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ABSTRACT

Zhang, Boqian PhD, Purdue University, May 2019. Efficient Path and Parameter
Inference for Markov Jump Processes. Major Professor: Vinayak Rao.

Markov jump processes are continuous-time stochastic processes widely used in a

variety of applied disciplines. Inference typically proceeds via Markov chain Monte

Carlo (MCMC), the state-of-the-art being a uniformization-based auxiliary variable

Gibbs sampler. This was designed for situations where the process parameters are

known, and Bayesian inference over unknown parameters is typically carried out by

incorporating it into a larger Gibbs sampler. This strategy of sampling parameters

given path, and path given parameters can result in poor Markov chain mixing.

In this thesis, we focus on the problem of path and parameter inference for Markov

jump processes.

In the first part of the thesis, a simple and efficient MCMC algorithm is proposed

to address the problem of path and parameter inference for Markov jump processes.

Our scheme brings Metropolis-Hastings approaches for discrete-time hidden Markov

models to the continuous-time setting, resulting in a complete and clean recipe for

parameter and path inference in Markov jump processes. In our experiments, we

demonstrate superior performance over Gibbs sampling, a more näıve Metropolis-

Hastings algorithm we propose, as well as another popular approach, particle Markov

chain Monte Carlo. We also show our sampler inherits geometric mixing from an

‘ideal’ sampler that is computationally much more expensive.

In the second part of the thesis, a novel collapsed variational inference algo-

rithm is proposed. Our variational inference algorithm leverages ideas from discrete-

time Markov chains, and exploits a connection between Markov jump processes and

discrete-time Markov chains through uniformization. Our algorithm proceeds by
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marginalizing out the parameters of the Markov jump process, and then approximat-

ing the distribution over the trajectory with a factored distribution over segments of

a piecewise-constant function. Unlike MCMC schemes that marginalize out transi-

tion times of a piecewise-constant process, our scheme optimizes the discretization

of time, resulting in significant computational savings. We apply our ideas to syn-

thetic data as well as a dataset of check-in recordings, where we demonstrate superior

performance over state-of-the-art MCMC methods.
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1. INTRODUCTION

1.1 Inference for Markov jump processes

Discrete-time Markov chains are one of the most popular models in statistics and

machine learning, widely used for modeling sequences from fields such as speech and

video processing (Rabiner and Juang, 1986; Rabiner, 1989), genetics (Yoon, 2009)

and social-network analysis (Sarkar and Moore, 2006). However, often one is in-

terested in modeling a system whose evolution is asynchronous, with multiple time

scales. In such a situation, working directly in continuous time is a more natural

approach, since there is no natural discretization time scale. Further, it is some-

times useful to make continuous approximations to discrete-time systems. For ex-

ample in genetics, base-position along a strand of DNA is sometimes treated as a

real number. Continuous-time modeling often results in easier theoretical analysis,

and usually arises naturally from the science of the problem. Markov jump pro-

cesses (MJPs) (Çinlar, 1975) are continuous-time extensions of discrete-time Markov

chains and form one of the simplest continuous-time processes. Markov jump pro-

cesses are continuous-time piecewise constant stochastic processes (Figure 1.1), and

are widely used in fields like computational chemistry (Gillespie, 1977), molecular

genetics (Fearnhead and Sherlock, 2006), mathematical finance (Elliott and Osakwe,

2006), queuing theory (Breuer, 2003), artificial intelligence (Xu and Shelton, 2010)

and social-network analysis (Pan et al., 2016, 2017). MJPs have been used as real-

istic, mechanistic and interpretable models of a wide variety of phenomena, among

others, the references above have used them to model temporal evolution of the state

of a chemical reaction or queuing network, segmentation of a strand of DNA, and

user activity on social media.
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Figure 1.1. An example of an MJP path with noisy observations (crosses).
Empty circles are the thinned events.

In the applications mentioned above, the MJP trajectory and the corresponding

parameters are usually not observed completely. Instead, one often has noisy obser-

vations at a discrete set of times. Figure 1.1 is an example of an MJP trajectory with

crosses representing noisy observations. The statistical problem is then to understand

the conditional distribution over the MJP trajectory and parameters given these noisy

observations. This forms a continuous-time hidden Markov model problem, which is

the focus of this thesis. We list a few example applications below.

Queuing theory Computer servers typically process many simultaneous jobs. Only

limited number jobs can be processed at a time, and all other jobs must wait

in a queue for their turn. An MJP can model such a situation. The state can

represent the number of pending jobs in a queue (Asmussen, 2003; Breuer, 2003),

with the arrival and processing of jobs treated as independent events. Instead

of directly observing the number of jobs, one usually observes the server load or

the CPU usage. Based on these noisy observations, one may want to understand

the dynamics of the system.

Genetics Genome segmentation is one of the approaches to understand the biologi-

cal processes, such as mutation and recombination of DNA. An MJP trajectory
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can represent a segmentation of a strand of DNA, with different regions corre-

sponding to different mutation rates (Fearnhead and Sherlock, 2006; Philippe

et al., 2007). Here, ‘Time’ actually represents position along a strand of DNA.

Again, instead of being directly observed, only the occurrence of a particular

DNA motif can be observed. Given these noisy observations, one wants to

understand the evolution of the DNA sequence.

Social-network analysis Mobile and social network check-in data (Gao et al., 2012)

are being collected with the advancement of sensing technologies. Mobile social

media allows users to post their visits to interesting places online. We call such

a visit as a check-in record. A check-in record typically consists of a timestamp

and a location (latitude and longitude). MJPs can be used to model such check-

in data. The state can represent the working state of the social media user. In

a simple case, the state space only has two states, ‘working’ and ‘traveling’.

Instead of directly observing the states, we observe the check-in records, based

on which, the underlying patterns of users can be better understood.

In the discrete-time situation, there exists a variety of computational tools for

hidden Markov models. A standard approach for inference characterizes the condi-

tional distribution over path and parameters using Monte Carlo samples. Sampling

a trajectory of a finite state discrete-time Markov chain given noisy observations

can be done efficiently using the forward-filtering backward-sampling (FFBS) algo-

rithm (Frühwirth-Schnatter, 1994; Carter and Kohn, 1996). The complexity of the

FFBS algorithm is O(TN2), where T is the length of the chain and N is the number of

states in the state space. The continuous-time dynamics of MJP raise computational

challenges. In contrast to discrete-time hidden Markov models, one cannot a priori

bound the number of trajectory state transitions, and the transition times themselves

are continuous-valued. As a result, algorithms like FFBS can not be easily applied.
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1.2 Our contributions

In this thesis, we consider the problem of path and parameter inference for Markov

jump processes. Given noisy observations, we want to make inferences over the latent

MJP trajectory as well as any process parameters. We provide new computational

tools to address this problem. If the parameters are known, then the inference problem

becomes a trajectory inference problem, which has been well studied. The state-of-

the-art approach is an auxiliary variable Gibbs sampler from Rao and Teh (2013),

we will refer to this as the Rao-Teh algorithm. This Markov chain Monte Carlo

(MCMC) algorithm was designed to simulate paths when the MJP parameters are

known. In practice, the MJP parameters are unknown. Inference for MJP parameters

can be carried out by incorporating it into a Gibbs sampler that also conditionally

simulates parameters given the currently sampled trajectory (see section 3.4). This

is a straightforward extension of the Rao-Teh algorithm for the path and parameter

inference problem. However, in many situations, the Markov jump processes trajec-

tory and parameters exhibit strong coupling, so that alternately sampling path given

parameters, and parameters given path can result in poor MCMC mixing.

In order to address this issue, we propose a novel MCMC algorithm (Zhang and

Rao, 2018) as well as a novel variational Bayes algorithm (Pan et al., 2017). Both

methods are based on the idea of uniformization (Jensen, 1953), which is fundamental

for our proposed algorithms. This allows us to borrow ideas from discrete-time hidden

Markov models to continuous-time hidden Markov models.

In the first part of the thesis, we propose a novel efficient MCMC algorithm for in-

ference for Markov jump processes (Zhang and Rao, 2018). Based on uniformization,

our algorithm brings Metropolis-Hastings approaches (Metropolis et al., 1953; Hast-

ings, 1970) from discrete-time hidden Markov models to the continuous-time setting,

for parameter and path inference in Markov jump processes. Our algorithm reduces

the coupling between the MJP path and parameters by marginalizing out the path

information and thereby accelerates the MCMC convergence. We perform empirical
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studies in order to demonstrate the superior performance of our proposed MCMC

algorithm. We also prove that under relatively mild conditions, our sampler inher-

its geometric ergodicity from an ‘ideal’ sampler that is computationally much more

expensive. This part of work is included in our paper Zhang and Rao (2018).

In the second part of the thesis, we propose an alternative to MCMC sampling

algorithms. We propose a novel variational Bayes (VB) algorithm for inference for

Markov jump processes (Pan et al., 2017). Our algorithm marginalizes out the MJP

parameters, thereby addressing the issue of slow mixing. Unlike the MCMC algorithm

that marginalizes out the MJP transition times, our variational Bayes algorithm op-

timizes the transition times, resulting in significant computational savings. This part

of work is published in our paper Pan et al. (2017).

We organize the rest of the thesis as follows. Chapter 2 provides a review of

Markov jump processes and the properties. It introduces the key idea of uniformiza-

tion (Jensen, 1953). This characterizes a Markov jump process as a discrete Markov

chain on a random discretization of time. Given such a representation, we proceed

to develop our novel MCMC sampler and our variational Bayes algorithm.

Chapter 3 first gives a brief review of the forward-filtering backward-sampling

algorithm for discrete time hidden Markov models. It then describes the state-of-the-

art approach for trajectory inference for MJPs when the parameters are known, which

is an auxiliary variable Gibbs sampler from (Rao and Teh, 2013). For the case when

the parameters are unknown, we introduce a Gibbs sampler which is based on the

Rao-Teh algorithm, in order to make inference over both trajectory and parameters.

However, the Gibbs sampler can mix very poorly because of coupling between path

and parameters.

In chapter 4, we propose a näıve Metropolis-Hastings algorithm (algorithm 6) for

Bayesian inference in Markov jump processes, when the parameters are unknown.

This approach uses a Metropolis-Hastings scheme to update the MJP parameters,

conditioning on a random grid, with the state-values marginalized out. This aims

to reduce the path-parameter coupling. However, it still conditions on a random
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Poisson grid, whose distribution depends on the MJP parameters. We show that this

significantly slows down MCMC mixing.

Chapter 5 describes our first main contribution: a symmetrized Metropolis-Hastings

algorithm (algorithm 7) to get around the dependency between the random grid and

the MJP parameters. Our main idea is to symmetrize the probability of the random

discretization of time under the old and proposed parameters, so that the dependency

between the random grid and the MJP parameters disappears when computing the

MH acceptance ratio. This improves our earlier proposed näıve MH algorithm (algo-

rithm 6) and significantly accelerates the MCMC mixing.

In Chapter 6, we evaluate Python implementations of a number of algorithms,

focusing our contribution, the symmetrized MH algorithm (algorithm 7), and as well

as the näıve MH algorithm (algorithm 6). We evaluate different variants of these

algorithms, corresponding to different settings. We also evaluate two other baselines:

Gibbs sampling (algorithm 4), and particle Markov chain Monte Carlo (Andrieu et al.,

2010, see also Appendix). For each run of each MCMC algorithm, we calculated the

effective sample size (ESS) of the posterior samples of the MJP parameters using the

R package rcoda (Plummer et al., 2006). Our experiments demonstrate the superior

performance of our symmetrized MH algorithm over Gibbs sampling, the proposed

näıve Metropolis-Hastings algorithm (algorithm 6), as well as another popular ap-

proach, particle MCMC.

Chapter 7 provides a theoretical analysis of our symmetrized MH algorithm. It

starts with a brief review of geometric ergodicity. It then describes our second main

contribution, a theorem showing our symmetrized MH sampler inherits geometric

mixing from an ideal sampler that is computationally much more expensive under

some necessary assumptions.

Chapter 8 gives a review of variational inference, which is a technique to approx-

imate intractable posterior probability densities. It is an alternative to MCMC, and

has recently been growing popular in statistics and machine learning (Blei et al.,

2017; Wang and Blunsom, 2013; Opper and Sanguinetti, 2007). Chapter 9 shows
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our third main contribution. We propose a novel collapsed variational inference al-

gorithm. This work is published in our paper (Pan et al., 2017). Our algorithm

exploits a uniformized representation of the Markov jump processes, that views it as

Markov chain on a random grid. We describe a prior specification of an MJP using

this representation, and by marginalizing out the MJP parameters, avoid some of

the parameter-trajectory coupling issues that plague standard MCMC samplers. By

maintaining a point estimate of the discretization of time, we improve interpretability

and allow our inference algorithm to adaptively determine which times intervals have

large transition activity and which are stable.

Finally, we end with a summary, and a discussion of possible future research works

in Chapter 10.
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2. MARKOV JUMP PROCESSES

2.1 Introduction

In this chapter, we introduce Markov jump processes (MJPs). MJPs are one of

the simplest continuous time stochastic processes, widely used in many fields (see

section 1.1). In these applications, MJPs serve as a prior distribution over piecewise-

constant trajectories. In practice, this trajectory is usually observed with noise

through some likelihood function. Together, prior and likelihood define a posterior

distribution which summarizes all information about the trajectory. However, for

MJPs, this is an intractable quantity. Thus, in order to characterize it, we must use

Monte Carlo or Markov chain Monte Carlo methods to draw samples from the poste-

rior distribution. The challenge is to efficiently sample from the posterior distribution

over trajectories and the MJP parameters.

We start with a review of Markov jump processes in section 2.2. Then we introduce

the idea of uniformization in section 2.3. In section 2.4, we introduce the structured

rate matrices. Finally, in section 2.5, we set up our Bayesian model for the MJPs

with noisy observations.

2.2 Markov jump processes

A Markov jump process (Çinlar, 1975) is a right-continuous piecewise-constant

stochastic process S(t) taking values in a state space S. We assume a finite number

of states N , with S = {1, . . . , N}. Then, the MJP is parameterized by two quantities,

an N -component probability vector π0 and a rate-matrix A. The former gives the

distribution over states at the initial time (we assume this is 0), while the latter is

an N ×N -matrix governing the dynamics of the system. An off-diagonal element Aij
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gives the rate of transitioning from state i to j. The rows of A sum to 0, so that

Aii = −
∑

j 6=iAij. We write Ai for the negative of the ith diagonal element Aii, so

that Ai = −Aii gives the total rate at which the system leaves state i for any other

state. We have the following properties for an MJP with rate matrix A. For any

t, t′ ≥ 0 and states s, s′ ∈ S, write

P (S(t+ t′) = s|s(t′) = s′, {s(u), u < t′}) = P (S(t+ t′) = s|s(t′) = s′) = P t
s′,s,

for some stochastic transition matrix P t, depending on time t. We have

A = lim
t→0+

Pt − I
t

,

where I is the identity matrix. A is actually the derivative of P t at t = 0.

P t = exp(At), P (S(t+ dt) = s|s(t′) = s′) = As′,sdt.

To simulate an MJP over an interval [0, tend), one follows Gillespie’s algorithm (Gille-

spie, 1977): first sample an initial state s0 from π0, and defining t0 = tcurr = 0 and

k = 0, repeat the following while tcurr < tend:

• Sample a wait-time ∆tk from an exponential distribution with rate Ask . Set

tk+1 = tcurr = tk + ∆tk. The MJP remains in state sk until time tk+1.

• Jump to a new state sk+1 6= sk with probability equal to Asksk+1
/Ask . Set

k = k + 1.

The times T = (t1, . . . , tk−1) and states S = (s1, . . . , sk−1), along with the initial state

s0, define the MJP path, so that {S(t), t ∈ [0, tend)} ≡ (s0, S, T ). See Figure 2.2 for

example.
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Figure 2.1. Gillespie’s algorithm to sample a MJP path on [0, tend].

Algorithm 1 Gillespie’s algorithm to sample an MJP path on the interval [0, tend]

Input: The rate matrix A and the initial distribution over states π0.

Output: An MJP trajectory {S(t), t ∈ [0, tend)} ≡ (s0, S, T ) .

1: Initialize the MJP starting state s0 ∼ π0. Set t0 = tcurr = 0 and k = 0

2: while tcurr < tend do

3: Sample ∆tk ∼ exp(Ask).

4: Set tk+1 = tcurr = tk + ∆tk.

5: The MJP jump to a new state sk+1 6= sk with probability equal to Asksk+1
/Ask.

6: Set k = k + 1.

7: end while

8: Drop the last pair of (sk, tk).

2.3 Uniformization

Gillespie’s algorithm is a straightforward way to sample a path from an MJP.

In this section, we introduce the idea of uniformization (Jensen, 1953), which is an

alternative scheme to sample an MJP trajectory. Uniformization builds a connec-

tion between the Markov jump processes, the Poisson process and the discrete-time

Markov chain. For an Markov jump process with rate matrix A and initial distribu-
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tion π0, choose an Ω > max |Aii| and sample a set of times from a Poisson process

with intensity Ω in the time interval [0, tend] (Figure 2.2 left). These form a random

discretization of time of the time interval [0, tend], and denote it as W = (w1, ..., w|W |),

where 0 < w1 < ... < w|W | < tend with probability 1. Let B = I + 1
Ω
A. B is a valid

transition matrix with nonnegative elements and each row summing to 1. It allows

the discrete-time system to move back to the same state, which is impossible for

the original Markov jump process. Then we run a discrete-time Markov chain with

initial distribution π0 and transition matrix B on W . The Markov chain has state

v0 at time 0 and states V = (v1, ..., v|W |) at times (w1, ..., w|W |), with the dynam-

ics v0 ∼ π0 and P (vi+1 = s′|vi = s) = Bss′ . As shown in Figure 2.2 right, (v0, V )

have self-transitions. After discarding the self-transions, the resulting distribution of

trajectories is identical to the original Markov jump process with rate matrix A for

any Ω > max |Aii| and initial distribution π0. As we know, the thinning theorem

from (Lewis and Shedler, 1979) ensures that a Poisson process sample can be con-

structed by independently deleting events with probability from a Poisson process

with higher rate. The Markov property of the MJP indicates that the independent

thinning scheme does not apply any more. The Markov structure implies that if a

point wi should be discarded depends on the MJP state at the previous Poisson time

wi−1. Running a discrete-time Markov chain on the set of times W actually provides

a mechanism to ‘thin’ the set W .

Figure 2.2. (left) Candidate transition times; (right) Uniformization: thin
events from a subordinating Poisson process by running a discrete-time
Markov chain on this set of times. The empty circles are the thinned
events.
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Theorem 2.3.1 (Uniformization theorem (Jensen, 1953)) For any Ω > max |Aii|,

and the initial distribution π0, (v0, V,W ) define the Markov jump process with rate

matrix A and the initial distribution π0.

Proof We repeat the proof in Rao and Teh (2013), following the idea in Hobolth

and Stone (2009). Let πt be the marginal distribution of the Markov jump process at

time t. We have

πt = exp(At)π0 = exp(Ω(B − I)t)π0

= exp(−Ωt) exp(ΩtB)π0

=
+∞∑
n=0

[
exp(−Ωt)

(Ωt)n

n!

]
Bnπ0.

The first term in the summation is the probability that a Poisson process with rate Ω

has n events in the length t time interval. The second term is the marginal distribution

over states after n step for a discrete-time Markov chain with transition matrix B and

initial distribution π0. Since the marginal distribution of the MJP at time t matches

the marginal distribution induced by the uniformization procedure, they both define

the same Markov jump process.

2.4 Structured rate matrices

The dynamics of MJPs are governed by the rate matrix A. Any off-diagonal el-

ement Aij gives the rate of transitioning from state i to j, and the negative of the

diagonal element, −Aii, gives the total rate of the system leaving state i. While

the rate matrix A can have N(N − 1) independent elements, in typical applications,

especially with large state-spaces, it is determined by a much smaller set of parame-

ters. We will write these as θ, with A a deterministic function of these parameters:

A ≡ A(θ). The parameters θ are often more interpretable than the elements of A,and

correspond directly to physical, biological or environmental parameters of interest.

For example:
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Immigration-death processes Here, θ = (α, β), with α the arrival-rate and β

the death-rate. The state represents the size of a population or queue. New

individuals enter with rate α, so off-diagonal elements Ai,i+1 equal α. Each

individual dies at a rate β, so that Ai,i−1 = iβ. All other transitions have rate

0.

Birth-death processes This variant of the earlier MJP moves from state i to i+ 1

with rate iα, with growth-rate is proportional to population size. Again, the

death-rate is β, so that Ai,i−1 = iβ. The other off-diagonal elements are 0, and

again θ = (α, β).

Codon substitution models These characterize transitions between codons at a

DNA locus over evolutionary time. There are 61 codons, and in the simplest

case, all transitions have the same rate (Jukes and Cantor, 1969): Aij = α ∀i 6=

j. Thus the 61× 61 matrix A is determined by a single α. Other models group

transitions as ‘synonymous’ and ‘nonsynonymous’, based on whether old and

new codons encode the same amino acid. Synonymous and nonsynonymous

transitions have their own rates, so A is determined by 2 parameters α and β.

More refined models (Goldman and Yang, 1994) introduce additional structure

and parameters.

2.5 A Bayesian model

We first set up our Bayesian model of the data generation process. We model a

latent piecewise-constant path S(t) over [0, tend) as an N -state MJP with rate matrix

A(θ) and prior π0 over s0 = S(0), the state at time 0. We use both {S(t), t ∈

[0, tend)} and (s0, S, T ) (see section 2.2) to refer to the MJP path. We place a prior

P (θ) over the unknown θ. For simplicity, we assume π0 is known (or we set it to a

uniform distribution over the N states). We have noisy measurements X of the latent

process, with likelihood P (X|{S(t), t ∈ [0, tend)}). Again, for clarity we ignore any

unknown parameters in the likelihood, else we can include them in θ. We assume
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the observation process has the following structure: for fixed X, for any partition

W̃ = {w̃1 = 0, . . . , w̃|W̃ | = tend} of the interval [0, tend) (where | · | denotes cardinality),

there exist known functions `i such that the likelihood factors as:

P (X|{S(t), t ∈ [0, tend)}) =

|W̃ |−1∏
i=1

`i({S(t), t ∈ [w̃i, w̃i+1)}) (2.1)

A common example is a finite set of independent observations X = {x1, . . . , x|X|} at

times TX = {tX1 , . . . , tX|X|}, each observation depending on the state of the MJP at

that time:

P (X|{S(t), t ∈ [0, tend)}) =

|X|∏
i=1

P (xi|S(tXi )). (2.2)

Other examples include situations when the observations form an inhomogeneous

Poisson process (Fearnhead and Sherlock, 2006), renewal process (Rao and Teh,

2011) or even another MJP (Nodelman et al., 2002; Rao and Teh, 2013), modu-

lated by (s0, S, T ). The first example, called a Markov modulated Poisson pro-

cess (MMPP) (Scott and Smyth, 2003), associates a positive rate λs with each

state s, with `i({S(t), t ∈ [wi, wi+1)}) equal to the likelihood of the Poisson events

within [wi, wi+1) under an inhomogeneous Poisson process with piecewise-constant

rate λS(t), t ∈ [wi, wi+1).

With A(·) and π0 assumed known, the overall Bayesian model is then

θ ∼ P (θ), (s0, S, T ) ∼ MJP(π0, A(θ)), X ∼ P (X|s0, S, T ). (2.3)

Given X, one is interested in the posterior distribution over the latent quantities,

(θ, s0, S, T ).
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3. THE STATE-OF-THE-ART MCMC METHODS FOR

MARKOV JUMP PROCESSES

3.1 Introduction

If the MJP parameters θ in the Bayesian model in section 2.5 are known, we have

the problem of trajectory inference. One wants to understand the conditional distri-

bution over the latent MJP path given the noisy observations, P (s0, S, T |X, θ) of the

Bayesian model of equation (2.3). The problem of trajectory inference was addressed

in Rao and Teh (2013) and extended to a broader class of jump processes in Rao

and Teh (2012) (also see Fearnhead and Sherlock, 2006; Hobolth and Stone, 2009; El-

Hay et al., 2008). Rao and Teh (2013, 2012) both involve MJP path representations

with auxiliary candidate jump times that are later thinned. However, in practice,

the parameters are typically unknown, and often, the conditional distribution over

the parameters P (θ|X) is of primary interest. This is also intractable. One then

has to characterize the complete posterior P (θ, s0, S, T |X) of the Bayesian model of

equation (2.3). Some approaches involving particle MCMC (Andrieu et al., 2010) or

matrix exponentials (Fearnhead and Sherlock, 2006) have been proposed.

In this chapter, we introduce the Rao-Teh algorithm (Rao and Teh, 2013), which

is the state-of-the-art approach for trajectory inference for MJPs. It is an efficient

auxiliary variable Gibbs sampler, based on the idea of uniformization described in

section 2.3, which is designed for simulating MJP trajectories when the parameters

are known. Before diving into the Rao-Teh algorithm, we first introduce a classic

sampling algorithm called forward-filtering backward-sampling (FFBS) algorithm for

discrete-time Markov chains, which plays an important role in the Rao-Teh algorithm.

Further, we introduce a Gibbs sampler based on the Rao-Teh algorithm to tackle the
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problem of inference over both trajectory and parameters. It is a straightforward

extension to the Rao-Teh algorithm.

3.2 The forward-filtering backward-sampling algorithm for discrete-time

Markov chains

Developed originally for finite state hidden Markov models, the forward-filtering

backward-sampling algorithm is a dynamic programming algorithm to efficiently sim-

ulate latent Markov chain given noisy observations. The algorithm makes a for-

ward pass through time, recursively accounting for successive observations. Then,

it samples a trajectory via a backward pass. The earliest references we know for

the FFBS algorithm are Frühwirth-Schnatter (1994) and Carter and Kohn (1996).

Let St, t ∈ {0, 1, ..., T} be a discrete-time Markov chain with a discrete state space

S = {1, 2, 3, ..., N}. The transition probability of the Markov chain is P (St+1 =

s′|St = s) = Bs,s′ , where B is the transition matrix, for any t ∈ {0, 1, ..., T − 1}. π0

is the initial distribution over states at time t = 0. Let Xt be a noisy observation on

the state at time t, with the likelihood known as `t(s) = P (Xt|St = s). Given a set

of observations X = (X0, X1, ..., XT ), the corresponding joint distribution is

P (S0, S1, · · ·ST , X) = P (S0, S1, · · ·ST )P (X|S0, S1, · · ·ST )

=

[
P (S0)

T−1∏
i=0

P (Si+1|Si)

][
T∏
i=0

P (Xi|Si)

]

= π0(S0)
T−1∏
i=0

BSi,Si+1

T∏
i=0

P (Xi|Si).

The FFBS algorithm returns independent posterior samples of the state vector from

the posterior distribution P (S0, S1, · · ·ST |X), given the transition matrix B and the

initial distribution π0.
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Define ft(s) = P (St = s,X0, ..., Xt−1) for any t ∈ {0, 1, ..., T} and s ∈ S. ft(s)

can be computed recursively from the Markov property.

ft(s
′) =

N∑
s=1

ft−1(s)P (Xt−1|St−1 = s)P (St = s′|St−1 = s)

=
N∑
s=0

ft−1(s)`t−1(s)Bs,s′ .

At each step t, it takes O(N2) calculations to compute ft(s
′) for all s ∈ S, and a

forward pass through all T times takes O(TN2). At the end of the forward algorithm,

let bT (s) be the following.

bT (s) = `T (s)fT (s) = P (X,ST = s)

∝ P (ST = s|X).

Then given St+1, define bt(s) as follows recursively.

bt(s) = P (St = s|St+1, X)) ∝ P (St = s, St+1, X)) (3.1)

= ft(s)B
t
sSt+1

`t(s)P (X t+1, ..., XT |St+1) (3.2)

∝ ft(s)B
t
sSt+1

`t(s). (3.3)

First sample a realization of ST from bT . Then, based on 3.3, FFBS sequentially

samples ST−1, ST−2, ... , S0. Also, as a byproduct, at the end of the forward pass, the

marginal probability of the observations P (X0, X1, ..., XT ) can be computed easily by

P (X0, X1, ..., XT ) =
N∑
s=1

fT (s)`T (s). (3.4)

Algorithm 2 includes the details of this algorithm.



18

Algorithm 2 The forward-filtering backward-sampling algorithm

Input: An initial distribution over states π0, observations X = (X0, ..., XT ),

with the likelihood `t(s) = p(Xt|St = s), transition matrixB.

Output: A realization of the Markov chain (S0, ..., ST ).

1: Run a forward to compute all the ft(s) for all t = 0→ T , s ∈ S:

f0(s) = π0(s);

ft(s
′) =

N∑
s=0

ft−1(s)`t−1(s)Bs,s′ .

2: Sample ST :

Sample ST ∼ bT (s) = `T (s)fT (s);

3: Backwardly sample St for t = T − 1→ 0:

Sample St ∼ bt(s) ∝ ft(s)BsSt+1`t(s).

4: Compute the marginal probability of the observations:

P (X0, X1, ..., XT ) =
N∑
s=1

fT (s)`T (s).

3.3 Bringing FFBS from discrete-time to continuous-time

The Rao-Teh algorithm is based on the idea of uniformization (Jensen, 1953),

described in Section 2.3. Uniformization involves a parameter Ω(θ) ≥ maxiAi(θ);

Rao and Teh (2013) suggest Ω(θ) = 2 maxiAi(θ). Define B(θ) =
(
I + 1

Ω(θ)
A(θ)

)
; this

is a stochastic matrix with nonnegative elements, and rows adding up to 1. Unlike the

sequential wait-and-jump Gillespie algorithm, uniformization first simulates a random

grid of candidate transition-times W over [0, tend), and then assigns these state values.

Introducing the thinned variables allowed Rao and Teh (2013) to develop an effi-

cient MCMC sampler (algorithm 3). At a high-level, each MCMC iteration simulates
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a new grid W conditioned on the path (s0, S, T ), and then a new path conditioned

on W . Rao and Teh (2013) show that the resulting Markov chain targets the desired

posterior distribution over trajectories, and is ergodic for any Ω(θ) strictly greater

than all the Ai(θ)’s.

Given an MJP path {S(t), t ∈ [0, tend)}, the Rao-Teh algorithm proceeds by re-

sampling the thinned events U from a Poisson process with piecewise-constant rate

Ω(θ) − AS(t)(θ), t ∈ [0, tend) (Figure 3.1 top right). When a state s has a high rate,

the the Poisson rate for the thinned event corresponding to state s is small. Then,

the new set of candidate transition times W includes the actual MJP transition times

T and the thinned events U . Discard the state information V corresponding to W

(Figure 3.1 bottom left). Conditioning on the candidate transition times W , the prob-

lem becomes a discrete-time hidden Markov model problem, with transition matrix

B(θ) =
(
I + 1

Ω(θ)
A(θ)

)
. Thus, FFBS can be applied to resample the states corre-

sponding to W (Figure 3.1 bottom right). After dropping the thinned events, we

have a new MJP trajectory.

1 2

3 4

Figure 3.1. The Rao-Teh algorithm: Steps 1-2: Sample the thinned events
(empty circles). Step 3: Discard state information to get a random grid.
Step 4: Resample the trajectory by running the FFBS algorithm on the
grid.
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Algorithm 3 The (Rao and Teh, 2013) MCMC sampler for MJP trajectories

Input: Prior π0, observations X, the previous path S(t) = (s0, S, T );

Parameter Ω(θ) > maxiAi(θ), where A(θ) is the MJP rate-matrix.

Output: New MJP trajectory S ′(t) = (s′0, S
′, T ′).

1: Simulate the thinned candidate times U given the MJP path (S, T )

from a piecewise-constant Poisson process with rate Ω(θ)− AS(t)(θ):

U ∼ PoissProc(Ω(θ)−AS(t)(θ)) (the rate at time t is Ω(θ)− As(θ) if S(t) = s).

2: Discard the states (s0, S), and write W = T ∪ U .

3: Simulate states (v0, V ) on 0 ∪W from a discrete-time HMM with initial

distribution over states π0 and transition matrix B(θ) =
(
I + 1

Ω(θ)
A(θ)

)
. Follow-

ing equation (2.1), between two consecutive times (w̃i, w̃i+1) in W̃
def
= 0∪W ∪ tend,

state s has likelihood `i(s) ≡ `i({S(t) = s, t ∈ [w̃i, w̃i+1)}). The simulation

involves two steps:

Forward pass: Set f0(·) = π0. Sequentially update fi(·) at time w̃i ∈ W̃ given

fi−1:

for i = 1→ |W̃ | do: fi(s
′) =

∑
s∈S

`i−1(s)·fi−1(s)·Bss′(θ), ∀s′ ∈ S.

Backward pass: Set v|W | ∼ b|W |(·), where b|W |(s) ∝ f|W |(s) · `|W |(s) ∀s ∈ S.

for i = (|W |−1)→ 0 do: vi ∼ bi(·), where bi(s) ∝ fi(s)·Bsvi+1
(θ)·`i(s) ∀s ∈ S.

4: Discard self-transitions: Set s′0 = v0. Let T ′ be the set of times in W when

V changes state. Define S ′ as the corresponding set of state values. Return

(s′0, S
′, T ′).

3.4 Gibbs inference over MJP path and parameters

For fixed parameters θ, the efficiency of the Rao-Teh algorithm has been estab-

lished, both empirically (Rao and Teh, 2013) and theoretically (Miasojedow and

w. Niemiro, 2017). In the case when the parameters are unknown, one has to charac-
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terize the complete posterior of the Bayesian model of equation (2.3). In this section,

we introduce a Gibbs sampler to make inference over both trajectory and parameters.

The inference problem is typically carried out by incorporating the previous algorithm

into a Gibbs sampler that targets the joint P (θ, s0, S, T |X) by conditionally simulat-

ing (s0, S, T ) given θ and then θ given (s0, S, T ). However, sampling parameters given

path, and path given parameters alternatively can lead to poor Markov chain mixing.

Algorithm 4 (see also Rao and Teh, 2013) outlines this:

Algorithm 4 Gibbs sampling for path and parameter inference for MJPs

Input: The current MJP path S(t) = (s0, S, T ), the current MJP parameters θ.

Output: New MJP trajectory S ′(t) = (s′0, S
′, T ′) and parameters θ′.

1: Simulate a new trajectory from the conditional P (s′0, S
′, T ′|X,S(t), θ) by algo-

rithm 3.

2: Simulate a new parameter θ′ from the conditional P (θ′|X, s′0, S ′, T ′) (see equa-

tion (3.5)).

The distribution P (θ′|X, s′0, S ′, T ′) depends on the amount of time τi spent in each

state i, and the number of transitions cij between each pair of states i, j:

P (θ′|X, s′0, S ′, T ′) ∝ P (θ′)
∏
i∈S

exp(−Ai(θ′)τi)
∏
j∈S

(
Aij(θ

′)

Ai(θ′)

)cij
. (3.5)

In some circumstances, this can be directly sampled from, otherwise, one has to use

a Markov kernel like Metropolis-Hastings to update θ to θ′. In any event, this in-

troduces no new technical challenges. However, the resulting Gibbs sampler can mix

very poorly because of coupling between path and parameters. We illustrate this

in figure 3.2 (inspired by Papaspiliopoulos et al., 2007)), which shows the posterior

distribution of an MJP parameter (long-dashes) is less concentrated than the distribu-

tion conditioned on both observations as well as path (short-dashes). The coupling is

strengthened as the trajectory grows longer (right panel), and the Gibbs sampler can

mix very poorly with long observation periods, even if the observations themselves
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Figure 3.2. Prior density over an MJP parameter (solid curve), along
with two conditionals: given observations only (long-dashes), and given
observations and MJP path (short-dashes). As tend increases from 10
(left) to 100 (right), the conditionals become more concentrated, implying
stronger path-parameter coupling. The plots are from section 6.4 with 3
states.

are only mildly informative about the parameters. In the next chapter, we describe

our first näıve attempt in order to get around this coupling issue.
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4. NAı̈VE PARAMETER INFERENCE VIA

METROPOLIS-HASTINGS

4.1 Introduction

In this chapter we outline an attempt around the path-parameter coupling we

mentioned in section 3.4. We propose a näıve Metropolis-Hastings algorithm (algo-

rithm 6) for Bayesian inference in Markov jump processes, when the parameters are

unknown. Before we describe our algorithm, we first introduce the MH algorithm for

parameter inference for discrete-time Markov chains, which is the idea we bring to

the continuous-time setting.

4.2 Metropolis-Hastings algorithm for discrete-time Markov chains

For discrete-time HMMs, path-parameter coupling can be circumvented by marginal-

izing out the Markov trajectory, and directly sampling from the marginal posterior

P (θ|X). In its simplest form, this involves a Metropolis-Hastings (MH) scheme that

proposes a new parameter ϑ from some proposal distribution q(ϑ|θ), accepting or re-

jecting according to the usual MH probability. The latter step requires calculating the

marginal probabilities P (X|θ) and P (X|ϑ), integrating out the exponential number

of possible latent trajectories. Fortunately, as shown in equation 3.4 and algorithm 2,

the marginal probabilities over X given parameters can be computed while running

the FFBS algorithm, without additional computational burden. Algorithm 5 shows

the details of this algorithm.
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Algorithm 5 Metropolis-Hastings parameter inference for a discrete-time Markov

chain

Input: Observations X, proposal density q(ϑ|θ),current parameters θ

Output: A new Markov chain parameter θ′.

1: Propose a new parameter ϑ from the proposal distribution q(ϑ|θ).

2: Run the FFBS algorithm to obtain the marginal likelihood of the observations,

P (X|ϑ).

3: accept ϑ with probability acc = min(1, P (X|ϑ)P (ϑ)q(θ|ϑ)
P (X|θ)P (θ)q(ϑ|θ) ).

The basic idea of marginalizing out information to accelerate MCMC convergence

rates is formalized by the idea of the Bayesian fraction of missing information (Liu,

1994b). In this context, papers such as Papaspiliopoulos et al. (2007); Yu and Meng

(2011) have studied MCMC algorithms for hierarchical latent variable models.

4.3 Näıve Metropolis-Hastings algorithm for Markov jump processes

The Rao-Teh algorithm, which recasts posterior simulation for continuous-time

models as discrete-time simulation on a random grid, then provides a simple mech-

anism to incorporate the MH-scheme for discrete-time HMM we mentioned above

into continuous-time settings: directly update θ, conditioning on the random grid

W , but marginalizing out the states (v0, V ). In this section, we propose a näıve

Metropolis-Hastings algorithm (algorithm 6) for Bayesian inference in Markov jump

processes, when the parameters are unknown. We first use uniformization to sample

the random discretization (Figure 4.1 step 1 to 3). Then update the parameters, in a

Metropolis-Hastings scheme, conditioning on the random grid, with the state-values

marginalized out, which aims to reduce the path-parameter coupling (Figure 4.1 step

4). Specifically, given θ and the Poisson grid W , rather than simulating new path

values (the backward pass in algorithm 3), and then conditionally updating θ (the
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second step in algorithm 4), we first propose a parameter ϑ from q(ϑ|θ). This is

accepted with probability

acc = min

(
1,
P (X|W,ϑ)P (W |ϑ)P (ϑ)q(θ|ϑ)

P (X|W, θ)P (W |θ)P (θ)q(ϑ|θ)

)
,

thereby targeting the distribution P (W, θ|X). In the equation above, P (X|W, θ) is

the probability of the observations X given W with (v0, V ) marginalized out. Uni-

formization says this is the marginal probability of X under a discrete-time HMM

on W , with transition matrix B(θ). This can be computed using the forward pass of

FFBS algorithm (steps 4 and 6 of algorithm 6). The term P (W |θ) is the probability

of W under a rate-Ω(θ) Poisson process. These, and the corresponding terms for ϑ

allow the acceptance probability to be computed. Only after accepting or rejecting

ϑ do we simulate new states (v′0, V
′), using the new parameter θ′ in a backward pass

over W (Figure 4.1 step 5). The new trajectory and parameter are used to simulate

a new grid W ′, and the process is repeated. Algorithm 6 includes all the details of

this algorithm, with figure 4.1 sketching out the main idea.

The resulting MCMC algorithm updates θ with the MJP trajectory integrated

out, and by instantiating less ‘missing’ information, can be expected to mix better.

This can be quantified by the so-called Bayesian fraction of missing information (Liu,

1994b; Papaspiliopoulos et al., 2007). The Gibbs sampler of algorithm 4 can be

viewed as operating on a centered parametrization (Papaspiliopoulos et al., 2007)

or sufficient augmentation (Yu and Meng, 2011) of a hierarchical model involving

θ, the Poisson events W , and the state values (v0, V ). The MH algorithm reverses

the order in which the path and parameter are updated, and is closely related to

noncentered parametrizations or ancillary augmentations. For a detailed review of

the suitability of these two approaches, as well as ways to combine them together, we

refer to Papaspiliopoulos et al. (2007); Yu and Meng (2011).

We note that even with the state values (v0, V ) marginalized out, θ is updated

conditioned on W . The distribution of W depends on θ: W follows a rate-Ω(θ)

Poisson process. This dependence manifests in the P (W |θ) and P (W |ϑ) terms in
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1 2

3 4

5 6

Figure 4.1. Näıve MH-algorithm: Step 1 to 3: sample thinned events and
discard state information to get a random grid. Step 4: propose a new
parameter θ′, and accept or reject by making a forward pass on the grid.
Steps 5 to 6: make a backward pass using the accepted parameter and
discard self-transitions to produce a new trajectory.

equation (4.1). The fact that the MH-acceptance involves the probability of the obser-

vations X is inevitable, however the P (W |θ) term is an artifact of the computational

algorithm of Rao-Teh. In our experiments, we show that this term significantly affects

acceptance probabilities and mixing. For parameter θ, |W | is Poisson distributed with

mean and variance Ω(θ). If the proposed ϑ is such that Ω(ϑ) is half Ω(θ), then the

ratio P (W |ϑ)/P (W |θ) will be small, and ϑ is unlikely to be accepted. This will slow

down mixing. The next chapter describes our main algorithm that gets around this.
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Algorithm 6 Näıve MH for parameter inference for MJPs

Input: Observations X, the MJP path S(t) = (s0, S, T ), the parameters θ and π0.

Output: A new MJP trajectory S ′(t) = (s′0, S
′, T ′), new MJP parameters θ′.

1: Set Ω(θ) > maxsAs(θ) for some function Ω(·), e.g. Ω(θ) = 2 maxsAs(θ).

2: Simulate the thinned times U from a rate-(Ω(θ)− AS(t)(θ)) Poisson process:

U ∼ PoissProc(Ω(θ)− AS(t)(θ)).

3: Set W = T ∪ U and discard (s0, S). Define W̃ = 0 ∪W ∪ tend.

4: Forward pass: Set B(θ) = I + 1
Ω(θ)

A(θ) and fθ0(·) = π0.

for i = 1→ |W̃ | do: fθi (s
′) =

∑
s∈S

`i−1(s)·fθi−1(s)·Bss′(θ), ∀s′ ∈ S.

5: Propose ϑ ∼ q(·|θ). For all elements of W̃ , calculate fϑi (·) similar to above.

6: Accept/reject: Set P (X|W, θ) =
∑

s∈S f
θ
|W̃ |(s), P (W |θ) =

Ω(θ)|W | exp(−Ω(θ)tend), with similar expressions for ϑ. With probability

acc, set θ′ to ϑ, else set it to θ, where:

acc = 1 ∧ P (ϑ|W,X)

P (θ|W,X)

q(θ|ϑ)

q(ϑ|θ)
= 1 ∧ P (X|W,ϑ)P (W |ϑ)P (ϑ)

P (X|W, θ)P (W |θ)P (θ)

q(θ|ϑ)

q(ϑ|θ)
. (4.1)

7: Backward pass: Set v|W | ∼ bθ
′

|W |(·), where bθ
′

|W |(s) ∝ fθ
′

|W |(s) · `|W |(s) ∀s ∈ S.

for i = (|W |−1)→ 0 do: vi ∼ bθ
′

i (·), where bθ
′

i (s) ∝ fθ
′

i (s)·Bsvi+1
(θ′)·`i(s) ∀s ∈ S.

8: Set s′0 = v0. Let T ′ be the set of times in W when V changes state. Define S ′ as

the corresponding set of state values. Return (s′0, S
′, T ′, θ′).
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5. SYMMETRIZED METROPOLIS-HASTINGS

ALGORITHM FOR PARAMETER INFERENCE

5.1 Introduction

In this chapter, we describe our first main contribution for the Bayesian inference

for the MJPs. We propose a symmetrized Metropolis-Hastings (algorithm 7) to get

around the dependency between the random grid and the MJP parameters. Our main

idea is to symmetrize the probability of W under the old and proposed parameters,

so that P (W |θ) disappears from the acceptance ratio.

5.2 Symmetrized Metropolis-Hastings algorithm

As before, the MCMC iteration begins with (s0, S, T, θ). Instead of simulating the

thinned events U like earlier algorithms, we first generate a new parameter ϑ from

some distribution q(ϑ|θ) (Figure 7 step 2). Treat this as an auxiliary variable, so that

the augmented space now is (s0, S, T, θ, ϑ). Define a function Ω(θ, ϑ) > maxsAs(θ)

that is symmetric in its arguments (the number of arguments will distinguish Ω(·, ·)

from Ω(·) of the earlier sections). Two examples are Ω(θ, ϑ) = κmaxsAs(θ) +

κmaxsAs(ϑ), for κ ≥ 1, and Ω(θ, ϑ) = κmax (maxsAs(θ),maxsAs(ϑ)), for κ > 1.

We will treat the path (s0, S, T ) as simulated by uniformization, but now with

the dominating Poisson rate equal to Ω(θ, ϑ) instead of Ω(θ) as before (Figure 7

step 3). The transition matrix B(θ, ϑ) of the embedded Markov chain is B(θ, ϑ) =

I+ 1
Ω(θ,ϑ)

A(θ), so that the resulting trajectory (s0, S, T ) will still be a realization from

a MJP with rate-matrix A(θ).

Following the Rao-Teh algorithm, the conditional distribution of the thinned

events U given (s0, S, T, θ, ϑ) is a piecewise-constant Poisson with rate Ω(θ, ϑ) −
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AS(t)(θ). This reconstructs the set W = U ∪ T , and as we saw (see also Rao and

Teh, 2013), P (W |θ, ϑ) is a homogeneous Poisson process with rate Ω(θ, ϑ). Having

imputed W , discard the state values, so that the MCMC state space is (W, θ, ϑ).

Now, propose swapping θ with ϑ (Figure 7 step 4). From the symmetry of Ω(·, ·),

the Poisson grid W has the same probability both before and after this proposal,

and unlike the previous scheme, the ratio P (W |ϑ)/P (W |θ) equals 1. This simpli-

fies computation, and as suggested in the previous section, can significantly improve

mixing. An acceptance probability of min
(

1, P (X|W,ϑ,θ)P (ϑ)q(θ|ϑ)
P (X|W,θ,ϑ)P (θ)q(ϑ|θ)

)
targets the condi-

tional P (W, θ, ϑ|X) ∝ P (θ)q(ϑ|θ)P (W,X|θ, ϑ). The terms P (X|ϑ) and P (X|θ) can

be calculated from the forward pass of FFBS, and after accepting or rejecting the

proposal, a new trajectory is sampled by completing the backward pass (Figure 7

step 5). Finally, the thinned events and auxiliary parameter are discarded (Figure 7

step 6). Algorithm 7 and figure 5.1 outline the details of these steps.

1 2 3

4 5 6

Figure 5.1. Symmetrized MH algorithm: Steps 1-3: Starting with a tra-
jectory and parameter θ, simulate an auxiliary parameter ϑ, and then
the thinned events U from a rate Ω(θ, ϑ) − AS(t) Poisson process. Step
4: Discard state values, and propose swapping θ and ϑ. Step 5: Run a
forward pass to accept or reject this proposal, calling the new parameters
θ′, ϑ′). Use these to simulate a new trajectory. Step 6: Discard ϑ′ and the
thinned events.

Proposition 5.2.1 The sampler described in Algorithm 7 has the posterior distribu-

tion P (θ, S(t)|X) as its stationary distribution.
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Algorithm 7 Symmetrized MH for parameter inference for MJPs

Input: The observations X, the MJP path S(t) = (s0, S, T ), parameters θ and π0.

Output: A new MJP trajectory S ′(t) = (s′0, S
′, T ′), new MJP parameters θ′.

1: Sample ϑ ∼ q(·|θ), and set Ω
.
= Ω(θ, ϑ) for some symmetric Ω(θ, ϑ) >

maxsAs(θ).

2: Simulate the thinned times U from a rate-(Ω− AS(t)(θ)) Poisson process:

U ∼ PoissProc(Ω− AS(t)(θ)).

3: Set W = T ∪ U and discard (s0, S). Define W̃ = 0 ∪W ∪ tend.

4: Forward pass: Set B(θ, ϑ) = I + A(θ)
Ω(θ,ϑ)

and f
θ,ϑ
0 (·) = π0.

for i = 1→ |W̃ | do: f
θ,ϑ
i (s′) =

∑
s∈S

`i−1(s)·fθ,ϑi−1(s)·Bss′(θ, ϑ), ∀s′ ∈ S.

Similarly, for B(ϑ, θ) = I + A(ϑ)
Ω(ϑ,θ)

, calculate f
ϑ,θ
i (·) for all elements of W̃ .

5: Swap: Set P (X|W, θ, ϑ) =
∑

s∈S f
θ,ϑ
|W |(s), and P (X|W,ϑ, θ) =

∑
s∈S f

ϑ,θ
|W |(s).

Swap θ and ϑ with probability 1 ∧ P (X|W,ϑ,θ)P (ϑ)q(θ|ϑ)
P (X|W,θ,ϑ)P (θ)q(ϑ|θ) . Write the new parameters

as (θ′, ϑ′).

6: Backward pass: Set v|W | ∼ b
θ′,ϑ′

|W | (·), where b
θ′,ϑ′

|W | (s) ∝ f
θ′,ϑ′

|W | (s) · `|W |(s) ∀s ∈ S.

for i = (|W |−1)→ 0 do: vi ∼ b
θ′,ϑ′

i (·),where b
θ′,ϑ′

i (s) ∝ f
θ′,ϑ′

i (s)·Bsvi+1
(θ′, ϑ′)·`i(s) ∀s ∈ S.

7: Set s′0 = v0. Let T ′ be the set of times in W when V changes state. Define S ′ as

the corresponding set of state values. Return (s′0, S
′, T ′, θ′).

Proof Consider a realization (s0, S, T, θ) from the posterior distribution P (θ, s0, S, T |X).

An iteration of the algorithm first simulates ϑ from q(ϑ|θ). By construction, the

marginal distribution over all but the last variable in the set (θ, s0, S, T, ϑ) is still the

posterior.

The algorithm next simulates U from a Poisson process with rate Ω(θ, ϑ)−AS(t)(θ).

Write W = T ∪ U . The random grid W consists of the actual and thinned candi-

date transition times, and is distributed according to a rate-Ω(θ, ϑ) Poisson process

(Proposition 2 in (Rao and Teh, 2013)). Thus, the triplet (W, θ, ϑ) has probability pro-

portional to P (θ)q(ϑ|θ)PoissProc(W |Ω(θ, ϑ))P (X|W, θ, ϑ). Next, the algorithm pro-
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poses swapping θ and ϑ (a deterministic proposal), and accepts with MH-acceptance

probability

acc = 1∧P (ϑ)q(θ|ϑ)P (X|W,ϑ, θ)
P (θ)q(ϑ|θ)P (X|W, θ, ϑ)

= 1∧P (ϑ)q(θ|ϑ)PoissProc(W |Ω(ϑ, θ))P (X|W,ϑ, θ)
P (θ)q(ϑ|θ)PoissProc(W |Ω(θ, ϑ))P (X|W, θ, ϑ)

,

where we exploit the symmetry of Ω(·, ·). Write the new parameters as (θ′, ϑ′).

The Markov kernel has stationary distribution over (θ′, ϑ′) proportional to P (θ′)q(ϑ′|θ)

PoissProc(W |Ω(θ′, ϑ′))P (X|W, θ′, ϑ′), and the triplet (θ′, ϑ′,W ) has the same distri-

bution as (θ, ϑ,W ). The algorithm uses B(θ′, ϑ′) to make a backward pass through

W , simulating state values on W from the conditional of a Markov chain with transi-

tion matrix B(θ′, ϑ′) given observations X. Dropping the self-transition times results

in (θ′, s′0, S
′, T ′, ϑ′). From uniformization (see also Lemma 1 in Rao and Teh (2013)),

the trajectory (s′0, S
′, T ′) is distributed according to the conditional of a rate-A(θ′)

MJP given observations X. Finally, dropping ϑ′ results in (θ′, s′0, S
′, T ′) from the

posterior given X.

Now, the probability of accepting a proposal ϑ will depend only on the prior

probabilities of θ and ϑ, as well as how well they both explain the data given W .

This is in contrast to the previous algorithm, where one must also factor in how well

each parameter explains the current value of the grid W . This results in an MCMC

sampler that mixes significantly more rapidly. Since we also need do account for the

probabilities P (W |θ), we also have a simpler MCMC scheme. This forms one of the

main contributions of this thesis.

As mentioned earlier, uniformization forms such a representation for MJPs: first

sample θ, then sample the latent W , and use this to sample MJP state values. The

näıve algorithm 6 is a direct application of ideas presented in Rao and Teh (2013). An

interesting direction is to see how these frameworks can shed light on, and improve

our symmetrized MH algorithm 7. Viewed in this light, our contribution is a rewriting

of uniformization that includes the auxiliary parameter ϑ. Our swap operator forms

a particular Markov kernel that exploits this reparametrization for fast mixing.
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5.3 Discussion

Our symmetrized MH algorithm 7 modifies the algorithm from Rao and Teh (2013)

to include parameter inference. That algorithm requires a uniformization rate Ω(θ) >

maxsAs(θ), and empirical results from that paper suggest Ω(θ) = 2 maxsAs(θ). The

uniformization rate Ω(θ, ϑ) in our algorithm includes a proposed new parameter ϑ,

must be symmetric in both arguments and must be greater than both maxsAs(θ)

and maxsAs(ϑ). A natural and simple setting is Ω(θ, ϑ) = maxsAs(θ) + maxsAs(ϑ).

When θ is known, our algorithm has ϑ equal to θ (i.e. the proposed ϑ equals θ), and

our uniformization rate reduces to 2 maxAi. This provides a principled motivation

for the particular choice of Ω in Rao and Teh (2013).

Of course, we can consider other choices for the uniformization rate, such as

Ω(θ, ϑ) = κ(maxAi(θ) + maxAi(ϑ)) for κ > 1. These result in more thinned events,

and so more computation, with the benefit of faster MCMC mixing. We study the

effect of κ in our experiments, but find the smallest setting of κ = 1 performs best.

It is also possible to have non-additive settings for Ω(θ, ϑ), for example, Ω(θ, ϑ) =

κmax(maxiAi(θ),maxAi(ϑ)) for some choice of κ > 1. We investigate this as well.

A key idea in our symmetrized MH algorithm, as well as Rao and Teh (2013), is

to impute the random grid of candidate transition times W every MCMC iteration.

Conditioned on W , the MJP trajectory follows an HMM with transition matrix B.

By running the FFBS algorithm over W , we can marginalize out the states associ-

ated with W , and calculate the marginal P (X|W, θ). There have been some MCMC

approaches to posterior inference. Our proposed MCMC algorithm in chapter 5 (al-

gorithm 7) modifies the algorithm from Rao and Teh (2013) to include parameter

inference.

Another approach to parameter inference that integrates out state values fol-

lows Fearnhead and Sherlock (2006). This algorithm makes a sequential forward pass

through all observations X (rather than W ). Unlike with W fixed, one cannot a priori

bound the number of transitions between two successive observations, so that Fearn-
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head and Sherlock (2006) have to use matrix exponentials of A (rather than just B)

to calculate transition probabilities.

The resulting algorithm is cubic, rather than quadratic in the number of states,

and the number of expensive matrix exponentiations needed scales with the number of

observations, rather than the number of transitions. Further, matrix exponentiation

results in a dense matrix, so that Fearnhead and Sherlock (2006) cannot exploit

sparsity in the transition matrix. In our framework, we will use B = I + 1
Ω
A, which

inherits sparsity present in A. Thus if A is tri-diagonal, our algorithm is linear in the

number of states.

A second approach to marginalizing out state information is particle MCMC (An-

drieu et al., 2010). This algorithm, described in section A, uses particle filtering to get

an unbiased estimate of P (X|θ). Plugging this estimate into the MH acceptance prob-

ability results in an MCMC sampler that targets the correct posterior, however the

resulting scheme does not exploit the Markovian structure of the MJP the way FFBS

can. In particular, observations that are informative of the MJP state can result in

marginal probability estimates that have large variance, resulting in slow mixing. By

contrast, given W , FFBS can compute the marginal probability P (X|W, θ) exactly.

Two interesting directions are to see how such symmetrization ideas apply to other

problems considered in those works, and how ideas from those works can shed more

light on, and improve our algorithm.

Our approach of first simulating ϑ, and then simulating W from a Poisson process

whose rate is symmetric in θ and ϑ is related to Neal (2004). In that work, to

simulate from an ‘energy’ model P (x, y) ∝ exp(−E(x, y)), the author proposes a new

parameter x∗, and then updates y via intermediate transitions to be symmetric in

x and x∗, before proposing to swap x and x∗. Our approach exploits the specific

structure of the Poisson and Markov jump processes to do this directly, avoiding the

need for any tempered transitions.

Our algorithm 7 is also related to work on MCMC for doubly-intractable distribu-

tions. Algorithms like (Møller et al., 2006; Murray et al., 2006; Andrieu and Roberts,
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2009) all attempt to evaluate an intractable likelihood under a proposed parameter

ϑ by introducing auxiliary variables, typically sampled independently under the pro-

posed parameters. For MJPs, this would involve proposing ϑ, generating a new grid

W ∗, and then using P (X|W, θ) and P (X|W ∗, ϑ) in the MH acceptance step. This is

more involved (with two sets of grids), and introduces additional variance that reduces

acceptance rates. if the new parameter ϑ is incompatible with the old grid U or vice

versa. While Murray et al. (2006) suggests annealing schemes to try to address this

issue, we exploit the uniformization structure to provide a cleaner solution: generate

a single set of auxiliary variables that depends symmetrically on both the new and

old parameters.
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6. EMPIRICAL SIMULATION RESULTS

6.1 Introduction

In this chapter, we evaluate Python implementations of a number of algorithms,

focusing our contribution, the symmetrized MH algorithm (algorithm 7), and as well

as the näıve MH algorithm (algorithm 6). We evaluate different variants of these

algorithms, corresponding to different uniformizing Poisson rates. For näıve MH,

we set Ω(θ) = κmaxsAs(θ) with κ equal to 1.5, 2 and 3 (here κ must be greater

than 1), while for symmetrized MH, where the uniformizing rate depends on both

the current and proposed parameters, we consider Ω(θ, ϑ) = κ(maxA(θ)+maxA(ϑ))

(κ = 1 and 1.5), and Ω(θ, ϑ) = 1.5 max(maxA(θ),maxA(ϑ)). We evaluate two other

baselines: Gibbs sampling (algorithm 4), and particle MCMC (Andrieu et al., 2010,

see also Appendix). Gibbs sampling involves a uniformization step to update the

MJP trajectory (step 1 in algorithm 4), for which we use Ω(θ, ϑ) = κmaxsAs(θ) for

κ = 1.5, 2, 3. Unless specified, our results were obtained from 100 independent MCMC

runs, each of 10000 iterations. We found particle MCMC to be more computationally

intensive, and limited each run to 3000 iterations, the number of particles being 5, 10

and 20.

For each run of each MCMC algorithm, we calculated the effective sample size

(ESS) of the posterior samples of the MJP parameters using the R package rcoda (Plum-

mer et al., 2006). This estimates the number of independent samples returned by the

MCMC algorithm, and dividing this by the runtime of a simulation gives the ESS

per unit time (ESS/sec). We used this to compare different samplers and different

parameter settings.



36

6.2 A simple synthetic MJP

Figure 6.1. A 3-state MJP with exponentially decaying rates

Consider an MJP with a uniform distribution over states at time 0, and with

transitions between states i and j having rate α exp(−β/(i+ j)), for two parameters

(α, β)
def
= θ. We consider three settings: 3 states (figure 6.1), 5 states, and 10 states.

We place Gamma(α0, α1), and Gamma(β0, β1) priors on the parameters α and β, with

(α0, α1, β0, β1) having values (3, 2, 5, 2) respectively. For each run, we draw random

parameters from the prior to construct a transition matrix A, and simulate an MJP

trajectory. We simulate observations uniformly at integer values on the time interval

[0, 20]. Each observation is Gaussian distributed with mean equal to the state at that

time, and variance equal to 1. For the MH proposal, we used a lognormal distribution

centered at the current parameter value, with variance σ2 whose effect we study.

Results: Figure 6.2 shows the MCMC estimates of the posterior distribution over

α, P (α|X) from the Gibbs sampler as well as our symmetrized MH sampler. Visually

these agree, and we quantify this by running a Kolmogorov-Smirnov two-sample test

using 1000 samples from each algorithm: this returns a p-value of 0.5085, clearly fail-

ing to reject the null hypothesis that both samples come from the same distribution.

The figure also shows the average acceptance probabilities for the two MH samplers:

we see that for the same proposal distribution, symmetrization significantly improves

acceptance probability. This shows the benefit of eliminating the P (W |θ) terms from



37

the acceptance probability (we will investigate this further). Figure 6.3 shows trace-

plots and autocorrelation plots for α from the symmetrized MH and Gibbs samplers.

Clearly, our sampler mixes much more efficiently than Gibbs, with näıve MH slightly

worse than both.
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Figure 6.2. (Left) posterior
P (α|X) from Gibbs (dashed
line) and symmetrized MH
(solid line) for the synthetic
model. (Right) acceptance
probabilities of α for sym-
metrized (squares) and näıve
(triangles) MH.
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Figure 6.3. Trace and autocorrelation plots for Gibbs (left two panels)
and symmetrized MH (right two panels). All plots are for the synthetic
odel with 10 states.
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Figure 6.4. Acceptance Rate for α in the synthetic model (Left two), the
first being dimension 3, and the second,dimension 5. Blue square and
yellow triangle curves are the symmetrized MH, and näıve MH algorithm.
The multiplicative factor is 2. Trace and autocorrelation plots for näıve
MH (right two panels) for the synthetic model with 3 states.
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To quantify this, figure 6.5 plots the ESS/sec in the top row, and the raw ESS

in the bottom row for α and β. The left two columns consider α and β for MJPs

with 3 states, and the right two, with 10 states. We include results for 5 states

later, the conclusions are the same. For each plot, we vary the scale-parameter σ2

of the log-normal proposal q(ϑ|θ), and look at its effects on ESS/s and ESS. Note

that the conditional over parameters given trajectory is not conjugate, so that the

Gibbs sampler is really a Metropolis-within-Gibbs (MWG) sampler with an associated

proposal distribution parameterized by σ2.

We see that our symmetrized MH algorithm, shown with blue squares, is signifi-

cantly more efficient than the baselines over a wide range of σ2 values, including the

natural choice of 1. Among the baselines, Gibbs (red circles) does better than näıve

MH (yellow triangles), showing that the dependency of the Poisson grid on the MJP

parameters (as indicated in figure 6.2) does indeed slow down mixing. This, coupled

with the fact that MWG tends to have higher MH acceptance than näıve MH results

in Gibbs having superior performance. Our symmetrized MH avoids this problem at

no additional computational cost. Particle MCMC (black diamonds) has the worst

performance.



39

0

10

20

0.0 0.5 1.0 1.5
σ2 of MH proposal

E
S

S
/u

ni
t t

im
e 

fo
r 

α

0

10

20

30

0.0 0.5 1.0 1.5
σ2 of MH proposal

E
S

S
/u

ni
t t

im
e 

fo
r 

β

0.00

0.25

0.50

0.75

1.00

1.25

0.0 0.5 1.0 1.5
σ2 of MH proposal

E
S

S
/u

ni
t t

im
e 

fo
r 

α

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
σ2 of MH proposal

E
S

S
/u

ni
t t

im
e 

fo
r 

β

0

40

80

120

0.5 1.0 1.5
σ2 of MH proposal

E
S

S
 fo

r 
α

0

50

100

150

0.5 1.0 1.5
σ2 of MH proposal

E
S

S
 fo

r 
β

0

20

40

60

0.5 1.0 1.5
σ2 of MH proposal

E
S

S
 fo

r 
α

0

25

50

75

0.5 1.0 1.5
σ2 of MH proposal

E
S

S
 fo

r 
β

Figure 6.5. ESS/sec (top row) and raw ESS per 1000 samples (bottom
row) of different algorithms on the synthetic model. The left two panels
are α and β for 3 states, the right two, for 10 states. Blue squares, yellow
triangles, red circles and black diamonds are the symmetrized MH, näıve
MH, Gibbs and particle MCMC algorithm.

Among the three setting of our algorithm, the simple additive setting (squares)

does best, slightly better than the max-of-max setting (circles). The additive setting

with a multiplicative factor of 1.5 (triangles) does worse than both the additive choice

with κ = 1 and the max-of-max choice but still better than the other algorithms. The

results in figure 6.5 for 10 states shows that ESS is slightly lower, and thus mixing

is slightly poorer for all samplers. This, coupled with greater computational cost per

iteration results in a drop in ESS/s across all algorithms, compared with 3 states.

We still observe the same pattern of relative performance, with our sampler with

Ω(θ, ϑ) = maxsAs(θ) + maxsA(ϑ) the best. Figure 6.7 shows the results for different

settings and different algorithms.
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Figure 6.6. ESS/sec of symmetrized MH for different choices of Ω(θ, ϑ)
for the synthetic model. The left two panels are α and β for 3 states,
and the right two for 10 states. Squares, circles and trianges correspond
to Ω(θ, ϑ) set to (maxsAs(θ)+maxsAs(ϑ)), max(maxsAs(θ),maxsAs(ϑ))
and 1.5(maxsAs(θ) + maxsAs(ϑ)).
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Figure 6.7. ESS/sec for the synthetic model, the top three are for α
for 3 states, 5 states, and 10 states. The bottom three are for β for 3
states, 5 states, and 10 states. Blue, yellow, red and black are the sym-
metrized MH, näıve MH, Gibbs and particle MCMC algorithm. Squares,
circles and trianges correspond to Ω(θ, ϑ) set to (maxsAs(θ)+maxsAs(ϑ)),
max(maxsAs(θ),maxsAs(ϑ)) and 1.5(maxsAs(θ) + maxsAs(ϑ)). And for
PMCMC, they correspond to 10 particles, 5 particles and 15 particles.
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Figure 6.8. Time interval vs ESS/sec for the synthetic MJP. The left two
plots are for α and β, with the number of observations fixed; in the right
two, this grows linearly with the interval length. Blue squares, yellow
triangles and red circles curves are the symmetrized MH, näıve MH and
Gibbs algorithm.

In figure 6.8, we plot ESS per unit time as the observation interval tend increases.

We consider the 3-state MJP, and as before there are 19 observations uniformly

located over a time interval (0, tend). We consider four settings, with tend equal to

10, 20, 50, 100. For each, we compare our symmetrized MH sampler (with κ set to 1)

with the näıve MH and Gibbs samplers (with κ set to 2). While the performance of the

Gibbs sampler is comparable with our symmetrized algorithm for the smallest value

of tend, its performance is considerably worse for longer time-intervals. This is the

limitation of Gibbs sampling that motivated this work: when updating θ conditioned

on the MJP trajectory, longer time intervals result in stronger coupling between MJP

path and parameters (figuree 3.2), and thus poorer mixing. The performance of the

näıve sampler demonstrates that it is not sufficient just to integrate out the state

values of the trajectory, we also have to get around the coupling between the Poisson

grid and the parameters. Our symmetrized MH-algorithm allows this.

To the right of figure 6.8, we plot results from a similar experiment. Now, instead

of keeping the number of measurements fixed as we increase the observation interval,

we keep the observation rate fixed at one observation every unit interval of time,

so that longer observation intervals have larger number of observations. The results
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are similar to the previous case: Gibbs sampling performs well for small observation

intervals, with performance degrading sharply for larger intervals.

6.3 The Jukes and Cantor (JC69) model

The Jukes and Cantor (JC69) model (Jukes and Cantor, 1969) is a popular model

of DNA nucleotide substitution. We write its state space as {0, 1, 2, 3}, representing

the four nucleotides {A, T, C,G}. The model has a single parameter α, representing

the rate at which the system transitions between any pair of states. Thus, the rate

matrix A is given by Ai = −Ai,i = 3α,Ai,j = α, i 6= j. We place a Gamma(3, 2) prior

on the parameter α. Figure 6.10(a), (b) and (c) compare different samplers: we see

that the symmetrized MH samplers comprehensively outperforms all others. Part of

the reason why the difference is so dramatic here is because now a single paramter

α
def
= θ defines the transition matrix, implying a stronger coupling between MJP path

and parameter. We point out that for Gibbs sampling, the conditional distribution

over θ is conjugate to the Gamma prior. We can thus simulate directly from this

distribution without any MH proposal (hence its performance remains fixed along

the x-axis). Despite this, its performance is worse than our symmetrized algorithm.

Particle MCMC performs worse than all the algorithms, and we do not include it

in our plots. Figure 6.10(d) compares different settings of Ω(θ, ϑ) for our sampler:

again, the simple additive setting Ω(θ, ϑ) = maxsAs(θ) + maxsAs(ϑ) does best.

Figure 6.11 plots MCMC diagnostics for the Gibbs and symmetrized MH sam-

pler, again the latter outperforms the former. Both agree on the posterior P (α|X)

(figure 6.12(a)), with a two sample Kolmogorov-Smirnov test giving a p-value of 0.97.

Figure 6.12(b) plots the average MH acceptance probabilities for the näıve and sym-

metrized MH samplers for different settings of the proposal distribution, again we see

that the former has lower acceptance rates because of the P (W |θ) grids.

Figure 6.12 (c) and (d) plot the ESS per unit time for the different samplers as

tend increases. The left plot keeps the number of observations fixed, while the right
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Figure 6.10. ESS/sec for the JC immigration model, blue, yellow
and red curves are the symmetrized MH, näıve MH, and Gibbs al-
gorithm. The next two panels from left to right are ESS/sec and
raw ESS per 1000 samples for this. Blue squares, yellow triangles
and red circles are the symmetrized MH, näıve MH and Gibbs algo-
rithm. The rightmost panel looks at different settings of the sym-
metrized MH algorithm, with squares, circles and triangles corresponding
to Ω(θ, ϑ) set to (maxsAs(θ)+maxsAs(ϑ)), max(maxsAs(θ),maxsAs(ϑ))
and 1.5(maxsAs(θ) + maxsAs(ϑ)).

keeps the observation rate fixed. Once again we see that our proposed algorithm 1)

performs best over all interval lengths, and 2) suffers a performance degradation with

interval length that is much milder than the other algorithms.
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Figure 6.11. Trace (left two) and autocorrelation (right two) plots of α
for the JC69 model. Red is for Gibbs and blue is for the symmetrized MH
algorithm.
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Figure 6.13. Trace and autocorrelation plots for Gibbs (left two pan-
els) and symmetrized MH (right two panels). All plots are for the time-
inhomogeneous immigration model with 10 states.
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Figure 6.14. ESS/sec (top row) and raw ESS per 1000 samples (bottom
row) for the immigration model. The left two columns are α and β for 3
states, and the right two, for 10 states. Squares, triangles and circles are
symmetrized MH, näıve MH, and Gibbs algorithm.
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Figure 6.15. ESS/sec for symmetrized MH for the immigration model
for different settings of Ω(θ, ϑ). The left two columns are for α
and β with states, and the right two, with 10. Squares, circles
and triangles correspond to Ω(θ, ϑ) set to (maxsAs(θ) + maxsAs(ϑ)),
max(maxsAs(θ),maxsAs(ϑ)) and 1.5(maxsAs(θ) + maxsAs(ϑ)).
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Figure 6.16. ESS/sec for the immigration model, the top three are for α
for 3 states, 5 states, and 10 states. The bottom three are for β for 3
states, 5 states, and 10 states. Blue, yellow, and red are the symmetrized
MH, näıve MH, Gibbs algorithm. Squares, circles and trianges correspond
to Ω(θ, ϑ) set to (maxsAs(θ)+maxsAs(ϑ)), max(maxsAs(θ),maxsAs(ϑ))
and 1.5(maxsAs(θ) + maxsAs(ϑ)).

6.4 An immigration model with finite capacity

Next, we consider an M/M/N/N queue (Gross et al., 2011). The state space of this

stochastic process is {0, 1, 2, 3, · · · , N−1} giving the number of customers/jobs/individuals

in a system/population. Arrivals follow a rate-α Poisson process, moving the process

from state i to i + 1 for i < N . The system has a capacity of N , so any arrivals

when the current state is N are discarded. Service times or deaths are exponentially

distributed, with a rate that is now state-dependent: the system moves from i to i−1

with rate iβ.

We follow the same setup as the first experiment: for (α0, α1, β0, β1) equal to

(3, 2, 5, 2), we place Gamma(α0, α1), and Gamma(β0, β1) priors on α, β. These prior

distributions are used to sample transition matrices A, which, along with a uniform
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distribution over initial states, are used to generate MJP trajectories. We observe

these at integer-valued times according to a Gaussian likelihood. We consider three

settings: 3, 5 and 10 states.

Figure 6.14 plots the ESS per unit time (top row) as well as raw ESS values (bot-

tom row) for the parameters α and β, again as we change the variance of the proposal

kernel. The left two columns show these for α and β for the MJP state-space having

size 3, while the right two columns show these for size 10. Our symmetrized MH

algorithm does best for dimensions 3 and 5 , although now Gibbs sampling performs

best for dimensionality 10 (although there is no significant different between the best

proposal variance for our sampler and the Gibbs sampler). The Gibbs sampler per-

forms so well partly because the conditionals over α and β are conjugate, following

simple Gamma distributions. Also, unlike the earlier problem, the rate matrix is tri-

diagonal, and governed by two parameters, so that path-parameter coupling is now

milder.
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Figure 6.17. ESS/sec (top row) and raw ESS per 1000 samples (bottom
row) for the time-inhomogeneous immigration model. The left columns
are α and β for 3 states, and the right two for 10. Blue squares, yellow
triangles and red circles are the symmetrized MH, näıve MH, and Gibbs
algorithm.
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Figure 6.18. ESS/sec for symmetrized MH for the time-inhomogeneous
immigration model for different settings of Ω(θ, ϑ). The left two columns
are α and β for 3 states, and the right two for 10. Squares, circles
and trianges correspond to Ω(θ, ϑ) set to (maxsAs(θ) + maxsAs(ϑ)),
max(maxsAs(θ),maxsAs(ϑ)) and 1.5(maxsAs(θ) + maxsAs(ϑ)).
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Figure 6.19. ESS/sec for the time-inhomogeneous immigration model,
the top three are for α for 3 states, 5 states, and 10 states. The bottom
three are for β for 3 states, 5 states, and 10 states. Blue, yellow, and
red are the symmetrized MH, näıve MH, Gibbs algorithm. Squares, cir-
cles and trianges correspond to Ω(θ, ϑ) set to (maxsAs(θ) + maxsAs(ϑ)),
max(maxsAs(θ),maxsAs(ϑ)) and 1.5(maxsAs(θ) + maxsAs(ϑ)).
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Figure 6.20. Acceptance Rate for α in the immigration model (left two)
and time-inhomogeneous immigration model (right two) , the left two
being dimension 3, and the right,dimension 10 and the right two being
dimension 3, and the right,dimension 10. Blue square and yellow triangle
curves represent symmetrized MH, and näıve MH algorithm. The multi-
plicative factor is 2.
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Figure 6.21. Posterior P (α|X) from Gibbs (dashed line) and symmetrized
MH (solid line) for the immigration model(Left), and time-inhomogeneous
immigration model(right)

A time-inhomogeneous immigration model: We extend the previous model to

incorporate a known time-inhomogeneity. The arrival and death rates are now no

longer constant, and are instead given by Ai,i+1(t) = αw(t) (i = 0, 1, · · · , N − 1)

respectively. While it is not difficult to work with sophisticated choices of w(t), we

limit ourselves to a simple piecewise-constant w(t) =
⌊
t
5

⌋
. Even such a simple change

in the original model can dramatically affect the performance of the Gibbs sampler.

The top row of figure 6.17 plots the ESS per unit time for the parameters α (left)

and β (right) for this model with capacity 3. Now, the symmetrized MH algorithm
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is significantly more efficient, comfortably outperforming all samplers (including the

Gibbs sampler) over a wide range of settings. Figure 6.17 shows performance for

dimension 3 and dimension 10, once again the symmetrized MH-algorithm performans

best over a range of settings of the proposal variance. We note that increasing the

dimensionality of the state space results in a more concentrated posterior, shifting

the optimal setting of the proposal variance to smaller values.

6.5 Chi site data for Escherichia coli

We consider a dataset recording positions of a particular DNA motif on the E.

coli genome. These motifs consist of eight base pairs GCTGGTGG, and are called

Chi sites (Fearnhead and Sherlock, 2006). The rates of occurence of Chi sites provide

information about genome segmentation, allowing the identification of regions with

high mutation or recombination rates. Following Fearnhead and Sherlock (2006), we

use this data to infer a two-state piecewise-constant segmentation of the DNA strand.

We focus on Chi sites along the inner (lagging) strand of the E. coli genome. We place

a MJP prior over this segmentation, and indexing position along the strand with t,

we write this as S(t), t ∈ [0, 2319.838]. To each state s ∈ {1, 2}, we assign a rate λs,

which together with S(t), defines a piecewise-constant rate function λS(t). We model

the Chi-site positions as drawn from a Poisson process with rate λS(t), resulting in

a Markov-modulated Poisson process (Scott and Smyth, 2003) (see also section 2.5).

MJP transitions from state 1 to state 2 have rate α while transitions from state

2 to state 1 have rate β. We place Gamma(2, 2), Gamma(2, 3), Gamma(3, 2), and

Gamma(1, 2) priors for α, β, λ1, λ2 respectively.

We use this setup to evaluate our symmetrized MH sampler along with Gibbs

sampling (other algorithms perform much worse, and we do not include them). For

our MH proposal distribution, we first run 2000 iterations of Gibbs sampling to esti-

mate the posterior covariance of the vector θ = (α, β, λ1, λ2), call this Σθ. Our MH
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proposal distribution is then q(ν|θ) = N(ν|θ, σ2Σθ) for different settings of σ2 (the

typical choice is σ2 = 1), where we set Ω(θ, ϑ) = maxsAs(θ) + maxsAs(ϑ).

Figure 6.22 shows trace and autocorrelation plots for the parameter α produced by

the Gibbs sampler (left) and our proposed sampler with κ set to 1. We see that this

is a fairly hard MCMC sampling problem, however our sampler clearly outperforms

Gibbs, which mixes very poorly. Both posterior distribution agreed with each other

though, with a two sample-Kolmogorov Smirnov test returning a p-value of 0.1641.
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Figure 6.22. Trace and autocorrelation plots of posterior samples for α
for the E. Coli data. The left two plots are the Gibbs sampler and the
right two are the symmetrized MH.
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Figure 6.23. Posterior P (α|X) (a) from Gibbs (dashed line) and sym-
metrized MH (solid line) for the E. Coli data. Acceptance Rate(b) of α
generated by the symmetrized MH algorithm for the E. Coli data. ESS/sec
for (α, λ1) for the E. Coli data(c, d). The circles (in blue) are our proposed
sampler as we vary the variance of the proposal distribution. The straight
line is Gibbs.
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Figure 6.23 shows the ESS/s for different settings of σ2, for parameters (α, λ1).

Both parameters have very similar results, and as suggested by the earlier figure, we

see that for the typical setting of σ2 = 1, our sampler ourperforms the Gibbs sampler.

In this problem though, Gibbs sampling does outperform our method for large or

small σ2. This is because a) large or small σ2 mean the proposal variance is too large

or too small, and b) the Gibbs conditionals over the parameters are conjugate for

this model. We expect the improvements our method offers to be more robust to the

proposal distribution for more complex models without such conditional conjugacy.
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7. GEOMETRIC ERGODICITY OF THE SYMMETRIZED

METROPOLIS-HASTINGS ALGORITHM

7.1 Introduction

In this chapter, we show that if the ideal MCMC sampler is geometrically ergodic,

then so is our sampler in Algorithm 7. We start with a review of geometric ergodicity.

Informally, an MCMC algorithm is geometrically ergodic when the total variation

distance between the distribution over states and the stationary distribution decreases

geometrically with the number of iterations. Meyn and Tweedie (2009) provides more

details, as well as sufficient conditions that we exploit in Theorem 7.2.1. Geometric

ergodicity is an important property of an MCMC chain with stationary distribution

µ(·), guaranteeing that the central limit theorem (CLT) holds for ergodic averages

calculated with MCMC samples (θ1, · · · , θn). For a function f , the ergodic average

is 1
n

∑n
i=1 f(θi), for n ≥ 1. Denote P n(θ, A) for the n-step transition probability of a

Markov chain(θ0, θ1, · · · , θn, · · · ), which takes values in the space X .

P n(θ, A) = P [θn ∈ A|θ0 = θ], for A ⊆ X .

The distance between two different probability measures can be measured using total

variation distance, defined as follows:

Definition 7.1.1 (total variation) The total variation between two probability mea-

sures p1(·) and p2(·) is defined as follows.

‖p1(·)− p2(·)‖TV = supA⊆X |p1(A)− p2(A)|.

We introduce φ−irreducible property of a Markov chain and then give the definition

of geometric ergodicity.
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Definition 7.1.2 (φ−irreducible) A Markov chain is φ−irreducible if there exists

a non-zero σ finite measure φ on X , such that for any A ⊆ X with φ(A) > 0 and for

all θ ∈ X , there exists n > 0, which depends on θ and A , such that P n(θ, A) > 0.

Definition 7.1.3 (geometric ergodicity) A Markov chain with stationary distri-

bution µ(·), is geometrically ergodic if

‖P n(θ, ·)− µ(·)‖TV ≤M(θ)ρn, for n = 1, 2, · · ·

for some ρ < 1, where M(θ) < +∞, for π-a.e. θ ∈ X .

Small set condition and drift condition are defined below, which can lead to geometric

ergodicity.

Definition 7.1.4 (small set) A subset B ⊆ X is a small (n-small set) set if there

exists a integer n > 0, and ε > 0, and a probability measure ν(·) on X such that

P n(θ, A) ≥ εν(A), for all θ ∈ B, and all measurable set A ⊆ X .

Definition 7.1.5 (drift condition) A Markov chain with transition probability P (θ, dθ′)

for θ, θ′ ∈ X , satisfies a drift condition if there are constants 0 < λ < 1 and b < +∞

and a set B, and a function V : X → [1,+∞](called Lyapunov-Foster function), such

that ∫
X
P (θ, dθ′)V (θ) ≤ λV (θ) + b1B(θ), for all θ ∈ X .

The n-small set condition implies that for θ ∈ B, the Markov chain takes n steps

to forget its current location with probability ε. The drift condition ensures that for

θ outside the set B, the the Markov chain drifts towards B. It is easy to see that

if the space X is compact, then the drift condition is satisfied with the choice of B

being the whole space X as well as b being supθ∈X V (θ).

For the ideal sampler, we use Ω(θ) as the so-called Lyapunov-Foster function to

define the drift condition and BM = θ : Ω(θ) ≤M is defined as the small set. For

our symmetrized auxiliary variable MCMC sampler, λ1|W | + Ω(θ) is used as the
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Lyapunov-Foster function, for some λ1 > 0 while Bh,M = (W, θ, ϑ) : |W | ≤ h, θ ∈ BM

is the 2-small set.

The theorem guaranteeing geometric ergodicity is the following. (See Meyn and

Tweedie (2009) for detailed proofs.)

Theorem 7.1.1 (geometric ergodic theorem) Consider a φ−irreducible, aperi-

odic Markov chain. If there exists a small set B, and for the set B, the Markov

chain satisfies the drift condition with a function V (θ) finite at some θ0 ∈ X , then

the Markov chain is geometric ergodic.

7.2 Geometric ergodicity of the symmetrized MH algorithm

We derive conditions under which our symmetrized MH algorithm inherits mixing

properties of an ‘ideal’ sampler that can compute the marginal likelihood P (X|θ).

This algorithm proposes a new parameter ϑ from a distribution q(ϑ|θ), and accepts

with probability αI(θ, ϑ;X) = 1∧ P (X,ϑ)q(θ|ϑ)
P (X,θ)q(ϑ|θ) . The resulting Markov chain has transi-

tion probability PI(θ
′|θ) = q(θ′|θ)αI(θ, θ′;X) +

[
1−

∫
dϑq(ϑ|θ)αI(θ, ϑ;X)

]
δθ(θ

′), the

first term corresponding to acceptance, and the second, rejection (Meyn and Tweedie,

2009).

Our main result is Theorem 7.2.1, which shows that if the ideal MCMC sampler

is geometrically ergodic, then so is our sampler in Algorithm 7. Before diving into

the proofs, we first state our assumptions,

Assumption 7.2.1 The uniformization rate is set as Ω(θ, ϑ) = Ω(θ) + Ω(ϑ), where

Ω(θ) = k1 maxsAs(θ) + k0, for some k1 > 1, k0 > 0.

Although it is possible to specify broader conditions under which our result holds, for

clarity we focus on this case. We can drop k0 if infθ maxsAs(θ) > 0

Assumption 7.2.2 There exists a positive constant θ0 such that for any θx, θy sat-

isfying ‖θx‖ ≥ ‖θy‖ > θ0, we have Ω(θx) ≥ Ω(θy).

This assumption avoids book-keeping by making Ω(θ) increase monotonically with θ.
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Definition 7.2.1 Let πθ be the stationary distribution of the MJP with rate-matrix

A(θ), and define Dθ = diag(πθ). Define Ã(θ) = D−1
θ A(θ)Dθ, and the reversibilization

of A(θ) as RA(θ) = (A(θ) + Ã(θ))/2.

This definition is from Fill (1991), who shows that RA(θ) is reversible with real

eigenvalues, the smallest being 0. The larger its second smallest eigenvalue, the faster

the MJP converges to its stationary distribution πθ. Note that if A(θ) is reversible,

then RA(θ) = A(θ).

Assumption 7.2.3 Write λRA2 (θ) for the second smallest eigenvalue of RA(θ). There

exist µ > 0, θ1 > 0 such that for all θ satisfying ‖θ‖ > θ1, we have λRA2 (θ) ≥

µmaxsAs(θ) (or equivalently from Assumption 7.2.1, λRA2 (θ) ≥ µΩ(θ)), and mins πθ(s) >

0.

This assumption is the strongest we need, requiring that λRA2 (θ) (which sets the MJP

mixing rate) grows at least as fast as maxsAs(θ). This is satisfied when, for example,

all elements of A(θ) grow with θ at similar rates, controlling the relative stability of the

least and most stable states. While not trivial, this is a reasonable assumption: the

MCMC chain over MJP paths will mix well if we can control the mixing of the MJP

itself. To better understand this, recall B(θ, θ′) = I + A(θ)
Ω(θ,θ′)

is the transition matrix

of the embedded Markov chain from uniformization, this has the same stationary

distribution πθ as A(θ). Define the reversibilization RB(θ, θ′) of B(θ, θ′) just as we

did RA(θ) from A(θ).

Lemma 7.2.1 Consider ‖θ‖ > max(θ0, θ1) and θ′ such that 1
K0
≤ Ω(θ′)

Ω(θ)
≤ K0, where

K0 satisfies (1 + 1
K0

)k1 ≥ 2. For all such (θ, θ′), the Markov chain with transition

matrix B(θ, θ′) converges geometrically to stationarity at a rate uniformly bounded

away from 0.

Proof A little algebra gives RB(θ, θ′) = I + RA(θ)/Ω(θ, θ′). It follows that both

RA and RB share the same eigenvectors, with eigenvalues satisfying λRB(θ, θ′) = 1−
λRA (θ)

Ω(θ,θ′)
. The second largest eigenvalue λRB2 (θ, θ′) of RB and second smallest eigenvalue
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λRA2 (θ, θ′) of RA then satisfy λRB2 (θ, θ′) = 1− λ
RA
2 (θ)

Ω(θ,θ′)
. From assumptions 7.2.1 and 7.2.3,

and the lemma’s assumptions, 1−λRB2 (θ, θ′) =
λ
RA
2 (θ)

Ω(θ,θ′)
≥ λ

RA
2 (θ)

(K0+1)Ω(θ)
≥ µ

K0+1
. Also, since

(1 + 1
K0

)k1 ≥ 2,

Ω(θ, θ′) = Ω(θ) + Ω(θ′) ≥ (1 +
1

K0

)Ω(θ) > (1 +
1

K0

)k1 max
s
As(θ) ≥ 2 max

s
As(θ).

So for any state s, the diagonal element Bs(θ, θ
′) = 1− As(θ)

Ω(θ,θ′)
> 1

2
. From Fill (1991),

this diagonal property and the bound on 1− λRB2 (θ, θ′) give the result.

Our overall proof strategy is to show that for ‖θ‖ and W large enough, the con-

ditions of Lemma 7.2.1 hold with high probability. Lemma 7.2.1 then will imply that

the distribution over latent states for the continuous-time MJP and its discrete-time

counterpart embedded in W to be brought arbitrarily close to πθ (and thus to each

other), allowing our sampler to inherit mixing properties of the ideal sampler. We

will exploit the boundedness of the set of remaining θ and W , to establish a ‘small-set

condition’ where the MCMC algorithm forgets its state with some probability. These

two conditions will be sufficient for geometric ergodicity. The next assumption states

these small-set conditions for the ideal sampler.

Assumption 7.2.4 For the ideal sampler with transition probability pI(θ
′|θ):

i) for each M , for the set BM = {θ : Ω(θ) ≤ M}, there exists a probability measure

φ and a constant κ1 > 0 s.t. αI(θ, θ
′;X)q(θ′|θ) ≥ κ1φ(θ′) for θ ∈ BM . Thus BM is a

1-small set.

ii) for M large enough, ∃ρ < 1 s. t.
∫

Ω(ν)pI(ν|θ)dν ≤ (1− ρ)Ω(θ) + LI , ∀θ 6∈ BM .

These two conditions are standard small-set and drift conditions necessary for the

ideal sampler to satisfy geometric ergodicity. The first implies that for θ in BM , the

ideal sampler ‘forgets’ its current location with probability κ1. The second condition

ensures that for θ outside this set, the ideal sampler drifts towards BM . These two

conditions together imply geometric mixing with rate equal or faster than κ1 (Meyn

and Tweedie, 2009). Observe that we have used Ω(θ) as the so-called Lyapunov-

Foster function to define the drift condition for the ideal sampler. This is the most
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natural choice, though our proof can be tailored to different choices. Similarly, we

could easily allow BM to be an n-small set for any n ≥ 1 (so the ideal sampler needs n

steps before it can forget its current value in BM); we restrict ourselves to the 1-small

case for clarity.

Assumption 7.2.5 ∃ u > ` > 0 s.t.
∏
P (X|so, θ) ∈ [`, u] for any state so and θ.

This assumption follows Miasojedow and w. Niemiro (2017), and holds if θ does

not include parameters of the observation process (or if so, the likelihood is finite and

nonzero for all settings of θ). We can relax this assumption, though this will introduce

technicalities unrelated to our focus, which is on complications in parameter inference

arising from the continuous-time dynamics, rather than the observation process.

Assumption 7.2.6 Given the proposal density q(ν|θ), ∃η0 > 0, θ2 > 0 such that for

θ satisfying ‖θ‖ > θ2,
∫

Θ
Ω(ν)2q(ν|θ)dν ≤ η0Ω(θ)2.

This mild requirement can be satisfied by choosing a proposal distribution q that does

not attempt to explore large θ’s too aggressively. The next corollary follows from a

simple application of the Cauchy-Schwarz inequality.

Corollary 7.2.1 Given the proposal density q(ν|θ), ∃η1 > 0, θ2 > 0 such that for θ

satisfying ‖θ‖ > θ2,
∫

Θ
Ω(ν)q(ν|θ)dν ≤ η1Ω(θ).

Proof From assumption 7.2.6, we have
∫

Θ
Ω(ν)2q(ν|θ)dν ≤ η0Ω(θ)2 for θ satisfying

‖θ‖ > θ2. For such θ, by the Cauchy-Schwarz inequality, we have[∫
Θ

Ω(ν)q(ν|θ)dν
]2

≤
∫

Θ

Ω(ν)2q(ν|θ)dν ·
∫

Θ

q(ν|θ)dν ≤ η0Ω(θ)2.

So for θ satisfying ‖θ‖ > θ2, we have
∫

Θ
Ω(ν)q(ν|θ)dν ≤ √η0Ω(θ).

We need two further assumptions on the proposal distribution q(θ′|θ).

Assumption 7.2.7 For any ε > 0, there exist finite Mε, θ3,ε such that for θ satisfying

‖θ‖ > θ3,ε, the condition q({θ′ : p(θ′)q(θ|θ′)
p(θ)q(θ′|θ) ≤Mε}|θ) > 1− ε holds.
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This holds, when e.g. p(θ) is a gamma distribution, and q(θ′|θ) is Gaussian.

Assumption 7.2.8 For any ε > 0 and K > 1, there exists θK4,ε such that for θ

satisfying ‖θ‖ > θK4,ε, the condition q({θ′ : Ω(θ′)
Ω(θ)
∈
[

1
K
, K
]
}|θ) > 1− ε holds.

This holds when e.g. q(θ′|θ) is a centered on θ and has finite variance.

Theorem 7.2.1 Under the above assumptions, our symmetrized auxiliary variable

MCMC sampler in algorithm 7 is geometrically ergodic.

Proof This theorem follows from two lemmas we will prove. Lemma 7.2.2 shows

there exist small sets {(W, θ, ϑ) : λ1|W |+Ω(θ) < M} for λ1,M > 0, within which our

sampler forgets its current state with some positive probability. Lemma 7.2.4 shows

that for appropriate (λ1,M), our sampler drifts towards this set whenever outside.

Together, these two results imply geometric ergodicity (Meyn and Tweedie, 2009,

Theorems 15.0.1 and Lemma 15.2.8). If supθ Ω(θ) < ∞, we just need the small set

{(W, θ, ϑ : |W | < M} for some M .

For easier comparison with the ideal sampler, we begin an MCMC iteration from

step 5 in Algorithm 7. Thus, our sampler operates on (θ, ϑ,W ), with θ the current

parameter, ϑ the auxiliary variable, and W the Poisson grid. An MCMC iteration

updates this by (a) sampling states V with a backward pass, (b) discarding ϑ and

self-transition times, (c) sampling ν from q(ν|θ), (d) sampling U ′ given (θ, ν, S, T ),

setting W ′ = T ∪ U ′, and discarding S, (e) proposing to swap (θ, ν) and then (f)

accepting or rejecting with a forward pass. On acceptance, θ′ = ν and ϑ′ = θ, and

on rejection, θ′ = θ and ϑ′ = ν, so that the MCMC state at the end of the iteration

is (θ′, ϑ′,W ′). We write (θ′′, ϑ′′,W ′′) for the MCMC state after two iterations. Recall

that step (a) actually assigns states V to W . T are the elements of W where V

changes value, and S are the corresponding elements of V . The remaining elements

U are the elements of W corresponding to self-transitions.

Before we start our proof, we recall some notation used in our proof. The figure 1.1

shows a realization S(t) of an MJP with rate matrix A(θ) and initial distribution π0
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over an interval [0, tend]. The empty circles are the thinned events. The crosses

are observations X. π0 is the initial distribution over states, and πθ is the staionary

distribution of the MJP. p(θ) is the prior over θ, and q(ν|θ) is the proposal distribution.

• The uniformized representation of S(t) is the pair (V,W ), with the Poisson grid

W = [w1, w2, w3, w4, w5, w6, w7] and the states V = [v0, v1, v2, v3, v4, v5, v6, v7]

assigned with through a Markov chain with initial distribution π0 and transition

matrix B(θ, θ′). In the figure, the circles (filled and empty) correspond to W .

• The more standard representation of S(t) is the pair (S, T ). Here T are the

elements of W which are true jump times (when V changes value), and S are the

corresponding elements of V . U are the remaining elements of W corresponding

to self-transitions. Here, T = [w2, w4, w7] and U = [w1, w3, w5, w6].

• The filled circles represent WX , which are the elements of W containing ob-

servations. VX are the states corresponding to WX . In this example, WX =

[w2, w5, w7] ∪ {0} and VX = [v2, v5, v7] ∪ {v0}.

• We write |W ↓| for the minimum number of elements of W between succes-

sive pairs of observations (including start time 0). In this example, |W ↓| =

min(3, 3, 2) = 2.

• P (X|W, θ, θ′) is the marginal distribution of X on W under a Markov chain

with transition matrix B(θ, θ′) (after integrating out the state information V ).

Recall that the LHS does not depend on θ′ because of uniformization.

• P (X|θ) is the marginal probability of the observations under the rate-A(θ) MJP.

P (X|θ) =
∫
W
P (X|W, θ, θ′)P (W |θ, θ′)dW .

• PB(VX |W, θ, θ′) is the probability distribution over states VX for the Markov

chain with transition matrix B(θ, θ′) on the gridW , with the remaining elements

of V integrated out.
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• Pst(VX |θ) is the probability of VX when elements of VX are sampled i.i.d. from

πθ).

• Pst(X|θ) is the marginal probability of X when VX is drawn from Pst(VX |θ).

We first bound self-transition probabilities of the embedded Markov chain from

0:

Proposition 7.2.1 The posterior probability that the embedded Markov chain makes

a self-transition, P (Vi = Vi+1|W,X, θ, ϑ) ≥ δ1 > 0, for any θ, ϑ,W .

Proof We use k0 from assumption 7.2.1 to bound a priori self-transition probabili-

ties:

P (Vi+1 = s|Vi = s,W, θ, ϑ) = Bss(θ, ϑ) = 1− As(θ)

Ω(θ, ϑ)
≥ 1− As(θ)

Ω(θ)
≥ 1− 1

k0

.

We then have

P (Vi = Vi+1|W,X, θ, ϑ) =
∑
v

P (Vi = Vi+1 = v|W,X, θ, ϑ)

=
∑
v

P (Vi = Vi+1 = v,X|W, θ, ϑ)

P (X|W, θ, ϑ)

=
∑
v

P (X|Vi = Vi+1 = v,W, θ, ϑ)P (Vi = Vi+1 = v|W, θ, ϑ)

P (X|W, θ, ϑ)

≥ `

u

∑
v

P (Vi = Vi+1 = v|W, θ, ϑ)

=
`

u

∑
v

P (Vi+1 = v|Vi = v,W, θ, ϑ)P (Vi = v|θ, ϑ)

≥ `

u
(1− 1

k0

)
.
= δ1 > 0.

The proof exploits the bounded likelihood from assumption 7.2.5. A simple by-

product of the proof is the following corollary:

Corollary 7.2.2 P (Vi+1 = s|Vs = s,W,X, θ, ϑ) ≥ δ1 > 0, for any θ, ϑ,W, s.
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Lemma 7.2.2 For all M,h > 0, the set Bh,M = {(W, θ, ϑ) : |W | ≤ h, θ ∈ BM} is a

2-small set under our proposed sampler. Thus, for all (W, θ, ϑ) in Bh,M , the two-step

transition probability satisfies P (W ′′, θ′′, ϑ′′|W, θ, ϑ) ≥ ρ1φ1(W ′′, θ′′, ϑ′′) for a constant

ρ1 and a probability measure φ1 independent of the initial state.

Proof Recall the definition of BM , and of an n-small set from Assumption 7.2.4.

The 1-step transition probability of our MCMC algorithm consists of two terms,

corresponding to the proposed parameter being accepted and rejected. Discarding

the latter, we have

P (W ′, θ′, ϑ′|W, θ, ϑ,X) ≥ q(θ′|θ)δθ(ϑ′)α(θ, θ′,W ′;X)
∑
S,T

[P (S, T |W, θ, ϑ,X)P (W ′|S, T, θ, θ′)] .

This follows from steps (c) to (e) in the reordered algorithm. The summation is over all

(S, T ) values produced by the backward pass (which are then discarded after sampling

W ′). We have used the fact that given (S, T ), P (W ′|S, T, θ, θ′, X) is independent of

X.

We bound the summation over (S, T ) by considering only terms with S constant.

When this constant is state s∗, we write this as (S = [s∗], T = ∅). This corresponds

to |W | self-transitions after starting state S0 = s∗. Then the first term in the square

brackets becomes

P (S = [s∗], T = ∅|W, θ,ϑ,X) = P (S0 = s∗|X,W, θ, ϑ)

|W |−1∏
i=0

P (Vi+1 = s∗|Vi = s∗, X,W, θ, ϑ)

≥ P (S0 = s∗|X,W, θ, ϑ)δ
|W |
1 (from Corollary 7.2.2).

With S(t) fixed at s∗, W ′ is distributed as a Poisson process with rate Ω(θ′) + Ω(θ)−

As∗(θ). Write PoissProc(W ′|R(t)) for the probability of W ′ under a rate-R(t) Poisson

process on [0, tend], so that P (W ′|S = [s∗], T = ∅, θ′, θ) = PoissProc(W ′|Ω(θ′)+Ω(θ)−
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As∗(θ)). Then, from the Poisson superposition theorem, writing 2W
′

for the power

set of W , we have

P (W ′|S =[s∗], T = ∅, θ′, θ) =
∑
Z∈2W ′

PoissProc (Z|Ω(θ′)) PoissProc (W ′\Z|Ω(θ)− As∗(θ))

≥ PoissProc(W ′|Ω(θ′))PoissProc(∅|Ω(θ)− As∗(θ))

≥ PoissProc(W ′|Ω(θ′))PoissProc(∅|Ω(θ))

≥ PoissProc(W ′|Ω(θ′)) exp(−Mtend), since for θ ∈ BM , Ω(θ) ≤M.

Thus we have∑
S,T

P (S, T,W ′|W, θ, ϑ,X) ≥
∑
s∗

P (S= [s∗], T = ∅|W, θ, ϑ,X)P (W ′|S= [s∗], T = ∅, θ′, θ)

≥ δ
|W |
1 exp(−Mtend)PoissProc(W ′|Ω(θ′)). (7.1)

Finally, we consider the third term in the square brackets. Using assumption 7.2.5,

α(θ, θ′,W ′;X) = 1 ∧ P (X|W ′, θ′, θ)/P (X|θ′)
P (X|W ′, θ, θ′)/P (X|θ)

· P (X|θ′)q(θ|θ′)p(θ′)
P (X|θ)q(θ′|θ)p(θ)

≥ 1 ∧ `2

u2
· P (X|θ′)q(θ|θ′)p(θ′)
P (X|θ)q(θ′|θ)p(θ)

≥ αI(θ, θ
′;X)

`2

u2
. (7.2)

Inside Bh,M , |W | ≤ h, and by assumption 7.2.4, q(θ′|θ)αI(θ, θ′;X) ≥ κ1φ(θ′). Then

the three inequalities above let us simplify the equation at the start of the proof:

P (W ′, θ′, ϑ′|W, θ, ϑ) ≥ `2

u2
δh1 exp(−Mtend)δθ(ϑ

′)κ1PoissProc(W ′|Ω(θ′)φ(θ′)

def
= ρ1δθ(ϑ

′)PoissProc(W ′|Ω(θ′)φ(θ′).
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Write FPoiss(a) for the CDF of a rate-a Poisson. The two-step transition satisfies

P (W ′′, θ′′, ϑ′′|W, θ, ϑ) ≥
∫
Bh,M

P (W ′′, θ′′, ϑ′′|W ′, θ′, ϑ′)P (W ′, θ′, ϑ′|W, θ, ϑ)dW ′dθ′dϑ′

≥
∫
Bh,M

ρ1δθ′(ϑ
′′)PoissProc(W ′′|Ω(θ′′))φ(θ′′)

ρ1δθ(ϑ
′)PoissProc(W ′|Ω(θ′))φ(θ′)dW ′dθ′dϑ′

≥ ρ2
1φ(θ′′)PoissProc(W ′′|Ω(θ′′))

∫
Bh,M

δθ′(ϑ
′′)FPoiss(Ω(θ′))(h)φ(θ′)dθ′

≥ ρ2
1PoissProc(W ′′|Ω(θ′′))φ(θ′′)φ(ϑ′′)FPoiss(Ω(ϑ′′))(h)δBh,M (ϑ′′)

≥ ρ2
1PoissProc(W ′′|Ω(θ′′))φ(θ′′)φ(ϑ′′)δBh,M (ϑ′′) exp(−Ω(ϑ′′)) (7.3)

The last line uses FPoiss(a)(h) ≥ FPoiss(a)(0) = exp(−a) ∀a, and gives our result, with

φ1(W ′′, θ′′, ϑ′′) ∝ PoissProc(W ′′|Ω(θ′′))φ(θ′′)φ(ϑ′′)δBh,M (ϑ′′) exp(−Ω(ϑ′′)).

We have established the small set condition: for a point inside Bh,M our sampler

forgets its state with nonzero probability, sampling a new state from φ1(·). We next

establish a drift condition, showing that outside Bh,M , the algorithm drifts back

towards it (Lemma 7.2.4). We first establish a result needed when maxs |As(θ)| is

unbounded as θ increases. This states that the acceptance probabilities of our sampler

and the ideal sampler can be brought arbitrarily close outside a small set, so long as

Ω(θ) and Ω(θ′) are sufficiently close.

Lemma 7.2.3 Suppose 1
K0
≤ Ω(θ)

Ω(θ′)
≤ K0, for K0 satisfying (1 + 1

K0
)k1 ≥ 2 (k1 is

from Assumption 7.2.1). Write |W ↓| for the minimum number of elements of grid W

between any successive pairs of observations. For any ε > 0, there exist wK0
ε , θK0

5,ε > 0

such that |P (X|W, θ, θ′)−P (X|θ)| < ε for any (W, θ) with |W ↓| > wK0
ε and ‖θ‖ > θK0

5,ε .

Proof From lemma 7.2.1, for all θ, θ′ satisfying the lemma’s assumptions, the Markov

chain with transition matrix B(θ, θ′) converges geometrically to stationarity distribu-

tion πθ at a rate uniformly bounded away from 0. By setting |W ↓| large enough, for

all such (θ, θ′) and for any initial state, the Markov chain would have mixed beween
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each pair of observations, with distribution over states returning arbitrarily close to

πθ.

Write WX for the indices of the grid W containing observations, and VX for the

Markov chain state at these times. Let PB(VX |W, θ, θ′) be the probability distribution

over VX under the Markov chain with transition matrix B given W and Pst(VX |θ) be

the probability of VX sampled independently under the stationary distribution. Let

P (X|W, θ, θ′) be the marginal probability of the observations X under that Markov

chain B(θ, θ′) given W . Dropping W and θ′ from notation, P (X|θ) is the probability

of the observations under the rate-A(θ) MJP.

From the first paragraph, for |W ↓| > w0 for large enough w0, PB(VX |W, θ, θ′) and

Pst(VX |W, θ) can be brought ε′ close. Then for any W with |W ↓| > w0, we have

|P (X|W, θ, θ′)−Pst(X|θ)| = |
∑
VX

P (X|VX , θ)[PB(VX |W, θ, θ′)− Pst(VX |θ)]|

≤
∑
VX

P (X|VX , θ)|PB(VX |W, θ, θ′)− Pst(VX |θ)| ≤ ε′′,

using P (X|VX , θ) ≤ u (Assumption 7.2.5), and
∑

VX
|PB(VX |W, θ, θ′)−Pst(VX |θ)| < ε.

For large θ, we prove a similar result in the continuous case by uniformization. For

any θ′,

P (X|θ) =

∫
dWP (X|W, θ, θ′)PoissProc(W |Ω(θ) + Ω(θ′)).

We split this integral into two parts, one over the set {|W ↓| > w0}, and the second over

its complement. On the former, for w0 large enough, |P (X|W, θ, θ′)−Pst(X|θ)| ≤ ε′′.

For θ large enough, {|W ↓| > w0} occurs with arbitrarily high probability for any

θ′. Since the likelihood is bounded, the integral over the second set can be made

arbitrarily small (say, ε′′ again). Finally, from the triangle inequality,

|P (X|θ)− P (X|W, θ, θ′)| ≤ |P (X|θ)− Pst(X|θ)|+ |Pst(X|θ)− P (X|W, θ, θ′)|

≤ (ε′′ + ε′′) + ε′′
def
= ε
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The previous lemma bounds the difference in probability of observations under the

discrete-time and continuous-time processes for θ and |W | large enough. The next

result uses this to bound with high probability the different in acceptance probabilities

of the ideal sampler, and our proposed sampler with a grid W .

Proposition 7.2.2 Let (W, θ, ϑ) be the current state of the sampler. Then, for any ε,

there exists θε > 0 as well as a set Eε ⊆ {(W ′, θ′) : |αI(θ, θ′;X)−α(θ, θ′;W ′, X)| ≤ ε},

such that for θ satisfying ‖θ‖ > θε and any ϑ, we have P (Eε|W, θ, ϑ) > 1− ε.

Proof Fix ε > 0 and K > 1 satisfying (1 + 1
K

)k1 ≥ 2.

• From assumption 7.2.7, there exist Mε and θ1,ε, such that P ( q(θ|θ
′)p(θ′)

q(θ′|θ)p(θ) ≤Mε) >

1− ε/2 for θ satisfying ‖θ‖ > θ1,ε. Define Eε
1 = {θ′s.t. q(θ|θ

′)p(θ′)
q(θ′|θ)p(θ) ≤Mε}.

• Define EK
2 = {θ′s.t. Ω(θ′)

Ω(θ)
∈ [1/K,K]}. Following assumption 7.2.8, define θK2,ε

such that P (EK
2 |θ) > 1− ε/2 for all θ satisfying ‖θ‖ > θK2,ε.

• On the set EK
2 , Ω(θ′) ≤ KΩ(θ) (and also Ω(θ) ≤ KΩ(θ′)). Lemma 7.2.3 ensures

that there exist θK3,ε > 0, wKε > 0, such that for |W ↓| > wKε , ‖θ‖ > θK3,ε and ‖θ′‖ >

θK3,ε, we have |P (X|W, θ′, θ) − P (X|θ′)| < ε, and |P (X|W, θ, θ′) − P (X|θ)| < ε.

Define EK
3,ε = {θ′s.t.‖θ′‖ > θK3,ε}.

• Define EK
4,ε = {Ws.t. |W ↓| > wKε }. Set θK4,ε, so that for ‖θ‖ > θK4,ε, P (EK

4,ε|EK
2 , E

ε
1) >

1− ε.. This holds since W comes from a Poisson processes, whose rate can be

made arbitrarily large by increasing Ω(θ).

• From assumption 7.2.2, there exists θ0, such that Ω(θ) increases as ‖θ‖ increases,

for θ satisfying ‖θ‖ > θ0. Set θε = max(θ0, θ1,ε, θ
K
2,ε, θ

K
3,ε, θ

K
4,ε).

Now consider the difference

|α(θ, θ′;W,X)− αI(θ, θ′;X)| = | 1 ∧ P (X|W, θ′, θ)q(θ|θ′)p(θ′)
P (X|W, θ, θ′)q(θ′|θ)p(θ)

− 1 ∧ P (X|θ′)q(θ|θ′)p(θ′)
P (X|θ)q(θ′|θ)p(θ)

|

≤ | P (X|W, θ′, θ)
P (X|W, θ, θ′)

− P (X|θ′)
P (X|θ)

| q(θ|θ
′)p(θ′)

q(θ′|θ)p(θ)
.
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On Eε
1, q(θ|θ′)p(θ′)

q(θ′|θ)p(θ) ≤ Mε. Since P (X|W, θ, θ′) and P (X|θ) are lower-bounded by `, for

any ε > 0 we can find a K such that on EK
2 ∩ EK

3,ε,

|P (X|W, θ′, θ)
P (X|W, θ, θ′)

− P (X|θ′)
P (X|θ)

| < ε/Mε.

This means that on Eε
1 ∩ EK

2 ∩ EK
3,ε, |α(θ, θ′,W,X)− αI(θ, θ′, X)| < ε.

For θ > max(θ1,ε, θ
K
2,ε) we have P (EK

2 E
ε
1) ≥ P (EK

2 ) + P (Eε
1)− 1 ≥ 1− ε.

When EK
2 holds, Ω(θ′) ≥ Ω(θ)/K. For θ large enough, we can ensure ‖θ′‖ > θK3,ε. So

P (Eε
1E

K
2 E

K
3,εE

K
4,ε) > (1− ε)2.

Finally, set Eε
.
= Eε

1 ∩ EK
2 ∩ EK

3,ε ∩ EK
4,ε , giving us our result.

Lemma 7.2.4 (drift condition) There exist δ2 ∈ (0, 1), λ1 > 0 and L > 0 such that

E [λ1|W ′|+ Ω(θ′)|W, θ, ϑ,X] ≤ (1− δ2) (λ1|W |+ Ω(θ)) + L.

Proof Since W ′ = T ∪ U ′, we consider E[|T ||W, θ, ϑ,X] and E[|U ′||W, θ, ϑ,X] sep-

arately. An upper bound of E[|T ||W, θ, ϑ,X] can be derived directly from proposi-

tion 7.2.1:

E[|T ||W, θ, ϑ,X] = E[

|W |−1∑
i=0

I{Vi+1 6=Vi}|W, θ, ϑ,X] ≤
|W |−1∑
i=0

(1− δ1) = |W |(1− δ1).

By corollary 7.2.1, there exist η1, θ2 such that for ‖θ‖ > θ2,
∫

Ω(ν)q(ν|θ)dν ≤ η1Ω(θ).

Then,

E[|U ′||W, θ, ϑ,X] = ES,T,νE[|U ′||S, T,W, θ, ϑ, ν,X] = ES,T,νE[|U ′||S, T,W, θ, ν]

≤ ES,T,ν [tendΩ(θ, ν)] = tend

∫
Ω(θ, ν)q(ν|θ)dν

= tend

[(
Ω(θ) +

∫
Θ

Ω(ν)q(ν|θ)dν
)]
≤ tend(η1 + 1)Ω(θ).

To bound E [Ω(θ′)|W, θ, ϑ,X], consider the transition probability over (W ′, θ′):

P (dW ′, dθ′|W, θ, ϑ) = dθ′dW ′

[
q(θ′|θ)

∑
S,T

P (S, T |W, θ, ϑ,X)P (W ′|S, T, θ, θ′)α(θ, θ′;W ′, X)

+

∫
q(ν|θ)

∑
S,T

P (S, T |W, θ, ϑ,X)P (W ′|S, T, θ, ν)(1− α(θ, ν;W ′, X))dνδθ(θ
′)

]
.
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With P (W ′|W, θ, ϑ, θ′, X) =
∑

S,T P (S, T |W, θ, ϑ,X)P (W ′|S, T, θ, θ′), integrate out

W ′:

P (dθ′|W, θ, ϑ) = dθ′
∫

dW ′
[
q(θ′|θ)P (W ′|W, θ, ϑ, θ′, X)α(θ, θ′;W ′, X)+∫

q(ν|θ)P (W ′|W, θ, ϑ, ν,X)(1− α(θ, ν;W ′, X))dνδθ(θ
′)

]
Let

∫
Ω(θ′)P (dθ′|W, θ, ϑ) = I1(W, θ, ϑ) + Ω(θ)I2(W, θ, ϑ), with

I1(W, θ, ϑ) =

∫
dθ′Ω(θ′)q(θ′|θ)

∫
dW ′P (W ′|W, θ, ϑ, θ′, X)α(θ, θ′;W ′, X),

I2(W, θ, ϑ) =

∫
dνdW ′q(ν|θ)P (W ′|W, θ, ϑ, ν,X)(1− α(θ, ν;W ′, X)).

Consider the second term I2. From Proposition 7.2.2, for any positive ε, there exists

θε > 0 such that the set Eε (where |α(θ, ν;X,W ′)− αI(θ, ν;X)| ≤ ε) has probability

greater than 1− ε. Write I2,Eε for the integral restricted to this set, and I2,Ecε for that

over the complement, so that I2 = I2,Eε + I2,Ecε . Then for θ > θε,

I2,Eε(W, θ, ϑ) =

∫
Eε

dνdW ′q(ν|θ)P (W ′|W, θ, ϑ, ν,X)(1− α(θ, ν;W ′, X))

≤
∫
Eε

dνdW ′q(ν|θ)P (W ′|W, θ, ϑ, ν,X)[1− (αI(θ, ν;X)− ε)]

≤
∫
dνdW ′q(ν|θ)P (W ′|W, θ, ϑ, ν,X)[1− (αI(θ, ν;X)− ε)]

≤ (1 + ε)−
∫
q(ν|θ)αI(θ, ν;X)dν, and

I2,Ecε (W, θ, ϑ) =

∫
Ecε

dνdW ′q(ν|θ)P (W ′|W, θ, ϑ, ν,X)(1− α(θ, ν;W ′, X))

≤
∫
Ecε

dνdW ′q(ν|θ)P (W ′|W, θ, ϑ, ν,X) ≤ ε.

We similarly divide the integral I1 into two parts, I1,Eε (over Eε) and I1,Ecε (over its

complement Ec
ε ). For ‖θ‖ large enough, we can bound the acceptance probability by

αI(θ, θ
′;X) + ε on the set Eε, and by corollary 7.2.1, we get

I1,Eε ≤
∫
Eε

Ω(θ′)q(θ′|θ)(αI(θ, θ′;X) + ε)dθ′ ≤
∫

Ω(θ′)q(θ′|θ)αI(θ, θ′;X)dθ′ + η1εΩ(θ).
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For I1,Ecε , from assumption 7.2.6, we have
∫

Θ
Ω(ν)2q(ν|θ)dν ≤ η0Ω(θ)2 for ‖θ‖ > θ2.

So, by Cauchy-Schwarz inequality and bounding the acceptance probability by one,

we have

(
I1,Ecε

)2 ≤
∫
Ecε

q(θ′|θ)P (W ′|W, θ, ϑ, θ′, X)dθ′dW ′
∫
Ecε

Ω(θ′)2q(θ′|θ)P (W ′|W, θ, ϑ, θ′, X)dθ′dW ′

≤ ε

∫
Ω(θ′)2q(θ′|θ)dθ′ ≤ εη0Ω(θ)2,

giving I1,Ecε ≤
√
εη0Ω(θ). Putting these four results together, for θ satisfying ‖θ‖ >

max(θ2, θε,M) (where M is from Assumption 7.2.4 on the ideal sampler), we have∫
Ω(θ′)P (dθ′|W, θ, ϑ) ≤

∫
Ω(θ′)q(θ′|θ)αI(θ, θ′|X)dθ′ + Ω(θ)

∫
q(ν|θ)(1− αI(θ, ν|X))dν+

√
η0εΩ(θ) + η1εΩ(θ) + 2εΩ(θ)

≤ (1− ρ)Ω(θ) + (
√
η0ε+ η1ε+ 2ε)Ω(θ) + LI , giving

E[λ1|W ′|+ Ω(θ′)|W, θ, ϑ,X] ≤ λ1(1− δ1)|W |+ λ1tend(1 + η1)Ω(θ)+

(1− ρ)Ω(θ) + (
√
η0

√
ε+ η1ε+ 2ε)Ω(θ) + LI

= (1− δ1)λ1|W |+ [1− (ρ− λ1tend(1 + η1)− (2 + η1)ε−√η0ε)]Ω(θ) + LI

def
= (1− δ1)λ1|W |+ (1− δ2)Ω(θ) + LI

For (λ1, ε) small enough, δ2 ∈ (0, 1), and δ = min(δ1, δ2) gives the drift condition.
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8. VARIATIONAL BAYESIAN INFERENCE

8.1 Introduction

So far, we have focused on Monte Carlo sampling methods for posterior infer-

ence. In this chapter, referring to Blei et al. (2017), we review variational Bayesian

(VB) inference. Variational Bayesian inference is an alternative to MCMC, that has

grown popular in statistics and machine learning. Often, MCMC can suffer from slow

convergence to the posterior distribution as well as the high auto-correlation of the

consecutive samples. Variaional inference is an alternative approach approximating

the intractable posterior distribution with some simple probability distributions. The

convergence of variational inference is usually fast. The disadvantage is that, unlike

MCMC, they are biased. Nevertheless, this offers an additional computational tool

for practitioners.

Consider a joint density of latent variables z = z1:m and observations x = x1:n,

p(z, x) = p(z)p(x|z).

By constructing a Markov chain whose stationary distribution is the posterior density

p(z|x), MCMC methods can draw samples from the posterior distribution. Unlike

MCMC, the main idea of variational Bayesian inference is to approximate p(z|x)

with an element q(z) of a simple family of distribution L. VB finds the approximate

distribution which minimizes the Kullback-Leibler (KL) divergence, from the family

of approximate distributions L.

q∗(z) = argmin
q(z)∈L

KL(q(z)||p(z|x)).

Recall the KL divergence between two probability distributions p1(x) and p2(x) is

kl(p1||p2) =

∫
p1(x) log

p1(x)

p2(x)
dx.
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MCMC algorithms approximate the posterior distribution by sampling while vari-

ational inference algorithms approximate the posterior distribution by solving an

optimization problem.

8.2 The evidence lower bound

As stated in the previous section, our goal is to find the approximate distribution

in L, closest to the posterior distribution, in the KL divergence sense. The expression

for KL divergence for variational inference can be expanded to give

KL(q(z)||p(z|x)) =

∫
q(z) log

q(z)

p(z|x)
dz

= −
(∫

q(z) log
p(x, z)

q(z)
dz −

∫
q(z) log p(x)dz

)
= −

∫
q(z) log

p(x, z)

q(z)
dz + log p(x)

= −(Eq log p(z, x)− Eq log p(z)) + log p(x)

In many cases, p(x) is not easy to compute. Call Eq log p(z, x) − Eq log p(z) as the

evidence lower bound (ELBO) and rearrange the above equation.

ELBO(q) = (Eq log p(z, x)− Eq log p(z))

= log p(x)−KL(q(z)||p(z|x)).

Since ELBO is equivalent to the negative KL divergence up to a constant, maximizing

the ELBO is equivalent to minimizing the KL divergence. Notice that KL divergence

KL(q(z)||p(z|x)) ≥ 0. Thus we have

ELBO(q) ≤ log p(x).
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8.3 Mean field variational inference

In this section, following Bishop (2006), we introduce mean-field variational Bayesian

inference. For any q(z) ∈ L, restrict L to the set of q’s satisfying

q(z1:m) =
m∏
i=1

qi(zi).

This means that under a variational approximation, each variable zi is independent.

In order to maximize the ELBO, coordinate ascent algorithm can be used to find the

optimal q∗i for i = 1, · · · ,m. This proceeds by optimizing each component qi of q,

one at a time. Let z−j be (z1, · · · , zj−1, zj+1, · · · zm), where the notation −j denotes

all indices except j. We consider jth variable zj while fixing the other qk(zk), k 6= j.

Denote the optimal qj(zj) as q∗j (zj). We have

q∗j (zj) ∝ exp [E−j log p(zj, z−j, x)] .

To derive this, we need to write the ELBO (Eq log p(z, x)− Eq log p(z)) as a function

of qj while fixing all other qk, k 6= j.

ELBO = Ej [E−j log p(zj, z−j, x)]− Ej log qj(zj) + C;

= −KL(qj(zj)||E−j log p(zj, z−j, x)) + C,

where C is a constant. It is easy to see that the q∗j maximize the ELBO.

8.4 Collapsed variational Bayesian inference

In this section, referring to Teh et al. (2006), we introduce the collapsed variational

Bayesian (CVB) inference. Collapsed variational Bayesian algorithm leverages the

idea of variational Bayesian inference and the collapsed Gibbs sampler (Liu, 1994a).

It works in a collapsed space, where the parameters are marginalized out. Now,

consider a model with latent variable variables z = z1:m and observations x = x1:n,

as well as the parameters θ. With the prior distribution of θ being p(θ), the joint

probability density is p(z, x, θ) = p(x, z|θ)p(θ).
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The goal of the collapsed Gibbs sampler is to draw latent variable samples from

the conditional probability density p(z|x), given the observations x. It proceeds by

integrating out the parameter θ and only consider the marginal distribution

p(x, z) =

∫
p(x, z|θ)p(θ)dθ. (8.1)

Then it updates each component zj of z given all the other components fixed, as well

as the observations, from the conditional distribution p(zj|z−j, x). It skips sampling

θ from the conditional distribution, which is usually time consuming. Not having to

simulate θ avoids coupling between θ and z and can speed up mixing.

Inspired by the collapsed Gibbs sampler, CVB models the dependence between

the parameters and the latent variables in an exact fashion, instead of assuming

independence. This means CVB does not make any assumptions on the structure of

the the conditional distribution q(θ|z, x). CVB still assumes the mean-field structure,

q(z|x) ≈
∏m

t=1 q(zt|x). Formally, CVB assumes the following approximation structure.

p(z, θ|x) ≈ q(θ|z, x)q(z|x),

q(z|x) =
m∏
t=1

q(zt|x).

By maximizing the ELBO, we can get the following updating rules.

q∗(θ|z, x) = p(θ|z, x),which is the true posterior;

q∗(zj|x) ∝ exp(Eq(z−j)[log p(zj|x, z−j)]).

Teh et al. (2006) shows that it is equivalent to directly working from the marginal

distribution (equation 8.1) and then assuming the mean-field structure

p(z|x) ≈ q(z|x) =
m∏
t=1

q(zt|x).
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9. COLLAPSED VARIATIONAL INFERENCE FOR

MARKOV JUMP PROCESSES

9.1 Introduction

As described in earlier chapters, inference for Markov jump processes typically

proceeds via Markov chain Monte Carlo, and can suffer from various computational

challenges. In this chapter, we bring ideas from variational Bayes towards posterior

inference for Markov jump processes, proposing a novel and efficient collapsed vari-

ational algorithm based on the idea of uniformization, which marginalizes out the

MJP parameters, thereby addressing the issue of slow mixing. Our algorithm adap-

tively finds regions of low and high transition activity, optimizing the discretization of

time, rather than integrating these out. We apply our ideas to synthetic data as well

as a dataset of check-in recordings, where we show that these can bring significant

computational benefits. This work is published in our paper Pan et al. (2017).

9.2 An alternate prior on the parameters of an MJP

We use uniformization to formulate a novel prior distribution over the parameters

of an MJP; this will facilitate our later variational Bayes algorithm. Consider Ai,

the ith row of the rate matrix A. This is specified by the diagonal element Aii, and

the vector Bi := 1
|Aii|(Ai1, · · · , Ai,i−1, 0, Ai,i+1, · · · , AiN). Recall that the latter is a

probability vector, giving the probability of the next state after i. In Fearnhead and

Sherlock (2006), the authors place a Gamma prior on |Aii|, and what is effectively, a

Dirichlet(α, · · · , 0, · · · , α) prior on Bi (although they treat Bi as an N−1-component

vector by ignoring the 0 at position i).
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We place a Dirichlet(a, · · · , a0, · · · , a) prior on Bi for all i. Such Bi’s allow self-

transitions, and form the rows of the transition matrix B from uniformization. Note

that under uniformization, the row Ai is uniquely specified by the pair (Ω, Bi) via

the relationship Ai = Ω(Bi − 1i), where 1i is the indicator for i. We complete our

specification by placing a Gamma prior over Ω.

Note that since the rows of A sum to 0, and the rows of B sum to 1, both matrices

are completely determined byN(N−1) elements. On the other hand, our specification

has N(N − 1) + 1 random variables, the additional term arising because of the prior

over Ω. Given A, Ω plays no role in the generative process defined by Gillespie’s algo-

rithm, although it is an important parameter in MCMC inference algorithms based

on uniformization. In our situation, B represents transition probabilities conditioned

on there being a transition, and now Ω does carry information about A, namely the

distribution over event times. Later, we will look at the implied marginal distribution

over A. First however, we consider the generalized uniformization scheme of Rao and

Teh (2012). Here we have N additional parameters, Ω1 to ΩN . Again, under our

model, we place Gamma priors over these Ωi’s, and Dirichlet priors on the rows of

the transition matrix B.

Note that in Rao and Teh (2013, 2012), Ω is set to 2 maxi |Aii|. From the identity

B = I + 1
Ω
A, it follows that under any prior over A, with probability 1, the smallest

diagonal element of B is 1/2. Our specification avoids such a constrained prior over

B, instead introducing an additional random variable Ω. Indeed, our approach is

equivalent to a prior over (Ω, A), with Ω = kmaxiAii for some random k. We

emphasize that the choice of this prior over k does not effect the generative model,

only the induced inference algorithms such as Rao and Teh (2013) or our proposed

algorithm.

To better understand the implied marginal distribution over A, consider the rep-

resentation of Rao and Teh (2012), with independent Gamma priors over the Ωi’s.

We have the following result:
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Proposition 9.2.1 Place independent Dirichlet priors on the rows of B as above,

and independent Gamma((N − 1)a + a0, b) priors on the Ωi. Then, the associated

matrix A has off-diagonal elements that are marginally Gamma(a, b)-distributed, and

negative-diagonal elements that are marginally Gamma((N − 1)a, b)-distributed, with

the rows of A adding to 0 almost surely.

The proposition is a simple consequence of the Gamma-Dirichlet calculus: first

observe that the collection of variables ΩiBij is a vector of independent Gamma(a, b)

variables. Noting that Aij = ΩiBij, we have that the off-diagonal elements of A are

independent Gamma(a, b)s, for i 6= j. Our proof is complete when we notice that

the rows of A sum to 0, and that the sum of independent Gamma variables is still

Gamma-distributed, with scale parameter equal to the sum of the scales. It is also

easy to see that given A, the Ωi is set by Ωi = |Aii|+ ωi, where ωi ∼ Gamma(a0, b).

In this work, we will simply matters by scaling all rows by a single, shared Ω. This

will result in a vector of Aij’s each marginally distributed as a Gamma variable, but

now positively correlated due to the common Ω. We will see that this simplification

does not affect the accuracy of our method. In fact, as our variational algorithm will

maintain just a point estimate for Ω, so that its effect on the correlation between the

Aii’s is negligible.

9.3 Collapsed variational inference for MJPs

Given noisy observationsX of an MJP, we are interested in the posterior p(S(t), A|X).

Following the earlier section, we choose an augmented representation, where we re-

place A with the pair (B,Ω). Similarly, we represent the MJP trajectory S(t) with

the pair (v0, V,W ), where W is the set of candidate transition times, and V (with

|W | = |V |), is the set of states at these times. For our variational algorithm, we

will integrate out the Markov transition matrix B, working instead with the marginal

distribution p(W,V,Ω). Such a collapsed representation avoids issues that plague

MCMC and VB approaches, where coupling between trajectory and transition ma-
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trix slows down mixing/convergence. The distribution p(W,V,Ω) is still intractable

however, and as is typical in variational algorithms, we will make a factorial approx-

imation p(W,V,Ω) ≈ q(W,V )q(Ω). Writing q(W,V ) = q(V |W )q(W ), we shall also

restrict q(W ) to a delta-function: q(W ) = δŴ (W ) for some Ŵ . In this way, finding

the ‘best’ approximating q(W ) within this class amounts to finding a ‘best’ discretiza-

tion of time. This approach of optimizing over a time-discretization is in contrast to

MCMC schemes that integrate out the time discretization, and has a two advantages:

Simplified computation: Searching over time-discretization can be significantly more

efficient than integrating it out. This is especially true when a trajectory involves

bursts of transitions interspersed with long periods of inactivity, where schemes like

Rao and Teh (2013) can be quite inefficient.

Better interpretability: A number of applications use MJPs as tools to segment a

time interval into inhomogeneous segments. A full distribution over such an object

can be hard to deal with.

Following work on variational inference for discrete-time Markov chains (Wang

and Blunsom, 2013), we will approximate q(V |W ) factorially as q(V |W ) =
∏|W |

t=1 q(vt).

Finally, since we fix q(W ) to a delta function, we will also restrict q(Ω) to a delta

function, only representing uncertainty in the MJP parameters via the marginalized

transition matrix B.

We emphasize that even though we optimize over time discretizations, we still

maintain posterior uncertainty of the MJP state. Thus our variational approximation

represents a distribution over piecewise-constant trajectories as a single discretization

of time, with a probability vector over states for each time segment (Figure 9.3). Such

an approximation does not involve too much loss of information, while being more

convenient than a full distribution over trajectories, or a set of sample paths. While

optimizing over trajectories, our algorithm attempts to find segments where the dis-

tribution over states is reasonably constant, if not it will refine a segment into two

smaller ones. Our overall variational inference algorithm then involves minimizing
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the Kullback-Liebler distance between this posterior approximation and the true pos-

terior. We do this in a coordinate-wise manner:

1) Updating q(V |W ) =
∏|W |

t=1 q(vt): Given a discretization W , and an Ω, uni-

formization tells us that inference over V is just inference for a discrete-time hidden

Markov model. We adapt the approach of Wang and Blunsom (2013) to update q(V ).

Assume the observations X follow an exponential family likelihood with parameter Cs

for state s: p(xlt|St = s) = exp(φ(xlt)
TCs)h(xlt)/Z(Cs), where Z is the normalization

constant, and xlt is the l-th observation observed in between [Wt,Wt+1). Then for a

sequence of |W | observations, we have

p(X, V |B,C) ∝
|W |∏
t=0

Bvt,vt+1

nt∏
l=1

exp(φ(xlt)
TCvt)h(xlt)/Z(cvt)

=

[
S∏
i=1

S∏
j=1

B
#ij

ij

]
S∏
i=1

exp(

|T |∑
t=0

φ̃Tt CiI{vt=i})(
|T |∏
t=0

nt∏
l=1

h(xlt)

Z(Cvt)
)

=

[
S∏
i=1

S∏
j=1

B
#ij

ij

]
S∏
i=1

exp(φ̄Ti Ci)(

|T |∏
t=0

nt∏
l=1

h(xlt)

Z(Cvt)
)

Here nt is the number of observations in [Wt,Wt+1) and #ij is the number of transi-

tions from state i to j, and φ̃t =
∑nt

l=1 φ(xlt) and φ̄i =
∑

t,s.t. ut=i
φ̃t.

Placing Dirichlet(α) priors on the rows of B, and an appropriate conjugate prior

on C, which depends on β, we have

p(X, V,B,C) ∝=

[
S∏
i=1

Γ(Sα)
S∏
j=1

B
#ij+α−1
ij

Γ(α)

]
S∏
i=1

exp(CT
i (φ̄i + β))(

|W |∏
t=0

nt∏
l=1

h(xlt)

Z(Cvt)
).

Integrating out B and C, and writing #i for the number of visits to state i, we have:

p(X, V ) ∝=

[
S∏
i=1

Γ(Sα)

Γ(#i + α)

S∏
j=1

Γ(#ij + α)

Γ(α)

]
S∏
i=1

Z̄i(φ̄i + β).

Then, p(vt = k|·) ∝
(#¬tvt−1,k

+ α)δ
t
k(#¬tk,vt−1

+ δt−1,t+1
k + α)δ

t
k

(#¬tk + α)δ
t
k

· Z̄k(φ̄¬tk + φ̄k(Xt) + β)

Standard calculations for variational inference give the solution to

q(vt) = argmin KL(q(V,W,Ω)‖p(V,W,Ω|X))
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Figure 9.1. (left) Merging to time segments. (right) splitting a time
segment. Horizontal arrows are VB messages.

as q(vt) = Eq¬t [log p(vt|·)], We then have the update rule:

q(vt = k) ∝
Eq¬t [#¬tvt−1,k

+ α]Eq¬t [#¬tk,vt−1
+ δt−1,t+1

k + α]

Eq¬t [#¬tvt−1,k
+ Sα]Eq¬t [#¬tk,vt−1

+ δt−1,t+1
k + α]

· Eq
¬tZ̄k(φ̄

¬t
k + φ̄k(Xt) + β)

Eq¬tZ̄k(φ̄¬tk + β)

For the special case of multinomial observations, we refer to Wang and Blunsom

(2013).

2) Updating q(W ): We perform a greedy search over the space of time-discretizations

by making local stochastic updates to the current W . Every iteration, we first scan

the current W to find a beneficial merge (Figure 9.3, left): go through the transition

times in sequential or random order, merge with the next time interval, compute the

variational lower bound under this discretization, and accept if it results in an im-

provement. This eliminates unnecessary transitions times, reducing fragmentation of

the segmentation, and the complexity of the learnt model. Calculating the variational

bound for the new time requires merging the probability vectors associated with the

two time segments into a new one. One approach is to initialize this vector to some

arbitrary quantity, run step 1 till the q’s converge, and use the updated variational

bound to accept or reject this proposal. Rather than taking this time-consuming

approach, we found it adequate to set the new q to a convex combination to the old

q’s, each weighted by the length of their corresponding interval length. In our ex-

periments, we found that this performed comparably at a much lower computational

cost.
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If no merge is found, we then try to find a beneficial split. Again, go through

the time segments in some order, now splitting each interval into two. After each

split, compare the likelihood before and after the split, and accept (and return) if the

improvement exceeds a threshold. Again, such a split requires computing probability

vectors for the newly created segments. Now, we assign each segment the same vector

as the original segment (plus some noise to break symmetry). We then run one pass

of step 1, updating the q’s on either side of the new segment, and then updating the

q’s in the two segments. We consider two interval splitting schemes, bisection and

random-splitting.

Overall, our approach is related to split-merge approaches for variational infer-

ence in nonparametric Bayesian models (Hughes et al., 2015); these too maintain

and optimize point estimates of complex, combinatorial objects, instead maintaining

uncertainty over quantities like cluster assignment. In our real-world check-in appli-

cations, we consider a situation where there is not just one MJP trajectory, but a

number of trajectories corresponding to different users. In this situation, we take a

stochastic variational Bayes approach, picking a random user and following the steps

outlined earlier.

Updating q(Ω): With a Gamma(a1, a2) prior over Ω, the posterior over Ω is also

Gamma, and we could set Ω to the MAP. We found this greedy approach unstable

sometimes, instead using a partial update, with the new Ω equal to the mean of the

old value and the MAP value. Writing s for the total number of transition times in

all m trajectories, this gives us Ωnew = (Ωcurr + (a1 + s)/(a2 +m))/2.
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Algorithm 8 Collapsed variational inference for Markov jump processes

Input: Noisy observations X and prior parameters α, β, a1, a2.

Current variational approximation
∏|Wcurr|

t=1 qcurr(vt)δWcurr(W )δΩcurr(Ω).

Output: New variational approximation
∏|Wnew|

t=1 qnew(vt)δWnew(W )δΩnew(Ω).

1: Update q(V |W ) given the current grid Wcurr:

q(vt = k) ∝
Eq¬t [#¬tvt−1,k

+ α]Eq¬t [#¬tk,vt−1
+ δt−1,t+1

k + α]

Eq¬t [#¬tvt−1,k
+ Sα]Eq¬t [#¬tk,vt−1

+ δt−1,t+1
k + α]

· Eq
¬tZ̄k(φ̄

¬t
k + φ̄k(Xt) + β)

Eq¬tZ̄k(φ̄¬tk + β)

2: Update q(W ): Perform a greedy search over the space of time-discretizations

by making local stochastic updates to the current grid Wcurr and update q(V |W )

accordingly, resulting in qnew(W ) = δWnew(W ) and qnew(V |W ) =
∏|Wnew|

t=1 qnew(vt).

3: Update q(Ω): Writing s for the total number of transition times in all m trajec-

tories, set Ωnew = (Ωold + (a1 + s)/(a2 +m))/2. qnew(Ω) = δΩnew(Ω).

9.4 Experiments

We present qualitative and quantitative experiments using synthetic and real

datasets to demonstrate the accuracy and efficiency of our variational Bayes (VB)

algorithm. We mostly focus on comparisons with the MCMC algorithms from Rao

and Teh (2013) and Rao and Teh (2012).

Datasets. We use a dataset of check-in sequences from 8967 FourSquare users

in the year 2011, originally collected by Gao et al. (2012) for studying location-

based social networks. Each check-in has a time stamp and a location (latitude and

longitude), with users having 191 check-in records on average. We only consider check-

ins inside a rectangle containing the United States and parts of Mexico and Canada

(see Figure 9.4, left), and randomly select 200 such sequences for our experiments.

We partition the space into a 40× 40 grid, and define the observation distribution of

each MJP state as a categorical distribution over the grid cells. See Pan et al. (2016)

for more details on this application.
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Figure 9.2. (left) check-ins of 500 users. (right-top) heatmap of emission
matrices; (right-bottom) true and inferred trajectories: the y-values are
perturbed for clarity.
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Figure 9.3. (left,middle) posterior distribution over states of two trajec-
tories in second synthetic dataset; (right) evolution of log p(W | Ω, X) in
the VB algorithm for two sample sequences

We also use two synthetic datasets in our experiments, with observations in a 5×5

grid. For the first dataset, we fix Ω = 20 and construct a transition matrix B for 5

states with B(i, i) = 0.8, B(i, 5) = 0.19, B(5, 5) = 0, and B(5, i) = 0.25 for i ∈ [1, 4].

By construction, these sequences can contain many short time intervals at state 5, and

longer time intervals at other states. We set the observation distribution of state i to

have 0.2 probability on grid cells in the i-th row and 0 probability otherwise. For the

second synthetic dataset, we use 10 states and draw both the transition probabilities



83

of B and the observation probabilities from Dirichlet(1) distribution. Given (Ω, B),

we sample 50 sequences, each containing 100 evenly spaced observations.

Hyperparameters: For VB on synthetic datasets we place a Gamma(20, 2)

prior on Ω, and Dirichlet(2) priors on the transition probabilities and the observation

probabilities, while on the check-in data, a Gamma(6, 1), a Dirichlet(0.1) and a

Dirichlet(0.01) are placed. For MCMC on synthetic datasets, we place a Gamma(2,

0.2) and a Dirichlet(0.1) for the rate matrix, while on the check-in data, a Gamma(1,

1) and a Dirichlet(0.1) are placed.

Visualization: We run VB on the first synthetic dataset for 200 iterations, after

which we use the posterior expected counts of observations in each state to infer the

output emission probabilities (see Figure 9.4(top-right)). We then relabel the states

under the posterior to best match the true state (our likelihood is invariant to state

labels); Figure 9.4(bottom-right) shows the true and MAP MJP trajectories of two

sample sequences in the synthetic dataset. Our VB algorithm recovers the trajectories

well, although it is possible to miss some short “bumps”. MCMC also performs well

in this case, although as we will show, it is significantly more expensive.
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Figure 9.4. reconstruction error of MCMC and VB (using random and
even splitting) for the (left) first and (right) the second synthetic dataset.
The random split scheme is in blue , even split scheme is in red , and VB
random split scheme with true omega in orange. MCMC is in black.
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Figure 9.5. Synthetic dataset 1(top) and 2(bottom): Histogram of num-
ber of transitions using VB with (left) random splitting; (middle) even
spliting; (right) using MCMC.

The inferred posteriors of trajectories have more uncertainty for the second syn-

thetic dataset. Figure 9.3 (left and middle) visualizes the posterior distributions

of two hidden trajectories with darker regions for higher probabilities. The ability

to maintain posterior uncertainty about the trajectory information is important in

real world applications, and is something that k-means-style approximate inference

algorithms (Huggins et al., 2015) ignore.

Inferred trajectories for real-world data. We run the VB algorithm on the

check-in data using 50 states for 200 iterations. Modeling such data with MJPs will

recover MJP states corresponding to cities or areas of dense population/high check-in

activity. We investigate several aspects about the MJP trajectories inferred by the
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algorithm. Figure 9.3(right) shows the evolution of log p(W | Ω, X) (up to constant

factor) of two sample trajectories. This value is used to determine whether a merge or

split is beneficial in our VB algorithm. It has an increasing trend for most sequences

in the dataset, but can sometimes decrease as the trajectory discretization evolves.

This is expected, since our stochastic algorithm maintains a pseudo-bound. Figure 9.5

shows similar results for the synthetic datasets.

Normally, we expect a user to switch areas of check-in activity only a few times in

a year. Indeed, Figure 9.6 (left) shows the histogram of the number of transition times

across all trajectories, and the majority of trajectories have 3 or less transitions. We

also plot the actual transition times of 10 random trajectories (right). In contrast,

MCMC tends to produce more transitions, many of which are redundant. This is

a side effect of uniformization in MCMC sampling, which requires a homogeneously

dense Poisson distributed trajectory discretization at every iteration.
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Figure 9.6. histogram of number of transitions using (left) VB and (mid-
dle) MCMC; (right) transition times of 10 users using VB

Running time vs. reconstruction error. We measure the quality of the in-

ferred posterior distributions of trajectories using a reconstruction task on the check-

in data. We randomly select 100 test sequences, and randomly hold out half of the

observations in each test sequence. The training data consists of the observations

that are not held out, i.e., 100 full sequences and 100 half sequences. We run our

VB algorithm on this training data for 200 iterations. After each iteration, we re-

construct the held-out observations as follows: given a held-out observation at time
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t on test sequence τ , using the maximum-likelihood grid cell to represent each state,

we compute the expected grid distance between the true and predicted observations

using the estimated posterior q(vt). The reconstruction error for τ is computed by

averaging the grid distances over all held-out observations in τ . The overall recon-

struction error is the average reconstruction error over all test sequences. Similarly,

we run the MCMC algorithm on the training data for 1000 iterations, and compute

the overall reconstruction error after every 10 iterations, using the last 300 iterations

to approximate the posterior distribution of the MJP trajectories. We also run an

improved variant of the MCMC algorithm, where we use the generalized uniformiza-

tion scheme (Rao and Teh, 2012) with different Ωi for each state. This allows coarser

discretizations for some states and typically runs faster per iteration.

Figure 9.7(left) shows the evolution of reconstruction error during the algorithms.

The error using VB plateaus much more quickly than the MCMC algorithms. The

error gap between MCMC and VB is because of slow mixing of the paths and pa-

rameters, as a result of the coupling between latent states and observations as well

as modeling approximations. Although the improved MCMC takes less time per

iteration, it is not more effective for reconstruction in this experiment. Figure 9.4

shows similar results for the synthetic datasets. Figure 9.8 visualizes the posterior

distributions of three hidden trajectories with darker shades for higher probabilities.
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(middle) reconstruction error using random and even splitting; (right)
reconstruction error for more iterations
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We have chosen to split each time interval randomly in our VB algorithm. Another

possibility is to simply split it evenly. Figure 9.7(middle) compares the reconstruction

error of the two splitting schemes. Random splitting has lower error since it produces

more successful splits; on the other hand, the running time is smaller with even

splitting due to fewer transitions in the inferred trajectories. In Figure 9.7(right), we

resampled the training set and the testing set and ran the experiment for longer. It

shows that the error gap between VB and MCMC is closing.
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10. SUMMARY AND FUTURE WORK

10.1 Summary

In this thesis, we described a novel symmetrized Metropolis Hastings algorithm

for the parameter inference for Markov jump processes. We marginalized out the

state information after using uniformization to sample the candidate transition times.

We computed the MH acceptance rate by FFBS algorithm. The symmetrization

proposing scheme avoids the dependency between candidate transition times and the

MJP parameters, leading to a efficient Metropolis Hastings sampling algorithm for

the parameter inference. We also show our sampler inherits geometric ergodicity

property from an ideal sampler that is computationally much more expensive.

We also described a novel collapsed variational inference algorithm for Bayesian

inference in Markov jump processes. We reparameterized the Markov jump processes

based the idea of uniformization. Our variational inference algorithm marginalizes

out the MJP parameters, and maintains a point estimate of the discretization of time,

which leads to computational savings, and thus is more efficient.

10.2 Future work

For the problem of parameter inference for Markov jump processes, there are a

number of interesting directions for future research. Our focus was on Metropolis-

Hastings algorithms for typical settings, where the parameters are low dimensional.

It is interesting to investigate how our ideas extend to schemes like Hamiltonian

Monte Carlo (Neal, 2010) suited for higher-dimensional settings. Another direction

is to develop and study similar schemes for more complicated hierarchical models

like mixtures of MJPs or coupled MJPs. While we focused only on Markov jump
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processes, it is also of interest to study similar ideas for algorithms for more gen-

eral processes (Rao and Teh, 2012). Also, it is interesting to apply the idea of the

generalized uniformization. We can extend our method by treating the uniformiza-

tion rate Ω(θ) as a trajectory dependent random variable. Moreover, in this thesis,

we assume the state space of the MJP is finite, which allows us to apply the FFBS

algorithm. However, if the state space of the MJP is infinite, which is common in

practice. For example, the queuing models without capacity have infinite state space

N = {0, 1, · · · }. Such an infinite state space prevents us to use the FFBS algorithm.

Fortunately, in practice, it is possible to choose a large number N and work on the

trimmed state space {0, 1, · · ·N}. However, it will introduce bias and the sampler

is not exact anymore. It is important to study if we can extend our methods to

the MJPs with infinite state space without any approximation. It is also important

to investigate how similar ideas apply to deterministic algorithms like variational

Bayes (Opper and Sanguinetti, 2007; Pan et al., 2017). From a theoretical viewpoint,

our proof required the uniformization rate to satisfy Ω(θ) ≥ k1 maxsAs(θ) + k0 for

k1 > 1. We believe our result still holds for k1 = 1, and for completeness, it would be

interesting to prove this.

For the problem of variational inference for Markov jump processes, there are a

number of interesting extensions worth studying. First is to consider more structured

variational approximations (Wang and Blunsom, 2013), than the factorial approxima-

tions we considered here. Also of interest are extensions to more complex MJPs, with

infinite state-spaces (Saeedi and Bouchard-Côté, 2011) or structured state-spaces (Op-

per and Sanguinetti, 2007). It is also interesting to look at different extensions of the

schemes we proposed in this paper: different choices of split-merge proposals, and

more complicated posterior approximations of the parameter Ω. Finally, it is instruc-

tive to use other real-world datasets to compare our approaches with more traditional

MCMC approaches.
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Sylvia Frühwirth-Schnatter. Data augmentation and dynamic linear models. Journal
of Time Series Analysis, 15(2):183–202, 1994.

H. Gao, J. Tang, and H. Liu. gscorr: Modeling geo-social correlations for new check-
ins on location-based social networks. In Proceedings of the 21st ACM conference
on Information and knowledge management. ACM, 2012.

D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340–2361, 1977.



91

N. Goldman and Z. Yang. A codon-based model of nucleotide substitution for
protein-coding DNA sequences. Molecular biology and evolution, 11(5):725–736,
1994.

D. Gross, J.F. Shortle, J.M. Thompson, and C.M. Harris. Fundamentals of Queueing
Theory. Wiley Series in Probability and Statistics. Wiley, 2011.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

A. Hobolth and E. Stone. Simulation from endpoint-conditioned, continuous-time
Markov chains on a finite state space, with applications to molecular evolution. The
Annals of Applied Statistics, 3(3):1204–1231, 2009.

J. H. Huggins, K. Narasimhan, A. Saeedi, and V. K. Mansinghka. Jump-means:
Small-variance asymptotics for Markov jump processes. In Proceedings of the 32nd
International Conference on Machine Learning (ICML 2015), pages 693–701, 2015.

M. C. Hughes, W. T. Stephenson, and E. B. Sudderth. Scalable adaptation of
state complexity for nonparametric hidden Markov models. In Advances in Neural
Information Processing Systems 28, pages 1198–1206, 2015.

A. Jensen. Markoff chains as an aid in the study of Markoff processes. Skand.
Aktuarietiedskr., 36:87–91, 1953.

T. H. Jukes and C. R. Cantor. Evolution of Protein Molecules. Academy Press,
1969.

P. A. W. Lewis and G. S. Shedler. Simulation of nonhomogeneous Poisson processes
by thinning. Naval Research Logistics Quarterly, 26(3):403–413, 1979.

J. S. Liu. The collapsed Gibbs sampler in Bayesian computations with applications
to a gene regulation problem. Journal of the American Statistical Association, 89
(427):958–966, 1994a.

J. S. Liu. The fraction of missing information and convergence rate for data aug-
mentation. Computing Science and Statistics, pages 490–496, 1994b.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equations of state calculations by fast computing machines. Journal of Chemical
Physics, 21(6):1087–1092, 1953.

S. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Cambridge
University Press, 2nd edition, 2009.

B. Miasojedow and w. Niemiro. Geometric ergodicity of Rao and Teh’s algorithm
for Markov jump processes and CTBNs. Electronic Journal of Statistics, 11(2):
4629–4648, 2017.

J. Møller, A. N. Pettitt, R. Reeves, and K. K. Berthelsen. An efficient Markov
chain Monte Carlo method for distributions with intractable normalising constants.
Biometrika, 93(2):451–458, 2006.

I. Murray, Z. Ghahramani, and D. J. C. MacKay. MCMC for doubly-intractable
distributions. In Proceedings of the 22nd Conference on Uncertainty in Artificial
Intelligence, pages 359–366. AUAI Press, 2006.



92

R. M. Neal. Taking bigger Metropolis steps by dragging fast variables. Technical
report, Department of Statistics, University of Toronto, 2004.

R. M. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte
Carlo, 54:113–162, 2010.

U. Nodelman, C.R. Shelton, and D. Koller. Continuous time Bayesian networks. In
Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, pages
378–387, 2002.

M. Opper and G. Sanguinetti. Variational inference for Markov jump processes. In
Advances in Neural Information Processing Systems 20, 2007.

J. Pan, V. Rao, P. K. Agarwal, and A. E. Gelfand. Markov-modulated marked Pois-
son processes for check-in data. In Proceedings of The 33rd International Conference
on Machine Learning(ICML 2016), pages 2244–2253, 2016.

J. Pan, B. Zhang, and V. Rao. Collapsed variational Bayes for Markov jump pro-
cesses. In Advances in Neural Information Processing Systems 30, pages 3749–3757,
2017.

O. Papaspiliopoulos, G. O. Roberts, and M. Sköld. A general framework for the
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A. APPENDIX

In the appendix, we describe the particle MCMC algorithm for Bayesian inference

for Markov jump processes. We evaluate its performance and compare it with other

algorithms in Chapter 6.

Particle MCMC for Bayesian inference for Markov jump processes

Particle MCMC (Andrieu et al., 2010) uses particle filtering to get an unbiased

estimate of the marginal P (X|θ). Plugging this into the Metropolis-Hastings accep-

tance probability results in an MCMC sampler that targets the correct posterior. The

resulting scheme does not exploit the structure of the MJP, and we show that it is

quite inefficient in the experiments in Chapter 6.

A sequential Monte Carlo algorithm for MJPs inference

We first describe a sequential Monte Carlo algorithm for MJPs inference that

underlies particle MCMC. Denote by S[t′1,t
′
2] the MJP trajectory from time t′1 to time

t′2. Our target is to sample an MJP trajectory S[0,tend] given n noisy observations

X = (x1, x2, ..., xn), at time tX1 , t
X
2 , ..., t

X
n . The initial value of the Markov jump

process trajectory can be simulated from its initial distribution over states: S(0) ∼ π0.

S[tXi ,t
X
i+1], its values over any interval [tXi , t

X
i+1] can be simulated by Gillespie’s algorithm

(see algorithm 1). For the ith observation xi at time tXi , denote the likelihood for

S(tXi ) as P (xi|S(tXi )).
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Algorithm 9 The SMC sampler for MJP trajectories

Input: Prior π0, n observations X, Number of particles N , rate-matrix A.

Output: New MJP trajectory S ′(t) = (s′0, S
′, T ′).

1: Define tX0 = 0 and tXn+1 = tend.

2: Sample initial states for N particles Sk(0) from π0, k = 1, ..., N .

3: for i = 1, ..., n+ 1 : do

4: (a) For k = 1, 2, ..., N , update particle k from [0, tXi−1] to [0, tXi ] by forward

simulating Sk
[tXi−1,t

X
i ]
|Sk(tXi−1) via Gillespie’s algorithm.

5: (b) Calculate the weights wki = P (xi|Sk(tXi )) and normalize W k
i =

wki∑N
k=1 w

k
i

.

6: (c) Sample Jki ∼ Multi(·|(W 1
i , . . . ,W

N
i )) , k = 1, 2, ..., N .

7: (d) Set Sk
[0,tXi ]

:= S
Jki
[0,tXi ]

.

8: end for

The SMC algorithm gives us an estimate of the marginal likelihood Pθ(X1:n).

P̂θ = P̂θ(X1)
n∏
i=2

P̂θ(Xi|X1:i−1) =
n∏
i=1

[
N∑
k=1

1

N
wki

]
.

Particle MCMC algorithm for inference over MJP trajectory and param-

eters

Algorithm 10 outlines the Particle MCMC algorithm for the inference. The ac-

ceptance probability involves the marginal likelihood returned by the SMC algorithm

we described.
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Algorithm 10 The particle marginal MH sampler for MJP trajectories

Input: The observations X, the MJP path S(t) = (s0, S, T ),

number of particles N , parameter θ and π0,

P (θ) prior of θ, proposal density q(·|·).

Output: New MJP trajectory S ′(t) = (s′0, S
′, T ′).

1: Sample θ∗ ∼ q(·|θ).

2: Run the SMC algorithm above targeting Pθ∗(·|X1:n) to sample S∗(t) from

P̂θ∗(·|X1:n) and let P̂θ∗ denote the estimate of the marginal likelihood.

3: Accept θ∗, S∗(t) with probability

acc = 1 ∧ P̂θ
∗P (θ∗)

P̂θP (θ)

q(θ|θ∗)
q(θ∗|θ)

.
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