h1h3. Finally for ε̄12 we have

2ε̄12 =
1

Vm

∫∫
Sm

(
u01n2 + u02n1

)
dSm =

1

Vm

(∫∫
X2

u01n2dX2 +

∫∫
X1

u02n1dX1

)
=

1

Vm

(∫∫
X2

(
u+1 − u−1

)
dX2 +

∫∫
X1

(
u+2 − u−2

)
dX1

)
=

1

Vm

(∫∫
X2

ε012h2dX2 +

∫∫
X1

ε021h1dX1

)
= 2ε012 (3.21)

since ε012 = ε021. Therefore, ε̄αβ = ε0αβ for any RVE with in-plane PBCs. Notice that

there are transverse shear strains in Eq. (3.16). Since a theoretical proof on how

to know ε̄3α is not given here, this boundary condition is obtained iteratively until

ε̄3α = ε03α. That is, for a given BVP, ε03α is initially applied. ε̄3α is then computed and

the u3 BCs on the in-plane faces are updated according to (3.16) but with ε03α = ε̄3α.

This process is repeated until |ε̄32 − ε032| < 10−9 and |ε̄31 − ε031| < 10−9.

The PBCs imply that t+i = −t−i . Since PBCs are on the in-plane faces for all nine

BVPs, the integrals over Sα vanish in Eq. (3.13).
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Out-of-plane Faces

If left as is, the out-of-plane properties would be unobtainable. Note that the

mechanical PBCs are not enforced on the X3 faces. Instead we apply the HSBCs

t0i = σ0
ijnj. (3.22)

Here t0i are the applied tractions and σ0
ij is a constant stress tensor. We apply this

condition to X+
3 and X−3 thus

t0i = σ0
i3n3. (3.23)

σ̄i3 can also be found prior to solving any BVP. Thus we seek to know what σ̄i3 is

when the out-of-plane RVE loading is determined by Eq. (3.23) and when the in-plane

faces are constrained by the PBCs. First note that

σij = σikδjk = σik
∂yj
∂yk

= (σikyj),k − σik,kyj = (σikyj),k (3.24)

where σik,k = 0 due to static equilibrium. An integration through the volume and an

application of the divergence theorem gives

〈σi3〉 =σ̄i3 =
1

Vm

∫∫∫
Vm

(σiky3),kdVm =
1

Vm

∫∫
Sm

σiky3nkdSm

=
1

Vm

∫∫
Sm

tiy3dSm. (3.25)

Splitting the surface integral over Xi gives

σ̄i3 =
1

Vm

(∫∫
X1

tiy3dX1 +

∫∫
X2

tiy3dX2

+

∫∫
X3

tiy3dX3

)
. (3.26)

PBCs on the Xα faces imply that t+i = −t−i for every y3. Thus the surface integrals

over the in-plane faces vanish. Also note that ti = t0i = σ0
ijnj on the X3 faces. Eq.

(3.26) simplifies to

σ̄i3 =
1

Vm

∫∫
X3

σ0
ijnjy3dX3 =

1

Vm

∫∫
X3

σ0
i3n3y3dX3.

=
σ0
i3

Vm

(∫∫
X+

3

y3n3dX
+
3 +

∫∫
X−3

y3n3dX
−
3

)
. (3.27)
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Note that on X+
3 we have n3 = 1 and y3 = h3/2. On X−3 we have n3 = −1 and

y3 = −h3/2. Thus

σ̄i3 =
σ0
i3

Vm

(
h3
2

∫∫
X+

3
dX+

3 + h3
2

∫∫
X−3

dX−3

)
= σ0

i3 (3.28)

since
∫∫

X3
dX3 = h1h2.

The integral over S3 in Eq. (3.13) has nα = 0 leaving n3 = ±1. Thus the integral

will vanish since σi3 = σ0
i3 on the boundary and σ̄i3 = σ0

i3 from Eq. (3.28); which

completes the proof of Πm = 0 for each of the nine BVPs.

3.2.3 Electrical BCs

First, we substitute q = −Dknk in the second part of Eq. (3.11)

Πe =
1

Vm

∫∫
Sm

(
nkD̄k + q

) (
φ+ yiĒi

)
dSm. (3.29)

Then the equation is split as before to yield

Πe =
1

Vm

(∫∫
S1

(
nkD̄k + q

) (
φ+ yiĒi

)
dS1

+

∫∫
S2

(
nkD̄k + q

) (
φ+ yiĒi

)
dS2

+

∫∫
S3

(
nkD̄k + q

) (
φ+ yiĒi

)
dS3

)
. (3.30)

Like the mechanical BCs, each of the integrals is shown to vanish under the selected

BCs. It will also be useful to expand Eq. (1.54) and in the applied notation as

φ+ − φ− =− E0
1(y+1 − y−1 )− E0

2(y+2 − y−2 )

−E0
3(y+3 − y−3 ). (3.31)

In-plane Faces

For the in-plane faces, the continuity of the electrical potential is enforced with

the electrical PBCs. Eq. (3.15) also applies here so Eq. (3.31) becomes

For theX1 faces : φ+ − φ− = −E0
1h1

For theX2 faces : φ+ − φ− = −E0
2h2. (3.32)
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Take note that Ēα can also be known a priori to any FE analyses. Recall that

the electric field is defined as the negative gradient of the electric potential (cf Eq.

(1.5)). Thus, an integration over the volume followed by a utilization of the divergence

theorem yields

〈Ei〉 = Ēi = − 1

Vm

∫∫∫
Vm

φ,idVm = − 1

Vm

∫∫
Sm

φnidSm. (3.33)

For the in-plane electric fields we have

Ē1 =− 1

Vm

∫∫
X1

φn1dX1 = − 1

Vm

∫∫
X1

(
φ+ − φ−

)
dX1

=
1

Vm

∫∫
X1

E0
1h1dX1 = E0

1 . (3.34)

Likewise

Ē2 =− 1

Vm

∫∫
X2

φn2dX2 = − 1

Vm

∫∫
X2

(
φ+ − φ−

)
dX2

=
1

Vm

∫∫
X2

E0
2h2dX2 = E0

2 . (3.35)

Since Ēα = E0
α, Eq. (3.32) will vanish the integrals over Sα in Eq. (3.30) for all nine

BVPs. Thus only the out-of-plane surface integral remains.

Out-of-plane Faces

In general, the presence of electrodes is represented best by the equipotential

condition. Thus, for Problems 1-6, φ+ = φ− = 0 on X3 so as to represent the short-

circuit condition. The question to answer next is what should the electrical BCs on

X3 be for the actuator problems; Problems 7 to 9.

It supposed that real piezoelectric devices do not have electrodes on every exterior

surface so as to capture electrical behavior in all three directions. As mentioned

earlier, only two opposing surfaces are typically coated with electrodes. The load case

for E0
3 (Problem 9) is straightforward since an electrode is actually present on X3. For

this case, the electric potential is set to be φ+ = c1 and φ− = c2 on X3, where c1−c2 6=

0. The load cases for E0
α (Problems 7 and 8) are not as straightforward because the
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actuating electrodes would be on in-plane boundaries of the device (x+α and x−α ) and

not on in-plane boundaries of the RVE (X+
α and X−α ). Nonetheless, we still seek to

obtain a complete set of effective properties. Thus we seek boundary conditions that

will produce a uniform in-plane electric field if the RVE were a homogeneous material.

The electrical BCs options for X3 are

φ+ = φ− = 0 φ+ − φ− = 0 q+ = q− = 0. (3.36)

The selected BC on X3 is q+ = q− = 0. This is because if in-plane electric fields were

being applied, the electrodes on X3 are expected to be absent. Thus it could not be

short-circuited nor would the potential need to be periodic on X3.

Next, for every BVP, we need to examine whether the electrical BCs for X+
3 and

X−3 satisfy the remaining surface integral in Eq. (3.30) which is written here

Πe =
1

Vm

∫∫
S3

(
nkD̄k + q

) (
φ+ yiĒi

)
dS3. (3.37)

Problems 1-6 and 9 have electrodes so φ− = V1 on X−3 and φ+ = V2 on X+
3 where

V1 and V2 are constants. Substituting these constants into Eq. (3.31) and noting

that, for a periodic mesh, we have y+1 = y−1 , y+2 = y−2 , y+3 − y−3 = h3, then we are left

with

V2 − V1 = −E0
3h3. (3.38)

To complete the proof for Πe = 0, we just need to show that E0
3 = Ē3 under the

equipotential difference. In like manner from Eq. (3.34) - (3.35) we have

Ē3 =− 1

Vm

∫∫
X3

φn3dX3 = − 1

Vm

∫∫
X3

(
φ+ − φ−

)
dX3

=
1

Vm

∫∫
X3

E0
3h3dX3 = E0

3 . (3.39)

and thus, the equipotential BCs satisfy the piezoelectric macrohomogeneity condition.

Finally, we address Problems 7 and 8 which are charge free on the out-of-plane

faces. Among the many ways to have Πe equal to zero in Eq. (3.37), we can choose

to let
(
nkD̄k + q

)
= 0. Thus, we need to show if nkD̄k = 0 when q+ and q− are
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zero. Since nα = 0 and n3 = ±1 on X+
3 and X−3 , it is sufficient to show that D̄3 = 0

when q+ = q− = 0. Proceeding in a similar way to Eq. (3.24), it can first be shown

that Dj = (Dkyj),k. An integration through the volume and an application of the

divergence theorem gives

〈D3〉 =D̄3 =
1

Vm

∫∫∫
Vm

(Dky3),kdVm =
1

Vm

∫∫
Sm

Dky3nkdSm

=
1

Vm

∫∫
Sm

qy3dSm = 0. (3.40)

This is because q+ = −q− on Xα from the PBCs and q = 0 on X3 from the absence of

electrodes. This concludes the derivations for the boundary conditions and how each

BVP rigorously satisfies the piezoelectric macrohomogeneity condition. In summary

the boundary conditions we have arrived at are shown in Table 3.1.

Table 3.1. In-plane periodic boundary conditions for

RVE analysis of thin piezocomposites.

Problem X−1 /X
+
1 X−2 /X

+
2 X−3 /X

+
3

1 u+1 − u−1 = h1 u+1 − u−1 = 0 t+i = 0; t−i = 0

u+2 − u−2 = 0 u+2 − u−2 = 0

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2

φ+ − φ− = 0 φ+ − φ− = 0 φ+ = 0; φ− = 0

2 u+1 − u−1 = 0 u+1 − u−1 = 0 t+i = 0; t−i = 0

u+2 − u−2 = 0 u+2 − u−2 = h2

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2

φ+ − φ− = 0 φ+ − φ− = 0 φ+ = 0; φ− = 0

3 u+α − u−α = 0 u+α − u−α = 0 t+α = 0; t−α = 0

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2 t+3 = 1; t−3 = −1

φ+ − φ− = 0 φ+ − φ− = 0 φ+ = 0; φ− = 0

4 u+α − u−α = 0 u+α − u−α = 0 t+1 = 0; t−1 = 0

Continued on next page
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Table 3.1 – continued from previous page

Problem X−1 /X
+
1 X−2 /X

+
2 X−3 /X

+
3

t+2 = 1; t−2 = −1

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2 t+3 = 0; t−3 = 0

φ+ − φ− = 0 φ+ − φ− = 0 φ+ = 0; φ− = 0

5 u+α − u−α = 0 u+α − u−α = 0 t+1 = 1; t−1 = −1

t+2 = 0; t−2 = 0

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2 t+3 = 0; t−3 = 0

φ+ − φ− = 0 φ+ − φ− = 0 φ+ = 0; φ− = 0

6 u+1 − u−1 = 0 u+1 − u−1 = h2/2 t+i = 0; t−i = 0

u+2 − u−2 = h1/2 u+2 − u−2 = 0

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2

φ+ − φ− = 0 φ+ − φ− = 0 φ+ = 0; φ− = 0

7 u+α − u−α = 0 u+α − u−α = 0 t+i = 0; t−i = 0

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2

φ+ − φ− = −h1 φ+ − φ− = 0 q+ = 0; q− = 0

8 u+α − u−α = 0 u+α − u−α = 0 t+i = 0; t−i = 0

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2

φ+ − φ− = 0 φ+ − φ− = −h2 q+ = 0; q− = 0

9 u+α − u−α = 0 u+α − u−α = 0 t+i = 0; t−i = 0

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2

φ+ − φ− = 0 φ+ − φ− = 0 φ+ = −h3; φ− = 0
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For an example, Problem 1 considers ε011 = 1 and all other ε0αβ, σ0
i3, and E0

i to be

equal to zero. Note that letting σ0
i3 = 0 leads to the X3 faces being traction free.

Then the required mechanical equation constrains for the in-plane faces are:

For theX1 faces : u+1 − u−1 = ε011(y
+
1 − y−1 ) = h1

u+2 − u−2 = ε021(y
+
1 − y−1 ) = 0

u+3 − u−3 = ε031(y
+
1 − y−1 ) = ε031h1

For theX2 faces : u+1 − u−1 = ε012(y
+
2 − y−2 ) = 0

u+2 − u−2 = ε022(y
+
2 − y−2 ) = 0

u+3 − u−3 = ε032(y
+
2 − y−2 ) = ε032h2. (3.41)

Then one needs to compare whether ε03α = ε̄3α. If not, the BVP needs to be solved

again after updating the u3 BCs on the in-plane faces with u+3 − u−3 = ε̄3α(y+α − y−α ).

3.3 Rectification of the PBCs

As mentioned in Chapter 1, there have been many issues with the application of

the PBCs. The issue with [58] is that they assumed that ε0ij = ε̄ij. In the previous

section it was shown that ε̄αβ = ε0αβ, Ēα = E0
α for any RVE with in-plane PBCs. All

that is left is to show that ε̄i3 = ε0i3 and Ē3 = E0
3 with the PBCs are utilized on the

out-of-plane faces.

Following Eq. (3.17), ε̄33 can be found with

ε̄33 =
1

Vm

∫∫
Sm

u03n3dSm =
1

Vm

∫∫
X3

u03n3dX3

=
1

Vm

∫∫
X3

(
u+3 − u−3

)
dX3 =

1

Vm

∫∫
X3

ε033h3dX3 = ε033 (3.42)
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since
∫∫

X3
dX3 = h1h2. For ε̄13 we have

2ε̄13 =
1

Vm

∫∫
Sm

(
u01n3 + u03n1

)
dSm =

1

Vm

(∫∫
X3

u01n3dX3 +

∫∫
X1

u03n1dX1

)
=

1

Vm

(∫∫
X3

(
u+1 − u−1

)
dX3 +

∫∫
X1

(
u+3 − u−3

)
dX1

)
=

1

Vm

(∫∫
X3

ε013h3dX3 +

∫∫
X1

ε031h1dX1

)
= 2ε013. (3.43)

For ε̄23 we have

2ε̄23 =
1

Vm

∫∫
Sm

(
u02n3 + u03n2

)
dSm =

1

Vm

(∫∫
X3

u02n3dX3 +

∫∫
X2

u03n2dX2

)
=

1

Vm

(∫∫
X3

(
u+2 − u−2

)
dX3 +

∫∫
X2

(
u+3 − u−3

)
dX2

)
=

1

Vm

(∫∫
X3

ε023h3dX3 +

∫∫
X2

ε032h2dX2

)
= 2ε023. (3.44)

Then, following Eq. (3.33)

Ē3 =− 1

Vm

∫∫
X3

φn3dX3 = − 1

Vm

∫∫
X3

(
φ+ − φ−

)
dX3

=
1

Vm

∫∫
X3

E0
3h3dX3 = E0

3 . (3.45)

Therefore ε̄ij = ε0ij and Ēi = E0
i for any RVE with PBCs on every boundary face.

3.4 Post-Processing for Mixed BCs and PBCs

The effective properties can be found after solving every BVP. A new post-

processing scheme was developed to enable crosschecking the symmetry of the ob-

tained constitutive relations. It was also found to be a unified procedure for the

effective properties. The same procedure is applicable to any piezoelectric homoge-

nization; regardless of BCs and the material poling direction. First we numerically

compute components of σ̄ij, ε̄ij, D̄i, and Ēi with Eq. (2.40) (note that it is not nec-

essary to compute some of the field averages because of Eqs. (3.19), (3.20), (3.21),

(3.28), (3.34), (3.35), (3.39) and (3.40)). Then, for each of the nine BVPs, nine
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equations are formulated from Eq. (1.51) and the numerically computed field aver-

ages; yielding a total of 81 equations. There are 81 unknowns and they are effective

properties in Eq. (1.51). They can be obtained by solving the linear system.

3.5 Results

The following sections show results obtained from AbaqusR©. Python scripts were

implemented to facilitate the modeling. All element types were C3D20E. The dielec-

tric and mechanical stiffness coefficients are scaled with a scale factor in an effort to

avoid numerical errors. The chosen scale factor, s, was 1010. The scaling is performed

with

1

s
CE
ijkl

s

s
ekij

s

1
kεij. (3.46)

After performing the volume averaging and post-processing, the effective properties

are obtained by performing the inverse operation of each property type.

3.5.1 Case A Example

As mentioned earlier, composites that have unidirectional, continuous, and pris-

matic fibers that span an in-plane dimension is an important case (see Figure 1.6,

Case A). Here we present a comparison between boundary conditions for rectangular

SONOX P502 piezoceramic fibers and epoxy. The thickness is fixed and the fiber

width is varied. The constituent information as well as the thickness (0.18 µm) was

obtained from Deraemaeker et al [48]. The relevant properties of SONOX P502 can

be found in Table 2.1. For the epoxy we take Y = 2.9 GPa, ν =0.3, and κ/ε0 = 4.25.

Here it is important to disclose that the MIX-sensor (Problem 4) and MIX-

actuator (Problem 8) BVPs produced differing properties for e∗24 and therefore d∗24.

This would lead to an asymmetric constitutive relation that is due to the modelling

choices and is not expected to be a physical property of MFCs. Figure 3.1 shows

d∗24 and the other secondary properties d∗15, and kσ∗αα (no summation on α implied).
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These are considered secondary because electrodes are only expected on X3. Two

curves for each BC case are plotted to examine the symmetry of the effective con-

stitutive relations. Note that since [kσ∗] is obtained from [kε∗] after post-processing
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Figure 3.1: Symmetry examination of the piezoelectric strain coefficients for Case A

composites.

([kσ∗] = [kε∗] + [d∗]T [e∗]) and since d∗24 and e∗24 each have two values for each fiber

volume fraction, then two curves for k∗σ22 have also been plotted. Let [d∗], [e∗], and

[kσ∗] be the properties obtained from the sensor problems (Problems 1 to 6) and [d∗
′
],

[e∗
′
], and [kσ∗

′
] be the properties obtained from the actuator problems (Problems 7

to 9). Then

[kσ∗] = [kε∗] + [d∗]T [e∗] [kσ∗
′
] = [kε∗] + [d∗

′
]T [e∗

′
]. (3.47)

Note that kε∗ and kσ∗ (as well as CE∗) were verified to be symmetric.
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It is clear from Figure 3.1 that MIX results for d∗24 (sensor) is much larger than

d∗
′

24 (actuator) for most volume fractions. However, the reason for the disparity is

uncertain. One reason for the difference may be that the fourth BVP in Table 3.1

produces nonuniform electric displacements in the PZT fiber whereas the eighth BVP

produces uniform electric displacements throughout the whole RVE. These effects are

illustrated in Figure 3.2. This disparity also affects the kσ∗
′

22 due to the post-processing.

The other properties were found to be symmetric for both MIX and PBC cases. Thus

they each have d∗15 = d∗
′

15 and kσ∗11 = kσ∗
′

11 .

Verification of the Asymmetric Shear Coupling

The great difference between d∗24 and d∗
′

24 warranted further investigation. The

asymmetric result was verified to be correct by performing two direct numerical sim-

ulations (DNS) of the MFC active layer (Vf = 0.8654) that included 11 fibers. The

DNS is represented in Figure 3.3. One case was the sensor case whereby transverse

shear tractions were applied (to produce σ̄23). The other case was the actuator case

where a potential difference between x+2 and x−2 was specified while the remaining

faces were charge free. Note that x+i and x−i are used here to denote boundaries of

the macroscopic structure. X+
i and X−i are reserved for RVE boundaries. See Table

3.2 for BCs applied to both problems. The width, as well as the length, was 4.525

mm and the height was 0.180 mm (actually all geometric lengths were normalized by

0.41137 mm; the supposed width of the RVE along x2). The aforementioned DNS di-

mensions were deemed sufficiently large such that St. Venant effects do not influence

the local fields of an RVE near the centroid of the structure. Therefore the DNSs did

not have any of the in-plane PBC constraints as in the MIX RVE analysis. The model

consisted of 98,670 C3D20E elements in AbaqusR© (which results in 458,670 nodes).

20 Central processing units (CPUs) solved the BPVs in 1.8 minutes of wallclock time.

Refer to Chapter 5 for more details of the CPUs.
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Figure 3.2: Resultant of the scaled electric displacement (µC/mm2/s) from BVPs in

Table 3.1 plotted on the deformed shape. Vf = 0.8.
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(Avg: 75%)
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Figure 3.3: The DNS of the active layer.

Table 3.2: Boundary Conditions for two DNSs that verify asymmetric piezoelectric

shear coupling results from the proposed RVE analysis.

Problem x−1 /x
+
1 x−2 /x

+
2 x−3 /x

+
3

4 t+i = 0; t−i = 0 t+1 = 0; t−1 = 0 t+1 = 0; t−1 = 0

(Sensor) t+2 = 0; t−2 = 0 t+2 = 1; t−2 = −1

t+3 = 1; t−3 = −1 t+3 = 0; t−3 = 0

q+ = 0; q− = 0 q+ = 0; q− = 0 φ+ = 0; φ− = 0

8 t+i = 0; t−i = 0 t+i = 0; t−i = 0 t+i = 0; t−i = 0

(Actuator) q+ = 0; q− = 0 φ+ = 1500; φ− = 0 q+ = 0; q− = 0
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d∗24 was computed from the sensor problem by computing D̄2/σ̄23 = 341.72 pC/N

(cf. Table 3.4). d∗
′

24 was computed from the other problem by computing 2ε̄23/Ē2 =

7.739 pC/N. These are in agreement to the proposed RVE analysis. The procedure

was verified by changing the epoxy regions to PZT and redoing the computations;

thus converting the problem to an analysis of a homogeneous PZT. The procedure

correctly recovered the SONOX P502 properties with d∗24 = d∗
′

24 = 560 pC/N. This is

consistent with our MIX RVE analysis since the plot for d∗24 in Figure 3.1 shows that

MIX produces equal properties for the sensor and actuator cases at Vf =1.0.

Since an asymmetric constitutive relation cannot be utilized, it is recommended

that engineers and designers use d∗24 (or e∗24) resulting from the sensor problem (Prob-

lem 4 in Case A) rather than d∗
′

24 (e∗
′

24) obtained from the actuator problem (Problem

8). Reason being that in-plane electric field actuation is not expected to be a real

mode of operation.

Figure 3.4 shows the short-circuit elastic properties as the BCs and fiber volume

fraction are varied. We note perfect agreement between the MIX and PBCs for Y E∗
1

and GE∗
12 . Also note that Y E∗

2 and GE∗
23 for MIX are similar but not identical to the

PBCs in their respective cases. Significant differences are noted for the out-of-plane-

properties Y E∗
3 , GE∗

13 , νE∗13 , and νE∗23 .

Figure 3.5 shows the piezoelectric coefficients for the constitutive form of Eq.

(1.15) while Figure 3.6 shows the form of Eq. (1.16). Note that the results in Figure

3.6 are that of Figure 3.5 but post-processed with [d∗] = [CE∗]−1[e∗] and [kσ∗] =

[kε∗] + [d∗]T [e∗]. As recommended earlier, e∗24 and d∗24 from the Sensor behavior is

plotted. Like the last chapter, the permittivity was normalized by the permittivity

of free-space (ε0 =8.854 pF/m). With the exception of e∗32 and d∗32, the out-of-plane

properties are again the most affected. e∗32 and d∗32 feature significant differences for

most volume fractions. The piezoelectric coefficients related to deformation along x1,

namely, d∗31 and e∗31, are affected by a small amount.

Many of the differences between the MIX and PBC cases are from the added

flexibly of the X3 faces for the MIX case. Figures 3.7 and 3.8 illustrate the occurrence
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Figure 3.4: Boundary condition effects on the effective elastic moduli for Case A

composites.



114

V
f

0 0.5 1

e 3
1

*
 [

p
C

/N
]

-200

-150

-100

-50

0

V
f

0 0.5 1

e 3
2

*
 [

p
C

/N
]

-200

-150

-100

-50

0

V
f

0 0.5 1

e 3
3

*
 [

p
C

/N
]

0

200

400

600

V
f

0 0.5 1
e 2

4

*
 [

p
C

/N
]

0

200

400

600

V
f

0 0.5 1

e 1
5

*
 [

p
C

/N
]

0

200

400

600

V
f

0 0.5 1

k 1
1

ǫ
*
/ǫ

0

0

500

1000

1500

2000

V
f

0 0.5 1

k 2
2

ǫ
*
/ǫ

0

0

500

1000

1500

2000

V
f

0 0.5 1

k 3
3

ǫ
*
/ǫ

0

0

500

1000

1500

2000

MIX

PBC

Figure 3.5: Boundary condition effects on the effective piezoelectric e-form

coefficients for Case A composites.
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Figure 3.6: Boundary condition effects on the effective piezoelectric d-form

coefficients for Case A composites.
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of nonuniform strains in the MIX case whereas the PBC case predicts uniform results.

Figure 3.7 shows the response when the RVE is subjected to purely out-of-plane

loading whereas Figure 3.8 shows a transverse shear deformation case (ε13). In both

figures, it is notable that the MIX BCs allow for most of the deformation to be

concentrated in the epoxy. This is not the case for the PBCs. Thus the MIX BCs are

better able to account for the added flexibility of the epoxy. Refer to [87] for studies

of nonuniform displacement profiles of the top surface for a Case B composite.

(Avg: 75%)
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Figure 3.7: Deformed shapes that contrast the nonuniform transverse normal strain

of the MIX BCs to the uniform result of the PBCs. Vf = 0.8.

The previous results on the MFC active layer have been presented to study bound-

ary condition effects for many volume fractions. Now we present tabular data at the

volume fraction that is relevant to commercially available MFCs. Simply by perform-

ing material transformations, one can simulate different axes of poling. Here we can
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Figure 3.8: Deformed shapes that contrast a nonuniform transverse shear strain of

the MIX BCs to the uniform result of the PBCs. Vf = 0.8.
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consider uniform poling along x1 or x3 (see xi in Case A of Figure 1.6). (Recall that

the subscript, 3, in Table 2.1 corresponds to the poling direction.) The P2 MFC

can be simulated when the poling axis is along x3 (as in the preceding plots). The

nonuniform poling of the P1 MFC can be approximated with PZT material that is

uniformly and fully poled along x1 [49]. The effective properties of each of the two

cases are at a volume fraction of Vf = 0.8654 [47] and are tabulated in Tables 3.3

and 3.4. Note that all of the properties are reported in the xi coordinate system of

Figure 1.6; regardless of the poling axis. As it was recommended above, the sensor

properties ([d∗], [e∗], and [kσ∗]) rather than the actuator ([d∗
′
], [e∗

′
], and [kσ∗

′
]) are

documented.

Table 3.3: Effective elastic properties for uniformly poled MFC fiber layers. All

moduli are in GPa.

Y E∗
1 Y E∗

2 Y E∗
3 GE∗

12 GE∗
13 GE∗

23 νE∗12 νE∗13 νE∗23

P2 MFC (MIX) 47.17 18.38 28.06 6.031 12.83 6.233 0.3902 0.4331 0.2558

P2 MFC (PBC) 47.17 19.12 42.19 6.031 17.01 6.685 0.3879 0.4388 0.1702

P1 MFC (MIX) 42.19 18.37 29.93 6.219 12.85 6.031 0.3773 0.3886 0.2449

P1 MFC (PBC) 42.19 19.12 47.17 6.685 17.01 6.031 0.3758 0.3925 0.1572

Table 3.4: Effective piezoelectric and dielectric properties for uniformly poled MFC

fiber layers. Piezoelectric stain constants are in pC/N.

d∗31 d∗32 d∗33 d∗24 d∗15 κσ∗11/ε0 κσ∗22/ε0 κσ∗33/ε0

P2 MFC (MIX) -183.1 -167.0 420.4 341.3 542.4 1684 111.3 1595

P2 MFC (PBC) -183.0 -173.5 435.9 7.739 555.1 1683 31.14 1593

d∗11 d∗12 d∗13 d∗26 d∗35 κσ∗11/ε0 κσ∗22/ε0 κσ∗33/ε0

P1 MFC (MIX) 435.9 -174.4 -180.8 352.4 542.5 1593 118.3 1684

P1 MFC (PBC) 435.9 -173.5 -183.0 7.739 555.1 1593 31.14 1683
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3.5.2 Case B Example

The MIX boundary conditions are now compared to results found in Berger et al

[36] which is Case B. Recall that they do not actually utilize the full PBCs. Therefore

results from the full PBCs according to Eq. (1.53) and (1.54) along with the post-

processing described in Section 3.4 are also included. Following [36], we consider a

cylindrical piezoceramic rod in an epoxy matrix. The rod is made of PZT-7A and is

fully polarized along the x3-axis (see Figure 1.6, Case B). This axis is also the axis of

symmetry for the rod geometry and its material properties. The material properties

of the PZT-7A and the epoxy were identical to Table 3 of Berger et al [36]. The

comparisons are facilitated by converting, [CE∗], [e∗], and [kε] to [CD∗], [h∗], and [βε∗]

with

[
SE∗

]
=

[
CE∗]−1 [d∗] =

[
SE∗

]
[e∗]

[kσ∗] = [kε∗] + [d∗]T [e∗] [βσ∗] = [kσ∗]−1

[g∗] = [d∗] [βσ∗]
[
SD∗

]
=
[
SE∗

]
− [g∗] [d∗]T[

CD∗] =
[
SD∗

]−1
[h∗] =

[
CD∗] [g∗] (3.48)

from Section 1.2.3. We are interested in knowing what effects do our proposed bound-

ary conditions (and post-processing) have on the effective properties for a variety of

rod volume fractions, Vf , and rod aspect ratio h3/d (d is the rod diameter).

At a given aspect ratio and Vf , the rod diameter is found from d = 2
√
Vf/π. Then

h3 is determined from

h3 = (h3/d)d. (3.49)

Note that hα is fixed to 1.0 m for all cases. Figure ?? illustrates the RVE height

differences for each considered aspect ratio.

Table 3.5 compares the MIX BCs to full PBCs and to [36] for Vf = 0.6. It

numerically shows the convergent behavior of the MIX BCs to the PBCs as the aspect

ratio increases. As in Case A, the sensor properties are reported for piezoelectric

coupling terms (note that the MIX BCs will produce two asymmetric shear coupling
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Figure 3.9: Case B meshes used with fiber aspect ratios of 1, 5, 10, 25, and 50

(Vf = 0.6).
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terms for Case B since the composite is transversely isotropic; namely e24∗ and e∗15).

Note that only the shear coupling term, h∗
′

15, from the actuator problem is appended

to the table for reference. It is notable that h∗
′

15 from the MIX BCs also appears to

converge to the fully PBC case.

Table 3.5: Comparison of Case B effective properties obtained from the periodic

BCs and a mixture of periodic and homogeneous stress BCs at Vf = 0.6.

Fully Berger

MIX PBC et al [36]

h3/d 1 5 10 25 50 1

CD∗
11 (GPa) 24.65 24.91 24.94 24.96 24.97 24.97 25.17

CD∗
12 (GPa) 8.984 8.775 8.75 8.735 8.732 8.726 8.71

CD∗
13 (GPa) 9.921 10.41 10.56 10.68 10.71 10.77 10.82

CD∗
33 (GPa) 32.83 64.57 74.10 81.3 84.03 86.74 86.97

CD∗
44 (GPa) 7.807 6.623 6.609 6.619 6.625 6.632 6.66

CD∗
66 (GPa) 4.604 4.608 4.610 4.612 4.604 4.610 4.64

βε∗11 (GVm
C

) 6.564 6.447 6.432 6.416 6.383 6.413 6.364

βε∗33 (GVm
C

) 0.5368 0.682 0.7253 0.759 0.7737 0.783 0.781

h∗31 (GV
m

) -0.2122 -0.1797 -0.1697 -0.1624 -0.1601 -0.1563 -0.157

h∗33 (GV
m

) 1.392 3.538 4.181 4.671 4.866 5.034 5.034

h∗15 (GV
m

) 3.539 1.027 0.6805 0.4687 0.3956 0.3258 0.328

h∗
′

15 (GV
m

) 0.2858 0.3174 0.3216 0.3242 0.3251 0.3258 N/A

A comparison of these values reveals that, like Case A, the out-of-plane effective

properties are the most affected by the finite-thickness effects captured by the MIX

BCs. It is notable that h∗33 and CD∗
33 about doubled when the aspect ratio was in-

creased from one to five; indicating a large sensitivity to aspect ratio at low ratios.

See Gururaja et al [150] for experimental evidence of finite thickness effects. The

aspect ratio had little to no effect on the in-plane properties. It was also verified, as
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expected, that the PBCs are insensitive to the fiber aspect ratio and therefore the

device thickness. The reason for the differences between the MIX and PBC results is

again due to the flexibility added from the MIX BCs.

3.6 Discussion

Recall that the most accurate piezoelectric homogenization methods are based on

the assumption of a fully (3D) periodic RVE; that is, FE with PBCs [36], Asymptotic

Homogenization [29], and VAMUCH [28]. However, from our results, it is clear that

finite thicknesses can have a strong influence on many of the effective properties at rel-

evant rod aspect ratios and thickness. Therefore, the fully periodic RVE assumption

may be invalid for most piezoelectric fiber composites of technological importance.

Our results showed that using the equipotential BCs to resemble electrodes de-

stroyed the symmetry in some of the piezoelectric shear coupling coefficients. Physical

experiments should be performed to validate these theoretical findings.
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4. RVE ANALYSIS OF MACRO FIBER COMPOSITES

This chapter presents a micromechanical treatment for the MFC Active Area. Ho-

mogenization, as well as a dehomogenization procedure, is proposed. They are based

on the theory developed in Chapter 3 but extended here for the full stack of MFC

layers. Future modifications to MSG that enable micromechanical analysis of the full

MFC can be verified with the procedure presented here.

Overview

Consider the analysis overview presented in Figure 4.1. It shows how one can

efficiently obtain the macroscopic host response as well as the local fields. This

chapter presents the homogenization analysis and its results. It is an RVE analysis

Identify RVE

Homogenization 

Analysis of RVE

Macroscopic 

Structural Analysis

Dehomogenization

Analysis

Procedure

Results

Constitutive Relation

Structural Global 

Response

Local Fields

Figure 4.1: Micromechanical analysis overview.
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based on the previously developed BCs in Table 3.1 but with modifications to account

for passive MFC layers as well as realistic electrode loading. The next chapter details

the macroscopic analysis as well as the results thereafter in the workflow of Figure 4.1.

This chapter does, however, present the dehomogenization procedure (with its results

left to the next chapter). Refer to [32,43–45,62,151] for other multiscale piezoelectric

algorithms; none of which are applicable to MFCs (and AFCs) due to the internal

electrodes.

Microstructural Considerations

The P1 and P2 MFCs were considered to have the same RVE. The only differences

came from the BCs and material specification of the PZT. The microstructural details

were the same as that of Chapter 2 (details obtained from references [47, 48]). A

summary of the geometric dimensions of the RVE can be found in Table 4.1. The

fiber volume fractions of the PZT and copper were the most important parameter to

keep consistent among various methodologies. The fiber widths for the copper and

the PZT were obtained from [9] and [139] respectively. The kerf width (the in-plane

gap between adjacent fibers) was then obtained by considering the volume fractions of

0.8654 [47] for the PZT and 0.2400 [48] for the copper (same as Chapter 2). Material

Table 4.1: Geometric parameters for the MFC RVEs.

Property SONOX

(µm) Kapton Copper P502

Thickness 40 18 180

Fiber width N/A 127 356

Kerf width N/A 402.17 55.37

properties were kept the same as before (cf Tables 2.1 - 2.2). The mesh utilized for

both MFCs is shown in Figure 4.2. Note that this is the RVE of P1 MFC due to the
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nonuniform poling and that it is actually two unit cells for the P2 MFC. Although

an RVE with one unit cell was sufficient for the P2 MFC, it was kept at two unit

cells to simplify analysis procedures. This fact, along with the values from Table 4.1,

gives h1 = 2 × 0.529167 mm and h2 = 0.411370 mm. h3 = 0.296 mm as in Chapter

2. The mesh consisted of 1,728 cubic piezoelectric brick elements (C3D20E) with full

integration. With 20 nodes per element, the model had 8,509 nodes. This mesh was

the coarsest mesh that was found to provide converged device properties for the P1

MFC. The same mesh was used for the P2 case.

1

2

3

Figure 4.2: RVE mesh utilized throughout the work presented in this dissertation.

Internal electrodes were accounted for by specifying equipotential BCs on surfaces

within the RVE; denoted by Γ+ and Γ−. The P1 and P2 MFC have different Γ

faces and are illustrated in Figure 4.3. Note that, in both cases, the BCs span the

perimeter of the copper electrodes (copper is green in Figure 4.3(a)). Trindade and

Benjeddou [52] were the first to introduce the Γ BC (cf Figure 1.11) faces but they

did not consider the P1 MFC and their Γ surface did not encompass the perimeter

of the copper fibers. Top and side views of the electrodes are shown in Figure 4.4.

Note that, for the P2 case, Γ includes the surfaces immediately above and below the

PZT. In practice there would be a very thin layer of nickel there (about 2 µm thick

according to [152]) which is not accounted for here and other places [52,53].
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1

2

3

(a) P1 and P2 MFC RVE.

Γ
−

Γ
+

(b) Electrical boundary surfaces for the P1 MFC.

Γ
−

Γ
+

(c) Electrical boundary surfaces for the P2 MFC.

Figure 4.3: Specification of the internal electrode faces (Γ) for both MFCs.

1

2

3

(a) P1 MFC electrodes: Top view.

12

3

(b) P1 MFC electrodes: Side view.

1

2

3

(c) P2 MFC electrodes: Top view.

12

3

(d) P2 MFC electrodes: Side view.

Figure 4.4: Top and side views of the internal electrode faces (Γ) for both MFCs.
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4.1 Homogenization

Much like Chapter 3, in general, two classes of boundary conditions were consid-

ered here; namely, PBC and MIX.

4.1.1 PBCs

In this chapter, PBC refers to applying

u+i − u−i = ε̄ij(y
+
j − y−j )

on all Xi faces and

φ+ − φ− = −Ēi(y+i − y−i )

on all Xα faces. Equipotential conditions are specified on the Γ faces of each respective

MFC. These are essentially the BCs proposed by Trindade and Benjeddou [51,52] (cf

Tables 1.2 and 1.3) for the P2 MFC except here, the issues raised in Chapter 1 are

rectified. Two more BVPs are also created here in order to obtain the complete set

of properties. The required BVPs are written explicitly in Table 4.2.

Table 4.2. Periodic boundary conditions for the full MFC

(P1 and P2 MFC cases).

Problem X−1 /X
+
1 X−2 /X

+
2 X−3 /X

+
3 Γ−/Γ+

1 u+1 − u−1 = h1 u+1 − u−1 = 0 u+1 − u−1 = 0

u+2 − u−2 = 0 u+2 − u−2 = 0 u+2 − u−2 = 0

u+3 − u−3 = 0 u+3 − u−3 = 0 u+3 − u−3 = 0

φ+ − φ− = 0 φ+ − φ− = 0 q+ = 0; q− = 0 φ+ = 0; φ− = 0

2 u+1 − u−1 = 0 u+1 − u−1 = 0 u+1 − u−1 = 0

u+2 − u−2 = 0 u+2 − u−2 = h2 u+2 − u−2 = 0

Continued on next page
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Table 4.2 – continued from previous page

Problem X−1 /X
+
1 X−2 /X

+
2 X−3 /X

+
3 Γ−/Γ+

u+3 − u−3 = 0 u+3 − u−3 = 0 u+3 − u−3 = 0

φ+ − φ− = 0 φ+ − φ− = 0 q+ = 0; q− = 0 φ+ = 0; φ− = 0

3 u+1 − u−1 = 0 u+1 − u−1 = 0 u+1 − u−1 = 0

u+2 − u−2 = 0 u+2 − u−2 = 0 u+2 − u−2 = 0

u+3 − u−3 = 0 u+3 − u−3 = 0 u+3 − u−3 = h3

φ+ − φ− = 0 φ+ − φ− = 0 q+ = 0; q− = 0 φ+ = 0; φ− = 0

4 u+1 − u−1 = 0 u+1 − u−1 = 0 u+1 − u−1 = 0

u+2 − u−2 = 0 u+2 − u−2 = 0 u+2 − u−2 = h3/2

u+3 − u−3 = 0 u+3 − u−3 = h2/2 u+3 − u−3 = 0

φ+ − φ− = 0 φ+ − φ− = 0 q+ = 0; q− = 0 φ+ = 0; φ− = 0

5 u+1 − u−1 = 0 u+1 − u−1 = 0 u+1 − u−1 = h3/2

u+2 − u−2 = 0 u+2 − u−2 = 0 u+2 − u−2 = 0

u+3 − u−3 = h1/2 u+3 − u−3 = 0 u+3 − u−3 = 0

φ+ − φ− = 0 φ+ − φ− = 0 q+ = 0; q− = 0 φ+ = 0; φ− = 0

6 u+1 − u−1 = 0 u+1 − u−1 = h2/2 u+1 − u−1 = 0

u+2 − u−2 = h1/2 u+2 − u−2 = 0 u+2 − u−2 = 0

u+3 − u−3 = 0 u+3 − u−3 = 0 u+3 − u−3 = 0

φ+ − φ− = 0 φ+ − φ− = 0 q+ = 0; q− = 0 φ+ = 0; φ− = 0

7 u+1 − u−1 = 0 u+1 − u−1 = 0 u+1 − u−1 = 0

u+2 − u−2 = 0 u+2 − u−2 = 0 u+2 − u−2 = 0

u+3 − u−3 = 0 u+3 − u−3 = 0 u+3 − u−3 = 0

φ+ − φ− = 0 φ+ − φ− = 0 q+ = 0; q− = 0 φ+ = 0; φ− = −h1/2

8 u+1 − u−1 = 0 u+1 − u−1 = 0 u+1 − u−1 = 0

u+2 − u−2 = 0 u+2 − u−2 = 0 u+2 − u−2 = 0

u+3 − u−3 = 0 u+3 − u−3 = 0 u+3 − u−3 = 0

Continued on next page
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Table 4.2 – continued from previous page

Problem X−1 /X
+
1 X−2 /X

+
2 X−3 /X

+
3 Γ−/Γ+

φ+ − φ− = 0 φ+ − φ− = −h2 q+ = 0; q− = 0

9 u+1 − u−1 = 0 u+1 − u−1 = 0 u+1 − u−1 = 0

u+2 − u−2 = 0 u+2 − u−2 = 0 u+2 − u−2 = 0

u+3 − u−3 = 0 u+3 − u−3 = 0 u+3 − u−3 = 0

φ+ − φ− = 0 φ+ − φ− = 0 q+ = 0; q− = 0 φ+ = −ha; φ− = 0

It is important to emphasize that these BCs are applicable to both MFCs but with

nuances for the definition of Γ. Each MFC will have different Γ surfaces for different

BVPs. The sensor problems (BVPs 1-6), the P1 MFC has Γ defined from Figure

4.3(b) while for the P2 MFC, that would be Figure 4.3(c). Then follows the actuator

problems (BVPs 7-9). Since Problem 7 is for Ē1 dominated action, both MFCs

had Γ defined from Figure 4.3(b). For the P1 MFC, this corresponds to actual usage.

However for the P2 MFC, it is an artificial load condition created to obtain properties

related to Ē1. Similarly, Problem 9 is for Ē3 dominated action. Both MFCs had Γ

defined from Figure 4.3(c). This time the actual use condition is for the P2 MFC

and the artificial load corresponds to the P1 MFC. The artificial loads are rather

arbitrary. For example, consider a P2 MFC placed between a parallel plate capacitor

such that the voltage difference generated E1 (predominantly) in the MFC. To get

this effective behavior, BVP 7 should be modified to remove the Γ BCs altogether

and, instead, let φ+ − φ− = −Ē1h1 on the X1 faces.
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4.1.2 MIX BCs

Table 4.3 presents the MIX BCs for the full MFC. They were developed following

Chapter 3 but modified with provisions for the internal electrodes presented in this

chapter.

Table 4.3. Mixed boundary conditions for the full MFC

(P1 and P2 MFC cases).

Problem X−1 /X
+
1 X−2 /X

+
2 X−3 /X

+
3 Γ−/Γ+

1 u+1 − u−1 = h1 u+1 − u−1 = 0 t+i = 0; t−i = 0

u+2 − u−2 = 0 u+2 − u−2 = 0

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2

φ+ − φ− = 0 φ+ − φ− = 0 q+ = 0; q− = 0 φ+ = 0; φ− = 0

2 u+1 − u−1 = 0 u+1 − u−1 = 0 t+i = 0; t−i = 0

u+2 − u−2 = 0 u+2 − u−2 = h2

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2

φ+ − φ− = 0 φ+ − φ− = 0 q+ = 0; q− = 0 φ+ = 0; φ− = 0

3 u+α − u−α = 0 u+α − u−α = 0 t+α = 0; t−α = 0

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2 t+3 = 1; t−3 = −1

φ+ − φ− = 0 φ+ − φ− = 0 q+ = 0; q− = 0 φ+ = 0; φ− = 0

4 u+α − u−α = 0 u+α − u−α = 0 t+1 = 0; t−1 = 0

t+2 = 1; t−2 = −1

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2 t+3 = 0; t−3 = 0

φ+ − φ− = 0 φ+ − φ− = 0 q+ = 0; q− = 0 φ+ = 0; φ− = 0

5 u+α − u−α = 0 u+α − u−α = 0 t+1 = 1; t−1 = −1

t+2 = 0; t−2 = 0

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2 t+3 = 0; t−3 = 0

φ+ − φ− = 0 φ+ − φ− = 0 q+ = 0; q− = 0 φ+ = 0; φ− = 0

Continued on next page
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Table 4.3 – continued from previous page

Problem X−1 /X
+
1 X−2 /X

+
2 X−3 /X

+
3 Γ−/Γ+

6 u+1 − u−1 = 0 u+1 − u−1 = h2/2 t+i = 0; t−i = 0

u+2 − u−2 = h1/2 u+2 − u−2 = 0

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2

φ+ − φ− = 0 φ+ − φ− = 0 q+ = 0; q− = 0 φ+ = 0; φ− = 0

7 u+α − u−α = 0 u+α − u−α = 0 t+i = 0; t−i = 0

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2

φ+ − φ− = 0 φ+ − φ− = 0 q+ = 0; q− = 0 φ+ = 0; φ− = −h1/2

8 u+α − u−α = 0 u+α − u−α = 0 t+i = 0; t−i = 0

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2

φ+ − φ− = 0 φ+ − φ− = −h2 q+ = 0; q− = 0

9 u+α − u−α = 0 u+α − u−α = 0 t+i = 0; t−i = 0

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2

φ+ − φ− = 0 φ+ − φ− = 0 q+ = 0; q− = 0 φ+ = −ha; φ− = 0

4.1.3 Nonuniform Polarization from IDEs

Referring back to Section 1.2.1 we know that the bulk orientation of piezoceramics

is aligned with the poling electric field. We also know that the P1 MFC is polarized

by IDEs and from Section 1.2.4, we recall that IDEs produce nonuniform electrical

field variables (see Figure 1.3). Therefore the PZT fibers in P1 MFCs are polarized

nonuniformly. The nonuniformity is in both degree and direction. In the following

analysis, the piezoelectric material is allowed to be polarized with a nonuniform orien-

tation but is approximated to be fully polarized. Unpolarized and partially polarized

material was not accounted for.
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The procedure is iterative and sequential. First, the PZT material orientation

is set to coincidence with the problem coordinates (see Figure 1.10(a)). A voltage

difference of 1500V is specified at the IDE and no other equation constraints are

applied for the first estimate. For each element, the poling direction is determined

from

npi =
Ei√
EkEk

(4.1)

For each PZT element, the element coordinates are then modified to become npi . A

new BVP is then defined with this time with spatially varying element coordinates.

The PBCs are also applied by first computing the required ε̄ij and Ēi from the initial

run. This is repeated until the difference between the poling direction of the current

step, n
p(k)
i , and the previous step, n

p(k−1)
i , has converged. The convergence was defined

by
√
aiai < 0.05 (4.2)

where

ai = n
p(k)
i − np(k−1)i (4.3)

and k is the iteration count. The poling BCs for the MIX and PBC cases are shown

in Table 4.4. Note the poling voltage is 1500V and it is scaled by s due to the

scaling of the constitutive property inputs. Care was taken to allow the MFC RVE

to deform as needed since it is expected that the MFC is poled under free conditions

(not blocked). Therefore ε̄ij is allowed to be nonzero and the PBCs are updated

after each step. Refer to [11, 103, 153] for poling schemes that account for remnant

polarization. Figure 4.5 shows the poling electric field from the IDE as well as the

resulting element coordinate systems in the PZT fiber.

4.1.4 Volume Averaging Nuances for MFCs

Recall in Chapter 2, Section 2.4.3, that the MSG analytical model was verified

with a DNS. Thus the electrical behavior presented in Figure 2.2 is correct. From

this fact, the volume averaging for the RVE homogenization proceeds as was it did
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Table 4.4: Boundary Conditions for poling the P1 MFC.

Problem X−1 /X
+
1 X−2 /X

+
2 X−3 /X

+
3 Γ−/Γ+

MIX u+1 − u−1 = ε̄11h1 u+1 − u−1 = ε̄12h2 t+i = 0; t−i = 0

u+2 − u−2 = ε̄21h1 u+2 − u−2 = ε̄22h2

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2 φ+ = 0

φ+ − φ− = −Ē1h1 φ+ − φ− = −Ē2h2 q+ = 0; q− = 0 φ− = −1500/s

PBC u+1 − u−1 = ε̄11h1 u+1 − u−1 = ε̄12h2 u+1 − u−1 = ε̄13h3

u+2 − u−2 = ε̄21h1 u+2 − u−2 = ε̄22h2 u+2 − u−2 = ε̄23h3

u+3 − u−3 = ε̄31h1 u+3 − u−3 = ε̄32h2 u+3 − u−3 = ε̄33h3 φ+ = 0

φ+ − φ− = −Ē1h1 φ+ − φ− = −Ē2h2 q+ = 0; q− = 0 φ− = −1500/s
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Figure 4.5: Illustration of the poling process after convergence of the electric field.

Figures from top to bottom: A central cross section of the RVE; scaled electric field

resultant (V/mm/s); resulting element coordinate systems in the PZT.
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in Section 2.4.3. Namely, all but D3 is averaged in the unit-cell while D3 is averaged

in active layer of a unit cell (Eq. (2.41)).

Coordinate Transforms

It is was important to consider that the local fields that were output by AbaqusR©

were in the element coordinate system. For the P2 case, volume averaging can be

performed directly since the element coordinate system (CS) was equivalent to the

problem CS. For the P1 case, it is necessary to transform the stress and strain for

each element back to the problem coordinates. This was made conveniently available

with the AbaqusR© scripting command “getTransformedField”. As for the electric field

and electric displacement, it was not well understood which CS to perform volume

averaging. The uncertainty comes from the symmetry of the electrical fields within

the RVE. Note in Figure 4.5 that there are two planes of symmetry. The first is a y1-y2

plane that passes through the geometric centroid of the RVE. If volume averaging is

performed in the problem CS, this symmetry should cause Ē3 = 0. The second plane

of symmetry also passes through the centroid but is a y2-y3. Here volume averaging

in the problem CS should give Ē1 = 0. Having Ē1 = 0 and Ē3 = 0 is not desirable

since those values are to be used to find device properties that are nonzero in value.

Therefore, two volume averaging procedures are explored here. The first is re-

ferred to as Full Transform. This scheme transforms the stress, strain, and both

electrical fields to the problem coordinate system. The second approach is referred

to as Mechanical Transform where only the stress and strain are transformed to the

problem CS. This leaves the electrical field outputs in the element CSs. Both proce-

dures were performed within a single geometric unit-cell (note that the RVE in Figure

4.3 consists of two unit-cells).
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4.2 Dehomogenization

Local fields at select material points in a macroscopic structural analysis can be

examined with a dehomogenization analysis. Unlike the RVE homogenization, the

dehomogenization consists of solving one BVP per material point of interest. The

BCs are the mixed BCs proposed for the homogenization. Except now, the BCs are

updated to include the stress and strain obtained from a macroscopic analysis of the

homogenized model. The BCs on Γ are equal to what was applied in the macroscopic

analysis. Table 4.5 shows the BCs. Note that since the material properties of the

constituents of the RVE were scaled by s, the macroscopic stresses and the potential

needs to be scaled as well. Finally, all of the fields are reported in the problem CS.

Table 4.5: Boundary conditions P1 and P2 dehomogenization analyses.

Problem X−1 /X
+
1 X−2 /X

+
2 X−3 /X

+
3 Γ−/Γ+

1 u+1 − u−1 = ε̄11 u+1 − u−1 = ε̄12 t+i = σ̄13/s

t−i = −σ̄13/s

u+2 − u−2 = ε̄21 u+2 − u−2 = ε̄22 t+i = σ̄23/s

t−i = −σ̄23/s

u+3 − u−3 = ε̄31 u+3 − u−3 = ε̄32 t+i = σ̄33/s

t−i = −σ̄33/s

φ+ − φ− = −Ē1 φ+ − φ− = −Ē2 q+ = 0 φ+ = V2/s

q− = 0 φ− = V1/s

Note that since the constituent properties and loading were scaled, the local fields

obtained are

σij
s

εij
1

Di

1

Ei
s

φ

s
(4.4)

Therefore, the local fields can be obtained by performing the inverse operation for

each field.
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4.3 Homogenization Results

4.3.1 P2 MFC

The device properties of the P2 MFC are shown first since the poling is not as

complicated as the P1 case. The Python script utilized to create each BVP (for P1

and P2 cases) in AbaqusR© can be found in Appendix B. Table 4.6 shows a comparison

of the mechanical properties as computed by the HRM from Chapter 2, the MIX and

PBCs from the present chapter. Comparing the MSG analytical model (HRM2) to

the others reveals that the homogeneous layer assumption in the analytical model

results in a slightly more compliant response. It is also notable that the PBC result

in a slightly stiffer response for Y E∗
1 , Y E∗

2 , and Y E∗
3 . In like manner, the piezoelectric

Table 4.6: Effective elastic properties for the full P2 MFC in the problem coordinate

system.

HRM1

↓ MIX PBC

Property HRM2

Y E∗
1 (GPa) 30.37 31.36 31.38

Y E∗
2 (GPa) 16.1 17.64 17.94

Y E∗
3 (GPa) 10.52 8.35 8.529

GE∗
12 (GPa) 4.13 5.971 5.974

GE∗
13 (GPa) 2.70 2.752 2.769

GE∗
23 (GPa) 2.84 2.462 2.513

νE∗12 0.309 0.3343 0.3354

νE∗13 0.355 0.3881 0.3828

νE∗23 0.237 0.3004 0.2925

and dielectric properties are shown in Table 4.7. Like the last chapter, the Sen-

sor designation means that the RVE analysis properties came from the sensor BVPs
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(Problems 1-6). The Actuator designation indicates that the properties originated

from the actuator BVPs (Problems 7-9). Comparing the respective Sensor and Actu-

ator data reveals that the properties obtained are not unique; for either case. Again,

it is recalled the this check is omitted in the literature [51–55,70]. Refer back to Eq.

(3.47) for why the Sensor and Actuator cases have different permittivities at constant

stress; even though they are diagonal terms. Except for d∗24 and kσ∗22 , the properties

are relatively close between the Sensor and Actuator designations.

Table 4.7: Effective piezoelectric and dielectric properties for the full P2 MFC in

problem coordinates.

HRM1

↓ MIX MIX PBC PBC

Property HRM2 (Sensor) (Actuator) (Sensor) (Actuator)

d∗31 (pC/N) -297.2 -284.9 -287.4 -284.9 -287.3

d∗32 (pC/N) -201.9 -205.7 -207.8 -208.9 -211.1

d∗33 (pC/N) 489.9 485.8 489.5 486.6 490.5

d∗24 (pC/N) 4.706 217.3 6.432 221.1 6.630

d∗15 (pC/N) 337.5 334.4 320.3 334.6 355.2

κσ∗11/ε0 1023.3 976.1 973.2 970.6 975.0

κσ∗22/ε0 18.9 37.9 24.7 39.0 25.1

κσ∗33/ε0 2568.2 2567.4 2577.0 2565.8 2575.8

4.3.2 P2 MFC Verification

The MIX properties shown in the previous tables (Tables 4.6 - 4.7) are utilized in

Eqs. (2.35) - (2.39) and the results are compared to the P2 DNS results reported in

Section 2.4.3. Table 4.8 shows the results for each of the three cases: Short Circuit

Test, Actuator Test, and Open Circuit Test. V1 and V2 are defined in the “Out-of-
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Plane Electrical Behavior” portion of Figure 2.2. The comparisons are all excellent.

Table 4.8: Macroscopic variable comparison between a DNS of the P2 MFC Active

Area and the MIX effective behavior.

ε̄11 ε̄22 ε̄33 D̄a
3 × 10−3 Ē3 V1 V2

(µε) (µε) (µε) (µC/mm2) (V/mm) (V) (V)

Short Circuit Test

DNS 317.2 -106.6 -122.6 -2.83 0.0 0.0 0.0

MIX (Sensor) 318.9 -106.6 -123.8 -2.85 0 m m

Difference (%) 0.54 -0.05 0.92 0.64 N/A N/A N/A

MIX (Actuator) 318.9 -106.6 -123.8 -2.87 0 m m

Difference (%) 0.54 -0.05 0.92 1.5 N/A N/A N/A

Actuator Test

DNS 344.5 251.7 -589.9 -27.44 -1207.0 0.0 360

MIX (Sensor) 346.5 250.2 -590.8 -27.65 -1216.2 0.0 360.0

Difference (%) 0.58 -0.60 0.16 0.75 0.77 0.0 0.0

MIX (Actuator) 349.5 252.7 -595.4 -27.65 -1216.2 0.0 360.0

Difference (%) 1.44 0.41 0.93 0.75 0.77 0.0 0.0

Open Circuit Test

DNS 281.6 -132.5 -61.8 0.00 124.1 0.0 -35.8

MIX (Sensor) 283.1 -132.4 -62.9 0.00 125.3 0.0 -37.10

Difference (%) 0.56 -0.08 1.78 0.00 0.97 0.0 3.65

MIX (Actuator) 282.7 -132.8 -62.1 0.00 125.9 0.0 -37.28

Difference (%) 0.39 0.21 0.54 0.00 1.45 0.0 4.15



140

4.3.3 P1 MFC

Like the P2 case, Table 4.9 shows a comparison of the mechanical properties as

computed by the HRM2 from Chapter 2, to the MIX and PBCs from the present

chapter. This time, more device properties are shown due to the different element CS

transformations. Note that a sample Python script to polarize FE models is presented

in Appendix C. It is apparent that the MIX and PBCs of the present chapter results

in a stiffer Y E∗
1 , Y E∗

2 , GE∗
12 and a more compliant Y E∗

3 when compared to the HRM2.

The transverse shear moduli of the HRM2 is much closer to the numerical results

than the FSDT result of [123]. Furthermore, the Mechanical Transform results in

a stiffer Y E∗
1 . Comparing the MIX to the PBCs reveals that the PBCs result in a

slightly stiffer Y E∗
1 , Y E∗

2 , and Y E∗
3 . This was also observed for the P2 case (cf Table

4.6).

Table 4.9: Effective piezoelectric and dielectric properties for the full homogenized

P1 MFC in problem coordinates.

HRM1 MIX PBC

↓ Full Mechanical Full Mechanical

Property HRM2 Transform Transform Transform Transform

Y E∗
1 (GPa) 27.32 30.90 32.43 31.09 32.70

Y E∗
2 (GPa) 16.09 17.67 17.66 17.96 17.95

Y E∗
3 (GPa) 10.70 8.62 8.65 8.87 8.90

GE∗
12 (GPa) 4.53 6.34 6.34 6.34 6.34

GE∗
13 (GPa) 2.70 2.75 2.74 2.76 2.75

GE∗
23 (GPa) 2.76 2.44 2.44 2.49 2.49

νE∗12 0.300 0.352 0.372 0.356 0.377

νE∗13 0.327 0.329 0.305 0.314 0.284

νE∗23 0.228 0.278 0.287 0.268 0.279
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Tables 4.10 and 4.11 contain the effective electrical properties for the MIX and

PBC cases respectively. The HRM2 results are included in Table 4.10 for comparison.

The HRM2 results in a much larger d∗11, and to a lesser extent d∗13, than the other

cases. This is not the case for d∗12. Both of these observations suggest that the

uniform poling assumption of the analytical model may not be valid for the P1 case.

It is interesting that the HRM2 results for d∗26 and kσ∗22 seem to be of similar magnitude

as the Actuator properties from the other cases. However, there are large differences

for d∗26 between the Sensor and Actuator properties; same being true for kσ∗22 . This

is attributed to the asymmetries discovered in Chapter 3 when homogenizing the

active layer alone. Finally, greater differences seem to exist between the Sensor and

Actuator properties of the P1 MFC than that of the P2 MFC (cf Table 4.7). This

suggests that the nonuniform poling of the P1 case exacerbates the asymmetry of the

obtained constitutive relations.

Table 4.10: MIX effective piezoelectric and dielectric properties for the full

homogenized MFC in problem coordinates.

HRM1 Full Mechanical

↓ Transform Transform

Property HRM2 Sensor Actuator Sensor Actuator

d∗11 (pC/N) 409.1 328.9 359.9 322.4 341.7

d∗12 (pC/N) -129.8 -124.8 -143.4 -134.7 -136.1

d∗13 (pC/N) -140.1 -104.1 -104.0 -88.67 -98.69

d∗26 (pC/N) 6.94 202.9 9.67 202.6 9.672

d∗35 (pC/N) 555.1 471.2 510.1 367.4 564.1

κσ∗11/ε0 934.37 862.1 936.9 914.9 961.5

κσ∗22/ε0 18.9 53.16 23.77 53.24 23.77

κσ∗33/ε0 2767.3 2702 2714 2696 2753
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Table 4.11: PBC effective piezoelectric and dielectric properties for the full

homogenized MFC in problem coordinates.

Full Mechanical

Transform Transform

Property Sensor Actuator Sensor Actuator

d∗11 (pC/N) 323.3 354.9 314.6 335.8

d∗12 (pC/N) -124.3 -143.7 -134.1 -135.9

d∗13 (pC/N) -88.7 -83.9 -69.6 -79.3

d∗26 (pC/N) 201.2 9.638 200.8 9.636

d∗35 (pC/N) 467.3 569.2 361.2 633.6

kσ∗11 /ε0 852.1 927.8 900.0 950.4

kσ∗22 /ε0 52.7 23.8 52.7 23.8

kσ∗33 /ε0 2685.7 2718.6 2682.4 2766.5
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4.3.4 P1 MFC Verification

Finally, the P1 MFC is also verified with a test case like that in Section 2.4.3.

This time the DNS modeled the IDE poling with a procedure like the one in Section

4.1.3. Unlike the poling the RVE, the DNS poling did not have any PBCs. V1 and V2

for the homogenized model are defined in the “In-plane Electrical Behavior” portion

of Figure 2.2. Note that the heterogeneous model in this chapter is the DNS and it is

not defined in that figure. Instead, from Figure 4.3(b), V1 corresponds to Γ+ and V2

corresponds to Γ−. A finer mesh was utilized for the nonuniformly poled case. The

resulting mesh consisted of 95,040 C3D20E elements (411,013 nodes). The DNS was

solved a total of eight times with 20 CPUs. Each time took about four minutes of

wallclock time. The poling process took five iterations to complete. The other three

were for each of the three tests.

The comparisons are all excellent. In general, the best results are obtained from

the Mechanical Transform case (Table 4.12). Particularly the Actuator case provides

slightly better average strain predictions. However, the prediction of D̄1 is worse with

an error of 10%. Therefore properties from this case are recommended and they are

the ones that are utilized in the next chapter for the P1 MFC.
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Table 4.12: Macroscopic variable comparison between a DNS of the P1 MFC patch

and the MIX effective behavior considering the Mechanical Transform.

ε̄11 ε̄22 ε̄33 D̄1 × 10−3 Ē1 V1 V2

(µε) (µε) (µε) (µC/mm2) (V/mm) (V) (V)

Short Circuit Test

DNS 303.2 -114.4 -91.2 3.11 -12.79 0.0 0.0

MIX (Sensor) 308.4 -114.7 -94.1 3.22 0 m m

Difference (%) 1.69 0.23 3.21 3.78 -100 N/A N/A

MIX (Actuator) 308.4 -114.7 -94.1 3.42 0 m m

Difference (%) 1.69 0.23 3.21 9.98 -100 N/A N/A

Actuator Test

DNS 670.1 -267.3 -193.2 16.29 1962.0 1058.3 0.0

MIX (Sensor) 644.9 -269.5 -177.3 16.20 2000.0 1058.3 0.0

Difference (%) -3.76 0.82 -8.21 -0.56 1.94 0.0 0.0

MIX (Actuator) 677.8 -272.3 -197.4 16.60 1983.5 1058.3 0.0

Difference (%) 1.15 1.86 2.17 1.86 1.09 0.0 0.0

Open Circuit Test

DNS 175.9 -63.5 -54.6 0.02 -385.5 0.0 198.9

MIX (Sensor) 180.0 -61.1 -58.8 0.00 -398.0 0.0 210.62

Difference (%) 2.32 -3.87 7.80 -100 3.26 0.0 5.87

MIX (Actuator) 171.2 -60.1 -54.5 0.00 -401.4 0.0 212.40

Difference (%) -2.70 -5.46 -0.12 -100 4.14 0.0 6.76
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Table 4.13: Macroscopic variable comparison between a DNS of the P1 MFC patch

and the MIX effective behavior considering the Full Transform.

ε̄11 ε̄22 ε̄33 D̄1 × 10−3 Ē1 V1 V2

(µε) (µε) (µε) (µC/mm2) (V/mm) (V) (V)

Short Circuit Test

DNS 303.2 -114.4 -91.2 -55033.58 -55.03 0.0 0.0

MIX (Sensor) 323.6 -114.0 -106.4 3.29 0 m m

Difference (%) 6.73 -0.41 16.73 -100 0.00 N/A N/A

MIX (Actuator) 323.6 -114.0 -106.4 3.29 0 m m

Difference (%) 6.73 -0.41 16.73 -100 -100 N/A N/A

Actuator Test

DNS 670.1 -267.3 -193.2 14.81 1862.6 1058.3 0.0

MIX (Sensor) 657.9 -249.6 -208.1 15.27 2000.0 1058.3 0.0

Difference (%) -1.83 -6.63 7.72 3.09 7.38 0.0 0.0

MIX (Actuator) 713.9 -286.8 -207.9 14.82 1983.5 1058.3 0.0

Difference (%) 6.54 7.29 7.61 0.04 6.49 0.0 0.0

Open Circuit Test

DNS 175.9 -63.5 -54.6 0.02 -409.2 0.0 198.9

MIX (Sensor) 181.9 -60.2 -61.6 0.00 -430.9 0.0 228.03

Difference (%) 3.38 -5.25 12.91 -100 5.31 0.0 14.62

MIX (Actuator) 167.5 -51.8 -61.3 0.00 -433.9 0.0 229.60

Difference (%) -4.82 -18.53 12.43 -100 6.04 0.0 15.41
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5. UNIMORPH DIRECT NUMERICAL SIMULATIONS

Since micromechanical theories generally assume that numerous RVEs are present in

the macroscopic structure, the most critical case to test is the smallest MFC that is

available off the shelf. For the P1 MFC, that would be the M2503-P1. Thus, here

two MFC sizes are tested, namely, the M2503-P1 and M2814-P1. Both patch sizes

can be contrasted in Figure 5.1 (note that only the PZT fibers, the electrodes and a

single layer of Kapton are displayed). Three examples cases are devised to simulate

1

2

3

Figure 5.1: In-plane size comparison of both MFC patches considered.

possible device behavior. The cases are diversified by sensing vs. actuating responses,

P1 and P2 configurations and anisotropy of the host structure. The first case is a

model of the smaller patch being actuated on an isotropic host. The second case is

the same as the first except the larger patch is considered. The third case is a sensor

case of the P2 MFC where the larger patch is modeled and the substrate made of two

orthotropic layers. The cases considered are all shown in Table 5.1. Note that the
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designation “a” (eg 2a) refers to a complete representation of the MFC that includes

both the Active Area and the Passive Area. The “b” indicates that only the Active

Area was modeled.

Table 5.1: Test matrix considered for the DNS studies.

MFC Patch MFC Transducer

Case Type Name Geometry Response Host

1a P1 M2503-P1 Full Patch Actuator Isotropic

1b P1 M2503-P1 Active Area Actuator Isotropic

2a P1 M2814-P1 Full Patch Actuator Isotropic

2b P1 M2814-P1 Active Area Actuator Isotropic

3a P2 M2814-P2 Full Patch Sensor Anisotropic

3b P2 M2814-P2 Active Area Sensor Anisotropic

5.1 DNS Details

5.1.1 Geometry

The Active Area was constructed from merging numerous RVE geometry in-

stances. The number of RVEs along, say xα, is referred to as Nα. Thus the length

of the DNS Active Area in the xα direction is Hα = Nαhα (no summation over α).

For each patch size, Nα were selected such that Hα most closely matched the Active

Area dimensions given by the MFC manufacturer [118]. The Passive Area was cre-

ated from the overall patch dimensions given by the supplier and from estimates for

the parameters in Figure 5.2. It should be noted that the manufacturer listed the

overall in-plane dimension of the M2814-P1 MFC to be 38 by 20 mm while that of

the M2814-P2 was listed as 37 by 18 mm. This artifact was deemed to be negligible

and both were modeled as 38 by 20 mm. The geometric details are summarized in

Table 5.2. Note that Lα are the overall patch lengths. Parameters associated to x3
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are omitted since there is only one RVE through the thickness which was considered

to be 0.296 mm thick. It should be noted that the width of the electrode bus was

estimated to be 0.8 mm and the in-plane dimensions of the host were the same as

the overall in-plane MFC patch dimensions. The host thickness used was 0.438 mm.

This made the total thickness to be h = 0.734 mm. Figure 5.2 also shows the problem

coordinate system. The origin of x3 is located at the middle of the host thickness.

c

ax
2

x
1

b

e
1

e 
2

d

Figure 5.2: In-plane geometrical parameters for the Passive Area and the problem

coordinate system location.

Each MFC was discretized entirely with piezoelectric brick elements that had 20

nodes per element (C3D20E). The host had elements of the same order but were not

piezoelectric and reduced integration was appropriate since localized fields were not

to be extracted there (C3D20R). It is finally noted that, after performing a mesh

sensitivity study, it was determined the two elements thought the thickness of the

host are required as well as a mesh seed of 1 mm throughout.

5.1.2 Material Models

A linear elastic material model was sufficient for the behavior that was sought.

The host was considered to be aluminum with Y = 70.7 GPa and ν = 0.32 for the

isotropic cases. For the anisotropic host case, the layup considered was [40◦/30◦]. The
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Table 5.2: Geometric parameters for the MFCs tested.

M2814-P1 and

M2503-P1 M2814-P2

L1 (mm) 46 38

L2 (mm) 10 20

H1 (mm) 25.4 27.517

H2 (mm) 2.88 13.99

N1 24 26

N2 7 34

a (mm) 3 5.242

b (mm) 3.56 3.007

c (mm) 1.3 1.3

d (mm) 0.5 0.5

e1 (mm) 0 2.6

e2 (mm) 14.6 2.6
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MFC was at 0◦ and it was in contact with the 40◦ layer. Each layer had Y1 = 140

GPa, Y2 = 10 GPa, G12 = 7 GPa, ν12 = 0.3, and ν23 = 0.46 in its own material

coordinate system. The thickness of each layer was 0.219 mm.

5.1.3 Boundary Conditions

In all three cases, the host was clamped at one end and free at all the other

ends. Case 1 and 2 were actuator cases for the P1 MFC. They had φ = 1058.33 V

on Γ+ and φ = 0 V on Γ−. The Γ surfaces are based on the Γ surfaces defined in

Figures 4.3 and 4.4 except that they are appropriately extended to include the rest

of the IDE when the Passive Area is being accounted for (eg see the IDE in Figure

1.3). With Case 3 being a sensor problem with an anisotropic host, in-plane tractions

were applied on the tip of the host and the MFC had short-circuit conditions on the

electrodes. Namely (t1, t2, t3) = (−4.380, 2.190, 0) MPa on the surface of the host

located at x1 = L1 and φ = 0 V on Γ+ and Γ−.

To obtain cantilevered action, the host was clamped at x1 = 0 and the MFC

was tied to the host with Tie constraints. To provide a fair comparison to the plate

models, the clamped BC for the host was carefully constructed to resemble the BCs

that may be applied to a plate model. For the host, u1 = 0 at x1 = 0 and u3 = 0

along the line (0, x2, 0). For Case 3, u2 = 0 along this line as well so that translation

along x2 would be prevented.

5.2 Details for Homogenized Models

Two homogenized models were considered. A solid model and a plate model.

Neither of which considered the Passive Area. The geometry of the solid MFC model

was also created by repeating RVEs by the number of times required for each case.

The RVE consisted of the exact same dimensions as the heterogeneous RVE but

without any heterogeneity. C3D20E elements were used as in the heterogeneous

cases. This geometry was then tied to a host with the exact same geometry, mesh
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size, and mechanical BCs for each respective case. Only the Γ faces from Figure 4.3

were modified for the solid model and are shown in Figure 5.3. Note the uniform

poling directions as indicated by the red arrows. Then the exact same electrical

potential value as the heterogeneous cases was applied to the new Γ faces.

Piezoelectric actuation is often simplified with a mechanical plate model. A so-

called thermal analogy is adopted where the piezoelectric actuation strain is approx-

imated with uniform temperature change and with coefficients of thermal expansion,

α [124–128]. The coefficients of thermal expansion were

α∗11 = d∗11 α∗22 = d∗12 α∗33 = d∗13 (5.1)

and the artificial temperature difference was

∆T = −V2 − V1
h1/2

= −0− 1058.33 V

0.529167 mm
= 2000 V/mm (5.2)

Note that only Cases 1 and 2 had a plate model for comparisons since they are

the actuator cases. Finally, a few notable details for the plate models are given

here. They consisted of S8R elements in AbaqusR©. A mesh seed of 1 mm was found

to have converged results on the displacement. The shell section was defined with

Composite Layups. The P1 MFC was modeled with the HRM2 device properties

given in Chapter 2.

5.3 Computing Resources

The DNS models in the present chapter, as well as those in Chapters 2 and 3, were

ran in a high performance computing cluster named Halstead at Purdue University

(main campus). Each compute node had two IntelR© XeonR©-E5 processors (Haswell)

with a clock speed of 2.60 GHz. 20 cores and 128 GB of memory accompanied each

node. The homogenized models (such as HRM-Plate and HRM-Solid) were run on a

PC that had two XenonR©-E5 -2697 v2 processors with a clock speed of 2.70 GHz. It

had 128 GB of random access memory.
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Figure 5.3: Specification of the internal electrode faces (Γ) and poling for the

homogenized MFCs.
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5.4 Results

Mesh statistics and computing resources utilized are recorded in Table 5.3. The

number of CPUs for each analysis was determined by the CPUs that were available on

the Halstead Cluster. A peculiar mesh artifact was noted for the M2814 cases. The

mesh size of the full patch had a smaller mesh than that of the Active Area model. A

closer investigation revealed that the AbaqusR© meshing strategy placed three elements

through the thicknesses of the electrode and Kapton layers for the Active Area models

while the Full Patch models had one element through these thicknesses.

5.4.1 Macroscopic Response

The static macroscopic response was the displacement of the host. For each of

the three cases, the displacements along the two paths shown in Figure 5.5 were

examined. One path was the centerline of the host which was along the line (x1,

L2/2, 0). It will be referred to as “Centerline”. The second path will be referred

to as “Tip Line” and was a path on the free tip of the host and along (L1, x2, 0).

Figures 5.6 - 5.9 respectively show the displacements of the host for each of the three

cases. The first three figures, namely Figures 5.6, 5.7, and 5.8, show the transverse

displacement. Part (a) of those figures is the displacement along Centerline and part

(b) is along Tip Line. The values of the transverse tip deflection at Centerline (L1,

L2/2, 0) are shown in Table 5.4. The values in parentheses are computed from

u3 − uDNS
3

uDNS
3

× 100 (5.3)

and are the percent errors relative to the DNS in each respective case.

Comparing the DNS curves to the DNS without the Passive Area in Figures 5.6

and 5.7 reveals the effect of the Passive Area. The DNS without the Passive Area

curves are closer to the DNS curves for Case 2 than for Case 1. This means that,

as expected, accounting for the Active Area is non-negligible for the smaller patch.

It also means that for patches as wide or wider than the one in Case 2, ignoring the
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Table 5.3: Total element and node count as well as resources used for each MFC

patch.
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Figure 5.4: Macroscopic model illustration with the M2503-P1 case. Electrical

potential [V/mm] shown for all but the plate model. a) DNS b) DNS w/o Passive

Area c) HRM-Solid d) HRM-Plate.
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Figure 5.5: Relative locations for macroscopic quantities of interest and definitions

of “Centerline” and “Tip Line”.
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Passive Area is reasonable. Doing so should provide an error of about 4.3% (or less)

as indicated in Table 5.4.

In comparing the solid models, the DNS shows the strengths and weaknesses of

the solid model modeling strategy. It is apparent that neither the HRM2-Solid or

the MIX-Solid models capture the actuator behavior in Cases 1 very well. They are

better, however, for than the Plate estimate. For Case 2, the HRM2-Solid gives a 19%

error while the MIX-Solid gives a better result at 5.2%. Both solid models provide

satisfactory results for Case 3; with the MIX-Solid model being the best. This suggests

that the uniform polarization assumption for the HRM2-Solid model of the P1 MFC

is unacceptable. The P2 (Case 3) case seems to affirm that ignoring the separation

of scale assumption (and supposing that the MFC is a stack of homogeneous layers)

can be acceptable (for uniform poling and electrical fields).

Finally, one can compare the HRM2-Solid to the HRM2-Plate to find the com-

bined effects of the plate kinematics and the thermal analogy. This is because the

HRM2-Solid model is the elasticity solution of the homogenized solid and HRM2-Plate

models that model. For both cases considered by the plate mode (Case 1 and 2), the

plate model seems to provide overly stiff behavior when compared to the DNS. This

extra stiffness, which is likely from the assumptions in the plate kinematics, seems to

compensate for neglecting to account for the Passive Area. It is overcompensated in

Case 1 and about right for Case 2.

Table 5.4: Transverse tip deflection, u3, in [mm] at Centerline (L1, L2/2, 0). Values

in parentheses are the percent errors relative to the DNS in each respective case.

DNS w/o HRM2- MIX- HRM2-

DNS Passive Area Solid Solid Plate

Case 1 -0.236 -0.282 (19.7) -0.312 (32.2) -0.286 (21.2) -0.144 (-39.0)

Case 2 -0.517 -0.539 (4.3) -0.616 (19.0) -0.544 (5.2) -0.492 (-4.8)

Case 3 -0.305 0.301 (-1.2) -0.290 (-5.0) -0.293 (-3.8) N/A



158

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0 10 20 30 40

u
3

[m
m

] 

x
1

[mm]

DNS

DNS w/o Passive Area

HRM2-Solid

MIX-Solid

HRM2-Plate

(a) Displacement along Centerline.

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0 2 4 6 8 10

u
3

[m
m

] 

x
2

[mm]

(b) Displacement along Tip Line.

Figure 5.6: Static displacement of the host for Case 1.
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Figure 5.7: Static displacement of the host for Case 2.
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Figure 5.8: Transverse displacement of the host for Case 3.
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Since Case 3 has an anisotropic host, nontrivial results are obtained for the lateral

and longitudinal displacement along Tip Line. Therefore, Figure 5.9 documents those

results.
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Figure 5.9: Other static displacements of the host for Case 3 along Tip Line.
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5.4.2 Comparison of Local Fields

The dehomogenization procedure described in Section 4.2 is demonstrated for an

RVE from Case 3. Recall from Table 5.2 that (N1, N2)=(26, 34). If counted from

the corner of the Active Area closest to the origin, then the RVE where local fields

are to be compared was located at (13, 17). At this location, the fields were averaged

in the MIX-Solid model and then transferred to complete the BCs specified in Table

4.5. After solving the BVP in Table 4.5, the fields were extracted along selected lines

in the RVE. Figure 5.10 helps to define these lines. Line A is along (y1, 0, 0) and

Line B is along (0, 0, y3). The origin of yi is at the geometric centroid of the RVE.

Line C is included and it is part of the material interface at the top of the PZT fiber.

This was an interesting location to interrogate the transverse electric displacement to

see what charge may develop at the electrode (cf Eq. (1.1)). Line C corresponds to

a line along (y1, 0, 0.09 mm).

1

2

3

Line A

Line B

Line C

Figure 5.10: Relative locations for microscopic quantities of interest and definitions

of “Line A,” “Line B,” and “Line C”.
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Figure 5.11 - 5.12 shows some of the local fields obtained. The figures compare

the DNS (Case 3a), the DNS without the Passive Area (Case 3b), as well as the

dehomogenization results. Figure 5.11 compares the normal stresses along Line A

and Line B. Parts (a), (c), and (e) of that Figure show Line A results while parts

(b), (d), and (f) show Line B results. Examining the results on Line B reveals

that the dehomogenization is unable to account for the flexural stresses. The results

along Line A show that the trends are captured by the dehomogenization but the

magnitude stress values are overpredicted. Figure 5.12 shows the transverse electric

displacement along Line C. Again the overall trends are captured but the magnitude

is overpredicted. Finally, it is notable to observe the effects of neglecting the Passive

Area. Neglecting the Passive Area tends to underestimate the normal stress values.
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(e) Transverse normal stress along Line A.
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(f) Transverse normal stress along Line B.

Figure 5.11: Contrasting the local fields obtained from Line A and Line B for Case

3.
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6. SUMMARY AND RECOMMENDATIONS

6.1 Summary

A major reason for the MFC’s success and popularity stems from its various mate-

rial heterogeneities. Theses small-scale heterogeneities pose a formidable challenge for

designs and analyses with host structures at the macroscale. Previous homogeniza-

tions of the MFC were found to be inadequate and dehomogenization was nonexistent.

To a certain extent, the inadequacy of the homogenization treatments of the MFC

emanated from an inability of established micromechanical theories to account for in-

ternal electrodes. Of all of the piezoelectric homogenization methods reviewed, only

RVE analysis has been modified to account for the internal electrodes [51–55, 70].

Their approach assumed full periodicity and it was shown that their approach lacked

rigor.

Analytical homogenization is attractive due to its ease of use and low cost; how-

ever, prior analytical efforts have been typically limited by plane-stress-like assump-

tions and plate-kinematics. Thus a new analytical approach that is founded upon the

rigorous mechanics of structure genome has been presented as a homogenization tool

that is able to homogenize a general stack of piezoelectric layers. For Step-2 homog-

enization, our approach minimizes the difference of the electric enthalpy between a

stack of piezoelectric layers and that of a general anisotropic and piezoelectric solid

model. As a result, it was proved that the in-plane strains and the transverse stresses

are equal in each layer and the in-plane electric fields and transverse electric dis-

placement are constant between the electrodes. This proof was also applied to Step-1

homogenization by recognizing that the active layer can be viewed as a lateral stack

of layers. This knowledge was then applied to MFCs by homogenizing the fiber layers

and the full stack of MFC layers by the Hybrid Rules of Mixtures. Special treatment
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was given to account for the active layer being embedded among passive layers. Thus,

improvements in accuracy and completeness were obtained on the effective properties

of MFCs via analytical methods. The derivation clarified what the electrical behavior

of the homogenized solid should be. This behavior was also verified by DNSs. Last

but not least, the prolific use of plane-stress-like assumptions to homogenize the fiber

layers has been examined. The error of using these assumptions and neglecting terms

have been traced from the homogenization of the fiber layers to homogenization of

the MFC stack of layers. Our results showed that the lateral Young’s modulus and

piezoelectric strain coefficient are the most adversely affected. Indeed, the plane-

stress assumption serves as a useful estimate of the fiber layer properties of the MFC.

However, if accuracy is a concern, then the plane-stress-like assumption should be

avoided in Step-1 homogenization. As for Step-2, the plane-stress assumption and

plate kinematics did not affect the in-plane mechanical properties but FSDT greatly

overpredicted the transverse shear stiffnesses.

The fact that piezoelectric fiber composites of technological importance are rel-

atively thin raised the question of whether full periodicity can be used. New RVE

analysis BCs have been proposed as a mixture of boundary condition types (MIX).

The conditions were first derived for microstructures without internal electrodes. The

periodic boundary conditions remained for the in-plane faces but periodicity through

the thickness was relaxed. Instead, homogeneous stress BCs were applied on the out-

of-plane faces and equipotential BCs were applied when simulating the electrodes.

The new boundary conditions were shown to satisfy a previous extension of a piezo-

electric macrohomogeneity condition. A series of proofs have been provided to enable

rigorous use of the PBCs. Additionally, a new post-processing scheme was devised

that enabled crosschecking the material symmetry. It was also found to be a unified

procedure for the effective properties. Two typical examples were presented to show-

case the difference between the PBCs and the present boundary conditions. For both

examples, sizable differences were found for most of the out-of-plane properties. Full

PBCs were shown to be insensitive to thickness effects. Sensor and actuator type
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loadings were found to provide differing shear coupling coefficients when the equipo-

tential BCs were used for the electrodes. This artifact was also verified with a DNS

of the active layer. This suggests that the MFC cannot be homogenized as rigorously

as expected.

For the full MFC, the fully periodic BCs were rectified and the MIX BCs from

Chapter 3 were implemented. Asymmetric constitutive relations were found; even for

the case of 3D periodicity of the mechanical fields proposed in the literature. The

IDE case posed difficulty in averaging of the local fields. The difficulty came from the

symmetry of the electrical fields within the RVE. Thus two volume averaging schemes

were explored and were named Full Transform and Mechanical Transform. When

compared to a DNS of the Active Area, the Mechanical Transform effective properties

were found to outperform the Full Transform. Sensor and actuator type loadings

continued to yield differing shear coupling coefficients. The P1 case exacerbated the

asymmetry.

Large scale 3D FEA models that included microscale features were constructed

to test the multiscale methodology. MFCs acting in a unimorph configuration were

considered. The most critical case to test was the smallest MFC that is available off

the shelf. Some of the test models were constructed with and without the Passive

Area. The results revealed that accounting for the Passive Area in the smaller patch

was non-negligible. The uniform polarization assumption for the P1 MFC was found

to be inadequate. Analytical homogenization, which includes ignoring the separation

of scale assumption and supposing that the MFC is a stack of homogeneous layers, was

found to be acceptable for the P2 MFC. A mechanical plate model with a thermal

analogy was found to provide overly stiff behavior when compared to the DNS of

the smaller patch. This extra stiffness, which is likely from the assumptions in the

plate kinematics, seems to compensate for neglecting to account for the Passive Area.

Methodology for extraction of the local MFC fields was presented and also tested

from the unimorph test models. The prediction of the local fields was found to need

improvement.
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Many files used to create the results in this work can be obtained from https:

//cdmhub.org/projects/ernestocamarena.

6.2 Recommendations

• Recall that Chapter 3 showed that the newly developed MIX BCs satisfy a

piezoelectric macrohomogeneity condition for the active layer. These BCs were

applied to the full MFC with modifications for internal electrodes and nonuni-

form poling. The macrohomogeneity condition should be verified for the full

MFC as it was for the active layer.

• The proposed RVE analysis for the full MFC was for an RVE of the Active

Area. It is recommended that a micromechanical approach should be developed

such that both the Active and Passive Areas could be homogenized and then

dehomogenized. At the very least, this should be performed for the smaller

MFCs such as the M2503-P1 MFC. This may require using the ideas developed

here about handling electrodes that are internal to the RVE. With the M2503-

P1 MFC being the smallest patch, it would be reasonable to perform an RVE

analysis where the RVE is the complete geometry of the patch. Homogeneous

stress boundary conditions could be used for the all of the mechanical BCs since

it would not necessarily be periodic in any direction.

• In this work, it was instructive to first obtain a solid model with an MSG analyt-

ical solution. The versatility of MSG allows for a plate model to be constructed

directly from information about the host and the MFC. This approach is ex-

pected to provide faster results than the solid models but without any of the

drawbacks associated with other plate models.

• Here, linear piezoelectricity was utilized. However, real piezoelectric materials

have been shown to have nonlinear behavior for high electric fields and hysteresis

https://cdmhub.org/projects/ernestocamarena
https://cdmhub.org/projects/ernestocamarena
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[8, 11, 97, 99, 148]. Thus efforts should be made to extend the developments in

this dissertation to account for these realities.
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A. MATHEMATICA CODE FOR HRM2

The Mathematica [147] code for obtaining results from the HRM2 are presented

here. Note that only the code for the Step 2 of the P2 case is provided for brevity.

This and many other files can be downloaded from https://cdmhub.org/projects/

ernestocamarena.

https://cdmhub.org/projects/ernestocamarena
https://cdmhub.org/projects/ernestocamarena


In[1]:= SetOptionsPlot, BaseStyle  FontFamily  "Times", FontSize  19;

In[2]:= legendSize  14; f  0.8654; angles  0, 90, 0;

tKapton  40  106; tElect  18  106; tActive  180  106;

In[3]:= ti  2 tKapton, 2 tElect, tActive; 0  8.854  1012;

In[4]:= nLam  Lengthti
Out[4]= 3

In[5]:= z  Accumulateti; h  NznLam
Out[5]= 0.000296

In[6]:= VfLam  Nti  h
Out[6]= 0.27027027027, 0.121621621622, 0.608108108108

d31_PZT STEP 1 Inputs

In[7]:= epoxyMat  Ee  2.9  109, e  0.3, ke  4.25  0;

In[8]:= mat  JoinfiberMat, epoxyMat;

In[9]:= DD3  3.18681318681  10^9  5.52173567387  10^10 Vf 
9.24175824176  10^18  3.26783843354  10^20 Vf  2.82071978288  10^21 Vf^2,

9.56043956044  10^8  1.37105981328  10^10 Vf  9.27906758063  10^9 Vf^2 
9.24175824176  10^18  3.26783843354  10^20 Vf  2.82071978288  10^21 Vf^2,

9.56043956044  10^8  2.47417908112  10^10 Vf 
9.24175824176  10^18  3.26783843354  10^20 Vf  2.82071978288  10^21 Vf^2,

0, 0, 0, 0, 0, 2.25216136856  10^10  5.61476282442  10^11 Vf Vf 
9.24175824176  10^18  3.26783843354  10^20 Vf  2.82071978288  10^21 Vf^2,

1.95613538122  10^14  6.19464965843  10^13 Vf 

5.05053004571  10^12 Vf^2  3.28960984957  10^12 Vf^3 
0.000189093086852  0.00996261777485 Vf  0.173565201131 Vf^2  1. Vf^3,

6.52045127075  10^14  3.07099806637  10^12 Vf  4.70702577203  10^11 Vf^2 

2.18543330384  10^10 Vf^3  2.46849385281  10^10 Vf^4 
0.000189093086852  0.00996261777485 Vf  0.173565201131 Vf^2  1. Vf^3,

1.95613538122  10^14  6.77502037491  10^13 Vf 

6.03394095293  10^12 Vf^2  2.90517403277  10^12 Vf^3 
0.000189093086852  0.00996261777485 Vf  0.173565201131 Vf^2  1. Vf^3,

0, 0, 0, 0, 0, Vf 3.98218985963  10^13  1.39075177003  10^11 Vf 

1.25963429097  10^10 Vf^2  7.87184629356  10^11 Vf^3 
0.000189093086852  0.00996261777485 Vf  0.173565201131 Vf^2  1. Vf^3,

1.95613538122  10^14  8.45171181116  10^13 Vf 

8.77144584207  10^12 Vf^2 
0.000189093086852  0.00996261777485 Vf  0.173565201131 Vf^2  1. Vf^3,

1.95613538122  10^14  6.77502037491  10^13 Vf 

6.03394095293  10^12 Vf^2  2.90517403277  10^12 Vf^3 
0.000189093086852  0.00996261777485 Vf  0.173565201131 Vf^2  1. Vf^3,

6.52045127075  10^14  2.40183537928  10^12 Vf 

2.20405566296  10^11 Vf^2 
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0.000189093086852  0.00996261777485 Vf  0.173565201131 Vf^2  1. Vf^3,

0, 0, 0, 0, 0, Vf 1.38096228442  10^12 

5.0966024162  10^11 Vf  4.68488454831  10^10 Vf^2 
0.000189093086852  0.00996261777485 Vf  0.173565201131 Vf^2  1. Vf^3,

0, 0, 0, 8.98510015197  10^10  1.76181818299  10^9 Vf 

8.63420295502  10^10 Vf^2  1.00218424772  1. Vf, 0,

0, 0, 1.22317872286  10^12 Vf  1.00218424772  1. Vf, 0,

0, 0, 0, 0, 5.44525425149  10^11  0.0607355281897  1. Vf, 0,

5.94011895786  10^10 Vf  0.0607355281897  1. Vf, 0, 0,

0, 0, 0, 0, 0, 8.96551724138  10^10  8.44377811094  10^10 Vf, 0, 0, 0,

0, 0, 0, 0, 5.94011895786  10^10 Vf  0.0607355281897  1. Vf, 0,

2.28544755801  10^12  7.12932198542  10^10 Vf  1.75986994688  10^8 Vf^2 
0.0607355281897  1. Vf, 0, 0,

0, 0, 0, 1.22317872286  10^12 Vf  1.00218424772  1. Vf, 0,

0, 0, 3.77116921496  10^11  1.00218424772  1. Vf, 0,

Vf 4.60808575737  10^13  1.9472562485  10^11 Vf 

1.99054257658  10^10 Vf^2 
0.000189093086852  0.00996261777485 Vf  0.173565201131 Vf^2  1. Vf^3,

Vf 3.98218985963  10^13  1.39075177003  10^11 Vf 

1.25963429097  10^10 Vf^2  7.87184629356  10^11 Vf^3 
0.000189093086852  0.00996261777485 Vf  0.173565201131 Vf^2  1. Vf^3,

Vf 1.38096228442  10^12  5.0966024162  10^11 Vf 

4.68488454831  10^10 Vf^2 
0.000189093086852  0.00996261777485 Vf  0.173565201131 Vf^2  1. Vf^3,

0, 0, 0, 0, 0, 7.11547831168  10^15  1.69513356504  10^12 Vf  1.0537381265 

10^10 Vf^2  2.33214479829  10^9 Vf^3  1.69499437868  10^8 Vf^4 
0.000189093086852  0.00996261777485 Vf  0.173565201131 Vf^2  1. Vf^3;

Copper

In[10]:= CufiberMat  Ec  117.2  109, c  0.31, kc  5  0;

In[11]:= Cumat  JoinCufiberMat, epoxyMat;
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In[12]:= DD2  Simplify
Ee 1  Vfc 1  c^2  Ec Vfc 1  e^2  Ee^2 1  Vfc^2 1  c^2 

2 Ec Ee 1  Vfc Vfc 1  c e  Ec^2 Vfc^2 1  e^2,

Vfc c  e  e  c e  Ee 1  Vfc  c  Vfc c  Ec Vfc 1  e,

Ee 1  Vfc 1  c^2 e  Ec Vfc c 1  e^2 
Ee^2 1  Vfc^2 1  c^2  2 Ec Ee 1  Vfc Vfc 1  c e 

Ec^2 Vfc^2 1  e^2, 0, 0, 0, 0, 0, 0,

Vfc c  e  e  c e  Ee 1  Vfc  c  Vfc c  Ec Vfc 1  e,

Ee^2 1  Vfc Vfc 1  c  2 c^2  Ec^2 1  Vfc Vfc 1  e  2 e^2 
Ec Ee 1  c  2 Vfc 1  c  2 c e  Vfc^2 2  c  e  4 c e 

Ec Ee Ee 1  Vfc  c  Vfc c  Ec Vfc 1  e, Vfc c  e  e  c e 
Ee 1  Vfc  c  Vfc c  Ec Vfc 1  e, 0, 0, 0, 0, 0, 0,

Ee 1  Vfc 1  c^2 e  Ec Vfc c 1  e^2  Ee^2 1  Vfc^2

1  c^2  2 Ec Ee 1  Vfc Vfc 1  c e  Ec^2 Vfc^2 1  e^2,

Vfc c  e  e  c e  Ee 1  Vfc  c  Vfc c  Ec Vfc 1  e,

Ee 1  Vfc 1  c^2  Ec Vfc 1  e^2  Ee^2 1  Vfc^2 1  c^2 
2 Ec Ee 1  Vfc Vfc 1  c e  Ec^2 Vfc^2 1  e^2, 0, 0, 0, 0, 0, 0,

0, 0, 0, 2 Vfc 1  c  Ec  2 1  Vfc 1  e  Ee, 0, 0, 0, 0, 0,

0, 0, 0, 0, 2 1  c 1  e  Ee 1  Vfc 1  c  Ec Vfc 1  e, 0, 0,

0, 0, 0, 0, 0, 0, 0, 2 Vfc 1  c  Ec  2 1  Vfc 1  e  Ee, 0, 0, 0,

0, 0, 0, 0, 0, 0, ke  ke Vfc  kc Vfc, 0, 0,

0, 0, 0, 0, 0, 0, 0, ke kc  kc  ke Vfc  kc Vfc, 0,

0, 0, 0, 0, 0, 0, 0, 0, ke  ke Vfc  kc Vfc . Cumat;

Kapton Layer

In[13]:= KaptonMat  Ek  2.8  109, k  0.3, kk  3.4 0;

In[14]:= DD1 

1
Ek

k
Ek

k
Ek

0 0 0 0 0 0
k
Ek

1
Ek

k
Ek

0 0 0 0 0 0
k
Ek

k
Ek

1
Ek

0 0 0 0 0 0

0 0 0 2 1k
Ek

0 0 0 0 0

0 0 0 0 2 1k
Ek

0 0 0 0

0 0 0 0 0 2 1k
Ek

0 0 0

0 0 0 0 0 0 kk 0 0
0 0 0 0 0 0 0 kk 0
0 0 0 0 0 0 0 0 kk

. KaptonMat;

In[15]:=

Partition S, d, k for individual transformations to Global CS

Transfrom with Clockwise rotations

In[16]:=  
Cos Degree Sin Degree 0
Sin Degree Cos Degree 0

0 0 1
;
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In[17]:= R  112, 122, 132, 2 12 13, 2 11 13, 2 11 12, 212, 222, 232, 2 22 23,

2 21 23, 2 21 22, 312, 322, 332, 2 32 33, 2 31 33, 2 31 32,

21 31, 22 32, 23 33, 23 32  22 33, 23 31  21 33, 22 31  21 32,

11 31, 12 32, 13 33, 13 32  12 33, 13 31  11 33, 12 31  11 32,

11 21, 12 22, 13 23, 13 22  12 23, 13 21  11 23, 12 21  11 22 .

11  1, 1, 12  1, 2, 13  1, 3, 21  2, 1,

22  2, 2, 23  2, 3, 31  3, 1, 32  3, 2, 33  3, 3;

In[18]:= R  11^2, 12^2, 13^2, 12 13, 11 13, 11 12,

21^2, 22^2, 23^2, 22 23, 21 23, 21 22,

31^2, 32^2, 33^2, 32 33, 31 33, 31 32, 2 21 31, 2 22 32, 2 23 33,

23 32  22 33, 23 31  21 33, 22 31  21 32, 2 11 31, 2 12 32,

2 13 33, 13 32  12 33, 13 31  11 33, 12 31  11 32, 2 11 21,

2 12 22, 2 13 23, 13 22  12 23, 13 21  11 23, 12 21  11 22 .

11  1, 1, 12  1, 2, 13  1, 3, 21  2, 1, 22  2, 2,

23  2, 3, 31  3, 1, 32  3, 2, 33  3, 3; ;

Partition S, d, k for individual transformations to Global

In[19]:= listSE  Arrayf, nLam, 6, 6;

In[20]:= listd0  Arrayf, nLam, 6, 3;

In[21]:= listk  Arrayf, nLam, 3, 3;

In[22]:= d0 

d011 d021 d031
d012 d022 d032
d013 d023 d033
d014 d024 d034
d015 d025 d035
d016 d026 d036

; SE0 

SE011 SE012 SE013 0 0 SE016
SE012 SE022 SE023 0 0 SE026
SE013 SE023 SE033 0 0 SE036

0 0 0 SE044 SE045 0
0 0 0 SE045 SE055 0

SE016 SE026 SE036 0 0 SE066

;

k 
k011 k012 k013
k012 k022 k023
k013 k023 k033

;

In[23]:= DoDolistSEk, i, j  SE0i, j  DDk1 ;; 6, 1 ;; 6i, j,

j, 6, i, 6, k, nLam;

In[24]:= DoDolistd0k, i, j  d0i, j  TransposeDDk7 ;; 9, 1 ;; 6i, j,

j, 3, i, 6, k, nLam;

In[25]:= DoDolistkk, i, j  ki, j  DDk7 ;; 9, 7 ;; 9i, j,

j, 3, i, 3, k, nLam;

In[26]:= Doak  JoinFlattenlistSEk, Flattenlistd0k, Flattenlistkk,

k, 1, nLam
In[27]:= ke  Simplify.k.Transpose;

In[28]:= ClearlistSE, listd, listk
In[29]:= SEe  R.SE0.TransposeR;

In[30]:= de  R.d0.Transpose;
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In[31]:= listSE  Arrayf, nLam, 6, 6;

In[32]:= listd  Arrayf, nLam, 6, 3;

In[33]:= listk  Arrayf, nLam, 3, 3;

In[34]:=

In[35]:= d 

d11 d21 d31
d12 d22 d32
d13 d23 d33
d14 d24 d34
d15 d25 d35
d16 d26 d36

; SE 

SE11 SE12 SE13 0 0 SE16
SE12 SE22 SE23 0 0 SE26
SE13 SE23 SE33 0 0 SE36

0 0 0 SE44 SE45 0
0 0 0 SE45 SE55 0

SE16 SE26 SE36 0 0 SE66

;

k 
k11 k12 k13
k12 k22 k23
k13 k23 k33

;

In[36]:= DoDolistSEk, i, j  SEi, j  SEei, j . ak .   anglesk,

j, 6, i, 6, k, nLam;

In[37]:= DoDolistdk, i, j  di, j  dei, j . ak .   anglesk,

j, 3, i, 6, k, nLam;

In[38]:= DoDolistkk, i, j  ki, j  kei, j . ak .   anglesk,

j, 3, i, 3, k, nLam;

In[39]:= Dobk  JoinFlattenlistSEk, Flattenlistdk, Flattenlistkk,

k, 1, nLam
Passive Layers First

In[40]:= S 

SE11 SE12 SE13 0 0 SE16
SE12 SE22 SE23 0 0 SE26
SE13 SE23 SE33 0 0 SE36

0 0 0 SE44 SE45 0
0 0 0 SE45 SE55 0

SE16 SE26 SE36 0 0 SE66

;  

11
22
33
23
13
12

;

 

11
22
33
23
13
12

; avg 

11avg
22avg
33avg
23avg
13avg
12avg

; avg 

11avg
22avg
33avg
23avg
13avg
12avg

;

In[41]:= n  Length;

In[42]:= H  ; H  ;

In[43]:= pointer  1, 2, 6;

In[44]:= Nswitch  Lengthpointer;

Switching prescribed strain and/or stress values

In[45]:= DoHpointeri  pointeri, i, 1, Nswitch
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In[46]:= DoHpointeri  pointeri, i, 1, Nswitch
In[47]:= MatrixFormH

Out[47]//MatrixForm=

11
22
33
23
13
12

In[48]:= MatrixFormH
Out[48]//MatrixForm=

11
22
33
23
13
12

In[49]:= SHp  ConstantArray0, n  3, n  3;

In[50]:=   S.; MatrixForm
Out[50]//MatrixForm=

SE11 11  SE16 12  SE12 22  SE13 33
SE12 11  SE26 12  SE22 22  SE23 33
SE13 11  SE36 12  SE23 22  SE33 33

SE45 13  SE44 23
SE55 13  SE45 23

SE16 11  SE66 12  SE26 22  SE36 33

In[51]:= Doeqni  i1  i, 1, i, 1, n
In[52]:= eqnList  ConstantArray0, n; vars  ConstantArray0, n;

In[53]:= DoeqnListi  eqni, i, 1, n;

In[54]:= Dovarsi  Hi1, i, 1, n
In[55]:= eqnList

Out[55]= 11  SE11 11  SE16 12  SE12 22  SE13 33,
22  SE12 11  SE26 12  SE22 22  SE23 33,
33  SE13 11  SE36 12  SE23 22  SE33 33, 23  SE45 13  SE44 23,
13  SE55 13  SE45 23, 12  SE16 11  SE66 12  SE26 22  SE36 33

In[56]:= vars

Out[56]= 11, 22, 33, 23, 13, 12

In[57]:= sol  SimplifySolveeqnList, vars1;

In[58]:= Dotempi  Hi1 . soli, i, 1, n
In[59]:= DoDoSHpi, j  SimplifyCoefficienttempi, Hj1, j, 1, n,

i, 1, n
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In[60]:= ClearAllS, , , avg, avg, n
Active Layer

In[61]:= S 

SE11 SE12 SE13 0 0 SE16 0 0 d31
SE12 SE22 SE23 0 0 SE26 0 0 d32
SE13 SE23 SE33 0 0 SE36 0 0 d33

0 0 0 SE44 SE45 0 0 d24 0
0 0 0 SE45 SE55 0 d15 0 0

SE16 SE26 SE36 0 0 SE66 0 0 0
0 0 0 0 d15 0 k11 0 0
0 0 0 d24 0 0 0 k22 0

d31 d32 d33 0 0 0 0 0 k33

;

 

11
22
33
23
13
12
E1
E2
E3

;  

11
22
33
23
13
12
D1
D2
D3

; avg 

11avg
22avg
33avg
23avg
13avg
12avg
D1avg
D2avg
D3avg

; avg 

11avg
22avg
33avg
23avg
13avg
12avg
E1avg
E2avg
E3avg

;

In[62]:= n  Length;

In[63]:= H  ; H  ;

In[64]:= pointer  1, 2, 6, 9;

In[65]:= Nswitch  Lengthpointer;

Switching prescribed strain and/or stress values

In[66]:= DoHpointeri  pointeri, i, 1, Nswitch
In[67]:= DoHpointeri  pointeri, i, 1, Nswitch
In[68]:= MatrixFormH

Out[68]//MatrixForm=

11
22
33
23
13
12
E1
E2
D3
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In[69]:= MatrixFormH
Out[69]//MatrixForm=

11
22
33
23
13
12
D1
D2
E3

In[70]:= SHa  ConstantArray0, n, n;

In[71]:=   S.; MatrixForm
Out[71]//MatrixForm=

d31 E3  SE11 11  SE16 12  SE12 22  SE13 33
d32 E3  SE12 11  SE26 12  SE22 22  SE23 33
d33 E3  SE13 11  SE36 12  SE23 22  SE33 33

d24 E2  SE45 13  SE44 23
d15 E1  SE55 13  SE45 23

SE16 11  SE66 12  SE26 22  SE36 33
E1 k11  d15 13
E2 k22  d24 23

E3 k33  d31 11  d32 22  d33 33

In[72]:= Doeqni  i1  i, 1, i, 1, n
In[73]:= eqnList  ConstantArray0, n; vars  ConstantArray0, n;

In[74]:= DoeqnListi  eqni, i, 1, n;

In[75]:= Dovarsi  Hi1, i, 1, n
In[76]:= eqnList

Out[76]= 11  d31 E3  SE11 11  SE16 12  SE12 22  SE13 33,
22  d32 E3  SE12 11  SE26 12  SE22 22  SE23 33,
33  d33 E3  SE13 11  SE36 12  SE23 22  SE33 33, 23  d24 E2  SE45 13  SE44 23,
13  d15 E1  SE55 13  SE45 23, 12  SE16 11  SE66 12  SE26 22  SE36 33,
D1  E1 k11  d15 13, D2  E2 k22  d24 23, D3  E3 k33  d31 11  d32 22  d33 33

In[77]:= vars

Out[77]= 11, 22, 33, 23, 13, 12, D1, D2, E3

In[78]:= sol  SimplifySolveeqnList, vars1;

In[79]:= Dotempi  Hi1 . soli, i, 1, n
In[80]:= DoDoSHai, j  SimplifyCoefficienttempi, Hj1, j, 1, n,

i, 1, n
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In[81]:= Print MatrixFormH ;; , "", MatrixFormSHa , MatrixFormH ;; 

11
22
33
23
13
12
D1
D2
E3




k33 SE66 k33 SE262d322 SE66k33 SE22 SE

k33 SE16 SE26d31 d32 SE66k33 SE12 SE662k33 SE262d322 SE66k33 SE22 S

k33 SE16 SE26d31 d32 SE66k33 SE12 SE66

d322 SE162SE11 SE662 d31 d32 SE16 SE26SE12 SE66d312 SE262SE22 SE66k33 SE162 SE22

d322 SE16 SE36SE13 SE66d31 d33 SE262SE22 SE66d32 d33 SE16 SE26d31 SE26 SE36d33 SE12 SE66d31 SE23 SE66k33 SE1

d322 SE162SE11 SE66d31 d32 2 SE16 SE262 SE12 SE66d312 SE262SE22 SE66k33 SE162 SE22

0
0

d322 SE16k33 SE16 SE22d31 d32 SE26k33 SE12

d322 SE162SE11 SE662 d31 d32 SE16 SE26SE12 SE66d312 SE262SE22 SE66k33 SE162 SE22

0
0

d32 SE16 SE26d31 SE262d32 SE12 SE66d31 SE22

d322 SE162SE11 SE662 d31 d32 SE16 SE26SE12 SE66d312 SE262SE22 SE66k33 SE162 SE22

In[82]:= SHstar 

SumVfLami  SHp . bi, i, 1, 2  SumVfLami  SHa . bi, i, 3, nLam;

In[83]:= Havg 

11avg
22avg
33avg
23avg
13avg
12avg
D1avg
D2avg
E3avg

; Havg 

11avg
22avg
33avg
23avg
13avg
12avg
E1avg
E2avg
D3avg

;

In[84]:= Havg  SHstar.Havg;

In[85]:= DoEQNi  Havgi1  Havgi, 1, i, 1, n
In[86]:= EQNlist  ConstantArray0, n; VARS  ConstantArray0, n;

In[87]:= DoEQNlisti  EQNi, i, 1, n;

In[88]:= DoVARSi  avgi1, i, 1, n
In[89]:= SOL  SolveEQNlist, VARS1;

In[90]:= DoTEMPi  avgi1 . SOLi, i, 1, n
In[91]:= SHstarNew  ConstantArray0, n, n;

In[92]:= Do
DoSHstarNewi, j  CoefficientTEMPi, avgj1, j, 1, n, i, 1, n

In[93]:= listS  Arrayf, 6, 6; listd  Arrayf, 6, 3;

listd2  Arrayf, 6, 3; listk  Arrayf, 3, 3;

In[94]:= DolistSi, j  SE0i, j  SHstarNew1 ;; 6, 1 ;; 6i, j, j, 6, i, 6
In[95]:= Dolistdi, j  d0i, j  SHstarNew1 ;; 6, 7 ;; 9i, j, j, 3, i, 6
In[96]:= Dolistd2i, j  d0i, j  SHstarNew7 ;; 9, 1 ;; 6j, i, j, 3, i, 6
In[97]:= Dolistki, j  ki, j  SHstarNew7 ;; 9, 7 ;; 9i, j, j, 3, i, 3
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In[98]:= c  JoinFlattenlistS, Flattenlistd, Flattenlistk;

In[99]:= c2  JoinFlattenlistS, Flattenlistd2, Flattenlistk;

In[100]:= kStar  k . c;

In[101]:= CE0  InverseSE0 . c;

In[102]:= e  InverseSE0.d0 . c;

In[103]:= d 

d11 d21 d31
d12 d22 d32
d13 d23 d33
d14 d24 d34
d15 d25 d35
d16 d26 d36

; SE 

SE11 SE12 SE13 0 0 SE16
SE12 SE22 SE23 0 0 SE26
SE13 SE23 SE33 0 0 SE36

0 0 0 SE44 SE45 0
0 0 0 SE45 SE55 0

SE16 SE26 SE36 0 0 SE66

;

k 
k11 k12 k13
k12 k22 k23
k13 k23 k33

;

In[104]:= kStar  k  Transposed0.e . c; MatrixFormkStar  0 . Vf  f, Vfc  0.24
Out[104]//MatrixForm=

988.588975803 0. 0.
0. 18.9285961597 0.
0. 0. 1986.15350555

In[105]:= kStar  k  Transposed0.e . c2; MatrixFormkStar  0 . Vf  f, Vfc  0.24
Out[105]//MatrixForm=

988.588975803 0. 0.
0. 18.9285961597 0.
0. 0. 1986.15350555

In[106]:= Sstar  SHstarNew1 ;; 6, 1 ;; 6;

In[107]:= dStar  SHstarNew1 ;; 6, 7 ;; 9;

MatrixFormdStar  1012 . Vf  0.8654, Vfc  0.24
Out[107]//MatrixForm=

0 0 297.232788432
0 0 201.862649728
0 0 489.934494328
0 4.70599559785 0

337.534587797 0 0
0 0 0

In[108]:= dStar  TransposeSHstarNew7 ;; 9, 1 ;; 6;

MatrixFormdStar  1012 . Vf  0.8654, Vfc  0.24
Out[108]//MatrixForm=

0 0 297.232788432
0 0 201.862649728
0 0 489.934494328
0 4.70599559785 0

337.534587797 0 0
0 0 0
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In[109]:=

In[110]:= E1star 
1

Sstar1, 1 ; E2star 
1

Sstar2, 2 ; E3star 
1

Sstar3, 3 ;

G12star 
1

Sstar6, 6 ; G13star 
1

Sstar5, 5 ; G23star 
1

Sstar4, 4 ;

12star  Sstar1, 2  E1star;

13star  Sstar1, 3  E1star; 23star  Sstar2, 3  E2star;

In[113]:= Cstar  CE0 . c;

In[114]:= eStar  CE0.d0 . c; MatrixFormeStar . Vf  0.8654, Vfc  0.24
Out[114]//MatrixForm=

0. 0. 9.01199929273
0. 0. 3.90827063237
0. 0. 3.44157649913
0. 0.0133527162396 0.

0.911658846091 0. 0.
0. 0. 0.

In[115]:= eStar2  CE0.d0 . c2; MatrixFormeStar2 . Vf  0.8654, Vfc  0.24
Out[115]//MatrixForm=

0. 0. 9.01199929273
0. 0. 3.90827063237
0. 0. 3.44157649913
0. 0.0133527162396 0.

0.911658846091 0. 0.
0. 0. 0.

In[116]:= nsigFig  5;

In[117]:= varNames3D  "E1", "E2", "E3", "G12", "G13", "G23", "12", "13", "23", "d31",

"d32", "d33", "d24", "d15", "k11", "k22", "k33", "k11", "k22", "k33";
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In[118]:= threeDResults  E1star  109, E2star  109, E3star  109, G12star  109,

G13star  109, G23star  109, 12star, 13star, 23star, dStar1, 3  1012,

dStar2, 3  1012, dStar3, 3  1012, dStar4, 2  1012, dStar5, 1  1012,

kStar1, 1  0, kStar2, 2  0, kStar3, 3  0, kStar1, 1  0,

kStar2, 2  0, kStar3, 3  0; Print MatrixFormvarNames3D,

"", MatrixFormthreeDResults . Vf  0.8654, Vfc  0.24
E1

E2

E3

G12

G13

G23

12

13

23

d31

d32

d33

d24

d15

k11

k22

k33

k11

k22

k33



30.3690843274
16.0987614385
10.5199568464
4.1352790212

2.70093459767
2.83738392057

0.308575243133
0.354687418679
0.236990950935
297.232788432
201.862649728
489.934494328
4.70599559785
337.534587797
1023.34348143
18.9356932711
2568.23421333
988.588975803
18.9285961597
1986.15350555
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B. RVE ANALYSIS SCRIPTS FOR THE FULL MFC

Once the RVE geometry has been created and the P1 case was poled, the following

Python code is for homogenizing the full MFC (P1 or P2). This and many other

files can be downloaded from https://cdmhub.org/projects/ernestocamarena.

https://cdmhub.org/projects/ernestocamarena


# -*- coding: mbcs -*-
# Do not delete the following import lines
from abaqus import *
from abaqusConstants import *
import __main__
import section
import regionToolset
import displayGroupMdbToolset as dgm
import part
import mesh
import material
import assembly
import step
import interaction
import load
import optimization
import job
import sketch
import visualization
import xyPlot
import displayGroupOdbToolset as dgo
import connectorBehavior

def getXYZ_min_max(I):
    #Given a list of index values I, this looks at each element index by I 
    #to find the min and max x,y,z values

    #For example: 
    #Inputing I=[237] will find the min/max x/y/z for the element[237]

    #or I=range(0,nel) will find the min/max x/y/z for all the elements index 
    #up to nel.
    xCoordsList=[]
    yCoordsList=[]
    zCoordsList=[]
    p = mdb.models[modelName].parts['Part-1']
    nNodesElem=len(p.elements[0].getNodes()) #The number of nodes per element
    for i in I:
        elementNodes=p.elements[i].getNodes()
        for j in range(0,nNodesElem):
            x=elementNodes[j].coordinates[0]
            y=elementNodes[j].coordinates[1]
            z=elementNodes[j].coordinates[2]
            xCoordsList.append(x)
            yCoordsList.append(y)
            zCoordsList.append(z)
    Xmin=min(xCoordsList)
    Xmax=max(xCoordsList)
    Ymin=min(yCoordsList)
    Ymax=max(yCoordsList)
    Zmin=min(zCoordsList)
    Zmax=max(zCoordsList)
    return (Xmin, Xmax, Ymin, Ymax, Zmin, Zmax)
def createBCset(part, axis, locValue, lim, setName):
    axis=axis.upper()
    axisCoordDict={}
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    axisCoordDict['X']=0
    axisCoordDict['Y']=1
    axisCoordDict['Z']=2

    p = part
    nodes=[]
    nds = p.nodes  # nds is a list
    for i, nd in enumerate(nds):
        coord_i = axisCoordDict[axis]
        if round(nd.coordinates[coord_i],lim)==round(locValue,lim) :
            #print 'true'
            #print nd.coordinates[coord_i]- locValue
            if len(nodes)==0:
                nodes  = nds[i:i+1]
            else:
                nodes += nds[i:i+1]

    p.Set(nodes=nodes, name=setName)
    del nodes
    return
def createSurfacesAndConstrains(modelName):
# -*- coding: utf-8 -*-
    """
    Created on Wed Mar 07 15:13:43 2018
    Given an meshed rectangular part with brick elements (linear or cubic), create 
    surface sets on the outer boundies of the part.

    This code assumes that the outer faces normals of the part are parallel to the 
    global coordinates.

    Assumes all elements are of the same order (linear or cubic)
    @author: ecamaren
    """
    partName = 'Part-1'
    instName = partName+'-1'
    refP1 = 'RefPoint1'
    refP2 = 'RefPoint2'
    refP3 = 'RefPoint3'
    #currentTime1 = time.asctime(time.localtime(time.time()))
    tol=0.0001 #Tolarence value to see if a node likes on the Min or Max X,Y,or Z plane 
    lim = 5 # the accuracy limit digit for seeking the corresponding node pairs
    print 'Min and Max of domain and creating surface sets...'
    ############################################

    p = mdb.models[modelName].parts[partName]
    nel=p.elements[-1].label #The total number of elements in the model
    nNodesElem=len(p.elements[0].getNodes()) #The number of nodes per element

    minMax=getXYZ_min_max(range(0,nel)) #find the Min/Max values for all elements
    Xmin=minMax[0]
    Xmax=minMax[1]
    Ymin=minMax[2]
    Ymax=minMax[3]
    Zmin=minMax[4]
    Zmax=minMax[5]
    print '**************************'
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    print 'Xmin=%1.5f' %(Xmin)
    print 'Xmax=%1.5f' %(Xmax)
    print 'Ymin=%1.5f' %(Ymin)
    print 'Ymax=%1.5f' %(Ymax)
    print 'Zmin=%1.5f' %(Zmin)
    print 'Zmax=%1.5f' %(Zmax)

    #Find the index values, i that correspond to elements on the boundary of 
    #the model
    boundaryElem_i=[]
    elLables=[]
    for i in range(0,nel):
        nAdjElem = len(p.elements[i].getAdjacentElements())
        if nAdjElem < 6:
           boundaryElem_i.append(i)
           elLables.append(p.elements[i].label)
    Elements = tuple(elLables) #Can be deleted later
    setName='External-Elements' #Can be deleted later
    p.SetFromElementLabels(name=setName,elementLabels=Elements) #Can be deleted later
    #For each element on the RVE boundary, determine if is on the Xmax, Xmin 
    #Ymax, Ymin, Zmin, or Zmax. Create the list of index values for each of the
    #6 cases: xMinList, yMinList, zMinList,xMaxList,yMaxList,zMaxList
    xMinList=[]
    yMinList=[]
    zMinList=[]
    xMaxList=[]
    yMaxList=[]
    zMaxList=[]

    xMinElLables=[] #Can be deleted later
    xMaxElLables=[] #Can be deleted later
    yMinElLables=[] #Can be deleted later
    yMaxElLables=[] #Can be deleted later
    zMinElLables=[] #Can be deleted later
    zMaxElLables=[] #Can be deleted later

    for I in boundaryElem_i:
        minMaxI=getXYZ_min_max([I])
        iel=p.elements[I].label
        XminI=minMaxI[0]
        XmaxI=minMaxI[1]
        YminI=minMaxI[2]
        YmaxI=minMaxI[3]
        ZminI=minMaxI[4]
        ZmaxI=minMaxI[5]
        if abs(XminI - Xmin) < tol:
            xMinList.append(I)
            xMinElLables.append(iel) #Can be deleted later
        if abs(XmaxI - Xmax) < tol:
            xMaxList.append(I)
            xMaxElLables.append(iel) #Can be deleted later
        if abs(YminI - Ymin) < tol:
            yMinList.append(I)
            yMinElLables.append(iel) #Can be deleted later
        if abs(YmaxI - Ymax) < tol:
            yMaxList.append(I)
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            yMaxElLables.append(iel) #Can be deleted later
        if abs(ZminI - Zmin) < tol:
            zMinList.append(I)
            zMinElLables.append(iel) #Can be deleted later
        if abs(ZmaxI - Zmax) < tol:
            zMaxList.append(I)
            zMaxElLables.append(iel) #Can be deleted later
    #Given the face number (1,2,3,4,5,or 6) and the list of elments that have that face
    #on the outer boundary create a set of elements
    def FaceSet(face,faceElements):
        Elements = tuple(faceElements) 
        setName='face'+str(face)
        p.SetFromElementLabels(name=setName,elementLabels=Elements)
        elset=p.sets[setName].elements
        return elset
    #Find what faces (1,2,3,4,5,or 6) are on the outer boundary
    #MinMax is either Xmin,Xmax,Ymin,Ymax,Zmin,Zmax
    #MinMaxList is either xMinList=[],yMinList=[],zMinList=[],xMaxList=[]
     #yMaxList=[],or zMaxList=[]
    #Axis is either 1,2, or 3 for x,y,or z

    def FindOutwardFaces(MinMax,MinMaxList,Axis):
        lim = 5 # the accuracy limit digit for searching nodal coordinates
        for I in MinMaxList:
            face=[] #Face will hold the node order for the face that is on the Min/Max
                #It changes for each element
            iel=p.elements[I].label
            for j in range(0,8):
                node=p.elements[I].getNodes()[j]  #Cycle through each corner node
                if Axis==1:
                    xcoord=node.coordinates[0]
                    if round(xcoord,lim)==round(MinMax,lim):
                        face.append(j+1)
                if Axis==2:
                    ycoord=node.coordinates[1]
                    if round(ycoord,lim)==round(MinMax,lim):
                        face.append(j+1)
                if Axis==3:
                    zcoord=node.coordinates[2]
                    if round(zcoord,lim)==round(MinMax,lim):
                        face.append(j+1)
            if face==[1, 2, 3, 4]:
                face1Elements.append(iel)
            if face==[5, 6, 7, 8]:
                face2Elements.append(iel)
            if face==[1, 2, 5, 6]:
                face3Elements.append(iel)
            if face==[2, 3, 6, 7]:
                face4Elements.append(iel)
            if face==[3, 4, 7, 8]:
                face5Elements.append(iel)
            if face==[1, 4, 5, 8]:
                face6Elements.append(iel)
        faces=[face1Elements,face2Elements,face3Elements,face4Elements,face5Elements,fac
e6Elements]
        allelset=[]
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        for i in range(0,6):
            if  len(faces[i])>0:
                elset=FaceSet(i,faces[i])
                allelset.append(elset)
            else:
                allelset.append([])

        return (allelset)
    face1Elements=[]
    face2Elements=[]
    face3Elements=[]     
    face4Elements=[]    
    face5Elements=[] 
    face6Elements=[]
    allelset=FindOutwardFaces(Xmin,xMinList,1)
    p.Surface(face1Elements=allelset[0],
face2Elements=allelset[1],face3Elements=allelset[2],
              face4Elements=allelset[3],face5Elements=allelset[4],face6Elements=allelset
[5],name='xN-Surf')
    face1Elements=[]
    face2Elements=[]
    face3Elements=[]     
    face4Elements=[]    
    face5Elements=[] 
    face6Elements=[]
    allelset=FindOutwardFaces(Xmax,xMaxList,1)
    p.Surface(face1Elements=allelset[0],
face2Elements=allelset[1],face3Elements=allelset[2],
              face4Elements=allelset[3],face5Elements=allelset[4],face6Elements=allelset
[5],name='xP-Surf')
    face1Elements=[]
    face2Elements=[]
    face3Elements=[]     
    face4Elements=[]    
    face5Elements=[] 
    face6Elements=[]
    allelset=FindOutwardFaces(Ymin,yMinList,2)
    p.Surface(face1Elements=allelset[0],
face2Elements=allelset[1],face3Elements=allelset[2],
              face4Elements=allelset[3],face5Elements=allelset[4],face6Elements=allelset
[5],name='yN-Surf')
    face1Elements=[]
    face2Elements=[]
    face3Elements=[]     
    face4Elements=[]    
    face5Elements=[] 
    face6Elements=[]
    allelset=FindOutwardFaces(Ymax,yMaxList,2)
    p.Surface(face1Elements=allelset[0],
face2Elements=allelset[1],face3Elements=allelset[2],
              face4Elements=allelset[3],face5Elements=allelset[4],face6Elements=allelset
[5],name='yP-Surf')
    face1Elements=[]
    face2Elements=[]
    face3Elements=[]     
    face4Elements=[]    
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    face5Elements=[] 
    face6Elements=[]
    allelset=FindOutwardFaces(Zmin,zMinList,3)
    p.Surface(face1Elements=allelset[0],
face2Elements=allelset[1],face3Elements=allelset[2],
              face4Elements=allelset[3],face5Elements=allelset[4],face6Elements=allelset
[5],name='zN-Surf')
    face1Elements=[]
    face2Elements=[]
    face3Elements=[]     
    face4Elements=[]    
    face5Elements=[] 
    face6Elements=[]

    allelset=FindOutwardFaces(Zmax,zMaxList,3)
    p.Surface(face1Elements=allelset[0],
face2Elements=allelset[1],face3Elements=allelset[2],
              face4Elements=allelset[3],face5Elements=allelset[4],face6Elements=allelset
[5],name='zP-Surf')
    print 'Implementing periodic constrains...'
    #############################################
    ## Create the boundary sets for prepare to generate the periodic constraints by
equations
    xP = 'XP'
    xN = 'XN'
    yP = 'YP'
    yN = 'YN'
    zP = 'ZP'
    zN = 'ZN'
    ############################################
    ## Create the boundary sets for prepare to generate the periodic constraints by
equations
    part       = mdb.models[modelName].parts[partName]
    geo_info   = part.queryGeometry()

    createBCset(part, 'X', Xmin, lim, xN)
    createBCset(part, 'X', Xmax, lim, xP)    
    createBCset(part, 'Y', Ymin, lim, yN)
    createBCset(part, 'Y', Ymax, lim, yP) 
    createBCset(part, 'Z', Zmin, lim, zN)
    createBCset(part, 'Z', Zmax, lim, zP)
    ######################################

    refP1Loc=3.0 # refP1Loc should be not equal to any location coord of the UnitCell

    #build the reference point instances
    mdb.models[modelName].Part(dimensionality=THREE_D, name=refP1, type=
        DEFORMABLE_BODY)
    mdb.models[modelName].parts[refP1].ReferencePoint(point=(refP1Loc, 0.0, 0.0))
    mdb.models[modelName].Part(dimensionality=THREE_D, name=refP2, type=
        DEFORMABLE_BODY)
    mdb.models[modelName].parts[refP2].ReferencePoint(point=(0.0, refP1Loc, 0.0))
    mdb.models[modelName].Part(dimensionality=THREE_D, name=refP3, type=
        DEFORMABLE_BODY)
    mdb.models[modelName].parts[refP3].ReferencePoint(point=(0.0, 0.0, refP1Loc))
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    # create sets for the reference points
    mdb.models[modelName].parts[refP1].Set(name='SetRefPoint1',
        referencePoints=(mdb.models[modelName].parts[refP1].referencePoints[1], ))
    mdb.models[modelName].parts[refP2].Set(name='SetRefPoint2',
        referencePoints=(mdb.models[modelName].parts[refP2].referencePoints[1], ))
    mdb.models[modelName].parts[refP3].Set(name='SetRefPoint3',
        referencePoints=(mdb.models[modelName].parts[refP3].referencePoints[1], ))
    mdb.models[modelName].rootAssembly.regenerate()

    ## Creat instance for the 3 reference point parts
    mdb.models[modelName].rootAssembly.Instance(dependent=ON, name='RefPoint1-1',
        part=mdb.models[modelName].parts['RefPoint1'])
    mdb.models[modelName].rootAssembly.Instance(dependent=ON, name='RefPoint2-1',
        part=mdb.models[modelName].parts['RefPoint2'])
    mdb.models[modelName].rootAssembly.Instance(dependent=ON, name='RefPoint3-1',
        part=mdb.models[modelName].parts['RefPoint3'])
    mdb.models[modelName].rootAssembly.regenerate()
    mdb.models[modelName].rootAssembly.regenerate()
    # X-Faces
    xPN=[]
    for i in mdb.models[modelName].parts[partName].sets[xP].nodes:
        xPN=xPN+[(i.coordinates[0],i.coordinates[1],i.coordinates[2],i.label)]
    xMax = xPN[0][0]
    xNN=[]
    for i in mdb.models[modelName].parts[partName].sets[xN].nodes:
        xNN=xNN+[(i.coordinates[0],i.coordinates[1],i.coordinates[2],i.label)]
    # Constraints X-Faces
    rep = 1
    for m in xPN:
        c=0
        for n in xNN:
            if (abs(m[1]-n[1])<10**-lim) and (abs(m[2]-n[2])<10**-lim):
                c=c+1
                mdb.models[modelName].parts[partName].Set(name='Node-'+str(rep),
nodes=mdb.models[modelName].parts[partName].nodes[m[3]-1:m[3]])
                rep = rep+1
                mdb.models[modelName].parts[partName].Set(name='Node-'+str(rep),
nodes=mdb.models[modelName].parts[partName].nodes[n[3]-1:n[3]])
                rep = rep+1
                mdb.models[modelName].Equation(name='Constraint-x-'+str(rep-2),
                                           terms=((1.0, instName+'.Node-'+str(rep-2),
1),
                                           (-1.0, instName+'.Node-'+str(rep-1), 1),
                                           (-1.0, 'RefPoint1-1.SetRefPoint1', 1)))
                mdb.models[modelName].Equation(name='Constraint-y-'+str(rep-2),
                                           terms=((1.0, instName+'.Node-'+str(rep-2),
2),
                                           (-1.0, instName+'.Node-'+str(rep-1), 2),
                                           (-1.0, 'RefPoint1-1.SetRefPoint1', 2)))
                mdb.models[modelName].Equation(name='Constraint-z-'+str(rep-2),
                                           terms=((1.0, instName+'.Node-'+str(rep-2),
3),
                                           (-1.0, instName+'.Node-'+str(rep-1), 3),
                                           (-1.0, 'RefPoint1-1.SetRefPoint1', 3)))
                mdb.models[modelName].Equation(name='Constraint-c-'+str(rep-2),
                                           terms=((1.0, instName+'.Node-'+str(rep-2),
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9),
                                           (-1.0, instName+'.Node-'+str(rep-1), 9),
                                           (-1.0, 'RefPoint1-1.SetRefPoint1', 9)))
        if (c==0):
            print 'no corresponding node for node label %d' %m[3]
    # Y-Faces
    yPN=[]
    for i in mdb.models[modelName].parts[partName].sets[yP].nodes:
        yPN=yPN+[(i.coordinates[0],i.coordinates[1],i.coordinates[2],i.label)]
    yMax = yPN[0][1]
    yNN=[]
    for i in mdb.models[modelName].parts[partName].sets[yN].nodes:
        yNN=yNN+[(i.coordinates[0],i.coordinates[1],i.coordinates[2],i.label)]
    # Constraints Y-Faces
    for m in yPN:
        c=0
        for n in yNN:
            if (abs(m[0]-n[0])<10**-lim) and (abs(m[2]-n[2])<10**-lim):
                c=c+1
                if (abs(m[0]-xMax)<10**-lim) and (abs(m[1]-yMax)<10**-lim):
                    print 'skip'
                else:
                    mdb.models[modelName].parts[partName].Set(name='Node-'+str(rep),
nodes=mdb.models[modelName].parts[partName].nodes[m[3]-1:m[3]])
                    rep = rep+1
                    mdb.models[modelName].parts[partName].Set(name='Node-'+str(rep),
nodes=mdb.models[modelName].parts[partName].nodes[n[3]-1:n[3]])
                    rep = rep+1
                    mdb.models[modelName].Equation(name='Constraint-x-'+str(rep-2),
                                                   terms=((1.0, instName
+'.Node-'+str(rep-2), 1),
                                                          (-1.0, instName
+'.Node-'+str(rep-1), 1),
                                                          (-1.0,
'RefPoint2-1.SetRefPoint2', 1)))
                    mdb.models[modelName].Equation(name='Constraint-y-'+str(rep-2),
                                                   terms=((1.0, instName
+'.Node-'+str(rep-2), 2),
                                                          (-1.0, instName
+'.Node-'+str(rep-1), 2),
                                                          (-1.0,
'RefPoint2-1.SetRefPoint2', 2)))
                    mdb.models[modelName].Equation(name='Constraint-z-'+str(rep-2),
                                               terms=((1.0, instName
+'.Node-'+str(rep-2), 3),
                                                      (-1.0, instName
+'.Node-'+str(rep-1), 3),
                                                      (-1.0, 'RefPoint2-1.SetRefPoint2',
3)))
                    mdb.models[modelName].Equation(name='Constraint-c-'+str(rep-2),
                                           terms=((1.0, instName+'.Node-'+str(rep-2),
9),
                                           (-1.0, instName+'.Node-'+str(rep-1), 9),
                                           (-1.0, 'RefPoint2-1.SetRefPoint2', 9)))
        if c==0:
            print 'no corresponding node for node label %d' %m[3]
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    # Z-Faces
    zPN=[]
    for i in mdb.models[modelName].parts[partName].sets[zP].nodes:
        zPN=zPN+[(i.coordinates[0],i.coordinates[1],i.coordinates[2],i.label)]

    zMax = zPN[0][2]

    zNN=[]
    for i in mdb.models[modelName].parts[partName].sets[zN].nodes:
        zNN=zNN+[(i.coordinates[0],i.coordinates[1],i.coordinates[2],i.label)]

def Set9StepBCs_MIX(modelName,LX,LY,LZ,Ha,SF,MFC_flag):
    step1='Step-1'
    step2='Step-2'
    step3='Step-3'
    step4='Step-4'
    step5='Step-5'
    step6='Step-6'
    step7='Step-7'
    step8='Step-8'
    step9='Step-9'
    a = mdb.models[modelName].rootAssembly
    m=mdb.models[modelName]
    mdb.models[modelName].StaticStep(name=step1, previous='Initial')
    mdb.models[modelName].StaticStep(name=step2, previous=step1)
    mdb.models[modelName].StaticStep(name=step3, previous=step2)
    mdb.models[modelName].StaticStep(name=step4, previous=step3)
    mdb.models[modelName].StaticStep(name=step5, previous=step4)
    mdb.models[modelName].StaticStep(name=step6, previous=step5)
    mdb.models[modelName].StaticStep(name=step7, previous=step6)
    mdb.models[modelName].StaticStep(name=step8, previous=step7)
    mdb.models[modelName].StaticStep(name=step9, previous=step8)
    a = mdb.models[modelName].rootAssembly
    region = a.instances['RefPoint1-1'].sets['SetRefPoint1']
    mdb.models[modelName].DisplacementBC(name='BC-ref1', createStepName=step1, 
        region=region, u1=0.0, u2=0.0, u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET, 
        amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName='', 
        localCsys=None)
    mdb.models[modelName].ElectricPotentialBC(name='BC-ref1E', createStepName=step1, 
        region=region,fieldName='',magnitude=0.0,
distributionType=UNIFORM,amplitude=UNSET, fixed=OFF)    
    a = mdb.models[modelName].rootAssembly
    region = a.instances['RefPoint2-1'].sets['SetRefPoint2']
    mdb.models[modelName].DisplacementBC(name='BC-ref2', createStepName=step1, 
        region=region, u1=0.0, u2=0.0, u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET, 
        amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName='', 
        localCsys=None)
    mdb.models[modelName].ElectricPotentialBC(name='BC-ref2E', createStepName=step1, 
        region=region,fieldName='',magnitude=0.0,
distributionType=UNIFORM,amplitude=UNSET, fixed=OFF)
    #Step 1
    mdb.models[modelName].boundaryConditions['BC-ref1'].setValues(u1=LX)
    #Step 2
    mdb.models[modelName].boundaryConditions['BC-ref1'].setValuesInStep(
        stepName=step2, u1=0.0)
    mdb.models[modelName].boundaryConditions['BC-ref2'].setValuesInStep(
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        stepName=step2, u2=LY)
    #Step 3
    mdb.models[modelName].boundaryConditions['BC-ref2'].setValuesInStep(
        stepName=step3, u2=0.0)
    region = a.instances['Part-1-1'].surfaces['zN-Surf']
    m.SurfaceTraction(name='zN', createStepName='Step-3', 
        region=region, magnitude=-1, directionVector=((0.0, 0.0, 0.0), (0.0, 
        0.0, 1.0)), distributionType=UNIFORM, field='', localCsys=None, 
        traction=GENERAL, follower=OFF)
    region = a.instances['Part-1-1'].surfaces['zP-Surf']   
    m.SurfaceTraction(name='zP', createStepName='Step-3', 
        region=region, magnitude=1, directionVector=((0.0, 0.0, 0.0), (0.0, 
        0.0, 1.0)), distributionType=UNIFORM, field='', localCsys=None, 
        traction=GENERAL, follower=OFF)
    #Step 4
    m.loads['zN'].deactivate('Step-4')
    m.loads['zP'].deactivate('Step-4')
    region = a.instances['Part-1-1'].surfaces['zN-Surf']
    m.SurfaceTraction(name='zNshear32', createStepName='Step-4', 
        region=region, magnitude=-1, directionVector=((0.0, 0.0, 0.0), (0.0, 
        1.0, 0.0)), distributionType=UNIFORM, field='', localCsys=None, 
        traction=GENERAL, follower=OFF)
    region = a.instances['Part-1-1'].surfaces['zP-Surf']   
    m.SurfaceTraction(name='zPshear32', createStepName='Step-4', 
        region=region, magnitude=1, directionVector=((0.0, 0.0, 0.0), (0.0, 
        1.0, 0.0)), distributionType=UNIFORM, field='', localCsys=None, 
        traction=GENERAL, follower=OFF)
    #Step 5
    m.loads['zNshear32'].deactivate('Step-5')
    m.loads['zPshear32'].deactivate('Step-5')
    region = a.instances['Part-1-1'].surfaces['zN-Surf']
    m.SurfaceTraction(name='zNshear13', createStepName='Step-5', 
        region=region, magnitude=-1, directionVector=((0.0, 0.0, 0.0), (1.0, 
        0.0, 0.0)), distributionType=UNIFORM, field='', localCsys=None, 
        traction=GENERAL, follower=OFF)
    region = a.instances['Part-1-1'].surfaces['zP-Surf']   
    m.SurfaceTraction(name='zPshear13', createStepName='Step-5', 
        region=region, magnitude=1, directionVector=((0.0, 0.0, 0.0), (1.0, 
        0.0, 0.0)), distributionType=UNIFORM, field='', localCsys=None, 
        traction=GENERAL, follower=OFF)
    #Step 6
    mdb.models[modelName].boundaryConditions['BC-ref1'].setValuesInStep(
        stepName=step6, u2=0.5*LX, u3=0.0)
    mdb.models[modelName].boundaryConditions['BC-ref2'].setValuesInStep(
        stepName=step6, u1=0.5*LY)
    m.loads['zNshear13'].deactivate('Step-6')
    m.loads['zPshear13'].deactivate('Step-6')

    if MFC_flag=='P1':
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Inner']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_minus', 
            createStepName=step1, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=0.0)

        a = mdb.models[modelName].rootAssembly
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        region = a.instances['Part-1-1'].sets['Electrode-Geom-Outer']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_plus', 
            createStepName=step1, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=0.0)        
        #Step 7 
        mdb.models[modelName].boundaryConditions['BC-ref1'].setValuesInStep(
            stepName=step7, u2=0, u3=0.0)
        mdb.models[modelName].boundaryConditions['BC-ref2'].setValuesInStep(
            stepName=step7, u1=0)
        mdb.models[modelName].boundaryConditions['Gamma_minus'].setValuesInStep(
            stepName=step7, magnitude=-LX/2)
        #Step 8
        m.boundaryConditions['Gamma_plus'].deactivate('Step-8') 
        m.boundaryConditions['Gamma_minus'].deactivate('Step-8')
        mdb.models[modelName].boundaryConditions['BC-ref1E'].setValuesInStep(
            stepName=step8, magnitude=0.0)
        mdb.models[modelName].boundaryConditions['BC-ref2E'].setValuesInStep(
            stepName=step8, magnitude=-LY)
        #Step 9
        mdb.models[modelName].boundaryConditions['BC-ref2E'].setValuesInStep(
            stepName=step9, magnitude=0)
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Bottom']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_minusb', 
            createStepName=step9, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=0.0)
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Top']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_plusb', 
            createStepName=step9, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=-Ha)   
    elif MFC_flag=='P2':
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Bottom']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_minus', 
            createStepName=step1, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=0.0)
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Top']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_plus', 
            createStepName=step1, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=0.0)   
        #Step 7
        m.boundaryConditions['Gamma_plus'].deactivate('Step-7') 
        m.boundaryConditions['Gamma_minus'].deactivate('Step-7')
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Inner']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_minusE1', 
            createStepName=step7, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=-LX/2)
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Outer']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_plusE1', 
            createStepName=step7, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=0)  
        mdb.models[modelName].boundaryConditions['BC-ref1'].setValuesInStep(
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            stepName=step7, u2=0, u3=0.0)
        mdb.models[modelName].boundaryConditions['BC-ref2'].setValuesInStep(
            stepName=step7, u1=0)
        #Step 8
        m.boundaryConditions['Gamma_plusE1'].deactivate('Step-8') 
        m.boundaryConditions['Gamma_minusE1'].deactivate('Step-8')
        mdb.models[modelName].boundaryConditions['BC-ref2E'].setValuesInStep(
            stepName=step8, magnitude=-LY)
        #Step 9
        mdb.models[modelName].boundaryConditions['BC-ref2E'].setValuesInStep(
            stepName=step9, magnitude=0)
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Bottom']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_minusb', 
            createStepName=step9, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=0.0)

        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Top']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_plusb', 
            createStepName=step9, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=-Ha) 
    else:
        print 'BC Definition error. Check MFC_flag'

    #Get Field Output
    #session.viewports['Viewport: 1'].assemblyDisplay.setValues(step='Step-1')
    mdb.models[modelName].FieldOutputRequest(name='F-Output-1', 
    createStepName='Step-1', variables=('S', 'E', 'U', 'RF', 'EPOT', 'EPG', 
        'RCHG', 'EFLX', 'IVOL'))
    #Set-up Job
    mdb.models[modelName].HistoryOutputRequest(name='H-Output-2', 
        createStepName='Step-1', variables=('ETOTAL', ))

def constrainsPBC(modelName):
    partName = 'Part-1'
    instName = partName+'-1'
    refP1 = 'RefPoint1'
    refP2 = 'RefPoint2'
    refP3 = 'RefPoint3'
    import time
    currentTime1 = time.asctime(time.localtime(time.time()))
    lim = 5 # the accuracy limit digit for seeking the corresponding node pairs

    #############################################
    ## Create the boundary sets for prepare to generate the periodic constraints by
equations
    xP = 'XP'
    xN = 'XN'
    yP = 'YP'
    yN = 'YN'
    zP = 'ZP'
    zN = 'ZN'
    ###########################################
    ## Create the boundary sets for prepare to generate the periodic constraints by
equations
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    part       = mdb.models[modelName].parts[partName]
    geo_info   = part.queryGeometry()
    p = mdb.models[modelName].parts[partName]
    nel=p.elements[-1].label #The total number of elements in the model

    minMax=getXYZ_min_max(range(0,nel)) #find the Min/Max values for all elements
    Xmin=minMax[0]
    Xmax=minMax[1]
    Ymin=minMax[2]
    Ymax=minMax[3]
    Zmin=minMax[4]
    Zmax=minMax[5]

    print '**************************'
    print 'Xmin=%1.5f' %(Xmin)
    print 'Xmax=%1.5f' %(Xmax)
    print 'Ymin=%1.5f' %(Ymin)
    print 'Ymax=%1.5f' %(Ymax)
    print 'Zmin=%1.5f' %(Zmin)
    print 'Zmax=%1.5f' %(Zmax)

    createBCset(part, 'X', Xmin, lim, xN)
    createBCset(part, 'X', Xmax, lim, xP)    
    createBCset(part, 'Y', Ymin, lim, yN)
    createBCset(part, 'Y', Ymax, lim, yP) 
    createBCset(part, 'Z', Zmin, lim, zN)
    createBCset(part, 'Z', Zmax, lim, zP)

    ######################################
    refP1Loc=3.0 # refP1Loc should be not equal to any location coord of the UnitCell

    #build the reference point instances
    mdb.models[modelName].Part(dimensionality=THREE_D, name=refP1, type=
        DEFORMABLE_BODY)
    mdb.models[modelName].parts[refP1].ReferencePoint(point=(refP1Loc, 0.0, 0.0))
    mdb.models[modelName].Part(dimensionality=THREE_D, name=refP2, type=
        DEFORMABLE_BODY)
    mdb.models[modelName].parts[refP2].ReferencePoint(point=(0.0, refP1Loc, 0.0))
    mdb.models[modelName].Part(dimensionality=THREE_D, name=refP3, type=
        DEFORMABLE_BODY)
    mdb.models[modelName].parts[refP3].ReferencePoint(point=(0.0, 0.0, refP1Loc))

    # create sets for the reference points
    mdb.models[modelName].parts[refP1].Set(name='SetRefPoint1',
        referencePoints=(mdb.models[modelName].parts[refP1].referencePoints[1], ))
    mdb.models[modelName].parts[refP2].Set(name='SetRefPoint2',
        referencePoints=(mdb.models[modelName].parts[refP2].referencePoints[1], ))
    mdb.models[modelName].parts[refP3].Set(name='SetRefPoint3',
        referencePoints=(mdb.models[modelName].parts[refP3].referencePoints[1], ))
    mdb.models[modelName].rootAssembly.regenerate()

    ## Creat instance for the 3 reference point parts
    mdb.models[modelName].rootAssembly.Instance(dependent=ON, name='RefPoint1-1',
        part=mdb.models[modelName].parts['RefPoint1'])
    mdb.models[modelName].rootAssembly.Instance(dependent=ON, name='RefPoint2-1',
        part=mdb.models[modelName].parts['RefPoint2'])
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    mdb.models[modelName].rootAssembly.Instance(dependent=ON, name='RefPoint3-1',
        part=mdb.models[modelName].parts['RefPoint3'])
    mdb.models[modelName].rootAssembly.regenerate()
    mdb.models[modelName].rootAssembly.regenerate()
    # X-Faces
    xPN=[]
    for i in mdb.models[modelName].parts[partName].sets[xP].nodes:
        xPN=xPN+[(i.coordinates[0],i.coordinates[1],i.coordinates[2],i.label)]
    xMax = round(xPN[0][0],lim)
    xNN=[]
    for i in mdb.models[modelName].parts[partName].sets[xN].nodes:
        xNN=xNN+[(i.coordinates[0],i.coordinates[1],i.coordinates[2],i.label)]
    # Constraints X-Faces
    rep = 1
    for m in xPN:
        c=0
        for n in xNN:
            if (abs(m[1]-n[1])<10**-lim) and (abs(m[2]-n[2])<10**-lim):
                c=c+1
                mdb.models[modelName].parts[partName].Set(name='Node-'+str(rep),
nodes=mdb.models[modelName].parts[partName].nodes[m[3]-1:m[3]])
                rep = rep+1
                mdb.models[modelName].parts[partName].Set(name='Node-'+str(rep),
nodes=mdb.models[modelName].parts[partName].nodes[n[3]-1:n[3]])
                rep = rep+1
                mdb.models[modelName].Equation(name='Constraint-x-'+str(rep-2),
                                           terms=((1.0, instName+'.Node-'+str(rep-2),
1),
                                           (-1.0, instName+'.Node-'+str(rep-1), 1),
                                           (-1.0, 'RefPoint1-1.SetRefPoint1', 1)))
                mdb.models[modelName].Equation(name='Constraint-y-'+str(rep-2),
                                           terms=((1.0, instName+'.Node-'+str(rep-2),
2),
                                           (-1.0, instName+'.Node-'+str(rep-1), 2),
                                           (-1.0, 'RefPoint1-1.SetRefPoint1', 2)))
                mdb.models[modelName].Equation(name='Constraint-z-'+str(rep-2),
                                           terms=((1.0, instName+'.Node-'+str(rep-2),
3),
                                           (-1.0, instName+'.Node-'+str(rep-1), 3),
                                           (-1.0, 'RefPoint1-1.SetRefPoint1', 3)))
                mdb.models[modelName].Equation(name='Constraint-c-'+str(rep-2),
                                           terms=((1.0, instName+'.Node-'+str(rep-2),
9),
                                           (-1.0, instName+'.Node-'+str(rep-1), 9),
                                           (-1.0, 'RefPoint1-1.SetRefPoint1', 9)))
        if (c==0):
            print 'no corresponding node for node label %d' %m[3]
    # Y-Faces
    yPN=[]
    for i in mdb.models[modelName].parts[partName].sets[yP].nodes:
        yPN=yPN+[(i.coordinates[0],i.coordinates[1],i.coordinates[2],i.label)]
    yMax = yPN[0][1]
    yNN=[]
    for i in mdb.models[modelName].parts[partName].sets[yN].nodes:
        yNN=yNN+[(i.coordinates[0],i.coordinates[1],i.coordinates[2],i.label)]
    # Constraints Y-Faces
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    for m in yPN:
        c=0
        for n in yNN:
            if (abs(m[0]-n[0])<10**-lim) and (abs(m[2]-n[2])<10**-lim):
                c=c+1
                if (abs(m[0]-xMax)<10**-lim) and (abs(m[1]-yMax)<10**-lim):
                    print 'skip'
                else:
                    mdb.models[modelName].parts[partName].Set(name='Node-'+str(rep),
nodes=mdb.models[modelName].parts[partName].nodes[m[3]-1:m[3]])
                    rep = rep+1
                    mdb.models[modelName].parts[partName].Set(name='Node-'+str(rep),
nodes=mdb.models[modelName].parts[partName].nodes[n[3]-1:n[3]])
                    rep = rep+1
                    mdb.models[modelName].Equation(name='Constraint-x-'+str(rep-2),
                                                   terms=((1.0, instName
+'.Node-'+str(rep-2), 1),
                                                          (-1.0, instName
+'.Node-'+str(rep-1), 1),
                                                          (-1.0,
'RefPoint2-1.SetRefPoint2', 1)))
                    mdb.models[modelName].Equation(name='Constraint-y-'+str(rep-2),
                                                   terms=((1.0, instName
+'.Node-'+str(rep-2), 2),
                                                          (-1.0, instName
+'.Node-'+str(rep-1), 2),
                                                          (-1.0,
'RefPoint2-1.SetRefPoint2', 2)))
                    mdb.models[modelName].Equation(name='Constraint-z-'+str(rep-2),
                                               terms=((1.0, instName
+'.Node-'+str(rep-2), 3),
                                                      (-1.0, instName
+'.Node-'+str(rep-1), 3),
                                                      (-1.0, 'RefPoint2-1.SetRefPoint2',
3)))
                    mdb.models[modelName].Equation(name='Constraint-c-'+str(rep-2),
                                           terms=((1.0, instName+'.Node-'+str(rep-2),
9),
                                           (-1.0, instName+'.Node-'+str(rep-1), 9),
                                           (-1.0, 'RefPoint2-1.SetRefPoint2', 9)))
        if c==0:
            print 'no corresponding node for node label %d' %m[3]
    # Z-Faces
    zPN=[]
    for i in mdb.models[modelName].parts[partName].sets[zP].nodes:
        zPN=zPN+[(i.coordinates[0],i.coordinates[1],i.coordinates[2],i.label)]
    zMax = zPN[0][2]
    zNN=[]
    for i in mdb.models[modelName].parts[partName].sets[zN].nodes:
        zNN=zNN+[(i.coordinates[0],i.coordinates[1],i.coordinates[2],i.label)]
    # Constraints Z-Faces
    for m in zPN:
        c=0
        for n in zNN:
            if (abs(m[0]-n[0])<10**-lim) and (abs(m[1]-n[1])<10**-lim):
                c=c+1
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                if (abs(m[0]-xMax)<10**-lim) and (abs(m[2]-zMax)<10**-lim) or (abs(m[1]-
yMax)<10**-lim) and (abs(m[2]-zMax)<10**-lim):
                    print 'skip2'
                else:
                    mdb.models[modelName].parts[partName].Set(name='Node-'+str(rep),
nodes=mdb.models[modelName].parts[partName].nodes[m[3]-1:m[3]])
                    rep = rep+1
                    mdb.models[modelName].parts[partName].Set(name='Node-'+str(rep),
nodes=mdb.models[modelName].parts[partName].nodes[n[3]-1:n[3]])
                    rep = rep+1
                    mdb.models[modelName].Equation(name='Constraint-x-'+str(rep-2),
                                                   terms=((1.0, instName
+'.Node-'+str(rep-2), 1),
                                                          (-1.0, instName
+'.Node-'+str(rep-1), 1),
                                                          (-1.0,
'RefPoint3-1.SetRefPoint3', 1)))
                    mdb.models[modelName].Equation(name='Constraint-y-'+str(rep-2),
                                                   terms=((1.0, instName
+'.Node-'+str(rep-2), 2),
                                                          (-1.0, instName
+'.Node-'+str(rep-1), 2),
                                                          (-1.0,
'RefPoint3-1.SetRefPoint3', 2)))
                    mdb.models[modelName].Equation(name='Constraint-z-'+str(rep-2),
                                               terms=((1.0, instName
+'.Node-'+str(rep-2), 3),
                                                      (-1.0, instName
+'.Node-'+str(rep-1), 3),
                                                      (-1.0, 'RefPoint3-1.SetRefPoint3',
3)))
                    #Periodicity of Z faces in unconstrained due to internal electrodes
#                    mdb.models[modelName].Equation(name='Constraint-c-'+str(rep-2),
#                                           terms=((1.0, instName+'.Node-'+str(rep-2),
9),
#                                           (-1.0, instName+'.Node-'+str(rep-1), 9),
#                                           (-1.0, 'RefPoint3-1.SetRefPoint3', 9)))
        if c==0:
            print 'no corresponding node for node label %d' %m[3]

def Set9StepBCs_PBC_equipot(modelName,LX,LY,LZ,Ha,SF,MFC_flag):
    step1='Step-1'
    step2='Step-2'
    step3='Step-3'
    step4='Step-4'
    step5='Step-5'
    step6='Step-6'
    step7='Step-7'
    step8='Step-8'
    step9='Step-9'

    a = mdb.models[modelName].rootAssembly

    mdb.models[modelName].StaticStep(name=step1, previous='Initial')
    mdb.models[modelName].StaticStep(name=step2, previous=step1)
    mdb.models[modelName].StaticStep(name=step3, previous=step2)
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    mdb.models[modelName].StaticStep(name=step4, previous=step3)
    mdb.models[modelName].StaticStep(name=step5, previous=step4)
    mdb.models[modelName].StaticStep(name=step6, previous=step5)
    mdb.models[modelName].StaticStep(name=step7, previous=step6)
    mdb.models[modelName].StaticStep(name=step8, previous=step7)
    mdb.models[modelName].StaticStep(name=step9, previous=step8)

    a = mdb.models[modelName].rootAssembly
    region = a.instances['RefPoint1-1'].sets['SetRefPoint1']
    mdb.models[modelName].DisplacementBC(name='BC-ref1', createStepName=step1, 
        region=region, u1=0.0, u2=0.0, u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET, 
        amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName='', 
        localCsys=None)
    mdb.models[modelName].ElectricPotentialBC(name='BC-ref1E', createStepName=step1, 
        region=region,fieldName='',magnitude=0.0,
distributionType=UNIFORM,amplitude=UNSET, fixed=OFF)    

    a = mdb.models[modelName].rootAssembly
    region = a.instances['RefPoint2-1'].sets['SetRefPoint2']
    mdb.models[modelName].DisplacementBC(name='BC-ref2', createStepName=step1, 
        region=region, u1=0.0, u2=0.0, u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET, 
        amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName='', 
        localCsys=None)
    mdb.models[modelName].ElectricPotentialBC(name='BC-ref2E', createStepName=step1, 
        region=region,fieldName='',magnitude=0.0,
distributionType=UNIFORM,amplitude=UNSET, fixed=OFF)

    a = mdb.models[modelName].rootAssembly
    region = a.instances['RefPoint3-1'].sets['SetRefPoint3']
    mdb.models[modelName].DisplacementBC(name='BC-ref3', createStepName=step1, 
        region=region, u1=0.0, u2=0.0, u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET, 
        amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName='', 
        localCsys=None)

    mdb.models[modelName].boundaryConditions['BC-ref1'].setValues(u1=LX)

    mdb.models[modelName].boundaryConditions['BC-ref1'].setValuesInStep(
        stepName=step2, u1=0.0)
    mdb.models[modelName].boundaryConditions['BC-ref2'].setValuesInStep(
        stepName=step2, u2=LY)

    mdb.models[modelName].boundaryConditions['BC-ref2'].setValuesInStep(
        stepName=step3, u2=0.0)
    mdb.models[modelName].boundaryConditions['BC-ref3'].setValuesInStep(
        stepName=step3, u3=LZ)

    mdb.models[modelName].boundaryConditions['BC-ref2'].setValuesInStep(
        stepName=step4, u3=0.5*LY)
    mdb.models[modelName].boundaryConditions['BC-ref3'].setValuesInStep(
        stepName=step4, u2=0.5*LZ, u3=0.0)

    mdb.models[modelName].boundaryConditions['BC-ref1'].setValuesInStep(
        stepName=step5, u3=0.5*LX)
    mdb.models[modelName].boundaryConditions['BC-ref2'].setValuesInStep(
        stepName=step5, u3=0.0)
    mdb.models[modelName].boundaryConditions['BC-ref3'].setValuesInStep(
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        stepName=step5, u1=0.5*LZ, u2=0.0)

    mdb.models[modelName].boundaryConditions['BC-ref1'].setValuesInStep(
        stepName=step6, u2=0.5*LX, u3=0.0)
    mdb.models[modelName].boundaryConditions['BC-ref2'].setValuesInStep(
        stepName=step6, u1=0.5*LY)
    mdb.models[modelName].boundaryConditions['BC-ref3'].setValuesInStep(
        stepName=step6, u1=0.0)
    if MFC_flag=='P1':
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Inner']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_minus', 
            createStepName=step1, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=0.0)
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Outer']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_plus', 
            createStepName=step1, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=0.0)        
        #Step 7 
        mdb.models[modelName].boundaryConditions['BC-ref1'].setValuesInStep(
            stepName=step7, u2=0, u3=0.0)
        mdb.models[modelName].boundaryConditions['BC-ref2'].setValuesInStep(
            stepName=step7, u1=0)
        mdb.models[modelName].boundaryConditions['Gamma_minus'].setValuesInStep(
            stepName=step7, magnitude=-LX/2)
        #Step 8
        m.boundaryConditions['Gamma_plus'].deactivate('Step-8') 
        m.boundaryConditions['Gamma_minus'].deactivate('Step-8')
        mdb.models[modelName].boundaryConditions['BC-ref1E'].setValuesInStep(
            stepName=step8, magnitude=0.0)
        mdb.models[modelName].boundaryConditions['BC-ref2E'].setValuesInStep(
            stepName=step8, magnitude=-LY)
        #Step 9
        mdb.models[modelName].boundaryConditions['BC-ref2E'].setValuesInStep(
            stepName=step9, magnitude=0)
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Bottom']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_minusb', 
            createStepName=step9, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=0.0)
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Top']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_plusb', 
            createStepName=step9, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=-Ha)   
        
    elif MFC_flag=='P2':
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Bottom']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_minus', 
            createStepName=step1, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=0.0)
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Top']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_plus', 
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            createStepName=step1, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=0.0)   
        #Step 7
        m.boundaryConditions['Gamma_plus'].deactivate('Step-7') 
        m.boundaryConditions['Gamma_minus'].deactivate('Step-7')
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Inner']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_minusE1', 
            createStepName=step7, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=-LX/2)
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Outer']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_plusE1', 
            createStepName=step7, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=0)  
        mdb.models[modelName].boundaryConditions['BC-ref1'].setValuesInStep(
            stepName=step7, u2=0, u3=0.0)
        mdb.models[modelName].boundaryConditions['BC-ref2'].setValuesInStep(
            stepName=step7, u1=0)
        #Step 8
        m.boundaryConditions['Gamma_plusE1'].deactivate('Step-8') 
        m.boundaryConditions['Gamma_minusE1'].deactivate('Step-8')

        mdb.models[modelName].boundaryConditions['BC-ref2E'].setValuesInStep(
            stepName=step8, magnitude=-LY)
        #Step 9
        mdb.models[modelName].boundaryConditions['BC-ref2E'].setValuesInStep(
            stepName=step9, magnitude=0)
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Bottom']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_minusb', 
            createStepName=step9, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=0.0)
        a = mdb.models[modelName].rootAssembly
        region = a.instances['Part-1-1'].sets['Electrode-Geom-Top']
        mdb.models[modelName].ElectricPotentialBC(name='Gamma_plusb', 
            createStepName=step9, region=region, distributionType=UNIFORM, 
            fieldName='', magnitude=-Ha) 
    else:
        print 'BC Definition error. Check MFC_flag'

    #Get Field Output
    #session.viewports['Viewport: 1'].assemblyDisplay.setValues(step='Step-1')
    mdb.models[modelName].FieldOutputRequest(name='F-Output-1', 
    createStepName='Step-1', variables=('S', 'E', 'U', 'RF', 'EPOT', 'EPG', 
        'RCHG', 'EFLX', 'IVOL'))

    #Set-up Job
    mdb.models[modelName].HistoryOutputRequest(name='H-Output-2', 
        createStepName='Step-1', variables=('ETOTAL', ))

def DeffUpdateTransverseShearStrain(LX,
LY,LZ,partName,jobName,modelName,flag,transform):
    # -*- coding: utf-8 -*-
    """
    Created on Wed Dec 19 17:45:07 2018
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    @author: ecamaren
    """
    #Begin Post Processing
    #Open the Output Data Base for the current Job
    from visualization import *
    from odbAccess import *
    from abaqusConstants import *
    from odbMaterial import *
    from odbSection import *
    from textRepr import *

    Tot_Vol=LX*LY*LZ
    BC='PBC'
    if BC=='PBC':
        BCflag=1
    elif BC=='SUBC':
        BCflag=2
    elif BC=='KUBC':
        BCflag=3
    ###############################
    odbName=jobName+'.odb'

    odb = openOdb(path=odbName);
    myAssembly = odb.rootAssembly;
    C=[[0.0 for x in range(9) ] for y in xrange(9)]
    S=[[0.0 for x in range(9) ] for y in xrange(9)]
    if flag==1:
        O=[[0.0 for x in range(9) ] for y in xrange(2)]
    datum0=session.odbs[odbName].rootAssembly.datumCsyses['ASSEMBLY_PART-1-1_ORI-
POLINGFIELD'] 
    setName='Unit-Cell'
    setName='CenterRVE'
    # #Get only the last frame [-1]
    PARTNAME=partName.upper() + str(-1)
    SETNAME=setName.upper()
    #    frameRepository = odb.steps['Step-1'].frames;
    elSet=myAssembly.instances[PARTNAME].elementSets[SETNAME]
    setNamea='Unit-Cell-ActiveVolume'
    setNamea='ActiveVolume'
    # #Get only the last frame [-1]
    SETNAMEa=setNamea.upper()
    #    frameRepository = odb.steps['Step-1'].frames;
    elSeta=myAssembly.instances[PARTNAME].elementSets[SETNAMEa]
    
    step=['Step-1','Step-2','Step-3','Step-4','Step-5','Step-6','Step-7','Step-8','Step-
9']   
    for i in range(0,9):
        #Creating a temporary variable to hold the frame repository provides the same
functionality and speeds up the process
        frameRepository = odb.steps['Step-'+str(i+1)].frames;

        frameS=[];
        frameE=[];
        frameP=[];
        frameF=[];
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        frameIVOL=[];
        framePa=[];
        frameFa=[];
        frameIVOLa=[];

        #Get only the last frame [-1]
        
        if transform == 'full':
            framePi=frameRepository[-1].fieldOutputs['EPG'].getTransformedField(datumCsy
s=datum0);
            frameP.insert(0,framePi.getSubset(position=INTEGRATION_POINT,region=elSet));
            framePa.insert(0,framePi.getSubset(position=INTEGRATION_POINT,region=elSeta)
);

            frameFi=frameRepository[-1].fieldOutputs['EFLX'].getTransformedField(datumCs
ys=datum0);
            frameF.insert(0,frameFi.getSubset(position=INTEGRATION_POINT,region=elSet));
            frameFa.insert(0,frameFi.getSubset(position=INTEGRATION_POINT,region=elSeta)
); 
        elif transform == 'mechOnly':
            framePi=frameRepository[-1].fieldOutputs['EPG'];
            frameP.insert(0,framePi.getSubset(position=INTEGRATION_POINT,region=elSet));
            framePa.insert(0,framePi.getSubset(position=INTEGRATION_POINT,region=elSeta)
);

            frameFi=frameRepository[-1].fieldOutputs['EFLX'];
            frameF.insert(0,frameFi.getSubset(position=INTEGRATION_POINT,region=elSet));
            frameFa.insert(0,frameFi.getSubset(position=INTEGRATION_POINT,region=elSeta)
); 
    

#Get only the last frame [-1]
        frameSi=frameRepository[-1].fieldOutputs['S'].getTransformedField(datumCsys=datu
m0);
        frameS.insert(0,frameSi.getSubset(position=INTEGRATION_POINT,region=elSet));

        frameEi=frameRepository[-1].fieldOutputs['E'].getTransformedField(datumCsys=datu
m0);
        frameE.insert(0,frameEi.getSubset(position=INTEGRATION_POINT,region=elSet));
     
        frameIVOL.insert(0,frameRepository[-1].fieldOutputs['IVOL'].getSubset(position=I
NTEGRATION_POINT,region=elSet));
        frameIVOLa.insert(0,frameRepository[-1].fieldOutputs['IVOL'].getSubset(position=
INTEGRATION_POINT,region=elSeta));

        Tot_Stress=0;
        Tot_Strain=0;
        Tot_E_Flux=0;
        Tot_EPG=0;
        #
        Tot_EPGa=0;  
        Tot_E_Fluxa=0;
        
        Tot_Vol=0;
        Tot_Vola=0;
        for II in range(0,len(frameS[-1].values)):
            Tot_Vol=Tot_Vol+frameIVOL[0].values[II].data;
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            Tot_Stress=Tot_Stress+frameS[0].values[II].data *
frameIVOL[0].values[II].data;
            Tot_Strain=Tot_Strain+frameE[0].values[II].data *
frameIVOL[0].values[II].data;
            Tot_EPG=Tot_EPG+frameP[0].values[II].data * frameIVOL[0].values[II].data;
            Tot_E_Flux=Tot_E_Flux+frameF[0].values[II].data *
frameIVOL[0].values[II].data;           
        for III in range(0,len(frameFa[-1].values)):
            Tot_Vola=Tot_Vola+frameIVOLa[0].values[III].data;
            Tot_EPGa=Tot_EPGa+framePa[0].values[III].data *
frameIVOLa[0].values[III].data;   
            Tot_E_Fluxa=Tot_E_Fluxa+frameFa[0].values[III].data *
frameIVOLa[0].values[III].data;

        #Calculate Average
        Avg_Stress = Tot_Stress/Tot_Vol;
        Avg_Strain = Tot_Strain/Tot_Vol;
        Avg_EPG = Tot_EPG/Tot_Vol;
        Avg_E_Flux = Tot_E_Flux/Tot_Vol;

        Avg_EPGa = Tot_EPGa/Tot_Vola;
        Avg_E_Fluxa = Tot_E_Fluxa/Tot_Vola;
        print Avg_EPG;

        C[1-1][i] = Avg_Stress[0]        #stress11
        C[2-1][i] = Avg_Stress[1]         #stress22
        C[3-1][i] = Avg_Stress[2]         #stress33
        C[6-1][i] = Avg_Stress[3]         #stress12
        C[5-1][i] = Avg_Stress[4]         #stress13
        C[4-1][i] = Avg_Stress[5]         #stress23
        C[7-1][i] = Avg_E_Flux[0]
        C[8-1][i] = Avg_E_Flux[1]
        C[9-1][i] = Avg_E_Fluxa[2]
        S[1-1][i] = Avg_Strain[0]         #strain11
        S[2-1][i] = Avg_Strain[1]         #strain22
        S[3-1][i] = Avg_Strain[2]         #strain33
        S[6-1][i] = Avg_Strain[3]         #strain12
        S[5-1][i] = Avg_Strain[4]         #strain13
        S[4-1][i] = Avg_Strain[5]         #strain23
        S[7-1][i] = Avg_EPG[0]
        S[8-1][i] = Avg_EPG[1]
        S[9-1][i] = Avg_EPG[2]

        if flag==1:
            mdb.models[modelName].boundaryConditions['BC-ref1'].setValuesInStep(
                stepName=step[i], u3=Avg_Strain[4]*LX/2)
            mdb.models[modelName].boundaryConditions['BC-ref2'].setValuesInStep(
                stepName=step[i], u3=Avg_Strain[5]*LY/2)
            O[1-1][i] = Avg_Strain[4]*LX/2         #strain13 (X1 faces, BC)
            O[2-1][i] = Avg_Strain[5]*LY/2         #strain23 (X1 faces, BC)

    odb.close()
    
    print('---------------------------------------------------------------
C-----------------------------------------------------------------------')
    for i in range(0,len(C)):

22

206



        print('{0[0]:>16.7E} {0[1]:>16.7E} {0[2]:>16.7E}{0[3]:>16.7E}{0[4]:>16.7E}
{0[5]:>16.7E} {0[6]:>16.7E}{0[7]:>16.7E}{0[8]:>16.7E}'.format(C[i])) 
    print('---------------------------------------------------------------
S-----------------------------------------------------------------------')
    for i in range(0,len(C)):
        print('{0[0]:>16.7E} {0[1]:>16.7E} {0[2]:>16.7E}{0[3]:>16.7E}{0[4]:>16.7E}
{0[5]:>16.7E} {0[6]:>16.7E}{0[7]:>16.7E}{0[8]:>16.7E}'.format(S[i])) 
        
    if flag==1:
        print('---------------------------------------------------------------
O-----------------------------------------------------------------------')
        for i in range(0,len(O)):
            print('{0[0]:>16.7E} {0[1]:>16.7E} {0[2]:>16.7E}{0[3]:>16.7E}{0[4]:>16.7E}
{0[5]:>16.7E} {0[6]:>16.7E}{0[7]:>16.7E}{0[8]:>16.7E}'.format(O[i])) 

    import numpy as np
    from numpy import matrix
    from numpy import linalg
    from numpy.linalg import inv

    sAVG = matrix(C)
    eAVG = matrix(S)

    print "*********************"
    #print "jobName=  %s" 
    print odbName
    print "total volume=  %f" %Tot_Vol
    print "*********************"

    import numpy as np
#        
    #np.savetxt(jobName+"-O.txt",  eeAVG)
    if transform == 'full':
        np.savetxt(jobName+"-fullTransform-sAVG.txt",  sAVG)
        np.savetxt(jobName+"-fullTransform-eAVG.txt",  eAVG)
    elif transform == 'mechOnly':
        np.savetxt(jobName+"-mechTransform2-sAVG.txt",  sAVG)
        np.savetxt(jobName+"-mechTransform2-eAVG.txt",  eAVG)
            
            
MFC_flag='P1'    #Can be P1 or P2
BC_flag='MIX'    #Can be MIX or PBCMIXe

transform='mechOnly' #Can be mechOnly or full

nCPUs=4  #Number of CPUs for analyses
partName = 'Part-1' # Make sure the Abaqus part name is Part-1
SF = 10e9           # Scale factor to scale the loads
LX=2*0.5291666667   #RVE edge lengths
LY=0.4113704645
Ha=0.18  #Active layer thickness

CT=1    #Not really needed since only 1 height and volume fraction are computed
for LZ in [0.296]:  #RVE height(s)
    for VF in [0.8654]: #RVE Volume fractions
        modelName = 'Model-' +str(CT)#+'-LinearEl'
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        m=mdb.models[modelName]
        jobName=MFC_flag+'-medium-'+str(CT) + '-1-' +BC_flag

        if BC_flag == 'MIX':
            createSurfacesAndConstrains(modelName)
            Set9StepBCs_MIX(modelName,LX,LY,LZ,Ha,SF,MFC_flag)
        elif BC_flag == 'PBCMIXe':
            constrainsPBC(modelName)
            Set9StepBCs_PBC_equipot(modelName,LX,LY,LZ,Ha,SF,MFC_flag)
#        elif BC_flag =='MIXPBCe':
#            createSurfacesAndConstrains(modelName)
#            Set9StepBCs_MIXPBCe(modelName,LX,LY,LZ, SF)
#        elif BC_flag =='MIX_Q':
#            createSurfacesAndConstrains(modelName)
#            Set9StepBCs_MIX_All_Q(modelName,LX,LY,LZ, SF)
#        elif BC_flag == 'PBC':
#            constrainsPBC(modelName)
#            Set9StepBCs_PBC(modelName,LX,LY,LZ, SF)

        odbName=jobName+'.odb'
        m.HistoryOutputRequest(name='H-Output-1', 

        createStepName='Step-1', variables=('ETOTAL', ))
        #Create Job
        myJob=mdb.Job(name=jobName, model=modelName, description='', type=ANALYSIS, 
          atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=75, 
          memoryUnits=PERCENTAGE, getMemoryFromAnalysis=False, 
          explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF, 
          modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='', 
          scratch='', resultsFormat=ODB, multiprocessingMode=DEFAULT, numCpus=nCPUs, 
         numDomains=nCPUs, numGPUs=0)
        #Run Job
        myJob.submit()
        myJob.waitForCompletion()           # Wait for the job to complete.
        shearStrainUpdateFlag=0 #Set this equal to 1 if you want the shear strain agv.
to update the BCs.
        
        #Compute volume averages
        DeffUpdateTransverseShearStrain(LX,
LY,LZ,partName,jobName,modelName,shearStrainUpdateFlag,transform)     
        #Update the PBCs with shear average shear strains
        if (BC_flag == 'MIX') or (BC_flag == 'MIXPBCe') or (BC_flag == 'MIX_Q'):  
            jobName=MFC_flag+'-medium-'+str(CT) + '-1-' +BC_flag
            myJob=mdb.Job(name=jobName, model=modelName, description='', type=ANALYSIS, 
              atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=75, 
              memoryUnits=PERCENTAGE, getMemoryFromAnalysis=False, 
              explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF, 
              modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='', 
              scratch='', resultsFormat=ODB, multiprocessingMode=DEFAULT, numCpus=nCPUs,
             numDomains=nCPUs, numGPUs=0)
            myJob.submit()
            myJob.waitForCompletion()           # Wait for the job to complete.
            shearStrainUpdateFlag=0   
            DeffUpdateTransverseShearStrain(LX,
LY,LZ,partName,jobName,modelName,shearStrainUpdateFlag,transform)  
        CT=CT+1
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C. SCRIPTS FOR POLARIZING THE P1 MFC

Python script to polarize the P1 FE models. This and many other files can be

downloaded from https://cdmhub.org/projects/ernestocamarena.

https://cdmhub.org/projects/ernestocamarena


"""
Created on Thu Apr 19 09:07:36 2018
This script is an extension of polarize9 but with a more efficient way to 
modified to handle a composite

Also added code to facilitate data transverse to SwiftComp (SC) input files at 
the final iteration.Print element orientations at the final iteration and for
every iteration create and update scaled material properties for piezoelectric
analysis in SC. 5/8/2018

Updated unpoled material properties.
 New permittivity, new Poisson ratio (in C_{ij})  8/20/2018

This script has partial polarized material deactivated. A break in the loop
was also implemented. 8/27/2018

Must create a geometry set named 'PZT-Geom' before running program

This code simulations starts with in initially uniform material and element 
direction and then over the number of Iterations, will update the element 
orientations based on the field output (EPG). Old directions are deleted for 
each loop. Creation of new sections, assignments, and materials are skipped 
until the element directions converge.

This code is based on polarize11_fullypoled but initial loop was removed that 
was too time consuming and not even needed. Unused function definitions were
also deleted 11/24/18
@author: ecamaren
"""

#Begin Post Processing
#Open the Output Data Base for the current Job
from visualization import *
from odbAccess import *
from abaqusConstants import *
from odbMaterial import *
from odbSection import *
from textRepr import *
from mesh import *
from part import *
from material import *
from section import *
from assembly import *
from step import *
import job

Iterations=15 #The numer of iterations for the main loop

jobNameAppend='-fine-MIX'
jobNameAppend='-medium-MIX'
jobNameAppend='-M2814-P1-activeArea'

nCPUs=160 #The numer of CPUs to use for all jobs
modelName = 'Model-1'
partName = 'Part-1'
PZTsetName='PZT-Geo'
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m=mdb.models[modelName]
p = m.parts[partName]
nel=len(p.sets[PZTsetName].elements)
nelT=len(p.elements) #The total number of elements in the model
print 'Number Elements to modify sections, materials, and orientations: %1.1f' 

%(nel)
print 'Total Number of elements in model: %1.1f' %(nelT)
   
PZTregion =p.sets[PZTsetName]
defaultOrientation = tuple([1,0,0,0,1,0])  #Define OrientVectors for first loop

elemList=[]                #This variable is an ordered list of elment numbers 
                           #and will be used to assign element orientation. 
                           #It can change for each Iteration
                           
orientVectors=[]           # This will hold the components of the unit vectors
                           #that will define the element orientation. It will  
                           #change for each Iteration                         
orientVectorsOld=[]        #Orientation vectors from the previous Iteration

dnmax=1
for ct in range(0,Iterations): 

print '*****************************************     Iteration: %1.1f' 
    %(ct+1)
if ct > 0:
    elemList=tuple(elemList)

elemList=tuple(elemList)
#Create Default Orientation Field alligned with Global Coords

orientVectors = tuple(orientVectors)

# print 'dnmax: %1.4f' %(dnmax) 
if dnmax < 0.05:
    print 'Converged! Breaking Loop!'
    break

m.DiscreteField(name='PolingField', description='', 
        location=ELEMENTS, fieldType=ORIENTATION, dataWidth=6, 
        defaultValues=defaultOrientation,
        data=(('', 6, elemList, orientVectors), ), 
        orientationType=CARTESIAN, partLevelOrientation=True)

#Assign Orientation
p.MaterialOrientation(region=PZTregion, 
    orientationType=FIELD, axis=AXIS_1, fieldName='PolingField', 
    localCsys=None, additionalRotationType=ROTATION_NONE, angle=0.0, 
    additionalRotationField='', stackDirection=STACK_3) 

#Set-up Job
jobName='Polarize-'+str(ct+1) + jobNameAppend

# jobName='Job' + jobNameAppend
odbName=jobName+'.odb'

m.HistoryOutputRequest(name='H-Output-1', 
    createStepName='Step-1', variables=('ETOTAL', ))
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myJob=mdb.Job(name=jobName, model='Model-1', description='', type=ANALYSIS, 
          atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=95, 
          memoryUnits=PERCENTAGE, getMemoryFromAnalysis=False, 
          explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE,  
          echoPrint=OFF, modelPrint=OFF, contactPrint=OFF, historyPrint=OFF,  
          userSubroutine='', scratch='', resultsFormat=ODB,  
          multiprocessingMode=DEFAULT, numCpus=nCPUs, numDomains=nCPUs, 
          numGPUs=0)
myJob.submit()
myJob.waitForCompletion()           # Wait for the job to complete.

odb = openOdb(path=odbName);
myAssembly = odb.rootAssembly;
frameRepository = odb.steps['Step-1'].frames;
frameP=[];

datum0=session.odbs[odbName].rootAssembly.
          datumCsyses['ASSEMBLY_PART-1-...1_ORI-POLINGFIELD'] 

    
PARTNAME=partName.upper() + str(-1)  #Make uppercase
SETNAME=PZTsetName.upper()
elSet=myAssembly.instances[PARTNAME].elementSets[SETNAME]

        
#Get only the last frame [-1]. And in the Global Coordinates System 

   # (IMPORTANT)
framePi=frameRepository[-1].fieldOutputs['EPG'].
          getTransformedField(datumCsys=datum0);
frameP.insert(0,framePi.getSubset(position=CENTROID,region=elSet));

if ct > 0:
    orientVectorsOld=orientVectors
orientVectors=[]
elemList=[]
directionList=[]

for i in range(0,nel):
elem_no=frameP[0].values[i].elementLabel
elemList.append(elem_no)
E1=frameP[0].values[i].data[0]
E2=frameP[0].values[i].data[1]
E3=frameP[0].values[i].data[2]
mag = sqrt(E1**2+E2**2+E3**2)

  
tolDir=4 #number of decimal places to round directions       
n1=round(E1/mag,tolDir)

  n2=round(E2/mag,tolDir)
n3=round(E3/mag,tolDir)

orientVectors.append(n1)
orientVectors.append(n2) 
orientVectors.append(n3)
orientVectors.append(0.0)
orientVectors.append(1.0)
orientVectors.append(0.0)
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#Find the difference vector and magnitude between the current direction and the
#previous iteration

if ct > 0:
    c1=orientVectors[6*i]-orientVectorsOld[6*i]
    c2=orientVectors[6*i+1]-orientVectorsOld[6*i+1]
    c3=orientVectors[6*i+2]-orientVectorsOld[6*i+2]
    dnmag=sqrt(c1**2+c2**2+c3**2)

      
#Seach for abs(max(dn))

    if i==0:
        dnmax=abs(dnmag)
        print 'i= %1.1f : dnmax=%1.5f' %(i,dnmax)
    elif dnmag > dnmax:
        dnmax=abs(dnmag)
        print 'i= %1.1f  dnmax=%1.5f' %(i,dnmax)
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[62] J. Schröder. Derivation of the Localization and Homogenization Conditions
for Electro–mechanically Coupled Problems. Computational Materials Science,
46(3):595–599, 2009.

[63] K. Y. Hashimoto and M. Yamaguchi. Elastic, Piezoelectric, and Dielectric
Properties of Composite Materials. In IEEE Transactions On Ultrasonics Fer-
roelectrics And Frequency Control, pages 697–702, 1986.

[64] R. E. Newnham, D. P. Skinner, and L. E. Cross. Connectivity and Piezoelectric-
Pyroelectric Composites. Materials Research Bulletin, 13(5):525–536, 1978.

[65] D. P. Skinner, R. E. Newnham, and L. E. Cross. Flexible Composite Transduc-
ers. Materials Research Bulletin, 13(6):599–607, 1978.

[66] A. Bent, N. W. Hagood, and J. P. Rogers. Anisotropic Actuation with Piezoelec-
tric Fiber Composites. Journal of Intelligent Material Systems and Structures,
6(3):338–349, 1995.

[67] R. Kar-Gupta and T. A. Venkatesh. Electromechanical Response of 1–3 Piezo-
electric Composites: An Analytical Model. Acta Materialia, 55(3):1093–1108,
2007.

[68] F. Levassort, M. Lethiecq, D. Certon, and F. Patat. A Matrix Method for
Modeling Electroelastic Moduli of 0-3 Piezo-composites. IEEE Transactions on
Ultrasonics, Ferroelectrics and Frequency Control, 44(2):445–452, 1997.



219

[69] F. Biscani, H. Nasser, and S. Belouettar. Directional Dependence of the Static
Response of Layered Piezoelectric Transducers. Journal of Intelligent Material
Systems and Structures, 23(12):1311–1322, 2012.

[70] S. S. Prasath and A. Arockiarajan. Experimental and Theoretical Investigation
on the Thermo-Electro-Elastic Properties of Macro-Fiber Composites (MFC).
Composite Structures, 122:8–22, 2015.

[71] A. Bent. Active Fiber Composites for Structural Actuation. PhD thesis, MIT,
1997.

[72] E. Lenglet, A.-C. Hladky-Hennion, and J.-C. Debus. Numerical Homogenization
Techniques Applied to Piezoelectric Composites. The Journal of the Acoustical
Society of America, 113(2):826–833, 2003.

[73] S. Raja and T. Ikeda. Concept and Electro-elastic Modeling of Shear Actu-
ated Fiber Composite using Micro-mechanics Approach. Journal of Intelligent
Material Systems and Structures, 19(10):1173–1183, 2008.

[74] K. Veerannan and A. Arockiarajan. Analytical, Numerical and Experimen-
tal Studies on Effective Properties of Layered (2–2) Multiferroic Composites.
Sensors and Actuators A: Physical, 236:380–393, 2015.

[75] H. L. W. Chan and J. Unsworth. Simple Model for Piezoelectric Ce-
ramic/Polymer 1-3 Composites Used in Ultrasonic Transducer Applications.
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
36(4):434–441, 1989.

[76] W. A. Smith and B. A. Auld. Modeling 1–3 Composite Piezoelectrics:
Thickness-Mode Oscillations. IEEE Transactions on Ultrasonics, Ferroelectrics
and Frequency Control, 38(1):40–47, 1991.

[77] W. A. Smith, A. Shaulov, and B. A. Auld. Tailoring the Properties of Compos-
ite Piezoelectric Materials for Medical Ultrasonic Transducers. In IEEE 1985
Ultrasonics Symposium, pages 642–647. IEEE, 1985.

[78] J. D. Eshelby. The Determination of the Elastic Field of an Ellipsoidal Inclu-
sion, and Related Problems. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 241(1226):376–396, 1957.

[79] M. L. Dunn and M. Taya. Micromechanics Predictions of the Effective Elec-
troelastic Moduli of Piezoelectric Composites. International Journal of Solids
and Structures, 30(2):161–175, 1993.

[80] T. Mori and K. Tanaka. Average Stress in Matrix and Average Elastic Energy
of Materials With Misfitting Inclusions. Acta Metallurgica, 21(5):571–574, 1973.

[81] A. R. Aguiar, J. Bravo-Castillero, and U. P. da Silva. Application of Mori–
Tanaka Method in 3–1 Porous Piezoelectric Medium of Crystal Class 6. Inter-
national Journal of Engineering Science, 123:36–50, 2018.

[82] J. Elouafi, L. Azrar, and A. A. Aljinaidi. Closed–form Expressions for the Ef-
fective Moduli of Heterogeneous Piezoelectric Materials. International Journal
of Solids and Structures, 52:19–32, 2015.



220

[83] R. E. Newnham, L. J. Bowen, K. A. Klicker, and L. E. Cross. Composite
Piezoelectric Transducers. Materials & Design, 2(2):93–106, 1980.

[84] N. Mallik and M. C. Ray. Effective Coefficients of Piezoelectric Fiber-Reinforced
Composites. AIAA Journal, 41(4):704–710, 2003.

[85] L. Li and N. R. Sottos. Improving Hydrostatic Performance of 1–3 Piezocom-
posites. Journal of Applied Physics, 77(9):4595–4603, 1995.

[86] R. E. Montgomery and C. Richard. A Model for the Hydrostatic Pressure
Response of a 1–3 Composite. IEEE Transactions on Ultrasonics, Ferroelectrics
and Frequency Control, 43(3):457–466, 1996.

[87] N. Rajapakse and Y. Chen. A Coupled Analytical Model for Hydrostatic
Response of 1–3 Piezocomposites. IEEE Transactions on Ultrasonics, Ferro-
electrics and Frequency Control, 55(8):1847–1858, 2008.

[88] J. Aboudi. Micromechanical Prediction of the Effective Coefficients of Thermo-
Piezoelectric Multiphase Composites. Journal of Intelligent Material Systems
and Structures, 9(9):713–722, 1998.

[89] M. Avellaneda and P. J. Swart. Calculating the Performance of 1–3 Piezoelectric
Composites for Hydrophone Applications: An Effective Medium Approach. The
Journal of the Acoustical Society of America, 103(3):1449, 1998.

[90] L. V. Gibiansky and S. Torquato. Optimal Design of 1–3 Composite Piezo-
electrics. Structural Optimization, 13(1):23–28, 1997.

[91] M. Eynbeygi and M. M. Aghdam. A Micromechanical Study on the
Electro-elastic Behavior of Piezoelectric Fiber-reinforced Composites Using the
Element-free Galerkin Method. Acta Mechanica, 226(9):3177–3194, 2015.

[92] Y. Sapsathiarn, R. Tippayaphalapholgul, and T. Senjuntichai. Effective Prop-
erties of Piezoelectric Fiber-Reinforced Composites with Imperfect Interface.
Journal of Engineering Mechanics, 143(3):B4016001, 2017.

[93] P. L. Bishay, L. Dong, and S. N. Atluri. Multi–Physics Computational Grains
(MPCGs) for Direct Numerical Simulation (DNS) of Piezoelectric Compos-
ite/Porous Materials and Structures. Computational Mechanics, 54(5):1129–
1139, 2014.

[94] C.-W. Nan and F.-S. Jin. Multiple–scattering Approach to Effective Properties
of Piezoelectric Composites. Physical Review B, 48(12):8578–8582, 1993.

[95] J. C. Michel, H. Moulinec, and P. Suquet. Effective Properties of Composite
Materials With Periodic Microstructure: A Computational Approach. Com-
puter Methods in Applied Mechanics and Engineering, 172(1-4):109–143, 1999.

[96] S. Iyer and T. A. Venkatesh. Electromechanical Response of (3–0, 3–1) Par-
ticulate, Fibrous, and Porous Piezoelectric Composites with Anisotropic Con-
stituents: A Model Based on the Homogenization Method. International Jour-
nal of Solids and Structures, 51(6):1221–1234, 2014.

[97] D. Zäh and C. Miehe. Computational Homogenization in Dissipative Electro-
mechanics of Functional Materials. Computer Methods in Applied Mechanics
and Engineering, 267:487–510, 2013.



221

[98] C. P. Jiang and Y. K. Cheung. An Exact Solution for the Three–phase Piezoelec-
tric Cylinder Model Under Antiplane Shear and Its Applications to Piezoelectric
Composites. International Journal of Solids and Structures, 38(28-29):4777–
4796, 2001.

[99] Z. Xue, L. Li, M. N. Ichchou, and C. Li. Hysteresis and the Nonlinear Equivalent
Piezoelectric Coefficient of MFCs for Actuation. Chinese Journal of Aeronau-
tics, 30(1):88–98, 2017.

[100] R. Paradies and M. M. Melnykowycz. State of Stress in Piezoelectric Ele-
ments With Interdigitated Electrodes. Journal of Electroceramics, 24(3):137–
144, 2010.

[101] S. Hensel, W.-G. Drossel, M. Nestler, and R. Müller. Modeling of the Per-
formance Reduction of Macro Fiber Composites for Use in Numerical Forming
Simulation of Piezoceramic-metal-compounds. CIRP Journal of Manufacturing
Science and Technology, 7(2):129–138, 2014.

[102] E. Merkel and A. Ricoeur. Effective Properties of Cracked Piezoelectrics with
Non–trivial Crack Face Boundary Conditions. Archive of Applied Mechanics,
86(7):1325–1340, 2016.

[103] W. Chen and C. S. Lynch. Finite Element Analysis of Cracks in Ferroelectric
Ceramic Materials. Engineering Fracture Mechanics, 64(5):539–562, 1999.

[104] T. Tang and W. Yu. Variational Asymptotic Homogenization of Heterogeneous
Electromagnetoelastic Materials. International Journal of Engineering Science,
46(8):741–757, 2008.

[105] X. Wang, E. Pan, J. D. Albrecht, and W. J. Feng. Effective Properties of Mul-
tilayered Functionally Graded Multiferroic Composites. Composite Structures,
87(3):206–214, 2009.

[106] K. S. Challagulla and A. V. Georgiades. Micromechanical Analysis of Magneto-
electro-thermo-elastic Composite Materials With Applications to Multilayered
Structures. International Journal of Engineering Science, 49(1):85–104, 2011.

[107] E. F. Crawley and J. De Luis. Use of Piezoelectric Actuators as Elements of
Intelligent Structures. AIAA Journal, 25(10):1373–1385, 1987.

[108] T. Zhang and Z. Shi. Two-dimensional Exact Analysis for Piezoelectric Curved
Actuators. Journal of Micromechanics and Microengineering, 16(3):640–647,
2006.

[109] K. Chandrashekhara and A. N. Agarwal. Active Vibration Control of Laminated
Composite Plates Using Piezoelectric Devices: A Finite Element Approach.
Journal of Intelligent Material Systems and Structures, 4(4):496–508, 1993.

[110] P. Heyliger. Static Behavior of Laminated Elastic/Piezoelectric Plates. AIAA
Journal, 32(12):2481–2484, 1994.

[111] C.-H. Hong and I. Chopra. Modeling and Validation of Induced Strain Actua-
tion of Composite Coupled Plates. AIAA Journal, 37(3):372–377, 1999.



222

[112] R. Zemcik, R. Rolfes, M. Rose, and J. Tessmer. High-Performance 4-Node
Shell Element with Piezoelectric Coupling. Mechanics of Advanced Materials
and Structures, 13(5):393–401, 2006.

[113] O. Polit, M. D’Ottavio, and P. Vidal. High–Order Plate Finite Elements for
Smart Structure Analysis. Composite Structures, 151:81–90, 2016.

[114] E. Carrera and S. Valvano. Analysis of Laminated Composite Structures With
Embedded Piezoelectric Sheets by Variable Kinematic Shell Elements. Journal
of Intelligent Material Systems and Structures, 28(20):2959–2987, 2017.
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