
REDUCING WIDE-AREA SATELLITE DATA TO CONCISE SETS FOR MORE

EFFICIENT TRAINING AND TESTING OF LAND-COVER CLASSIFIERS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Tommy Y. Chang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Avinash Kak, Chair

School of Electrical and Computer Engineering

Dr. Charles Bouman

School of Electrical and Computer Engineering

Dr. Alexander Quinn

School of Electrical and Computer Engineering

Dr. Tanmay Prakash

School of Electrical and Computer Engineering

Approved by:

Dr. Pedro Irazoqui

Head of the School of Electrical and Computer Engineering

iii

To my grandmother

iv

ACKNOWLEDGMENTS

I would like to thank various people who have helped me tremendously throughout

my research and Ph.D program. First of all, I am grateful to Prof. Avinash Kak for

giving me the opportunity to conduct this research. The guidance and feedback I have

received from him are invaluable. I would also like to give special thanks to Noha

Elfiky, German Holguin, Bharath Comandur, Tanmay Prakash, Henry Medeiros, and

Johnny Park for the fruitful discussions and collaborations at various stages of my

research and to Prof. Alexander Quinn for his very helpful guidelines on research and

presentation.

I must also thank my labmates for their friendship and their help with my prepa-

ration for the dreadful qualification exam. They include, but are not limited to, Alex

Gheith, Nader Alawadi, Dave Kim, Shivani Rao, and Josh Zapf.

Last but not least, I am indebted and thankful to my wife, Jung Suh, for her

understanding and patience and to my parents, Shing-Hsiung Chang and Yueh-Ai

Chang, for their endless encouragement and support.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xviii

1 INTRODUCTION . 1

1.1 Primary Contributions . 4

1.2 Organization of the Dissertation . 5

2 MULTISPECTRAL SATELLITE IMAGERY AND DATA ABSTRACTIONS 6

2.1 Multispectral Imagery – A Brief Review 6

2.1.1 Modern Multispectral Systems 7

2.1.2 Satellite Scenes . 7

2.1.3 Satellite Data Representation and File Format 8

2.1.4 High Spatial Resolution Data 9

2.1.5 Raw Data Pre-processing . 10

2.2 Data Abstractions . 18

3 PIMSIR FOR UNDERSTANDING MULTIPLE SATELLITE IMAGES OVER
LARGE ROI . 20

3.1 PIMSIR Data Structure and Construction 21

3.2 Viewing Image Overlaps with PIMSIR 23

3.3 Viewing Data Variability Heat Maps with PIMSIR 24

3.3.1 Fast Variability Heat Map Computation using Integral Image . 30

4 INTRINSIC DIMENSIONALITY OF IMAGE PATCHES 33

4.1 Transforming the Multispectral Data Prior to Dimensionality Reduction 34

4.1.1 The Advantage of L*a*b* Color Representation for Clustering . 34

4.1.2 Creating Color Histogram Using the L*a*b* Color Space 42

vi

Page

4.2 A Brief Survey of Previous Work on Dimensionality Reduction on
Satellite Data . 43

4.3 Factors Affecting the Intrinsic Dimensionality of Image Patches 45

4.3.1 Dataset Size . 45

4.3.2 Data Diversity: Single-Satellite vs Multi-Satellite 47

4.3.3 Fraction of the Total Energy . 50

4.3.4 Image Patch Size . 53

4.3.5 Histogram Quantization . 55

4.4 Histogram Quantization and Cosine Distance 57

4.4.1 A Closer Look at Histogram Quantization 62

4.4.2 Using Simulated Datasets to Demonstrate the Effects of His-
togram Quantization on Cosine Distance 63

4.5 Calculating Cosine Distance from PCA Representation 66

4.6 Dimensional Reduction Using FastMap 69

4.6.1 Calculating Cosine Distance from Fastmap Representation . . . 72

5 CONCISE-SET REPRESENTATION . 73

5.1 Related Work . 74

5.2 Proposed Approach . 75

5.2.1 Representation of the Population: Content, Unit, and Size . . . 75

5.2.2 Measuring the Similarity Between Satellite Image Patches . . . 76

5.2.3 Similarity Search . 77

5.2.4 Reducing the Dimensionality of the Histogram Representation
for the Background Pixels in a Patch 79

5.2.5 Creating a Similarity Graph for the Image Patches 80

5.2.6 Population Compression . 84

5.2.7 Creating an Initial Concise-set Representation of the Population 85

5.2.8 Annotating the Initial Concise Dataset 88

5.2.9 On Extending the Concise-Set Representative Label to the Other
Members of the Same Set . 88

vii

Page

5.2.10 A Quality Coefficient for Choosing the Best Value for the LSH
Similarity Threshold . 89

5.2.11 The Complete Processing Pipeline For Generating a Concise-set
Representation . 94

5.3 Population Partition — Creating Multiple Evaluation Datasets Simul-
taneously . 95

5.4 Refining the Concise Dataset . 96

6 CONCISE-SET REPRESENTATION RESULT 101

6.1 Setting the Experimental Parameters for WorldView2 Imagery 101

6.1.1 Color Spaces and Histogram Quantization 103

6.1.2 Calculating the Best Value to Use for the Similarity Threshold 104

6.2 Validation . 107

6.2.1 Classifier Evaluation Experiments 107

6.2.2 Classifier Training Experiments 116

7 SCALING UP THE CONCISE-SET REPRESENTATION TO HANDLE
BIG DATA . 123

7.1 A Brief Review of Big Data Processing 123

7.1.1 The Map-Reduce Processing Paradigm 123

7.1.2 The MapReduce Programming Model 124

7.1.3 The Cloud Computing Services Model 127

7.2 Creating the Concise-set Representation using the Map-Reduce Pro-
cessing Paradigm . 129

7.2.1 System Overview . 129

7.2.2 Map and Reduce Phases . 131

7.3 Algorithm Complexity Analysis . 134

7.3.1 Indexing the Dataset using Hyperplane LSH 134

7.3.2 Sifting Through Neighbor Candidates in a LSH Bucket 136

7.3.3 Extracting the Dominating Clusters/Neighborhoods 136

7.4 Discussion . 137

8 CONCLUSION AND FUTURE WORK 138

viii

Page

REFERENCES . 140

A CIELUV AND CIELAB FORMULAS . 145

A.0.1 sRGB to CIEXYZ . 145

A.0.2 CIEXYZ to CIELUV . 145

A.0.3 CIEXYZ to CIELAB . 146

B FASTMAP PROJECTION . 147

C TESTING HYPERPLANE LSH WITH A SIMULATED STUDY 149

D OTSU’S ALGORITHM FOR REAL VALUES 155

VITA . 158

ix

LIST OF TABLES

Table Page

2.1 The Landsat1 Multispectrum System [8]. 7

2.2 Current state-of-the-art multi-spectrum systems 8

2.3 A subset of zoom levels defined by the Google Maps API. 10

4.1 Color histogram sizes for sRGB and CIELAB color spaces. 43

6.1 Paired Student’s t-test: Comparing with the Median Performance 121

6.2 Paired Student’s t-test: Comparing with the 75-percentile Performance . 121

6.3 Paired Student’s t-test: Comparing with the 90-percentile Performance . 122

C.1 Number of hash function calls as a function of approximation factor in
hyperplane LSH. (d1 = 15.0, desired p1 = 0.99, desired p2 = 0.001) 151

C.2 Hyperplane LSH performance as a function of data dimensionality. LSH
design parameters: d1 = 15◦, c = 2.5 (d2 = 37.5◦), desired p1 = 0.99,
desired p2 = 0.001. Result averaged over 20 hypercones. 152

x

LIST OF FIGURES

Figure Page

2.1 An example of panchromatic sharpening using the Bovey transformation
method (Eq. 2.2). 13

2.2 The RPC Camera Model. The RPC equations maps a 3D point in the
satellite scene to a 2D pixel in the satellite image. 14

2.3 Tiles overlap 50 pixels into the borders. 18

2.4 A tile can have 250000 patches when sliding the patch over the tile at one
patch per every 4 pixels. 19

3.1 The PIMSIR data cell and its data structure. Each PIMSIR cell can store
variable number of overlaps, N. Each overlap stores P=4 bands of spectral
data thus taking B = P × 4 + 1 = 17 bytes. 23

3.2 The PIMSIR file data structure. The header of the PMISIR file contains
various meta data as well as an address look-up-table that allows constant-
time retrieval of data from any cell. Note that data in PIMSIR cells have
different sizes in general. 24

3.3 The entire Chile ROI (Region of Interest) covering about 10,000 square
kilometers. 25

3.4 A collage of the first 16 (out of 49) overlaps: 1-overlap, 2-overlap, . . . ,
16-overlap. 26

3.5 The 49-overlap display shows the region with 49 overlapping MSI images.
What is shown in the lower plot are all the spectral signatures for a par-
ticular geo-location within the region. 27

3.6 Variability heat map: Green = maximum range rmax < 0.15. 28

3.7 Examples of variation due to seasonal change. The same geo-location may
need to be labeled as light vegetation and soil at different times of the year. 29

3.8 Example of data variation due to view-angle change. In this case, the small
areas in the middle of the two image patches shown should correspond to
the same geo-location. But due to different view angles, the area in the
right image is occluded by part of the tall building that can be seen in the
left image. This results in different spectral signatures for the same geo-point.29

xi

Figure Page

3.9 Example of land-cover change caused by urban development. The area
in the middle of the image patches shown changes from road/parking lot
(left image) to building (right image). 30

3.10 The three image patches cropped from three different MSI images centered
at the same geo-location over a road surface. 30

3.11 Road spectral response versus Off-Nadir Angle and Month. 31

3.12 Integral image can be computed in-place by first computing the row sums
and followed by the column sums. In this example, the integral image
is used to quickly compute the sum of the green rectangular region. Re-
gardless of the size of the region, only three arithmetic operations (two
subtractions and one addition) and 4 memory locations (the shaded ele-
ments in the integral image) are needed. 31

4.1 The chromaticity diagram is often used to show and characterize the gamut
of a color space. Here the sRGB gamut is shown. The blue line encom-
passes the region of all possible colors in the human color vision while the
triangular-shaped gamut shows the range of color inside the sRGB color
space. Note, the sRGB gamut shown here is displayed in full brightness
(i.e., at each chromaticity coordinate, max(R,G,B) = 255). 36

4.2 HSV color space is commonly used in graphics software such as the GIMP
(GNU Image Manipulation Program) software. A simple graphical inter-
face allows the user to intuitively pick the desired color. On the color
wheel shown on the right figure, the user can controls the overall color by
changing the Hue (marked by H and blue), Saturation (marked by S and
black), and Value (marked by V and pink). 37

4.3 Visual comparison of the two chromaticity diagrams. The sRGB gamut
is shown in both plots. The blue line encompasses the region of all pos-
sible colors in the human color vision. The left plot shows the CIE1931
chromaticity diagram while the right plot shows the CIE1976 uniform
chromaticity scale diagram (aka the UCS diagram). The UCS diagram
is perceptually uniform in the sense that the Euclidean distance between
points on the UCS diagram is more consistent with human’s perception
of color similarity. Note, the sRGB gamut shown here is displayed in full
brightness (i.e., at each chromaticity coordinate, max(R,G,B) = 255). . . . 39

4.4 The three subplots show the sRGB gamut in the CIELUV color space.
Each subplot shows a different luminance value for L*. The blue line
encompasses the region of all possible colors in the human color vision. . . 40

xii

Figure Page

4.5 The subplots show the sRGB gamut in the CIELAB color space. Each sub-
plot shows a different luminance value for L*. The blue line encompasses
the region of all possible colors in the human color vision. 41

4.6 CIELAB is an opponent color space. From the sRGB gamut, we can see
the a* contour lines vary from green to lack of green. Similarly, the b*
contour lines vary from blue to lack of blue. At b*=0, only a* varies and
we see the color goes from red to green. Similarly, at a*=0, only *b varies
and the color goes from blue to yellow. The locations of these colors are
marked by black circles. 42

4.7 Boxplots over 10 trials, each trial randomly selects 10 satellite images and
estimates the intrinsic dimensionality by the number of principal compo-
nents needed to retain 99.9% of the total energy. 46

4.8 Boxplots of three randomly-selected regions. Each boxplot summarizes,
over 10 trials, the differences in the number of principal components be-
tween the two groups of datasets: Multi-satellite and Single-satellite. . . . 49

4.9 Each boxplot summarizes, over 10 trials, the number of principal compo-
nents when retaining a particular percentage of the total energy. 52

4.10 Each boxplot summarizes, over 10 trials, the average error between the
original feature vectors and their corresponding reconstructed feature vectors.53

4.11 For each particular image patch width, the boxplot summarizes, over 10
trials, the relative number of principal components obtained after PCA.
The relative number is calculated by subtracting the number of compo-
nents obtained for patch width = 21. 55

4.12 Each boxplot summarizes, over 10 trials, the number of principal compo-
nents after applying PCA on the quantized histograms. 57

4.13 The effect of quantization using equation (4.1) on 2D data. In this illus-
tration, the original point x gets moved further down and left after each
quantization step (i.e., binSize = 1

4
for point q1 and 1

2
for q2.). If the orig-

inal point were at q2, then, the two quantization steps will have no effect
(i.e., dose not introduce any quantization error). 58

4.14 A histogram of 2D points looks like a 3D bar graph. The height of the cell
corresponds to the number of points in the cell. In this illustration, there
are three levels of quantizations — the black, green, and pink bins. Their
bin sizes are 1

8
, 1

4
, and 1

2
, respectively. 59

xiii

Figure Page

4.15 Angle between two histograms can remain the same after quantization.
Consider two histograms having the same non-zero bin locations. Quan-
tization has no effect on the angle between the two histograms as long as
all non-zero smaller bins have the same count inside the bigger merged
bin. For example, in histogram 1, {3,3} gets merged into {6}, {7,7} gets
merged into {14}, {6,6} gets merged into {12}, {14,14} gets merged into
{28}, etc. The angular distance between the two histograms remains the
same at 21.8 degrees. 61

4.16 Angle between two histograms can get bigger after quantization. This
can happen if the dominant bin remains throughout the quantization as
illustrated in this particular example. The angular distance increases from
23.3 to 38.6. 61

4.17 Angle between two histograms can get smaller after quantization. This can
happen when histograms are uniformly distributed. That is, the non-zero
bins all have similar counts and locations. As non-zero bins get merged,
the resulting histograms become more and more similar. In this particular
example, the angular distance decreases from 12.7 to 4.7. 62

4.18 Boxplots of five quantization levels. Each boxplot summarizes, over 10
simulated datasets, the average angle between

(
100
2

)
pairwise histograms.

The Uniform Dataset exhibits the phenomenon that indicates histograms
becoming more similar after quantization. At 64-bins per axis, the average
angle between pairwise histograms is about 50 degrees. On the other hand,
at 4-bins per axis, the average pairwise angle goes down to about 5 degrees. 65

4.19 Boxplots of five quantization levels. Each boxplot summarizes, over 10
simulated datasets, the average angle between

(
100
2

)
pairwise histograms.

The Dominant Dataset exhibits the phenomenon that indicates histograms
becoming less similar after quantization. At 64-bins per axis, we see that
the average angle between pairwise histograms is about 6 degrees. On the
other hand, at 4-bins per axis, the average pairwise angle goes up to about
27 degrees. 66

4.20 FastMap first finds pa and pb, two furthermost points away for each other.
This step takes 2×n comparisons, where n is the number of points. It then
maps all points onto the line segment formed by this pair of points for esti-
mating the first coordinate of all the points in the reduced-dimensionality
representation. Finally, it maps all points into a hyperplane that is nor-
mal to the line passing through pa and pb. These three steps are repeated
with the points in the hyperplane. Each such repetition adds one more
dimension to the low-dimensional representation of the entire dataset. . . . 71

5.1 The overall system block diagram. 75

xiv

Figure Page

5.2 The idea behind AND-OR construction is to change the probability of
bucket collision. We want the probability of collision for ”nearby” samples
to go up above p1 while the probability of collision for ”far apart” samples
to go down below p2. If we cascade many such constructions in series,
then, we can achieve very high p1 and very low p2 at the cost of more
computation. 83

5.3 Single-stage AND-OR construction = 1−(1−pr)b. Combinations of r and
b values gives different effects and shifts the fixed point along the diagonal
line. 84

5.4 An illustration of Hyperplane LSH. Hyperplane H partitions the space into
two buckets. Points q and w are the projections of vectors ~p and ~q onto
the perpendicular hyperplane L. In this example, w is in bucket 1 and q
is in bucket 2. 85

5.5 In this example, a patch p is associated with a neighborhood consisting of
4 patches, n1 to n4, that are similar in their background color-histograms
to p. After checking their foreground spectral signatures with p, only n2

and n4 remain in the neighborhood. This process is done for p ∈ {all
patches} and the overall result is a similarity graph in which two vertices
(patches) share an edge if they are similar to each other in both foreground
and background contexts. 86

5.6 An example of the “weighted-representative” method: The similarity graph
shown here has two clusters depicted by the dashed circles. Each cluster
has a representative shown as a black dot. The classifier is applied to only
the cluster representatives and the classifier generated labels for the repre-
sentatives propagated to the rest of the cluster. Each vertex is shown with
two labels, one for the ground-truth and the other for classifier-generated,
and, in each case, they are both propagated from the cluster representa-
tive. In this example, there are four vertices labeled “c1/c2” and therefore
the corresponding “c1/c2” entry in the estimated confusion matrix is 4.
Similarly for the “c2/c2” entry. 90

5.7 An example of the “whole-cluster method”: The depiction here parallels
the one shown in Fig. 5.6 except for the fact that the classifier is applied
to every member of each cluster. For each vertex, the first label is the
ground-truth label as propagated from the cluster representative and the
second label is as produced by the classifier. In the example shown, there
are three vertices labeled “c1/c2” and therefore the corresponding “c1/c2”
entry in the estimated confusion matrix is 3. Similarly for the other entries
in the confusion matrix. 91

xv

Figure Page

5.8 In this example for illustrating the notion of consistency, while we have
three overlapping clusters in some feature space, two of the clusters, repre-
sented by the cluster representatives B and C, carry the same propagated
ground-truth label. On the other hand, the cluster represented by A car-
ries a different propagated label. Note that true ground-truth labels are
provided only for the cluster representatives. We have a total of 18 vertices
in the three clusters. In the figure, small circular dots represent vertices
that belong to only one cluster while small triangles are vertices that si-
multaneously belong to two or more clusters. We see that 7 of the 18
vertices have two or more cluster memberships. However, on account of
the equivalency of the class labels for B and C, only three vertices have dif-
ferent class labels. Therefore, the ground-truth consistency (See Eq. 5.2)
is 1− 3

18
= 0.833. 93

5.9 The processing pipeline for creating a concise-set representation. 94

5.10 A similarity graph consisting of two clusters. The cluster on the right has
a larger distance variance inside the cluster. All distances are calculated
relative to the cluster representative. Thus, the right cluster is “more
impure” than the left cluster. 97

5.11 A heuristic for shrinking a cluster. We assume cluster member distances
have a bimodal distribution; i.e., member are either “near” or “far” from
the cluster representative. The optimal threshold can be calculated using
Otsu’s Algorithm modified for continuous values. Refer to Algorithm 2 in
Appendix D for detail. 98

5.12 Creating additional clusters from uncovered vertices: In this example, a
new cluster with the default radius is created to represent the uncovered
vertices. The black dots indicate the cluster representatives and their
ground-truth labels are provided by human. 99

5.13 Heuristic for selecting an impure cluster among different feature spaces:
Cluster A and B are the most impure clusters in their corresponding fea-
ture spaces. Cluster B is chosen over cluster A for radius reduction because
it has a smaller number of far vertices. 100

6.1 A typical region in the Chile ROI. 102

6.2 Proportion of the data found inside the similarity neighborhoods (clusters).104

6.3 Plots of background Similarity Quality Coefficient (SQC) as a function of
similarity threshold. 105

6.4 Plot of foreground Similarity Quality Coefficient (SQC) as a function of
similarity threshold. 106

xvi

Figure Page

6.5 A 1km by 1km region in the Australia ROI. 108

6.6 None of the SSD values from the 100 random trials gives a better perfor-
mance estimate than the SSD value obtained using the concise-set rep-
resentation approach. Validation dataset size = 1000. Concise dataset
size = 126. Random dataset size used for each trial = 126. Ground-truth
consistency = 0.997. 110

6.7 From the ”best” performance curve, we see that averaging over at least
10 random trials is needed for the random sampling approach to have
any chance of outperforming the concise-set representation. Validation
dataset size = 1000. Concise dataset size = 126. Random dataset size
used for each trial = 126. Number of repeated experiments per trial =
100. Ground-truth consistency = 0.997. 112

6.8 Performance of randomly drawn datasets of different sizes. From the
”best” performance curve, we see that a random dataset needs to be
at least 4.7 times larger than the concise dataset in order to have any
chance of outperforming the concise-set representation approach. Valida-
tion dataset size = 1000. Concise dataset size = 126. Number of trials
with differently sized random datasets = 100. Ground-truth consistency
= 0.997. 113

6.9 With a larger validation dataset (10000 units instead of 1000), the concise-
set representation approach continues to outperform the random sampling
approach. Concise dataset size = 379. Random dataset size used for each
of the 100 trials = 379. Ground-truth consistency = 0.9717. 114

6.10 Each group of three bars is a run of Exp4 (See Section 6.2.1) but on a dif-
ferent validation dataset. The SSD ratios are computed by Eq. 6.3. When
the minimum ratio is above 1.0, it means that the concise-set representa-
tion approach is better than the random-sampling approach in all of the
100 random trials. 115

6.11 Learning curves show how classifier accuracy improve as a function of
training dataset size. Validation dataset size = 2000; Training pool size =
1000; Test set size = 1000. 118

7.1 The Map Phase of the MapReduce Programming Model. 126

7.2 The Reduce Phase of the MapReduce Programming Model. 127

7.3 Processing a wide-area region involves three steps. First we partition the
satellite images into a set of tiles. Then, we create a concise-set represen-
tation for each tile. And finally, we combine all concise-set representations
into a merged concise dataset for annotation. 129

xvii

Figure Page

7.4 Arranging a satellite image into overlapping tiles. 130

7.5 Converting a tile into a concise-set representation. See Chapter 5 for more
details. 130

7.6 Creating a feature file from a tile. 132

7.7 Creating a concise-set file from a feature file. 133

7.8 The reduce phase merges concise-set files into one using the hierarchical
merging method described in Section 5.3. 134

B.1 (a). The projection of an arbitrary point pk onto the axis formed by the
points pa and pb has length xk relative to pa. (b). Points p′j and p′k are the
projections of pj and pk onto the hyperplane that is perpendicular to the
X-axis. 147

C.1 The image on the right shows four non-overlapping hypercones in 3D.
Here, θ is the angle of each hypercone. All non-overlapping hypercones
are positioned at a common origin. 150

C.2 Probability of hash collisions for hyperplane LSH before and after AND,
OR constructions. The “unamplified” probability is given by the “before”
curve pbefore(β) = 1−β

180
. and the “after” probability is described by the

equation pafter = 1− (1−prbefore)b, where r is the number of AND construc-
tions and b is the number of OR constructions. The r and b values are
calculated by solving two simultaneous equations relating two LSH perfor-
mance guarantee conditions in Eq. C.1 and Eq. C.2. Here, the LSH design
parameters are: d1 = 15, d2 = 37.5, desired p1 = 0.99, desired p2 = 0.001. 153

C.3 Probability of hash collision for hyperplane LSH (see Fig. C.2) zoomed
into the transition region: (β ∈ [d1, d2] = [15, 37.5]). Here, the transition
region is marked by the dash vertical lines. In this transition region, the
“after” curve averages, in the limit, to 0.2648814. 154

xviii

ABSTRACT

Chang, Tommy Y. Ph.D., Purdue University, May 2019. Reducing Wide-Area Satel-
lite Data to Concise Sets for More Efficient Training and Testing of Land-Cover
Classifiers. Major Professor: Avinash C. Kak.

Obtaining an accurate estimate of a land-cover classifier’s performance over a wide

geographic area is a challenging problem due to the need to generate the ground truth

that covers the entire area that may be thousands of square kilometers in size. The

current best approach constructs a testing dataset by drawing samples randomly from

the entire area — with a human supplying the true label for each such sample — with

the hope that the selections thus made statistically capture all of the data diversity

in the area. A major shortcoming of this approach is that it is difficult for a human

to ensure that the information provided by the next data element chosen by the ran-

dom sampler is non-redundant with respect to the data already collected. In order to

reduce the annotation burden, it makes sense to remove any redundancies from the

entire dataset before presenting its samples to a human for annotation. This disser-

tation presents a framework that uses a combination of clustering and compression

to create a concise-set representation of the land-cover data for a large geographic

area. Whereas clustering is achieved by applying Locality Sensitive Hashing (LSH)

to the data elements, compression is achieved through choosing a single data element

to represent a given cluster. This framework reduces the annotation burden on the

human and makes it more likely that the human would persevere during the anno-

tation stage. We validate our framework experimentally by comparing it with the

traditional random sampling approach using WorldView2 satellite imagery.

1

1. INTRODUCTION

Constructing training and testing datasets for land-cover classifiers that are effective

over large geographic areas — areas that may be as large as tens of thousands of

square kilometers — places a large burden on the human annotators for supplying

the ground truth. The most commonly used approach for creating the datasets in

such cases consists of drawing samples randomly in a uniform manner from the entire

geographic region. More sophisticated approaches use a random sampler based on

the Metropolis-Hastings algorithm [1].

What is significant is that even with the best random samplers, the datasets that

are generated tend to be highly redundant. This is for the basic reason that, as

each new sample is shown to a human annotator for its true label, it is virtually

impossible for the human to remember all of the previously seen samples in order

to determine whether the new sample is merely redundant vis-a-vis all the samples

collected previously, or whether it really adds additional diversity to the data already

collected. Note that this problem is exacerbated by the fact that the human-computer

interaction involved in creating a full dataset may last a long time.

So if it is impossible to avoid redundancy in the datasets, the reader may ask if

that is really such a bad thing. Most datasets that are out there for the training and

testing of machine learning algorithms carry no guarantee of being non-redundant.

Obviously, what is most important for a dataset is whether or not it captures all

of the diversity in the data as it exists in the real world. As long as this diversity

constraint is satisfied, the only price to pay for any redundancy in the data is that it

may take longer to train and test a classifier — but the classifier performance would

not be impacted by the redundancies.

Unfortunately, the consequences of redundancies in the datasets collected from

large geographic regions tend to be not so benign. In light of the challenges created

2

by the prolonged human-computer interaction, it is difficult to guarantee that a given

redundant dataset would adequately capture the diversity associated with the differ-

ent classes. And when it is practically impossible to assume that a dataset adequately

captures all of the diversity associated with the different classes, any redundancies in

the data may result in erroneous bounds on the performance of the classifiers when

such data is used for testing them. We illustrate this effect with the following simple

example: Let’s say we are creating a test dataset for a binary classifier and that

80% of the data points collected happen to fall in a small neighborhood of the same

point in the feature space. With such a dataset, regardless of the actual performance

of the classifier on a “true” dataset, the computed classifier performance would be

controlled by the two numbers, 20% and 80%. The classifier would have no choice

but to give the same class label to the 80% of the data. If the class label chosen was

correct, the computed performance of the classifier could exceed 80% depending on

how the classifier performs on the rest of the data. On the other hand, if the label

given to the 80% was incorrect, the computed performance of the classifier could be

less than 20%, again depending on how the classifier performs on the rest of the data.

What this says is that it is particularly important to eliminate redundancies from the

datasets created from large geographic areas for the purpose of designing and testing

land-cover classifiers.

Generating a concise representation from potentially hundreds of satellite images

covering a large geographical region is made extremely challenging by two reasons:

The first is, of course, the sheer volume of the data. The second equally important

reason has to do with the fact that a pixel cannot be shown in isolation to a human an-

notator for eliciting its class label for creating the ground truth. It is now well known

that for reliable annotation, humans require both the pixel itself and its immediate

surround — which we refer to as its background context. Therefore, any automated

algorithm for creating a concise representation for human interaction, must compare

the pixels both on the basis of the spectral signatures at the pixels themselves and

3

on the basis of whatever it takes to represent the background contexts for the pixels.1

When you include the background data for each pixel, you end up having to deal with

voluminous amounts of high-dimensional data.

The sheer size of the dataset and its high-dimensionality mean that we are dealing

with what is loosely referred to as a big-data problem. Such problems do not allow

for exhaustive pairwise comparison of the data elements for the purpose of automated

clustering. And, since the data dimensionality can still be high even after applying

dimensional reduction, such problems also do not lend themselves to the use of tech-

niques such KD-trees, SR-trees, and cover trees [2–6] because their time or space

complexity degrades exponentially with data dimensionality.

In addition to the issues created by the size of the data and its dimensionality,

we must also cope with the fact that comparing pixels on the basis of their spectral

signatures and on the basis of their background context are two semantically different

actions. That is, it would make no sense to lump both the background and the

foreground for each pixel into a single vector representation for creating a concise

representation.

Yet another source of complexity arises from the fact that similarity constraints

for clustering data are generally not transitive. To explain this point, a data sample

A can be similar to another data sample B because the magnitude of the difference

between their attribute vectors is below some threshold. And, the data sample B may

be similar to another data sample C for the same reason. Yet, A may not be similar to

C. That is, if we were to directly measure the magnitude of the difference between the

attribute vectors for A and C, it may exceed the threshold being used for establishing

similarity. Many clustering algorithms get around this problem by assuming that the

1A reader might ask: Why is it not sufficient for concise representations to be created from just the
pixels themselves, without the need to also factor in the background context for each pixel? Even
for a computer algorithm, pixels considered in isolation can result in their being considered similar
when in fact they are highly dissimilar. For example, the multispectral signature for a pixel from
a concrete road would be very similar to the signature from any number of other structures on the
ground — building rooftops, water towers, bridges, etc. Creating a concise representation from just
the pixels, without also including a portion of the background for each pixel, would only create a
frustrating experience for the human annotators.

4

number of clusters, k, into which the data must be partitioned is known a priori.

Subsequently, a clustering algorithm must find the optimum partitioning of the data

so that, say, the average distance of every data point from the center of the cluster

to which the data element is assigned is minimized. Deterministic variants of this

approach lead to the k-means and other such algorithms. And the probabilistic

variants of the same basic idea result in expectation-minimization sorts of algorithms.

One can loosen the need for the a-priori knowledge k by testing for different k until

some overall quality metric is satisfied. Unfortunately, big-data problems do not lend

themselves to such experimentation. In the absence of such logic, a blind application

of similarity checking, no matter how it is actually enforced, is highly likely to result

in all of the image data elements extracted from all the satellite images to form a

single similarity neighborhood.

1.1 Primary Contributions

The main contribution of this dissertation is a solution to all of the issues we have

outlined above for reducing a large volume of satellite data to relatively small num-

ber of similarity neighborhoods in the underlying feature space and representing each

such neighborhood by an exemplar data element that the human is asked to anno-

tate. Subsequently, all of the data elements within any given similarity neighborhood

acquire the annotation of its exemplar.

With a data abstraction we refer to as an image patch, we represent each pixel

by its foreground spectral signature and a high-dimensional vector that captures its

background context. Subsequently, we first reduce the data dimensionality of the

background context and then use Locality Sensitive Hashing to compare the pixels

on the basis of just the background characterizations. That is followed by refining

the clusters obtained with foreground comparisons based on the spectral signatures at

the pixels themselves. However, before we carry out the foreground comparisons, we

get around the difficulties created by the non-transitivity of the background similarity

5

constraint by associating with each patch a similarity neighborhood, which is the set all

other patches that directly satisfy the similarity condition with respect to the former

patch. These similarity neighborhoods are converted into what we call a similarity

graph. A concise set is derived from the similarity graph after the enforcement of the

foreground similarity constraint.

1.2 Organization of the Dissertation

In the rest of this dissertation, Chapter 2 will review the current state of the

art in multispectral imaging. We will also review the pre-processing steps used to

undistort and enhance the satellite images. In Chapter 3, we will present PMISIR

— a dynamic data structure that provides rapid visualization of overlapping satellite

images. A unique feature of PIMSIR is its support for understanding data variability

at the scale of a large geographical area. In Chapter 4, we will investigate the intrinsic

dimensionality of satellite image data of an ROI (Region of Interest). Starting with

Chapter 5, we will first define the notation of a concise-set representation of the

satellite image data and subsequently describe the various stages for its construction.

Toward the end of that chapter, we will illustrate how these stages are put together to

create a complete processing pipeline. We will validate the effectiveness of our concise-

set representation in Chapter 6 by comparing its performance with the traditional

random sampling approach. Chapter 7 will introduce cloud computing and present

a solution to the task of processing massive datasets that can only be handled by a

cluster of computers working together. Finally, Chapter 8 will conclude and present

possible future work.

6

2. MULTISPECTRAL SATELLITE IMAGERY AND DATA

ABSTRACTIONS

In this chapter, we first review multispectral systems. Then, we introduce the different

data abstractions with regard to the aggregation of the pixels in the satellite images.

We will refer back to these data abstractions extensively throughout the rest of the

dissertation.

2.1 Multispectral Imagery – A Brief Review

In general, multispectral systems have two specifications – spectral resolution

and spatial resolution. Spectral resolution is characterized by the number of bands

the frequency range in each band. Spatial resolution, on the other hand, is usually

specified by the pixel size on the earth surface. For example, a modern multispectral

system may have 8 spectral bands and 0.5 meter per pixel.

There are two types of imagery data: panchromatic and multispectral. These two

data are usually recorded simultaneously1 but they differ in spectral and spatial res-

olutions. For example, Landsat-1 [8], the earliest multispectral satellite system first

introduced in 1972, has four spectral bands covering a spectral range of 500 to 1100

nanometers. Unlike the later modern satellite systems, Landsat-1 does not have a

panchromatic sensor. Instead, it has three independent television-like cameras collec-

tively referred to as the Return Beam Vidicon (RBV) sensor. Both the RBV sensor

and the multispectral sensor onboard Landsat-1 have the same spatial resolutions of

80 meters. Table 2.1 summarizes the Landsat-1 system.

1WorldView2 satellite has a small time delay between its panchromatic and multispectral data [7].

7

Table 2.1.
The Landsat1 Multispectrum System [8].

Sensor Spectral resolution [nm] Spatial Resolution [m]

RBV (Bands 1-3) 480 to 570, 580 to 680, and 700 to 830 80

Green (band 4) 500 to 600 80

Red (band 5) 600 to 700 80

Near IR (band 6) 700 to 800 80

Near IR (band 7) 800 to 1100 80

2.1.1 Modern Multispectral Systems

Modern multispectral sensors are increasingly airborne-based and superior in spa-

tial resolution [9]. The WorldView-3 satellite [10], launched in mid-2014 has a 16-band

multispectral sensor and a panchromatic sensor. The spatial resolutions for the mul-

tispectral and panchromatic data are 1.24 meters and 0.31 meters, respectively.

For modern airborne-based systems, the UltraCam family of sensors [11] are

equipped with a four-band multispectral (Red, Green, Blue, and Nadir IR) sensor

and a panchromatic sensor. Unlike satellite-based systems, airborne-based systems

can easily achieve spatial resolution less than 0.10 meters. This is the case because

the spatial resolution is determined by the flying height, typically specified in terms

of altitude needed to achieve 0.10 meters ground resolution. Table 2.2 summarizes

the two types of multispectral sensors.

2.1.2 Satellite Scenes

In the satellite terminology, a “satellite scene” is an area on earth captured by

the satellite. Depending on the sensor’s spatial resolution and its field of view, a

satellite scene may require a large amount of digital storage space. For example, it

is common to have a satellite scene covering 900 km2 (30km by 30km) of area and

8

Table 2.2.
Current state-of-the-art multi-spectrum systems

System Type Year Spectral Bands Spatial Resolution [m]

WorldView-3 Satellite 2014 16 (400 nm - 2365 nm) MUL=1.24 PAN=0.31

UltraCam Hawk Airborne 2014 4 (R,G,B,IR) MUL≤0.10 PAN≤0.10

Note: Pan = Panchromatic, Mul = Multispectral

taking gigabytes of storage space. Once saved into a storage device, the satellite scene

may simply be referred to as a “satellite image” or simply an “image”. The size of a

satellite image varies. It can contain as many as 120k × 32k of pixels and, depending

on the number of bands, take more than 16 gigabytes of computer memory once

uncompressed and loaded from the digital storage. Because of its large size, satellite

images are typically split into smaller tiles so they can be processed by consumer

computers that may not have a lot of memory.

2.1.3 Satellite Data Representation and File Format

Different sensors often have different modes of operation and data representations.

For example, WorldView2 data are encoded as either 8-bit or 11-bit values [12]. On

the other hand, UltraCam data are 12-bit values [11]. To complicate the matter

further, each multispectral system has its own data interpretation and raw data need

to be corrected and compensated for various sources of distortion and contamination.

In the extreme case, individual sensor element has its own specific calibration and

correction. Without these corrections, raw data simply can not be used directly.

After the raw data are pre-processed, they are commonly stored in the Tagged

Image File Format (TIFF). TIFF supports more data bands and more data types

comparing to other common image file formats such as PPM, PNG, BMP, JPG, etc.

All data in a TIFF file must be the same data type (i.e., either 8-bit, 16-bit, 32-bit

9

or 64-bit) — mixed data types is not allowed. For example, one can not have 8-bit

data for band1 and 16-bit data for band2 in a TIFF file.

Because of its generic and versatile format, TIFF is used by just about all Geo-

graphic Information System (GIS). Ironically, TIFF does not specify how data should

be interpreted or visualized. As a result, GIS software often provide many visualiza-

tion options for displaying a TIFF image file. For example, when displaying a TIFF

file as a color image, the GIS user may need to specify which bands to use for the

Red, Green, and Blue channels. The user may also need to adjust the scale so that

the resulting color image “look nice” (i.e., not washed out or too dark, etc.). In gen-

eral, without knowing what and how the data are stored, it can be very difficult and

frustrating to display the content of a TIFF file in a meaningful way.

2.1.4 High Spatial Resolution Data

For detecting objects in overhead imagery, it is important to know the image’s

spatial resolution. Depending on the object of interest, it may be the case that

certain objects, such as cross-walk markings and other small objects, simply can not

be recognize at low resolution.

One way to get around the low resolution issue is to enhance the multispectral im-

age by applying Panchromatic Sharpening (aka pansharpening). Pansharpening is a

process of combining the high-resolution panchromatic image with the corresponding

low-resolution multispectral image to create a high-resolution multispectral image.

The resulting pansharpened multispectral image has the same spatial resolution as

the panchromatic image.

High-resolution images are freely available from map service platforms such as

Google Maps and Microsoft Bing Maps. To describe their products and services, map

service platforms use a set of predefined spatial resolutions. In particular, the Google

Maps API services2, released in 2005, provides overhead imagery at several predefined

2https://developers.google.com/maps/

https://developers.google.com/maps/

10

spatial resolutions. Table 2.3 shows a subset of the 24 predefined resolutions. With

these definitions, Google makes it easy for software and web applications to query

and access overhead imagery at different levels of spatial resolution.

Although Google restricted its free map data to visualization purposes only, it

can still be very useful to GIS researchers. For example, a GIS researcher conducting

research in road marking detection may use Google Maps services to first visually

inspect the road markings at different resolutions and then make an informed decision

on the spatial resolution needed for the research.

Table 2.3.
A subset of zoom levels defined by the Google Maps API.

Level 16 17 18 19 20 21 22

Pixel size 2.4m 1.2m 60cm 30cm 15cm 7.5cm 3.7cm

2.1.5 Raw Data Pre-processing

In the satellite terminology, raw data are refereed to as Digital Numbers (DN).

These numbers may need to be further processed to in order to be used by off-the-

shelf image processing software. In the next five subsections, we review Radiance-

to-Reflectance conversion, Panchromatic Sharpening, Orthorectification, Inverse Or-

thorectification, and Gamma Correction.

Radiance to Reflectance Conversion

Raw data need to be converted into units of energy proportional to the amount

of light reflected from the earth surface. This step is especially important when

creating a mosaic from multiple tiles, or when analyzing tiles from different sensors.

In general, this pre-processing step is complex and takes into account the Earth-Sun

configuration as well as the atmosphere effect such as light absorption and scattering

11

by gas molecules. Instead of modeling the atmospheric effects, a simplified pre-

processing step ignores the atmospheric effect and the output is commonly referred

to as “top-of-atmosphere reflectance”. [12]

Although different satellite systems have different pre-processing steps, the general

procedure is as follows: [12]

1. Convert raw data (aka. Digital Numbers (DN)) to Top-of-Atmosphere Radi-

ance (ToAR) made up of three major sources of radiation: unscattered surface-

reflected radiation, downwelling surface-reflected skylight, and upwelling path

radiance.

2. Convert ToAR from step 1 to either Top-of-Canopy Reflectances (ToCR) or

Top-of-Atmosphere Reflectances, which ignores the atmospheric effect.

In general, the conversion equations vary among different sensors and may take

different sets of parameters. For the WorldView2 satellite system, the input parame-

ters used are listed below:

• Kband: absolute radiometric calibration factor

• ∆λband: effective bandwidth for a given band

• θs : solar zenith angle

• Esunλband: band-averaged solar spectral irradiance at the average Earth-Sun

distance.

• UT : universal time the satellite scene was taken

• dES: Earth-Sun distance at UT

Except for the Esunλband parameter, which is given in [12], all other parameters

can be found or derived from the meta data that come with every WorldView2 satellite

image. Top-of-Atmosphere reflectance value is normalized at Earth-Sun distance dES

= 1 AU (Astronomical Units) and at solar zenith angle θs = 0 degree. Because the

12

output values are normalized (i.e., output values are within [0 . . . 1]), they are suitable

for fusing, comparing, or combining with other ToA reflectance values derived from

other satellite sensors. ToA reflectance is also very important for many multispectral

analysis techniques such as Normalized Difference Vegetation Index (NVDI) and Band

Ratios [13].

Panchromatic Sharpening

As mentioned previously, pansharpening is a technique that enhances the low-

resolution multispectral data with the co-registered high-resolution panchromatic

data. There are many pansharpening algorithms. The simplistic method averages

the panchromatic value with the multispectral value. In more detail, the multispec-

tral image is first up-sampled to the panchromatic resolution. Let rout, gout, bout be the

output red, green, and blue values at a given pixel location and let pin, rin, gin, bin be

the input panchromatic and multispectral values. The simplistic method calculates

rout, gout, bout by:

rout =
rin + pin

2

gout =
gin + pin

2

bout =
bin + pin

2

(2.1)

Other more sophisticated algorithms include Weighted Bovey transformation,

Intensity-Hue-Saturation transformation, Gram-Schmidt pansharpening, and Prin-

ciple Component Analysis pansharpening [14]. Perhaps the next simplest pansharp-

ening method is the Bovey transformation:

pest =
(rin + gin + bin)

3

r =
pin
pest

rout = rin r

gout = gin r

bout = bin r

(2.2)

13

Fig. 2.1 shows an example of Bovey transformation.

Pan-sharpened
color image
(50 cm resolution)

Panchromatic image
(50 cm resolution)

Up-sampled color image
(from 200 cm resolution)

+

==>

Fig. 2.1. An example of panchromatic sharpening using the Bovey trans-
formation method (Eq. 2.2).

Orthorectification

Orthorectification is the process of transforming raw or ToA corrected satellite

image into an orthorectified image such that the pixel locations on the orthorectified

image are correctly mapped to a regularly spaced grid of latitude-longitude (lat-

long) coordinates. In practice, this process is done indirectly via the RPC (Rational

Polynomial Coefficients) equations, as outlined in Fig. 2.2.

The RPC equations [15] transform a point in the world (λ, φ, Z) into the cor-

responding pixel location (S, L) in the image. Here (λ, φ) are the longitude and

latitude coordinates. Z is the orthometric height in meters and (S, L) stands for

14

RPC Equations

world coordinate
(Longitude,
Latitude, Height)

RPC
Coefficients

pixel coordinate:
(Sample, Line)

Fig. 2.2. The RPC Camera Model. The RPC equations maps a 3D point
in the satellite scene to a 2D pixel in the satellite image.

(Sample, Line) in the satellite terminology. A full RPC camera model consists of 80

coefficients and 10 normalizing parameters. They are described next.

First, the normalized world coordinate (x, y, z) is defined in Eq. 2.3, using six

normalizing parameters: xo, xs, yo, ys, zo, and zs.

x =
λ− xo
xs

y =
φ− yo
ys

z =
Z − zo
zs

(2.3)

Then, the normalized pixel coordinate (u, v) is defined as the ratio of two cubic

polynomial functions. Note, each cubic function has 20 coefficients:

u =

∑20
i=1Cif

3
i (x, y, z)∑20

i=1Dif 3
i (x, y, z)

, v =

∑20
i=1Eif

3
i (x, y, z)∑20

i=1 Fif
3
i (x, y, z)

(2.4)

15

The 80 coefficients are:
20∑

i=1

Cif
3
i (x, y, z) , C1 + C2 · x+ C3 · y + C4 · z

+ C5 · x2 + C6 · xy + C7 · xz + C8 · y2 + C9 · yz + C10 · z2

+ C11 · x3 + C12 · x2y + C13 · x2z

+ C14 · xy2 + C15 · xyz + C16 · xz2

+ C17 · y3 + C18 · y2z + C19 · yz2

+ C20 · z3
20∑

i=1

Dif
3
i (x, y, z) , D1 + . . .+D20 · z3

20∑

i=1

Eif
3
i (x, y, z) , E1 + . . .+ E20 · z3

20∑

i=1

Fif
3
i (x, y, z) , F1 + . . .+ F20 · z3

(2.5)

Finally, four additional normalizing parameters (SS, So, LS, Lo) are used to convert

the normalized pixel coordinate (u, v) back to the (S, L) image pixel coordinate:

S = uSS + So

L = vSL + Lo

(2.6)

In summary, a full RPC model has 80 coefficients and 10 normalizing parameters.

The 10 normalizing parameters are xo, yo, zo, xs, ys, zs, SS, So, LS, and Lo.

As mentioned previously, height data is needed for accurate orthorectification.

When no height data is available, geoid3 can be used instead. However, using geoid

for height may result in location error as large as 1 km. Fortunately, since June 29,

2009, accurate height data have been made freely available from ASTER (Advanced

Spaceborne Thermal Emission and Reflection Radiometer). The ASTER GDEM

(Global Digital Elevation Model) dataset has 30-meter ground resolution and covers

99% of the globe4 .

3Geoid is a hypotheses surface, closely related to the average sea level.
4ASTER GDEM can be downloaded from https://search.earthdata.nasa.gov/search or
https://earthexplorer.usgs.gov/.

https://search.earthdata.nasa.gov/search
https://earthexplorer.usgs.gov/

16

We now presents the orthorectification algorithm:

1. Create an empty orthorectified image by constructing a uniform grid of lat-long

cells using the locations at the four corners of the satellite image.

2. At each lat-long cell, (φ, λ), first look up its orthometric height (height above

EGM96 geoid) from GDEM. Then, calculate the GPS ellipsoidal height, Z, by

adding the geoid height5:

Z = GPS ellipsoidal height

= orthometric height + geoid height

3. Project each (φ, λ) into the satellite image at pixel (S, L) using and the ellip-

soidal height, Z, calculated from the previous step and the RPC equations from

Eq. 2.3 to Eq. 2.6.

(S, L) = RPC(λ, φ, Z) (2.7)

4. For each pixel (S, L) in the satellite image, apply bilinear interpolation using the

four nearest neighbors and assign this interpolated value to the corresponding

grid cell, (φ, λ).

One way to generate a regularly-spaced lat-long cells from the satellite image is

to first project the corner pixels into lat-long coordinates, using geoid for height (i.e.,

Orthometric height = 0). Then, use the accurate GDEM height data to iteratively

refine these four corner pixels to their exact lat-long coordinates. After obtaining the

corner pixels in their correct lat-long coordinates, a regularly-spaced grid of lat-long

cells can be constructed.

Inverse Orthorectification

For object geo-localization applications, it is desirable to have the object’s location

expressed in geographic coordinate in terms of longitude and latitude values. The

5The geoid height ranges from (-100m to 100m) and can be obtained from the Internet.

17

traditional approach is to orthorectify the entire satellite image first, and then extract

all object instances from it. This way, the object locations in the orthorectified image

are already in lat-long coordinates. However, there are two main disadvantages in

this traditional approach.

1. Orthorectifying the entire satellite image is computationally expensive, even

though it only needs to be done once.

2. Orthorectified image may have a slightly coarser spatial resolution and contains

aliasing artifacts.

As mentioned is Section 2.1.4, high resolution images are needed for detecting

small objects. It could be the case that the slight lost of spatial resolution together

with the aliasing artifacts in the orthorectified image could render an objects detector

ineffective. Therefore, instead of running an object detector on the orthorectified im-

age, which takes time to generate, the alternative would be to run the detector directly

on the original raw or ToA corrected image. Subsequently, only the extracted loca-

tions (in image coordinates) are converted to lat-long via inverse orthorectification.

Overall, this process takes far less time than doing a full-blown orthorectification of

the entire raw image to start with. [16]

Gamma Correction

As we mentioned previously, raw data are first converted to reflectance values

through the process of ToA correction. Subsequently, the ToA corrected image is

then further processed by Pansharpening, Orthorectification, etc.

When it comes to the time for the image to be displayed on the display screen, each

pixel in the image needs to be transformed into the standard RGB (aka sRGB) color

space. The process of transforming reflectance to sRGB color is done by applying the

gamma correction:

18

Let (r, g, b) be the ToA corrected values for the red, green, and blue channels of a

pixel. Then, we can approximate the corresponding sRGB color, (R,G,B), by:

R = b255 r
1
2.2 c

G = b255 g
1
2.2 c

B = b255 b
1
2.2 c

(2.8)

2.2 Data Abstractions

In this section, we define four data abstractions that we will be using through out

the text.

satellite image: A typical large high-resolution satellite image contains about 30000×
30000 pixels, covering 225 sq. km at 0.5 meter per pixel.

tile: A single satellite image is chopped into tiles each covering about 1 km × 1 km

area, or 2098 × 2098 array of pixels. Tiles overlap 50 pixels into the borders.

See Fig. 2.3 for an illustration.

…
.

….

…
.

Overlapping Tiles

Satellite Image

Fig. 2.3. Tiles overlap 50 pixels into the borders.

patch: A patch is a sliding window of 101 × 101 pixels (50 m × 50 m area) inside

the tile. The number of patches inside a tile depends on the offset between each

adjacent patch. For example, with an offset of 4 pixels, we get a patch every 2

19

meter. The total number of patches is thus 250000 per tile. See Fig. 2.4 for an

illustration.

…
.

….

…
.

image patch
(101 x 101) ≈ 50 sq m

Tile (2098 x 2098) ≈ 1 sq. km

…
.

….

…
.

Fig. 2.4. A tile can have 250000 patches when sliding the patch over the
tile at one patch per every 4 pixels.

pixel: A pixel represents a 0.5 m × 0.5 m area on the surface of the earth.

20

3. PIMSIR FOR UNDERSTANDING MULTIPLE

SATELLITE IMAGES OVER LARGE ROI

The material in this chapter is adopted from our recent work [1]. The aim of that

work is to address the problem of land-cover classification from a larger geographical

perspective. Obviously, before we can design a classifier at the level of an ROI (Region

of Interest), we must first come to grips with the data variability over the ROI.

Understanding data variability at the scale of a large ROI presents its own challenges

and can be thought of as a “Big Data” problem. The challenges are created by the

typical fast-response and dynamic-storage needs of any human-interactive computer

system that must work with very large variable-sized datasets.1 We have addressed

these challenges by developing a special software tool (named PIMSIR for “Purdue

Integrated MultiSpectral Image Representation” tool) that is custom designed to

achieve the following:

• Rapid visualization of all of the data in an ROI

• Rapid visualization of the overlaps between the satellite images. Understanding

the overlaps is important because any probabilistic modeling of the data at any

given geographic point is predicated on how much data is available at that point

through overlapping satellite views.2

• Rapid visualization of the variability of the spectral signatures both spatially

and across the views.

What makes PIMSIR versatile is that the data structure it creates for an ROI is

dynamic — in the sense that an ROI is allowed to be covered by an arbitrary number

1By very large, we mean datasets that are hundreds of gigabytes in size.
2In general, probabilistic modeling is with respect to spatial distribution of the observed data.
However, in order to address view-to-view data variability issues, one can also talk about probabilistic
modeling with respect to the viewing dimension.

21

of satellite images, with arbitrary degrees of overlap between them. As to the size

of the ROI that can be accommodated in this representation, that depends on the

number of images. For example, in a ROI that covers about 10,000 km2 and consists

of 189 overlapping images 3, its corresponding PIMSIR structure takes 208 GBytes of

disk storage. PIMSIR construction can be made memory-efficient by pre-loading only

the relevant images at each cell. Should the available total memory be insufficient,

we can always resort to using the POSIX function mmap which maps content of a file

directly into the computer’s virtual memory address space.

In what follows, we will describe how we create the PIMSIR structure for a given

ROI. Subsequently, we will describe the information that is stored in PIMSIR for

each geographical point in the ROI.

3.1 PIMSIR Data Structure and Construction

Given a raw WorldView2 Multispectral Image (MSI), the first necessary prepro-

cessing step is to apply the Top-of-Atmosphere (ToA) reflectance correction [12] to

the images in order to normalize out the view-angle (with respect to the sun angle)

variability. Then, the corrected image goes through the orthorectification process

that maps the pixels to geo coordinates.

After all of the corrections mentioned above have been applied to the data, creating

the PIMSIR structure involves the following steps:

1. Construct a bounding box for an ROI.

2. Rasterize the bounding box with a matrix of sampling points, taking into ac-

count implicitly the spatial resolution desired. The results we show in this

section are for the case when each cell in the bounding box represents a 2m x

2m area.

3Most of the images in this dataset contain 4 band data: Red, Blue, Green, and Near Infrared(NIR).
We plan to incorporate satellite images with arbitrary number of bands in the next version of
PIMSIR.

22

3. Scan the bounding box and, for each cell, calculate its geo lat-long coordinates.

4. Fetch the list of images for the lat-long coordinate at a sampling point. Project

the lat-long coordinate into each image and:

• Record the four pixels that are nearest to the projected point in the image.

(The point projected into a image will, in general, not correspond exactly

to any of the pixel locations in the image.)

• Apply bilinear interpolation to the spectral signatures at the four nearest

neighbors and return this answer for the image in question.

5. Pool together the spectral signatures collected from all the images that see the

geo-point and store them in a compact data structure whose address is held by

the bounding-box point in question.

Each cell location in the PIMSIR data contains an array of overlaps, the number

of overlaps being equal to the number of images that can see that location. For each

overlap, we allocate B bytes for the spectral signatures extracted from each image.

In our current implementation, we use B = 17 bytes per overlap. Four of these bytes

are reserved for the spectral value in each of the four primary bands, and one byte

reserved for the pointer to a file that contains the meta data for that satellite image.4

Fig. 3.1 summarizes the PIMSIR cell data structure. Because each PIMSIR cell can

contain different number of overlaps, the size of the cell is not fixed. This dynamic

nature of cell size leads us to create an address-look-up-table that maps the cell’s

grid location to the actual data. This mapping information is stored in the header

segment of the file that carries the .pimsir suffix. Fig. 3.2 summarized the overall

PIMSIR file data structure.

4This obviously limits us to a maximum of 256 overlapping satellite images for any geo-point. We
have yet to see a case where that condition would be violated. Nonetheless, in order to “future-
proof” PIMSIR, we plan to use two bytes for the pointer to the metafile in the next version of
PIMSIR.

23

overlap1
P-band pixel

overlap2
P-band pixel

overlapN
P-band pixel

...

1-byte number of
overlaps (N)

Reserved byte

N x (P x 4 + 1) + 2 bytes for
a PIMSIR data cell

1-byte image file ID spectral data:
4 bytes per band

B = P x 4 + 1 bytes
for a P-band pixel

A PIMSIR Data Cell:

A P-band Pixel:

...band1 band2 bandP

Fig. 3.1. The PIMSIR data cell and its data structure. Each PIMSIR cell
can store variable number of overlaps, N. Each overlap stores P=4 bands
of spectral data thus taking B = P × 4 + 1 = 17 bytes.

3.2 Viewing Image Overlaps with PIMSIR

Fig. 3.3 shows a Chile ROI of size 10,000 km2 that is covered by a total of 189 over-

lapping satellite images in the WorldView2 dataset. The blocky artifacts in Fig. 3.3

are caused by several factors: (1) The image-to-image variability that can be at-

tributed to the different look angles for the sensors aboard the satellites, sun angle

variations, and the time of the year when the data was recorded; (2) Small errors in

the application of the Top-of-Atmosphere correction that is applied to the pixels; and

(3) small errors in image rectification process.

When multiple images contribute to the same sampling point in the ROI-based

bounding-box, one of the images is chosen arbitrarily for the purpose of the display

as shown in Fig. 3.4. Note that this arbitrary selection is merely for the display and

has no bearing whatsoever on the data variability calculations at the point.

24

Header data +
cell addresses
look-up-table

Cell 1

...

Cell 4

PIMSIR data stream (file.pimsir)

PIMSIR cell address
look-up-table

Fig. 3.2. The PIMSIR file data structure. The header of the PMISIR file
contains various meta data as well as an address look-up-table that allows
constant-time retrieval of data from any cell. Note that data in PIMSIR
cells have different sizes in general.

When we examine the overlaps in all of the images for the Chile ROI, we go from

one extreme where there is only a single image at a given geo-point to the other

extreme when we have 49 images looking at the same geo-point. Fig. 3.5 shows the

portions of the Chile ROI where we have data from 49 images. At each cell of the

ROI-based bounding box, we arbitrarily selected the RGB from one of the 49 images

for constructing the display in Fig. 3.5. Note again that the goal of this display is

merely to indicate where we have a total of 49 views looking at the same geo-point.

3.3 Viewing Data Variability Heat Maps with PIMSIR

We show the with-in image data variability through what we refer to as variability

heat maps. Fig. 3.6 shows an example of such a heat map. The values depicted in

Fig. 3.6 correspond to maximum spectral range, rmax, at each point. If we let Si be

25

Fig. 3.3. The entire Chile ROI (Region of Interest) covering about 10,000
square kilometers.

the set of 49 spectral measurements for a band i at a given point, then this parameter

is calculated using the formulas:

ri = max(Si)−min(Si) (3.1)

rmax = max
i

({ri}) (3.2)

The value max (Si) is the maximum of 49 such band values at a given point and

min(Si) is the minimum of the same set of spectral signatures. Therefore, the value

of ri is the largest variation within the ith band across all 49 images. And the largest

of these variations among the 4 spectral bands is the maximum range, denoted rmax.

Note that these calculations are carried out after the spectral values are normalized

to lie between 0 and 1.0. The data normalization for each image is a part of what

is accomplished by the Top-of-Atmosphere correction mentioned earlier. The red

regions in Fig. 3.6 correspond to the heat map values above 0.15. On account of the

26

Fig. 3.4. A collage of the first 16 (out of 49) overlaps: 1-overlap, 2-overlap,
. . . , 16-overlap.

data normalization, this means that we have more than 15% within-band variation

at the points that are shown as red in Fig. 3.6. The points that are shown as green

have their within-band variability under 15%. Rapid visualization of the variability

allows us to systematically try many different cutoff thresholds and, in this case, 0.15

was chosen as it produced the most visually informative heatmap in the sense that

we can see the fine road structure present in the scene.

Comparing the images in Fig. 3.5 and Fig. 3.6, one can infer that the orthorectifi-

cation errors within the 49 images are sufficiently small and may be ignored in most

cases — this is an important by-product of this study since one is always concerned

about the quality of orthorectification. If this error had been large, the green strands

in Fig. 3.6 would not correspond to the roads in Fig. 3.5. Also note that the spec-

27

Fig. 3.5. The 49-overlap display shows the region with 49 overlapping MSI
images. What is shown in the lower plot are all the spectral signatures
for a particular geo-location within the region.

tral signatures are significantly “invariable” across the 49 images for the road pixels.

In other words, for this particular sub-region, the points of the earth’s surface that

28

Fig. 3.6. Variability heat map: Green = maximum range rmax < 0.15.

correspond to the roads produce the same spectral signatures regardless of when the

satellite image was taken and the look angle for the image.

Fig. 3.7 shows an example of data variation in a vegetation covered area as caused

by seasonal change and Fig. 3.8 shows variation due to view-angle change. For the lat-

ter case especially, even when the actual land-cover remains the same, the occlusions

created by tall structures cause the spectral signatures collected for a geo-point to

vary from one image to another (ie. the parallax effect not fully corrected by orthorec-

tification). Yet another source of data variation is caused by a piece of land being

under development during the course of the time when the images were recorded.

In this case, the same area can completely change from one land type to another.

Fig. 3.9 shows such an example.

While all the previous examples illustrated data variability caused by different

sources, it’s also good to know that there can exist regions where the data stays

constant, more or less. Fig. 3.10 shows the same road area in three different MSI

images (selected randomly from the 49 images for the sub-region shown earlier in

29

Fig. 3.7. Examples of variation due to seasonal change. The same geo-
location may need to be labeled as light vegetation and soil at different
times of the year.

Fig. 3.8. Example of data variation due to view-angle change. In this
case, the small areas in the middle of the two image patches shown should
correspond to the same geo-location. But due to different view angles,
the area in the right image is occluded by part of the tall building that
can be seen in the left image. This results in different spectral signatures
for the same geo-point.

Fig. 3.5). In Fig. 3.11 we plot the spectral signatures with respect to the view angles

and with respect to time at a particular geo-location located at the center of the three

image patches in Fig. 3.10.

The left plot of Fig. 3.11 shows the variability with respect to the look angle

and the right shows the variability with respect to the month in which the data was

recorded. As the reader can see, there is much less variation in the data for the point

chosen. This result is consistent with the overall data variability heat map shown in

Fig. 3.6.

30

Fig. 3.9. Example of land-cover change caused by urban development. The
area in the middle of the image patches shown changes from road/parking
lot (left image) to building (right image).

Fig. 3.10. The three image patches cropped from three different MSI
images centered at the same geo-location over a road surface.

3.3.1 Fast Variability Heat Map Computation using Integral Image

In order to support rapid visualization of the data variability heat map over any

region in the entire ROI, we need to have a fast way to down-sample the data region so

that the region can be displayed on the computer monitor, which has limited number

of pixels. In other words, we need to compute or retrieve the average rmax value over

any region quickly. To support this need, we developed a technique based on integral

image [17]. With integral image, we are able to quickly sum up all pixel values inside

any rectangular region in the image. In fact, it takes only two subtractions and

one addition operations to compute the sum of all pixels inside a rectangular region,

regardless of the size of the region. See Fig. 3.12 for an illustration.

31

Fig. 3.11. Road spectral response versus Off-Nadir Angle and Month.

1 1 1

1 1 1

1 1 1

1 2 3

1 2 3

1 2 3

1 2 3

2 4 6

3 6 9

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

= - - +

= - - +

1 2 3

2 4 6

3 6 9

1 2 3

2 4 6

3 6 9

1 2 3

2 4 6

3 6 9

1 2 3

2 4 6

3 6 9

= 9 - 3 - 3 + 1
= 4

in-place
row sum

In-place
column sum

Input image Integral image

Fig. 3.12. Integral image can be computed in-place by first computing
the row sums and followed by the column sums. In this example, the
integral image is used to quickly compute the sum of the green rectan-
gular region. Regardless of the size of the region, only three arithmetic
operations (two subtractions and one addition) and 4 memory locations
(the shaded elements in the integral image) are needed.

32

Our technique first constructs the integral image for rmax over the entire ROI once

and saves it into a file. Subsequently, the integral image gets loaded into the memory

together with the PIMSIR data. Next, when the PIMSIR visualization software wants

to display the variability heat map of a region in the ROI, a downsampled heat map

for that region can be quickly created with the help of integral image. Specifically,

the procedure to create a downsampled heat map is as follows:

1. Get the size of the rectangular region in the ROI to be displayed. Let’s name

this region R and let its size be n× n cells.

2. Get the size of the rectangular window on the monitor that the region R is to be

project to. Let this rectangular window be named W and let its size be m×m
pixels.

3. Compute the block size, b = b n
m
c.

4. For each b× b cells in R, compute the average rmax value over that rectangular

region using the pre-computed rmax integral image.

5. Assign each average rmax value to the corresponding pixel in W .

6. Color-code W (e.g., green for values < 0.15) and display it on the screen.

33

4. INTRINSIC DIMENSIONALITY OF IMAGE PATCHES

This chapter investigates how intrinsic dimensionality depends on various attributes

associated with the dataset. Specifically, given a set of L*a*b* color histograms

extracted from a dataset consisting of image patches, the attributes we want to in-

vestigate are: dataset size, image patch size, and the number of bins in the L*a*b*

color histogram.

In general, dimensionality reduction is used when we want to represent a feature

by a fewer number of dimensions so that the data become easier to manipulate and

less noisy to classify [18–21]. As to how much reduction can be achieved, it depends

on the dataset’s intrinsic dimensionality, which is typically defined as the minimum

number of dimensions needed to describes the dataset completely and without loss of

any information1 [22].

However, when a dataset consists of low-dimensional data corrupted with high-

dimensional noise, the intrinsic dimensionality of the dataset is often estimated using

Principal Component Analysis (PCA) as “the number of [principal] components that

hold the majority of the information” [23].

PCA, which uses linear projection, is not the only popular method for estimating

the intrinsic dimensionality of a dataset. Other methods include manifold projec-

tion [24] and correlation dimension [22, 25, 26]. Manifold projection methods are

especially appropriate when data lie on a low-dimensional nonlinear manifold. Cor-

relation dimension methods, on the other hand, are more applicable for time-series

data.

1Consider a trivial example of constructing a dataset by rotating a set of 2D points in 3D space. In
this case, the resulting dataset consists of 3-dimensional data but its intrinsic dimensionality is 2,
not 3.

34

4.1 Transforming the Multispectral Data Prior to Dimensionality Reduc-

tion

Multispectral data transformation is often done for the purpose of extracting

meaningful features in order to create an effective land-cover classifier [1, 13]. De-

pending on the targeting land types and the classification algorithm used, different

transformation or feature extraction may be appropriate. Examples of commonly

used multispectral features include the National Difference Vegetation Index (NDVI)

and Band Difference Ratios (BDR) [13,27,28].

Some features, such as color histogram and Haar-like features are high dimensional

data. For these high-dimensional features, the number of dimensions can easily go

above 10,000. In such cases, it makes sense to reduce the data dimensionality for

the purpose of achieving more efficient data handling as well as potentially better

classification performance.

In the next section, we give an overview of various color spaces that are commonly

used for describing and representing colors. Having a good understanding of color

representation is important because after all, our goal is to model the satellite image

data in such a way that the concept of similarity is captured in agreement with

human’s interpretation.

4.1.1 The Advantage of L*a*b* Color Representation for Clustering

In this section, we first review the CIELAB color space, also known as the L*a*b*

color space. We give reasons for why L*a*b* representation is appropriate for color

clustering, especially when taking human perception into account. Then, we describe

how we represent an image patch by its L*a*b* color histogram.

35

A Brief Review of the sRGB Color Space

Perhaps the most commonly used color system today is the Standard Default Color

system (sRGB) created by Hewlett-Packard and Microsoft in 1996. Subsequently in

1999, sRGB was standardized by the International Electrotechnical Commission as

IEC 61966-2-1:1999 and used primary for displaying color on the computer displays.

sRGB is based on the trichromatic theory of human color vision. The theory states

that any perceived color can be represented by a mixture of three primary colors. For

sRGB, the three primary colors are conveniently represented by three 8-bit integers as

their intensities. Fig. 4.1 shows a chromaticity diagram containing the sRGB gamut,

which is the range of colors in the sRGB color space. In this chromaticity diagram,

the blue horseshoe shape region encompasses all perceptible colors (specified by their

x,y chromaticity coordinates) in the human color vision. Note that the sRGB gamut

occupies only a portion of the horseshape region. Therefore, sRGB can not represent

all colors perceivable to human. Nevertheless, sRGB is widely used because of its

practicality in hardware implementation.

36

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Chromaticity Diagram

Fig. 4.1. The chromaticity diagram is often used to show and characterize
the gamut of a color space. Here the sRGB gamut is shown. The blue line
encompasses the region of all possible colors in the human color vision
while the triangular-shaped gamut shows the range of color inside the
sRGB color space. Note, the sRGB gamut shown here is displayed in full
brightness (i.e., at each chromaticity coordinate, max(R,G,B) = 255).

Although the sRGB system is simple and convenient to process by a computer,

the colors organized in this space is not suitable for meaningful clustering. This is

the case because sRGB space is not perceptually uniform. In other words, if we were

to visually cluster similar2 colors together by drawing ellipsoids in the sRGB color

space, we will see a large variation in ellipsoid size. In an ideal perceptually uniform

color space, these ellipsoids would all be spheres having the same size instead.

A Brief Review of the HSV Color Space

A common alternative to sRGB is the HSV (Hue, Saturation, Value)3 color space.

HSV and its variants were created in the late 1970’s by computer graphics researchers

2The color similarity metric can be established using the Just Notifiable Difference (JND) measure-
ment of human vision.
3Two other variants of HSV are HSL (Hue, Saturation, Lightness) and HSI (Hue, Saturation, In-
tensity).

37

working with colors. At the time, these researchers needed a color space that can be

used to generate and modify colors in a more intuitive way. Their general approach

was to tilt the RGB color cube on its origin and map the colors onto a 2D polar-

coordinate system. The vertical axis is then a measure of brightness while the 2D

polar coordinate specifies the chromaticity of the color. In this way, similar colors have

similar Hue values, neglecting the brightness and richness effect. Fig. 4.2 demonstrates

the intuitiveness of the HSV space. As the user changes each of the H, S, and V values,

the manipulated color changes in a predictable way. In general, H controls the ”base

color”, S modifies the color’s richness, and V changes the brightness.

H

V

S

Fig. 4.2. HSV color space is commonly used in graphics software such
as the GIMP (GNU Image Manipulation Program) software. A simple
graphical interface allows the user to intuitively pick the desired color.
On the color wheel shown on the right figure, the user can controls the
overall color by changing the Hue (marked by H and blue), Saturation
(marked by S and black), and Value (marked by V and pink).

A Brief Review of the L*a*b* Perceptually Uniform Color Space

Although HSV and its variants are more intuitive to use than sRGB, they are not

perceptually uniform neither. Work on creating perceptually uniform color spaces

actually started around the same time HSV color space was being developed. In fact,

two perceptually uniform color spaces have existed since 1976. They were named

L*u*v (aka CIELUV) and L*a*b* (aka CIELAB) by the International Commission

38

on Illumination (CIE) [29]. In both color spaces, L* is a measure of lightness that is

linearly proportional to human’s perception of brightness. The u* and v* components

in the CIELUV space are derived from the uniform chromaticity scale diagram (aka

the UCS diagram), which is perceptually uniform version of the original CIE1931

chromaticity diagram. Similarly, the a* and b* components in CIELAB are also

perceptually uniform as well but they correspond to the red-green and the yellow-

blue opponent colors in human vision. In other words, the value of a* indicates the

degree of red-ness or green-ness, depending on the sign of the value. For example, a

large positive value of a* indicates a large presence of red-ness. On the other hand,

a large negative value indicates a large presence of green-ness. Similar logic goes for

the b* component, but for the yellow-ness and blue-ness mix instead.

As mentioned previously, CIELUV is a direct extension to the UCS diagram that

transforms the original CIE1931 (x,y) chromaticity diagram into a more perceptually

uniform (u’,v’) chromaticity diagram. Fig. 4.3 shows a side-by-side visual comparison

of the original CIE1931 (x,y) chromaticity diagram and the UCS (u’,v’) diagram.

Fig. 4.4 shows the CIELUV color space at three different values of L*, which is a

measure of lightness. In all three subplots of Fig. 4.4, only valid4 sRGB colors are

shown. Note that the range of (u’, v’) values depends on the value L*. For details on

CIELUV definition and equations, please see Appendix A.

4R,G,B ∈ [0 . . . 255]

39

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Chromaticity Diagram

0.0 0.2 0.4 0.6 0.8 1.0
u'

0.0

0.2

0.4

0.6

0.8

1.0

v
'

Uniform Chromaticity Scale Diagram

Fig. 4.3. Visual comparison of the two chromaticity diagrams. The sRGB
gamut is shown in both plots. The blue line encompasses the region of all
possible colors in the human color vision. The left plot shows the CIE1931
chromaticity diagram while the right plot shows the CIE1976 uniform
chromaticity scale diagram (aka the UCS diagram). The UCS diagram
is perceptually uniform in the sense that the Euclidean distance between
points on the UCS diagram is more consistent with human’s perception
of color similarity. Note, the sRGB gamut shown here is displayed in full
brightness (i.e., at each chromaticity coordinate, max(R,G,B) = 255).

40

−200 −100 0 100 200 300 400 500
u*

−500

−400

−300

−200

−100

0

100

200

v*

L*=25

−200 −100 0 100 200 300 400 500
u*

−500

−400

−300

−200

−100

0

100

200

v*

L*=50

−200 −100 0 100 200 300 400 500
u*

−500

−400

−300

−200

−100

0

100

200

v*

L*=75

Fig. 4.4. The three subplots show the sRGB gamut in the CIELUV color
space. Each subplot shows a different luminance value for L*. The blue
line encompasses the region of all possible colors in the human color vision.

Similar to the CIELUV color space, the CIELAB color space is also perceptually

uniform. CIELAB has two major advantages over CIELUV. First, the a* and b*

values in the CIELAB color space do not depend on L*. This fact can be seen by

comparing Fig 4.4 and Fig. 4.5. As for the second advantage, both a* and b* axes in

CIELAB are physically meaningful in that they are aligned to two pairs of opponent

41

colors that exist in the human color vision. To demonstrate the opponent colors,

Fig. 4.6 shows a* and b* contour lines overlaid on top of the sRGB gamut. As can be

seen in the figure, a* varies from red-ness to green-ness and b* varies from blue-ness

to yellow-ness.

With regard to their applications, CIELUV is commonly used for characterizing

displays while CIELAB is used more for matching colored surfaces and paints. [30]

For details on CIELAB definition and equations, please see Appendix A.

−500 −400 −300 −200 −100 0 100 200 300
a*

−300

−200

−100

0

100

200

300

b*

L*=25

−500 −400 −300 −200 −100 0 100 200 300
a*

−300

−200

−100

0

100

200

300

b*

L*=50

−500 −400 −300 −200 −100 0 100 200 300
a*

−300

−200

−100

0

100

200

300

b*

L*=75

Fig. 4.5. The subplots show the sRGB gamut in the CIELAB color space.
Each subplot shows a different luminance value for L*. The blue line
encompasses the region of all possible colors in the human color vision.

42

a* = -100

a* = -50

a* = 0

a* = 50

a* = 100

200 250 300 350 400 450 500
500 f(X/Xn)

150

200

250

300

350

400

450

50
0

f(
Y

/Y
n
)

CIELAB a* contour lines and the sRGB gamut
(Note: At a*=0, color varies from blue-ish to yellow-ish)

(a) sRGB gamut and a* contour lines

b* = -50

b* = 0

b* = 50

b* = 10060 80 100 120 140 160 180 200
200 f(Z/Zn)

60

80

100

120

140

160

180

20
0

f(
Y

/Y
n
)

CIELAB b* contour lines and the sRGB gamut
(Note: At b*=0, color varies from red-ish to green-ish)

(b) sRGB gamut and b* contour lines

Fig. 4.6. CIELAB is an opponent color space. From the sRGB gamut, we
can see the a* contour lines vary from green to lack of green. Similarly,
the b* contour lines vary from blue to lack of blue. At b*=0, only a*
varies and we see the color goes from red to green. Similarly, at a*=0,
only *b varies and the color goes from blue to yellow. The locations of
these colors are marked by black circles.

4.1.2 Creating Color Histogram Using the L*a*b* Color Space

In order to create a 3D color histogram, we must first partition the 3D color space

into voxels. Each voxel then represents a bin in the histogram. Specifically, we first

quantize the CIELAB color space into b3 bins, where b is the number of bins in each

of the L*, a*, and b* axes. As b increases, the number of bins increases and the colors

in the neighboring bins will be more similar to each other. As to the choice of b, we

noted from the study in [31] that b does not need to be more than 665 in order to

adequately represent different colors by different bins. In other words, as b increases

and approaches 66, it becomes harder for human to distinguish colors from adjacent

bins.

5In [31], the voxel size for the CIELAB color space was determined to be 1.5× 3.0× 3.0.

43

Since our input data are in the sRGB color space, we can further reduce the

number of bins in the CIELAB color histogram by removing the invalid bins – those

bins that will always be empty due to the fact that the sRGB color space is a subset of

the CIELAB color space (See Fig. 4.5). As it turns out, the range of all sRGB colors

in terms of CIELAB coordinates are: L*∈ [0 . . . 100], a*∈ [−86.183 . . . 98.233], and

b*∈ [−107.857 . . . 94.478]. Table 4.1 shows the histogram sizes for both sRGB and

CIELAB color spaces. From the table, we see that b = 32 gives us a 9024-dimensional

L*a*b* color histogram.

Table 4.1.
Color histogram sizes for sRGB and CIELAB color spaces.

b bins per axis sRGB histogram size L*a*b* histogram size

4 64 45

8 512 245

12 1728 652

16 4096 1388

20 8000 2490

24 13824 4080

28 21952 6228

32 32768 9024

64 262144 64508

4.2 A Brief Survey of Previous Work on Dimensionality Reduction on

Satellite Data

Most of the literature on dimensionality reduction for satellite data deal with

extracting salient or meaningful feature for classification applications [32–34]. Di-

mensionality reduction also found applications in visualization of satellite data [35].

44

For the rest of this section, we give three typical and representative examples of how

PCA is applied to satellite data.

First, the work of [32] proposes an algorithm using PCA and K-Means to au-

tomatically detect changes between two co-registered panchromatic satellite images.

The approach is said to be applicable to multispectral images as well. The algo-

rithm first computes the absolute differences between each pair of pixels between the

two co-registered images. Then, PCA is applied on this ”difference image”. More

specifically, PCA is applied on 4x4 non-overlapping blocks taken from the difference

image. That is, each 4x4 block is represent by a 16-dimensional feature vector and

each of these 16 dimensions corresponds to the absolute difference at the particular

pixel location within the 4x4 block. Of the 16 dimensions, only the top 3 components

from PCA is retained. The use of PCA in this case is to perform 2-class clustering

in a lower dimensional space. The two classes are given the labels: ”Change” and

”No Change”. As for the number of components to keep, the work states that no

significant difference is observed when using more than 3 components.

For another typical multispectral data classification application, the work of [33]

proposes using PCA to remove haze. The algorithm uses PCA to identify and remove

the ”cloudiness band”, which is found to be related to the smallest principal compo-

nent. More specifically, PCA is applied on pixels from a continuous region where the

haze is located. Each pixel in that region is represented by a 6-dimensional feature

vector made up of multispectral channels 1-5 and 7. PCA is then used to remove the

haze artifact, which is identified to reside on the data dimension that is least varying.

Finally, the work of [35] introduces a visualization method called Decorrelation

Stretch that became popular for enhancing multispectral satellite images. Because

data in the adjacent bands are highly correlated in multispectral satellite imagery,

the idea of Decorrelation Stretch is to use PCA to decorrelate (aka ”whiten”) the

spectral channels. This has the effect of highlighting data variation and thus making

the hidden details easier to see. The algorithm first collects a representative sample

of 1000 pixels from a multispectral image in which each pixel is represented by 3

45

multispectral channels. PCA is then applied on these 1000 3-dimensional feature

vectors. After PCA, all components are kept but normalized by their individual

variances. The result is then subsequently displayed in sRGB or some other color

spaces.

4.3 Factors Affecting the Intrinsic Dimensionality of Image Patches

In this section, we describe five PCA experiments in which we examine some fac-

tors affecting the intrinsic dimensionality of image patches. Please refer to section 2.2

in Chapter 2 for the definition of satellite image, tile, and image patch.

4.3.1 Dataset Size

In this experiment, we examine the effect of dataset size on the intrinsic dimen-

sionality. By dataset size, we mean the number of samples used to carry out PCA.

First, we note that when the number of samples in the dataset is less than the number

of dimensions in the original feature space, the number of principal components from

PCA is at most the size of the dataset. For example, if the dataset has 100 sam-

ples, then, PCA can produce at most 100 principal components. Next, we expect the

number of principal components to increase as the dataset gets bigger. However, this

increase will plateau toward the intrinsic data dimensionality. With these insights in

mind, our experimental setup is as follows:

1. Randomly select 10 satellite images from the Australia ROI (Region of Inter-

est) [1].

2. Randomly select P patchesfrom the 10 satellite images. The total number of

patches is thus 10× P .

3. Compute the 9024-dimensional L*a*b* color histogram for each patch. (see

Section 4.1.2). This gives us a dataset consisting of 10× P feature vectors.

46

4. Apply PCA on the dataset and retain 99.9 percent of the total energy6. Record

the number of principal components.

5. Repeat from step 2 with P ∈ {2, 3, . . . , 10}, resulting in nine datasets with sizes

= {20, 30, . . . , 100}.

6. Run 10 trials starting from step 1, each trial processes data from a new random

set of 10 satellite images.

7. Over the 10 trials, create nine boxplots, one per datasets defined in step 5.

20 30 40 50 60 70 80 90 100
Dataset Size

10

15

20

25

30

35

40

N
u
m

b
e
r

o
f

P
ri

n
ci

p
a
l
C

o
m

p
o
n
e
n
ts

a
t

9
9

.9
%

 o
f

T
o
ta

l
E
n
e
rg

y

Intrinsic Dimensionality of Image Patches

Fig. 4.7. Boxplots over 10 trials, each trial randomly selects 10 satel-
lite images and estimates the intrinsic dimensionality by the number of
principal components needed to retain 99.9% of the total energy.

6We compute the total energy by taking the sum of all eigenvalues.

47

We observe from Fig. 4.7 that for dataset sizes larger than 60, the median number

of principal components plateaus toward 25, while the maximum number reaches

36 at size = 100. From these observations, we conservatively estimate the intrinsic

dimensionality of image patches in the Australia ROI to be more than 36 and less than

100. Although this estimate is specific to the Australia ROI, the dramatic reduction

of dimensionality from 9024 to less than 100 is typical to other ROI as well.

4.3.2 Data Diversity: Single-Satellite vs Multi-Satellite

In this experiment, we examine the effect on data variability when drawing im-

age patches randomly from a single satellite image and when drawing from multiple

satellite images. Because different locations on the earth surface tend to look differ-

ently, we expect a random set of image patches drawn from multiple satellite images

be more diverse. In other words, if we were to apply PCA on the datasets, there

should be a noticeable difference between the two datasets in terms of the number

of principal components. More specifically, a random set of image patches sampled

from the same satellite image is likely to have fewer number of principal components

than a set of image patches from multiple satellite images covering a wider area.

Our experimental setup is as follows:

1. Randomly select 10 satellite images out of the 127 images in the Australia ROI.

2. Create two groups of tiles:

• Single-satellite Group: Randomly select 10 tiles from a particular satellite

image, S, among the 10 satellite images selected in step 1.

• Multi-satellite Group: Randomly select 10 tiles, one from each of the 10

satellite images selected in step 1.

3. From each tile group defined in step 2, randomly select 100 patches from each

tile. This give each group a total of 10007 image patches.

7As we saw from Section 4.3.1, the intrinsic dimensionality of image patches in the Australia ROI
is estimated to be no more than 100. This piece of information is useful for the purpose of setting

48

4. Compute the 9024-Dimensional color histogram for each image patch in the two

groups defined in step 2. Each group can now be represented by a dataset of

1000 color histograms (i.e., feature vectors).

5. Apply PCA to the two datasets defined in step 4, and for each PCA, retain 90%

of the total energy.

6. Record the difference in number of principal components between the two

datasets defined in step 4. A positive difference means that the multi-satellite

dataset requires more dimensions.

7. Repeat from step 3, each time select a different satellite image, S, for the Single-

satellite group. Since there are 10 satellites, this step will repeat 10 times.

8. Repeat from step 1 three times, each trail will draw data from a random set

of areas in the Australia ROI. We refer to these 3 sets of areas as Region1,

Region2, and Region3.

9. Create three boxplots, one per each region described in step 8 and each boxplot

summarizes over the 10 trials defined in step 7.

the size of dataset. As a general and conservative rule of thumb, a dataset should be about 5-10
times the number of data dimensions. Therefore, we set our dataset size for this experiment to
100× 10 = 1000.

49

1 2 3
Region

5

0

5

10

D
if
fe

re
n
ce

 i
n
 N

u
m

b
e
r

o
f

P
ri

n
ci

p
a
l
C

o
m

p
o
n
e
n
ts

Multi-Satellites vs Single-Satellite

Fig. 4.8. Boxplots of three randomly-selected regions. Each boxplot sum-
marizes, over 10 trials, the differences in the number of principal com-
ponents between the two groups of datasets: Multi-satellite and Single-
satellite.

From Fig. 4.8, we see that with the exception of Region 3, all 10 random collec-

tions of image patches drawn from multiple satellites have more principal components

compared to collections drawn from a single satellite image. Our observation is based

on the difference in the number of principal components at 90% of total energy. As

for Region 3, the multi-satellite dataset has more principal components than the

single-satellite dataset in 8 out of the 10 trials.

50

4.3.3 Fraction of the Total Energy

In this experiment, we look at two questions about PCA and dimensional reduction

in terms of the total energy kept. The questions are:

1. How does the number of principal components increase as a function of energy

retained?

2. How much error, in terms of Cosine distance8, is present in the feature vector

after reconstruction?

Our experimental setup is as follows:

1. Randomly select 10 satellite images out of the 127 images in the Australia ROI.

For each of the 10 satellite images, randomly select 5 tiles. This gives us a

diverse dataset consisting of 50 random tiles and over multiple satellite images

from the Australia ROI.

2. Randomly select 10 image patches per tile. Represent each patch by its 9024-

dimensional L*a*b* color histogram. This produces a dataset of size 50× 10 =

500 color histograms9.

3. Apply PCA on the dataset defined in step 2 and retain E% of the total energy.

Record the number of principal components.

4. Project the dataset from step 2 onto the lower-dimensional space, which is

represented by the principal components from step 3.

5. Reconstruct data in the projected lower-dimensional space back to the original

high-dimensional feature space.

6. Determine the reconstruction error by:

8By Cosine distance, we mean the angle between two vectors.
9The histograms are normalized.

51

(a) Compute the angular distances between the original data and their recon-

structed counterparts. This is the residual error.

(b) Compute the average residual error over all data.

7. To determine the relationship between the number of principal components and

the percentage of total energy retained, set E to:

• {0.95, 0.96, 0.97, 0.98, 0.99} (coarse resolution)

• {0.991, 0.993, 0.995, 0.997, 0.999} (finer resolution for higher percentages)

8. Repeat step 7 10 times. Each trial draws a random set of image patches from

the particular 50 tiles selected in step 1.

9. For each value of E, create boxplots to answers the questions stated at the

beginning of the section. Note that each boxplot summarizes over 10 random

trials created in step 8.

52

95.0 96.0 97.0 98.0 99.0 99.1 99.3 99.5 99.7 99.9
Percentage of Total Energy

20

25

30

35

40

45

N
u
m

b
e
r

o
f

P
ri

n
ci

p
a
l
C

o
m

p
o
n
e
n
ts

Number of PCA Principal Components
Dataset Size = 500

Fig. 4.9. Each boxplot summarizes, over 10 trials, the number of principal
components when retaining a particular percentage of the total energy.

Fig. 4.9 shows that with 99.9% of the total energy, the number of dimensions in

the projected space is less than 45.

53

95.0 96.0 97.0 98.0 99.0 99.1 99.3 99.5 99.7 99.9
Percentage of Total Energy

2

4

6

8

10

A
v
e
ra

g
e
 E

rr
o
r

b
e
tw

e
e
n

O
ri

g
in

a
l
a
n
d
 R

e
co

n
st

ru
ct

e
d
 [

D
e
g
]

Reconstruction Error
Dataset Size = 500

Fig. 4.10. Each boxplot summarizes, over 10 trials, the average error
between the original feature vectors and their corresponding reconstructed
feature vectors.

With regard to the reconstruction error, Fig. 4.10 shows average error between

original feature vectors and their reconstruction from the low-dimensional projected

space. As shown in the figure, the average error is less than 2 degrees at 99.9% of the

total energy.

4.3.4 Image Patch Size

In this experiment, we examine how the size of the image patches affects the

intrinsic dimensionality of the dataset. As one may suspect, the content of the satellite

scene places a big role on the intrinsic dimensionality of the dataset. Consider a

dataset consisting of image patches taken from satellite images of nothing but dessert

54

or ocean. Because all pixels are essentially the same color, changing the size of the

image patch will not change the normalized color histogram and we will see no change

in intrinsic dimensionality as we vary the image patch size. On the other hand, if

the dataset consists of image patches that have their dominant colors getting more

dominant as the patch size gets bigger, then, the intrinsic dimensionality actually

goes down as the size of the image patch gets larger. This is the case because as the

image patch gets bigger, the normalized histograms get less “noisy” due to the peak

at the mode of the normalized histogram getting higher — suppressing the histogram

bin value everywhere else (i.e., the histogram has larger entropy). Finally, we can

also imagine the case where the histogram gets nosier (i.e., having lower entropy) as

the image patch size gets larger. In this scenario, the intrinsic dimensionality goes up

as the image patch size goes up.

Experimental Setup:

1. Randomly select 10 satellite images out of the 127 images in the Australia ROI.

For each of the 10 satellite images, randomly select 5 tiles. This gives us a

diverse dataset consisting of 50 random tiles and over multiple satellites in the

Australia ROI.

2. For each tile selected in step 1, randomly select 10 patch locations. This gives

us a collection of 50× 10 = 500 image patch locations.

3. For each patch location in step 2, crop out a patch of size P by P pixels. This

gives us a dataset of 500 image patches.

4. Apply PCA on the dataset from step 3, and keep 99.9% of the total energy.

Record the number of principal components.

5. Repeat from step 3, with image patch width P ∈ {21, 41, 61, 81, 101, 201}.

6. Repeat from step 2 for 9 more times, each trial draws a random set of patches

from the tiles selected in step 1.

55

21 41 61 81 101 121 141 161 181
Patch Width (pixels)

10

5

0

5

R
e
la

ti
v
e
 N

u
m

b
e
r

o
f

P
ri

n
ci

p
a
l
C

o
m

p
o
n
e
n
ts

 a
t

9
9
.9

%
 o

f
T
o
ta

l
E
n
e
rg

y

Intrinsic Dimensionality vs Image Patch Width
Dataset Size = 500

Fig. 4.11. For each particular image patch width, the boxplot summarizes,
over 10 trials, the relative number of principal components obtained after
PCA. The relative number is calculated by subtracting the number of
components obtained for patch width = 21.

From Fig. 4.11, we see that as image patch gets larger, the intrinsic dimensionality

of the datasets tend to decrease and then plateau. This suggests there isn’t much

data variation in this particular ROI.

4.3.5 Histogram Quantization

In this experiment, we study the effect of changing the number of dimensions in

the feature space. Since we are using histogram as our feature, we can increase the

number of dimensions by simply reducing the histogram bin size. Intuitively, as the

feature dimensionality goes up, the number of total distinct feature vectors also goes

56

up. Therefore, a random dataset in high-dimensional space should have variation

in many more dimensions and therefore requiring more principal components.Our

experimental setup is as follows:

1. Randomly select 10 satellite images out of the 127 images in the Australia ROI.

For each of the 10 satellite images, randomly select 5 tiles. This gives us a

diverse dataset consisting of 50 random tiles and over multiple satellites in the

Australia ROI.

2. For each tile selected in step 1, randomly select 10 image patches. This gives

us a diverse dataset of size 50× 10 = 500 image patches.

3. Compute L*a*b* color histogram for each image patch in the dataset and quan-

tize the histogram into Q bins per axis. The dataset now consists of L*a*b*

color histograms.

4. Apply PCA on the dataset from step 3 and keep 99.9% of the total energy.

Record the number of principal components.

5. Repeat from step 2, with histogram quantization set to Q ∈ {4, 8, 16, 32, 64}

6. Repeat step 5 10 times, each trial draws a random dataset from the tiles selected

in step 1.

57

4 8 16 32 64
L*a*b* Color Histogram Quantization

(# of bins per each axis)

0

20

40

60

80

100

120

140

160

N
u
m

b
e
r

o
f

P
ri

n
ci

p
a
l
C

o
m

p
o
n
e
n
ts

a
t

9
9

.9
%

 o
f

T
o
ta

l
E
n
e
rg

y

Intrinsic Dimensionality vs Feature Space Dimensions
Dataset Size = 500

Fig. 4.12. Each boxplot summarizes, over 10 trials, the number of principal
components after applying PCA on the quantized histograms.

From Fig. 4.12, we see that as the number of bins in the color histogram increases,

the number of principal components also increases.

4.4 Histogram Quantization and Cosine Distance

In this section, we investigate how Cosine distance between two histograms behave

as the number of histogram bins changes. To answer this question, we first make the

following observations:

• The larger the histogram bin size, the fewer the total number of bins and thus

fewer dimensions in the feature space.

58

• The angle between two histograms can become larger, smaller, or remains the

same as we change the bin size.

Next, let us look at the effect of quantization on numerical values. A simple and

common approach to quantization is shown in the equation below:

q =
⌊ x

binSize

⌋
(4.1)

where x is normalized to [0 . . . 1) and 1/binSize is the number of quantization levels.

The overall quantization effect is that x either remains at the same position, or it

moves to the left on the number line. Similarly, in 2D, a point can move down, left,

diagonally, or remains at the same position. See Fig. 4.13 for an illustration.

x

q1

q2

(0,0)

(1,1)

Fig. 4.13. The effect of quantization using equation (4.1) on 2D data. In
this illustration, the original point x gets moved further down and left
after each quantization step (i.e., binSize = 1

4
for point q1 and 1

2
for q2.).

If the original point were at q2, then, the two quantization steps will have
no effect (i.e., dose not introduce any quantization error).

Now, let’s take a look at the process of creating a histogram from a collection of

2D points. As illustrated in Fig 4.14, each cell in the 2D grid becomes a bin, forming

a 3D bar graph. As for the effect of quantization on the histogram, we observe the

following:

59

• Smaller adjacent bins get combined into a larger bin.

• Bins get fatter and taller after quantization.

• Quantization reduces the total number of bins in the histogram.

up

Fig. 4.14. A histogram of 2D points looks like a 3D bar graph. The
height of the cell corresponds to the number of points in the cell. In this
illustration, there are three levels of quantizations — the black, green, and
pink bins. Their bin sizes are 1

8
, 1

4
, and 1

2
, respectively.

Furthermore,

• Converting a multi-dimensional histogram into a 1D histogram has no effect on

the computation of Cosine distance. This property is a direct consequence of

the dot product definition – ordering of addition does not matter.

• After quantization, the angle between two histograms can behave in three ways:

– Case1: angle stays about the same.

Obviously, when two histograms are identical, the angle between them is

always 0 regardless of the quantization level. Another way for the angle

60

to remain the same is when the non-zero counts inside the merged bin all

have the same count value. See Fig 4.15 for an illustration.

– Case2: angle becomes bigger.

After quantization, it could happen that a merged bin contains just one

non-zero bin with large count while the rest of the merged bins contain

many non-zero bins with small counts. When this happens, the isolated

dominant bin can remains dominant after quantization. If two histograms

formed in this way have the same dominant bin location but differ signif-

icantly in their count values, then the angle between them will be larger

after quantization. Fig 4.16 for an illustration.

– Case3: angle becomes smaller.

The angle between two histograms could become smaller after quantization

when the two histograms are uniformly distributed. That is, the non-zero

bins all have similar counts and locations. See Fig 4.17 for an illustration.

61

7

7

7

7

3 3

3 3

5 5

5 5

Histogram 1 Histogram 2

○ High-res: AngDist ([3,3,3,3,7,7,7,7], [5,5,5,5,5,5,5,5]) = 21.8
○ Mid-res: AngDist ([6,6,14,14], [10,10,10,10]) = 21.8
○ Low-res: AngDist ([12,28], [20,20]) = 21.8

5

5

5

5

Fig. 4.15. Angle between two histograms can remain the same after quan-
tization. Consider two histograms having the same non-zero bin locations.
Quantization has no effect on the angle between the two histograms as
long as all non-zero smaller bins have the same count inside the bigger
merged bin. For example, in histogram 1, {3,3} gets merged into {6},
{7,7} gets merged into {14}, {6,6} gets merged into {12}, {14,14} gets
merged into {28}, etc. The angular distance between the two histograms
remains the same at 21.8 degrees.

1

1

1

1

36 20

Histogram 1 Histogram 2

○ High-res: AngDist([36,1,1,1,1], [20,5,5,5,5]) = 23.3
○ Mid-res: AngDist([36,2,2], [20,10,10]) = 30.7
○ Low-res: AngDist([36,4], [20,20]) = 38.6

5

5

5

5

Fig. 4.16. Angle between two histograms can get bigger after quantization.
This can happen if the dominant bin remains throughout the quantization
as illustrated in this particular example. The angular distance increases
from 23.3 to 38.6.

62

6 4

8

4

3 5

3 3

4

5 2

5

Histogram 1 Histogram 2

○ High-res: AngDist([3,3,4,6,4,8,4,3,5], [5,2,5,6,3,7,4,2,6]) = 12.7
○ Mid-res: AngDist([10,18,12], [12,16,12]) = 6.7
○ Low-res: AngDist([10,30], [12,28]) = 4.7

6 3

7

4

2 6

Fig. 4.17. Angle between two histograms can get smaller after quantiza-
tion. This can happen when histograms are uniformly distributed. That
is, the non-zero bins all have similar counts and locations. As non-zero
bins get merged, the resulting histograms become more and more similar.
In this particular example, the angular distance decreases from 12.7 to
4.7.

In general, error in measurement can be due low sensor resolution in the measuring

instrument. This leads to quantization error. For Cosine distance, quantization error

can go in either direction, resulting in the angle between two histograms to either

increase, decrease, or remains the same after quantization.

4.4.1 A Closer Look at Histogram Quantization

Mathematically, the angle between two vectors is a function of Cosine similarity,

which is computed by taking the ratio of dot product and product of magnitudes:

cos(θ) =
~v1 · ~v2
‖~v1‖‖~v2‖

(4.2)

Observe that the angle, θ, between the two vectors, ~v1 and ~v2, is large when

the Cosine similarity is small and vice versa. This means, the numerator and the

denominator in equation (4.2) can grow at different rates after quantization. If the

numerator grows faster than the denominator after quantization, then, the Cosine

63

similarity will get larger, and we will see the angle between the two vectors get

smaller after quantization.

Therefore, to predict the effect of histogram quantization, one has to be able to

predict the growth rates of the dot product and the growth rate of the magnitudes.

These growth rates depend on the the distribution of the histogram and a detailed

analysis of this dependency seems difficult. Nevertheless, in the next section, we will

demonstrate two specific cases using simulated datasets.

4.4.2 Using Simulated Datasets to Demonstrate the Effects of Histogram

Quantization on Cosine Distance

To demonstrate the effect of histogram magnetization, our procedure is as follows:

1. Create a simulated dataset consisting of 100 image patches, each of 101 x 101

pixels.

2. Using a quantization level = Q bins per axis, compute the L*a*b* color his-

togram for each image patch. The dataset now consists of 100 L*a*b* color

histograms.

3. Compute all pair-wise angular distance among the histograms in the dataset.

Record the average value.

4. Repeat from step 2 with a different quantization Q ∈ [4, 8, 16, 32, 64].

5. Repeat from step 1 10 times, each trial draws a new dataset.

With regard to how we simulate the datasets, we first define two populations below:

• Uniform Population - Each unit in this population is a color in the CIELAB color

space. In other words, the population consists of units uniformly distributed

over the entire CIELAB color space.

• Dominant Population - Unlike the Uniform Population, there are two clusters

of colors in this population. One is a small cluster modeled by a Gaussian

64

distribution with a small variance. The other cluster is bigger and further

away.

Next, we create two datasets from these two populations:

• Uniform Dataset - Each datum is a 101x101 L*a*b* image with pixels drawn

randomly from the Uniform Population. We create the dataset this way to

model the example given in Fig. 4.17.

• Dominant Dataset - Unlike the Uniform Dataset, this dataset consists of L*a*b*

image patches with varying portions of pixels drawn from both clusters in the

Dominant Population. Specifically, half of the dataset consists of image patches

each having 90% of pixels drawn from the smaller cluster and the rest 10%

drawn from the the bigger cluster. The other half of the dataset is constructed

in the same way except the role of clusters are reversed – i.e., 10% from the

smaller cluster and 90% from the bigger cluster. We create the dataset this way

to model the example given in Fig. 4.16.

Finally, for each of the two dataset types, we create five boxplots, one per each

quantization level. The boxplots summarize the average angle between pairwise his-

tograms over 10 trials. See Fig 4.18 and Fig 4.19 for the boxplots.

65

64 32 16 8 4
LAB Color Histogram Quanization

(# of bins per each axis)

0

10

20

30

40

50

A
v
e
ra

g
e
 P

a
ir

w
is

e
 A

n
g
le

 [
d
e
g
]

Average Pairwise Angle between Histograms
Case 3: Histograms become more similar after quantization.

Fig. 4.18. Boxplots of five quantization levels. Each boxplot summarizes,
over 10 simulated datasets, the average angle between

(
100
2

)
pairwise his-

tograms. The Uniform Dataset exhibits the phenomenon that indicates
histograms becoming more similar after quantization. At 64-bins per axis,
the average angle between pairwise histograms is about 50 degrees. On
the other hand, at 4-bins per axis, the average pairwise angle goes down
to about 5 degrees.

66

64 32 16 8 4
LAB Color Histogram Quanization

(# of bins per each axis)

5

10

15

20

25

30

A
v
e
ra

g
e
 P

a
ir

w
is

e
 A

n
g
le

 [
d
e
g
]

Average Pairwise Angle between Histograms
Case 2: Histograms become less similar after quantization.

Fig. 4.19. Boxplots of five quantization levels. Each boxplot summarizes,
over 10 simulated datasets, the average angle between

(
100
2

)
pairwise his-

tograms. The Dominant Dataset exhibits the phenomenon that indicates
histograms becoming less similar after quantization. At 64-bins per axis,
we see that the average angle between pairwise histograms is about 6 de-
grees. On the other hand, at 4-bins per axis, the average pairwise angle
goes up to about 27 degrees.

4.5 Calculating Cosine Distance from PCA Representation

Since the PCA representation is zero-mean based, using the Cosine distance metric

directly on the reduced-dimensionality vectors would not be appropriate because we

may want to apply a similarity threshold that is tuned on one dataset to the PCA

representation of another dataset that may have a very different data distribution,

and thus different mean.

67

The baseline approach to computing Cosine distance on PCA representation is to

first reconstruct the data from its low-dimensional representation back to the original

high-dimensional space and then compute the Cosine distance based on the recon-

structed data. This approach is computational expensive. Fortunately, as we will

show next, we can get the same result by first shifting the PCA representation by

the projected mean and then augment the shifted result with an additional “bias

dimension”.

Let {~x1, . . . , ~xn} be the original dataset in the high dimensional space and let X

be the column matrix representation of the data, i.e., X = [~x1 . . . ~xn]. Similarity, let

{~v1, . . . , ~vn} be the augmented low-dimensional vectors. The procedure for computing

~vi is as follows:

1. Compute the mean vector ~m, and the individual deviations ~zi as shown in

Eq. 4.3 and 4.4.

~m =
1

n

n∑

i=1

~xi (4.3)

~zi = ~xi − ~m (4.4)

2. Obtain the deviation matrix Z using Eq. 4.5.

Z = [~z1 . . . ~zp] (4.5)

3. Obtain the eigenvectors and eigenvalues of the covariance matrix , ZZT , and

let Wk be the column matrix consists of the k most-significant eigenvectors.

Wk = k most-significant eigenvectors of ZZT (4.6)

4. Compute ~y and ~o, the PCA representation and the projection of the mean by

Eq. 4.7 and Eq. 4.8, respectively.

~yi = Wk
T~zi (4.7)

~o = Wk
T ~m (4.8)

68

5. Shift the PCA representation by the projected mean, as shown in Eq. 4.10.

~y′i = ~yi + ~o (4.9)

= ~yi + Wk
T ~m (4.10)

6. Augment the shifted low-dimensional vector, ~y′i, by a bias dimension. The final

augmented low-dimensional representation, ~vi, is then given in Eq. 4.13.

�
��Wk = rest of eigenvectors not in Wk (4.11)

~vi =

~y′i

‖���Wk
T ~m‖

 (4.12)

=

~yi + Wk

T ~m

‖���Wk
T ~m‖

 (4.13)

To prove that Cosine similarity between data in this augmented lower-dimensional

space is the same as the Cosine similarity between the corresponding reconstructed

data in the original high-dimensional space, we just need to verified that the dot

products are equal. First, let ~ri be reconstructed from PCA representation, ~yi, using

Eq. 4.14, then, we verify the result ~rTi ~rj = ~vTi ~vj in equations Eq. 4.15 to Eq. 4.26:

~ri = Wk~yi + ~m (4.14)

~rTi ~rj = (Wk~yi + ~m)T (Wk~yj + ~m) (4.15)

= (~yTi Wk
T + ~mT)(Wk~yj + ~m) (4.16)

= ~yTi Wk
TWk~yj + ~yTi Wk

T ~m+ ~mTWk~yj + ~mT ~m (4.17)

= ~yTi ~yj + ~yTi Wk
T ~m+ ~mTWk~yj + ‖~m‖2 (4.18)

69

~vTi ~vj =
[
(~yi + Wk

T ~m)T ‖���Wk
T ~m‖

]

~yj + Wk

T ~m

‖���Wk
T ~m‖

 (4.19)

= (~yi + Wk
T ~m)T (~yj + Wk

T ~m) + ‖���Wk
T ~m‖2 (4.20)

= (~yTi + ~mTWk)(~yj + Wk
T ~m) + ‖���Wk

T ~m‖2 (4.21)

= ~yTi ~yj + ~yTi Wk
T ~m+ ~mTWk~yj + ~mTWkWk

T ~m (4.22)

= ~yTi ~yj + ~yTi Wk
T ~m+ ~mTWk~yj + ~mT (I −���Wk���Wk

T)~m+ ‖���Wk
T ~m‖2 (4.23)

= ~yTi ~yj + ~yTi Wk
T ~m+ ~mTWk~yj + ~mT ~m− ~mT

���Wk���Wk
T ~m+ ‖���Wk

T ~m‖2 (4.24)

= ~yTi ~yj + ~yTi Wk
T ~m+ ~mTWk~yj + ‖~m‖2 − ‖���Wk

T ~m‖2 + ‖���Wk
T ~m‖2 (4.25)

= ~yTi ~yj + ~yTi Wk
T ~m+ ~mTWk~yj + ‖~m‖2 (4.26)

4.6 Dimensional Reduction Using FastMap

There exist many dimensionality reduction strategies for multidimensional data,

however most are not appropriate for the big data scenarios involving tens of millions

of patches extracted from satellite images. Consider, for example, what is perhaps

the most commonly used method for dimensionality reduction, PCA, which carries

out an eigendecomposition of the covariance matrix of the data. In our case, the

data would consist of 9024-element vectors for the L*a*b* color histograms, whose

covariance matrix would be of size 9024 × 9024, a matrix with close to 100 million

elements. Now if we only had a small number of patches from which to generate the

reduced-dimensionality representation, we could take advantage of the fact the rank of

the covariance matrix would not exceed the number of patches available and translate

that fact into a highly efficient algorithm for the eigendecomposition of the covariance

matrix [36]. However, that is not case with the work described in this research —

with the number of patches running into millions, we have no hard constraint on the

rank of the covariance matrix. We run into similar problems if we try to use the

other methods, such as Incremental PCA [37] and Sparse PCA [38]. In light of these

70

difficulties associated with the more traditional approaches, we have chosen to use

the FastMap [39] method for our work.

FastMap works by preserving, up to certain level of precision depending on the

stopping criterion used, all pairwise distances among the entire dataset while reducing

the data dimensionality as much as possible. The algorithm has time complexity of

O(d × n) where d is the number of dimensions after reduction and n the size of the

dataset.

The FastMap algorithm involves just three basic steps: First, it takes the entire

dataset and quickly finds the two furthest points away from each other. Then, tak-

ing the line joining these two points as the first axis in the reduced dimensionality

representation of the data, the algorithm then projects all the data points onto this

line to calculate the first coordinate value of the points in the reduced-dimensionality

representation. Finally, the algorithm projects all the data points into a hyperplane

perpendicular to the axis just constructed. These three steps are repeated with the

data projected into the hyperplane until the stopping criterion is met. Fig. 4.20 sum-

marizes these three basic steps and Appendix B gives details on how the projections

are computed.

As for choosing the stopping criterion, one could obviously stop when the desired

number of dimensions is reached. In general, though, that is not likely to be a useful

criterion since one would not know the desired dimensionality in advance. A more

useful criterion consists of stopping the iterations when the low-dimensional subspace

retains a certain specified fraction of the total variation in the data.

To elaborate, note that each axis is formed by a line segment like the (Pa, Pb)

segment shown in Fig. 4.20. The length of this segment determines the range of data

variation on that axis. The data variation decreases in each iteration. Therefore, we

can stop when the segment length is less than some fraction of the sum of the segment

lengths encountered so far. More formally, let Li be the length of the line segment at

iteration i, we stop when the following inequality is satisfied:

71

pvpa

pb

- pv a random pivot point
- pa the furthest point from pv
- pb the furthest point from pa

Line passing through
pa and pb

pa

pb

pa

pb

The Axisab-coordinates

0

= points on the hyperplane
 normal to Axisab.

Axisab Axisab

Fig. 4.20. FastMap first finds pa and pb, two furthermost points away for
each other. This step takes 2 × n comparisons, where n is the number
of points. It then maps all points onto the line segment formed by this
pair of points for estimating the first coordinate of all the points in the
reduced-dimensionality representation. Finally, it maps all points into a
hyperplane that is normal to the line passing through pa and pb. These
three steps are repeated with the points in the hyperplane. Each such
repetition adds one more dimension to the low-dimensional representation
of the entire dataset.

72

Ld∑d
i=1 Li

< T (4.27)

As for the value of T , we found that the value of 0.001 (which is tantamount to

retaining 99.9% of the total variation) limits the pair-wise Cosine distance error to

less than one degree. Note that we obtained this result using our data, which are

normalized histograms.

4.6.1 Calculating Cosine Distance from Fastmap Representation

The Fastmap representation can not be used to calculate Cosine directly because

Fastmap works to preserve pairwise distances in the Euclidean space. Fortunately, we

can shift the resulting low-dimensional representation in such a way to allow recov-

ering of the Cosine distances in the original high-dimensional space. The procedure

is as follows:

1. Insert the null vector, ~0, into the dataset that consists of normalized histograms.

2. Using Fastmap, obtain the low-dimensional representation of the entire dataset.

Let this dataset be F = {~f0, ~f1 . . . ~fn}, where ~f0 is the projection of the null

vector.

3. Shift the low-dimensional representation by ~f0 and remove it from the dataset.

Specifically, let V = {~v1 . . . ~vn} be the final low-dimensional representation,

construct V using Eq. 4.28:

V = {~fi + ~f0},∀i ∈ [1 . . . n] (4.28)

73

5. CONCISE-SET REPRESENTATION

Obtaining an accurate estimate of a land-cover classifier’s performance over a wide

geographic area is a challenging problem due to the need to generate the ground truth

that covers the entire area that may be thousands of square kilometers in size.

The current best approach that addresses this problem constructs a testing dataset

by drawing samples randomly from the entire area — with a human supplying the true

label for each such sample — with the hope that the selections thus made statistically

capture all of the data diversity in the area. A major shortcoming of this approach is

that the datasets thus generated tend not to be concise since, in a human-computer

interactive session that may last a long time, it is difficult for a human to ensure that

the information provided by the next data element chosen by the random sampler

for human annotation is non-redundant with respect to the data already collected —

even when the new data element belongs to a different geographic location.

In order to reduce this annotation burden1 on the human, it makes sense to remove

any redundancies from the entire dataset before presenting its samples to a human

for annotation. Towards that end, this chapter presents a framework that uses a

combination of clustering and compression for creating a concise-set representation

of the land-cover data for a large geographic area. Whereas clustering is achieved

by applying Locality Sensitive Hashing (LSH) to the data elements, compression is

achieved through choosing a single data element to represent a given cluster. Both

these steps are applied to the raw data — that is, to the data prior to its annotation

by a human. This considerably reduces the annotation burden on the human and

1By annotation burden, we mean the effort involved not only in assigning the ground-truth labels to
the data samples, but also in looking for informative and non-redundant data samples. This effort
is not to be confused with annotation efficiency, which may involve using human-computer software
tools to collect and annotate large sets of data samples quickly.

74

makes it more likely that the human would persevere during the annotation stage

until — hopefully — all of the data diversity has been adequately captured.

In the next chapter, we validate our framework experimentally by comparing it

with the traditional random sampling approach using WorldView2 satellite imagery.

5.1 Related Work

In addition to the straightforward Simple Random Sampling (SRS) approach, re-

searchers have also proposed “Stratified Sampling” and “Systematic Sampling” for

creating representing datasets from large populations. The systematic sampling ap-

proach first sorts the population into a list and then sub-samples from this sorted

list. On the other hand, the stratified sampling approach divides the population into

homogeneous subgroups and then samples within each subgroup using either SRS or

systematic sampling [40]. The authors of [41] have proposed a complex 3-level strat-

ified sampling approach and make use of various prior knowledge about the dataset.

In their work, the first level of stratified sampling organizes the mapped areas by their

meta-data such as the mapping method, remote sensing source, resolution, acquisition

date, etc. The second level uses prior knowledge about the content of the mapped area

(e.g., road, building, green areas, etc). And the third level uses finer features present

in the mapped areas such as the location of the individual object/inspection unit. On

the other hand, [42] proposes a simpler two-stage cluster sampling approach based

on the classification map. The approach we present here can be considered to be a

combination of the basic notions in Stratified Sampling and Systematic Sampling.

With regard to land-cover classification, early classifiers that could be employed

over large geographic areas use only low and medium spatial resolution imagery rang-

ing from 8km to 15m per pixel [43–45]. However, during the last ten years, spatial

resolution in satellite images has improved rapidly. It is now common to find satellite

data at a very high resolution (VHR) of 0.5m per pixel or better. Fortunately, during

the same time period, computer processors, memory, and storage all have become

75

faster and cheaper. Today, it is not uncommon any longer for research labs to work

on land-cover classifiers involving large datasets [46] and VHR satellite images [47].

5.2 Proposed Approach

Big Data:
(a very large collection
of image patches)

Partition image
patches into groups.

Construct Concise-Set
Representations

Concise
Dataset

A.)

B.)

Fig. 5.1. The overall system block diagram.

In Fig. 5.1, we show a block diagram for the overall framework. Block A of the

figure, “Partition image patches into groups”, is optional but needed if you wish to

create disjoint multiple evaluation datasets for testing a classifier and do so through

a single human-computer annotation-elicitation session.2 The algorithm itself, which

is the main focus of this chapter, is in Block B, “Construct Concise-Set Representa-

tions”, of the figure. As we will demonstrate, this algorithm uses a hybrid sampling

approach to select a concise (meaning, non-redundant) dataset of the entire data.

5.2.1 Representation of the Population: Content, Unit, and Size

The first issue to resolve when eliciting ground-truth annotations from a human is

the content of each “unit” of the data that is shown to the human. Even though the

end-goal of annotation elicitation is to collect the class labels for a collection of pixels,

2As to why one would want to create disjoint evaluation datasets for a classifier is discussed in
Section 5.3.

76

a human observer is often not able to make a judgment about the class label of an

individual pixel if it is shown as a single piece of data without any neighboring pixels.

Experience has taught us that it is best to show a pixel along with its immediate

surround, which we will refer to as a patch, in order for a human to figure out what

the ground-truth label should be at the center of the patch. The human would be

asked to label only the central pixel in a patch , with all the surrounding pixels merely

providing a geographic context for the pixel at the center.

5.2.2 Measuring the Similarity Between Satellite Image Patches

To determine whether two image patches are similar, we first represent each patch

with two different feature vectors, one for the color histogram that represents the

background pixels and the other for the spectral values at the foreground pixel. For

a patch to be considered similar to another patch, the similarity criterion must be

satisfied for both the background and the foreground .

To compute the color histogram for the background pixels, we first transform

the RGB color space to the perceptually uniform CIELAB color space. Then, we

quantize that space into b3 bins, where b is the number of bins along each of the

L*, a*, and b* axes. Note that some of these b3 bins will always be empty since

the RGB color space is a subset of the CIELAB color space [48] (See Section 4.1.1 in

Chapter 4 for an illustration of the CIELAB color space). Representing this histogram

with a b3-dimensional vector, we subsequently reduce its dimensionality by, first,

retaining only the valid L*a*b* histogram bins, and, then, by applying FastMap as

described in Sections 6.1.2 and 5.2.4, respectively. We will use d to denote the retained

dimensionality for the color representation of the background pixels.

To measure the similarity between any two background histograms, we use the

angular distance metric defined by Eq. 5.1:

distAngle(~v1, ~v2) =
180

π
cos−1

(
~vT1 ~v2
|~v1| |~v2|

)
(5.1)

77

where ~v1 and ~v2 are the d-dimensional vector representations of the two histograms,

respectively. Generally, we normalize the histogram vectors so that they are of unit

magnitude, which does away with the denominator in the above formula.

As for characterizing the foreground (i.e., the center pixel of the image patch),

we use its spectral signature consisting of the spectral responses measured at the

corresponding surface location on earth. For example, in a 4-band satellite image,

each pixel has 4 values, one per spectral band, and the spectral signature is a vector

consisting of these four numbers. To measure the similarity between any two spectral

signatures, we use the “L1 distance metric”. Note that both the Cosine distance

metric for the histogram vectors and the L1 metric for the foreground spectral vectors

are fast to compute – an important consideration in big-data processing.

5.2.3 Similarity Search

Since a patch is represented by two semantically different characterizations — a

d-dimensional vector for the background color distribution and a 4-dimensional vector

for the foreground spectral values — that raises the question of how to actually form

the similarity groups, especially because we want to enforce the similarity constraint

on the two characterizations conjunctively. Note that, in our big-data context, we do

not have the luxury of comparing every pair of patches to decide whether or not they

belong to the same similarity group.3 We have three options:

Option 1: Concatenate the d-dimensional color-histogram vector for the background

with the 4-dimensional spectral-property vector for the foreground to form a

single vector representation for a patch and then apply one of several distance

metrics to the vectors for comparing the similarity of the patches.

3If it were possible to compare every pair of the patches, the two similarity conditions could be
enforced simultaneously in each pair-wise comparison.

78

Option 2: First cluster the patches with respect to just the foreground pixels and

then subject each of the clusters thus obtained to further sub-clustering on the

basis of the similarity of the background color-histogram vectors.

Option 3: By reversing the two steps in the previous option; that is, by first clus-

tering the patches with respect to the background color-histogram vectors and

then further sub-clustering those clusters on the basis of the similarity of the

foreground spectral vectors.

Despite its appearance to the contrary, the first option listed above is not ap-

propriate since it cannot guarantee conjunctive enforcement of the two separate and

distinct similarity constraints. And the second and the third options are logically

equivalent.

What is interesting is that while the second and the third options are logically

equivalent, they entail different degrees of computational effort to arrive at the same

final conclusion. The main reason for that has to do with how the vectors that repre-

sent the color histograms for the background are distributed vis-a-vis the distribution

of the spectral vectors that represent the foreground.

The distribution of the histogram vectors is such that with the linear-time LSH

algorithm applied to such vectors, it is possible to implement a fast approximated

solution for creating sufficiently small clusters so that a subsequent pairwise compar-

ison of the samples within each histogram-similarity based cluster for enforcing the

similarity of the spectral vectors results in an overall computationally efficient struc-

ture for the conjunctive enforcement of the two different similarity constraints. The

opposite approach would consist of first applying a Euclidean-distance based LSH

to cluster the entire data on the basis of the similarity of the spectral vectors and

then subjecting the data points withing each resulting cluster to the histogram based

similarity constraint. Unfortunately, the clusters generated by the second approach

tend to be much loo large, making the overall computation relatively inefficient. For

79

the reasons explained above, we chose Option 3 for the conjunctive enforcement of

the two different similar constraints.

Permeating all three options listed above, including obviously our chosen Option

3, are the consequences of the non-transitivity of the similarity constraints that we

mentioned earlier in the Introduction. As stated there, if we were to apply any

of the three options to the entire data set, we are highly likely to end up with a

single concise set, which is not a very useful thing to happen. To get around this

difficulty, we introduce the notion of similarity graph in Section 5.2.5. A similarity

graph is generated by applying a pairwise spectral comparison criterion to all the

patches considered similar by the LSH algorithm (on the basis of the background

similarity through the histograms associated with the backgrounds). These pairwise

comparisons yield what we call similarity neighborhoods. Every patch in a given

similarity neighborhood is directly within the similarity distance of the patch for which

the similarity neighborhood was constructed. The collection of all such similarity

neighborhoods constitutes the similarity graph. Note that it is likely that there would

patches that would be shared by different nodes.

In the rest of this section, we first describe how we reduce the data dimension-

ality of the color-histogram vectors before clustering them using LSH. Subsequently,

we bring in the spectral data vectors for the foreground pixels to further refine the

clusters.

5.2.4 Reducing the Dimensionality of the Histogram Representation for

the Background Pixels in a Patch

As explained in Section 5.2.2, the background pixels in a patch are represented

through a three dimensional histogram in the L*a*b* space. As we will show in

Sections 6.1.1 and 6.1.2, the bin structure used for the histogram results in a vector

representation of the background that has 9024 elements in it. This is obviously

much too large a dimensionality. Fortunately, with dimensionality reeducation, we

80

can bring it down to less than 100, depending on the data in the ROI (Region of

Interest).

There exist many dimensionality reduction strategies for multidimensional data,

however most are not appropriate for the big data scenarios involving tens of millions

of patches extracted from satellite images. Consider, for example, what is perhaps

the most commonly used method for dimensionality reduction, PCA, which carries

out an eigendecomposition of the covariance matrix of the data. In our case, the data

would consist of 9024-element vectors for the L*a*b* histograms, whose covariance

matrix would be of size 9024 × 9024, a matrix with close to 100 million elements.

Now if we only had a small number of patches from which to generate the reduced-

dimensionality representation, we could take advantage of the fact the rank of the

covariance matrix would not exceed the number of patches available and translate

that fact into a highly efficient algorithm for the eigendecomposition of the covariance

matrix [36]. However, that is not case with the work described in this research —

with the number of patches running into millions, we have no hard constraint on the

rank of the covariance matrix. We run into similar problems if we try to use the

other methods, such as Incremental PCA [37] and Sparse PCA [38]. In light of these

difficulties associated with the more traditional approaches, we have chosen to use the

FastMap [39] method for our work. We give an overview of FastMap in Section 4.6

of Chapter 4.

5.2.5 Creating a Similarity Graph for the Image Patches

Keeping in mind that the vector representations for the background color his-

tograms can still reside in a high-dimensional space after dimensionality reduction,

even the supposedly efficient algorithms that avoid exhaustive pairwise comparisons,

such as those based on nearest neighbor search (NNS) with KD-trees, SR-trees, and

cover trees [2–6] are not appropriate for solving our problem of forming similarity

neighborhoods from the background color-histogram vectors because their perfor-

81

mance (either the running time or the memory requirement) degrades exponentially

as the data dimensionality increases.

Locality Sensitive Hashing (LSH) [49, 50], on the other hand, has emerged as

an attractive alternative to tree-based nearest neighbor search algorithms for high-

dimensional data. Just like the tree-based approaches, LSH does not make exhaustive

pair-wise comparisons. Additionally, and most importantly, LSH can be implemented

to have constant average search time, making it highly desirable for similarity based

searching in very large datasets. The only drawback is that LSH is an approximated

nearest neighbor (ANN) algorithm and may not always find the exact nearest neigh-

bor. Nevertheless, LSH is suitable for applications when datasets are large and finding

the exact nearest neighbor isn’t critical. It has been shown that for high dimensional

data, LSH significantly outperforms SR-tree, a representative of tree-decomposition-

based indexing techniques [51].

To briefly review how LSH works, as its name implies, LSH uses locality sensitive

hashing for nearest neighbor search. A hash function is considered to be locality

sensitive if it places “nearby” samples in the same bucket with a high probability,

and if it places “far apart” samples in different buckets, again with a high probability.

Two data samples are considered to be “nearby” if the distance between them is at

most d1 and two data samples are considered “far apart” if the distance between them

is at least d2 = c× d1, where c > 1 is the approximation factor. The quality of such

a hash function is measured by two probabilities p1 and p2, where the former is the

probability of collision for “nearby” samples and the latter the probability of collision

for “far apart” samples. For obvious reasons, you’d want p1 to be as high as possible

and p2 to be as low as possible.

In practice, it is not possible to find a single hash function with the property

described above. However, it has been shown that a large number of hash functions

working together in an AND-OR structure can possess this property [52]. One starts

out with a basic hash function that places nearby samples in the same bucket with

a high probability, but that, at the same time, places any two far-away samples in

82

the same bucket with NOT a sufficiently low probability. Subsequently, one can

require that for any two given samples to be considered similar they must be in the

same bucket for a set of different hash functions, these multiple hash functions being

random variations of the same basic hash function with respect to at least one of its

parameters. (We’ll use r to denote the number of hash functions in such a set.) This

is referred to as enforcing an ’AND’ operation over r hash functions to significantly

decrease the probability of two far-apart samples being considered similar. Since the

’AND’ operation can also somewhat reduce the probability of nearby samples as being

considered similar, we take an ’OR’ b sets of r hash functions to restore or further

enhance that probability. Choosing r and b in order to achieve desired values for

p1 and p2 becomes a design issue for any implementation of LSH. Fig 5.3 plots the

AND-OR construction curve for some values of r and b.

Hyperplane LSH [53], a commonly used implementation of LSH for similarity mea-

sure shown in Eq. 5.1, consists of using randomly oriented hyperplanes for hashing.

A hyperplane gives us a two-bucket hash table: When a numerical data sample is

projected on a hyperplane perpendicular to a hyperplane passing through the origin,

the projection is either in the positive half-space corresponding to that hyperplane

or the negative half space. See Fig. 5.4 for an illustration. By constructing b sets of

such randomly placed hyperplanes, with r hyperplanes in each set, we can achieve the

desired discriminations between nearby and far-apart data samples. In Appendix C,

we present a simulated study on the performance of Hyperplane LSH.

Applying LSH on the background color-histogram vectors, each patch p is asso-

ciated with a set of patches that are directly within the angular similarity threshold

of p on the basis of just the background color-histogram similarity. For each patch p,

the set of all similar patches thus discovered constitutes p’s similarity neighborhood.

Subsequently, patches and their neighborhoods are converted into a similarity

graph by testing within each neighborhood for patches having similar foreground

spectral signatures with respect to the associate patch. This process is illustrated in

Fig. 5.5. The output of this exercise is represented by a similarity graph in which a

83

N
ew

 P
ro

ba
bi

lit
y

 ρ
ne

w

Old Probability
 ρold

ρ1ρ2

ρnew = f(ρold)

0

1.0

1.0

Fig. 5.2. The idea behind AND-OR construction is to change the proba-
bility of bucket collision. We want the probability of collision for ”nearby”
samples to go up above p1 while the probability of collision for ”far apart”
samples to go down below p2. If we cascade many such constructions in
series, then, we can achieve very high p1 and very low p2 at the cost of
more computation.

pair of two vertices, with each vertex corresponding to an image patch, share an edge

if they are similar both with respect to the background and the foreground contexts.

Although the worst-case time complexity of this algorithm is given by O (|V |2), where

V is the number of patches, the worst case happens only when the entire similarity

graph is a clique (for which the number of edges is quadratic on the number of vertices;

that is |E| = O (|V |2)).

84

Fig. 5.3. Single-stage AND-OR construction = 1−(1−pr)b. Combinations
of r and b values gives different effects and shifts the fixed point along the
diagonal line.

5.2.6 Population Compression

We represent a pixel along with the image patch that provides its surrounding

context by a vertex in the similarity graph mentioned previously. When a particular

vertex is selected for inclusion in the concise dataset, all other vertices that are similar

to it are subsequently marked as redundant in the similarity neighborhood of the

selected vertex. The task of data reduction is then to find a minimal set of vertices

that maximally cover the overall redundant set of vertices. This optimization problem

85

vector v

L
(p

er
pe

nd
icu

lar

to
 h

yp
er

pla
ne

 H
)

vector p

Hyperplane H

w

q

Bucket 1

Bucket 2

Fig. 5.4. An illustration of Hyperplane LSH. Hyperplane H partitions the
space into two buckets. Points q and w are the projections of vectors ~p
and ~q onto the perpendicular hyperplane L. In this example, w is in bucket
1 and q is in bucket 2.

can be formulated as the “Set Cover problem”4, which is a well-known NP-Complete

problem [54]. A known approximated solution using greedy algorithm, as described

in the subsection that follows, can produce a solution that is guaranteed to be within

O (log |V |) factor of the optimal solution where V is the set of vertices in the graph.

In terms of algorithmic complexity, the greedy algorithm runs in O (|E|) time, where

E is the set of edges in the graph.

5.2.7 Creating an Initial Concise-set Representation of the Population

In the previous section, we mentioned using a greedy algorithm to find an approx-

imated solution to the Set Cover problem. We now describe the algorithm in detail

and show how it returns an concise-set representation of the target population. As

4The Set Cover problem is closely related to the Dominating Set problem in graph theory.

86

p

n1 n3

n4n2

Patches that are similar to
p in their background
color-histograms.

p

Remaining patches that are
similar to p also in their
foreground spectral signatures.

p’s associated
neighborhood
by LSH

Check foreground
similarity to p

n1 n3

n4n2

Fig. 5.5. In this example, a patch p is associated with a neighborhood
consisting of 4 patches, n1 to n4, that are similar in their background
color-histograms to p. After checking their foreground spectral signatures
with p, only n2 and n4 remain in the neighborhood. This process is done
for p ∈ {all patches} and the overall result is a similarity graph in which
two vertices (patches) share an edge if they are similar to each other in
both foreground and background contexts.

we will see in Section 5.4, this representation can be refined subsequently to yield a

final representation.

87

Algorithm 1 Create an Initial Concise-set Representation

Input: U = Set of all items. (e.g., image patches)

Output: A concise-set representation of U

1: S ← {{LSH-GetItemsSimilarTo(e)}, ∀e ∈ U}
// S = Set of candidate similar-item sets (clusters).

2: R← [] // Array of cluster representatives.

3: W ← [] // Array of redundancy weights.

4: C ← [] // Array of similar-item sets (clusters).

5: while SomeItemsNotCovered(U, C) == True do

6: (c∗, r∗)← GetMaxCluster(S) // Max cluster, c∗, and its repre-

sentative, r∗.7: S ← RemoveAndUpdateClusters (S, c∗)

8: R← Append (R, r∗)

9: C ← Append (C, c∗)

10: W ← Append (W, |c∗|)
11: end while

12: return (R,C,W)

Algorithm 1 takes as input a set of indices representing image patches IDs in the

population. The algorithm outputs a triplet, (R,C,W), as the concise-set represen-

tation of the population, where:

• R is the concise dataset that is an array of cluster representatives, with one

representative for each cluster of vertices in the approximated similarity graph.

• C is an array of clusters. That is, for each i, C[i] is a cluster represented by a

set of vertices. Each vertex in C[i] corresponds to an image patch that is similar

to the cluster representative, R[i].

• W is an array of cluster sizes. That is, W [i] is the size of cluster C[i] for which

R[i] is the corresponding cluster representative.

88

5.2.8 Annotating the Initial Concise Dataset

After we have created a concise-set representation of the image patch population,

we proceed to annotate the center pixels (the foreground pixels) of the image patches

retained in the concise dataset. That is, a human annotator looks at image patches

associated in the R array, as returned by Algorithm 1, and assign ground-truth labels

to their center pixels. The human annotator does not assign labels to the surrounding

pixels in the image patch. In keeping with our earlier discussion, an image patch is

modeled as containing contextual pixels (i.e., the background) surrounding the center

pixel (i.e., the foreground) for which we want the human annotator to supply a class

label.

5.2.9 On Extending the Concise-Set Representative Label to the Other

Members of the Same Set

Obviously, the most straightforward way to extend the human-supplied annotation

label for a cluster representative in the R array is to simply assign the same label to

all the other members in same cluster.

However, it is possible to conceive of alternatives to the obvious mentioned above

that have ramifications regarding the size of the overall representation created for a

large dataset involving hundreds of satellite images. One could, for example, argue

that since — seemingly — all the other members in a cluster are redundant vis-

a-vis the cluster representative for constructing or evaluating a classifier, why not

just retain only the cluster representatives and discard the rest of the data. The

problem with that logic is that such a data reduction could significantly impact the

class probabilities associated with different land types in a geographic regions and,

consequently, result in erroneous classification performance results (regardless of the

choice of the classifier).

To get around this difficulty, and, at the same time, to benefit from the compres-

sion made possible by the R array, we could associate the size of each cluster with

89

each cluster representative in R. This is indeed one of the options made available by

our concise-set framework when we generate the final representation for the satellite

data. We refer to this as the “The Weighted Representative Method (WRM)” for

creating the final representation.

When not using the weighted representative method, the system simply extends

the human-supplied annotations for each cluster representative in R to the rest of the

rest of the cluster members. In order to make a distinction with WRM, we refer to

this method as “The Whole Cluster Method (WCM)”.

Fig. 5.6 illustrates an example of estimating the confusion matrix using the “weighted-

representative” method, and Fig. 5.7 illustrates an example of estimating the confu-

sion matrix using the “whole-cluster” method. As the reader would expect, the

“weighted-representative” method is simple and fast, but it tends to either overes-

timate or underestimate the classifier’s true performance. On the other hand, the

whole-cluster method produces a better performance estimate, although at the cost

of doing more work. Note that the annotation effort is the same for both methods.

5.2.10 A Quality Coefficient for Choosing the Best Value for the LSH

Similarity Threshold

It should be obvious to the reader that the validity of the confusion matrices as

produced by the two methods presented in the previous subsection depends signifi-

cantly on the similarity distance threshold used in the LSH algorithm. A similarity

distance threshold that is too large would degrade the quality of the concise dataset

with regard to the following two considerations: (1) We will have increased tendency

of the data samples from disparate classes to populate the same clusters; and (2)

The dataset may end up with fewer land-type classes than there actually are in the

satellite data.

At the same time, a similarity distance threshold that is too small would generate

too many small clusters, which would increase the human burden associated with

90

c1 / c2

c1 / c2 c1 / c2

c1 / c2

c2 / c2

c2 / c2

c2 / c2

Key:

Cluster
representative

Similarity graph with true labels
and propagated labels.

Label:
- Ground-truth / Classifier
- Propagated Ground-truth / Propagated Classifier

Cluster member

“is similar to”

Cluster

c1 c2

c1 0 4

c2 0 3

Classifier Prediction

G
ro

un
d-

tru
th

 L
ab

el

confusion
matrix
estimate

Fig. 5.6. An example of the “weighted-representative” method: The sim-
ilarity graph shown here has two clusters depicted by the dashed circles.
Each cluster has a representative shown as a black dot. The classifier
is applied to only the cluster representatives and the classifier generated
labels for the representatives propagated to the rest of the cluster. Each
vertex is shown with two labels, one for the ground-truth and the other
for classifier-generated, and, in each case, they are both propagated from
the cluster representative. In this example, there are four vertices labeled
“c1/c2” and therefore the corresponding “c1/c2” entry in the estimated
confusion matrix is 4. Similarly for the “c2/c2” entry.

91

Key:

Cluster
representative

Similarity graph with true labels
and propagated labels.

Label:
- Ground-truth / Classifier
- Propagated Ground-truth / Classifier

Cluster member

“is similar to”

Cluster

confusion
matrix
estimate

c1 / c2

c1 / c2 c1 / c2

c1 / c1

c2 / c1

c2 / c2

c2 / c2

c1 c2

c1 1 3

c2 1 2

Classifier Prediction

G
ro

un
d-

tru
th

 L
ab

el

Fig. 5.7. An example of the “whole-cluster method”: The depiction here
parallels the one shown in Fig. 5.6 except for the fact that the classifier is
applied to every member of each cluster. For each vertex, the first label is
the ground-truth label as propagated from the cluster representative and
the second label is as produced by the classifier. In the example shown,
there are three vertices labeled “c1/c2” and therefore the corresponding
“c1/c2” entry in the estimated confusion matrix is 3. Similarly for the
other entries in the confusion matrix.

92

supplying the ground-truth label for the representative of each cluster. That leads to

the question of whether there is any automatic way to determine a good value to use

for the similarity distance threshold. As we discuss below, the answer to the above

question is yes.

Our answer presented in this section is based on the following observation: Since

the similarity neighborhoods returned by the LSH algorithm consist of the vertices

that are hashed into the same bucket, it is possible for a similarity neighborhood

to intersect multiple clusters as returned by LSH (see Fig. 5.8). When a vertex lies

simultaneously in multiple similarity neighborhoods, it may acquire a set of different

propagated class labels.5 Such a vertex contributes to inconsistencies in the labeling

of the data. We claim that when all the propagated class labels are consistent, we have

chosen a good value for the similarity distance threshold. So, if we can find a way to

estimate the number of the vertices with inconsistently propagated class labels, we can

assess the appropriateness of the value chosen for the similarity distance threshold.

Let T be the total number of vertices and let I be the number of vertices with

inconsistent class labels in different clusters, we define ground-truth consistency of the

concise-set representation as:

ground-truth consistency = 1− I

T
(5.2)

Obviously, ground-truth consistency is only meaningful when there are overlapping

clusters.

5As to the reason for may, first note that LSH will form multiple distinct clusters for the same
ground-truth class label. LSH forms a cluster on the basis of the approximate similarity of ver-
tices. Subsequently, the human annotator labels one cluster representative and then that label is
propagated to all the other members. For an example of there being multiple clusters for the same
ground-truth class label, think of the pixels corresponding to the label “road”. Since roads, in
general, are made from different materials — concrete, asphalt, gravel, or just plain dirt — any
automatic clusterer is likely to place the road image pixels in different clusters that may or may not
be overlapping. Such different clusters for the same class label are NOT the source of inconsistency
we are talking about. For the sort of inconsistencies we are talking about, consider the image pix-
els that, through propagation from the cluster representatives, simultaneously acquire two different
labels such as “roof” and “road”. This can easily happen since in many parts of the world we have
roofs, especially flat roofs, that are made from the same materials that go into road construction.
So human-annotated “road” pixels may get hashed into an LSH bucket that also contains “roof”
pixels and vice versa.

93

AB

C

Fig. 5.8. In this example for illustrating the notion of consistency, while we
have three overlapping clusters in some feature space, two of the clusters,
represented by the cluster representatives B and C, carry the same prop-
agated ground-truth label. On the other hand, the cluster represented by
A carries a different propagated label. Note that true ground-truth labels
are provided only for the cluster representatives. We have a total of 18
vertices in the three clusters. In the figure, small circular dots represent
vertices that belong to only one cluster while small triangles are vertices
that simultaneously belong to two or more clusters. We see that 7 of the
18 vertices have two or more cluster memberships. However, on account
of the equivalency of the class labels for B and C, only three vertices
have different class labels. Therefore, the ground-truth consistency (See
Eq. 5.2) is 1− 3

18
= 0.833.

94

Feature vectors
(background
and foreground)

Similarity neighborhoods
(using only background)

A set of image
patches

[0 32 34 0 1 ..]
[0 0 14 20 3 ..]
[1 2 3 30 400 ..]
[3 31 0 0 1 0 ..]

Dominant
clusters and
their coverages

[..]
[..]
[..]
[..]

Dimensional
reduction for
background

LSH tables

Similarity graph
(refined with
foreground)

Concise-set
representation

(R, C, W)
n1 n3

n4n2

p’s associated
neighborhood
by LSH

patch p

...

Fig. 5.9. The processing pipeline for creating a concise-set representation.

5.2.11 The Complete Processing Pipeline For Generating a Concise-set

Representation

Having described in the preceding subsections the different aspects of our pro-

posed approach, we now summarize the overall framework for creating a concise-set

representation for satellite data. Fig. 5.9 give an overview picture of the pipeline.

1. Collect all units in the target population, which in our case would be image

pixels along with the associated image patches. (See Section 5.2.1)

2. Optionally, partition the population using a vertex attribute, to be discussed in

Section 5.3.

3. Extract both background and foreground features for all image patches. (See

Section 5.2.2)

4. Using FastMap, apply dimensional reduction to the background histograms.

(See Section 5.2.4)

5. Using LSH, create background similarity neighborhoods for the entire popula-

tion. (See Section 5.2.5)

95

6. Create the similarity graph by refining the background similarity neighborhoods

with the foreground similarity constraint. (See Fig. 5.5)

7. Find dominant clusters within the refined similarity graph and create the concise-

set representation using Algorithm 1.

8. Annotate the cluster representatives with the ground-truth labels (See Sec-

tion 5.2.8).

9. Calculate the ground-truth consistency using Eq. 5.2.

5.3 Population Partition — Creating Multiple Evaluation Datasets Si-

multaneously

We now return to the optional Block A of Fig. 5.1 (“Partition image patches into

groups”). As is done with stratified sampling, we first partition the main dataset using

a criterion that depends on the reason for why you would want to create partitioned

evaluation datasets. Subsequently, a concise-set representation is created for each

partition.

In the context of satellite imagery that covers large geographic areas, one of the

main reasons for creating partitioned datasets is that one may want to investigate

the performance of a classifier for subsets of the overall data that possess certain

attributes. Another equally valid reason partitioning a satellite image dataset is to

distribute the work among a cluster of computers.

In general, depending on how the overall dataset is partitioned, we have two

strategies for combining the concise-set representations: union and hierarchical. The

union strategy simply takes the union of the representations. That is, suppose we

have G partitions, then:

(Rf , Cf ,Wf) = (∪Gi=1Ri,∪Gi=1Ci,∪Gi=1Wi). (5.3)

The union combining strategy is simple and suitable for the cases when the concise-

set representations have little overlap among them in the feature space. On the other

96

hand, the hierarchical strategy combines only the concise datasets (i.e., the cluster

representatives) and creates a completely new concise-set representation from them

using Algorithm 1. That is,

(Rf , Cf ,Wf) = CreateConciseSetRep(∪Gi=1Ri). (5.4)

This hierarchical combining strategy can produce a much smaller concise dataset

than the union combining strategy and is particularly suitable for partitions that are

somewhat arbitrary and large. A good use case for the hierarchical combining strategy

is when dealing with many satellite images covering a wide-area region. In this case, a

natural partitioning strategy is to treat each satellite image as a partition. However,

as we will see in Chapter 7, there is another more practical partitioning strategy for

working with multiple satellite images.

When creating a new concise-set representation using the hierarchical combining

strategy, care must be taken to prevent some merged member becoming dissimilar to

their new cluster representative. This situation happens because similarity constraints

for clustering data are generally not transitive. To get around this issue, we merge

two clusters only when more than 95% of the merged members are still similar to

their new cluster representative.

5.4 Refining the Concise Dataset

We mentioned earlier in Section 5.2.10, if the similarity threshold is too large, one

can run into the following two problems: (1) Each cluster produced by LSH would be

impure in the sense of containing samples from disparate land-type classes; and (2)

The concise dataset may not represent all of the land-type classes. The ground-truth

consistency measure presented earlier takes care of the first problem. This section

focuses on how to fine-tune the concise dataset so that all of the land-type classes

are represented in it. Note that fine-tuning the concise dataset will also lead to an

improved ground-truth consistency.

97

An important consideration in refining the concise dataset is that all of the previ-

ously supplied annotations by the human must not be discarded and that the human

should be asked for any new annotations only when absolutely necessary. And, as

it turns out, the only condition under which the human would need to be consulted

again is when the total number of land-cover classes is less than what is believed to

be in the geographical region of interest. In what follows, we present a concise-set

refinement procedure with this property.

The main idea in this refinement is to repeatedly shrink the clusters and, at the

same time, introduce more cluster representatives into the dataset. This iterative

process repeats until the human is satisfied with the size, diversity, and representa-

tiveness in the concise dataset.

Since there may be many clusters in the concise-set representation, reducing all

clusters simultaneously will create too many uncovered vertices at once and thus over-

burdening the human. Instead, we pick one cluster at a time. As to which cluster to

pick, we define “the most-impure” cluster as the cluster that has the largest distance

variance inside the cluster (See Fig. 5.10).

Small distance
variance

Large distance
variance

Fig. 5.10. A similarity graph consisting of two clusters. The cluster on the
right has a larger distance variance inside the cluster. All distances are
calculated relative to the cluster representative. Thus, the right cluster is
“more impure” than the left cluster.

98

Once the most-impure cluster has been found, we proceed to determine a new

radius for the cluster. While there are many ways to come up with a new radius,

our heuristic is to model the distances as having a bimodal distribution. That is, we

assume the distances fall into either one of the two categories: near or far. We can

then calculate the optimal radius by using Otsu’s algorithm [55] modified for handling

continuous values. Fig. 5.11 shows an example of shrinking a cluster. For detail on

our modified Otsu’s algorithm, see Appendix D.

before
after

near

far

Fig. 5.11. A heuristic for shrinking a cluster. We assume cluster member
distances have a bimodal distribution; i.e., member are either “near” or
“far” from the cluster representative. The optimal threshold can be cal-
culated using Otsu’s Algorithm modified for continuous values. Refer to
Algorithm 2 in Appendix D for detail.

Because uncovered vertices do not belong to any cluster, they are not represented

in the concise-set representation. Therefor, we run the greedy set-cover algorithm

again but only on the uncovered vertices. This process creates additional clusters.

Fig. 5.12 shows an example.

In practice, a similarity measure between two items may not be single numeric

value, but rather a logical condition on multiple numeric values. In our case, we define

two satellite image patches to be similar when 1.) their background color histograms

are similar, and 2.) their foreground spectral signatures are also similar. To get

around this issue, we first get two most-impure clusters, one based on the background

color histograms and the other based on the foreground spectral signatures. We then

99

near

far

Before After

Fig. 5.12. Creating additional clusters from uncovered vertices: In this
example, a new cluster with the default radius is created to represent the
uncovered vertices. The black dots indicate the cluster representatives
and their ground-truth labels are provided by human.

pick the most-impure cluster that has a smaller number of far vertices. For example,

suppose cluster A and cluster B are the most impure clusters in their corresponding

feature spaces but cluster B has fewer far vertices than cluster A. In this case, our

heuristic will select cluster B for radius reduction. See Fig. 5.13 for an illustration.

The rational behind this heuristic is to minimize human labor. A larger number of

far vertices could introduce more clusters and thus requiring more human annotation

since every cluster needs to have its cluster representative annotated.

When a new clusters is created, it can be annotated immediately by the human

or saved into a queue for later annotation in batch.

100

near

far

near

far

The most impure cluster
found in feature 1 space.

The most impure cluster
found in feature 2 space.
This one has fewer far
vertices.

A
B

Fig. 5.13. Heuristic for selecting an impure cluster among different feature
spaces: Cluster A and B are the most impure clusters in their correspond-
ing feature spaces. Cluster B is chosen over cluster A for radius reduction
because it has a smaller number of far vertices.

101

6. CONCISE-SET REPRESENTATION RESULT

Recall that at the heart of our approach for constructing a concise-set representation

of the data is the construction of an approximate similarity graph with the help of

LSH. As mentioned in Section 5.2.6, each vertex of this similarity graph represents

a pixel along with the image patch that provide geographical context for the pixel.

When the vertices are tested for similarity, it is done on the basis of both the spectral

signatures at the pixels themselves and the attributes of the associated image patches.

As mentioned earlier, each image patch is represented by a histogram of the pixel

“colors” in the patch.

Therefore, as the reader can imagine, how many bins to use for the patch his-

tograms and what similarity thresholds to use when comparing the histogram-based

feature vectors, etc., are some of the critical experimental parameters in our approach.

The goal of this section is to discuss how we choose values for these parameters. Our

parameter selection strategy is conservative in the sense that we aim to minimize

the computation overhead while keeping the final concise dataset small. Using these

parameters, we will present our experiments and the results in Section 6.2.

6.1 Setting the Experimental Parameters for WorldView2 Imagery

In this section, we will describe how we set the parameters mentioned above for

WorldView2 satellite imagery. This dataset consists of Very High Resolution (VHR)

satellite images with ground resolution at 0.5m per pixel.1 At this level of resolution,

it is possible for a human annotator to identify typical narrow one-lane roads and

alleys. In order to apply our framework to this data, we must first set the size for

1 We use 4-band WorldView2 data that is ToA corrected. ToA stands for Top-of-Atmosphere.
This correction is a standard procedure for normalizing satellite data taken at different angles and
distances relative to the earth’s surface being imaged.

102

Fig. 6.1. A typical region in the Chile ROI.

the image patches. We have experimentally determined that patches of size 101 ×
101 pixels give is a good balance between competing requirements. This size is large

enough to provide a reliable context for the labeling of the center pixel and small

enough that it does not include too much diversity within a single patch.

For the purpose of exploring the best choices to make for the parameters, we

manually annotated a dataset from the Chile ROI (Region of Interest) [1]. Fig. 6.1

shows a typical area in this ROI. The visually recognizable different regions in this area

that are homogeneous in terms of the class labels are demarcated with a graphical tool.

Five major land-types are used in this exercise: building, road, tree, water, and soil.

The output of this exercise is a set of pixels along with their image patches, with each

pixel along with its associated image patch serving as a vertex in the similarity graph.

The important thing to remember is that every vertex created in this manner has a

103

human-supplied class label. Subsequently, we use this data to investigate the power

of our proposed formalism for creating concise-set representations for the different

choices for the parameters of the framework.

We will show in Section 6.2 that the parameters set in this manner from the data

collected over Chile work effectively in another part of the world that is significantly

different — Australia. That fact provided further validation for our framework.

6.1.1 Color Spaces and Histogram Quantization

As mentioned earlier, we refer to the center pixel in an image patch as the fore-

ground and the rest of the pixels in the patch as the background. And, as mentioned

in Section 5.2.2, we represent the background of an image patch by its color histogram.

In our experiments, we investigated both the RGB and CIELAB color spaces for the

histogram. The RGB space results in b3 bins. Subsequently, the choice of b controls

the size of the generated histogram (i.e., b = 4 results in 43 = 64 bins and, therefore,

a 64-dimensional feature vector). To reduce the number of bins in the histogram,

we examined the CIELAB color space and remove the invalid bins – those bins that

are not occupied by any color in the RGB space. We showed the obtained histogram

sizes for both RGB and CIELAB in Table 4.1. There is also another reason for using

CIELAB color space over other color spaces that are not perceptually uniform. In

our case, we want the image patches to be grouped together according to human

perception of color similarity.

To determine the best value to use for b, we examined a wide range of values

between b = 4 to b = 64. Note that there is no need to examine b ≥ 66 as it has been

shown to be the sufficient for CIELAB color quantization [31]. We refer the readers

to section 4.1.2 for the discussion on CIELAB color space.

For each value of b, we constructed a similarity graph as described in Section 5.2.5

using the Chile dataset. Then, we calculated the cardinality of each cluster and found

average cardinality over all the clusters.

104

0 10 20 30 40 50 60 70
Histogram size

(# of bins per each color axis)

0.0

0.1

0.2

0.3

0.4

0.5

A
vg

#
of

ve
rt

ic
ie

s
(n

or
m

al
ie

d)
in

si
de

th
e

si
m

ila
ri

ty
ne

ig
hr

ho
od

Data Dimensionality Study
(Histogram Size)

Similarity threshold

5 deg radius
10 deg radius
15 deg radius
20 deg radius
25 deg radius

Fig. 6.2. Proportion of the data found inside the similarity neighborhoods
(clusters).

Fig. 6.2 illustrates the effect of histogram size on the average cardinality of the

clusters for different similarity thresholds. We observe a decrease in the average values

between b = 4 and b = 8 followed by a gradual increase after b = 8. It seems as the

histogram size increases, more and more data become similar to one another. We

note that this phenomenon does not always happen in general and can be attributed

to data distribution and quantization effect.

6.1.2 Calculating the Best Value to Use for the Similarity Threshold

In this section, we investigate the best choice to make for the similarity threshold

that is needed by the LSH algorithm. Recall that we are talking about similarity

between a pair of vertices in the similarity graph, with vertex standing for a pixel

along with the associated image patch. In the previous section, we concluded that

105

5 10 15 20 25
Similarity threshold [degrees]

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Si
m

ila
ri

ty
 Q

ua
lit

y
C

oe
ff

ic
ie

nt

Similarity Threshold Study Histogram size

 4 bins / axis
 8 bins / axis
12 bins / axis
16 bins / axis
20 bins / axis
24 bins / axis
28 bins / axis
32 bins / axis
36 bins / axis
40 bins / axis
48 bins / axis
56 bins / axis
64 bins / axis

Fig. 6.3. Plots of background Similarity Quality Coefficient (SQC) as a
function of similarity threshold.

even with the same similarity threshold, how the data gets clustered changes when

the data dimensionality changes.

We use the following logic to evaluate the quality of a similarity threshold: We

examine each cluster and count the number of vertices in the cluster whose human-

supplied class labels are the same as the human-supplied label for the cluster repre-

sentative. This count is normalized by the cardinality of the cluster. The average of

this ratio over all the clusters is a quality coefficient for a given similarity threshold.

We refer to this coefficient as the “Similarity Quality Coefficient (SQC)”. In Fig. 6.3,

we show the dependence of SQC on different values for the similarity threshold. Note,

each plot corresponds to a different histogram size.

We see in Fig. 6.3 that SQC values are greater than 50% for similarity thresholds

less than 20 degrees, regardless of the histogram size. Therefore, in our experiment,

we conservatively set the similarity threshold at 10 degrees so that at least 60% of the

106

0 20 40 60 80 100 120 140
Similarity threshold [L1 distance]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Si
m

ila
ri

ty
 Q

ua
lit

y
C

oe
ff

ic
ie

nt

Similarity Threshold Study
For Foreground Pixel

Fig. 6.4. Plot of foreground Similarity Quality Coefficient (SQC) as a
function of similarity threshold.

image patches found within a cluster can be expected to have the same ground-truth

label as the cluster representative. We could have picked any values smaller than 20,

but a tighter similarity threshold increases the hashing time in LSH. We pick 10 over

15 because we would like to have higher SQC values while still keeping the hashing

computation low. As for the histogram size, we picked b = 32 (9024 dimensions)

for our experiments (See Table 4.1). We noted from the study in [31] that b does

not need to be more than 66 and thus b = 32 seemed like a good trade-off between

color fidelity and computational efficiency. We obtained the same result when we

repeated the similarity threshold study on the lower-dimensional data described in

Section 5.2.4

Fig. 6.4 shows the SQC plot for the image foreground (i.e., the spectral signature

of the center pixel). Using this plot, we set the similarity threshold at 50 so that about

107

60% (i.e., slightly over a majority) of the image patches found within this threshold

can be expected to have the same ground-truth label as the cluster representative.

6.2 Validation

A most important aspect of the comparative results we report in this section is

that the datasets we used for these results are drawn from a part of the world that

is different from what was used in Section 6.1 for parameter estimation. We refer

to these datasets as our “validation datasets”. We however use the same parameters

that we estimated in Section 6.1 to create a concise-set representation of the validation

datasets.2 Whereas the dataset used in Section 6.1 came from Chile, the validation

datasets are from Australia. Fig. 6.5 shows an example of the area from which the

validation datasets were drawn.

6.2.1 Classifier Evaluation Experiments

As we mention later here, the true human-supplied class identity is known for every

element in the validation datasets. This allows us to calculate the “true” confusion

matrix on a validation dataset for any given classifier. We have chosen a Support

Vector Machine (SVM) classifier created using the approach in [1] for this validation

study since SVM-based classifiers are arguably the most commonly used classifiers

used today for land-cover classification with satellite images.

In this section, we will show that the confusion matrix calculated from the concise-

set representation of the validation dataset is significantly closer to the true confusion

matrix as compared to the confusion matrix calculated by the traditional random

sampling method. In order to convince the reader that the above stated result is not

a chance result — that is, a result that is specific to one particular random sampling

of the data — we repeat the traditional random sampling method multiple times.

2What that implies is that the parameters estimated in Section 6.1 possess some measure of gener-
ality. The extent of this generality is yet to be investigated.

108

Fig. 6.5. A 1km by 1km region in the Australia ROI.

As we did for the parameter estimation dataset in Section 6.1, for the validation

datasets used in this section, we manually supply the class label for 1, 240, 590 pixels

within a 1 km ×1 km area in the Australia ROI.3 Hence, the largest validation dataset

we can draw has 1, 240, 590 units. Note that each unit in the dataset is represented

by a 101 × 101 image patch centered at the annotated pixel.

The following considerations go into calculating and comparing the confusion ma-

trices produced by the concise-set representation method and the traditional random

sampling method:

3The manual annotations were supplied with the graphical tools that we mentioned in Section 6.1.
As mentioned there, these tools allow us to quickly demarcate large sections of a satellite image that
are homogeneous with respect to a class label. This allows the system to quickly assign a class label
to large set of pixels, all at the same time.

109

• To estimate the true confusion matrix from the concise-set representation, we

use the “whole-cluster” method described in Section 5.2.9.

• To directly compare a pair of confusion matrices, we first normalize the confu-

sion matrices and then compute the sum-of-squared-difference (SSD) between

the two confusion matrices being compared. A small SSD value indicates a close

match between the two confusion matrices.

• To normalize a confusion matrix, we divide each matrix entry by the sum of all

entries. For example, let ĈM be the normalized version of the confusion matrix

CM, then:

ĈM =
CM

sum(CM)
. (6.1)

• To compute the SSD value between two normalize confusion matrices, we take

the Frobenius norm of the matrix difference. That is, SSD = || ˆCM1 − ˆCM2||F
where ||A||F denotes the Frobenius norm of matrix A. For example, let T and

E be two matrices of the same size, then:

SSD(T,E) =
∑

i

∑

j

(Ti,j − Ei,j)2. (6.2)

Experiment 1: Concise-set Representation versus Random Sampling

We repeat SVM based classification using the traditional random sampling ap-

proach 100 times and, for each trial, compare the classifier performance individually

with what is obtained through the concise-set representation approach. The plot in

Fig. 6.6 shows the SSD values for the 100 random trials. Here the SSD value quanti-

fies the performance error relative to the true performance obtained from the entire

validation dataset. The particular validation dataset used in this experiment has 1000

units and is randomly drawn from the 1, 240, 590 annotated data pool mentioned in

the previous section. The size of the random sample in each trial is set to 126 to

match the size of the concise dataset. Note that we purposely keep the validation

110

0 20 40 60 80 100
Random Trial ID

10−5

10−4

10−3

10−2

10−1

SS
D

va
lu

e
(s

m
al

le
r

=
le

ss
er

ro
r)

Exp1: Random Trials

random trial
concise-set rep ref.

Fig. 6.6. None of the SSD values from the 100 random trials gives a better
performance estimate than the SSD value obtained using the concise-set
representation approach. Validation dataset size = 1000. Concise dataset
size = 126. Random dataset size used for each trial = 126. Ground-truth
consistency = 0.997.

dataset small for this experiment so that we can run multiple trials within a short

time. We study the effect of larger validation dataset in Experiment 6.2.1.

We observe from the plot that none of the SSD values from the random sam-

pling approach is smaller than the SSD value obtained using the proposed approach.

As for the ground-truth consistency estimate, the value in this case is 0.997 (See

Section 5.2.10 and Eq. 5.2).

111

Experiment 2: Concise-set Representation versus the Average of the Re-

sults Obtained with Randomly Drawn Samples

In this experiment, we average the confusion matrices obtained by the traditional

random sampling approach over many trials and then compare it with the the con-

fusion matrix obtained through the concise-set representation approach. We then

repeat the averaging experiment 100 times and plot the min, max, 5th, 50th, and

95th percentiles curves. These percentile curves give us additional insights into the

effectiveness of our concise-set representation approach.

As made evident by Fig. 6.7, the median (i.e., 50th percentile) curve in the figure

indicates that taking the average of at least 80 random trials is needed to achieve

a more accurate confusion matrix than the concise-set representation approach 50%

of the time. We can draw similar conclusions regarding the best-case scenarios from

the “best” curve. We see that in the best case, averaging of at least 10 trials are

needed for the random sampling approach to have any chance of outperforming the

concise-set approach.

Experiment 3: Concise-set Representation versus Random Datasets of

Different Sizes

The goal of this experiment is to examine the effect of dataset size on the random

sampling approach vis-a-vis the results obtained with our concise-set representation.

In particular, we wish to investigate how large a randomly drawn dataset must be in

order for it to outperform the concise-set representation. We repeat the experiment

100 times for each size and plot the values of the min, max, 5th, 50th, and 95th

percentiles as shown in Fig. 6.8. The figure indicates that for the random-sampling

approach to have any chance of outperforming the concise-set representation, the size

of a randomly drawn dataset should be at least 4.7 times larger than the concise

dataset.

112

0 20 40 60 80 100
Number of Random Trials

10−5

10−4

10−3

10−2

SS
D

va
lu

e
(s

m
al

le
r

=
le

ss
er

ro
r)

Exp2: Average of Random Trials

median
worst

best
concise-set rep ref.

5 - 95 percentile

Fig. 6.7. From the ”best” performance curve, we see that averaging over at
least 10 random trials is needed for the random sampling approach to have
any chance of outperforming the concise-set representation. Validation
dataset size = 1000. Concise dataset size = 126. Random dataset size
used for each trial = 126. Number of repeated experiments per trial =
100. Ground-truth consistency = 0.997.

113

1 2 3 4 5 6 7

Size factor =
(

Dataset size used for trial
Concise dataset size

)

10−5

10−4

10−3

10−2

SS
D

va
lu

e
(s

m
al

le
r

=
le

ss
er

ro
r)

Exp3: Dataset Size Used in a Random Trial

median
worst

best
concise-set rep ref.

5 - 95 percentile

Fig. 6.8. Performance of randomly drawn datasets of different sizes. From
the ”best” performance curve, we see that a random dataset needs to be
at least 4.7 times larger than the concise dataset in order to have any
chance of outperforming the concise-set representation approach. Valida-
tion dataset size = 1000. Concise dataset size = 126. Number of trials
with differently sized random datasets = 100. Ground-truth consistency
= 0.997.

114

0 20 40 60 80 100
Random Trial ID

10−5

10−4

10−3

10−2

SS
D

va
lu

e
(s

m
al

le
r

=
le

ss
er

ro
r)

Exp4: Larger Validation Dataset

random trial
concise-set rep ref.

Fig. 6.9. With a larger validation dataset (10000 units instead of 1000), the
concise-set representation approach continues to outperform the random
sampling approach. Concise dataset size = 379. Random dataset size
used for each of the 100 trials = 379. Ground-truth consistency = 0.9717.

Experiment 4: Larger Validation Dataset

In this experiment, we repeat Experiment 6.2.1 but with a larger validation

dataset. The result shown in Fig. 6.9 indicates that the concise-set representation

approach still outperforms the traditional random sampling approach.

Experiment 5: Evaluations with Multiple Validation Datasets

To show that our approach works on other validation datasets, we repeat the last

experiment (Section 6.2.1) on 5 validation datasets, each containing 10000 random

samples drawn from the annotated pool described in Section 6.2.

115

A B C D E
Validation Dataset ID

1

6

11

16

21

26

SS
D

ra
ti

o

Exp5: Multiple Datasets

minimum
5th percentile
50th percentile

Fig. 6.10. Each group of three bars is a run of Exp4 (See Section 6.2.1)
but on a different validation dataset. The SSD ratios are computed by
Eq. 6.3. When the minimum ratio is above 1.0, it means that the concise-
set representation approach is better than the random-sampling approach
in all of the 100 random trials.

116

Fig. 6.10 shows a bar chart consisting of five different validation datasets. The

performance of each dataset is summarized by three SSD ratios calculated from Eq. 6.3

for K ∈ [0, 5, 50]:

SSD Ratio =
K-percentile(100 random trials)

SSD from Concise-set rep.
(6.3)

Note that depending on the region, the minimum ratio can be close to 1.0. For

example, in a region where not much diversity exists, the traditional random-sampling

approach will do just as well as the concise-set representation approach. For another

example, if the region is highly diverse, then the concise dataset will be larger, as more

clusters are formed. In that case, the best performance by the random-sampling

approach might improve due to the larger number of samples used in its random

dataset, which has the same size as the concise dataset.

6.2.2 Classifier Training Experiments

In the previous section, we compared two methods of evaluating classifiers. We

showed that our concise-set representation method gives more accurate result. In

this section, we compare two methods of creating a training set for the purpose of

training classifiers. The two methods compared are the traditional random sampling

approach and our concise-set representation approach. We will refer to the training

set created by the traditional method as the “random training set” and our method

as the “concise training set”, which is represented by the (R,W) tuple where R is

the array of cluster representatives and W is the array of corresponding cluster sizes

(See section 5.2.7).

For training a land-cover classifier, we followed the work in [1] and trained a

SVM using “band ratio” features. When training with the concise training set, we

take the cluster sizes into account by weighting the training example at each cluster

representative with its cluster size. As for the metric used in comparing classifiers,

we compute the classifier accuracy by taking the sum of the diagonal elements in the

normalized confusion matrix.

117

Experiment A: Learning Rate as a Function of Training Set Size

In this experiment, we are interested in answering the question of how two different

training set selection strategies affect the classifier accuracy. To answer this question,

we first randomly split a validation dataset into two parts – one part for the training

pool, which is where the training sets will be drawn from, and the other part for the

test set. We describe the experiment protocols next.

Traditional random sampling training strategy:

1. Initialize T to a small number.

2. Create a training set by drawing a random subset of size T from the training

pool.

3. Train a classifier from the training set.

4. Compute the classifier accuracy using the test set.

5. Repeat 100 times from Step 2.

6. Repeat from Step 2 with T = T +1 until T reaches the size of the training pool.

Concise-set representation training strategy:

1. Create an initial concise-set representation of the training pool.

2. Train a classifier from the concise training set.

3. Compute the classifier accuracy using the test set.

4. Refine the concise-set representation by shrinking the most-impure cluster (See

section 5.4 in Chapter 5) and let T be the size of the new concise training set.

5. Repeat from Step 2 until T reaches the size of the training pool.

118

Fig. 6.11 shows the learning curve of each classifier. If we look at the best-case

curve for the traditional random sampling approach, we see that it is roughly the

same performance as the concise-set representation approach. On the other hand,

the median-case curve is much worse and does not catch up to the concise-set rep-

resentation approach until about four fifths of the entire training pool is used for

training the classifier.

200 400 600 800 1000
Number of Training Examples

0.84

0.86

0.88

0.90

0.92

0.94

C
la

ss
ifi

er
A

cc
ur

ac
y

Learning Curve
Random Sampling vs Concise-Set Rep.

median
best

worst
concise-set rep.

25 - 75 percentile

Fig. 6.11. Learning curves show how classifier accuracy improve as a
function of training dataset size. Validation dataset size = 2000; Training
pool size = 1000; Test set size = 1000.

119

Experiment B: Statistical Significance Test for Comparing Training Set

Selection Strategies

In this experiment, we are interested in answering the question: Is the performance

difference between the two training set selection strategies significant? To answer this

question, we turn to statistical analysis. Our experimental setup is as follows:

1. Randomly split the validation dataset into two parts – one part for the training

pool in which training sets will be drawn from, and the other part for the test

set.

2. Create an initial concise-set representation of the training pool. Initialize T to

the size of the concise dataset.

3. For the concise-set representation training strategy:

(a) Further refine the concise-set representation until the size of the concise

dataset grows to T (See section 5.4).

(b) Train a classifier with the resulting concise training set.

4. For the traditional random sampling training strategy:

(a) Draw a random training set of size T from the training pool.

(b) Train a classifier using the random training set.

(c) Repeat with 20 different random training sets. This creates 20 classifiers

from which we can compute the median, 75-percentile, and 90-percentile

performances later.

5. Compute the classifier accuracy on the test set created in step 1.

6. Repeat from step 3 with T = 10%, 20%, . . . , 100% of the training pool size.

7. Repeat 100 times from step 1 to create 100 matched pairs to be used in statistical

analysis later.

120

Tables 6.1, 6.2, and 6.3 compare the result obtained from the concise-set repre-

sentation training strategy with the median, 75-percentile, and 90-percentile results

obtained from repetition of the random sampling training approach. As can be seen

from Table 6.1, compared to the median result, the concise-set representation ap-

proach is better in all 9 non-trivial training sizes (10% to 90% of the training pool)4.

As for the 75-percentile result shown in Table 6.2, we see that the random sampling

strategy starts to catch up and the two training strategies are tie in 5 out of 10

training sizes (30%, 40%, 60%, 70%, and 100%). In the case of the 90-percentile

result shown in Table 6.3, the concise-set representation approach is better when the

training set is small (at 10% and 20% sizes).

Because of the randomness involved in drawing a random training set, the tradi-

tional approach to training the classifier makes sense only if we can perform multiple

trials and select the best result among them. But it is often not practical in practice

to have multiple trials because for each trial, we also need to annotate every new

sample in the new training set. On the other hand, the concise-set representation

approach does not need multiple trials and still produces a classifier that is more

accurate than the median-performing classifier obtained by the traditional random

sampling approach. Therefor, the concise-set representation approach can be used to

quickly training a good classifier and with minimal annotation effort.

4When 100% of the training pool is used for training, the two training strategies are equivalent and
thus always give the same performance.

121

Table 6.1.
Paired Student’s t-test: Comparing with the Median Performance

Training Size (%) 10 20 30 40 50

Mean of Diffs 0.1039 0.0089 0.0020 0.0009 0.0006

P-value 0.0000 0.0000 0.0000 0.0000 0.0000

P-value < 0.050 Yes Yes Yes Yes Yes

ConciseSet is better Yes Yes Yes Yes Yes

Training Size (%) 60 70 80 90 100

Mean of Diffs 0.0004 0.0004 0.0003 0.0001 0.0000

P-value 0.0003 0.0002 0.0006 0.0184 nan

P-value < 0.050 Yes Yes Yes Yes No

ConciseSet is better Yes Yes Yes Yes N/A

Table 6.2.
Paired Student’s t-test: Comparing with the 75-percentile Performance

Training Size (%) 10 20 30 40 50

Mean of Diffs 0.0592 0.0030 0.0003 -0.0001 -0.0003

P-value 0.0000 0.0000 0.2324 0.4884 0.0025

P-value < 0.050 Yes Yes No No Yes

ConciseSet is better Yes Yes N/A N/A No

Training Size (%) 60 70 80 90 100

Mean of Diffs -0.0002 -0.0001 -0.0002 -0.0002 0.0000

P-value 0.1101 0.0957 0.0228 0.0105 nan

P-value < 0.050 No No Yes Yes No

ConciseSet is better N/A N/A No No N/A

122

Table 6.3.
Paired Student’s t-test: Comparing with the 90-percentile Performance

Training Size (%) 10 20 30 40 50

Mean of Diffs 0.0401 0.0013 -0.0004 -0.0005 -0.0005

P-value 0.0000 0.0034 0.0499 0.0031 0.0000

P-value < 0.050 Yes Yes Yes Yes Yes

ConciseSet is better Yes Yes No No No

Training Size (%) 60 70 80 90 100

Mean of Diffs -0.0004 -0.0003 -0.0003 -0.0003 0.0000

P-value 0.0006 0.0002 0.0001 0.0000 nan

P-value < 0.050 Yes Yes Yes Yes No

ConciseSet is better No No No No N/A

123

7. SCALING UP THE CONCISE-SET

REPRESENTATION TO HANDLE BIG DATA

In this chapter, we address the scalability issues faced when applying the concise-set

representation to a potentially very large dataset, aka the Big Data.

7.1 A Brief Review of Big Data Processing

The nature of Big Data changes over time. What used to be considered Big Data

30 years ago are trivial to handle by today’s technology. Therefore, the definition

of Big Data must be defined in terms of the technology that is timeless. One such

definition is given by [56]:

. . . data, perhaps, whose analysis requires massively parallel software run-

ning on tens, hundreds, or even thousands of servers.

In other words, if something is Big Data today, then we can expect its processing to

require a large cluster of today’s commodity computers working together in parallel.

In the next section, we review Map-Reduce – a parallel processing paradigm made

popular by Google’s MapReduce programming model [57].

7.1.1 The Map-Reduce Processing Paradigm

In functional computer programming languages such as Lisp, map() is a function

that takes as input a list of items and an operator. The output of map() is a list

consists of the outputs obtained from applying the operator to each item in the input

list. For example, map([1,2,3], square) returns [1,4,9]. In this example, three

square operations were carried out. Note that the semantic of the map() function

124

naturally allows simultaneous executions. This is the case because the operator can

be applied to all items in the input list independently and simultaneously.

The opposite of map() is reduce(). Like map(), reduce() also takes as input a list

of items and an operator. However, unlike map(), the operator in a reduce function

takes the entire list as input and return just one item. For example, reduce([1,2,3],

sum) returns 6. Here [1,2,3] is the input list and 6 is the returned item after applying

the operator sum to the list.

Perhaps not obvious, the reduce function can also be parallelized. But only when

the operator has the associative property. For example reduce([1,2,3], sum)

could be executed by three reduce function calls: reduce([reduce([1,2], sum),

reduce([3],sum)], sum). Of these three invocations of the reduce function, two

can run simultaneously. They are: reduce([1,2], sum) and reduce([3],sum).

To summarize, both the map and reduce functions are parallelizable. Map function

distributes; Reduce function coalesces. These two primitive functions form the basis

of the MapReduce programming model, to be reviewed next.

7.1.2 The MapReduce Programming Model

In this section, we briefly review the MapReduce Programming Model [57]. First,

we review some relevant terms:

Worker

A processing unit.

Master

The head worker that schedules and assigns tasks to workers.

Task

A description of the work to be performed.

Map Phase

A phase in the MapReduce execution flow when the map tasks are run.

125

Map Function

The C++1 function invoked when a worker is performing the map task.

Reduce Phase

A phase in the MapReduce execution flow when the reduce tasks are run.

Reduce Function

The C++ function invoked when a worker is performing the reduce task.

Key-Value Pair

A pair of custom data encapsulations: key and value.

Intermediate File

A file that stores output key-value pairs; The intermediate files are generated

by workers during the map phase.

The MapReduce programming model separates data processing and cluster man-

agement. As a result, the programmer only has to focus on data processing. All other

aspect of the program, such as cluster management and inter-process communication,

are hidden away from the programmer. Therefore, the programmer’s only job is to

implement the map and reduce functions.

During the map phase, the master assigns each available worker a map task. The

worker then fetches the assigned data chunk accordingly and hands it over as a key-

value pair to the map function, which is provided by the programmer. The map

function processes the input key-value pair and outputs another key-value pair. This

output key-value pair is stored in one of the R intermediate files. After the worker

finishes processing the assigned data chunk, it reports the intermediate file’s storage

location to the master. The map phase is said to be completed when all of the M

map tasks are finished. Fig. 7.1 shows the block diagram of the map phase. The

values of M and R are typically chosen by the programmer.

1Google’s original implementation of MapReduce was written in C++. Later implementations, such
as Hadoop (https://hadoop.apache.org/), allows other programming languages to be used.

https://hadoop.apache.org/

126

2: Save the result into
its designated
intermediate file.

Master

worker worker

1: Schedule M
map tasks.

...

...

File 1
File 2
…
File R

3: Report back
the intermediate
file locations.

File 1
File 2
…
File R

Map Phase :

Fig. 7.1. The Map Phase of the MapReduce Programming Model.

During the reduce phase, the master assigns a reduce task to an available worker.

The worker then fetches the assigned set of intermediate files (e.g., all the “File 3”s)

and groups the key-value pairs from all file in the set by their keys. Subsequently,

the worker passes the grouped key-value pairs to the reduce function and stores the

output of the function into an output file. Finally, the worker sends the location of

the output file back to the master. The reduce phase is said to be completed when

all of the R reduce tasks are finished. Fig. 7.2 shows the block diagram of the reduce

phase.

127

......All File 1s All File Rs

2: Process data in the
assigned intermediate
files.

Master

worker worker

1: Schedule R
reduce tasks.

...

...

File 1
File 2
…
File R

3: Save the result.

File 1
File 2
…
File R

Reduce Phase :

...

Output for
“File R”s

Output for
“File 1”s

4: Report back
the output file
location.

Fig. 7.2. The Reduce Phase of the MapReduce Programming Model.

7.1.3 The Cloud Computing Services Model

So far, we have reviewed the Map-Reduce processing paradigm and examined a

particular programming model called MapReduce introduced by Google. Next, we

will review Cloud Computing and see how it fits in the overall picture of big-data

processing.

In general, cloud computing is a computing infrastructure that provides config-

urable and on-demand computing resources. It has three layers of abstraction [58].

They are:

• layer1: Infrastructure as a Service (IaaS)

• layer2: Platform as a Service (PaaS)

• layer3: Software as a Service (SaaS)

Among these layers of abstraction, higher layers are built from the services provided

by the lower layers. At the bottom-most layer, we have the IaaS layer that provides

services for accessing the bare-metal hardware. Examples of IaaS implementations

128

include Amazon Elastic Compute Cloud2 (aka Amazon EC2), OpenStack3, and Eu-

calyptus4.

Common to all IaaS implementations, users can upload their own virtual machine

(VM) in the form of an operating system disk image file. Once uploaded, users can

then deploy as many instances of their VMs as allowed by the available resource and

the usage policy. To instantiating a VM, the user chooses a “resource profile” that

specifies the desired hardware configuration in terms of CPU, memory, storage, and

network. For example, a low-demanding resource profile may specify 2 CPUs, 4 GB

of memory, and 8 GB of disk storage.

The next layer of abstraction above IaaS is PaaS, which provides services on

the “platform” level. At this level of abstraction, users can quickly build big-data

applications without having to manage the underling hardware infrastructure. A

good example of PaaS is the Google App Engine framework5.

Finally, the top-most layer in the cloud computing abstraction is SaaS. SaaS pro-

vides services to users on the “software” level. Examples of SaaS include E-mail

service such as Google e-mail6, on-line video sharing and streaming services such

YouTube7 and Netflex8, social networking service such as Facebook9, and massive

open online course services (MOOC) such as Coursera10 and Udacity11. These SaaS

examples all share a few things in common – they are user-friendly and can simulta-

neously serve many users and manage massive amount of data.

2https://aws.amazon.com/ec2
3http://www.openstack.org
4https://github.com/eucalyptus/eucalyptus
5 https://cloud.google.com/appengine/
6 http://www.gmail.com/
7 http://www.youtube.com/
8 http://www.netflix.com/
9 http://www.facebook.com/
10 http://www.coursera.com/
11 http://www.udacity.com/

https://aws.amazon.com/ec2
http://www.openstack.org
https://github.com/eucalyptus/eucalyptus
https://cloud.google.com/appengine/
http://www.gmail.com/
http://www.youtube.com/
http://www.netflix.com/
http://www.facebook.com/
http://www.coursera.com/
http://www.udacity.com/

129

In summary, cloud computing provides all the essential and supporting services

needed to implement the Map-Reduce processing paradigm, which is the core basis

of big-data processing.

7.2 Creating the Concise-set Representation using the Map-Reduce Pro-

cessing Paradigm

To create a concise-set representation for a large set of satellite images, we ap-

ply the Map-Reduce processing paradigm and implement our system on a cloud-

computing platform. In the next two sections, we will first review the overall system

and then we will specify the various map and reduce phases within the system.

7.2.1 System Overview

Fig. 7.3 shows the system overview. The input to the system is a set of high-

resolution satellite images that cover a wide-area region and the output is a merged

concise dataset.

A set of satellite images
A set of tiles

(R,C,W)1,
(R,C,W)2,
 …
(R,C,W)M

A set of concise-set
representations

Rm: The merged
concise dataset

Fig. 7.3. Processing a wide-area region involves three steps. First we
partition the satellite images into a set of tiles. Then, we create a concise-
set representation for each tile. And finally, we combine all concise-set
representations into a merged concise dataset for annotation.

The first step in the processing pipeline is arranging each satellite image into a set

of overlapping tiles, as shown in Fig. 7.4. Next, each tile is converted into a concise-

set representation by the process summarized in Fig. 7.5 and described in detail in

130

Chapter 5. And finally, all concise-set representations are combined to form a merged

concise dataset using a hierarchical merging strategy. The hierarchical merging step

was discussed in Section 5.3 of Chapter5.

…
.

….

…
.Overlapping Tiles

Satellite Image

A satellite image
A set of
chopped tiles

● Tile size = 2098 x 2098 pixels
● Overlapping region = 50 pixels

Fig. 7.4. Arranging a satellite image into overlapping tiles.

Feature vectors
(background
and foreground)

Similarity neighborhoods
(using only background)

A set of image
patches

[0 32 34 0 1 ..]
[0 0 14 20 3 ..]
[1 2 3 30 400 ..]
[3 31 0 0 1 0 ..]

Dominant
clusters and
their coverages

[..]
[..]
[..]
[..]

Dimensional
reduction for
background

LSH tables

Similarity graph
(refined with
foreground)

Concise-set
representation

(R, C, W)
n1 n3

n4n2

p’s associated
neighborhood
by LSH

patch p

...

A tile

Fig. 7.5. Converting a tile into a concise-set representation. See Chapter 5
for more details.

131

7.2.2 Map and Reduce Phases

In this section, we present the map and reduce phases that form the basis of our

system.

Map Phase 1: Map Satellite Images to Sets of Tiles

• Phase input = A list of satellite images.

• Map function:

– Input = A satellite image.

– Output = A list of tiles.

Map Phase 2: Map Tiles to Feature Files

• Phase input = A list of tiles.

• Map function:

– Input = A tile.

– Output = A feature file. This file contains features extracted from all

image patches.

The process of creating a feature file from a tile is summarized in Fig. 7.6.

132

A tile

A set of image
patches

Feature vectors
(background
and foreground)

[0 32 34 0 1 ..]
[0 0 14 20 3 ..]
[1 2 3 30 400 ..]
[3 31 0 0 1 0 ..]

[..]
[..]
[..]
[..]

Dimensional
reduction for
background

Feature File

[0 32 34 0 123 ..]
[0 0 14 20 13 ..]
[1 2 3 30 400 ..]
[33 31 0 0 ..]

Fig. 7.6. Creating a feature file from a tile.

Map Phase 3: Map Feature Files to Concise-Set Files

• Phase input = A list of feature files.

• Map function:

– Input = A feature file.

– Output = A concise-set file.

The process of creating a concise-set file from a feature file is summarized in

Fig. 7.7.

133

Feature File

[0 32 34 0 123 ..]
[0 0 14 20 13 ..]
[1 2 3 30 400 ..]
[33 31 0 0 ..]

Concise-set File

LSH Tables

Similarity neighborhoods
(using only background)

Dominant
clusters and
their coverages

Similarity graph
(refined with
foreground)

n1 n3

n4n2

p’s associated
neighborhood
by LSH

patch p

...

Concise-set
representation

(R, C, W)

Fig. 7.7. Creating a concise-set file from a feature file.

Reduce Phase: Reduce concise-set Files to a Merged Concise-Set File

• Phase input = A list of concise-set files.

• Reduce function:

– Input = A list of concise-set files.

– Output = The merged concise-set file.

Fig. 7.8 summarizes the process of combining multiple concise-set files to create a

merged concise-set file.

134

Cluster representatives
(combined from all
concise-set files) Concise-set files

LSH Tables

Merged concise-set file

[..]
[..]
[..]
[..]

Dimensional
reduction for
background

Similarity neighborhoods
(using only background)

Dominant
clusters and
their coverages

Similarity graph
(refined with
foreground)

n1 n3

n4n2

p’s associated
neighborhood
by LSH

patch p

...

Fig. 7.8. The reduce phase merges concise-set files into one using the
hierarchical merging method described in Section 5.3.

7.3 Algorithm Complexity Analysis

To understand how well our system scales to Big Data, we must analyze all algo-

rithms used in the system. In the next three sections, we will analyze the run-time

complexity of three major algorithms we used in our system. These three sections will

help us understand the current limitation and also provide potential future research

directions.

7.3.1 Indexing the Dataset using Hyperplane LSH

In this section, we investigate the question pertaining to the cost of using Hyper-

plane LSH to index the dataset. Recall that the purpose of indexing the dataset is

to support efficient neighborhood querying. Ideally, given an item, we could like to

retrieve all of its neighbors in constant time. Two indexing methods that supports

this fast retrieval are the brute-force method and LSH. The brute-force approach is

not appropriate because the number of comparisons it takes is a quadratic function

135

of the size of the dataset. On the other hand, the number of comparisons for the LSH

approach is linear in dataset size.

As shown in Appendix C, the cost of using LSH to index the dataset depends

on the size of the dataset as well as the number of hashes needed to achieve the

desired performance guarantee. When the number of hashes is large, due to desiring

a high performance guarantee, the cost of indexing the dataset dominates the cost of

data dimensional reduction. Specifically, the cost of indexing a dataset with Hyper-

plane LSH is linear in the number of data dimensions, thus a 100x reduction in data

dimension translates to two order of magnitude in speedup.

To show it with complexity analysis, let d and k be the number of data dimensions

before and after applying FastMap (See Section 4.6 of Chapter 4). Then, the time

complexity of FastMap is O(d k n), where n is the size of the dataset. On the

other hand, the time complexity of indexing the dataset with Hyperplane LSH is

O(h d n), where h is the number of hashes per datum. The total running times for

indexing a dataset with and without dimensional reduction is given in Eq. 7.3 and

q. 7.1, respectively. The speedup effect due to the reduced data dimensionality is

thus θ(d
k
). As a result, when we reduce the data dimensionality of the background

color-histogram vectors from 9024 down to about 100, we can expect to get about

two order of magnitude in speedup.

Twithout dimensional reduction = O(h d n) (7.1)

Twith dimensional reduction = O(d k n) +O(h k n) (7.2)

= O(h k n) when h� d (7.3)

With regard to the the appropriateness of using LSH for large datasets, we note

that when the dataset is small, indexing the dataset with LSH actually takes longer

time than the brute-force indexing method. This is the case simply because O(n) can

grow faster than O(n2) for values of n below some threshold. For Hyperplane LSH,

this threshold is θ(h). As an example, with the LSH parameters set to: d1 = 15,

136

d2 = 37.5, desired p1 = 0.99, and desired p2 = 0.001, the value of h is 37278 (see

Table C.1). The means, in order to take advantage of Hyperplane LSH, the dataset

must not be smaller than h. Otherwise, we might as well use the brute-force indexing

method.

7.3.2 Sifting Through Neighbor Candidates in a LSH Bucket

In the previous section, we mentioned that LSH indexing has O(h d n) time

complexity. Here n is the size of the dataset, h is a function of the LSH performance

guarantee, and d is the number of data dimensions. We stated that LSH indexing is

linear in n because in our case d is typically less than 100 and h is a constant that

does not change.

Because LSH is an approximated method, the collection of neighbor candidates

inside the LSH bucket12 of a given input query may include false positives as well as

duplicates. In the worst case, when every item is similar to all other items, it will take

O(n2) time to remove false positives and duplicates from every neighborhood. This is

the case because there are n neighborhoods, one per datum, and each neighborhood

contains O(n) neighbor candidates in the worst case.

7.3.3 Extracting the Dominating Clusters/Neighborhoods

As we mentioned in Section 5.2.6 of Chapter 5, the greedy solution for the Dom-

inating Set problem runs in O (|E|) time where E is the set of edges in the graph.

In the worst case, when the graph is dense, |E| = O(|V |2) the greedy solution takes

O (|E|) = O (|V |2) where V is the set of vertices in the graph. In our application,

the number of vertices in the similarity graph is the size of the dataset. Therefore,

extracting the dominating clusters will take O (n2) time to run in the worst case

scenario. Here n is the size of the dataset.

12A LSH bucket is actually a collection of buckets from multiple hash tables.

137

7.4 Discussion

We have presented our system design for handling the big-data situation in which

the entire dataset is too big to be processed by a single computing unit. Our key

approach is employing Map-Reduce processing paradigm to distribute the computa-

tion across multiple computing units. With this approach, we mitigate the run-time

complexity issues mentioned in the previous section.

In general, when a O(n2) algorithm can not be avoid, the strategy is to keep n

small enough such that the algorithm can still finish within a reasonable amount of

time. If we break the entire dataset into small chunks/partitions, then each chunk

can be processed quickly even though the complexity of the processing algorithm is

O(n2). Furthermore, if we process all these chucks in parallel across many computing

units, then the overall processing time is the time it takes to process a single chunk

plus the merging time it takes to execute the subsequent merging step.

The current implementation of our system is written in Python programming

language and this implementation can handle chunk size of n = 250000. Further im-

provement in execution speed requires using optimized programming language such as

C++ and replacing the quadratic-time algorithms mentioned in the previous section

with linear-time equivalents, if possible.

138

8. CONCLUSION AND FUTURE WORK

It can be mentally exhausting for human annotators to generate the ground truth

needed for evaluating land-cover classifiers meant for large geographic regions cov-

ered by hundreds of satellite images. Human annotators end up wasting time by

not realizing that new annotations may not be adding any additional discriminatory

information to those already supplied. The work we have presented in this disserta-

tion seeks to alleviate the annotation burden by reducing redundancies in the data

through fast, albeit approximate, clustering by the LSH algorithm. Subsequently,

the human is asked to annotate only the cluster representatives, in other words, the

concise dataset, with one representative per cluster. Given the fairly wide range of

the attributes derived from the spectral signatures that are used in land-cover clas-

sification, LSH may represent each land-type by hundreds of clusters. Nonetheless,

providing annotations for the cluster representatives takes far less work than for the

individual pixels in the satellite images that cover a wide area.

What adds to the power of our approach is our demonstration that the approach

is not overly sensitive to the choice of the parameters for the LSH algorithm. In

our demonstration, we estimated the good values to use for the parameters from the

satellite images that cover Chile and then used them to create a concise-set repre-

sentation of the data in Australia. We validated our approach through a comparison

with traditional random-sampling based methods that are typically used for large

datasets. We showed that for the same annotation effort, the concise-set approach to

data representation outperforms the traditional random sampling approach.

With regard to potential future research directions, one possibility is to explore

other linear-time clustering methods that also work well for high-dimensional data.

Even though Hyperplane LSH, which we used in this dissertation, has indexing time

linear to the data size and dimension, it also has a high overhead. As we explained in

139

Chapter 7, LSH only becomes faster than the brute-force approach when the size of

the dataset exceeds certain threshold. This threshold is proportional to the product

of AND and OR constructions. One way to lower this overhead is to relax the

performance guarantee. But this is obviously undesirable. Another way may be to

transform the dataset in certain ways so that the data are more spread out spatially,

effectively relaxing the similarity threshold needed for clustering. Another future

research direction is to reduce overall computation by not removing false positives

from every cluster/neighborhood. Using this strategy, we can modify Algorithm 1

in Chapter 5 so that we only remove false positives from a cluster when the cluster

has a high chance of being a dominant cluster. We can also achieve significant saving

in computation by avoiding creating a dense similarity graph in the first place. For

example, if we know a cluster has no chance of becoming dominant, then, we don’t

need to add its edges into the similarity graph. If we can enforce the similarity graph

to always be sparse, then extracting dominant clusters will always run in linear time.

REFERENCES

140

REFERENCES

[1] T. Chang, B. Comandur, J. Park, and A. C. Kak, “A variance-based bayesian
framework for improving land-cover classification through wide-area learning
from large geographic regions,” Computer Vision and Image Understanding, vol.
147, pp. 3–22, 2016.

[2] Y. Sakurai, M. Yoshikawa, S. Uemura, H. Kojima et al., “The a-tree: An index
structure for high-dimensional spaces using relative approximation,” in VLDB,
vol. 2000, 2000, pp. 516–526.

[3] D. M. Mount, “ANN Programming Manual,” https://www.cs.umd.edu/∼mount/
ANN/Files/1.1.2/ANNmanual 1.1.pdf, 2010.

[4] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces,” in VLDB,
vol. 98, 1998, pp. 194–205.

[5] A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for nearest neighbor,”
in Proceedings of the 23rd international conference on Machine learning. ACM,
2006, pp. 97–104.

[6] M. Izbicki and C. Shelton, “Faster cover trees,” in International Conference on
Machine Learning, 2015, pp. 1162–1170.

[7] B. Salehi, “Urban land cover classification and moving vehicle extraction us-
ing very high resolution satellite imagery,” Ph.D. dissertation, Department of
Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton,
New Brunswick, Canada, 2012.

[8] A. M. Mika, “Three decades of landsat instruments,” Photogrammetric Engi-
neering & Remote Sensing, vol. 63, no. 7, pp. 839–852, 1997.

[9] C. Ünsalan and K. L. Boyer, Multispectral Satellite Image Understanding: From
Land Classification to Building and Road Detection, ser. Advances in Computer
Vision and Pattern Recognition. Springer, 2011.

[10] N. W. Longbotham, F. Pacifici, S. Malitz, W. Baugh, and G. Camps-Valls,
“Measuring the spatial and spectral performance of worldview-3,” in Hyperspec-
tral Imaging and Sounding of the Environment. Optical Society of America,
2015, pp. HW3B–2.

[11] Microsoft, “Ultracam,” http://download.microsoft.com/download/4/2/1/
4216DF68-F652-4C64-9832-A77A3697DA03/UALL-E-OV-1213-1.0-Letter%
20web.pdf, 2014.

https://www.cs.umd.edu/~mount/ANN/Files/1.1.2/ANNmanual_1.1.pdf
https://www.cs.umd.edu/~mount/ANN/Files/1.1.2/ANNmanual_1.1.pdf
http://download.microsoft.com/download/4/2/1/4216DF68-F652-4C64-9832-A77A3697DA03/UALL-E-OV-1213-1.0-Letter%20web.pdf
http://download.microsoft.com/download/4/2/1/4216DF68-F652-4C64-9832-A77A3697DA03/UALL-E-OV-1213-1.0-Letter%20web.pdf
http://download.microsoft.com/download/4/2/1/4216DF68-F652-4C64-9832-A77A3697DA03/UALL-E-OV-1213-1.0-Letter%20web.pdf

141

[12] T. Updike and C. Comp, “Radiometric use of worldview-2 imagery,” Digital
Globe, Tech. Rep., 2010.

[13] G. Marchisio, F. Pacifici, and C. Padwick, “On the relative predictive value of
the new spectral bands in the worldwiew-2 sensor,” in Geoscience and Remote
Sensing Symposium (IGARSS). IEEE, 2010, pp. 2723–2726.

[14] G. Sarp, “Spectral and spatial quality analysis of pan-sharpening algorithms: A
case study in istanbul,” European Journal of Remote Sensing, vol. 47, no. 1, pp.
19–28, 2014.

[15] G. Dial and J. Grodecki, “Rpc replacement camera models,” in Proc. ASPRS
Annual Conference, 2005, pp. 1–5.

[16] T. Prakash, B. Comandur, T. Chang, N. Elfiky, and A. Kak, “A generic road-
following framework for detecting markings and objects in satellite imagery,”
IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 8, no. 10, pp. 4729–4741, 2015.

[17] P. Viola and M. J. Jones, “Robust real-time face detection,” International journal
of computer vision, vol. 57, no. 2, pp. 137–154, 2004.

[18] G. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE
transactions on information theory, vol. 14, no. 1, pp. 55–63, 1968.

[19] J. M. Van Campenhout, “On the Peaking of the Hughes Mean Recognition Accu-
racy: The Resolution of an Apparent Paradox,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 8, no. 5, pp. 390–395, 1978.

[20] G. V. Trunk, “A problem of dimensionality: A simple example,” IEEE Transac-
tions on pattern analysis and machine intelligence, no. 3, pp. 306–307, 1979.

[21] M. C. Alonso, J. A. Malpica, and A. M. de Agirre, “Consequences of the hughes
phenomenon on some classification techniques,” in Proc. ASPRS annual confer-
ence, 2011, pp. 1–5.

[22] F. Camastra and A. Vinciarelli, “Estimating the intrinsic dimension of data with
a fractal-based method,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 10, pp. 1404–1407, 2002.

[23] K. Koonsanit, C. Jaruskulchai, and A. Eiumnoh, “Band selection for dimension
reduction in hyper spectral image using integrated information gain and principal
components analysis technique,” International Journal of Machine Learning and
Computing, vol. 2, no. 3, pp. 248–251, 2012.

[24] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally
linear embedding,” SCIENCE, vol. 290, pp. 2323–2326, 2000.

[25] J. Theiler, “Efficient algorithm for estimating the correlation dimension from a
set of discrete points,” Physical review A, vol. 36, no. 9, pp. 4456–4462, 1987.

[26] E. Levina and P. J. Bickel, “Maximum likelihood estimation of intrinsic dimen-
sion,” in Advances in neural information processing systems, 2005, pp. 777–784.

142

[27] R. B. Myneni, F. G. Hall, P. J. Sellers, and A. L. Marshak, “The interpretation
of spectral vegetation indexes,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 33, no. 2, pp. 481–486, 1995.

[28] A. F. Wolf, “Using worldview-2 vis-nir multispectral imagery to support land
mapping and feature extraction using normalized difference index ratios,” in
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral
Imagery XVIII, vol. 8390. International Society for Optics and Photonics, 2012,
p. 83900N.

[29] CIE Technical Committee 1-48, “Colorimetry (3rd edition),” International Com-
mission on Illumination, Tech. Rep., 2004.

[30] F. S. Welsh, “More exact & flexible color system now in use,” in Finish Notes -
The newsletter of architectural finishes investigation. Frank S. Welsh company,
1993, vol. 1, no. 2.

[31] A. Pujol and L. Chen, “Color quantization for image processing using self infor-
mation,” in International Conference on Information, Communications Signal
Processing. IEEE, Dec 2007, pp. 1–5.

[32] T. Celik, “Unsupervised change detection in satellite images using principal com-
ponent analysis and k-means clustering,” IEEE Geoscience and Remote Sensing
Letters, vol. 6, no. 4, pp. 772–776, 2009.

[33] S. Garćıa-López, J. Delgado, J. Cardenal, and J. Caracuel, “Using pca transfor-
mation to remove the tenuous cloudiness effect in multispectral satellite sensor
images,” International Journal of Remote Sensing, vol. 26, no. 1, pp. 209–216,
2005.

[34] L. Journaux, I. Foucherot, and P. Gouton, “Multispectral satellite images pro-
cessing through dimensionality reduction,” in Signal Processing for Image En-
hancement and Multimedia Processing. Springer, 2008, pp. 59–66.

[35] R. Alley, “Algorithm theoretical basis document for decorrelation stretch,” Jet
Propulsion Lab, Tech. Rep., 1996.

[36] A. C. Kak, “Constructing Optimal Subspaces for Pattern Classification,” https:
//engineering.purdue.edu/kak/Tutorials/OptimalSubspaces.pdf, 2018.

[37] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning for robust
visual tracking,” International journal of computer vision, vol. 77, no. 1-3, pp.
125–141, 2008.

[38] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component analysis,”
Journal of computational and graphical statistics, vol. 15, no. 2, pp. 265–286,
2006.

[39] C. Faloutsos and K.-I. Lin, FastMap: A fast algorithm for indexing, data-mining
and visualization of traditional and multimedia datasets. ACM, 1995, vol. 24,
no. 2.

[40] A. C. Tamhane and D. D. Dunlop, Statistics and Data Analysis from Elementary
to Intermediate. Upper Saddle River, NJ, USA: Prentice Hall, 2000.

https://engineering.purdue.edu/kak/Tutorials/OptimalSubspaces.pdf
https://engineering.purdue.edu/kak/Tutorials/OptimalSubspaces.pdf

143

[41] H. Xie, X. Tong, W. Meng, D. Liang, Z. Wang, and W. Shi, “A multilevel strat-
ified spatial sampling approach for the quality assessment of remote-sensing-
derived products,” IEEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, vol. 8, no. 10, pp. 4699–4713, 2015.

[42] J. Wickham, S. Stehman, J. Smith, T. Wade, and L. Yang, “A priori evaluation
of two-stage cluster sampling for accuracy assessment of large-area land-cover
maps,” International Journal of Remote Sensing, vol. 25, no. 6, pp. 1235–1252,
2004.

[43] R. De Fries, M. Hansen, J. Townshend, and R. Sohlberg, “Global land cover
classifications at 8 km spatial resolution: the use of training data derived from
landsat imagery in decision tree classifiers,” International Journal of Remote
Sensing, vol. 19, no. 16, pp. 3141–3168, 1998.

[44] C. Homer, C. Huang, L. Yang, B. Wylie, and M. Coan, “Development of a 2001
national land-cover database for the united states,” Photogrammetric Engineer-
ing & Remote Sensing, vol. 70, no. 7, pp. 829–840, 2004.

[45] K. Karantzalos, D. Bliziotis, and A. Karmas, “A scalable geospatial web service
for near real-time, high-resolution land cover mapping,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 10, pp.
4665–4674, 2015.

[46] N. C. Codella, G. Hua, A. Natsev, and J. R. Smith, “Towards large scale land-
cover recognition of satellite images,” in International Conference on Informa-
tion, Communications and Signal Processing (ICICS). IEEE, 2011, pp. 1–5.

[47] C. Jacqueminet, S. Kermadi, K. Michel, D. Béal, M. Gagnage, F. Branger,
S. Jankowfsky, and I. Braud, “Land cover mapping using aerial and vhr satellite
images for distributed hydrological modelling of periurban catchments: Applica-
tion to the yzeron catchment (lyon, france),” Journal of Hydrology, vol. 485, pp.
68–83, 2013.

[48] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition). Upper
Saddle River, NJ, USA: Prentice Hall, 2006.

[49] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing
the curse of dimensionality,” in Proceedings of the thirtieth annual ACM sympo-
sium on Theory of computing. ACM, 1998, pp. 604–613.

[50] M. Slaney and M. Casey, “Locality-sensitive hashing for finding nearest neighbors
[lecture notes],” IEEE Signal processing magazine, vol. 25, no. 2, pp. 128–131,
2008.

[51] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high dimensions via
hashing,” in VLDB, vol. 99, no. 6, 1999, pp. 518–529.

[52] A. Rajaraman and J. D. Ullman, Mining of Massive Datasets. New York, NY,
USA: Cambridge University Press, 2011.

[53] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,” in
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing.
ACM, 2002, pp. 380–388.

144

[54] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

[55] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE trans-
actions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[56] A. Jacobs, “The pathologies of big data,” Commun. ACM, vol. 52, no. 8, pp.
36–44, Aug. 2009.

[57] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[58] P. M. Mell and T. Grance, “The NIST Definition of Cloud Computing,” National
Institute of Standards & Technology, Tech. Rep., 2011, Special Publication 800-
145.

[59] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe LSH:
Efficient indexing for high-dimensional similarity search,” in Proceedings of the
33rd international conference on Very large data bases. VLDB Endowment,
2007, pp. 950–961.

[60] K. Terasawa and Y. Tanaka, “Spherical LSH for approximate nearest neighbor
search on unit hypersphere,” in Workshop on Algorithms and Data Structures.
Springer, 2007, pp. 27–38.

[61] M. Bawa, T. Condie, and P. Ganesan, “LSH forest: self-tuning indexes for simi-
larity search,” in Proceedings of the 14th international conference on World Wide
Web. ACM, 2005, pp. 651–660.

APPENDIX

145

A. CIELUV AND CIELAB FORMULAS

In Chapter 4, Section 4.1.1, we gave an overview of the CIELUV and CIELAB color

spaces [29]. In this appendix, we list the formulas used for describing these two color

spaces in terms CIEXYZ color space.

A.0.1 sRGB to CIEXYZ

Given a sRGB color, (R,G,B), the CIEXYZ color can be approximated by:

X

Y

Z

 =

0.4124 0.3576 0.1895

0.2126 0.7152 0.0722

0.0193 0.1192 0.9505

(
R
255

)2.2
(
G
255

)2.2
(
B
255

)2.2

 (A.1)

A.0.2 CIEXYZ to CIELUV

Given a CIEXYZ color, (X, Y, Z), the CIELUV color is calculated by:

L∗ = 116 f

(
Y

Yn

)
− 16

u∗ = 13 L ∗ (u′ − u′n)

v∗ = 116 L ∗ (v′ − v′n)

(A.2)

where (u′, v′) is the uniform chromaticity scale diagram defined by:

u′ =
4 X

X + 15 Y + 3 Z

v′ =
9 Y

X + 15 Y + 3 Z

(A.3)

146

and Yn, u′n, v′n correspond to the white point used. For the D65 white point, the

values of (Xn, Yn, Zn) are:

Xn = 95.047 (A.4)

Yn = 100.00 (A.5)

Zn = 108.883 (A.6)

As for the gamma-correction function, f , it is given by:

f(t) =

t
1
3 if t > (6

29
)3

t
3(6

29
)2

+ 4
29

otherwise

(A.7)

A.0.3 CIEXYZ to CIELAB

Given a CIEXYZ color, (X, Y, Z), the CIELAB color is calculated by:

L∗ = 116 f

(
Y

Yn

)
− 16

a∗ = 500

(
f

(
X

Xn

)
− f

(
Y

Yn

))

b∗ = 200

(
f

(
Y

Yn

)
− f

(
Z

Zn

))
(A.8)

Here Xn, Yn, Zn, and f are defined in equations Eq.A.4 to Eq.A.7.

147

B. FASTMAP PROJECTION

In Chapter 4, Section 4.6, we gave a general overview of the FastMap dimensionality

reduction method without going into how this method projects data onto the axis and

the perpendicular hyperplane. As it turns out, we only need to know the Pythagorean

theorem to see how FastMap projection works.

pa

pb pk

X-Axis

xk

pa

pb pk

X-Axis

pj

p’j
p’k

xk- xj

(a) Projection onto the X-axis (b) Projection onto the plane
perpendicular to X-axis

Fig. B.1. (a). The projection of an arbitrary point pk onto the axis formed
by the points pa and pb has length xk relative to pa. (b). Points p′j and p′k
are the projections of pj and pk onto the hyperplane that is perpendicular
to the X-axis.

Referring to Fig. B.1(a), we can compute xk, the first coordinate value of point

pk, if we know the distance between any pair of points. Let dj,k,0 denote the original

distance between points pj and pk. Then, xk can be solved from the Pythagorean

equation:

d2a,k,0 = x2k + (d2b,k,0 − (da,b,0 − xk)2)2 (B.1)

148

Solving Eq. B.1 for xk, we get:

xk =
d2a,k,0 + d2a,b,0 − d2b,k,0

2 da,b,0
(B.2)

After we compute the first coordinate value of all the points in the dataset, we can

repeat Eq. B.2 for the second coordinate value. The only thing we need to change is

the distance function. Let dj,k,1 denote the distance between points p′j and p′k on the

hyperplane that is perpendicular to the first axis (See Fig. B.1(b)). And let yk be

the second coordinate value for the point pk. Then, the formula for yk is analogous

to Eq. B.2:

yk =
d2a,k,1 + d2a,b,1 − d2b,k,1

2 da,b,1
(B.3)

As it turns out, it is easy to formulate dj,k,1 in terms of dj,k,0. Referring to

Fig. B.1(b) and applying the Pythagorean theorem again, we get:

d2j,k,1 = d2j,k,0 − (xj − xk)2 (B.4)

Eq. B.4 has a general recursive form:

d2j,k,d = d2j,k,d−1 − (coord(j, d)− coord(k, d))2 (B.5)

Here coord(j, d) is the dth coordinate value of point pj in the lower-dimensional

FastMap representation.

149

C. TESTING HYPERPLANE LSH WITH A SIMULATED

STUDY

In this appendix, we present a simulated study on how hyperplane LSH performs,

especially with high-dimensional data. The simulation consists of the following steps:

1. In a D-dimensional vector space, generate 20 randomly selected points on the

surface of a unit sphere (which simulates the unit sphere used for the background

color-histogram vectors). Associate with each point a circular region on the

surface of the surface of the sphere. The radius of this circular region represents

the angular similarity threshold used for the histogram vectors. Let the value

of this radius be θ. Repeat this process until the 20 selected points are such

that their associated circular regions are non-overlapping.1 See Fig. C.1 for an

example of such non-overlapping circular areas on the surface of a sphere in

3D. Each circular area on the surface subtends a hypercone at the center of the

sphere as shown in the figure.

2. For each hypercone, generate 1000 random D-dimensional vectors of unit mag-

nitude that are uniformly distributed within d1 degrees from the axis of the

hypercone. Also generate another 1000 random vectors between d1 and d2 de-

grees from the axis of the hypercone. Here d1 and d2 are the “nearby” and the

“far apart” thresholds mentioned in Section 5.2.5. Note that the region between

d1 and d2 is the “transition region” and LSH does not make any performance

guarantee for that region.

3. Insert all 20× 2000 = 20000 vectors into the LSH tables.

1This is not to imply that the histogram vectors for the actual satellite data can be partitioned into
disjoint clusters. The disjointedness assumption is being used in the simulation study because the
scope of the simulation is limited to investigating the effectiveness of LSH in pulling together the
data elements in each non-overlapping circular area on the surface of the sphere.

150

4. For each query vector corresponding to the axis of the hypercone, retrieve can-

didate “nearby” vectors. Compute the true-positive and false-positive rates.

5. Repeat with dimension D ∈ {30, 300, 3000}.

θ

Fig. C.1. The image on the right shows four non-overlapping hypercones in
3D. Here, θ is the angle of each hypercone. All non-overlapping hypercones
are positioned at a common origin.

For d1 set to 15◦, Table C.1 shows the values of d2 and the number of hash function

calls as a function of c,2 the approximating factor mentioned earlier in our brief

explanation of how LSH works. The LSH parameters for the desired true positive

rate (desired p1) and the false positive rate (desired p2) are set to 0.99 and 0.001,

respectively. The numbers of AND and OR constructions are calculated by solving r

and b, respectively, in the two simultaneous equations:

desired p1 = 1− (1− pr1)b (C.1)

desired p2 = 1− (1− pr2)b (C.2)

As for the values of p1 and p2, they depend on the type of hash function used. For

hyperplane LSH, they are given: p1 = 180−d1
180

and p2 = 180−d2
180

. See Fig. C.2 for an

example.

2 See Section 5.2.5 for a brief review of LSH as well as the description of the following variables used
in the rest of this paragraph: c, d1, d2, p1, p2, the desired p1, and the desired p2.

151

Table C.1.
Number of hash function calls as a function of approximation factor in
hyperplane LSH. (d1 = 15.0, desired p1 = 0.99, desired p2 = 0.001)

Approx. Factor (c) d2 # of ANDs # of ORs # of hash calls

1.5 22.5 181 31840155 5763068055

2.0 30.0 88 9739 857032

2.5 37.5 57 654 37278

3.0 45.0 41 160 6560

3.5 52.5 32 72 2304

From Table C.1, we see that although smaller approximation factor leads to a

tighter transition region, [d1, d2], it can result in dramatic increase in the number of

hash function calls3. For example, with c = 2.5, the number of hash calls to index one

feature vector is 37278, which is a large number. Nevertheless, improvements such as

multi-probe LSH [59] and cross-polytope LSH [60] have been developed to reduce the

number of hash calls needed.

In general, regardless of what variant of LSH is used, the number of hash calls

needed in order to achieve the desired performance guarantee will only increase as

the approximation factor approaches to 1.0. Other variants of LSH, such as LSH

Forest [61], can save considerable computation by focusing on obtaining high pre-

cision performance while ignoring recall performance. Such strategy works well for

applications that want to quickly retrieve just a few nearby neighbors per a given

query.

Table C.2 summarizes the result of our simulation study whose experimental pro-

tocol is given at the beginning of this section. For the experimental parameters, we

let d1 = 15.0, c = 2.5 (ie., d2 = 37.5), and θ = 37.5 (ie., θ = d2). From this table,

we observe that LSH’s performance in terms of true-positive and false-positive rates

3This dramatic increase is mainly due to the large increase in the number of OR constructions (ie.,
number of hash function calls = product of AND and OR constructions).

152

Table C.2.
Hyperplane LSH performance as a function of data dimensionality. LSH
design parameters: d1 = 15◦, c = 2.5 (d2 = 37.5◦), desired p1 = 0.99,
desired p2 = 0.001. Result averaged over 20 hypercones.

Dimensions 30 300 3000

TPR (avg) 1.000 0.999 1.000

TPR (std) 5.357e-04 7.392e-04 3.996e-04

FPR (avg) 0.007 0.007 0.007

FPR (std) 2.561e-04 3.974e-04 2.842e-04

FPR-trans (avg) 0.267 0.267 0.266

FPR-trans (std) 9.992e-03 1.551e-02 1.109e-02

FPR-far (avg) 0.000 0.000 0.000

FPR-far (std) 0.000e+00 0.000e+00 0.000e+00

(TPR and FPR) do not depend on the data dimensionality. In all three cases of data

dimensionality, the true-positive and false-positive rates are indeed within the design

parameter. Specifically, the TPR values in the second and third rows of the table

exceed the desired p1 value of 0.99 while the FPR-far values in the last two rows of

the table stay below the desired p2 value of 0.001.

Interestingly, we see that all false detection come from the transition region [d1, d2]

and the average false-detection rate in that region is about 26% for all three dimen-

sionality cases (see rows six and seven of Table C.2). This result agrees with the

theoretical result shown in figures Fig. C.2 and Fig. C.3. Specifically, Fig. C.3 shows

an average hash collision probability of 0.2648 in the transition region. We also sum-

marize the overall false-positive rate in rows four and five of Table C.2. As for the

formulas used for the calculation, they are listed in equations Eq. C.3 to Eq. C.6.

153

0 20 40 60 80 100 120 140 160 180
β = angle between random two vectors

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty
of

co
lli

si
on

Effect of Cascading AND, OR Constructions
(57 ANDs followed by 654 ORs)

before
after

Fig. C.2. Probability of hash collisions for hyperplane LSH before and af-
ter AND, OR constructions. The “unamplified” probability is given by the
“before” curve pbefore(β) = 1−β

180
. and the “after” probability is described by

the equation pafter = 1− (1− prbefore)b, where r is the number of AND con-
structions and b is the number of OR constructions. The r and b values are
calculated by solving two simultaneous equations relating two LSH perfor-
mance guarantee conditions in Eq. C.1 and Eq. C.2. Here, the LSH design
parameters are: d1 = 15, d2 = 37.5, desired p1 = 0.99, desired p2 = 0.001.

TPR =
of true positives

total # of positives
(C.3)

FPR =
of false positives

total # of negatives
(C.4)

FPR-trans =
of false positives within [d1, d2]

total # of data within [d1, d2]
(C.5)

FPR-far =
of false positives > d2

total # of data > d2
(C.6)

154

0 10 20 30 40 50
β = angle between random two vectors

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty
of

co
lli

si
on

Effect of Cascading AND, OR Constructions
(57 ANDs followed by 654 ORs)

before
after

Fig. C.3. Probability of hash collision for hyperplane LSH (see Fig. C.2)
zoomed into the transition region: (β ∈ [d1, d2] = [15, 37.5]). Here, the
transition region is marked by the dash vertical lines. In this transition
region, the “after” curve averages, in the limit, to 0.2648814. . .

155

D. OTSU’S ALGORITHM FOR REAL VALUES

The original Otsu’s algorithm [55] takes a collection of discrete values (eg., pixel

intensities) and determines the optimal threshold to separate the collection into two

classes. The optimality criterion bases on minimizing the “within-class variance”,

defined as:

σ2
W = w1 σ

2
1 + w2 σ

2
2 (D.1)

Here w1 and w2 are the two class probabilities for class 1 and class 2, respectively.

And σ2
1 and σ2

2 are the two class variances. Otsu shows that to minimize σ2
W , one can

just maximize the “between-class variance”, which simplifies to:

σ2
B = w1 w2 (µ1 − µ2)

2 (D.2)

Therefor, to find the optimal threshold, k, Otsu’s algorithm searches through all

possible values of k (eg., k ∈ [0, 1, . . . , 255]) and returns the one that maximizes σ2
B.

To calculate σ2
B, we can use the next four equations to compute w1, w2, µ1 and µ2

given a particular candidate threshold value k:

w1(k) =
k∑

i=0

pi (D.3)

w2(k) = 1− w1(k) (D.4)

µ1(k) =
k∑

i=0

i
pi

w1(k)
(D.5)

µ2(k) =
L∑

i=k+1

i
pi

w2(k)
(D.6)

Here pi is the probability/frequency of value i occurring in the dataset and L is the

largest possible data value (eg., L = 255).

156

In order to adopt Otsu’s algorithm for continuous data, we first observe that the

optimal threshold is a datum in the dataset. In other words, let the dataset be

arranged in a sorted array S = [x1, x2, . . . , xn], where xi ≤ xj,∀i < j. Then, we

want to find the optimal threshold, xk, such that class 1 = [x1, . . . , xk] and class 2 =

[xk+1, . . . , xn]. To do this, we modify Otsu’s algorithm as follows:

1. Instead of iterating through all possible threshold values, which can be infinite

for continuous data, we just iterate through all data elements in the dataset S,

starting from the S[1].

2. At each iteration into the S array, we compute w1, w2, µ1 and µ2 as a function

of array index k and use them to compute σ2
B(k): (See Eq. D.2)

w1(k) =
k

n
(D.7)

w2(k) = 1− w1(k) (D.8)

µ1(k) =
1

k

k∑

i=1

S[i] (D.9)

µ2(k) =
1

n− k
n∑

i=k+1

S[i] (D.10)

3. Return S[k] where σ2
B(k) is the maximum.

Algorithm 2 shows our modified Otsu’s algorithm for handling continuous data.

157

Algorithm 2 Otsu’s Algorithm – Modified for Real Values

Input: R = An array of real values.

Output: The optimal threshold to separate R into two groups.

1: S ← Sort (R)

2: L← Length (R) // total number of data

3: u0 ← 0.0;u1 ← 0.0; // within class means

4: s← 0.0 // running sum

5: σ2 ← 0.0 // max variance

6: t← 0.0 // optimal threshold

7: st ← Sum (R) // global sum

8: for k = [0 . . . L− 1] do

9: n← k + 1 // number of data seen so far

10: s← s+ S[k]

11: u0 ← s
n

12: u1 ← (st−s)
(L−n)

13: w0 ← n
L

// class1 probability

14: w1 ← 1.0− w0 // class2 probability

15: σ2
b ← w0 w1 (u1 − u0)2

16: if σ2
b > σ2 then

17: t← S[k]

18: σ2 ← σ2
b

19: end if

20: end for

21: return t

VITA

158

VITA

Tommy Chang received B.S. in Electrical Engineering and B.S. in Computer Sci-

ence from University of Maryland in 1997 and 1998, respectively. He joined the In-

telligent Systems Division at the National Institute of Standards and Technology in

2000 and received M.S. in Computer Science from Johns Hopkins University in 2008.

Since 2011, he has been pursuing Ph.D. in the school of Electrical and Computer

Engineering at Purdue University. His research interests include computer vision,

cloud computing, and robotics.

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Primary Contributions
	Organization of the Dissertation

	MULTISPECTRAL SATELLITE IMAGERY AND DATA ABSTRACTIONS
	Multispectral Imagery – A Brief Review
	Modern Multispectral Systems
	Satellite Scenes
	Satellite Data Representation and File Format
	High Spatial Resolution Data
	Raw Data Pre-processing

	Data Abstractions

	PIMSIR FOR UNDERSTANDING MULTIPLE SATELLITE IMAGES OVER LARGE ROI
	PIMSIR Data Structure and Construction
	Viewing Image Overlaps with PIMSIR
	Viewing Data Variability Heat Maps with PIMSIR
	Fast Variability Heat Map Computation using Integral Image

	INTRINSIC DIMENSIONALITY OF IMAGE PATCHES
	Transforming the Multispectral Data Prior to Dimensionality Reduction
	The Advantage of L*a*b* Color Representation for Clustering
	Creating Color Histogram Using the L*a*b* Color Space

	A Brief Survey of Previous Work on Dimensionality Reduction on Satellite Data
	Factors Affecting the Intrinsic Dimensionality of Image Patches
	Dataset Size
	Data Diversity: Single-Satellite vs Multi-Satellite
	Fraction of the Total Energy
	Image Patch Size
	Histogram Quantization

	Histogram Quantization and Cosine Distance
	A Closer Look at Histogram Quantization
	Using Simulated Datasets to Demonstrate the Effects of Histogram Quantization on Cosine Distance

	Calculating Cosine Distance from PCA Representation
	Dimensional Reduction Using FastMap
	Calculating Cosine Distance from Fastmap Representation

	CONCISE-SET REPRESENTATION
	Related Work
	Proposed Approach
	Representation of the Population: Content, Unit, and Size
	Measuring the Similarity Between Satellite Image Patches
	Similarity Search
	Reducing the Dimensionality of the Histogram Representation for the Background Pixels in a Patch
	Creating a Similarity Graph for the Image Patches
	Population Compression
	Creating an Initial Concise-set Representation of the Population
	Annotating the Initial Concise Dataset
	On Extending the Concise-Set Representative Label to the Other Members of the Same Set
	A Quality Coefficient for Choosing the Best Value for the LSH Similarity Threshold
	The Complete Processing Pipeline For Generating a Concise-set Representation

	Population Partition — Creating Multiple Evaluation Datasets Simultaneously
	Refining the Concise Dataset

	CONCISE-SET REPRESENTATION RESULT
	Setting the Experimental Parameters for WorldView2 Imagery
	Color Spaces and Histogram Quantization
	Calculating the Best Value to Use for the Similarity Threshold

	Validation
	Classifier Evaluation Experiments
	Classifier Training Experiments

	SCALING UP THE CONCISE-SET REPRESENTATION TO HANDLE BIG DATA
	A Brief Review of Big Data Processing
	The Map-Reduce Processing Paradigm
	The MapReduce Programming Model
	The Cloud Computing Services Model

	Creating the Concise-set Representation using the Map-Reduce Processing Paradigm
	System Overview
	Map and Reduce Phases

	Algorithm Complexity Analysis
	Indexing the Dataset using Hyperplane LSH
	Sifting Through Neighbor Candidates in a LSH Bucket
	Extracting the Dominating Clusters/Neighborhoods

	Discussion

	CONCLUSION AND FUTURE WORK
	REFERENCES
	CIELUV AND CIELAB FORMULAS
	sRGB to CIEXYZ
	CIEXYZ to CIELUV
	CIEXYZ to CIELAB

	FASTMAP PROJECTION
	TESTING HYPERPLANE LSH WITH A SIMULATED STUDY
	OTSU'S ALGORITHM FOR REAL VALUES
	VITA

